
Perron Method for the Dirichlet Problem

Here we recall from lecture the following key results:
I) Solution of the Dirichlet problem for a ball and smoothness of

harmonic functions (Poisson Integral formula)
II) Precompactness of any uniformly bounded family of harmonic func-

tions
III) Characterization of subharmonicity by local sub-meanvalue inequal-

ities
IV) Maximum principle for subharmonic functions

Suppose that 
 is a bounded domain in Rn.

De�nition. For b 2 @
, a function Qb 2 C(�
) is a barrier at b if Qb is
subharmonic on 
, Qb(b) = 0, and Qb(y) < 0 for all y 2 @
 n fbg.

Theorem. If 
 has a barrier at each of its boundary points, then, for any
g 2 C(@
), there exists a unique u 2 C(�
) \ C1(
) such that

�u = 0 on 
 ;

u = g on @
 :

Proof : Uniqueness follows from the maximum principle.
Let m = inf g, M = sup g, and

�g = fsubharmonic v 2 C(�
) : v � g on @
g :

Then �g, containing the constant function m, is nonempty and

u(x) = sup
v2�g

v(x) � M for x 2 �


is well-de�ned. We show that this u satis�es the Theorem in 8 steps:

STEP 1. v; ~v 2 �g implies w = maxfv; ~vg 2 �g.
Clearly w 2 C(�
) and w � g on @
. For Br(a) � 


w(a) = maxfv(a); ~v(a)g � maxfMv(a; r);M~v(a; r)g �Mw(a; r) :

So w is also subharmonic.

STEP 2. For v 2 �g and Br(a) � 
, v � va;r 2 �g where

�va;r = 0 on Br(a) ;

va;r = v on �
 nBr(a):



The function va;r is obtained from I, which implies that va;r 2 C(�
).
Also v � va;r by the maximum principle. To see that va;r is subharmonic it
suÆces by III to show that, for each x 2 
,

va;r(x) � Mva;r(x; s) for all suÆciently small positive s :

In case x 2 Br(a), take s < r � jx� aj so that

va;r(x) = Mva;r(x; s) by harmonicity:

In case x 2 
 nBr(a), take s < dist (x; @
) so that

va;r(x) = v(x) �Mv(x; s) �Mva;r(x; s) :

STEP 3. For any Br(a) � 
 and countable X � Br(a) there is a harmonic
h on Br(a) so that u(x)=h(x) for all x 2 X.

Fix s with r < s < dist (a; @
) and write X = fx1; x2; x3; : : :g. Choose
v
j
i 2 �g so that v

j
i (xi) " u(xi) as j !1. Then

vj � maxfm; v
j
1
; v

j
2
; : : : ; v

j
jg 2 �g by Step 1 ;

uj � vja;s 2 �g by Step 2 :

Since m � vja;s � M , a subsequence vj
0

a;s converges, by II, uniformly on

Br(a), to a harmonic h. Also, since, for j � i,

v
j
i (xi) � vj(xi) � vja;s(xi) � u(xi) ;

h(xi) = lim
j!1

vj
0

a;s(xi) = lim
j!1

v
j0

i (xi) = u(xi)

for all i.

STEP 4. u 2 C(
). Suppose a 2 
. For any positive r < dist (a; @
)
and any convergent sequence xi ! a in Br(a), we may apply Step 3 with
X = fa; x1; x2; : : :g to see that

u(a) = h(a) = lim
i!1

h(xi) = lim
i!1

u(xi) :

Thus u is continuous at a.

STEP 5. u is harmonic on 
. For any Br(a) � 
 we apply Step 3 this
time with X being a countable dense subset of Br(a) to �nd a harmonic
function ~h on Br(a) coinciding with u on X. But by Step 4, u as well as ~h
is continuous. So, on Br(a), u = ~h is harmonic.



Now we turn to the boundary behavior of u.

STEP 6. For each b 2 @
, lim infx!b u(x) � g(b).
For positive � and K, note that the function

v(x) = g(b)� �+KQb(x) for x 2 �


is continuous and subharmonic. Choose Æ = Æ(�) > 0 so that g(x) > g(b)� �

whenever x 2 @
 \BÆ(b). Thus

v(x) � g(x) for x 2 @
 \BÆ(b) :

Since Qb(x) has a strictly negative upper bound on @
nBÆ(b), we can choose
K = K(�) large enough so that

v(x) � g(x) for x 2 @
 nBÆ(b) :

Then we have v 2 �g so that v � u and

g(b)� � = lim
x!b

v(x) � lim inf
x!b

u(x) :

STEP 7. For each b 2 @
, lim supx!b u(x) � g(b).
We turn things around by de�ning

~u(x) = sup
�w2��g

�w(x) for x 2 �
 ;

and repeating Step 6 to conclude that lim infx!b ~u(x) � �g(b). For any
v 2 �g and �w 2 ��g, v � w � 0 on @
 so that v � w � 0 on 
. Taking
sup's, we �nd that u+ ~u � 0 or that

u � �~u:

Thus
lim sup
x!b

u(x) � lim sup
x!b

�~u(x) = � lim inf
x!b

~u(x) � g(b) :

STEP 8. u 2 C(�
) \ C1(
). Combine Steps 5, 6, 7.


