Some Facts about LP

Suppose 1 < p < oo and || f|[r = ([ |fI? dx)l/p for any measurable f on
R™. Then L? = {f : | fllz» < oo} is a linear space which is topologized by
dist (f,g) = ||f — gllz» into a complete separable metric space. Under ordinary
smoothing f€ = p. - f,

lfS= fllLp» =0 as €e—0.

By multiplying by the characteristic function of a large ball before smoothing we
see that the linear subspace C§° is dense in LP.
Suppose that T : LP — R is linear, that ||| = sup{Y(f) : |||z« < 1}, and

that ¢ € (1, 00] is defined by % =1- %.

Riesz Representation Theorem.(see e.g. Royden §6.5.13) ||T| < oo < there
exists g € LY with ||g||La = ||| so that Y(f) = [ fg for all f € LP.

For f, f; € L*(R"), one says that f; — f weakly if [ fig — [ fg for all g € C§°.
If, in addition, sup; || fi|[L» < oo, then one says that f; — f weakly in LP. In this
case one then has the relations

[fllze < liminf[| ff| 2o
71— 00

and [ fig — [ fg for all g € L1,

Distribution Derivatives and H!

For any f € L}, .(R™), the distribution (or weak) derivative is the linear function

Dy :C3°(R™,R") — R, given by the formula
D[V] = —/fdidex for VeCy°(R",R") .

In the classical case f € C', integration by parts shows that D¢[V] = [(Df)-V dz,
which explains the definition and notation.

Exercise 1. In case f = xB,, Dy is not represented by integration on R™ but
rather by integration over the sphere 0B; :

Dy[V] = — /aB V(z)-zdw, (for n=1, Ds[V]=V(-1) = V(+1)) .

Definition. f belongs to the Sobolev space H' = H*(R™) (or alternately Dy € L?)
if Df[V]=[W -Vdx for some W € L*(R",R"™).
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Exercise 2. W = Df (the usual pointwise-defined gradient) a.e. Hint : To see
that e; - W(a) = 8%1 (a) at each Lebesgue point a of W, one chooses, for a small
positive h, a suitable sequence of smooth vectorfields V; to approximate h™"x ¢, €;
where C}, is the small cube II7" ,[a;, a; + h].

Theorem 1. The following are equivalent for any f € L*:
(I) fe H'
(III) Df € L? and there exists a sequence f; € C1 such that f; — f and Df; — DFf.

Proof : (I) = (II): Here
M = sup{ [ W Ve s [Vigsemn <1} = Wi < oc.

(II) = (I): Apply the Riesz Theorem to represent Y;(v) = [ f 8” by an L2
function W;. Then

/fdivV = > Ti(V) = Z/ViWi = /V-W.
i=1 i=1
(I) = (I1I): By Exercise 2, Df = W € L?. Ordinary smoothing then gives
smooth functions f., converging strongly in L' , hence weakly, to f and smooth
vectorfields (Df)., converging strongly in L?, hence weakly, to D f. Thus, for (III)
it is suffices to verify that Df. = (Df).. We assume the mollifier is symmetric,

L.e. pe(—x) = pe(x), take any vectorfield V = (V4,...,V,) € C°(R™, R"™), and use
Fubini’s Theorem and (I) to see that

/DfE-V = //pea:— y)dy div V (z)dz

- / / gg—%w—y)f(y)vi(x)dxdy
-] i%peu—y)f(y)vi(x)dydx

_ //pe( a 2)dydz
= [ [oia-npsw vz = [0V

Thus Df. = (Df). almost everywhere, and by continuity, everywhere.
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= : For € , , integration by parts implies that

111 I) : For V e C(R",R"), i b impli h

— | [idiv T = i) x. Noting, by Holder’s inequality, that
fidivVd Df;) -V dz. Noti by Holder’s i li h

| / (f— ) div V] + / (Df = D) V| < If — filz2lldiv V|2 + | D — Dfil 2| V]

approaches 0 as ¢ — oo, we conclude that Dy[V] = — [ fdivVdz = [Df-Vdz. &

Theorem 2. If f € LN H' and n € {3,4,...}, then f € L? for all p € [1, %]
Proof : By the Sobolev inequality and the previous proof,

fllp2n/n-2y < lilen_)%lf||f6||L2"/<"*2) < limsupc|[D(fe)|| 12

e—0

= limsupc|(Df)e)llzs < cllDfllze < oo

Using Holder’s inequality with % = % — ”2—;2 and the Chebychev inequality, we

conclude

/|f|pdx s/ FIP da +/ FIP de
{IfI<1} {IfI>1}

= L (e L T
{If1=<1}

< fler + MBI ey < 00 -

|
Exercise 3. Forn =1, f € L? for all p € [1,00]. For n =2, f € LP for p € [1,00).

The Sobolev inequality, for an arbitrary H' function, now follows using ordinary
smoothing from the C! version of the Sobolev inequality. Similarly one defines, for an
open 2 C R™, the Sobolev space H!(§)) and proves by approximation the Poincaré
inequality in case 0f) is smooth. One also has

Rellich’s Theorem. Any sequence u; € H*(B) with sup; (||u;| 2+ Dus||12) < oo
contains a subsequence u; that converges strongly in L? to u € H'(B). Moreover

Dujs converges weakly in L? to Du and [g|Dul? < liminfy o [5|Dul?.

Next we discuss properties of a composition ® o u where u € H!. In case
® is Lipschitz, ® is differentiable almost everywhere, but the exceptional set
of non-differentiability may contain u(A) for some set A with positive measure.
Nevertheless, we still have:



Theorem 3. Ifu € H' and ® is Lipschitz, then ® ou € H' with
[D(@ou)lzz < [|®||pec|[Dullpz -

Proof : First note that
/|<I>ou—q)ou6|2 < ||<I>'||%oo/|u—u6|2 — Oas e —>0.
In case ® € C*, V € C°(R™,R™) and ||V||2 <1,

e—0
= lim D(@®ou.)-V = lim ' (ue)Due -V
< liminf &[] p< || Ducl| 2 < [|97][ g || Dull 2 -

Theorem 1 and its proof now imply that ® o uw € H! with ||[D(® o u)|z: <
1] o< [ Duf| L2

For a general Lipschitz ®, ®. = ® x p. — ® uniformly as € — 0. Thus, for V'
as above, the previous case and Holder’s inequality imply

—/(CD ou)divV = lim— [ (P.ou)divV

e—0

= lim [ D(®.ou)-V

e—0

IN

limsup [|®¢[| Lo [[Dulf[2 < (|9 Lo || Dull L2

e—0

and Theorem 3 follows as before from Theorem 1. [ |

Corollary. [D(®.ou)-V — [D(®ou)-V ase— 0 for all V € L*(R",R").
Proof : This follows from Theorem 3 in case V € C§°(R",R"). For V € L*(R",R")
and § > 0 , we first choose V € Cg°(R", R"™) with

J

V- ‘7HL2 <
3|7 oo [| Dul[ 12

and then ¢ > 0 so that | [ D(®.ou)-V — [D(®ou) V|< ¢ to conclude, using
Holder’s inequality, that

|/D(<I>€ou)-V —/D@ou)-vy

< | [D@ow-(v-1) +5 + | [ D@ou)- (7= V)| <3(3) =5



