
SIZE MINIMIZATION AND APPROXIMATING PROBLEMS

THIERRY DE PAUW AND ROBERT HARDT

Abstract. We consider Plateau type variational problems related to the size
minimization of recti�able currents. We realize the limit of a size minimizing
sequence as a stationary varifold and a minimal set. Other examples of func-
tionals to be minimized include the integral over the underlying carrying set
of a power q of the multiplicity function, with 0 < q � 1. Because minimizing
sequences may have unbounded mass we make use of a more general object
called a recti�able scan for describing the limit. This concept is motivated by
the possibility of recovering a at chain from a suÆciently large collection of
its slices. In case the given boundary is smooth and compact, the limiting scan
has �nite mass and corresponds to a recti�able current.
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1. Introduction and Preliminaries

The general m dimensional Plateau problem is roughly the following: given an
m�1 dimensional boundary B, �nd an m dimensional surface S spanning B of least
m dimensional area. While this was classically studied for m = 2 using mappings of
surfaces ([17]), geometric measure theory now provides for generalm several precise
formulations and de�nitions of the italicized terms ([18, 7, 10, 12, 1, 3]). The most
popular involves the recti�able currents of Federer and Fleming which we quickly
review. With Hm denoting m dimensional Hausdor� measure on Rn , a setM � Rn
is called (Hm;m) recti�able if Hm(M) < 1 and Hm (M s [i2INi) = 0 for some
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�nite or countable family fNi : i 2 Ig of C1 submanifolds of Rn . It follows that
for almost every x 2M , homothetic expansions by factors r " 1 of the translated
measure Hm (M � x) converge weakly to a unique tangent measure Hm TxM
where TxM is an m dimensional vector space. An m dimensional recti�able current
in Rn is given by three things:

(1) a bounded Borel (Hm;m) recti�able set M � Rn ;
(2) an Hm measurable m vector�eld � : M �! ^mRn such that for Hm a.e.

x 2M , �(x) = e1^ :::^ em for some orthonormal basis fe1; :::; emg of TxM ;
(3) an Hm M summable multiplicity function � :M �! f1; 2; 3; : : :g.

This is abbreviatedHm M^�� and its action on a di�erentialm form � 2 Dm(Rn )
is given by

(Hm M ^ ��)(�) =
Z
M

h�; �i�dHm ;

making it a current (in the sense of De Rham). For m � 1 the boundary of a
general m dimensional current T 2 Dm(R

n ) is the current @T 2 Dm�1(R
n ) de�ned

by (@T )( ) = T (d ) for  2 Dm�1(Rn ), thus generalizing, by the Stokes-Cartan
Theorem, the special case T corresponds to a compact oriented (multiplicity-one)
manifold with boundary. The mass norm, which is de�ned by

M(T ) = supfT (�) : � 2 Dm(Rn ) with he1 ^ ::: ^ em; �(x)i � 1

for each x 2 Rn and e1; :::; em 2 Sn�1g
has, for a recti�able current, the simple form

M(Hm M ^ ��) =
Z
M

�dHm :

Let Rm(R
n ) denote the group of all m dimensional recti�able currents in Rn . Fed-

erer and Fleming proved the fundamental Compactness Theorem in [10] : For
m 2 f1; :::; ng and 0 < c <1,

fT 2 Rm(Rn ) : @T 2 Rm�1(Rn ) and M(T ) +M(@T ) � cg
is weakly sequentially compact. With the lower semicontinuity of M, this ensures,
for a given T0 2 Rm(Rn ), the existence of a minimizer for the basic Plateau problem:

(PM;T0)

(
minimize M(T ) among

T 2 Rm(Rn ); @T = @T0 :

When m = 2, n = 3, a mass minimizing recti�able current T provides a good
model for some but not all soap �lms. Here spt(T ) s spt(@T ) is necessarily ([11])
a smooth embedded surface in R3 whereas general soap �lms have interior singular
curves that simultaneously border three surfaces. The model of Almgren using
(M; 0;1) minimal sets is shown in the work of Taylor ([19]) to give variationally
the exact observed geometric structure. However currents are more convenient than
sets for a precise boundary condition. To use currents in a better model for soap
�lms, Almgren ([4]) introduced the notion of size for a recti�able current:

S(Hm M ^ ��) =H
m(M) :

The use of size is illustrated by the case @T0 is supported by two nearby coaxial
circles in parallel planes. If the circles are oppositely oriented, then the mass
minimizer for (PM;T0) is an oriented catenoid. If they are similarly oriented, then
the mass minimizer is two oriented planar disks. But in the latter case, there is
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another recti�able current having the same boundary and smaller size (but larger
mass); this is obtained by squeezing together the two disks onto a common middle
disk (see Fig. 1.01 in [16]).

For general T0, the problem

(PS;T0)

(
minimize S(T ) among

T 2 Rm(Rn ) ; @T = @T0

seems quite diÆcult. It has been solved by Morgan ([16]) in the special case m =
n�1 and spt(@T0) is a smooth submanifold that lies on the boundary of its convex
hull. The diÆculty in the general case is that a size minimizing sequence may
have masses approaching in�nity. This is seen in Morgan's example ([16]). A two
dimensional version of this is given by considering for two sequences rj # 0, hj # 0
corresponding oriented horizontal disks Dj =

�
H2 B (0; rj) ^ e1 ^ e2

� � Æhj of

radius rj at height hj . If
P1
j=0 r

2
j < 1, then T0 =

P1
j=0Dj 2 R2(R

3 ) (with

M(T0) < 1). For suitable rj , hj , there is a mass minimizing catenoid Cj with

@Cj = @Dj � @Dj+1 and, for each k � 2, the multiple catenoid Qk =
Pk
j=1 jCj is

size minimizing with

@Qk = @

0@ kX
j=1

Dj � kDk+1

1A �! @

0@ 1X
j=0

Dj

1A
S(Qk) =

kX
j=1

M(Cj) �!
1X
j=1

M(Cj)

M(Qk) =

kX
j=1

jM(Cj) �!1

as k !1. For the �xed boundary @
P1
j=0Dj , the currents

Tk = Qk + kDk+1 +

1X
j=k+1

Dj

form a size minimizing sequence with M(Tk) ! 1. In fact, Tk is a minimizer for
the modi�ed size problem:

(P"k ;S;T0)

(
minimize S(T ) + "kM(T ) among

T 2 R2(R3 ) ; @T = @T0

for some positive "k �! 0 as k !1.
This modi�ed minimization is the general procedure we evoke in section 2 to

obtain some positive results concerning size minimization. We renormalize each
minimizer Tk of (P"k;S;T0) to give a stationary weighted surface (varifold). A sub-
sequence of these properly renormalized measures will then converge (as measures)
to some weighted recti�able set S. It is worth noting that we cannot achieve the
convergence of the corresponding renormalized currents because the renormaliza-
tion introduces new boundary. In codimension 1 we show that the corresponding
set S obtained in the limit (the countable union of catenoids in our example) is
(M; 0;1) minimal in the sense that Hm(S) � Hm(f(S)) for any Lipschitz map
f : Rn �! Rn with f jspt(@T0) = idjspt(@T0). Next, in light of the examples, one looks
for some conditions guaranteeing that the limit (M; 0;1) minimal set supports a
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�nite mass recti�able current T 2 R2(R3 ) with @T = @T0. Such a T would then be
a size minimizer. For m = 2, n = 3, the regularity theory of Taylor guarantees that
S is (away from spt(@T0)) a Lipschitz neighborhood retract. This diÆculty near
spt(@T0) is absent when Morgan [16] considers size minimization in a 2 dimensional
homology class in a smooth compact 3 manifold. He obtains a recti�able current
by retracting an approximate minimizer to a local (M; 0;1) minimal set before
passing to the limit. While the approximation idea of [16] has some problems, the
procedure given here in section 2 works and so, along with his retraction method,
completes the proof of this homology size minimization (see Remark 2.3.5). Treat-
ing the absolute size minimizing problem by this argument with spt(@T0) being a
smooth 1 dimensional manifold will require a suitable boundary regularity result
for (M; 0;1) minimizing sets, which we are currently considering. With spt(@T0)
nonsmooth, the example suggests considering some in�nite mass object which still
carries the notions of boundary, recti�ability, local orientability and integer multi-
plicities. Scans were introduced in [14] to describe some such in�nite mass objects
that arose as limits of graphs in energy bubbling sequences.

In this paper an m dimensional scan in Rn is a measurable function which
associates with almost every oriented n � m plane P a 0 dimensional recti�able
current T(P ) 2 R0(P ). Thus

T(P ) =
X
a2A

�(a)Æa

for some �nite subset A of P and integers �(a), a 2 A. As in Proposition 3.1.5
one may represent any recti�able (even at) current in terms of some big enough
collection of its slices. Thus the scans de�ned here generalize at currents whereas
the scans used in [14], which were related to graphs of smooth maps, generalized the
cartesian currents of [13]. The measurability of the slice function corresponding to
any at chain is veri�ed in Lemma 3.1.1. To solve variational problems with scans
we need to understand when two scans have the same boundary, or equivalently
when a scan has boundary 0. Our de�nition is motivated by the observation (using
the Fourier transform) that a at current T 2 Fm(Rn ) has @T = 0 if and only if the
corresponding scan, evaluated at almost all n�m planes P , has total multiplicity 0;
that is, the slice hT; p; yi(1) = 0 for almost every orthogonal projection p : Rn �!
Rm and almost every y 2 Rm .

We work with recti�able scans which are determined in De�nition 3.1.7 by an
Hm measurable (Hm;m) recti�able set M , an orienting m vector�eld � for T�M ,
and a positive integer multiplicity function �. However we do not assume thatR
M
�dHm < 1. Besides size, other minimization problems may exhibit minimiz-

ing sequences with unbounded mass. These may fail to have recti�able current
minimizers but nevertheless admit recti�able scan minimizers. For any increasing
concave surjection H : [0;1) �! [0;1) with H(0) = 0 and H(1) = 1, we may
de�ne the H mass of a recti�able current:

MH(H
m M ^ ��) =

Z
M

H(�)dHm :

In particular for 0 < q � 1, the q mass functionals
R
M �qdHm �ll the gap between

ordinary mass, with q = 1, and size. The concavity of H does guarantee the weak
lower semicontinuity ofMH on the class of recti�able currents (Lemma 3.2.14), but
the failure of mass bounds indicates the need for a topology weaker than the weak



SIZE MINIMIZATION AND APPROXIMATING PROBLEMS 5

topology of currents (for instance, Tj = @
�
H2 B

�
0; j�1

� ^ j2e1 ^ e2� 2 R1(R
2 )

are such that MH(Tj) ! 0 as j ! 1 for H(�) = �q with 0 < q < 2�1, yet

Tj ! @ (Æ0 ^ e1 ^ e2) 6= 0 weakly as j !1). The H at distance from T to ~T ,

inf
n
MH(R) +MH(S) : T � ~T = R+ @S ; R 2 Rm(Rn ) and S 2 Rm+1(Rn )

o
;

which we use, was essentially introduced by Fleming ([12]) and occurs in the work
of White ([21, 22]). It was �rst observed by Jerrard (see [15] or [6]) that the 0
dimensional slices of a normal current correspond to an MBV function. In Section
3.3, we �nd a corresponding estimate for integral currents involving the H mass
and the H at distance. This is precisely what is needed to apply our BV Compact-
ness Theorem 3.4.1 which concerns maps from a Riemannian manifold to a weakly
separable metric space.

