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Abstract

In these notes, we give an overview of some aspects of topological

vector spaces, including the use of nets and filters.
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1 Basic notions

Let V be a vector space over the real or complex numbers, and suppose that V
is also equipped with a topological structure. In order for V to be a topological
vector space, we ask that the topological and vector spaces structures on V
be compatible with each other, in the sense that the vector space operations
be continuous mappings. More precisely, this means that addition of vectors
in V should be continuous as a mapping from V × V into V , where V × V
is equipped with the product topology associated to the given topology on V .
Similarly, scalar multiplication should be continuous as a mapping from R× V
or C × V into V , as appropriate. This uses the product topology on R × V or
C × V associated to the standard topology on R or C and the given topology
on V . Some authors include the additional condition that {0} be a closed set
in V , and we shall follow this convention here as well. Note that a topological
vector space is automatically a commutative topological group with respect to
addition, where the latter is defined analogously in terms of the continuity of
the group operations.

Let V and W be topological vector spaces, both real or both complex. In
this context, we are especially interested in mappings from V into W which
are both continuous and linear. In particular, a mapping T : V → W is said
to be an isomorphism from V onto W as topological vector spaces if it is an
isomorphism from V onto W both as vector spaces and topological spaces.
Equivalently, T should be a one-to-one linear mapping from V onto W which is a
homeomorphism, so that both T and its inverse are continuous linear mappings.

If n is a positive integer, then Rn and Cn are topological vector spaces with
respect to their standard vector space and topological structures. If V is an
n-dimensional real or complex vector space, then V is isomorphic to Rn or Cn

as a vector space, as appropriate. Let T be such an isomorphism, which is to
say a one-to-one linear mapping from Rn or Cn onto V . We can also define
a topology on V so that T is a homeomorphism, in which case V becomes a
topological vector space isomorphic to Rn or Cn.

Suppose now that T̃ is another one-to-one linear mapping from Rn or Cn

onto V , as appropriate. Thus T−1◦T̃ is a one-to-one linear mapping from Rn or
Cn onto itself. Every linear mapping from Rn or Cn into itself is continuous, and
hence T−1◦T̃ is a homeomorphism on Rn or Cn. This implies that the topology
on V described in the previous paragraph does not depend on the choice of
isomorphism T . It can be shown that any n-dimensional topological vector
space over the real or complex numbers is isomorphic as a topological vector
space to Rn or Cn with its standard topology, but this is more complicated.
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2 Translations and dilations

Let V be a topological vector space over the real or complex numbers. If a ∈ V ,
then let Ta be the mapping from V into itself defined by

Ta(v) = a + v.(2.1)

It follows easily from the continuity of addition on V that Ta is a continuous
mapping from V into itself for each a ∈ V . Moreover, Ta is a one-to-one mapping
from V onto itself, with inverse given by T−a, which is also continuous, and hence
Ta is a homeomorphism from V onto itself for each a ∈ V . In particular, the
hypothesis that {0} be a closed set in V implies that {a} is a closed set in V for
every a ∈ V , so that V satisfies the first separation condition as a topological
space.

Similarly, if t is a real or complex number, as appropriate, then

v 7→ t v(2.2)

defines a continuous mapping from V into itself, by continuity of scalar multi-
plication. If t 6= 0, then this is a homeomorphism on V , because the inverse
mapping corresponds to multiplication by 1/t.

If a ∈ V and B ⊆ V , then put

a + B = Ta(B) = {a + w : w ∈ B}.(2.3)

One can define B + a in the same way, which is equal to a + B, because of
commutativity of addition. If t ∈ R or C, as appropriate, then put

tB = {t w : w ∈ B}.(2.4)

Of course, this reduces to

−B = {−w : w ∈ B}(2.5)

when t = −1. We may also use the notation a − B for a + (−B), etc.
If A,B ⊆ V , then put

A + B = {v + w : v ∈ A,w ∈ B}.(2.6)

Equivalently,

A + B =
⋃

a∈A

(a + B) =
⋃

b∈B

(A + b).(2.7)

Note that A + B is an open set in V when either A or B is an open set.

3 Separation conditions

Let V be a topological vector space over the real or complex numbers. Also let
w ∈ V with w 6= 0 be given, and put W = V \{w}. Thus W is an open set in

4



V that contains 0, and continuity of addition on V at 0 implies that there are
open subsets U1, U2 of V that contain 0 and satisfy

U1 + U2 ⊆ W.(3.1)

The latter implies that u1 + u2 6= w for every u1 ∈ U1 and u2 ∈ U2, and hence
that u1 6= w − u2 for every u1 ∈ U1 and u2 ∈ U2. Therefore

U1 ∩ (w − U2) = ∅.(3.2)

Note that w − U2 is an open set in V that contains w, by the remarks in the
previous section. It follows that V is Hausdorff, since one can use translations
to reduce an arbitrary pair v, w of distinct elements of V to the case where
v = 0.

Now let E be a closed set in V that does not contain 0, and put W = V \E.
As in the previous paragraph, W is an open set in V that contains 0, and
continuity of addition at 0 implies that there are open sets U1, U2 containing 0
and satisfying (3.1). This implies that

U1 ∩ (E − U2) = ∅,(3.3)

where E − U2 = E + (−U2) is an open set in V that contains E as a subset.
It follows that V is regular, or satisfies the third separation condition as a
topological space, since one can use translations again to reduce an arbitary
element v of V \E to the case where v = 0.

However, one can have disjoint closed sets A, B such that

(A + U1) ∩ (B − U2) 6= ∅(3.4)

for any pair U1, U2 of open sets containing 0. For example, one can take V = R

with the standard topology, A to be the set Z+ of positive integers, and

B = {j + (1/j) : j ∈ Z+}.(3.5)

Alternatively, one can take V = R2 with the standard topology, and A, B to
be the hyperbolae

A = {(x, y) ∈ R2 : x y = 1},(3.6)

B = {(x, y) ∈ R2 : x y = −1}.(3.7)

In both cases, A, B are disjoint closed sets with elements v ∈ A, w ∈ B such
that v − w is contained in arbitrarily small neighborhoods of 0.

If V is any topological vector space again, E ⊆ V is a closed set, K ⊆ V
is compact, and E ∩ K = ∅, then there are open sets U ′, U ′′ ⊆ V containing 0
such that

(K + U ′) ∩ (E − U ′′) = ∅.(3.8)

To see this, we can apply the earlier argument to get for each p ∈ K open
subsets U1(p), U2(p) of V containing 0 and satisfying

(p + U1(p)) ∩ (E − U2(p)) = ∅.(3.9)
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We can also use continuity of addition at 0 again to get for each p ∈ K open
subsets U1,1(p), U1,2(p) of V containing 0 and satisfying

U1,1(p) + U1,2(p) ⊆ U1(p).(3.10)

Because p+U1,1(p) is an open set in V containing p for each p ∈ K, compactness
of K implies that there are finitely many elements p1, . . . , pn of K such that

K ⊆
n⋃

j=1

(pj + U1,1(pj)).(3.11)

Put U ′ =
⋂n

j=1 U1,2(pj) and U ′′ =
⋂n

j=1 U2(pj), which are each open subsets of
V that contain 0, since they are intersections of finitely many open subsets of
V containing 0. Observe that

K + U ′ ⊆
n⋃

j=1

(pj + U1,1(pj) + U ′)(3.12)

⊆
n⋃

j=1

(pj + U1,1(pj) + U1,2(pj))

⊆
n⋃

j=1

(pj + U1(pj)).

Using this and (3.9), it is easy to check that (3.8) holds with these choices of
U ′ and U ′′.

4 Bounded sets

Let V be a topological vector space over the real or complex numbers, and let
E be a subset of V . We say that E is bounded in V if it satisfies one of the
following four equivalent conditions. (1) For each open set U ⊆ V with 0 ∈ U
there is a t ∈ R or C, as appropriate, such that E ⊆ t U . (2) For each open set
U ⊆ V with 0 ∈ U there is a t ≥ 0 such that E ⊆ t U . (3) For each open set
U ⊆ V with 0 ∈ U there is an r ≥ 0 such that E ⊆ t U when t > r. (4) For each
open set U ⊆ V with 0 ∈ U there is an r ≥ 0 such that E ⊆ t U when |t| > r.
Note that r is implicitly a real number in conditions (3) and (4), t is implicitly
real in conditions (2) and (3), while t may be real or complex, as appropriate,
in condition (4).

