1. Compute the resultant of \(f(x) = x^5 - 3x^4 - 2x^3 + 3x^2 + 7x + 6 \) and \(g(x) = x^4 + x^2 + 1 \). Do these polynomials have a common factor in \(\mathbb{Q}[x] \)?

2. Let \(f, g \in \mathbb{C}[x] \) be polynomials of degree 3. Verify directly in this case that the following are equivalent:
 (a) The polynomials \(f \) and \(g \) have a non-constant common factor.
 (b) \(\text{Res}(f, g, x) = 0 \).

3. Resultants give us another method of finding an implicit polynomial equation for a parametric rational curve, in the following way: given a rational curve defined parametrically by
 \[
 (x, y) = \left(\frac{a(t)}{p(t)}, \frac{b(t)}{q(t)} \right),
 \]
 we can find an implicit equation by calculating the resultant \(\text{Res}(f, g, t) \) of the polynomials \(f = a(t) - xp(t) \) and \(g = b(t) - yq(t) \), where we are regarding \(f \) and \(g \) as polynomials in \(t \) with coefficients in \(\mathbb{C}[x, y] \).
 (a) Show that \(\text{Res}(f, g, t) \), as a polynomial in \(x \) and \(y \), vanishes on the parametric curve.
 (b) Use this method to find an implicit equation for the following curves:
 i. \(x = t^2, \ y = t^2(t + 1) \).
 ii. \(x = \frac{t-1}{t^2}, \ y = t - 1 \).
 iii. \(x = \frac{t(t^2+1)}{t^4+1}, \ y = \frac{t(t^2-1)}{t^4+1} \).
 (c) Use the Gröbner basis method to find implicit equations for the above parametric curves and check that they define the same curves.

4. Consider the following polynomials in \(k[x, y] \):
 \[
 f = x^2y - 3xy^2 + x^2 - 3xy \\
g = x^3y + x^3 - 4y^2 - 3y + 1
 \]
 (a) Compute \(\text{Res}(f, g, x) \).
 (b) Compute \(\text{Res}(f, g, y) \).
 (c) What do your answers from (a) and (b) tell you about \(f \) and \(g \)?