
Some Facts about Lp

Suppose 1 ≤ p < ∞ and ‖f‖Lp =
( ∫

|f |p dx
)1/p for any measurable f on

Rn. Then Lp = {f : ‖f‖Lp < ∞} is a linear space which is topologized by
dist (f, g) = ‖f − g‖Lp into a complete separable metric space. Under ordinary
smoothing f ε = ρε · f ,

‖f ε − f‖Lp → 0 as ε → 0 .

By multiplying by the characteristic function of a large ball before smoothing we
see that the linear subspace C∞0 is dense in Lp.

Suppose that Υ : Lp → R is linear, that ‖Υ‖ ≡ sup{Υ(f) : ‖g‖Lq ≤ 1}, and
that q ∈ (1,∞] is defined by 1

q = 1− 1
p .

Riesz Representation Theorem.(see e.g. Royden §6.5.13) ‖Υ‖ < ∞ ⇔ there
exists g ∈ Lq with ‖g‖Lq = ‖Υ‖ so that Υ(f) =

∫
fg for all f ∈ Lp.

For f, fi ∈ L1(Rn), one says that fi ⇀ f weakly if
∫

fig →
∫

fg for all g ∈ C∞0 .
If, in addition, supi ‖fi‖Lp < ∞, then one says that fi ⇀ f weakly in Lp. In this
case one then has the relations

‖f‖Lp ≤ lim inf
i→∞

‖fi‖Lp

and
∫

fig →
∫

fg for all g ∈ Lq.

Distribution Derivatives and H1

For any f ∈ L1
loc(R

n), the distribution (or weak) derivative is the linear function
Df : C∞0 (Rn,Rn) → R, given by the formula

Df [V ] = −
∫

f div V dx for V ∈ C∞0 (Rn,Rn) .

In the classical case f ∈ C1, integration by parts shows that Df [V ] =
∫

(Df) ·V dx,
which explains the definition and notation.

Exercise 1. In case f = χB1 , Df is not represented by integration on Rn but
rather by integration over the sphere ∂B1 :

Df [V ] = −
∫

∂B1

V (x) · x dωx

(
for n = 1, Df [V ] = V (−1)− V (+1)

)
.

Definition. f belongs to the Sobolev space H1 = H1(Rn) (or alternately Df ∈ L2)
if Df [V ] =

∫
W · V dx for some W ∈ L2(Rn,Rn).
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Exercise 2. W = Df (the usual pointwise-defined gradient) a.e. Hint : To see
that ei ·W (a) = ∂

∂xi
f(a) at each Lebesgue point a of W , one chooses, for a small

positive h, a suitable sequence of smooth vectorfields Vj to approximate h−nχCh
ei

where Ch is the small cube Πn
i=1[ai, ai + h].

Theorem 1. The following are equivalent for any f ∈ L1:
(I) f ∈ H1

(II) M ≡ sup{Df [V ] : ‖V ‖L2(Rn,Rn) ≤ 1} < ∞ .
(III) Df ∈ L2 and there exists a sequence fi ∈ C1 such that fi ⇀ f and Dfi ⇀ Df .

Proof : (I) ⇒ (II): Here

M = sup{
∫

W · V dx : ‖V ‖L2(Rn,Rn) ≤ 1} = ‖W‖L2 < ∞ .

(II) ⇒ (I): Apply the Riesz Theorem to represent Υi(v) ≡
∫

f ∂v
∂xi

by an L2

function Wi. Then∫
fdiv V =

n∑
i=1

Υi(Vi) =
n∑

i=1

∫
ViWi =

∫
V ·W .

(I) ⇒ (III): By Exercise 2, Df = W ∈ L2. Ordinary smoothing then gives
smooth functions fεi

converging strongly in L1 , hence weakly, to f and smooth
vectorfields (Df)εi converging strongly in L2, hence weakly, to Df . Thus, for (III)
it is suffices to verify that Dfε = (Df)ε. We assume the mollifier is symmetric,
i.e. ρε(−x) = ρε(x), take any vectorfield V = (V1, . . . , Vn) ∈ C∞0 (Rn,Rn), and use
Fubini’s Theorem and (I) to see that∫

Dfε · V = −
∫ ∫

ρε(x− y)f(y)dy div V (x)dx

=
∫ ∫ n∑

i=1

∂

∂xi
ρε(x− y)f(y)Vi(x)dxdy

= −
∫ ∫ n∑

i=1

∂

∂yi
ρε(x− y)f(y)Vi(x)dydx

=
∫ ∫

ρε(x− y)
n∑

i=1

∂

∂yi
f(y)Vi(x)dydx

=
∫ ∫

ρε(x− y)Df(y) · V (x)dydx =
∫

(Df)ε · V .

Thus Dfε = (Df)ε almost everywhere, and by continuity, everywhere.
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(III) ⇒ (I) : For V ∈ C∞0 (Rn,Rn), integration by parts implies that
−

∫
fi div V dx =

∫
(Dfi) · V dx. Noting, by Hölder’s inequality, that

|
∫

(f −fi) div V |+ |
∫

(Df −Dfi) ·V | ≤ ‖f −fi|L2‖div V ‖L2 +‖Df −Dfi|L2‖V ‖L2

approaches 0 as i →∞, we conclude that Df [V ] = −
∫

f div V dx =
∫

Df · V dx.

