
Handout 2. A Very Short Course in Local O.D.E. Theory

Suppose 0 < a < ∞, y0 ∈ Rn, 0 < r < ∞, and f(x, y) is a continuous function
defined on the cylinder Ω = [x0 − a, x0 + a]×Br(y0) in the R×Rn. Consider the
O.D.E. initial-value problem:

du

dx
= f

(
x, u(x)

)
and u(x0) = y0 . (∗)

When n = 1, this has the following geometric interpretation. The function f defines
a line field V on the rectangle where the line V (x, y) through (x, y) has slope f(x, y).
Solving (*) is equivalent to finding the graph of a function u which passes through
the fixed point (x0, y0) and which is everywhere tangent to the line field.

One cannot expect such a solution to exist for all x . For example, if
f(x, y) = 1+y2 and (x0, y0) = (0, 0) , then the solution of (*) is found (by separation
of variables) to be u(x) = tan(x) which blows up at x = ±π

2 . (It is useful to sketch
the line field of this example.) The theorem below gives simple conditions under
which the solution exists near x0 .

Suppose

M = sup
(x,y)∈Ω

|f(x, y)| < ∞ ( f is bounded) ,

L = sup
(x,y),(x,z)∈Ω,y 6=z

∣∣ |f(x, y)− f(x, z)|
|y − z|

∣∣ < ∞ ( f is Lipschitz in y) .

Both these conditions hold if f is continuously differentiable on the closed cylinder
Ω̄ .

Theorem. (Cauchy-Picard) If c = min{a, r
M , 1

2L} , then there exists a unique
solution u(x) to (*) for |x− x0| ≤ c .

Lemma. u is a solution of (*) if and only if

u(x) = y0 +
∫ x

x0

f
(
t, u(t)

)
dt for |x− x0| ≤ c . (∗∗)

Exercise. Prove this lemma using the fundamental theorems of calculus.

Proof of Theorem. For u ∈ C
(
Ω,Br(y0)

)
, let

A(u)(x) = y0 +
∫ x

x0

f
(
t, u(t)

)
dt ,
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and note that A(u) is continuous with

‖A(u) − y0‖sup ≤ M |x− x0| ≤ Mc ≤ r .

Thus A(u) ∈ C
(
Ω,Br(y0)

)
and A is a contraction because

‖A(u) − A(v)‖sup ≤
∫ x

x0

|f
(
t, u(t)

)
−f

(
t, v(t)| dt ≤ |x−x0|L‖u−v‖ ≤ 1

2
‖u−v‖ .

Thus A has a fixed point u which is, by the Lemma, the desired unique solution of
(*).

Remark 1. Existence is still true for f being just continuous (we won’t prove this
here), but uniqueness may fail without the Lipschitz condition. For example, the
equation

du

dx
= |u| 12

has two solutions satisfying u(0) = 0 ; namely, 0 and 1
2 |x|x .

Exercise. Find 2 more distinct solutions.

Corollary. Suppose f(t1, . . . , tm+1) is bounded and Lipschitz near the point
(x0, y0, y1, . . . , ym−1) . Then the initial-value problem

dmu

dxm
= f

(
x, u,

du

dx
, . . . ,

dm−1u

dxm−1

)
,

u(x0) = y0 ,

du

dx
(x0) = y1 ,

dm−1u

dxm−1
(x0) = ym−1

has a unique solution near x0 .

Proof : Letting

~u = (u1, . . . , um) ~f = (f1, . . . , fm) ~y0 = (y0, . . . , ym−1)

where

u1 = u, u2 =
du

dx
, . . . , um =

dm−1u

dxm−1

f1(t1, . . . , tm+1) = t2, . . . , fm−1(t1, . . . , tm+1) = tm ,

fm(t1, . . . , tm+1) = f(t1, . . . , tm+1) ,

our mth order problem reduces to the first order vector problem
d~u

dx
= ~f

(
x, ~u(x)

)
, ~u(x0) = ~y0 .
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