In section 3.5 one �nds the convergence of the scans corresponding to an MH

minimizing sequence of recti�able currents. This limiting scan is also shown to
be recti�able. In the special case when the given boundary spt(@T0) is a smooth
compact m� 1 dimensional submanifold, we observe that this scan corresponds to
a recti�able current, thus providing the existence of an MH minimizer in the class
of recti�able currents.

By using H as an alternate norm on the group of integers, a recti�able minimizer
may also be found in a generalized class of at chains following the works of Flem-
ing [12] and White [21, 22]. The close relation between recti�ability and slicing
explained in [6] and [22] was an important motivation for the de�nition of scans in
[14] and for their use in the present paper. One dimensional at MH minimizers
are also applied to describe transport paths in [23].

Use of scans accommodates as well treatment of the case when H is also allowed
to depend continuously on the space variable x. Our underlying compactness argu-
ment relies on the fact that for a scan T one hasMH(T(P )) � H(M(T(P ))) thanks
to the concavity of H and the fact that T(P ) is recti�able of dimension 0. As
suggested in Proposition 3.1.5 one can also consider scans whose values are higher
dimensional currents (they were 3 dimensional in [14]). We are currently consid-
ering the nature of scan minimizers of integral functionals involving H(M(T(P )))
instead of MH(T(P )). In that case the recti�ability of the limit is not clear.

Most of our notation is consistent with that of Federer's book, which is summa-

rized on pp 669-671 of [9]. In particular, for T =Hm M ^ �� as above, ~T = � and
kTk = Hm M ^ �. For the de�nition and notations concerning varifolds we refer
to [1], whereas for minimal sets we refer to [3]. In addition we say that a current
T 2 Dm(R

n ) is real recti�able if T = Hm M ^ �� for some M , � and � as above
but we drop the restriction that � be integer valued. Following [4] we de�ne the m
dimensional set of a measure � (usually � = kTk for some real recti�able current
or � = kV k for some recti�able varifold) by

set(�) := Rn \ fx : �m(�; x) > 0g :
We also de�ne the size of a real recti�able current T by

S(T ) :=H
m(set(kTk)) :

Finally we mention an elementary density property of stationary varifolds which
we will refer to.
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Proposition 1.0.1. Let V be an m dimensional recti�able varifold with compact
support in Rn , and suppose V is stationary in Rn s B where B is a C1;1 compact
properly embedded m�1 dimensional submanifold of Rn . Then the density function
�m(kV k; :) is bounded.

The proof of this Proposition relies on [1, 5.1(2)] (monotonicity in the interior)
and [2, 3.4] (monotonicity at the boundary). These two results can be used to show
that (see [20, A.2]) the function

x 2 Rn 7�!
(
2�m(kV k; x) if x 2 B
�m(kV k; x) if not

is upper semicontinuous. Since spt(kV k) is compact, �m(kV k; :) is clearly bounded.
2. Penalizing the Lack of Compactness

2.1. Approximating Problems. In this section we consider a functional F :
Rm(R

n ) �! R, a �xed recti�able current T0 2 Rm(R
n ), and a closed set C con-

taining spt(T0). We are interested in the following minimization problem:

(PF;T0;C)

(
minimize F(T )

among T 2 Rm;K(Rn ) such that @T = @T0 and spt(T ) � C

We let �(PF;T0;C) be the in�mum of that problem:

�(PF;T0;C) := inffF(T ) : T 2 Rm(Rn ) and @T = @T0 and spt(T ) � Cg :
Of course the in�mum of problem (PF;T0;C) is not necessarily achieved by any
competitor. In order to obtain currents having a somewhat regular support and
almost minimizing F, we introduce the following modi�ed problems parametrized
by " > 0.

(P";F;T0;C)

(
minimize F"(T ) := F(T ) + "2M(T ) among

T 2 Rm(Rn ) such that @T = @T0 and spt(T ) � C

(Q";F;T0;C)

8><>:
minimize F(T ) among

T 2 Rm(Rn ) such that @T = @T0 and M(T ) � "�1

as well as spt(T ) � C

We denote by �(P";F;T0;C) and �(Q";F;T0;C) the in�ma of these problems. The rea-
sons for introducing these problems parametrized by " are: (a) there exist minimiz-
ers for these approximating problems and (b) these minimizers have some regularity
and variational properties that guarantee convergence, as " # 0, to some limiting
object (a recti�able stationary varifold, an (M; 0;1) minimal set or a recti�able
scan but not necessarily a current). We now gather some basic observations.

Lemma 2.1.1. Let K � Rn be a Lipschitz neighborhood retract, T0 2 Rm;K(R
n )

and F : Rm;K(R
n ) �! [0;1) a functional which is lower semicontinuous with

respect to weak convergence. Let also F", �(PF;T0;K), �(P";F;T0;K) and �(Q";F;T0;K)
be as above. Then the following holds true.

(1) For each " > 0 (resp. 0 < " � M(T0)
�1) there exists at least one T" 2

Rm;K(R
n ) (resp. S" 2 Rm;K(R

n )) such that F"(T") = �(P";F;T0;K) (resp.
F(S") = �(Q";F;T0;K));

(2) �(PF;T0;K) = lim"#0 �(Q";F;T0;K);
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(3) �(PF;T0;K) = lim"#0 �(P";F;T0;K);
(4) lim"#0 "

2M(T") = 0 for any T" 2 Rm;K(Rn ) with F"(T") = �(P";F;T0;K).

Proof. We will prove (1) for problem (P";F;T0;K), the case (Q";F;T0;K) being analo-
gous. Let T";1; T";2; ::: be a minimizing sequence. Then obviously

N(T";j � T0) =M(T";j � T0)

�M(T0) + "�2 supfF"(T";k) : k = 1; 2; :::g
so that the Compactness Theorem of Federer and Fleming ([9, 4.2.17(2)]) implies
that there are integers �(1); �(2); ::: and R" 2 Im;K(R

n ) with FK(R" � T";�(j) +
T0) ! 0 as j ! 1. On letting T" := R" + T0 2 Rm;K(Rn ) we see that @T" = @T0
and F"(T") = �(P";F;T0;K) because F" is weakly lower semicontinuous.

In order to prove (2) we notice �rst that �(PF;T0;K) � �(Q";F;T0;K). Next we �x
� > 0 and we choose T 2 Rm;K(R

n ) such that F(T ) � �(PF;T0;K) + �. We then
�x a positive "0 � M(T )�1. Then for 0 < " < "0, T is a competitor for problem
(Q";F;T0;K), whence �(Q";F;T0;K) � F(T ) � �(PF;T0;K) + �.

For proving (3) we observe that �(PF;T0;K) � �(P";F;T0;K) because F � F". For
�xed " > 0, let S" be a minimizer for problem (Q";F;T0;K). Then

�(P";F;T0;K) � F"(S") = F(S") + "2M(S")

� F(S") + " � �(Q";F;T0;K) + " ;

and we conclude (3) with the help of (2). Finally, to prove (4), let � > 0 and refer
to (3) to �nd "0 > 0 such that �(P";F;T0;K) � �(PF;T0;K) + � whenever 0 < " < "0.
Then, for such " > 0,

�(PF;T0;K) + "2M(T") � F(T") + "2M(T") = �(P";F;T0;K) � �(PF;T0;K) + � ;

whence "2M(T") � �. �

2.2. The Stationary Varifold Associated with a Modi�ed Problem. In this
section we wish to evaluate F(T ) by calculating the mass of an associated real
recti�able current.

De�nition 2.2.1. We say that a functional F : Rm(R
n ) �! [0;1) is mass-

calculable if there is associated to each T 2 Rm(R
n ) a real compactly-supported

recti�able current �F(T ) 2 Dm(R
n ) having the following properties:

(1) M(�F(T )) = F(T ).
(2) f#�F(T ) = �F(f#T ) for every smooth di�eomorphism f : Rn �! Rn with
Rn \ fx : f(x) 6= xg compact;

Example 2.2.2. In the next chapter we consider, for a concave integrand (see De�-
nition 3.2.1) H , the H massMH(T ) de�ned in 3.2.2 by integrating H (�m(kTk; x)).
To get (1), we may simply take �MH

(T ) to be the real recti�able current obtained
from T by replacing the density �m(kTk; �) by H (�m(kTk; �)). Condition (2) fol-
lows readily from [9, 4.1.30] because f is one to one. Similarly replacing �m(kTk; �)
by 1set(kTk) shows that size S is mass-calculable.

We recall ([1, 3.5]) that specifying a recti�able varifold V 2 RVm(U) is the same
as specifying its weight kV k which is an m recti�able Radon measure on U .

De�nition 2.2.3. For T 2 Rm(Rn ), " > 0 and F a mass-calculable functional, we
now associate an m recti�able varifold VF;"(T ) 2 RVm(R

n ) de�ned by

kVF;"(T )k := k�F(T )k+ "2kTk :
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Proposition 2.2.4. Let T0 2 Rm(R
n ), " > 0, F be a mass-calculable functional,

and T" 2 Rm(R
n ) be such that @T" = @T0 and F"(T") = �(P";F;T0;Rn). Then

VF;"(T") is a stationary recti�able varifold in U := Rn s spt(@T0).

Proof. Let f : U �! U be a smooth di�eomorphism which di�ers from the identity
only on a compact subset of U . Since f is one to one we have, by 2.2.1(2),

kf#VF;"(T")k = kf#(�F(T"))k+ "2kf#T"k
= k�F(f#T")k+ "2kf#T"k = kVF;"(f#T")k :

We also deduce from the fact that f jspt(@T0) = idjspt(@T0) and [9, 4.1.15] that
@f#T" = @T" = @T0. It then follows from the minimality of T" that

kf#VF;"(T")k(Rn ) = kVF;"(f#T")k(Rn ) = F"(f#T")

� F"(T") = kVF;"(T")k(Rn ) :
From this clearly follows that VF;"(T") is stationary in U . �

2.3. Existence of (M; 0;1)Minimal Sets in Case m = n�1. We particularize
the setting of this section to the case when F = S is the size functional. We will
study accumulation points of the collection of varifolds VS;"(T") (de�ned in the
preceding section) as well as the sets associated with them.

Proposition 2.3.1. Let T0 2 Rm(Rn ). For every " > 0 there exists T" 2 Rm(Rn )
such that @T" = @T0 and S"(T") = �(P";S;T0;Rn). Furthermore for every sequence
"j # 0 there are integers �(1); �(2); ::: and a stationary recti�able varifold V in
Rn s spt(@T0) such that

VS;"�(j) (T"�(j) ) �! V in Rn s spt(@T0) as j !1 :

Finally, in case m = n� 1, �m(kV k; x) = 1 for kV k a.e. x 2 Rn s spt(@T0).

Proof. We �rst observe that if K � Rn is a compact convex set containing spt(T0),
then �(P";S;T0;K) = �(P";S;T0;Rn) because

@�K#T = @T0 and S"(�K#T ) � S"(T )

where �K : Rn �! Rn denotes the nearest point projection ontoK ([9, 4.1.15]).The
existence of T" then follows from Lemma 2.1.1(1).

