We’ve recently seen how Gröbner bases in lex order allow us to “eliminate” variables; for example, given two plane curves $f(x,y)$ and $g(x,y)$, we expect their intersection to consist of finitely many points (unless they have a common factor), and to find those points, we find a polynomial in y alone (i.e. eliminate x) in the ideal $\langle f, g \rangle$ whose roots are then the y-coordinates of the intersection points of f and g.

It turns out that, at least in this special case, there was an earlier (19th century) approach to the problem without using Gröbner bases, called resultants. Given two polynomials

\begin{align*}
 f(t) &= a_n t^n + a_{n-1} t^{n-1} + \cdots + a_1 t + a_0, \\
 g(t) &= b_m t^m + b_{m-1} t^{m-1} + \cdots + b_1 t + b_0
\end{align*}

of degrees n and m respectively, we already know how to determine whether f and g have a common factor: we simply preform Euclid’s algorithm on f and g (or, to say the same thing in a rather silly way, we compute a Gröbner basis for the ideal $\langle f, g \rangle$). If the coefficients of f or g were changed, however, we would have to start over with Euclid’s algorithm, i.e. we can’t just preform Euclid’s Algorithm on the general polynomials of degree n and m. It might be useful then if it were possible to write down (for fixed n and m) a polynomial in the coefficients of f and g which is zero precisely when f and g had a common factor.

In order to do this, we look again at a question we’ve studied before: given polynomials $f(t)$ and $g(t)$ of degrees n and m respectively and another polynomial $h(t)$, what are the solutions to the equation

\[uf + vg = h \]

for polynomials $u(t)$ and $v(t)$? Let us first assume that f and g have no common factors. Then it is possible to solve the equation

\[\tilde{u} f + \tilde{v} g = 1 \]

and hence we may solve the equation for any polynomial h: certainly $(u_0,v_0) = (h\tilde{u}, h\tilde{v})$ is a solution. To find all the solutions, we just note that any two solutions must differ from one another by a solution $(c(t),d(t))$ to the equation

\[cf + dg = 0. \]

This equation, however, is much easier to solve: we can rewrite it as $cf = -dg$ and since f and g have no factors in common, this means that the solutions to this equation are $(c,d) = (qg, -qf)$,\footnote{The fact that if $f|dg$ and f and g have no common factors, then $f|d$ of course follows from the uniqueness of the factorization of a polynomial into irreducible polynomials, but we can also show it directly. We know from Euclid’s Algorithm that we can write

\[\tilde{u} f + \tilde{v} g = 1, \]

so that multiplying both sides by d yields

\[d\tilde{u} f + d\tilde{v} g = d. \]

The term $d\tilde{u} f$ is clearly divisible f and $d\tilde{v} g$ is divisible by f since dg is. Thus d must be divisible by f as well.}
and that the general solution to the original equation is \(u_q = u_0 + qg \) and \(v_q = v_0 - qf \), i.e.

\[
(u_0 + qg)f + (v_0 - qf)g = h
\]

parametrized by an arbitrary polynomial \(q \).

If we want to find a solution that minimizes the degree of \(v = v_0 - qf \), we simply note that there are unique polynomials \(q \) and \(r \) such that \(v_0 = qf + r \) and \(\deg r < \deg f = n \) by the division algorithm. Thus we see that there is a unique solution to the original equation in which \(\deg v < n \). Similarly, it can be shown that there is a unique solution in which \(\deg u < m \). Moreover, if \(\deg h < n + m \), then these two solutions are the same, since if \(\deg v < n \), then \(\deg vg < n + m \) so \(\deg uf = \deg (h - vg) < n + m \), and \(\deg u < m \) as well.

Proposition. Let \(f, g \in k[t] \) be polynomials over a field \(k \) of degrees \(n > 0 \) and \(m > 0 \), respectively. Then for any \(h \in k[t] \) of degree less than \(n + m \), there are unique polynomials \(u, v \in k[t] \) with \(\deg u < m \) and \(\deg v < n \) such that

\[
u f + vg = h
\]

if and only if \(f \) and \(g \) have no common factors.

Proof. We’ve just shown that if \(f \) and \(g \) are relatively prime, then the above equation has a unique solution. We are left with the “only if” part: we must show \(f \) and \(g \) do have a common factor, then either the existence or the uniqueness of the solutions must fail.