Of course, each of these conditions appears to be stronger than the previous
one. To show that they are equivalent, it suffices to prove that (1) implies (4).
To do this, the main point is to use continuity of scalar multiplication at 0. Let
U ⊆ V be an arbitrary open set with 0 ∈ U . Because of continuity of scalar
multiplication, there are an open set W ⊆ V with 0 ∈ W and a positive real
number δ such that t w ∈ U for every w ∈ W and t ∈ R or C, as appropriate,

6



with |t| < δ. Here |t| denotes the absolute value of t when t ∈ R, and the
modulus of t when t ∈ C. Equivalently, tW ⊆ U when |t| < δ, and hence

W ⊆ t U(4.1)

when |t| > 1/δ. If E satisfies the boundedness condition (1), then E ⊆ r W for
some r ∈ R or C, as appropriate. This implies that E ⊆ t U when |t| > |r|/δ,
as desired.

Suppose that A and B are bounded subsets of V , and let us check that A∪B
is also bounded. If U is an open set in V that contains 0, then A ⊆ t U when |t|
is sufficiently large, and similarly for B. This implies that A∪B ⊆ t U when |t|
is sufficiently large, as desired. Now let us show that A + B is bounded as well.
Let U ⊆ V be an open set with 0 ∈ U again, and let U1, U2 be open subsets of
V containing 0 such that U1 + U2 ⊆ U . As usual, we can get the existence of
U1, U2 from the continuity of addition at 0 in V . The boundedness of A implies
that A ⊆ t U1 when |t| is sufficiently large, and the boundedness of B implies
that B ⊆ t U2 when |t| is sufficiently large. Hence

A + B ⊆ t U1 + t U2 ⊆ t U(4.2)

when |t| is sufficiently large, as desired.
If E ⊆ V is bounded and A ⊆ E, then A is bounded too. Let us check that

the closure E of E in V is bounded when E is bounded. To see this, let U be
any open set in V that contains 0, and let W be another open set in V such
that 0 ∈ W and W ⊆ U . The existence of W follows from the regularity of V
as a topological space. Because E is bounded, E ⊆ tW when |t| is sufficiently
large, and hence

E ⊆ t W ⊆ t U(4.3)

when |t| is sufficiently large, as desired.

5 Norms

Let V be a vector space over the real or complex numbers. As usual, a norm on
V is a nonnegative real-valued function N(v) on V such that N(v) = 0 if and
only if v = 0,

N(t v) = |t|N(v)(5.1)

for every v ∈ V and t ∈ R or C, as appropriate, and

N(v + w) ≤ N(v) + N(w)(5.2)

for every v, w ∈ V . If N(v) is a norm on V , then

d(v, w) = N(v − w)(5.3)

defines a metric on V . It is well known and not too difficult to check that the
topology on V associated to this metric satisfies the requirements of a topological
vector space.
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In this case, a set E ⊆ V would normally be considered to be bounded if
the norms of the elements of E have a finite upper bound. It is easy to see that
this implies that E is bounded as a subset of V as a topological vector space,
because every open set in V that contains 0 also contains an open ball around
0 with respect to the norm. Conversely, if E is bounded as a subset of V as
a topological vector space, then one can check that E is bounded in the usual
sense, by applying any of the conditions in the previous section with U equal to
the open unit ball in V associated to the norm.

Remember that a set E in a vector space V is said to be convex if

t v + (1 − t)w ∈ E(5.4)

for every v, w ∈ E and t ∈ R with 0 ≤ t ≤ 1. Suppose that N is a norm on V ,
and let

B = {v ∈ V : N(v) < 1}(5.5)

be the open unit ball in V associated to V . It is easy to see that B is convex
under these conditions, using the triangle inequality.

Conversely, suppose that N(v) is a nonnegative real-valued function on V
that satisfies the homogeneity condition (5.1). If the corresponding open unit
ball B is convex, then N also satisfies the triangle inequality (5.2). To see
this, let v, w be arbitrary vectors in V , and let a, b be real numbers such that
a > N(v), b > N(w). Thus v′ = v/a and w′ = w/b are elements of B. Using
the convexity of B with t = a/(a + b), so that 1 − t = b/(a + b), we get that

v + w

a + b
=

a

a + b
v′ +

b

a + b
w′ ∈ B.(5.6)

Equivalently, N((v + w)/(a + b)) < 1, which is to say that

N(v + w) < a + b.(5.7)

This implies (5.2), since a > N(v) and b > N(w) are arbitrary.

6 L
p Spaces

Let (X,A, µ) be a measure space, so that X is a set, A is a σ-algebra of “mea-
surable” subsets of X, and µ is a nonnegative measure defined on A. Basic
examples include Lebesgue measure on the unit interval or real line, and count-
ing measure on any set. If p is a positive real number, then Lp(X) denotes the
space of measurable real or complex-valued functions f on X such that |f |p is
integrable on X, and we put

‖f‖p =
(∫

X

|f |p dµ
)1/p

.(6.1)

More precisely, it is customary to identify functions on X that are equal almost
everywhere, since ‖f‖p = 0 if and only if f = 0 almost everywhere on X. One
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can extend this to p = ∞ by taking L∞(X) to be the space of measurable real
or complex-valued functions that are “essentially bounded”, and taking ‖f‖∞
to be the “essential supremum” of |f |.

With these conventions, it is well known that Lp(X) is a vector space when
1 ≤ p ≤ ∞, and that ‖f‖p defines a norm on Lp(X). If 0 < p < 1, then
Lp(X) is still a vector space, but ‖f‖p is not necessarily a norm, because it
may not satisfy the triangle inequality. As a concrete example, let X be a set
with exactly two elements, equipped with counting measure. The vector space
V of real-valued functions on X may be identified with R2, in which case ‖f‖p

corresponds to
‖v‖p = (|v1|

p + |v2|
p)1/p(6.2)

when 0 < p < ∞, and to

‖v‖∞ = max(|v1|, |v2|)(6.3)

when p = ∞. It is easy to see that ‖v‖p does not satisfy the triangle inequality
on R2 when 0 < p < 1, and one can also observe that the corresponding open
unit ball is not convex.

To deal with this, let us check that

(a + b)p ≤ ap + bp(6.4)

for any nonnegative real numbers a, b when 0 < p ≤ 1. Indeed,

max(a, b) ≤ (ap + bp)1/p,(6.5)

and hence

a + b ≤ max(a, b)1−p (ap + bp)(6.6)

≤ (ap + bp)(1−p)/p+1 = (ap + bp)1/p.

This implies (6.4), by taking pth powers of both sides.
If f, g ∈ Lp(X), 0 < p ≤ 1, then

‖f + g‖p
p =

∫

X

|f + g|p dµ ≤

∫

X

|f |p dµ +

∫

X

|g|p dµ = ‖f‖p
p + ‖g‖p

p(6.7)

by (6.4). This implies that

dp(f, g) = ‖f − g‖p
p(6.8)

defines a metric on Lp(X), and one can check that Lp(X) is a topological vector
space with respect to the topology associated to this metric. One can also check
that a set E ⊆ Lp(X) is bounded as a subset of Lp(X) as a topological vector
space if and only if E is bounded in the usual sense with respect to ‖f‖p, as in
the previous section.
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7 Balanced sets

Let V be a vector space over the real or complex numbers, not necesarily with
a topology for the moment. A set A ⊆ V is said to be balanced if

tA ⊆ A(7.1)

for every t ∈ R or C, as appropriate, with |t| ≤ 1. This implies that 0 ∈ A
when A 6= ∅, and the condition that (7.1) holds when t is a real number such
that 0 ≤ t ≤ 1 is the same as saying that A is star-like about 0. If t ∈ R or C

satisfies |t| = 1, then we can apply (7.1) to t and to t−1 to get that

tA = A.(7.2)

Of course, this is trivial when t = 1, and when t = −1 this reduces to the
condition that A be symmetric in the sense that A = −A.