Again let U := Rn s spt(@T0). We �rst observe that

�m(kVS;"(T")k; x) = �m(Hm set(kT"k); x) + "2�m(kT"k; x) � 1

for kT"k almost every x 2 U , whence also kVS;"(T")k almost every x 2 U . Ac-
cording to Proposition 2.2.4 we have that ÆVS;"(T") = 0 in U whereas Lemma
2.1.1(3) implies that supfkVS;"j (T"j )k(U) : j = 1; 2; :::g < 1. It then follows
from [1, 5.6] (the compactness theorem for recti�able varifolds) that there are inte-
gers �(1); �(2); ::: and a varifold V in U such that set(kV k) is (Hm;m) recti�able
and VS;"�(j) (T"�(j) ) �! V as j ! 1. It also follows from the same theorem

that �m(kV k; x) � 1 for kV k almost every x 2 U . Clearly V is stationary in
U . In order to keep the notation short for the remaining part of the proof we set
Vj := VS;"�(j) (T"�(j) ) and Tj := T"�(j) . We now assume that m = n � 1 and we

intend to show that �m(kV k; x) � 1 whenever

(�r Æ ��x)#Hm set(kV k) �! H
m W as r !1 (1)
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for someW 2 G(n;m). This will obviously �nish the proof. Pick x andW as in (1)
and assume for a contradiction that �m(kV k; x) = 1 + � for some � > 0. Choose

� > 0 small enough for 2�(1 � �)�1 � 2�1 and 4
p
2m�(m)�(1 � �)�1 � 4�1�.

Next let E � (0;1) be an L1 negligible set such that kV k(BdryB (x; �)) = 0 and
hTj ; u; �i 2 Im�1;K(R

n ) whenever � 2 (0; dist(x;Rn s U)) s E and j = 1; 2; :::,
where u(y) := jx�yj. Referring to the monotonicity of kV k in U (recall [1, 5.1(2)])
as well as the lower density bound we deduce (e.g. as in [8, 4.3]) from (1) that there
exists r0 > 0 such that for each 0 < r � r0:

spt
�
(�r�1 Æ ��x)#kV k

� \B (0; 1) � B (W; �) \B (0; 1)

in other words,

spt(kV k) \B (x; r) � B (x+W; �r) \B (x; r) : (2)

We now choose some � 2 (0; (1 � �)r0) s E and we write r := (1 � �)�1�. The
same monotonicity and lower density bound argument as above and (2) show that
there exists an integer j1 such that for each j � j1:

spt(kVjk) \B (x; �) � B (spt(kV k); �r) \B (x; �)

� B (x+W; 2�r) \B (x; �)

= B
�
x+W; 2�(1� �)�1�

� \B (x; �) :

(3)

We let � : BdryB (x; �) s (x + W?) �! (x + W ) \ BdryB (x; �) be on each
hemisphere the central projection from the pole to the equator. For each j � j1 let

~Tj := Tj (Rn s B (x; �)) +Qj + Æx �� �#hTj ; u; �i
where Qj 2 Im(Rn ) is such that

@Qj = hTj ; u; �i � �#hTj ; u; �i
and spt(Qj) �

�
BdryB (x; �)

� \B �x+W; 2�(1� �)�1�
�
. We compute that

S
�
~Tj
� � H

m (set(kTjk) s B (x; �))

+H
m
�
(BdryB (x; �)) \B �x+W; 2�(1� �)�1�

��
+H

m [(x+W ) \B (x; �)]

�H
m (set(kTjk) s B (x; �)) + 2

p
2m�(m)2�(1� �)�1�m +�(m)�m

which, according to the choice of �, is bounded by

�H
m (set(kTjk) s B (x; �)) +�(m)�m

�
1 +

�

2

�
� �

4
�(m)�m :

(4)

On the other hand monotonicity implies that

(1 + �)�(m)�m � kV k(B (x; �))

and, since kV k(BdryB (x; �)) = 0, we also have that

kV k(B (x; �)) � lim inf
j!1

kVjk(B (x; �))

so that there is an integer j2 such that�
1 +

�

2

�
�(m)�m � kVjk(B (x; �))

= H
m
�
set(kTjk) \B (x; �)

�
+ "2�(j)M(Tj B (x; �))

(5)
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whenever j � j1. According to Lemma 2.1.1(3) we can also select an integer j3
such that if j � j3 then

S
�
Tj
�
+ "2�(j)M(Tj) � �(PS;T0;K) +

�

8
�(m)�m : (6)

We observe from the de�nition of ~Tj that @ ~Tj = @T0 and that spt( ~Tj) � K. On
letting j := maxfj1; j2; j3g and plugging (5) and (6) in (4) we obtain the following
contradiction:

S
�
~Tj
� � ��

4
�(m)�m +H

m [set(kTjk) s B (x; �)] +�(m)�m
�
1 +

�

2

�
� ��

4
�(m)�m +H

m [set(kTjk)] + "2�(j)M(Tj)

� ��
8
�(m)�m + �(PS;T0;K)

�

Before we go on with proving the main result of this section we need two ele-
mentary Lemmas.

Lemma 2.3.2. Let C be a disjoint family of closed subsets of Rn , � > 0, and
assume that for each C 2 C there is given a map  C : C �! C with Lip( C) � �
and  C(y) = y for each y 2 BdryC. Then the map  : Rn �! Rn de�ned by
 (y) := y if y 62 [C and  (y) :=  C(y) whenever y 2 C 2 C is Lipschitzian with
Lip( ) � maxf1;�g.
Proof. Let y; z 2 Rn : we need to show that j (y) �  (z)j � maxf1;�gjy � zj. It
is obvious in case y; z 62 [C as well as if y; z 2 C for some C 2 C. Assume that
y 2 C 2 C and z 62 [C: there exists y0 2 BdryC such that jy�zj = jy�y0j+ jy0�zj
whence

j (y)�  (z)j � j (y)�  (y0)j+ j (y0)�  (z)j
� �jy � y0j+ jy0 � zj � maxf1;�gjy� zj :

An analogous remark yields the same estimate in case y 2 C 2 C and z 2 D 2 C. �

Lemma 2.3.3. Let x 2 Rn , r > 0, 0 < � � h � 2�1, � > 0, W 2 G(n;m)
and u : (x +W ) \ B (x; r) �! x +W? a map such that ju � pW?(x)j � hr and
Lip(u) � �. Let also C := B (x; r) \ B (x+W; 2hr). Then there exists a map
 C : C �! C satisfying the following conditions:

(1)  C(y) = y whenever y 2 BdryC;

(2) Lip( C) � max
n
1;
p
1 + �2;

p
1 + 9h2��2

o
;

(3)  C [U (x; (1� �)r) \U (x+W;hr)] � graph(u) \B �x;p2r�.
Proof. We can of course assume that x = 0. Let p; p? 2 Hom(Rn ;Rn ) be the
orthogonal projections onto W and W? respectively. To keep the notation short
let U := U (0; (1� �)r) \U (W;hr). De�ne

' : U [ BdryC �! Rn

by '(y) := y if y 2 BdryC and '(y) := p(y) + u(p(y)) if y 2 U. Obviously, the
restriction of ' to BdryC has Lipschitz constant 1 whereas its restriction to U
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has Lipschitz constant less than or equal to
p
1 + �2. Moreover if y 2 BdryC and

z 2 U then

j'(y)� '(z)j2 = jy � p(z)� u(p(z))j2
= jp(y)� p(z)j2 + jp?(y)� u(p(z))j2
� jy � zj2 + jp?(y)� u(p(z))j2 :

(7)

On the other hand it is easy to check that jy � zj � rminf�; hg = �r and hence

jp?(y)� u(p(z))j � jp?(y)j+ ju(p(z))j
� 2hr + hr � 3h��1jy � zj (8)

so that plugging (8) in (7) yields

j'(y)� '(z)j2 � �
1 + 9h2��2

� jy � zj2
and in turn

Lip(') � max
n
1;
p
1 + �2;

p
1 + 9h2��2

o
:

Clearly '(U) � graph(u)\B �0;p2r�. Refering to [9, 2.10.43] (Kirszbraun's Theo-
rem) we know ' extends to a map  : Rn �! Rn with Lip( ) = Lip('). Finally we
denote by �C : Rn �! C the nearest point projection (C is convex) and we de�ne
 C := (�C Æ  )jC and we see that  C satis�es all the required conditions. �

L. Ambrosio, N. Fusco and J.E. Hutchinson recently proved in [5, 4.3] that
the limit of a sequence of (M; 0;1) minimal sets of codimension 1 in Rn is itself
(M; 0;1) minimal. In the next proof we will establish a similar result.

Theorem 2.3.4. Let T0 2 Rn�1(R
n ) and V 2 RVn�1(R

n s spt(@T0)) be as in
Proposition 2.3.1 (m = n � 1). Assume also that Hn�1(spt(@T0)) = 0. Then
set(kV k) is (M; 0;1) minimal with respect to spt(@T0).

Proof. We let B := spt(@T0) and U := Rn s B. First we notice that since V
is stationary in U , monotonicity ([1, 5.1(2)]) and lower density bounds imply (for
instance as in [8, 6.13]) that set(kV k) = spt(kV k) s B. In order to keep the
notation short we let S := set(kV k) as well as Sj := set

�kVS;"�(j)(T"�(j) )k� and
Tj := T"�(j) . It now suÆces to show that

H
n�1(S) �H

n�1(f(S)) (9)

for any Lipschitz f : Rn �! Rn with f = idRn in a neighborhood of spt(@T0).

Let 0 < � � 2�1 and choose an open set ~U � U such that kV k(U s ~U) � � and

f(y) = y for every y 62 ~U . We next set G := S \ fx : �n�1(kV k; x) = 1g: since
kV k = Hn�1 S (recall Proposition 2.3.1) and since S is (Hn�1; n� 1) recti�able
we deduce that Hn�1(S s G) = 0. The set G is an embedded C1 submanifold
of dimension n� 1 in U as follows from Allard's regularity Theorem [1, x8]. This
means in particular that for each x 2 G there exist r(x) > 0, Wx 2 G(n;m) and a
class C1 map ux : (x+Wx) \B (x; r(x)) �! x+W?

x satisfying the following:

(a) ux(x) = x;
(b) Dux(x) = 0;
(c) graph(ux) \B (x; r(x)) = G \B (x; r(x)).

In view of (a) and (b) above it is obvious that, by possibly decreasing r(x), we can
also assume that

(d) Lip(uxjB(x;r(x))) � �;
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(e) jux � pW?
x
(x)j � �r.