In fact, both fail. Existence fails because we can not solve the equation \(uf + vg = 1 \), since any common factor of \(f \) and \(g \) must also divide 1. Uniqueness fails even for \(h \) where a solution exists because if \(d \) is a common factor of \(f \) and \(g \), then \(\frac{2}{d}f + \frac{1}{d}g = 0 \) is another solution to \(cf + dg = 0 \) with \(\deg u < m \) and \(\deg v < n \).

Let \(V_k \) be the vector space of polynomials of degree \(k \) or less. Then \(V_k \) has dimension \(k+1 \), since \(1, t, t^2, \ldots, t^k \) is basis. Multiplication by \(f \) defines a linear transformation from \(V_{m-1} \) to \(V_{n+m-1} \). With respect to these standard bases for \(V_{m-1} \) and \(V_{n+m-1} \), the \((n+m) \times m \) matrix
represents multiplication by \(f \). Similarly, multiplication by \(g \) defines a linear transformation from \(V_{n-1} \) to \(V_{n+m-1} \), represented by the \((n+m) \times n\) matrix

\[
\begin{bmatrix}
 b_0 & 0 & 0 & \ldots & \ldots & \ldots & 0 \\
 b_1 & b_0 & 0 & \ddots & \vdots & \vdots & \vdots \\
 b_2 & b_1 & b_0 & \ddots & 0 & \vdots & \vdots \\
 \vdots & b_2 & b_1 & \ddots & 0 & 0 & \vdots \\
 b_{m-1} & \vdots & b_2 & \ddots & b_0 & 0 & 0 \\
 b_m & b_{m-1} & \vdots & \ddots & b_1 & b_0 & 0 \\
 0 & b_m & b_{m-1} & \ddots & b_2 & b_1 & b_0 \\
 0 & 0 & b_m & \ddots & \vdots & b_2 & b_1 \\
 \vdots & 0 & 0 & \ddots & b_{m-1} & \vdots & b_2 \\
 \vdots & \vdots & 0 & \ddots & b_m & b_{m-1} & \vdots \\
 \vdots & \vdots & \vdots & \ddots & 0 & 0 & b_m \\
 0 & \ldots & \ldots & \ldots & 0 & 0 & b_m \\
\end{bmatrix}
\]

with respect to the standard bases for \(V_{n-1} \) and \(V_{n+m-1} \). Now, let \(V_{m-1} \oplus V_{n-1} \) be the vector space of pairs of polynomials \((u, v)\) where \(\deg u \leq m-1 \) and \(\deg v \leq n-1 \). The vector space \(V_{m-1} \oplus V_{n-1} \) has dimension \(m+n \), since

\[
(1, 0), (t, 0), (t^2, 0), \ldots , (t^{m-1}, 0), (t^m, 0), (0, 1), (0, t), (0, t^2), \ldots , (0, t^{n-1}), (0, t^n)
\]

is a basis; this is essentially the standard basis for \(V_{m-1} \) followed by the standard basis for \(V_{n-1} \). The function \(T(u, v) = uf + vg \) defines a linear transformation from \(V_{m-1} \oplus V_{n-1} \) to \(V_{n+m-1} \) whose matrix with respect to the above basis on \(V_{m-1} \oplus V_{n-1} \) and the standard basis on \(V_{n+m-1} \) is the \((n+m) \times (n+m)\) matrix

\[
\text{Syl}(f, g, t) = \begin{bmatrix}
 a_0 & 0 & \ldots & 0 & 0 & b_0 & 0 & 0 & \ldots & \ldots & \ldots & 0 \\
 a_1 & a_0 & \ddots & \vdots & 0 & \vdots & b_0 & 0 & \ddots & \vdots & \vdots & \vdots \\
 a_2 & a_1 & \ddots & 0 & b_{m-3} & \vdots & b_0 & \ddots & 0 & \vdots & \vdots & \vdots \\
 a_3 & a_2 & \ddots & a_0 & 0 & b_{m-2} & b_{m-3} & \ddots & 0 & 0 & \vdots & \vdots \\
 \vdots & a_3 & \ddots & a_1 & a_0 & b_{m-1} & b_{m-2} & b_{m-3} & \vdots & b_0 & 0 & 0 \\
 a_{n-2} & \vdots & a_2 & a_1 & b_{m-1} & b_{m-2} & b_{m-3} & \vdots & b_0 & 0 & 0 \\
 a_{n-1} & a_{n-2} & \vdots & a_3 & a_2 & 0 & b_m & b_{m-1} & \ddots & b_{m-3} & \vdots & b_0 \\
 a_n & a_{n-1} & \ddots & \vdots & a_3 & \vdots & 0 & b_m & \ddots & b_{m-2} & b_{m-3} & \vdots \\
 0 & a_n & \ddots & a_{n-2} & \vdots & 0 & \vdots & b_{m-1} & b_{m-2} & \ddots & b_{m-3} & b_{m-2} & b_{m-1} \\
 \vdots & 0 & \ddots & a_{n-1} & a_{n-2} & 0 & 0 & \vdots & b_m & b_{m-1} & b_{m-2} & b_{m-1} & b_m \\
 0 & \vdots & \vdots & a_n & a_{n-1} & 0 & 0 & 0 & \ddots & 0 & b_m & b_{m-1} & b_m \\
 0 & 0 & \ldots & \ldots & 0 & a_n & a_{n-1} & 0 & 0 & 0 & \ddots & 0 & b_m & b_{m-1} & b_m \\
\end{bmatrix}
\]
of \(f \) and \(g \) with respect to the variable \(t \). The resultant is a polynomial in the coefficients of \(f \) and \(g \) with integer coefficients.

