Here we recall from lecture the following key results:
I) Solution of the Dirichlet problem for a ball and smoothness of harmonic functions (Poisson Integral formula)
II) Precompactness of any uniformly bounded family of harmonic functions
III) Characterization of subharmonicity by local sub-meanvalue inequalities
IV) Maximum principle for subharmonic functions

Suppose that Ω is a bounded domain in \mathbf{R}^{n}.
Definition. For $b \in \partial \Omega$, a function $Q_{b} \in \mathcal{C}(\bar{\Omega})$ is a barrier at b if Q_{b} is subharmonic on $\Omega, Q_{b}(b)=0$, and $Q_{b}(y)<0$ for all $y \in \partial \Omega \backslash\{b\}$.

Theorem. If Ω has a barrier at each of its boundary points, then, for any $g \in \mathcal{C}(\partial \Omega)$, there exists a unique $u \in \mathcal{C}(\bar{\Omega}) \cap \mathcal{C}^{\infty}(\Omega)$ such that

$$
\begin{aligned}
\Delta u & =0 \text { on } \Omega \\
u & =g \text { on } \partial \Omega .
\end{aligned}
$$

Proof: Uniqueness follows from the maximum principle.
Let $m=\inf g, M=\sup g$, and

$$
\sigma_{g}=\{\text { subharmonic } v \in \mathcal{C}(\bar{\Omega}): v \leq g \text { on } \partial \Omega\}
$$

Then σ_{g}, containing the constant function m, is nonempty and

$$
u(x)=\sup _{v \in \sigma_{g}} v(x) \leq M \text { for } x \in \bar{\Omega}
$$

is well-defined. We show that this u satisfies the Theorem in 8 steps:
STEP 1. $v, \tilde{v} \in \sigma_{g}$ implies $w=\max \{v, \tilde{v}\} \in \sigma_{g}$.
Clearly $w \in \mathcal{C}(\bar{\Omega})$ and $w \leq g$ on $\partial \Omega$. For $\mathbf{B}_{r}(a) \subset \Omega$

$$
w(a)=\max \{v(a), \tilde{v}(a)\} \leq \max \left\{M_{v}(a, r), M_{\tilde{v}}(a, r)\right\} \leq M_{w}(a, r)
$$

So w is also subharmonic.
STEP 2. For $v \in \sigma_{g}$ and $\mathbf{B}_{r}(a) \subset \Omega, v \leq v_{a, r} \in \sigma_{g}$ where

$$
\begin{aligned}
\Delta v_{a, r} & =0 \text { on } \mathbf{B}_{r}(a) \\
v_{a, r} & =v \text { on } \bar{\Omega} \backslash \mathbf{B}_{r}(a) .
\end{aligned}
$$

The function $v_{a, r}$ is obtained from I, which implies that $v_{a, r} \in \mathcal{C}(\bar{\Omega})$. Also $v \leq v_{a, r}$ by the maximum principle. To see that $v_{a, r}$ is subharmonic it suffices by III to show that, for each $x \in \Omega$,

$$
v_{a, r}(x) \leq M_{v_{a, r}}(x, s) \text { for all sufficiently small positive } s .
$$

In case $x \in \mathbf{B}_{r}(a)$, take $s<r-|x-a|$ so that

$$
v_{a, r}(x)=M_{v_{a, r}}(x, s) \text { by harmonicity. }
$$

In case $x \in \Omega \backslash \mathbf{B}_{r}(a)$, take $s<\operatorname{dist}(x, \partial \Omega)$ so that

$$
v_{a, r}(x)=v(x) \leq M_{v}(x, s) \leq M_{v_{a, r}}(x, s) .
$$

STEP 3. For any $\overline{\mathbf{B}_{r}(a)} \subset \Omega$ and countable $X \subset \mathbf{B}_{r}(a)$ there is a harmonic h on $\mathbf{B}_{r}(a)$ so that $u(x)=h(x)$ for all $x \in X$.