By possibly decreasing r(x) some more we may also require that B (x; r(x)) � ~U

whenever x 2 ~U as well as

(f) Hn�1(G \B (x; r)) = kV k(B (x; r)) � (1 + �)n�1�(n� 1)rn�1,

for each 0 < r � r(x) thanks to monotonicity. With the help of [9, 2.8.15] we secure

countably many x1; x2; ::: 2 G\ ~U and r1; r2; ::: such that ri � 2�1=2r(xi), the balls
B (xi; ri) are pairwise disjoint, kV k(BdryB (xi; (1� �)ri)) = 0 and

H
n�1

h
~U \G s [1i=1B (xi; ri)

i
= 0 : (10)

For each i = 1; 2; ::: we de�ne Ci as in Lemma 2.3.3 applied with x = xi, r := ri,
� = h, � := �, W := Wxi and u := uxi . This Lemma ensures the existence, for

each i = 1; 2; :::, of a map  i : Ci �! Ci such that Lip( i) �
p
10 and

 i(Ai) � graph(uxi) \B
�
xi;

p
2ri

�
� G � S ; (11)

where we have set Ai := U (xi; (1� �)ri) \U (xi +Wxi ; �ri). We now infer from
monotonicity that

(1� �)n�1�(n� 1)rn�1i � kV k (B (xi; (1� �)ri)) = H
n�1 (G \U (xi; (1� �)ri))

for each i = 1; 2; ::: so that, relying also on (f) above, we obtain

H
n�1 (G \B (xi; ri))�H

n�1 (G \U (xi; (1� �)ri)) � 2n�1��(n� 1)rn�1i : (12)

Since G \U (xi; (1� �)ri) � U (xi +Wxi ; �ri) (as follows from (a) and (d) above)
we see that on letting A := [1i=1Ai, relations (10) and (12) above imply that

H
n�1( ~U \G s A) � 2n�1�

1X
i=1

�(n� 1)rn�1i

which, since xi 2 G and kV k is monotone, is bounded by

� 2n�1�
1X
i=1

kV k(B (xi; ri)) � 2n�1�kV k(U) :
(13)

We now deduce from the choice of ~U , inequality (13), the fact that A is open and
Lemma 2.1.1(4) that

H
n�1(S)� � � 2n�1�kV k(U) �H

n�1(S \A) = kV k(A)
� kVjk(A) + � � H

n�1(Sj \ A) + 2�
(14)

provided j � j1 for some integer j1. On the other hand, since Hn�1(spt(@T0)) = 0,
Hn�1(Sj) �! Hn�1(S) as j !1 (recall Lemma 2.1.1(4)) so that

H
n�1(Sj s A) +H

n�1(Sj \ A) =H
n�1(Sj) �H

n�1(S) + � : (15)

provided j � j2 for some integer j2. From (14) and (15) follows that for j �
maxfj1; j2g:

H
n�1(Sj s A) � �

�
3 + 2n�1kV k(U)� : (16)

In order to �nish the proof of inequality (9) we now associate with the Ci's and

 i's, i = 1; 2; :::, a map  : Rn �! Rn as in Lemma 2.3.2 with Lip( ) � p
10 and
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 (y) =  i(y) whenever y 2 Ci for some i = 1; 2; :::. We let ~f := f Æ  and we
calculate that:

H
n�1(S) = kV k(Rn s B) = lim

j!1
kVjk(Rn s B)

= lim
j!1

kVjk(Rn ) (because Hn�1(B) = 0)

= lim
j!1

S(Tj) + "2�(j)M(Tj)

which on noticing that ~f(y) = y whenever y is in a neighborhood of spt(@T0),

whence @ ~f#Tj = @Tj , can be bounded by

� lim
j!1

S
�
~f#Tj

�
+ "2�(j)M

�
~f#Tj

�
� lim
j!1

H
n�1

�
~f(Sj)

�
+
�p

10Lip(f)
�n�1

lim
j!1

"2�(j)M(Tj)

which, according to Lemma 2.1.1(4), equals

= lim
j!1

�
H
n�1

�
~f(Sj \ A)

�
+H

n�1
�
~f(Sj s A)

��
and to estimate this quantity we refer to the fact that  (A) � S (recall (11)) as
well as to inequality (16):

�H
n�1 (f(S)) + �

�p
10Lip(f)

�n�1 �
3 + 2n�1kV k(U)� :

Since � > 0 is arbitrary, this completes the proof. �

Remark 2.3.5. The results proved so far help to complete the argument of Theo-
rem 2.11 in [16]: \In a C1 compact 3 dimensional Riemannian manifold every 2
dimensional integral homology class supports a homologically size minimizing rec-
ti�able current." In the proof of that Theorem one should replace minimizers (in a
homology class) of S subject to the additional constraintM(T ) � k by minimizers
of S+k�1M in order for the associated varifold to be stationary (as in Proposition
2.2.4 above). The (M; 0;1) minimality of the support of the varifold obtained in
the limit can then be proved as in our Proposition 2.3.1 and Theorem 2.3.4.

3. Compactness and Existence for the H Mass Plateau Problem

3.1. Measurability of Slicing and Recti�able Scans. In this section we sup-
plement [9, 4.3] with some results about slicing and projections which motivate the
de�nition of scans. The measurability of slicing was not addressed in [9, 4.3].

Lemma 3.1.1. If T 2 Fm;K(R
n ) with K � Rn compact, k 2 f1; :::;mg, and

f : Rn �! Rk is locally Lipschitzian, then the slice hT; f; �i is Lk measurable (with
respect to the topology generated by FK).

Proof. Following [9, 4.3.1], we let

�y;j := �(k)�1r�kj 
 ^B (y; rj)

where y 2 Rk , 
 = DY1 ^ ::: ^ DYk is the standard volume form in Rk and rj ,
j = 1; 2; :::, is some �xed sequence of positive real numbers decreasing to 0. For Lk

almost every y 2 Rk the following conditions are met:
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(a) the weak limit of T p#�y;j exists (in which case this limit is denoted by
hT; p; yi in accordance with [9, 4.3.1]);

(b) hT; p; yi 2 Fm�k;K(Rn );
(c) FK(T p#�y;j � hT; p; yi)! 0 as j !1;
(d) �n(�; y) < 1 where � is the Radon measure de�ned in [9, 4.3.1] in the

middle of p. 437.

We observe that the conjuction of conditions (a), (b) and (c) above is equivalent
to condition (c) which itself is equivalent to T p#�y;j , j = 1; 2; :::, being an FK
Cauchy sequence. It thus suÆces to prove that each of the mappings

y 2 Rk 7�! T p#�y;j 2 Fm�k;K(Rn )
is Lk measurable. For this, we observe that if C � Dm�k(Rn ) is a countable FK
dense subset of Dm�k(Rn ) and Q 2 Fm�k;K(Rn ), then
FK(Q� T p#�y;j) = sup

�
Q( )� (T p#�y;j)( ) :  2 C and FK( ) � 1

	
:

Thus we will be done if we show that for each  the function y 7! (T p#�y;j)( ) is
continuous. But this follows from the fact [9, 4.1.18] that there is an Lk summable
k vector�eld �p; on Rk so that

(T p#�y;j)( ) = (�1)k(m�k) (p#(T  )) (�y;j)

= (�1)k(m�k) �Lk ^ �p; � (�y;j)
= (�1)k(m�k)�(k)�1r�kj

Z
B(y;rj)

h�p; ;
idLk :

�

We will study slices hT; p; yi corresponding to an orthogonal projection p : Rm �!
Rk . Recall from [9, 1.7.4,2.7.16] the space O�(n; k) of all orthogonal projections
of Rn onto Rk with its O(n) invariant measure ��n;k. It is a compact Riemannian

manifold of dimension N = n(n�1)�(n�k)(n�k�1)
2 which admits a orienting unit N

vector�eld ~O making it into a (multiplicity one) recti�able current [[O�(n; k)]]. To
consider the variation in p of the slice hT; p; yi, we �rst note how, by [9, 4.3.2(6)],
the theory of slicing extends to maps to an oriented Riemannian manifold and then
use the following handy formula:

Lemma 3.1.2. If T 2 Fm;K(Rn ) for some compact set K � Rn and p 2 O�(n; k),
then, for Lk almost every y 2 Rk ,

hT; p; yi = �#hT � [[O�(n; k)]];	; (y; p) i
where

�(x; q) = x and 	(x; q) = (q(x); q) for (x; q) 2 Rn �O�(n; k) :

Proof. First we consider the special case when T = (Hm R ^ ��) with R being
a convex region in an aÆne m plane transverse to p and with the orienting unit
m vector�eld � and the density function � being constant on R. Then dim(R \
p�1fyg) � m � k for all y 2 Rk , and 	 is transverse to R �O�(n; k). The slice
hT; p; yi is carried by the convex m� k dimensional set R \ p�1fyg which is the �
image of the set

(R \ p�1fyg)� fpg = (R �O�(n; k)) \	�1f(y; p)g ;
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the carrying set of the slice hT � [[O�(n; k)]];	; (y; p) i. The density of both slices is
constantly �, and the constant unit orienting m�k vectors for the slices correspond
under �m�kD�. See [9, 4.3.8]. Thus the formula holds for such a T .

By linearity it then holds for almost every m dimensional real polyhedral chain.
By the density [9, 4.1.23] of such chains and [9, 4.3.1] it is �nally true for any m
dimensional real at current T and Lk almost every y 2 Rk . �

Proposition 3.1.3. For each T 2 Fm;K(Rn ) and k 2 f1; : : : ;mg the map

S(T ) : O�(n; k)� Rk �! Fm�k;K(R
n ) ; S(T )(p; y) = hT; p; yi ;

for all p 2 O�(n; k) and for Lk almost every y 2 Rk , is ��n;k � Lk measurable.

Proof. Combine Lemma 3.1.1, Lemma 3.1.2, and the at continuity of �#. �

We next observe how to recover a at chain from its slices by coordinate projec-
tions [9, 1.7.4].

Lemma 3.1.4. If e1; :::; en and !1; :::; !n are dual bases of Rn , then for every
m; k 2 f1; :::; ng with m � k and � 2 ^mRn one has

� = (�1)k(m�k)
�
m

k

��1 X
�2�(n;k)

!� ^ (e� �) :

Proof. It is obviously suÆcient to check it for each � = !�, � 2 �(n;m). According
to [9, 1.5.2], e� !� = 0 if im(�) 6� im(�) and e� !� = (�1)M!� if im(�) � im(�),
where � 2 �(n;m� k) is such that im(�) [ im(�) = im(�) and M is the number of
pairs (i; j) 2 im(�)� im(�) with i < j. In turn, !�^(e� !�) = 0 if im(�) 6� im(�),
whereas if im(�) � im(�) then, with the same notation as above,

!� ^ (e� !�) = (�1)M!� ^ !�
= (�1)M (�1)k(m�k)!� ^ !�
= (�1)2M (�1)k(m�k)!� :

Then the conclusion then follows because

card (�(n; k) \ f� : im(�) � im(�)g) =
�
m

k

�
:

�

Proposition 3.1.5. Let T 2 Fm;K(R
n ) for some compact set K � Rn , and � 2

Dm(Rn ), k 2 f1; :::;mg. Then

T (�) = (�1)k(m�k)
�
m

k

��1 X
�2�(n;k)

Z
Rk

hT;p�; yi(e� �)dLk(y)

where p� : R
n �! Rk ; p�(x) :=

Pk
i=1 !�(i)(x)ei.
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Proof. Note that !� = p#� 
 where 
 is again the standard volume form on Rk . By
3.1.4 and [9, 4.3.2(1)] with � � 1 and  = e� �,

(�1)k(m�k)
�
m

k

�
T (�) =

X
�2�(n;k)

T (!� ^ (e� �))

=
X

�2�(n;k)

[T !�](e� �)

=
X

�2�(n;k)

[T p#� 
](e� �)

=
X

�2�(n;k)

Z
Rk

hT;p�; yi(e� �)dLk(y) :

�

We also observe that the condition that a at current have boundary zero may
also be recovered by a corresponding condition on its slices, even when the slices
are only 0 dimensional.

Proposition 3.1.6. If m 2 f1; :::; ng, T 2 Fm(R
n ), and k 2 f1; :::;m � 1g, then

the following are equivalent:

(1) @T = 0;
(2) @hT; p; yi = 0 for ��n;k � Lk almost every (p; y) 2 O�(n; k)� Rk ;
(3) hT; p; yi(1) = 0 for ��n;m � Lm almost every (p; y) 2 O�(n;m)� Rm .

Proof. (1) ) (2) follows from the formula [9, 4.3.1] @hT; p; yi = (�1)kh@T; p; yi.
(2) ) (1) because Fubini's Theorem shows that, for a.e. rotation T 0 of T and

Lk a.e. y 2 Rk , @hT 0;p�; yi = 0 for all � 2 �(n; k), and we may apply 3.1.6 to see
that @T 0, and hence @T vanishes.

