Some Facts about L^p

Suppose $1 \leq p < \infty$ and $||f||_{L^p} = (\int |f|^p dx)^{1/p}$ for any measurable f on \mathbb{R}^n . Then $L^p = \{f : ||f||_{L^p} < \infty\}$ is a linear space which is topologized by dist $(f,g) = ||f-g||_{L^p}$ into a complete separable metric space. Under ordinary smoothing $f^{\epsilon} = \rho_{\epsilon} \cdot f$,

$$||f^{\epsilon} - f||_{L^p} \to 0 \text{ as } \epsilon \to 0.$$

By multiplying by the characteristic function of a large ball before smoothing we see that the linear subspace C_0^{∞} is dense in L^p .

Suppose that $\Upsilon : L^p \to \mathbf{R}$ is linear, that $\|\Upsilon\| \equiv \sup\{\Upsilon(f) : \|g\|_{L^q} \leq 1\}$, and that $q \in (1, \infty]$ is defined by $\frac{1}{q} = 1 - \frac{1}{p}$.

Riesz Representation Theorem. (see e.g. Royden §6.5.13) $\|\Upsilon\| < \infty \Leftrightarrow$ there exists $g \in L^q$ with $\|g\|_{L^q} = \|\Upsilon\|$ so that $\Upsilon(f) = \int fg$ for all $f \in L^p$.

For $f, f_i \in L^1(\mathbf{R}^n)$, one says that $f_i \rightharpoonup f$ weakly if $\int f_i g \rightarrow \int fg$ for all $g \in \mathcal{C}_0^{\infty}$. If, in addition, $\sup_i \|f_i\|_{L^p} < \infty$, then one says that $f_i \rightharpoonup f$ weakly in L^p . In this case one then has the relations

$$\|f\|_{L^p} \leq \liminf_{i \to \infty} \|f_i\|_{L^p}$$

and $\int f_i g \to \int f g$ for all $g \in L^q$.

Distribution Derivatives and H^1

For any $f \in L^1_{loc}(\mathbf{R}^n)$, the distribution (or weak) derivative is the linear function $D_f: \mathcal{C}^{\infty}_0(\mathbf{R}^n, \mathbf{R}^n) \to \mathbf{R}$, given by the formula

$$D_f[V] = -\int f \operatorname{div} V \, dx \text{ for } V \in \mathcal{C}_0^\infty(\mathbf{R}^n, \mathbf{R}^n) .$$

In the classical case $f \in C^1$, integration by parts shows that $D_f[V] = \int (Df) \cdot V \, dx$, which explains the definition and notation.

Exercise 1. In case $f = \chi_{\mathbf{B}_1}$, D_f is *not* represented by integration on \mathbf{R}^n but rather by integration over the sphere $\partial \mathbf{B}_1$:

$$D_f[V] = -\int_{\partial \mathbf{B}_1} V(x) \cdot x \, d\omega_x \quad (\text{for } n = 1, \ D_f[V] = V(-1) - V(+1)) \ .$$

Definition. f belongs to the Sobolev space $H^1 = H^1(\mathbf{R}^n)$ (or alternately $D_f \in L^2$) if $D_f[V] = \int W \cdot V \, dx$ for some $W \in L^2(\mathbf{R}^n, \mathbf{R}^n)$. **Exercise 2.** W = Df (the usual pointwise-defined gradient) a.e. Hint : To see that $\mathbf{e}_{\mathbf{i}} \cdot W(a) = \frac{\partial}{\partial x_i} f(a)$ at each Lebesgue point a of W, one chooses, for a small positive h, a suitable sequence of smooth vectorfields V_j to approximate $h^{-n}\chi_{C_h}\mathbf{e}_i$ where C_h is the small cube $\prod_{i=1}^n [a_i, a_i + h]$.

Theorem 1. The following are equivalent for any $f \in L^1$: (I) $f \in H^1$ (II) $M \equiv \sup\{D_f[V] : \|V\|_{L^2(\mathbf{R}^n, \mathbf{R}^n)} \leq 1\} < \infty$. (III) $Df \in L^2$ and there exists a sequence $f_i \in \mathcal{C}^1$ such that $f_i \rightharpoonup f$ and $Df_i \rightharpoonup Df$.