Now let V be a topological vector space, and let U be an open set in V
that contains 0. Using the continuity of scalar multiplication at 0 as before, we
get that there are an open set W in V that contains 0 and a δ > 0 such that
tW ⊆ U for each t ∈ R or C, as appropriate, with |t| < δ. Put

W1 =
⋃

0<|t|<δ

tW,(7.3)

where more precisely the union is taken over all t ∈ R or C, as appropriate,
such that 0 < |t| < δ. Thus

W1 ⊆ U,(7.4)

W1 is balanced by construction, and W1 is an open set in V that contains 0
because it is a union of such sets.

This shows that every open set U ⊆ V with 0 ∈ V contains a nonempty
balanced open set. Equivalently, there is a local base for the topology of V at
0 consisting of balanced open sets. In particular, in order to check that a set
E ⊆ V is bounded, it suffices to consider nonempty balanced open sets U ⊆ V
instead of arbitrary open sets that contain 0. In this case, the four variants of
boundedness mentioned in Section 4 are all obviously the same. Of course, this
is very similar to the earlier arguments, which also used the continuity of scalar
multiplication.

If N is a norm on V , then the open ball in V corresponding to N centered at
0 and with any positive radius is clearly balanced, because of the homogeneity
property of the norm. This also works in Lp spaces with ‖f‖p in place of the
norm, even when 0 < p < 1, so that ‖f‖p may not be a norm. In both cases,
this implies directly that any open set U in the corresponding topology that
contains 0 also contains a nonempty balanced open set, because U contains an
open ball around 0.

10



8 The absorbing property

Let V be a topological vector space over the real or complex numbers, and let
U be an open set in V that contains 0. If v is any vector in V , then 0 v = 0 ∈ U ,
and hence there is a positive real number δ(v) such that

t v ∈ U(8.1)

for every t ∈ R or C, as appropriate, with |t| < δ(v). This uses the continuity
of scalar multiplication at v and t = 0. Subsets of V with this property are
often said to be absorbing, although this term is also sometimes used for weaker
versions of this condition. These different versions are fortunately the same for
balanced sets, with which one may be especially concerned.

Using the absorbing property for open sets that contain 0, it is easy to see
that finite subsets of V are bounded. Let us check that every compact set K ⊆ V
is also bounded. As in the previous section, it suffices to check the boundedness
condition for a nonempty balanced open set U ⊆ V . The absorbing property
implies that

∞⋃

n=1

nU = V,(8.2)

and hence K is contained in the union of nU for finitely many positive integers
n, by compactness. If U is balanced, then j U ⊆ l U when j ≤ l, and it follows
that K ⊆ nU for sufficiently large n, as desired.

Let N(v) be a nonnegative real-valued function on a real or complex vector
space V that satisfies the same homogeneity property as a norm, which is to say
that N(t v) = |t|N(v) for every v ∈ V and t ∈ R or C, as appropriate. Thus
N(0) = 0, as one can see by taking t = 0. Let r be a positive real number, and
put

BN (r) = {v ∈ V : N(v) < r}.(8.3)

This is clearly a balanced set in V , and it has the absorbing property that

t v ∈ BN (r)(8.4)

when |t|N(v) < r.

9 Seminorms

Let V be a vector space over the real or complex numbers. A nonnegative
real-valued function N(v) is said to be a seminorm on V if

N(t v) = |t|N(v)(9.1)

for every v ∈ V and t ∈ R or C, as appropriate, and

N(v + w) ≤ N(v) + N(w)(9.2)
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for every v, w ∈ V . Thus a seminorm is the same as a norm, but without the
positivity condition that N(v) > 0 when v 6= 0. Note that N(0) = 0, by taking
t = 0 in the homogeneity condition. If w ∈ V and r > 0, then the open ball in
V with center w and radius r associated to N may be defined as usual by

BN (w, r) = {v ∈ V : N(v − w) < r}.(9.3)

It is easy to see that this is a convex set in V for every w ∈ V and r > 0, using
the triangle inequality. Conversely, if N(v) is a nonnegative real-valued function
on V that satisfies the homogeneity condition (9.1), and if the corresponding
unit ball BN (0, 1) is convex, then N(v) also satisfies the triangle inequality (9.2),
and hence is a seminorm, for the same reasons as in Section 5.

Now let N be a collection of seminorms on V . Using N , we can define a
topology on V , by saying that a set U ⊆ V is an open set if for every u ∈ U
there are finitely many seminorms N1, . . . , Nl in N and finitely many positive
real numbers r1, . . . , rl such that

l⋂

j=1

BNj
(u, rj) ⊆ U.(9.4)

It is easy to see that this defines a topology on V , by construction, and that every
open ball in V with respect to every element of N is an open set with respect to
this topology. The last part uses the triangle inequality, and is analogous to the
fact that open balls are open sets in metric spaces. Equivalently, one can get a
sub-base for the topology on V associated to N using open balls corresponding
to arbitrary elements of N .

Let us say that N is nice if for each v ∈ V with v 6= 0 there is an N ∈ N
such that N(v) > 0. Using this, one can check that {0} is a closed set in V
with respect to the topology associated to N , and that V is Hausdorff and even
regular with respect to this topology. One can also check that the vector space
operations on V are continuous with respect to this topology, so that V becomes
a topological vector space. If N consists of a single element N , then the niceness
of N means exactly that N is a norm, and the topology on V associated to N
reduces to the one determined by N as in Section 5.

Suppose that V is equipped with the topology determined by a nice collection
of seminorms N . In this case, a set E ⊆ V is bounded as a subset of V
as a topological space if and only if each seminorm N ∈ N is bounded on
E. Indeed, if U is an open set in V that contains 0, then U contains the
intersection of finitely many open balls centered at 0 corresponding to seminorms
N1, . . . , Nl ∈ N . If Nj is bounded on E for each j = 1, . . . , l, then it is easy to
see that E ⊆ t U when |t| is sufficiently large. Conversely, if E is bounded as a
subset of V as a topological space and N ∈ N , then it is easy to see that N is
bounded on E, by applying the definition of boundedness to U = BN (0, 1).
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10 An example

Let X be a nonempty set, and let V be the vector space of real or complex-valued
functions on X, with respect to pointwise addition and scalar multiplication. If
x ∈ X, then

Nx(f) = |f(x)|(10.1)

defines a seminorm on V . The collection N of seminorms Nx on V , x ∈ X, is
clearly a nice collection of seminorms on V , and hence defines a topology on
V which makes V into a topological vector space. One can also think of V as
the Cartesian product of a family of copies of R or C indexed by X, and the
topology on V determined by N corresponds exactly to the product topology
on V , associated to the standard topology on V . As in the previous section,
a set E ⊆ V is bounded as a subset of V as a topological vector space if and
only if the restriction of Nx to E is bounded for each x ∈ X. Equivalently, this
means that E is contained in the Cartesian product of a family of intervals in R

or disks in C, as appropriate. Using Tychonoff’s theorem, it follows that closed
and bounded subsets of V are compact.

11 Local convexity

A real or complex topological vector space V is said to be locally convex if there
is a local base for the topology of V at 0 consisting of convex open sets. This
means that for each open set U in V that contains 0 there is a convex open
set W in V such that 0 ∈ W and W ⊆ V . This is also equivalent to saying
that the convex open subsets of V form a base for the topology of V . If the
topology of V is determined by a nice collection of seminorms, then V is locally
convex, because ope balls associated to seminorms are convex. In particular, V
is locally convex when the topology on V is determined by a norm.

Let A be a subset of a real or complex vector space V . The convex hull of
A is the set con(A) consisting of all finite sums of the form

n∑

j=1

tj vj ,(11.1)

where v1, . . . , vn ∈ A, t1, . . . , tn ∈ R, t1, . . . , tn ≥ 0, and
∑n

j=1 tj = 1. It is easy
to see that con(A) is convex, A ⊆ con(A), and A = con(A) if and only if A is
convex. If E ⊆ V is convex and A ⊆ E, then con(A) ⊆ E, so that the convex
hull of A is the smallest convex set in V that contains A. If V is a locally convex
topological vector space and A ⊆ V is bounded, then it follows that the convex
hull of A is bounded in V too. To see this, let U be an open set in V that
contains 0, and let W be a convex open set in V such that 0 ∈ W and W ⊆ U .
Because A is bounded, A ⊆ tW when |t| is sufficiently large. This implies that

con(A) ⊆ tW ⊆ t U(11.2)

for the same t’s, since W is convex, as desired.
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Suppose that V = Lp(X) for some 0 < p < 1, equipped with the topology
discussed in Section 6. More precisely, suppose that X is the unit interval
or the real line equipped with Lebesgue measure, for instance, or that X is
an infinite set equipped with counting measure. If B is the open unit ball in
Lp(X), consisting of f ∈ Lp(X) such that ‖f‖p < 1, then B is clearly bounded
as a subset of Lp(X) as a topological vector space. However, one can also check
that the convex hull of B is not bounded in Lp(X) under these conditions.
In particular, Lp(X) is not locally convex when 0 < p < 1, at least if X is
reasonably nice and nontrivial.