The equivalence of (1) and (3) in case m = n follows from the Constancy The-
orem ([9, 4.1.10]) and the fact that top dimensional at chains correspond to Ln

summable n vector�elds.
Assume now that m � n � 1. Then (1) implies that T = @S for some S 2

Fm+1(R
n ) ([9, 4.4.6]) so that (3) follows from the relation

hT; p; yi(1) = (�1)m@hS; p; yi(1) = 0 ;

valid for Lm almost every y 2 Rm .
Finally we prove the implication (3))(1). For each " > 0 we de�ne the molli�ed

current T" as in [9, 4.1.2]. According to [9, 4.1.18] we see that T" = Lm ^ �" for
some �" 2 D(Rn ;^mRn ), @T" = �Lm ^ div �", and hence T" 2 Nm(R

n ). We �rst
claim that hT"; p; yi(1) = 0 for every (p; y) 2 O�(n;m)� Rm . Indeed,

hT"; p; yi(1) =
�Z

Rn

�"(�z)(�x#T )(1)dLn(z); p; y
�

=

Z
Rn

�"(�z)h� z#T; p; yi(1)dLn(z) ([9, 4.3.1] and Fubini's)

=

Z
Rn

�"(�z)hT; p; y + p(z)i(1)dLn(z) ([9, 4.3.2(7)])

= 0 (by hypothesis) :
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Next we observe that for each (p; y) 2 O�(n;m) � Rm the following follows from
[9, 4.3.1]:

hT"; p; yi(1) = lim
r!0+

�(m)�1r�m(T" p#[B (y; r) ^
])(1)

= lim
r!0+

�(m)�1r�m
Z
p�1B(y;r)

h�"; p#
idLn

=

Z
p�1fyg

h�"; p#
idHn�m :

We denote by b�" the Fourier transform of �". Since

div �" =

nX
j=1

Dj�" DXj

we see that for each u 2 Rn s f0g one has

\(div �")(u) =

nX
j=1

\(Dj�")(u) DXj

=
nX
j=1

DXj(u)b�"(u) DXj

= kukb�"(u) DXu1

where u1 := kuk�1u and Xu 2 Hom(Rn ;R) is de�ned by Xu1(x) := x � u1. We
choose u2; :::; un so that fu1; u2; :::; ung is an orthonormal family in Rn . Fix � 2
�(n;m�1) and observe that on letting p := DXu1e1+

Pm
i=2DXu�(i)ei 2 O�(n;m)

the following holds true:

hb�"(u) DXu1 ; DXu�(1) ^ ::: ^DXu�(m�1)
i = hb�"(u); dpi

= hb�"(u); p#
i
=

Z
Rn

h�"(x); p#
i exp[�i (x � u)]dLn(x)

=

Z
Rm

exp[�i y1]dLm(y)
Z
p�1fyg

h�"; p#
idHn�m

= 0 :

We deduce that\div �" = 0 and, in turn, div �" = 0 so that @T" = 0. Since T" ! T
weakly as "! 0 and the boundary operator @ is weakly continuous, @T = 0. �

For the remainder of the paper we will view currents in terms of their 0 dimen-
sional slices. We now de�ne the natural geometric object obtained as the limit of
some minimizing sequences for the variational problems to be considered.

De�nition 3.1.7. An m dimensional recti�able scan is an ��n;m � Lm measurable
map

T : O�(n;m)� Rm �! I0;K(R
n )

(where K � Rn is some compact set) such that there exist

(1) an Hm measurable (Hm;m) recti�able set R � K,



18 THIERRY DE PAUW AND ROBERT HARDT

(2) anHm measurable function � : R �! ^mRn such that forHm almost every
x 2 R, �(x) is one of the two simple, unit m vectors associated to the m
dimensional vector space Tanm(Hm R; x), and

(3) an Hm measurable function � : R �! f1; 2; 3; : : :g,
giving, for ��n;m � Lm almost every (p; y) 2 O�(n;m)� Rm , the formula:

T(p; y) =
X

x2R\p�1fyg

sign(�(x) p#
)�(x)Æx :

Moreover we say that T is a scan cycle, and we write @T = 0, provided

T(p; y)(1) = 0

for ��n;m � Lm almost every (p; y) 2 O�(n;m)� Rm .
Remark 3.1.8. The above De�nition is motivated by the case when T = S(T ) for

some T 2 Rm;K(R
n ). In fact one may take R := set(kTk), � = ~T and � =

�m(kTk; x) because [9, 4.3.8] implies that, for each p 2 O�(n;m) and Lm almost
every y 2 Rm ,

S(T )(p; y) = hT; p; yi =
X

x2R\p�1fyg

sign
�
~T (x) h
;^mapDpjR(x)i

�
�(x)Æx

=
X

x2R\p�1fyg

sign
�
~T (x) p#


�
�(x)Æx :

Also @S(T ) = 0 if and only if @T = 0 by Proposition 3.1.6.
A recti�able scan T is, for ��n;m almost every �xed p 2 O�(n;m), actually de-

termined completely by its values T(p; y) for Lm almost every y 2 Rm . In fact, we
will see in the proof of Theorem 3.5.2 how T is determined by T(p; �) for any regular
projection of R. Here, for an (Hm;m) recti�able set R, a projection p 2 O�(n;m)
is called regular for R if Hm (�p(R)) = 0 where

�p(R) := R s fx : Tanm[(Hm R; x) is an m dimensional subspace

anddim p
h
Tanm(Hm R; x) = mg :

One may check that ��n;m almost every p 2 O�(n;m) is a regular projections for R
by applying [9, 3.2.22] to the map

(p; x) 2 O�(n;m)�R� 7�! (p; p(x)) 2 O�(n;m)� Rm :

Finally we notice that in special case T = S(T ) for some T 2 Rm(Rn ), we have
the integral-geometric identity

�1(m;n)

Z
O�(n;m)�Rm

M(T(p; y))d(��n;m � L
m)(p; y) =M(T ) <1 : (17)

The �niteness of the above integral is however not required in the De�nition of a
recti�able scan. In fact, minimizing sequences for the functional described in the
next section may have unbounded mass and have limits being recti�able scans that
are not recti�able currents.
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3.2. The H Mass and the H Flat Distance.

De�nition 3.2.1. A function H : [0;1) �! [0;1) is called a concave integrand
whenever it satis�es the following conditions:

(1) H(0) = 0;
(2) H(1) = 1;
(3) H(�1) < H(�2) for every 0 � �1 < �2;
(4) H(�1 + �2) � H(�1) +H(�2) for every �1 � 0 and �2 � 0;
(5) lim�!1H(�) =1.

In fact for most of the �rst results in this section we would only need to assume
a subset of these conditions. For instance condition (1) is critical in the proof of
Lemma 3.2.12. Condition (2) is merely a normalization. Condition (4) is required
for lower semicontinuity (Lemma 3.2.14) and Condition (5) will ensure suitable
compactness. The functions H(�) = �q , 0 < q � 1, provide examples of concave
integrands.

De�nition 3.2.2. For a concave integrand H and real recti�able current T 2
Dm(R

n ) with S(T ) <1, let

MH(T ) :=

Z
Rn

H (�m(kTk; x)) dHm(x) :

Then, for the new recti�able current

�H(T ) := H
m H Æ�m(kTk; �) ^ ~T ;

one has MH(T ) =M (�H(T )), and MH is mass-calculable as in 2.2.1.

Obviously H(�) � �H(2) for each � � 1 in case H is a concave integrand. This
implies that MH(T ) � H(2)M(T ) + S(T ) and, in turn, that MH(T ) < 1 (hence
�H(T ) 2 Dm(R

n )) whenever S(T ) <1. It also implies thatMH(T ) � H(2)M(T )
in case T 2 Rm(Rn ).
Remark 3.2.3. Unfortunately the symbol �H is clearly not linear and it does not
commute with the boundary operator nor with pushing forward as elementary ex-
amples show. However there are several properties that will be useful.

Lemma 3.2.4. Let T 2 Dm(R
n ) be a real recti�able current with S(T ) < 1 and

H be a concave integrand. The following hold true:

(1) For any real recti�able ~T 2 Dm(R
n ) with S( ~T ) <1,

k�H(T + ~T )k � k�H(T )k+ k�H ~Tk ;
(2) For any Lipschitz map F : Rn �! R� ,

k�H(F#T )k � Lip(F )mF#k�H(T )k ;
(3) For any Lipschitz G : Rn �! R� which is one-to-one Hm a.e. on setkTk,

�H(G#T ) = G#�H(T ) ;

(4) For any � > 0,

�H([[0; � ]]� T ) = [[0; � ]]��H(T ) ;

(5) For any p 2 O�(n; k) with k 2 f1; 2; : : : ;mg and Lk a.e. y 2 Rk ,
�HhT; p; yi = h�HT; p; yi :
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Proof. To verify (1) note that the inequality kT + ~Tk � kTk + k ~Tk implies the

pointwise inequality �m(kT + ~Tk; �) � �m(kTk; �) + �m(k ~Tk; �) is true kTk+ k ~Tk
almost everywhere, and by 3.2.1(4),

k�H(T + ~T )k = H
m ^H Æ�m(kT + ~Tk; �)

� H
m ^H Æ�m(kTk; �) +H

m ^H Æ�m(k ~Tk; �)
= k�H(T )k+ k�H( ~T )k :

For (2) we recall from [9, 4.1.30] that

�m(kF#Tk; y) �
X

x2F�1fyg

�m(kTk; x) (18)

forHm almost every y 2 set(kf#Tk). For a BorelE � R� , let E� := E\set(kF#Tk)
so that F�1E� � F�1set(kF#Tk) � set(kTk) is (Hm;m) recti�able. Whence

k�H(F#T )k(E) = k�H(F#T )k(E�)

=

Z
E�
H [�m(kF#Tk; y)]dHm(y)

�
Z
E�

X
x2F�1fyg

H [�m(kTk; x)]dHm(y) (thanks to (18))

=

Z
F�1E�

H [�m(kTk; x)] ap Jm (F jsetkTk) (x)dHm(x) ([9, 3.2.22])

� Lip(F )mk�H(T )k(F�1E)
which proves (2). Identities (3), (4), and (5) follow from respectively, [9, 4.1.30], [9,
4.1.8], and [9, 4.3.8]. �

Corollary 3.2.5. In the notation of 3.2.4,

(1) MH(T + ~T ) �MH(T ) +MH( ~T ) ;
(2) MH(F#T ) � Lip(F )mMH(T ) ;
(3) MH(G#T ) =

R
H (�m(kTk; x)) ap Jm (GjsetkTk) (x) dHmx ;

(4) MH([[0; � ]]� T ) = � _MH (T ) ;
(5)

R
Rk
MHhT; p; yi dLky � MH(T ).

Remark 3.2.6. It can happen that MH(Tj) ! 0 while M(Tj) ! 1 as j ! 1.
Consider for instance Tj 2 I1(R) de�ned by

Tj := E1

�jX
k=j

k[[(k + 1)�1; k�1]]

with �j suÆciently large to guarantee that limj!1M(Tj) = 1. Then obviously
limj!1MH(Tj) = 0 if H(�) = �q for some small positive q. This behavior does
not occur in the 0 dimensional case as is discussed in the next Remark.

Remark 3.2.7. If H is a concave integrand, then

H(M(T )) �MH(T ) for any T 2 I0(Rn ) :
Indeed T =

P
a2A �aÆa for some �nite subset A of Rn and some integers �a. Then

M(T ) =
P
a2A j�aj, whereasMH(T ) =

P
a2AH(j�aj), hence H(M(T )) �MH(T ).
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De�nition 3.2.8. For a compact K � Rn , and integral at current T 2 Fm(Rn )
and a concave integrand H , we de�ne

F
H
K(T ) := inf

n
MH(R) +MH(S) : T = R + @S with R 2 Rm;K(Rn )

and S 2 Rm+1;K(Rn )
o
:

Flat distances of this type were considered for the �rst time by W.H. Fleming
in [12]. It is worth comparing the following three notions of convergence of integral
at chains: FHK convergence, FK convergence and weak convergence.