 $Proof: (I) \Rightarrow (II): Here$

$$M = \sup\{\int W \cdot V \, dx : \|V\|_{L^2(\mathbf{R}^n, \mathbf{R}^n)} \le 1\} = \|W\|_{L^2} < \infty$$

(II) \Rightarrow (I): Apply the Riesz Theorem to represent $\Upsilon_i(v) \equiv \int f \frac{\partial v}{\partial x_i}$ by an L^2 function W_i . Then

$$\int f \operatorname{div} V = \sum_{i=1}^{n} \Upsilon_{i}(V_{i}) = \sum_{i=1}^{n} \int V_{i} W_{i} = \int V \cdot W$$

(I) \Rightarrow (III): By Exercise 2, $Df = W \in L^2$. Ordinary smoothing then gives smooth functions f_{ϵ_i} converging strongly in L^1 , hence weakly, to f and smooth vectorfields $(Df)_{\epsilon_i}$ converging strongly in L^2 , hence weakly, to Df. Thus, for (III) it is suffices to verify that $Df_{\epsilon} = (Df)_{\epsilon}$. We assume the mollifier is symmetric, i.e. $\rho_{\epsilon}(-x) = \rho_{\epsilon}(x)$, take any vectorfield $V = (V_1, \ldots, V_n) \in \mathcal{C}_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$, and use Fubini's Theorem and (I) to see that

$$\int Df_{\epsilon} \cdot V = -\int \int \rho_{\epsilon}(x-y)f(y)dy \operatorname{div} V(x)dx$$

$$= \int \int \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\rho_{\epsilon}(x-y)f(y)V_{i}(x)dxdy$$

$$= -\int \int \sum_{i=1}^{n} \frac{\partial}{\partial y_{i}}\rho_{\epsilon}(x-y)f(y)V_{i}(x)dydx$$

$$= \int \int \rho_{\epsilon}(x-y)\sum_{i=1}^{n} \frac{\partial}{\partial y_{i}}f(y)V_{i}(x)dydx$$

$$= \int \int \rho_{\epsilon}(x-y)Df(y) \cdot V(x)dydx = \int (Df)_{\epsilon} \cdot V .$$

Thus $Df_{\epsilon} = (Df)_{\epsilon}$ almost everywhere, and by continuity, everywhere.

(III) \Rightarrow (I) : For $V \in C_0^{\infty}(\mathbf{R}^n, \mathbf{R}^n)$, integration by parts implies that $-\int f_i \operatorname{div} V \, dx = \int (Df_i) \cdot V \, dx$. Noting, by Hölder's inequality, that

$$|\int (f - f_i) \operatorname{div} V| + |\int (Df - Df_i) \cdot V| \le ||f - f_i|_{L^2} ||\operatorname{div} V||_{L^2} + ||Df - Df_i|_{L^2} ||V||_{L^2}$$

approaches 0 as $i \to \infty$, we conclude that $D_f[V] = -\int f \operatorname{div} V \, dx = \int Df \cdot V \, dx$.

Theorem 2. If $f \in L^1 \cap H^1$ and $n \in \{3, 4, ...\}$, then $f \in L^p$ for all $p \in [1, \frac{2n}{n-2}]$. *Proof*: By the Sobolev inequality and the previous proof,

$$\begin{split} \|f\|_{L^{2n/(n-2)}} &\leq \liminf_{\epsilon \to 0} \|f_{\epsilon}\|_{L^{2n/(n-2)}} \leq \limsup_{\epsilon \to 0} c \|D(f_{\epsilon})\|_{L^{2}} \\ &= \limsup_{\epsilon \to 0} c \|(Df)_{\epsilon}\|_{L^{2}} \leq c \|Df\|_{L^{2}} < \infty \,. \end{split}$$

Using Hölder's inequality with $\frac{1}{r} \equiv \frac{1}{p} - \frac{n-2}{2n}$ and the Chebychev inequality, we conclude

$$\int |f|^p dx \leq \int_{\{|f| \leq 1\}} |f|^p dx + \int_{\{|f| > 1\}} |f|^p dx$$

$$\leq \int_{\{|f| \leq 1\}} |f| dx + |\{|f| > 1\}|^{p/r} ||f||_{L^{2n/(n-2)}}^p$$

$$\leq ||f||_{L^1} + ||f||_{L^1}^{p/r} ||f||_{L^{2n/(n-2)}}^p < \infty.$$

Exercise 3. For $n = 1, f \in L^p$ for all $p \in [1, \infty]$. For $n = 2, f \in L^p$ for $p \in [1, \infty)$.

The Sobolev inequality, for an arbitrary H^1 function, now follows using ordinary smoothing from the \mathcal{C}^1 version of the Sobolev inequality. Similarly one defines, for an open $\Omega \subset \mathbf{R}^n$, the Sobolev space $H^1(\Omega)$ and proves by approximation the Poincaré inequality in case $\partial\Omega$ is smooth. One also has

Rellich's Theorem. Any sequence $u_i \in H^1(\mathbf{B})$ with $\sup_i \left(||u_i||_{L^2} + ||Du_i||_{L^2} \right) < \infty$ contains a subsequence $u_{i'}$ that converges strongly in L^2 to $u \in H^1(\mathbf{B})$. Moreover $Du_{i'}$ converges weakly in L^2 to Du and $\int_{\mathbf{B}} |Du|^2 \leq \liminf_{i' \to \infty} \int_{\mathbf{B}} |Du|^2$.