If V is a locally convex topological vector space, then it turns out that
there is a nice collection of seminorms on V that determines the same topology.
Without getting into the details, one can first show that there is a local base
for the topology of V at 0 consisting of balanced convex open sets. If U is a
nonempty balanced convex open subset of V , then one can show that there is a
seminorm NU on V such that the open unit ball in V associated to NU is equal
to U . More precisely, one can take NU to be the Minkowski functional associated
to U . One can then get a nice collection of seminorms on V that determines the
same topology on V using the Minkowski functionals corresponding to balanced
convex open subsets of V in a local base for the topology of V at 0.

12 Metrizability

If X is any topological space, then a necessary condition for the existence of a
metric on X that determines the same topology is that for each p ∈ X there be a
countable local base for the topology of X at p. In the case of a topological vector
space V , this necessary condition reduces to asking that there be a countable
local base for the topology of V at 0, because of translation-invariance. A well-
known theorem states that this simple necessary condition is actually sufficient
for the metrizability of a topological vector space V over the real or complex
numbers. More precisely, if there is a countable local base for the topology of V
at 0, then it can be shown that there is a metric d(v, w) on V which determines
the same topology, and which is invariant under translations in the sense that

d(v + u,w + u) = d(v, w)(12.1)

for every u, v, w ∈ V .
Of course, if the topology on V is defined by a norm N(v), then we can take

d(v, w) = N(v − w),(12.2)

as in Section 5. Suppose now that the topology on V is defined by a nice
collection N of seminorms on V . If N consists of only finitely many seminorms
N1, . . . , Nl, then we can take their maximum or sum to get a norm on V that
defines the same topology, and we are back to the previous case. If instead
N consists of an infinite sequence of seminorms N1, N2, . . ., then we can get a
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translation-ivariant metric on V that determines the same topology on V , as
follows. Put

dj(v, w) = min(Nj(v − w), 1/j)(12.3)

for each positive integer j. This is a semimetric on V , which means that it
is nonnegative, symmetric, and satisfies the triangle inequality, but it may be
equal to 0 even when v 6= w. To get a metric on V , we put

d(v, w) = max
j≥1

dj(v, w).(12.4)

This is trivially equal to 0 when v = w, and otherwise it is easy to see that the
maximum exists, because dj(v, w) → 0 as j → ∞. It is also easy to see that
d(v, w) is symmetric and nonnegative, because of the corresponding properties
of dj(v, w). If v 6= w, then Nj(v−w) > 0 for some j, since N is a nice collection
of seminorms on V , so that d(v, w) > 0. Thus d(v, w) is a metric on V , and it
remains to check that the topology on V associated to d(v, w) is the same as
the one associated to N . Note that an open ball with respect to d(v, w) of any
radius r > 0 is the same as the intersection of open balls with respect to the
seminorms Nj with r ≤ 1/j. There are only finitely many of these seminorms
for each r > 0, and by taking r sufficiently small, one can get the intersection of
open balls corresponding to N1, . . . , Nl for any l. One also gets the intersection
of open balls corresponding to N1, . . . , Nl with arbitrarily small radii, by taking
r sufficiently small, so that the topology on V defined by N is determined by
d(v, w) as well.

If the topology on V is determined by a nice collection N of seminorms,
and if there is a countable local base for the topology of V at 0, then there
is a nice subcollection N1 of N with only finitely or countably many elements
that determines the same topology on V . This is because every open set in
V containing 0 contains the intersection of open balls corresponding to finitely
many elements of N , so that only finitely or countably many elements of N are
needed to get a local base for the topology of V at 0. Similarly, if V is a locally
convex topological vector space with a countable local base for the topology of
V at 0, then the topology of V may be described using only finitely or countably
many seminorms. It suffices to use seminorms corresponding to balanced convex
open subsets of V in a local base for the topology of V at 0, as in the previous
section.

If d(x, y) is a metric on any set X and t is a positive real number, then the
minimum of d(x, y) and t defines another metric d′(x, y) on X that determines
the same topology on X. Similarly, if d(v, w) is a translation-invariant metric on
a topological vector space V that determines the given topology on V , then the
minimum d′(v, w) of d(v, w) and t defines another translation-invariant metric
on V that determines the same topology on V . Of course, any set E ⊆ V is
bounded as a subset of V as a metric space with respect to d′(v, w), while not
every set E ⊆ V is bounded as a subset of V as a topological vector space.
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13 Continuous linear functionals

As usual, a linear functional λ on a real or complex vector space V is a linear
mapping from V into the real or complex numbers, as appropriate. If V is a
topological vector space and λ is continuous at 0, then there is an open set U
in V such that 0 ∈ U and

|λ(u)| < 1(13.1)

for each u ∈ U . It follows that

|λ(v)| < ǫ(13.2)

for every v ∈ ǫ U and any positive real number ǫ, so that the existence of such
an open set U characeterizes the continuity of λ at 0. Note that continuity of λ
at 0 implies that λ is continuous at every point in V , by linearity.

Suppose that the topology on V is determined by a nice collection of semi-
norms N . If U is as in the previous paragraph, then there are finitely many
seminorms N1, . . . , Nl ∈ N and positive real numbers r1, . . . , rl such that

l⋂

j=1

BNj
(0, rj) ⊆ U,(13.3)

as in Section 9. This means that |λ(v)| < 1 when v ∈ V satisfies Nj(v) < rj for
j = 1, . . . , l, or equivalently when r−1

j Nj(v) < 1 for each j. This implies that

|λ(v)| ≤ max
1≤j≤l

r−1
j Nj(v)(13.4)

for each v ∈ V , by muliplying v by positive real numbers and using the linearity
of λ to reduce to the previous case.

Conversely, suppose that a linear functional λ on V satisfies

|λ(v)| ≤ C max
1≤j≤l

Nj(v)(13.5)

for some nonnegative real number C, finitely many seminorms N1, . . . , Nl ∈ N ,
and every v ∈ V . In this case, it is easy to see that λ is continuous on V , by
reversing the previous arguments. Of course, (13.4) implies (13.5), with C equal
to the maximum of r−1

1 , . . . , r−1
l . Thus continuity of a linear functional λ on V

is characterized by a condition like (13.5) when the topology on V is determined
by a nice collection of seminorms.

If the topology on V is determined by a single norm N , then we can take
N = {N} and l = 1 in (13.5), to get that a linear functional λ on V is continuous
if and only if

|λ(v)| ≤ C N(v)(13.6)

for some C ≥ 0 and every v ∈ V . This also works on spaces like Lp spaces
when 0 < p < 1, where the topology is determined by a function that satisfies
the same positivity and homogeneity properties as a norm, but might not be
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quite a norm itself. Thus, for any measure space X and 0 < p ≤ ∞, a linear
functional λ on Lp(X) is continuous if and only if

|λ(f)| ≤ C ‖f‖p(13.7)

for some C ≥ 0 and every f ∈ Lp(X).

14 The Hahn–Banach theorem

Let V be a vector space over the real or complex numbers, and let N be a
seminorm on V . Suppose that W is a linear subspace of V , and that λ is a
linear functional on W , such that

|λ(w)| ≤ C N(w)(14.1)

for some C ≥ 0 and every w ∈ W . Under these conditions, the theorem of Hahn
and Banach implies that there is an extension of λ to a linear functional on V
that satisfies (14.1) for every w ∈ V , with the same constant C. If N is a norm
on V , then this condition corresponds to the continuity of λ on V with respect
to the topology determined by N , as in the previous section. Otherwise, if N is
a nice collection of seminorms on V , then N might be an element of N , or the
maximum of finitely many elements of N , and again this condition implies the
continuity of λ with respect to the topology associated to N .

