Sub-super correction

Recall our proof that $\Phi \circ u$ is a subsolution whenever u is a subsolution and Φ is convex and increasing. In case Φ is C^2 , we use the chain rule and product rule to get

$$\sum_{i,j} \int_{\mathbf{B}} a_{ij} D_i (\Phi \circ u) D_j \phi = \sum_{i,j} \int_B a_{ij} \Phi'(u) D_i u D_j \phi$$
$$= \sum_{i,j} \int_B a_{ij} D_i u D_j (\Phi'(u)\phi) - \sum_{i,j} \int_B (a_{ij} D_i u D_j u) \phi \Phi''(U) \leq 0.$$

The negativity of the 2nd term follows from the positivity of ϕ , of Φ'' , and of the matrix a_{ij} . The negativity of the first term used that Φ was *increasing*, that ϕ is positive, and that u is a *sub*solution.

In case u is a *super*solution and F is convex and *decreasing*, the same inequality shows that $\Phi \circ u$ is again a *sub*solution.

This is the case we use with $\Phi(s) = (\log s)^{-}$.