Perron Method for the Dirichlet Problem

Here we recall from lecture the following key results:

I) Solution of the Dirichlet problem for a ball and smoothness of
harmonic functions (Poisson Integral formula)

IT) Precompactness of any uniformly bounded family of harmonic func-
tions

IIT) Characterization of subharmonicity by local sub-meanvalue inequal-
ities

IV) Maximum principle for subharmonic functions

Suppose that €2 is a bounded domain in R™.

Definition. For b € 01, a function @, € C(£2) is a barrier at b if Qy is
subharmonic on €2, Qu(b) = 0, and Q(y) < 0 for all y € 0Q \ {b}.

Theorem. If Q2 has a barrier at each of its boundary points, then, for any

g € C(09), there exists a unique u € C(2) NC*>(§2) such that

Au = 0 on Q,
u = g on 0f).

Proof : Uniqueness follows from the maximum principle.
Let m = inf g, M = sup g, and

o0y = {subharmonic v € C(Q2) : v <gon 00} .
Then 0,4, containing the constant function m, is nonempty and

u(r) = supv(zr) < M for 2 € Q
vETy
is well-defined. We show that this u satisfies the Theorem in 8 steps:

STEP 1. v, € 04 implies w = max{v, 0} € o,.

Clearly w € C(£2) and w < g on 0f2. For B,.(a) C Q
w(a) = max{v(a),v(a)} < max{M,(a,r), Mz(a,r)} < My(a,r) .

So w is also subharmonic.
STEP 2. Forv € o4 and B,(a) C Q, v < v,,, € 04 where

Avg, = 0 on B,(a),
Var = v on Q\B,(a).



The function v, , is obtained from I, which implies that v,, € C(£2).
Also v < v, , by the maximum principle. To see that v, , is subharmonic it
suffices by III to show that, for each z € ,

Vo () < M,, (x,5) for all sufficiently small positive s .
In case x € B,.(a), take s < r — |z — a| so that

Var(r) = M,

Va,r

(x, s) by harmonicity.
In case z € Q\ B,.(a), take s < dist (z, 9Q2) so that

Vor(x) = v(x) < My(2,5) <M,, (z,5).
STEP 3. For any B,(a) C Q and countable X C B,(a) there is a harmonic
h on B,(a) so that u(x)=h(z) for all x € X.
- Fix s with r < s < dist (a,09Q) and write X = {z, 22, x3,...}. Choose
v] € o4 so that v] (x;) T u(z;) as j — oo. Then

o' = max{m,v],v] ,vj} € o4 by Step 1,

uw = vé)s € o4 by Step 2.
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Since m < vgys < M, a subsequence v} . converges, by II, uniformly on

a,s

B,.(a), to a harmonic h. Also, since, for j > i,

for all 1.

STEP 4. u € C(2). Suppose a € €. For any positive r < dist (a, 02)
and any convergent sequence z; — a in B, (a), we may apply Step 3 with
X ={a,x1,x2,...} to see that

u(a) = h(a) = lim h(x;) = lim u(x;) .
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Thus « is continuous at a.

STEP 5. w is harmonic on Q. For any B,.(a) C Q we apply Step 3 this
time with X being a countable dense subset of B, (a) to find a harmonic
function h on B,.(a) coinciding with v on X. But by Step 4, u as well as h
is continuous. So, on B,.(a), u = h is harmonic.



Now we turn to the boundary behavior of wu.

STEP 6. For each b € 092, liminf, ,, u(x) > g(b).
For positive € and K, note that the function

v(r) = g(b) — e+ KQp(x) for x € Q

is continuous and subharmonic. Choose § = d(e) > 0 so that g(z) > g(b) — e
whenever z € 902 N Bs(b). Thus

v(z) < g(x) for z € 92N Bs(b) .

Since Qp(x) has a strictly negative upper bound on 922\ Bs(b), we can choose
K = K (e) large enough so that

v(z) < g(x) for © € 02\ Bs(b) .
Then we have v € o4 so that v < u and

g(b) —e = limov(z) < liminfu(z) .
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STEP 7. For each b € 09, limsup,_,, u(z) < g(b).
We turn things around by defining

a(r) = sup —w(z)for x€Q,

—wWEoT_g

and repeating Step 6 to conclude that liminf, ., @(z) > —g(b). For any
vEogand —w € 0y, v —w < 0 on 9 so that v — w < 0 on Q. Taking
sup’s, we find that u 4+ u < 0 or that

Thus
limsup u(z) < limsup —a(z) = — liminfa(z) < g(b) .
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STEP 8. u € C(©2) NC>*(2). Combine Steps 5, 6, 7.