As an application, suppose that N is a nice collection of seminorms on V ,
v ∈ V , and v 6= 0, and let N be an element of N such that N(v) > 0. Let λ be
the linear functional on the 1-dimensional linear subspace W of V spanned by
v defined by

λ(t v) = tN(v)(14.2)

for each t ∈ R or C, as appropriate, so that λ satisfies the previous condition
with C = 1. The Hahn–Banach theorem implies that λ can be extended to a
linear functional on all of V which satisfies the same condition, and which is
therefore contionuous with respect to the topology on V associated to N . This
argument can be applied to any locally convex topological vector space V , to
get that for each v ∈ V with v 6= 0 there is a continuous linear functional λ on V
such that v 6= 0. By contrast, if X is the unit interval equipped with Lebesgue
measure and 0 < p < 1, then one can show that the only continuous linear
functional on Lp(X) is the trivial one, with λ(f) = 0 for every f ∈ Lp(X).

As another application, suppose that N is a nice collection of seminorms on
V again, and let W0 be a linear subspace of V which is closed with respect to
the topology determined by N . If v ∈ V \W0, then there is a linear functional
λ on V which is continuous with respect to the topology determined by N such
that λ(w) = 0 for every w ∈ W0 and λ(v) 6= 0. It is easy to define λ initially on
the linear subspace W of V spanned by W0 and v, by setting

λ(w + t v) = t(14.3)
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for every w ∈ W0 and t ∈ R or C, as appropriate. Because W0 is closed with
respect to the topology determined by N and v ∈ V \W0, there are finitely many
seminorms N1, . . . , Nl in N such that V \W0 contains the intersection of open
balls corresponding to N1, . . . , Nl centered at v. Using this, one can verify that

|λ(z)| ≤ C max
1≤j≤l

Nj(z)(14.4)

for some C ≥ 0 and every z ∈ W . Of course, this is trivial when z ∈ W0, and
otherwise one can use homogeneity to reduce to the case where z = w + v for
some w ∈ W0, which is handled by the previous condition on N1, . . . , Nl. The
Hahn–Banach theorem then implies that λ can be extended to a linear functional
on V that satisfies the same condition, and which is therefore continuous with
respect to the topology on V determined by N , as desired.

15 Weak topologies

Let V be a vector space over the real or complex numbers. If λ is a linear
functional on V , then it is easy to see that

Nλ(v) = |λ(v)|(15.1)

is a seminorm on V . If Λ is a collection of linear functionals on V , then let
N (Λ) be the corresponding collection of seminorms on V , consisting of Nλ with
λ ∈ Λ. This is obviously a nice collection of seminorms on V when Λ is a nice
collection of linear functionals on V , in the sense that for each v ∈ V with v 6= 0
there is a λ ∈ Λ such that λ(v) 6= 0. In this case, N (Λ) determines a topology
on V such that V is a locally convex topological vector space, as before.

Of course, each λ ∈ Λ is obviously continuous on V with respect to the
topology determined by N (Λ). If µ is a linear functional on V which is a
linear combination of finitely many elements of Λ, then it follows that µ is also
continuous on V with respect to the topology determined by N (Λ). Conversely,
if µ is a linear functional on V which is continuous with respect to the topology
determined by N (Λ), then there are finitely many elements λ1, . . . , λl of Λ such
that

|µ(v)| ≤ C max
1≤j≤l

|λj(v)|(15.2)

for some C ≥ 0 and every v ∈ V . In particular, this implies that the kernel of µ
contains the intersection of the kernels of λ1, . . . , λl, which implies in turn that
µ can be expressed as a linear combination of λ1, . . . , λl. More precisely, this is
a bit simpler when λ1, . . . , λl are linearly independent as linear functionals on
V , and it is easy to reduce to this case.

Suppose now that V is already a topological vector space, and let V ′ be the
topological dual space of V , consisting of all continuous linear functionals on V .
This is a vector space in a natural way, with respect to pointwise addition and
scalar multiplication of linear functionals on V . Let us also ask that V ′ be a nice
collection of linear functionals on V , so that for each v ∈ V with v 6= 0 there is
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a continuous linear functional λ on V such that λ(v) 6= 0. This condition holds
automatically when V is locally convex, as in the previous section. Although this
condition fails for Lp(X) when X is the unit interval equipped with Lebesgue
measure and 0 < p < 1, it does hold when X is any set equipped with counting
measure for every p > 0.

If we take Λ = V ′ in the previous discussion, then the topology determined
by the corresponding collection N (V ′) of seminorms on V is known as the weak
topology on V . It is easy to see that every open set in V with respect to the
weak topology is also open with respect to the original topology on V , since
the elements of V ′ are continuous on V with respect to the original topology
by hypothesis. However, if the original topology on V is defined by a norm N ,
for instance, and if V is infinite-dimensional, then it is easy to see that open
balls in V with respect to N are open sets with respect to the original topology
on V and not with respect to the weak topology. In this case, every nonempty
open subset of V with respect to the weak topology is unbounded with respect
to the norm. By contrast, using the Hahn–Banach theorem, one can show that
closed balls with respect to N are closed subsets of V with respect to the weak
topology. If V is any locally convex topological vector space and W0 is a closed
linear subspace of V , then one can use the application of the Hahn–Banach
theorem mentioned at the end of the previous section to show that W0 is also
closed with respect to the weak topology on V . Using a more precise version
of the Hahn–Banach theorem, one can show that every closed convex subset
of a locally convex topological vector space is closed with respect to the weak
topology as well.

16 The weak∗ topology

Let W be a vector space over the real or complex numbers, and let W ∗ be the
algebraic dual space of all linear functionals on W . Thus W ∗ is a vector space
with respect to pointwise addition and scalar multiplication of linear functionals.
If w ∈ W , then

λ 7→ λ(w)(16.1)

defines a linear functional on W , and hence

N∗
w(λ) = |λ(w)|(16.2)

defines a seminorm on W ∗. The collection of all of these seminorms N∗
w with

w ∈ W is automatically a nice collection of seminorms on W ∗, because a linear
functional λ on W is nonzero exactly when there is a w ∈ W such that λ(w) 6= 0.
The topology on W ∗ determined by this collection of seminorms is known as
the weak∗ topology on W ∗. Similarly, if V is a linear subspace of W ∗, then the
topology on V determined by the restrictions of these seminorms N∗

w, w ∈ W ,
to V is known as the weak∗ topology on V . This is the same as the topology
induced on V by the weak∗ topology on W ∗. In particular, if W is a topological
vector space, then this can be applied to the topological dual W ′ of continuous
linear functionals on W .
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As an example, let X be a nonempty set, and let V be the vector space of
real or complex-valued functions on X, with respect to pointwise addition and
multiplication. If f ∈ V , then the support of f is defined by

supp f = {x ∈ X : f(x) 6= 0}.(16.3)

Let W be the linear subspace of V consisting of functions with finite support.
If g ∈ V , then put

λg(f) =
∑

x∈X

f(x) g(x)(16.4)

for each f ∈ W . Although X may have infinitely many elements, the sum on the
right side reduces to a finite sum, because only finitely many terms are different
from 0. Thus the sum on the right makes sense, and defines a linear functional
λg on W .

If λ is any linear functional on W , then λ can be represented as λg for some
g ∈ V . More precisely, for each y ∈ X, let δy(x) be the function on X which is
equal to 1 when x = y and to 0 when x 6= y. If

g(y) = λ(δy)(16.5)

for each y ∈ X, then it is easy to see that

λ(f) = λg(f)(16.6)

for every f ∈ W . This is because every f ∈ W can be expressed as a linear
combination of δy’s for finitely many y ∈ X, and the equation holds by definition
of g(y) when f = δy for some y ∈ X. It is easy to see that the mapping from
g ∈ V to λg ∈ W ∗ defines a one-to-one linear mapping from V onto W ∗, so that
V can be identified with W ∗.