Fix s with $r<s<\operatorname{dist}(a, \partial \Omega)$ and write $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$. Choose $v_{i}^{j} \in \sigma_{g}$ so that $v_{i}^{j}\left(x_{i}\right) \uparrow u\left(x_{i}\right)$ as $j \rightarrow \infty$. Then

$$
\begin{gathered}
v^{j} \equiv \max \left\{m, v_{1}^{j}, v_{2}^{j}, \ldots, v_{j}^{j}\right\} \in \sigma_{g} \text { by Step } 1 \\
u^{j} \equiv v_{a, s}^{j} \in \sigma_{g} \text { by Step } 2
\end{gathered}
$$

Since $m \leq v_{a, s}^{j} \leq M$, a subsequence $v_{a, s}^{j^{\prime}}$ converges, by II, uniformly on $\overline{\mathbf{B}_{r}(a)}$, to a harmonic h. Also, since, for $j \geq i$,

$$
\begin{gathered}
v_{i}^{j}\left(x_{i}\right) \leq v^{j}\left(x_{i}\right) \leq v_{a, s}^{j}\left(x_{i}\right) \leq u\left(x_{i}\right) \\
h\left(x_{i}\right)=\lim _{j \rightarrow \infty} v_{a, s}^{j^{\prime}}\left(x_{i}\right)=\lim _{j \rightarrow \infty} v_{i}^{j^{\prime}}\left(x_{i}\right)=u\left(x_{i}\right)
\end{gathered}
$$

for all i.
STEP 4. $u \in \mathcal{C}(\Omega)$. Suppose $a \in \Omega$. For any positive $r<\operatorname{dist}(a, \partial \Omega)$ and any convergent sequence $x_{i} \rightarrow a$ in $\mathbf{B}_{r}(a)$, we may apply Step 3 with $X=\left\{a, x_{1}, x_{2}, \ldots\right\}$ to see that

$$
u(a)=h(a)=\lim _{i \rightarrow \infty} h\left(x_{i}\right)=\lim _{i \rightarrow \infty} u\left(x_{i}\right) .
$$

Thus u is continuous at a.
STEP 5. u is harmonic on Ω. For any $\overline{\mathbf{B}_{r}(a)} \subset \Omega$ we apply Step 3 this time with X being a countable dense subset of $\mathbf{B}_{r}(a)$ to find a harmonic function \tilde{h} on $\mathbf{B}_{r}(a)$ coinciding with u on X. But by Step $4, u$ as well as \tilde{h} is continuous. So, on $\mathbf{B}_{r}(a), u=\tilde{h}$ is harmonic.

Now we turn to the boundary behavior of u.
STEP 6. For each $b \in \partial \Omega, \liminf _{x \rightarrow b} u(x) \geq g(b)$.
For positive ϵ and K, note that the function

$$
v(x)=g(b)-\epsilon+K Q_{b}(x) \text { for } x \in \bar{\Omega}
$$

is continuous and subharmonic. Choose $\delta=\delta(\epsilon)>0$ so that $g(x)>g(b)-\epsilon$ whenever $x \in \partial \Omega \cap \mathbf{B}_{\delta}(b)$. Thus

$$
v(x) \leq g(x) \text { for } x \in \partial \Omega \cap \mathbf{B}_{\delta}(b)
$$

Since $Q_{b}(x)$ has a strictly negative upper bound on $\partial \Omega \backslash \mathbf{B}_{\delta}(b)$, we can choose $K=K(\epsilon)$ large enough so that

$$
v(x) \leq g(x) \text { for } x \in \partial \Omega \backslash \mathbf{B}_{\delta}(b)
$$

Then we have $v \in \sigma_{g}$ so that $v \leq u$ and

$$
g(b)-\epsilon=\lim _{x \rightarrow b} v(x) \leq \liminf _{x \rightarrow b} u(x) .
$$

STEP 7. For each $b \in \partial \Omega$, limsup $\sup _{x \rightarrow b} u(x) \leq g(b)$.
We turn things around by defining

$$
\tilde{u}(x)=\sup _{-w \in \sigma_{-g}}-w(x) \text { for } x \in \bar{\Omega}
$$

and repeating Step 6 to conclude that $\liminf _{x \rightarrow b} \tilde{u}(x) \geq-g(b)$. For any $v \in \sigma_{g}$ and $-w \in \sigma_{-g}, v-w \leq 0$ on $\partial \Omega$ so that $v-w \leq 0$ on Ω. Taking sup's, we find that $u+\tilde{u} \leq 0$ or that

$$
u \leq-\tilde{u}
$$

Thus

$$
\limsup _{x \rightarrow b} u(x) \leq \limsup _{x \rightarrow b}-\tilde{u}(x)=-\liminf _{x \rightarrow b} \tilde{u}(x) \leq g(b)
$$

STEP 8. $u \in \mathcal{C}(\bar{\Omega}) \cap \mathcal{C}^{\infty}(\Omega)$. Combine Steps 5, 6, 7.