Remark 3.2.9. Obviously FHK(T ) � H(2)FK(T ) for every T 2 Fm;K(Rn ).
Remark 3.2.10. The fact that limj!1 FHK(Tj) = 0 does not necessarily imply that
the sequence T1; T2; ::: converges weakly to 0. Indeed, de�ne Tj 2 R0(R), j = 1; 2; :::,
by Tj := jÆj�1 � jÆ�j�1 = j@[[� j�1; j�1]]. It follows from the De�nition that

F
H
K(Tj) �MH

�
j@[[� j�1; j�1]]

�
=

2H(j)

j
;

which converges to 0 as j tends to 1 for instance when H(�) = �q for some
0 < q < 1. On the other hand, if f 2 D0(R) is such that f(x) = x in a neighborhood
of 0, then

lim
j!1

Tj(f) = lim
j!1

j
�
f(j�1)� f(�j�1)� = 2 :

Remark 3.2.11. It follows from 3.2.4(4) and the De�nition of FHK thatZ
R�

F
H
K(hT; p; yi) dLk(y) � F

H
K(T )

whenever T 2 Fm;K(Rn ) and p 2 O�(n; k).

Lemma 3.2.12. Suppose that T 2 Fm;K(R
n ) and H is a concave integrand. If

FHK(T ) = 0, then T = 0.

Proof. Observe that applying Remark 3.2.11 with p = p�, � 2 �(n;m), together
with Proposition 3.1.5 reduces to proving the Lemma only in the particular case
when m = 0. In this case, we may �nd, for each j 2 f1; 2; : : :g, representations
T = Rj + @Sj corresponding to currents Rj 2 R0;K(Rn ) and Sj 2 R1;K(Rn ) with
MH(Rj) +MH(Sj) � j�1. But then Rj = 0 for j > H(1)�1. If T 6= 0, then

1 > card(spt(T )) � 2

because T = @Sj for each j > H(1)�1. We deduce the contradiction

M(Sj) � minfja� bj : a; b 2 spt(T ); a 6= bg > 0 :

�

For T; ~T 2 Fm;K(Rn ) Lemma 3.2.5(1) clearly implies that FHK(T+ ~T ) � FHK(T )+

FHK(
~T ). This together with Lemma 3.2.12 ensures that (T; ~T ) 7�! FHK(T � ~T ) is

indeed a distance on Fm;K(R
n ).

Lemma 3.2.13. If T1; T2; ::: 2 Fm;K(Rn ), limj!1 FHK(Tj) = 0 and supjN(Tj) <
1, then limj!1 FK(Tj) = 0.
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Proof. The compactness theorem for integral currents [9, 4.2.17] implies that each
subsequence T�(1); T�(2); ::: contains a further subsequence T�(�(1)); T�(�(2)); ::: con-
verging in at norm FK to some T� 2 Fm;K(R

n ) \ Nm;K(R
n ) = Im;K(R

n ). It
follows from Remark 3.2.9 that

F
H
K(T�) � lim

j!1
F
H
K(T� � T�(�(j))) + lim

j!1
F
H
K(T�(�(j))) = 0 ;

and hence that T� = 0 (Lemma 3.2.12). The Lemma now follows from the arbi-
trariness of the subsequences. �

Lemma 3.2.14. Suppose K � Rn is compact, H is a concave integrand, and
T; T1; T2; � � � 2 Rm;K(Rn ). If limj!1 FHK(Tj � T ) = 0, then

MH(T ) � lim inf
j!1

MH(Tj) :

Proof. First we consider the case m = 0. We may assume that lim infj!1MH(Tj)
is �nite, and, by passing to a subsequence and recalling 3.2.7, assume also that

sup
j
M(Tj) � sup

j
H�1 (MH(Tj)) <1 : (19)

By 3.2.13, limj!1 FK(Tj � T ) = 0; hence Tj ! T weakly. For each a 2 spt(T )
let r(a) := 1

2dist(a; spt(T ) s fag) and Ua := U (a; r(a)) so that M(T Ua) =

�m(kTk; a) because T =
P
a2spt(T )��0(kTk; a)Æa. The weak lower semicontinuity

of M and the fact that all densities are integers imply that

M(T Ua) � lim inf
j!1

M(Tj Ua)

and in turn

MH(T ) =
X

a2spt(T )

H [M(T Ua)]

�
X

a2spt(T )

lim inf
j!1

H [M(Tj Ua)]

� lim inf
j!1

X
a2spt(T )

MH(Tj Ua) (Remark 3.2.7)

� lim inf
j!1

MH(Tj) :

Suppose now m � 0. By passing to a subsequence we may assume

lim
j!1

MH(Tj) = lim inf
j!1

MH(Tj) :

Inasmuch as, by Remark 3.2.11,Z
O�(n;m)�Rm

F
H
K(hTj � T; p; yi) d(��n;m � L

m)(p; y) � �1(n;m)FHK(Tj � T )! 0

as j ! 1, we may pass to another subsequence to guarantee that, for ��n;m � Lm

a.a. (p; y) 2 O�(n;m)� Rm ,
lim
j!1

F
H
K(hTj ; p; yi � hT; p; yi) = 0 ;

hence,

MHhT; p; yi � lim inf
j!1

MHhTj ; p; yi (20)
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by the case m = 0. Also, for any Q 2 Rm;K(Rn ) we deduce from [9, 3.2.26; 2.10.15;
4.3.8] the integral-geometric equality

MH(Q) =

Z
set(kQk)

H [�m(kQk; x)] dHm(x)

= ��11 (n;m)

Z
O�(n;m)�Rm

X
x2p�1fyg\set(kQk)

H [�m(kQk; x)] d(��n;m � L
m)(p; y)

= ��11 (n;m)

Z
O�(n;m)�Rm

MHhQ; p; yi d(��n;m � L
m)(p; y) :

(21)

Thus it suÆces to integrate (20) and use Fatou's Lemma. �

Remark 3.2.15. We need one other elementary remark concerning 0 dimension. For
j = 1; 2; : : : , the subsets

Ij := fT 2 I0;K(Rn ) : M(T ) � jg = fT 2 I0;K(Rn ) : MH(T ) � H(j)g
are FK , FK, and F

H
K closed. For T = T+ � T� with T� 2 Ij and 0 < " < 1, the

implications

FK(T ) < ", FK(T ) < ") F
H
K(T ) <

"

H(2)
) FK(T ) < jH�1(

"

H(2)
)

show that FK , FK, and F
H
K all induce the same topology on each subspace Ij . Thus

FK and FHK give I0;K(R
n ) the same Borel subsets (though di�erent topologies). In

particular, a map from a measure space into I0;K(R
n ) will be measurable with respect

to FK if and only if it is measurable with respect to FHK .

3.3. An H Flat Variation Bound for Slicing.

Notation 3.3.1. In this section, we �x a closed ball K � Rn , an m dimensional
integral current T 2 Im;K(R

n ), and a locally Lipschitz map f = (f1; : : : ; fk) :
Rn �! Rk where k 2 f1; : : : ;mg. For y = (y1; : : : ; yk) 2 Rk , we also let

qi(y) = (y1; : : : ; yi�1; yi+1; : : : ; yk) 2 Rk�1 :
For Lk almost every y 2 Rk , L1 almost every t 2 R, and each i 2 f1; : : : ; kg, the
formula

T \ f�1[y; y + tei] := hT; qi Æ f; qi(y)i (f�1i )f[yi; yi + t]g
de�nes, by [9, 4.3.1,4.3.4], an m � k + 1 dimensional integral current in Rn . This
current has two useful elementary properties. First, by applying the boundary
operator and recalling [9, 4.3.1, 4.3.2(6), 4.3.5, 4.3.4, 4.2.1], we obtain, for Lk � L1

almost every (y; t) 2 Rk � R, the relation
hT; f; y + teii � hT; f; yi
= (�1)i�1 (hhT; qi Æ f; qi(y)i; fi; yi + t+i � hhT; qi Æ f; qi(y)i; fi; yi�i)
= (�1)i(@T ) \ f�1[y; y + tei]� (�1)i@(T \ f�1[y; y + tei]) :

(22)

Second, we may use 3.2.4 and [9, 4.3.8(2)] to estimate the H masses. Assuming

�T = �m(kTk; �) ; �@T = �m(k@Tk; �) ;
with corresponding recti�able carrying sets

RT = fx : �T (x) 6= 0g ; R@T = fx : �@T (x) 6= 0g ;
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we deduce that

MH(T \ f�1[y; y + tei]) �
Z
RT\f�1[y;y+tei]

H(�T ) dH
m�k+1

MH

�
(@T ) \ f�1[y; y + tei]

� � Z
R@T\f�1[y;y+tei]

H(�@T ) dH
m�k :

Combining these with (22), we obtain the basic distance estimate

F
H
K(hT; f; y + teii � hT; f; yi)

�
Z
R@T\f�1[y;y+tei]

H(�@T )dH
m�k +

Z
RT\f�1[y;y+tei]

H(�T )dH
m�k+1 :

Applying this estimate to intervals coming from a locally �nite partition of the line
L = q�1i fqi(y)g, then summing, and �nally taking the supremum over almost every
such partition, we �nd that the FHK essential variation [9, 4.5.10] of hT; f; �i on L is
bounded by Z

R@T\f�1L

H(�@T )dH
m�k +

Z
RT\f�1L

H(�T )dH
m�k+1 : (23)

We can now obtain an MBV bound (see [6, sec.7]) on the slicing function.

Theorem 3.3.2.Z
Rk

jD(� Æ hT; f; �i)j � k(Lip f)k�1 (MH(T ) +MH(@T ))

for any Lipschitz map � :
�
Im�k;K(R

n );FHK
� �! R with Lip� � 1.

Proof. With �i;z(t) = (z1; : : : ; zi�1; t; zi+1; : : : ; zk), we apply [9, 4.5.9(27)], (23),
and the coarea formula [9, 3.2.22(3)] to see thatZ

Rk

jD (� Æ hT; f; �i) j

�
kX
i=1

Z
Rk�1

(FHKEssVar) (� Æ hT; f; �i;z(�)i) dLk�1z

�
kX
i=1

Z
Rk�1

(FHKEssVar)
�hT; f; � i j q�1i fzg� dLk�1z

�
kX
i=1

Z
Rk�1

� Z
R@T\(qiÆf)�1fzg

H(�@T )dH
m�k

+

Z
RT\(qiÆf)�1fzg

H(�T )dH
m�k+1

�
dLk�1z

�
kX
i=1

�Z
R@T

H(�@T )apJk�1(qi Æ f) dHm�1 +

Z
RT

H(�T )apJk�1(qi Æ f) dHm

�
� k(Lip f)k�1

�Z
R@T

H(�@T ) dH
m�1 +

Z
RT

H(�T ) dH
m

�
= k(Lip f)k�1 (MH(@T ) +MH(T ))

�
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Remark 3.3.3. In case the target Rk is replaced by an oriented k dimensional
Riemannian manifold X , one still has the MBV estimateZ

X

jD(� Æ hT; f; �i)j � c(X; f;K) (MH(T ) +MH(@T )) :

One may take, for example, c(X; f;K) = k(Lip f)k�1
PJ
j=1 jLip j jjLip �1j jk�1

whenever f(K) � [Jj=1Xj and  j : Xj �! Rk are bilipschitz embeddings.