Theorem 2. If f ∈ L1 ∩H1 and n ∈ {3, 4, . . .}, then f ∈ Lp for all p ∈ [1, 2n
n−2 ].

Proof : By the Sobolev inequality and the previous proof,

‖f‖L2n/(n−2) ≤ lim inf
ε→0

‖fε‖L2n/(n−2) ≤ lim sup
ε→0

c‖D(fε)‖L2

= lim sup
ε→0

c‖(Df)ε)‖L2 ≤ c‖Df‖L2 < ∞ .

Using Hölder’s inequality with 1
r ≡ 1

p −
n−2
2n and the Chebychev inequality, we

conclude ∫
|f |p dx ≤

∫
{|f |≤1}

|f |p dx +
∫
{|f |>1}

|f |p dx

≤
∫
{|f |≤1}

|f | dx + |{|f | > 1}|p/r‖f‖p
L2n/(n−2)

≤ ‖f‖L1 + ‖f‖p/r
L1 ‖f‖p

L2n/(n−2) < ∞ .

Exercise 3. For n = 1, f ∈ Lp for all p ∈ [1,∞]. For n = 2, f ∈ Lp for p ∈ [1,∞).

The Sobolev inequality, for an arbitrary H1 function, now follows using ordinary
smoothing from the C1 version of the Sobolev inequality. Similarly one defines, for an
open Ω ⊂ Rn, the Sobolev space H1(Ω) and proves by approximation the Poincaré
inequality in case ∂Ω is smooth. One also has

Rellich’s Theorem. Any sequence ui ∈ H1(B) with supi

(
‖ui‖L2 +‖Dui‖L2

)
< ∞

contains a subsequence ui′ that converges strongly in L2 to u ∈ H1(B). Moreover
Dui′ converges weakly in L2 to Du and

∫
B
|Du|2 ≤ lim infi′→∞

∫
B
|Du|2.

Next we discuss properties of a composition Φ ◦ u where u ∈ H1. In case
Φ is Lipschitz, Φ is differentiable almost everywhere, but the exceptional set
of non-differentiability may contain u(A) for some set A with positive measure.
Nevertheless, we still have:
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Theorem 3. If u ∈ H1 and Φ is Lipschitz, then Φ ◦ u ∈ H1 with

‖D(Φ ◦ u)‖L2 ≤ ‖Φ′‖L∞‖Du‖L2 .

Proof : First note that∫
|Φ ◦ u− Φ ◦ uε|2 ≤ ‖Φ′‖2L∞

∫
|u− uε|2 → 0 as ε → 0 .

In case Φ ∈ C∞, V ∈ C∞0 (Rn,Rn) and ‖V ‖L2 ≤ 1,

−
∫

(Φ ◦ u)div V = − lim
ε→0

∫
(Φ ◦ uε)div V

= lim
ε→0

∫
D(Φ ◦ uε) · V = lim

ε→0

∫
Φ′(uε)Duε · V

≤ lim inf
ε→0

‖Φ′‖L∞‖Duε‖L2 ≤ ‖Φ′‖L∞‖Du‖L2 .

Theorem 1 and its proof now imply that Φ ◦ u ∈ H1 with ‖D(Φ ◦ u)‖L2 ≤
‖Φ′‖L∞‖Du‖L2 .

For a general Lipschitz Φ, Φε = Φ ∗ ρε → Φ uniformly as ε → 0. Thus, for V

as above, the previous case and Hölder’s inequality imply

−
∫

(Φ ◦ u)div V = lim
ε→0

−
∫

(Φε ◦ u)div V

= lim
ε→0

∫
D(Φε ◦ u) · V

≤ lim sup
ε→0

‖Φ′ε‖L∞‖Du‖L2 ≤ ‖Φ′‖L∞‖Du‖L2 ,

and Theorem 3 follows as before from Theorem 1.

Corollary.
∫

D(Φε ◦ u) · V →
∫

D(Φ ◦ u) · V as ε → 0 for all V ∈ L2(Rn,Rn).
Proof : This follows from Theorem 3 in case V ∈ C∞0 (Rn,Rn). For V ∈ L2(Rn,Rn)
and δ > 0 , we first choose Ṽ ∈ C∞0 (Rn,Rn) with

‖V − Ṽ ‖L2 <
δ

3‖Φ′‖L∞‖Du‖L2

and then ε > 0 so that |
∫

D(Φε ◦ u) · Ṽ −
∫

D(Φ ◦ u) · Ṽ | < δ
3 to conclude, using

Hölder’s inequality, that

|
∫

D(Φε ◦ u) · V −
∫

D(Φ ◦ u) · V |

< |
∫

D(Φε ◦ u) · (V − Ṽ )| +
δ

3
+ |

∫
D(Φ ◦ u) · (Ṽ − V )| < 3(

δ

3
) = δ .

4