In this case, the weak∗ topology on V is the same as the topology described in
Section 10. Remember that the latter topology was defined using the seminorms

Ny(g) = |g(y)|(16.7)

on V with y ∈ V . If we identify V with W ∗ as in the preceding paragraph, then
the weak∗ topology is defined by the seminorms

N∗
f (g) =

∣∣∣∣
∑

x∈X

f(x) g(x)

∣∣∣∣(16.8)

on V with f ∈ W . Of course, this reduces to (16.7) when f = δy. Conversely,

N∗
f (g) ≤

∑

x∈X

|f(x)| |g(x)| =
∑

x∈X

|f(x)|Nx(g)(16.9)

for each f ∈ W and g ∈ V , which implies that the seminorms Nx(g) on V with
x ∈ X determine the same topology as the seminorms N∗

f (g) with f ∈ W .
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17 Weak∗ compactness

Let X be a nonempty set, let V be the vector space of real or complex-valued
functions on X, and let W be the linear subspace of V consisting of functions
on X with finite support. Thus we can identify V with the algebraic dual W ∗

of W , as in the previous section, in which case the weak∗ topology corresponds
exactly to the one already defined in Section 10. As in Section 10, Tychonoff’s
theorem implies that closed and bounded subsets of V are compact with respect
to this topology. Of course, this reduces to the fact that closed and bounded
subsets of Rn or Cn are compact when X has only finitely many elements. If
X has only finitely or countably many elements, then this topology on V is
metrizable, and compactness is equivalent to sequential compactness.

Now let W be any vector space over the real or complex numbers. Suppose
that A is a set, and that {wα}α∈A is a family of vectors in W indexed by A. If
{aα}α∈A is a family of real or complex numbers, as appropriate, indexed by A
and satisfying aα = 0 for all but finitely many α ∈ A, then the sum

∑

α∈A

aα wα(17.1)

can be defined as an element of W . If every element of W can be expressed
as a sum (17.1) with aα = 0 for all but finitely many α ∈ A, then we say that
{wα}α∈A spans W . If (17.1) is equal to 0 only when aα = 0 for every α ∈ A,
then we say that {wα}α∈A is linearly independent in W . Equivalently, {wα}α∈A

is linearly independent if the representation of any vector in W as a sum of the
form (17.1) is unique. A family of vectors {wα}α∈A of vectors in W is said to
be a basis of W if it is linearly independent and spans W . This is the same as
saying that every element of W can be represented in a unique way as a sum
(17.1), where aα = 0 for all but finitely many α ∈ A, as usual.

If W is the vector space of functions with finite support on a set X, then
the functions δy, y ∈ X, defined in the previous section form a basis for W .
Conversely, if {wα}α∈A is a basis for a vector space W , then the mapping from
{aα}α∈A to (17.1) defines an isomorphism from the space of real or complex-
valued functions with finite support on A, as appropriate, onto W . Well-known
arguments based on the axiom of choice imply that every vector space W has
a basis. It follows that closed and bounded subsets of the algebraic dual W ∗

of any real or complex vector space W are compact with respect to the weak∗

topology.
Now suppose that W is a topological vector space over the real or complex

numbers. Let U be an open subset of W that contains 0, let C be a nonnegative
real number, and put

B∗
U,C = {λ ∈ W ′ : |λ(w)| ≤ C for every w ∈ U},(17.2)

where W ′ denotes the topological dual of W , as before. Equivalently,

B∗
U,C = {λ ∈ W ∗ : |λ(w)| ≤ C for every w ∈ U},(17.3)
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because any linear functional on W that is bounded on U is continuous. It is
easy to see that B∗

U,C is a closed and bounded subset of W ∗ with respect to
the weak∗ topology, and hence is compact. This is the theorem of Banach and
Alaoglu.

18 Uniform boundedness

Let M be a complete metric space, and let E be a collection of continuous
real or complex-valued functions on M . Suppose that E is uniformly bounded
pointwise on M , in the sense that

E(x) = {f(x) : f ∈ E}(18.1)

is a bounded set of real or complex numbers for each x ∈ M . Put

An = {x ∈ M : |f(x)| ≤ n for each f ∈ E}(18.2)

for each positive integer n, so that

∞⋃

n=1

An = M(18.3)

by hypothesis. It is easy to see that An is a closed set in M for each n, because
every f ∈ E is continuous. If the interior of An is empty for each n, then
the Baire category theorem would imply that the interior of

⋃∞
n=1 An is also

empty, a contradiction. Thus the interior of An is not empty for some positive
integer n, which means that the functions f ∈ E are uniformly bounded on
a nonempty open subset of M . We would like to consider variants of this for
linear functionals on topological vector spaces.

Let V be a topological vector space over the real or complex numbers. A
sequence {vj}

∞
j=1 of vectors in V is said to be a Cauchy sequence if for each

open set U in V with 0 ∈ U there is an L ≥ 0 such that

vj − vl ∈ U(18.4)

for every j, l ≥ L. It is easy to check that every convergent sequence in V is a
Cauchy sequence, using the continuity of addition on V at 0 in the usual way.
Let us say that V is sequentially complete as a topological vector space if every
Cauchy sequence of elements of V in this sense converges to an element of V .

If there is a countable local base for the topology of V at 0, then there is a
translation-invariant metric on V that determines the same topology on V , as
in Section 12. One can also check that a sequence of elements of V is a Cauchy
sequence with respect to such a metric if and only if it is a Cauchy sequence in
the previous sense for topological vector spaces. Thus V is complete as a metric
space with respect to such a metric if and only if V is sequentially complete as a
topological vector space. A topological vector space V is said to be an F -space

if there is a countable local base for the topology of V at 0 and V is sequentially
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complete as a topological vector space. Equivalently, V is an F -space if it is
complete as a metric space with respect to any translation-invariant metric that
determines the same topology.

Let E be a collection of continuous linear functionals on V which is bounded
with respect to the weak∗ topology on V ′, which is the same as saying that E is
bounded pointwise on V . If V is an F -space, then the Baire category theorem
holds on V , and the earlier argument implies that there is a nonempty open set
U in V such that the elements of E are uniformly bounded on U . Without loss
of generality, we may also ask that 0 be an element of U , since otherwise we
can replace U with U − u0 for some u0 ∈ U . This is a version of the theorem of
Banach and Steinhaus.

19 Totally bounded sets

Remember that a subset E of a metric space M is said to be totally bounded if
for each ǫ > 0, E can be covered by finitely many balls of radius ǫ. Now let V
be a topological vector space over the real or complex numbers. A set E ⊆ V
is said to be totally bounded if for each open set U in V with 0 ∈ U , E can be
covered by finitely many translates of U . More precisely, this means that there
are finitely many vectors v1, . . . , vn in V such that

E ⊆
n⋃

j=1

(vj + U),(19.1)

or equivalently that there is a finite set A ⊆ V such that

E ⊆ A + U.(19.2)

Thus finite sets are automatically totally bounded. Of course, any set E ⊆ V
can be covered by a collection of translates of an open set U ⊆ V that contains
0, using all translates v + U with v ∈ E. If E is compact, then such a covering
can be reduced to a finite subcovering, so that E is totally bounded, as in the
case of metric spaces.

If there is a countable local base for the topology of V at 0, then there is a
translation-invariant metric on V that determines the same topology on V , as
in Section 12. If d(v, w) is such a metric, then it is easy to see that E ⊆ V is
totally bounded as a subset of V as a topological vector space if and only if E
is totally bounded as a subset of V as a metric space with respect to d(v, w).

If E1, E2 are totally bounded subsets of V , then E1 ∪ E2 is also totally
bounded, because one can simply combine coverings of E1 and E2 by finitely
many translates of an open set U ⊆ V that contains 0 to cover E1 ∪ E2 by
finitely many translates of U . To check that E1 + E2 is totally bounded, let U
be any open set in V that contains 0, and let U1, U2 be open subsets of V that
contain 0 and satisfy U1 + U2 ⊆ U . Because E1, E2 are totally bounded, there
are finite sets A1, A2 ⊆ V such that

E1 ⊆ A1 + U1, E2 ⊆ A2 + U2.(19.3)
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This implies that

E1 + E2 ⊆ (A1 + A2) + (U1 + U2) ⊆ (A1 + A2) + U,(19.4)

and hence that E1 + E2 is totally bounded, since A1 + A2 is finite.
Subsets of totally bounded sets are obviously totally bounded too. Suppose

that E ⊆ V is totally bounded, and let us check that the closure E of E is
totally bounded as well. Let U be an open set in V that contains 0, and let W
be an open set in V that contains 0 and satisfies W ⊆ U , which exists because
V is regular as a topological space. Thus E can be covered by finitely many
translates of W , because E is totally bounded. This implies that E can be
covered by finitely many translates of W , and hence by finitely many translates
of U , as desired.