Next we discuss properties of a composition $\Phi \circ u$ where $u \in H^1$. In case Φ is Lipschitz, Φ is differentiable almost everywhere, but the exceptional set of non-differentiability may contain u(A) for some set A with positive measure. Nevertheless, we still have:

Theorem 3. If $u \in H^1$ and Φ is Lipschitz, then $\Phi \circ u \in H^1$ with

$$||D(\Phi \circ u)||_{L^2} \leq ||\Phi'||_{L^{\infty}} ||Du||_{L^2}$$

Proof : First note that

$$\int |\Phi \circ u - \Phi \circ u_{\epsilon}|^2 \leq \|\Phi'\|_{L^{\infty}}^2 \int |u - u_{\epsilon}|^2 \to 0 \text{ as } \epsilon \to 0 .$$

In case $\Phi \in \mathcal{C}^{\infty}$, $V \in \mathcal{C}_0^{\infty}(\mathbf{R}^n, \mathbf{R}^n)$ and $\|V\|_{L^2} \leq 1$,

$$-\int (\Phi \circ u) \operatorname{div} V = -\lim_{\epsilon \to 0} \int (\Phi \circ u_{\epsilon}) \operatorname{div} V$$
$$= \lim_{\epsilon \to 0} \int D(\Phi \circ u_{\epsilon}) \cdot V = \lim_{\epsilon \to 0} \int \Phi'(u_{\epsilon}) Du_{\epsilon} \cdot V$$
$$\leq \liminf_{\epsilon \to 0} \|\Phi'\|_{L^{\infty}} \|Du_{\epsilon}\|_{L^{2}} \leq \|\Phi'\|_{L^{\infty}} \|Du\|_{L^{2}} .$$

Theorem 1 and its proof now imply that $\Phi \circ u \in H^1$ with $||D(\Phi \circ u)||_{L^2} \leq ||\Phi'||_{L^{\infty}} ||Du||_{L^2}$.

For a general Lipschitz Φ , $\Phi_{\epsilon} = \Phi * \rho_{\epsilon} \to \Phi$ uniformly as $\epsilon \to 0$. Thus, for V as above, the previous case and Hölder's inequality imply

$$\begin{split} -\int (\Phi \circ u) \mathrm{div} \, V &= \lim_{\epsilon \to 0} -\int (\Phi_{\epsilon} \circ u) \mathrm{div} \, V \\ &= \lim_{\epsilon \to 0} \int D(\Phi_{\epsilon} \circ u) \cdot V \\ &\leq \limsup_{\epsilon \to 0} \|\Phi_{\epsilon}'\|_{L^{\infty}} \|Du\|_{L^{2}} \leq \|\Phi'\|_{L^{\infty}} \|Du\|_{L^{2}} \;, \end{split}$$

and Theorem 3 follows as before from Theorem 1.

Corollary. $\int D(\Phi_{\epsilon} \circ u) \cdot V \rightarrow \int D(\Phi \circ u) \cdot V \text{ as } \epsilon \rightarrow 0 \text{ for all } V \in L^{2}(\mathbb{R}^{n}, \mathbb{R}^{n}).$ *Proof :* This follows from Theorem 3 in case $V \in \mathcal{C}_{0}^{\infty}(\mathbb{R}^{n}, \mathbb{R}^{n}).$ For $V \in L^{2}(\mathbb{R}^{n}, \mathbb{R}^{n})$ and $\delta > 0$, we first choose $\tilde{V} \in \mathcal{C}_{0}^{\infty}(\mathbb{R}^{n}, \mathbb{R}^{n})$ with

$$\|V - \tilde{V}\|_{L^2} < \frac{\delta}{3\|\Phi'\|_{L^{\infty}}\|Du\|_{L^2}}$$

and then $\epsilon > 0$ so that $|\int D(\Phi_{\epsilon} \circ u) \cdot \tilde{V}| - \int D(\Phi \circ u) \cdot \tilde{V}| < \frac{\delta}{3}$ to conclude, using Hölder's inequality, that

$$\begin{split} &|\int D(\Phi_{\epsilon} \circ u) \cdot V - \int D(\Phi \circ u) \cdot V| \\ &< |\int D(\Phi_{\epsilon} \circ u) \cdot (V - \tilde{V})| + \frac{\delta}{3} + |\int D(\Phi \circ u) \cdot (\tilde{V} - V)| < 3(\frac{\delta}{3}) = \delta \;. \end{split}$$