The determinant of a matrix is non-zero precisely when the corresponding linear transformation is one-to-one (and equivalently, if and only if the linear transformation is onto). Thus, since we know that solutions to \(uf + vg = h \) with \(u \in V_{m-1} \) and \(v \in V_{n-1} \) exist (and are unique) for all \(h \in V_{n+m-1} \) precisely when \(f \) and \(g \) have no common factor, we have the following:

Theorem. Suppose that \(f, g \in k[t] \) are polynomials over a field \(k \) of degrees \(n > 0 \) and \(m > 0 \) respectively. Then \(\text{Res}(f, g, t) = 0 \) if and only if \(f \) and \(g \) have a common factor in \(k[t] \).

One thing we need to be careful of is that this theorem only applies when the degrees of \(f \) and \(g \) are actually \(n \) and \(m \). If \(a_n = b_m = 0 \), applying the resultant as if \(f \) and \(g \) had degree \(n \) and \(m \) will always yield zero (Why?) even though \(f \) and \(g \) may not have a common factor.

Remark. There’s another way to define the resultant. If we assume that \(f, g \in \mathbb{C}[t] \) are monic polynomials, then by the fundamental theorem of algebra, we can factor them over the complex numbers as

\[
\begin{align*}
 f(t) &= (t - \alpha_1)(t - \alpha_2)(t - \alpha_3) \cdots (t - \alpha_{n-1})(t - \alpha_n), \\
 g(t) &= (t - \beta_1)(t - \beta_2) \cdots (t - \beta_m).
\end{align*}
\]

Then if we form the product

\[
R(f, g, t) = \prod_{j=1}^{n} \prod_{k=1}^{m} (\alpha_j - \beta_k)
\]

then it will certainly have the property that \(R(f, g, t) = 0 \) if and only if \(f \) and \(g \) have a root (or equivalently, a factor) in common. Also, it’s easy to see that permuting the \(\alpha_j \) or permuting the \(\beta_k \) has no effect on this product. It turns out that this means it’s possible to rewrite \(R(f, g, t) \) as a polynomial in the coefficients of \(f \) and \(g \),\(^2\) and in fact \(R(f, g, t) = \text{Res}(f, g, t) \). On the other hand, our original definition of the resultant \(\text{Res}(f, g, t) \) is a polynomial in the coefficients \(a_i, b_j \).

\(^2\)The general statements is that a symmetric polynomial in the roots \(\alpha_1, \ldots, \alpha_n \) of a monic polynomial \(f(t) = t^n + a_{n-1}t^{n-1} + \cdots + a_0 \) can be written as a polynomial in the elementary symmetric polynomials

\[
\begin{align*}
 -a_{n-1} &= \sigma_1 = \alpha_1 + \cdots + \alpha_n, \\
 a_{n-2} &= \sigma_2 = \alpha_1\alpha_2 + \alpha_1\alpha_3 + \cdots + \alpha_1\alpha_n + \alpha_2\alpha_3 + \cdots + \alpha_2\alpha_n + \cdots + \alpha_{n-1}\alpha_n, \\
 \vdots \\
 (-1)^r a_{n-r} &= \sigma_r = \sum_{i_1 < i_2 < \cdots < i_r} \alpha_{i_1}\alpha_{i_2}\cdots\alpha_{i_r}, \\
 \vdots \\
 (-1)^n a_0 &= \sigma_n = \alpha_1\alpha_2\cdots\alpha_n,
\end{align*}
\]

and is thus a polynomial in the coefficients of \(f \). See section 7.1 of Cox, Little, and O’Shea for details.