Let us check that E ⊆ V is bounded when E is totally bounded. Let U be an
open set in V that contains 0, and let U1, U2 be open subsets of V that contain
0 and satisfy U1 + U2 ⊆ U . It will be helpful to ask also that U2 be balanced,
which can always be arranged by replacing U2 with a smaller neighborhood of
0, if necessary. If E ⊆ V is totally bounded, then E ⊆ A+U2 for some finite set
A ⊆ V . Let r be a nonnegative real number such that A ⊆ t U1 when |t| ≥ r,
which exists by the absorbing property of open subsets of V that contain 0.
Thus

E ⊆ A + U2 ⊆ t U1 + U2(19.5)

when |t| ≥ r. If |t| ≥ 1, then U2 ⊆ t U2, because U2 is balanced, and hence

t U1 + U2 ⊆ t U1 + t U2 ⊆ t U.(19.6)

This shows that E ⊆ t U when |t| ≥ max(r, 1), as desired.
If E is a totally bounded subset of a locally convex topological vector space

V , then the convex hull con(E) is also totally bounded. To see this, let U be
an open set in V that contains 0, and let U1 and U2 be open subsets of V that
contain 0 and satisfy U1 + U2 ⊆ U . Because V is locally convex, we may also
ask that U2 be convex, since otherwise we can replace U2 with a convex open
subset that also contains 0. Using the hypothesis that E be totally bounded,
we get a finite set A ⊆ V such that E ⊆ A + U2. Observe that

con(E) ⊆ con(A) + con(U2) = con(A) + U2,(19.7)

where the second step follows from the convexity of U2. To get the first step,
remember that con(E) consists of convex combinations of elements of E, and
that each element of E is a sum of elements of A and U2. By rearranging the
sums, one can express any element of con(E) as a sum of convex combinations
of elements of A and of U2, as desired.

If a1, . . . , an is a list of the elements of A, then every element of con(A) can
be expressed as

n∑

j=1

tj aj ,(19.8)
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where t1, . . . , tn are nonnegative real numbers such that
∑n

j=1 tj = 1. Of course,

{
t ∈ Rn : tj ≥ 0 for each j = 1, . . . , n and

n∑

j=1

tj = 1
}

(19.9)

is a compact subset of Rn, which implies that con(A) is a compact subset of V ,
since it is the image of (19.9) under a continuous mapping from Rn into V . In
particular, con(A) is totally bounded, so that

con(A) ⊆ B + U1(19.10)

for some finite set B ⊆ V . It follows that

con(E) ⊆ con(A) + U2 ⊆ B + U1 + U2 ⊆ B + U,(19.11)

as desired.

20 Another example

Let X be a nonempty set, and let V be the vector space of real or complex-
valued functions on X. If ρ is a positive real-valued function on X and f ∈ V ,
then put

Bρ(f) = {g ∈ V : |f(x) − g(x)| < ρ(x) for every x ∈ X}.(20.1)

Let us say that U ⊆ V is an open set if for each f ∈ U there is a positive
real-valued function ρ on X such that

Bρ(f) ⊆ U.(20.2)

It is easy to see that this defines a topology on V , and that Bρ(f) is an open
set in V with respect to this topology for each positive real-valued function ρ
on X and f ∈ V . If we identify V with the Cartesian product of copies of R

or C indexed by elements of X, then this topology on V corresponds exactly to
the “strong product topology” generated by arbitary products of open subsets
of the factors.

Let us suppose from now on that X has infinitely many elements, since
otherwise this would be the same as the topology discussed in Section 10, and
V would be isomorphic to Rn or Cn with the standard topology for some n.
It is easy to see that pointwise addition of functions is continuous with respect
to this topology on V , as is the mapping f 7→ t f for a fixed real or complex
number t, as appropriate. However, if f ∈ V satisfies f(x) 6= 0 for infinitely
many x ∈ X, then one can check that t 7→ t f is not continuous as a mapping
from R or C into V , as appropriate. Thus V is not a topological vector space
with respect to this topology. Note that V is Hausdorff and even regular with
respect to this topology.
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If W is the linear subspace of V consisting of functions on X with finite
support, then it is easy to see that W is a locally convex topological vector space
with respect to the topology induced by the one just defined on V . Equivalently,
if ρ is a positive real-valued function on X, then

Nρ(f) = max
x∈X

ρ(x)−1 |f(x)|(20.3)

defines a norm on W , and the topology on W determined by the collection of all
of these norms is the same as the one induced by the topology on V described in
the previous paragraph. More precisely, the open ball in W centered at f ∈ W
with radius 1 with respect to Nρ is the same as the intersection of the set Bρ(f)
defined before with W . Note that W is also a closed subset of V with respect
to the topology defined in the previous paragraph.

Let ρ1, ρ2, . . . be a sequence of positive real-valued functions on X, and let
x1, x2, . . . be a sequence of distinct elements of X. Also let ρ be another positive
real-valued function on X such that

ρ(xn) = n−1 min
1≤j≤n

ρj(xn)(20.4)

for each n ≥ 1. In this case, one can check that Nρ is not bounded by a constant
multiple of Nρn

on W for any n, and hence that no sequence of these norms is
sufficient to determine this topology on W . Equivalently, there is no countable
local base for the topology at 0, and thus W is not metrizable, even when X
has only countably many elements.

Let us define the support of a set E ⊆ W by

suppE = {x ∈ X : f(x) 6= 0 for some f ∈ E},(20.5)

which is the same as the union of the supports of the elements of E. Suppose
that the support of E is infinite, and let {xn}

∞
n=1 be a sequence of distinct

elements of suppE. Also let {fn}
∞
n=1 be a sequence of elements of E such that

fn(xn) 6= 0 for each n. If ρ is a positive real-valued function on X such that

ρ(xn) = n−1 |fn(xn)|(20.6)

for each n, then
Nρ(fn) ≥ ρ(xn) |f(xn)| = n(20.7)

for each n, so that Nρ is not bounded on E. Thus E is not bounded in W when
the support of E is finite.

Equivalently, the support of a bounded set E ⊆ W is finite. If the support
of E is finite, then the boundedness of E in W reduces to the boundedness of
|f(x)| for f ∈ E and each x ∈ suppE. In particular, closed and bounded sets
in W are compact, because of the classical results for Rn and Cn.

In the next section, we shall consider another collection of norms on W ,
which is equivalent to this one when X is countable.
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21 Variations

Let X be an infinite set, and let W be the vector space of real or complex-valued
functions on X with finite support, as in the preceding section. If ρ is a positive
real-valued function on X, then

Ñρ(f) =
∑

x∈X

ρ(x)−1 |f(x)|(21.1)

defines a norm on W . More precisely, this sum reduces to a finite sum when
f ∈ W , and thus makes sense. If Nρ(f) is as in (20.3), then

Nρ(f) ≤ Ñρ(f)(21.2)

for every f ∈ W . This implies that the topology determined on W by the
collection of all of the norms Ñρ is at least as strong as the topology determined
by the norms Nρ, in the sense that every open subset of W with respect to
the topology defined by the norms Nρ is also an open set with respect to the

topology defined by the norms Ñρ.
If X is countably infinite, then there is a positive real-valued function a on

X such that ∑

x∈X

a(x) = 1.(21.3)

More precisely, this sum may be defined as the supremum of the sum of a(x)
over any finite set of x ∈ X. Equivalently, if {xj}

∞
j=1 is a sequence of elements

of X in which every element of X occurs exactly once, then we ask that

∞∑

j=1

a(xj) = 1,(21.4)

which implicitly includes the convergence of this infinite series. At any rate, if
ρ is a positive real-valued function on X and f ∈ W , then

Ñρ(f) =
∑

x∈X

ρ(x)−1 |f(x)| =
∑

x∈X

a(x) a(x)−1 ρ(x)−1 |f(x)|(21.5)

≤ Naρ(f)
∑

x∈X

a(x) = Naρ(f).