3.4. A BV Compactness Theorem.

Theorem 3.4.1. Suppose X is a k dimensional Riemannian manifold, Y is a
weakly separable [6] metric space, M : Y �! R+ is lower semicontinuous, and
M�1 ([0; R]) is sequentially compact in Y for all R > 0. If fj : X �! Y is
measurable, and Z

X

M (fj(x)) dH
kx+

Z
X

jD(� Æ fj)j � � <1 ;

for all j = 1; 2; : : : and maps � : Y �! R with Lip� � 1, then some subsequence
fj� converges pointwise Hk a.e. to a function f : X �! Y withZ

X

[M (f(x))] dHkx+

Z
X

jD(� Æ f)j � �

for all such �. Moreover,

lim
j!1

Z
K

distY (fj�(x); f(x))
p
dHkx = 0

for all compact K � X and all p 2 [1; k
k�1 ].

Proof. Since X admits bi-Lipschitz coordinates locally we may assume, for nota-
tional simplicity, that X is an open cube in Rk with Hk(B) = 1 and distX(x;w) =
jx� wj for x;w 2 X .

Also, by the isometric embedding into `1 of a weakly separable metric space
[6],1.1, we may also assume that Y � `1 with

distY (y; z) = ky � zk1 = sup
i
jyi � zij

for y = (y1; y2; : : : ); z = (z1; z2; : : : ) 2 `1.
The hypothesis implies that, for each i 2 f1; 2; : : :g, the ith component f ij of fj

satis�es Z
X

jDf ij j � � :

To apply a standard BV compactness theorem, we also need some control on the
functions f ij . To get this, we �rst use the precompactness hypothesis to verify that

NR := supfkyk1 : y 2 Y ; M(y) � Rg < 1
for each positive R <1. Thus,

H
kfx 2 X : kfj(x)k1 > N2�g � 1

2
;

and any median tij [9, 4.5.9(18] of f
i
j on X has absolute value bounded by N2�.

Thus, by [9, 4.5.9(18)],Z
X

jf ij j dHk � jtij j +
Z
X

jf ij � tij j dHk � N2� + C

Z
X

jDf ij j � N2� + C� :
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We can now apply BV compactness [13, I,p.336] to f ij or any of its subsequences.

With the Cantor diagonal trick, we �nd a single subsequence j0 and single Hk null
subset Z 0 of X so that, for each i, the sequence f ij0 converges pointwise on X s Z

0

(and strongly in Lp for p 2 [1; k
k�1 )) to a BV function f i.

However, for the desired convergence at each x 2 X s Z 0 of the vectors fj(x) =�
f1j (x); f

2
j (x); : : :

�
, we still need to get uniform convergent rates for the sequences

f ij(x) independent of i and also to show that the `1 limit f(x) = (f1(x); f2(x); : : : )
is actually a point in Y . To achieve this, we will �nd one more subsequence (j�)
of (j0) along with another Hk null subset Z� of X so that we have the additional
pointwise bound

sup
j
M (fj�(x)) < 1 :

for every x 2 X s Z�. To obtain (j�) and Z�, we �rst choose, by the argument in
the next paragraph, a Borel subset X1 of X with Hk(X1) � 1

2H
k(X) along with a

subsequence (j
00

) of (j0) so that

�1 := sup
x2X1

sup
j
M
�
fj00 (x)

�
< 1 :

Then we repeat with X replaced by X s X1 to get a Borel subset X2 of X s X1

with Hk(X2) � 2H
k(X1) along with a subsequence (j

000

) of (j
00

) giving another

bound �2 for M
�
fj000

�
on X2. Continuing, we �nally let Z� = X s [1`=1X` and

let (j�) be the diagonal sequence so that, for each x 2 X s Z�, x belongs to some
X`, and we have the bound

sup
j
M (fj�(x)) � maxfM (f1�(x)) ; : : : ;M (f`�(x)) ; �`g < 1 :

To �nd (j
00

) and X1, we may use a dyadic-cube, Calderon-Zygmund construction
with the uniformly integrable functions M

�
f ij�(x)

�
. Referring to [13, p.188], we

�rst choose the parameter � � 22m� so that, at each stage, each function hj has
average � over at most one of the 2k subcubes. Starting with hn1(j) =M

�
f ij�(x)

�
,

one chooses consecutive subsequences hn1(j); hn1(j); : : : and cubes Q1; Q2; : : : so
that, for each ` = 1; 2; : : : , the averages,

H
k(Q)�1

Z
Q

hnk`(j) dH
k for : j = 1; 2; : : : ;

either are all < � over each of the 2k subcubes Q (and we let Q` = ;)
or are all � � over precisely one subcube Q`.

Taking the diagonal subsequence (j
00

) = (nj(j)) and X1 = X s [1`=1Q` then
gives the uniform bound M

�
fj00 (x)

�
� � on X1 by di�erentiation theory.

With the �nal subsequence (j�) and null set Z� now in hand, we see that, for
each x 2 X s (Z 0 [ Z�), the bound on M (fj�(x)) implies, by hypothesis, that
the sequence fj�(x) is `

1 sequentially compact in Y . Thus any of its subsequences
contains a subsequence convergent in `1 to some point of Y . Let

lim
j��!1

fj��(x) = z = (z1; z2; : : : ) 2 Y
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be any such limit of such a convergent subsequence j�� of j�. But this limit is
uniquely determined by our earlier convergences,

zi = lim
j!1

f ij��(x) = lim
j!1

f ij0(x) = f i(x) for : i = 1; 2; : : : :

We conclude that for our speci�c sequence (j�),

lim
j>1

kfj�(x)� f(x)k1 = 0 and : f(x) 2 Y

for all x 2 X s (Z 0 [ Z�).
The integral estimate for the limit function f next follows from the lower semi-

continuity hypothesis, Fatou's Lemma, and BV lower semicontinuity.
Finally, to establish the Lp convergence, we observe that the scalar functions

gj�(x) := kfj�(x)� f(x)k1 satisfyZ
X

sup
w2X0<distX (x;w)<1

jgj�(x)� gj�(w)j
jx� wj dHkx < 2�

by the triangular inequality. As before, this implies that supj
R
X
jDgj� j <1. Also

H
kfx 2 X : jgj�(x)j > N4�g � 1

2
;

which allows again, by [9, 4.5.9(18)], use of BV compactness to get, for any subse-
quence of gj� , strong convergence in Lp for all p 2 [1; k

k�1 ) of some subsequence.
Since the limit of any such subsequence is necessarily 0 by the pointwise a.e. con-
vergence, we conclude the Lp convergence of the original sequence gj� to 0, and the
proof is complete. �

3.5. Existence of H Mass Minimizing Recti�able Scans.

Lemma 3.5.1. Let m 2 f1; :::; n � 1g, K � Rn compact, T 2 Rm;K(R
n ), W 2

G(n;m), r > 0, 0 < h < 1
2 , x 2 Rn and p0; p1 2 O�(n;m). Assume the following

conditions are met:

(1) spt(T ) \B (x; r) � B (x+W; rh);
(2) spt(@T ) \B (x; r) = ;;
(3) p�1i fpi(x)g \ BdryB (x; r) \B (x+W; 2hr) = ; for i = 0; 1;
(4) pi(x) is a Lebesgue point of the map

y 2 Rm 7�! hT; pi; yi 2 F0;K(Rn ) for i = 0; 1 :

Then

sign(� p#0 
) hT; p0; p0(x)i(1B(x;r)) = sign(� p#1 
) hT; p1; p1(x)i(1B(x;r))
for any simple unit m vector � 2 ^mRn associated with W .

Proof. Let � be the nearest point projection of Rn onto the aÆne m plane x+W ,
P = �#(T B (x; r)), and h : R�Rn �! Rn be the aÆne homotopy between the
identity and �, that is,

h(t; z) = (1� t)z + t�(z) for (t; z) 2 R�Rn :
The homotopy formula [9, 4.1.9] gives that

P � T = @h# ([0; 1]� (T B (x; r))) + h# ([0; 1]� @(T B (x; r))) : (24)
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Also since

��1B (x; r=2) \ spt@ (T B (x; r))

� ��1B (x; r=2) \ BdryB (x; r) \B (x+W;hr) = ; ;
B (x; r=2) \ spt@P = ;, and the Constancy Theorem [9, 4.1.7] implies that

P B (x; r=2) = H
m (W \B (x; r=2)) ^ j�

for some integer j. Since x+W meets the two n�m planes p�1i fpi(x)g transversally,
it is elementary to compute the 2 slices

hP; pi; pi(x)i = j sign(� p#i 
)Æx for i = 1; 2 : (25)

Also we readily check that

p�1i fpi(x)g \ h ([0; 1]� spt@(T B (x; r)))

� p�1i fpi(x)g \B (x+W;hr) s p�1i B (x; r=2) = ; : (26)

So we can slice equation (24) and use (25), (26), and the boundary slice relation [9,
4.3.1] to obtain the formulas

hT; pi; pi(x)i(1B(x;r)) = hP; pi; pi(x)i(1B(x;r))
� (�1)m@hh# ([0; 1]� (T B (x; r))) ; pi; pi(x)i(1B(x;r)) + 0

= j sign(� p#i 
) + 0 + 0 for i = 1; 2 ;

which give the desired conclusion. �

By the identity (21) it is natural to de�ne the H mass of a recti�able scan T by

MH(T) = �(m;n)

Z
O�(n;m)�Rm

MH(T(p; y))d(�
�
n;m � L

m)(p; y) : (27)

Theorem 3.5.2. Let T0 2 Rm(Rn ) with Im1 (spt(@T0)) = 0 and let H be a concave
integrand. Then there exists an m dimensional recti�able scan T in Rn such that
@(T� S(T0)) = 0 and MH(T) = �(PMH ;T0;Rn). Moreover, if spt(@T0) is an m� 1
dimensional compact properly embedded C1;1 submanifold then there exists T 2
Im(R

n ) with @T = @T0 and MH(T ) = �(PMH ;T0;Rn).

Proof. We �rst notice (as in the beginning of the proof of Proposition 2.3.1) that
�(PMH ;T0;Rn) = �(PMH ;T0;K) wheneverK � Rn is a compact convex set containing
spt(T0), because MH(�K#T ) �MH(T ) for each T 2 Rm(Rn ).

