Handout 1. A Fixed Point Theorem

Here we discuss the existence of a fixed point for a contraction mapping of a complete metric space. In Handouts 2 and 4, we apply this to the basic ODE Existence Theorem and the Inverse and Implicit Function Theorems.

Recall that, in a metric space (X, d), a sequence x_1, x_2, \ldots is *Cauchy* if $\lim_{m,n\to\infty} d(x_m, x_n) = 0$. Thus convergent sequences are Cauchy, and one says that the metric space (X, d) is *complete* if, conversely, every Cauchy sequence converges to some point of X. Then **R**, or more generally any closed subset of \mathbf{R}^n , is complete with the usual distance d(x, y) = |x - y|.

We will also consider the following interesting infinite dimensional example. For any positive integers m, n, region $\Omega \subset \mathbf{R}^m$, point $y_0 \in \mathbf{R}^n$, and $0 < r < \infty$, let

 $\mathcal{C}(\Omega, \overline{\mathbf{B}_r(y_0)}) = \{ \text{continuous } f : \Omega \to \overline{\mathbf{B}_r(y_0)} \} .$

Here $\mathbf{B}_r(y_0)$ (respectively, $\overline{\mathbf{B}_r(y_0)}$) denotes the open (respectively, closed) ball of radius r in \mathbf{R}^n centered at y_0 .

Exercise. $\mathcal{C}(\Omega, \overline{\mathbf{B}_r(y_0)})$ is a complete metric space with the (so called *uniform*, sup, or L^{∞}) distance

$$d(f,g) = ||f - g||_{sup} = \sup_{x \in \Omega} |f(x) - g(x)|.$$

Definition. A mapping A from a metric space (X, d) to itself is called a *contraction* if there is a positive $\alpha < 1$ so that

$$d(A(x), A(y)) \leq \alpha d(x, y)$$
 for all $x, y \in X$.

An easy example is $A(x) = \frac{1}{2}x$ for $x \in X = \mathbf{R}^n$.

Fixed Point Theorem. For any contraction A of a complete metric space (X, d) there exists a unique point $x_{\infty} \in X$ so that $A(x_{\infty}) = x_{\infty}$.

Proof: Starting with any point $x_0 \in X$, we define inductively $x_{n+1} = A(x_n)$ for $n = 0, 1, \ldots$ We see inductively that

$$d(x_{k+1}, x_k) \leq \alpha^k \ d(x_1, x_0)$$

for $k = 0, 1, 2, \dots$, So that, for positive integers m < n,

$$d(x_m, x_n) \leq \sum_{k=m}^{n-1} d(x_{k+1}, x_k)$$

$$\leq (\alpha^{n-1} + \ldots + \alpha^m) d(x_1, x_0) \leq \frac{1}{1-\alpha} d(x_1, x_0) \alpha^m ,$$

1

which approaches 0 as $n \to \infty$. Thus, the sequence x_0, x_1, x_2, \ldots is Cauchy and so, by the completeness of X, converges to a point $x_{\infty} \in X$. Being a contraction, A is continuous; hence,

$$A(x_{\infty}) = \lim_{n \to \infty} A(x_n) = \lim_{n \to \infty} x_{n+1} = x_{\infty} .$$

We conclude that x_{∞} is a fixed point of A.

It is also the *unique* fixed point because for any fixed point y of A,

$$d(y, x_{\infty}) = d(A(y), A(x_{\infty})) \leq \alpha d(y, x_{\infty}) ,$$

which is only possible if $d(y, x_{\infty}) = 0$.

 $\mathbf{2}$