THE FOURTH ASSIGNMENT.

Integration Theory 425.

This homework is due on Friday 29 September in class.
This homework will contribute to your grade.

ALGEBRAS OF SETS.

We start with a set \(X \). Recall that a family \(C \) of subsets of \(X \) is called a ring if for any \(A, B \in C \), we have \(A \cap B \in C \) and \(A \setminus B \in C \); an algebra if, additionally, \(X \in C \); and a sigma-algebra if, additionally, for any \(A_1, \ldots, A_n, \ldots \in C \), we have \(\bigcup_{n=1}^{\infty} A_n \in C \).

1. Let \(X, Y \) be two sets, let \(C \) be a sigma-algebra of subsets of \(Y \). Show that the family \(f^{-1}C = \{ f^{-1}A | A \in C \} \) is also a sigma-algebra.

2. Let \(X \) be a set, and let \(A \) be an algebra of sets. Show that \(A \) is a sigma-algebra if and only if one of the following equivalent conditions holds:

 1) for any \(A_n \in A \) such that \(A_1 \subset A_2 \subset \ldots \) we have \(\bigcup_{n=1}^{\infty} A_n \in A \).

 2) for any \(A_n \in A \) such that \(A_1 \supset A_2 \supset \ldots \) we have \(\bigcap_{n=1}^{\infty} A_n \in A \).

3. Let \(X \) be a set, let \(A \) be a sigma-algebra of sets, and let \(\mu \) be a finitely additive measure on \(A \) such that \(\mu(X) = 1 \). Show that \(\mu \) is countably additive if and only if one of the following equivalent conditions holds:

 1) for any \(A_n \in A \) such that \(A_1 \subset A_2 \subset \ldots \) we have
 \[\mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n). \]

 2) for any \(A_n \in A \) such that \(A_1 \supset A_2 \supset \ldots \) we have
 \[\mu(\bigcap_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n). \]

 Remark. Don’t forget to show that the limits at the right-hand side exist!

4. Give an example of a sigma-algebra containing exactly eight sets.

MEASURABLE FUNCTIONS.

Let \(X \) be a set, let \(A \) be a sigma-algebra of subsets of \(X \), and let \(f : X \to \mathbb{R} \) be a function. Unless otherwise specified, measurability of \(f \) will be understood with respect to the Borel sigma-algebra on \(\mathbb{R} \) and the sigma-algebra \(A \) on \(X \).

5. Let \(f \) be measurable. Show that so is \(|f| \). Is the converse true?

6. Let \(f_n \) be bounded measurable functions. Show that so are \(\sup f_n, \inf f_n \).
7. Prove that the following conditions (assumed to hold for any \(a \in \mathbb{R} \)) are equivalent to the measurability of \(f \).
 1) \(f^{-1}(-\infty, a) \in \mathcal{A} \);
 2) \(f^{-1}(-\infty, a] \in \mathcal{A} \);
 3) \(f^{-1}[a, \infty) \in \mathcal{A} \);
 4) \(f^{-1}(a, \infty) \in \mathcal{A} \).

8. Let \(f : (0, 1) \to \mathbb{R} \) be everywhere differentiable. Prove that its derivative is Borel measurable and, consequently, Lebesgue measurable.

9. Let \(f : [a, b] \to [c, d] \) be continuous. For \(t \in [c, d] \), let \(n(t) \) be the number of solutions to the equation \(f(x) = t \) (and we set \(n(t) = 0 \) if that number is infinite). Prove that the function \(n : [c, d] \to \mathbb{R} \) is measurable.

Completeness in Metric Spaces

We recall that a metric space is said to be complete if every Cauchy sequence converges in it.

10. Let \(X \) be a complete metric space and let \(B_1 \supseteq B_2 \supseteq \ldots B_n \supseteq \ldots \) be a sequence of closed balls whose radii converge to zero (in other words, \(B_n = B(x_n, \varepsilon_n) \) and \(\lim_{n \to \infty} \varepsilon_n = 0 \)). Prove that the intersection \(\bigcap_{n=1}^{\infty} B_n \) consists of exactly one point. Show, conversely, that every metric space having this property is complete.

11. Show that in a complete metric space there may exist balls \(B_1 \supset B_2 \supset \ldots B_n \supset \ldots \) such that the intersection \(\bigcap_{n=1}^{\infty} B_n \) is empty.

12. Introduce a metric \(d \) on \(\mathbb{R} \) by the formula \(d(x, y) = |\exp(x) - \exp(y)| \).
 Show that this formula does indeed give a metric. Is the resulting metric space complete?

13. Let \(X \) be the sets of all closed intervals on the real line and let the distance between two intervals \(\Delta_1, \Delta_2 \) be given by the formula
 \[
 d(\Delta_1, \Delta_2) = |\Delta_1| + |\Delta_2| - |\Delta_1 \cap \Delta_2|
 \]
 (here \(|\Delta| \) stands for the length of an interval \(\Delta \)). Show that this formula does indeed give a metric. Is this metric space complete?

14. Let \(X \) be an arbitrary set and let \(B(X) \) be the space of all bounded functions on \(X \), endowed with the metric \(d(f, g) = \sup_{x \in X} |f(x) - g(x)| \).
 Show that this formula does indeed give a metric. Is \(B(X) \) complete?

15. Let \((X, d) \) be a metric space, let \(x \in X \). Introduce a function \(d_x : X \to \mathbb{R} \) by the formula \(d_x(y) = d(x, y) \). Prove that the function \(d_x \) is continuous.