We may, by Lemma 2.1.1(1)), choose a sequence "j # 0 as well as currents
T"j 2 Rm(Rn ) with @T"j = @T0 and

MH(T"j ) + "2jM(T"j ) = �(P"j ;MH ;T0;K) = �(P"j ;MH ;T0;Rn)

Next we may argue as in the proof of Proposition 2.3.1 to secure a subsequence
�(1); �(2); ::: and an m recti�able stationary varifold V in Rn s spt(@T0) such that

k�H(T"�(j) )k+ "2�(j)kT"�(j)k �! kV k in Rn s spt(@T0) as j !1 : (28)

Now we we are ready to apply the our Compactness Theorem 3.4.1 using

X = the Riemannian manifold O�(n;m)� Rm
Y = I0;K(R

n ) with distY (T; ~T ) = F
H
K(T � ~T );

fj = S(T"�(j) � T0) = hT"�(j) � T0; � ; � i; and M =MH :
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The space Y = I0;K(R
n ) is clearly separable (hence, weakly separable), a dense sub-

set being given by �nite sums of atomic masses with rational coordinates and ratio-
nal coeÆcients. The lower semicontinuity of MH on Y was established in Lemma
3.2.14. A sequence Qj 2 I0;K(R

n with MH(Qj) � R has N(Qj) = M(Qj) �
H�1(R) so that a subsequence converges in FK to some Q 2 I0;K(R

n ). This con-
vergence is also in the FHK metric by 3.2.9, and MH(Q) � R again by the lower
semicontinuity. Thus M�1 ([0; R]) is sequentially compact in Y . The measurabil-
ity of the fj with respect to the FHK topology follows from Proposition 3.1.3 and
Remark 3.2.15. The L1 boundZ

X

M (fj(x)) dH
kx =

Z
O�(n;m)�Rm

MHhT"�(j) � T0; p; yi; d(��n;m � L
m)(p; y)

= �1(m;n)
�1MH(T"�(j) � T0)

� �1(m;n)
�1[MH(T"�(j) ) +MH(T0)]

� �1(m;n)
�1[2MH(T0) +M(T0)] < 1

follows from (21), Corollary 3.2.5(1), and the minimizing property of T"�(j) .
Finally, to verify the needed MBV bound, let � : Y �! R have Lip� � 1, recall

Lemma 3.1.2, and use the general slicing bound 3.3.3 with

T = (T"�(j) � T0)� [[O�(n;m)]] and f = 	 ;

hence @T = 0 and Lip f � c0 <1, to estimateZ
X

jD(� Æ fj)j

=

Z
O�(n;m)�Rm

jD �� Æ S(T"�(j) � T0)
� j

=

Z
O�(n;m)�Rm

jD(� Æ hT"�(j) � T0; � ; � ij

=

Z
O�(n;m)�Rm

jD �(� Æ�#) Æ h(T"�(j) � T0)� [[O�(n;m)]];	; � i� j
� c1MH

�
(T"�(j) � T0)� [[O�(n;m)]]

�
� c2[MH(T"�(j) ) +MH(T0)]

� c2[2MH(T0) +M(T0)] < 1 ;

where the constants c0; c1; c2 depend only on n and K.
From Theorem 3.4.1 and Remark 3.2.15 we now conclude the existence of a sub-

sequence �(1); �(2); : : : of �(1); �(2); : : : and a measurable (for the FK topology)
map R : O�(n;m)� Rm �! I0;K(R

n ) so that, for ��n;m � Lm almost every (p; y),

F
H
K

�
S(T"�(j) � T0)(p; y)�R(p; y)

� �! 0 as j !1 :

We now change and simplify our notations by writing Tj in place of T"�(j) and Vj
in place of VMH ;"�(j) (Tj) for j = 1; 2; :::. Letting T = R+ S(T0), we deduce that,

lim
j!1

F
H
K

�hTj ; p; yi � T(p; y)
�
= 0 for ��n;m � L

m almost every (p; y) ; (29)

which gives the desired scan boundary condition

@(T� S(T0)) = 0
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because, by Proposition 3.1.6,

(T� S(T0)(p; y)) (1) = lim
j!1

hTj � T0; p; yi(1) = 0

for almost every (p; y). Also by (27), Fatou's Lemma, and (21),

MH(T) = ��11 (n;m)

Z
O�(n;m)�Rm

MH(T(p; y))d(�
�
n;m � L

m)(p; y)

� ��11 (n;m)

Z
O�(n;m)�Rm

lim inf
j!1

MH(S(Tj)(p; y))d(�
�
n;m � L

m)(p; y)

� lim inf
j!1

MH(Tj) = �(PMH ;T0;Rn) <1 ;

(30)

the desired minimizing property.
It only remains to verify that T is a recti�able scan. We begin with the Borel

(Hm;m) recti�able set R := set(kV k). We �rst claim that

spt(T(p; y)) s spt(@T0) � R (31)

for ��n;m�Lm almost every (p; y). To prove this, we deduce from the monotonicity
of kV k ([1, 5.1(2)]) and the lower density bound that R is relatively closed in
Rn s spt(@T0) (see for instance [8, 6.13]) so that R [ spt(@T0) is closed in Rn .
If x 62 R [ spt(@T0), then also U (x; r) \ (R [ spt(@T0)) = ; for some r > 0 and
the monotonicity of each kVjk implies that spt(Tj) \U (x; r) = ; if j is suÆciently
large because spt(Tj), j = 1; 2; :::, converge in Hausdor� distance to R in compact
subsets of Rn s spt(@T0) (see for instance [8, 4.2]). Now for each pair (p; y) such
that (29) holds true, we deduce that x 62 spt(T(p; y)).

We will call a projection p 2 O�(n;m) good if it satis�es the following properties:

(1) Hm (�p(R)) = 0 , (recall (3.1.8)),
(2) Lm (p(@T0)) = 0 ,
(3) limj!1 FHK

�
S(Tj)(p; y)� T(p; y)

�
= 0 for Lm almost every y 2 Rm .

(4) lim infj!1MH (S(Tj)(p; y)) <1 for Lm almost every y 2 Rm .
By Fubini's Theorem, (3.1.8), [9, 2.10.15], (29), Fatou's Lemma, and (30), we see
that ��n;m almost every p 2 O�(n;m) is good. We now de�ne the multiplicity � and
orienting m vector�eld � by using one �xed good projection p0. For x 2 Rp0 , let

�(x) := jT(p0; p0(x))(1fxg)j :
and �(x) := the unique unit m vector orienting Tanm(kV k; x) with

sign(�(x) p#
) = sign[T(p0; p0(x))(1fxg)] :

To check that � and � are Hm measurable, we �rst recall that Lusin's Theorem
allows us to assume that T is fact Borel. Next we let Ck, k = 1; 2; :::, be the partition
of Rn into dyadic cubes of side length 2�k and such that Ck+1 is a re�nement of
Ck. Then, since spt[T(p0; p0(x))] is �nite,

�(x) = lim
k!1

X
C2Ck

1C(x)jT(p0; p0(x))j(1C)

and the fact that � is Borel becomes clear. Similarly, one veri�es that the func-
tion sign[T(p0; p0(x))(1fxg)] is Borel, and the measurability of � follows from the
recti�ability of R.
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To �nish the proof of the fact that T is a recti�able scan, we need only show
that, for every good projection p 2 O�(n;m),

T(p; y) =
X

x2R\p�1fyg

sign(�(x) p#
)�(x)Æx (32)

is true for Lm almost every y 2 Rm . The de�nitions of � and � give (32) when
p = p0 and y 2 Rm s p0(�p0).

Let p1 2 O�(n;m) be another good projection, and for i = 0; 1 we de�ne

Yi := pi(�pi) [ pi(spt@T0)

[ fy : lim sup
j!1

F
H
K

�
S(Tj)(p; y)� T(p; y)

�
> 0g

[ fy : lim inf
j!1

MH (S(Tj)(p; y)) =1g
[ fy : y is not a Lebesgue point of hTj ; pi; �i for some j = 1; 2; : : :g

so that Lm(Yi) = 0 by the goodness of pi. Applying [9, 3.2.22] to each pijR s �pi
we see that Zi := R \ p�1i (Yi) has H

m(Zi) = 0.
We now verify (32) for p = p1 and y 2 Rm s p1(Z1 [ Z2). By (31) and the fact

that y =2 p1(spt@T0),
T(p1; y) =

X
x2R\p�1

1 fyg

T(p1; y)(1fxg)Æx : (33)

It remains to compute the coeÆcient T(p1; y)(1fxg) for each �xed x 2 R \ p�11 (y).
The monotonicity of the measure kV k as well as that of the measures k�H(Tj)k+
"2�̂(j)kTjk implies (as in the proof of Proposition 2.3.1) convergence of supports

when letting j ! 1 or when rescaling kV k to its weak tangent plane at x. We
conclude that, for some r > 0 suÆciently small, all the hypotheses of Lemma 3.5.1
are satis�ed with h = 1=3, W = Tanm(kV k; x), � = �(x), and T = Tj for all j
suÆciently large. Inasmuch as

lim
j!1

F
H
K

�
S(Tj)(pi; pi(x))�T(pi; pi(x))

�
= 0 and lim inf

j!1
MH (S(Tj)(pi; pi(x))) <1 ;

we may also �nd, by Lemma 3.2.13, a single subsequence j0 so that

lim
j0!1

FK
�hTj0pi; pi(x)i � T(pi; pi(x))

�
= 0

for i = 0; 1. We deduce from Lemma 3.5.1 that

sign(�(x) p#1 
)T(p1; y)(1fxg) = sign(�(x) p#1 
)T(p1; y)(1B(x;r))

= lim
j!1

sign(�(x) p#1 
)hTj0 ; p1; p1(x)i(1B(x;r))

= lim
j!1

sign(�(x) p#0 
)hTj0 ; p0; p0(x)i(1B(x;r))
= jT(p0; p0(x))(1B(x;r))j
= �(x) :

This calculation, combined with (33) gives (32).
We turn to the proof of the second part of the Theorem where we assume spt(@T0)

to have the stated extra regularity property. We de�ne a measure � on Rn by the
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formula

�(B) := ��11 (n;m)

Z
O�(n;m)�Rm

k�H(T(p; y))k(B)d(��n;m � L
m)(p; y)

for each Borel set B � Rn (recall Lemma 3.2.14) and we observe that

�(B) =

Z
R

H(j�j)dHm

according to the �rst part of this proof. On the other hand, for each open set
U � Rn s spt(@T0) we refer to (28) and Fatou's Lemma to deduce that

�(U) � ��11 (n;m)

Z
O�(n;m)�Rm

lim inf
j!1

k�HS(Tj)(p; y)k(U)d(��n;m � L
m)(p; y)

� lim inf
j!1

�k�H(Tj)k(U) + "2�̂(j)kTjk(U)

(because "2�̂(j)M(Tj)! 0 according to Lemma 2.1.1(4))

= lim inf
j!1

kVjk(U) � kV k(ClosU)

and hence we infer that for each closed ball B � Rn we have �(B) � kV k(B).
In particular ��m(�; x) � ��m(kV k; x) for every x 2 Rn . According to the dif-
ferentiation theory of [9, 2.9] we know that H(j�(x)j) = �m(�; x) for Hm almost
every x 2 R. On the other hand we know from Allard's boundary regularity the-
ory (recall Proposition 1.0.1) that c := supf�m(kV k; x) : x 2 Rng < 1. Then
j�(x)j � H�1(c) for Hm almost every x 2 R so that Hm R ^ �� 2 Rm(R

n ).
Finally @

�
Hm R ^ ��� = @T0 according to Proposition 3.1.6. �

Remark 3.5.3. We will now give a di�erent proof of the second part of the above
Theorem, namely the existence result in the class of currents under the extra regu-
larity condition on spt(@T0). In fact Proposition 1.0.1 implies the following (seem-
ingly stronger, but equivalent) result. Let B � Rn be an m � 1 dimensional,
compact, properly embedded C1;1 submanifold and let V1; V2; ::: be m recti�able sta-
tionary varifolds in Rn s B, all supported in some common compact subset of Rn .
Assume also that �m(kVjk; x) � 1 for kVjk almost every x 2 Rn , j = 1; 2; :::, and
that supfkVjk(Rn ) : j = 1; 2; :::g <1. Then there exist integers �(1); �(2); ::: such
that

supf�m(kV�(j)k; x) : x 2 Rn ; j = 1; 2; :::g <1 :

We apply this result to the varifolds kVjk from the proof of Theorem 3.5.2 and
we observe it implies that supfM(T�(j)) : j = 1; 2:::g < 1 so that Federer and
Fleming's compactness theorem applies. This shows in fact that there are MH

minimizing (sub)sequences converging in the weak topology of currents to an MH

minimizer, in contrast with the general behavior of MH minimizing sequences.
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