This implies that the topology on W determined by the collection of norms of
the form Ñρ is the same as the topology on W determined by the collection of
norms of the form Nρ when X is countable.

If y ∈ X, then let δy(x) be the function on X equal to 1 when x = y and to
0 when x 6= y. If N is any seminorm on W , then it follows that

N(f) ≤
∑

y∈X

N(δy) |f(y)|(21.6)
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for each f ∈ W . To see this, one can express f as a linear combination of δy’s,

f(x) =
∑

y∈supp f

f(y) δy(x),(21.7)

and then use the hypothesis that N is a seminorm on W . If ρ is a positive
real-valued function on X such that N(δy) ≤ ρ(y)−1 for each y ∈ X, then we
get that

N(f) ≤ Ñρ(f)(21.8)

for every f ∈ W . It follows that the topology on W determined by the collection
of norms of the form Ñρ is the same as the topology determined by the collection
of all seminorms on W .

In particular, every linear functional on W is continuous with respect to
the topology determined by the collection of norms Ñρ. If X is countable,
then it follows that every linear functional on W is continuous with respect to
the topology determined by the collection of norms of the form Nρ, as in the
previous section.

22 Continuous functions

Let X be a locally compact Hausdorff topological space, and let C(X) be the
vector space of real or complex-valued continuous functions on X, with respect
to pointwise addition and scalar multiplication. If K is a nonempty compact
subset of X, then put

NK(f) = sup
x∈K

|f(x)|(22.1)

for each f ∈ C(X). It is easy to see that this defines a seminorm on C(X),
known as the supremum seminorm associated to K. The collection of all of
these seminorms is a nice collection of seminorms on C(X), as in Section 9,
and thus defines a topology on C(X) which makes C(X) into a locally convex
topological vector space. If X is equipped with the discrete topology, so that
C(X) consists of all real or complex-valued functions on X, then this topology
is the same as the one considered in Section 10.

If X is compact, then we can take K = X in (22.1), to get a single norm
on C(X) which determines the same topology. Otherwise, suppose that X is
σ-compact, which means that X can be expressed as the union of a sequence
of compact subsets. This holds for instance when X is a countable set, or an
open set in Rn for some n. In this case, one can combine σ-compactness with
local compactness to get a sequence K1,K2, . . . of compact subsets of X such
that Kl is contained in the interior of Kl+1 for each l and

⋃∞
l=1 Kl = X. If K

is any compact subset of X, then K ⊆ Kl for some l, because K is covered by
the union of the interiors of the Kl’s by construction, and hence K is contained
in the union of the interiors of finitely many Kl’s by compactness. This implies
that

NK(f) ≤ NKl
(f)(22.2)
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for each f ∈ C(X), so that the supremum seminorms associated to the Kl’s are
sufficient to determine the same topology on C(X). It follows that this topology
on C(X) is metrizable when X is σ-compact, as in Section 12.

Remember that a sequence {vj}
∞
j=1 of vectors in a topological space V is

said to be a Cauchy sequence if for each open set U ⊆ V with 0 ∈ U we have
that vj −vl ∈ U for all sufficiently large j, l. If V = C(X) with the topology just
defined, then this is equivalent to saying that a sequence of continuous functions
{fj}∞j=1 on X is a Cauchy sequence if for each nonempty compact set K ⊆ X
and every ǫ > 0 there is an L ≥ 1 such that

NK(fj − fl) < ǫ(22.3)

for every j, l ≥ L. In particular, this implies that {fj(x)}∞j=1 is a Cauchy
sequence in R or C, as appropriate, for each x ∈ X. The completeness of the
real or complex numbers implies that {fj(x)}∞j=1 converges to a real or complex
number f(x) for each x ∈ X. Using the uniform version of the Cauchy condition
(22.3), one can check that {fj}

∞
j=1 converges to f uniformly on compact subsets

of X under these conditions. This implies that {fj}
∞
j=1 converges to f uniformly

on a neighborhood of any element p of X, and hence that f is continuous at p.
Thus f is also a continuous function on X, and {fj}

∞
j=1 converges to f in the

topology of C(X).

23 Nets

A partially-ordered set (A,≺) is said to be a directed system if for every a, b ∈ A
there is a c ∈ A such that a ≺ c and b ≺ c. Of course, if A is linearly ordered, so
that a ≺ b or b ≺ c, then one can simply take c to be a or b. A net of elements
of a set X indexed by A may be denoted {xa}a∈A, and is really just a function
defined on A with values in X. In particular, a sequence is the same as a net
indexed by the set Z+ of positive integers, with the standard ordering. The
ordering on the set of indices of a net or sequence is important for convergence
conditions on the net or sequence, as follows.

Suppose that X is a topological space, and that x is an element of X. A net
{xa}a∈A of elements of X is said to converge to x in X if for each open set U in
X with x ∈ U there is an a ∈ A such that xb ∈ U for every b ∈ A that satisfies
a ≺ b. This reduces to the usual notion of convergence of a sequence when A
is the set of positive integers with the standard ordering. It is easy to see that
the limit of a convergent net of elements of X is unique when X is Hausdorff.
Conversely, if X is not Hausdorff, then there is a net of elements of X with a
suitable set of indices that converges to more than one element of X.

Let p be an element of X, and let B(p) be a local base for the topology of
X at p. This means that B(p) is a collection of open subsets of X that each
contain p as an element, and that for each open set W in X with p ∈ W there is
a U ∈ B(p) such that U ⊆ W . Consider the ordering ≺ on B(p) where U1 ≺ U2

for U1, U2 ∈ B(p) when U2 ⊆ U1. This is clearly a partial ordering on B(p), and
to check that B(p) is a directed system with respect to ≺, let U1, U2 ∈ B(p) be
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given. Thus U1 ∩ U2 is an open set in X that contains p as an element, so that
there is an element U3 of B(p) such that U3 ⊆ U1 ∩ U2, because B(p) is a local
base for the topology of X at p. Equivalently, U3 ⊆ U1 and U3 ⊆ U2, which
is the same as saying that U1 ≺ U3 and U2 ≺ U3, as desired. Of course, the
collection of all open subsets of X that contain p is a local base for the topology
of X at p.

If f is a mapping from X into another topological space Y which is contin-
uous at p ∈ X, and if {xa}a∈A is a net of elements of X that converges to p in
X, then it is easy to see that {f(xa)}a∈A converges to f(p) as a net of elements
of Y . Conversely, if f is not continuous at p, then there is a net {xa}a∈A of
elements of X that converges to p in X such that {f(xa)}a∈A does not converge
to f(p) in Y . More precisely, if f is not continuous at p, then there is an open
set W in Y such that f(p) ∈ W but f(U) 6⊆ W for every open set U ⊆ X
with p ∈ U . Let B(p) be a local base for the topology of X at p, and for each
U ∈ B(p), let x(U) be an element of U such that f(x(U)) is not an element
of W . It is easy to see that the x(U)’s converge to p as a net of elements of
X indexed by B(p) as in the previous paragraph, while the f(x(U))’s do not
converge to f(p) in Y , because f(x(U)) 6∈ W for each U ∈ B(p).

Similarly, if a net {xa}a∈A of elements of a set E ⊆ X converges to a point
p ∈ X, then it is easy to see that p is an element of the closure E of E in X.
Conversely, if p ∈ E, then for each open set U ⊆ X with p ∈ U there is an
element x(U) of U which is also an element of E. If B(p) is a local base for
the topology of X at p, then the x(U)’s with U ∈ B(p) form a net of elements
of E that converges to p in X, with respect to the ordering of B(p) be reverse
inclusion, as before.

Suppose that U1, U2, . . . is a sequence of open subsets of X, each of which
contains a point p ∈ X, and such that the collection of Uj ’s forms a local
base for the topology of X at p. Without loss of generality, we may also ask
that Uj+1 ⊆ Uj for each j, since otherwise we can replace each Uj with the
intersection of U1, . . . , Uj . Thus the collection of Uj ’s is linearly ordered by
inclusion under these conditions, and it is easy to see that we can get sequences
converging to p in the context of the previous two paragraphs.

In some circumstances, one can define a Cauchy condition for nets, in analogy
with Cauchy sequences. We shall continue with this in the next section.

24 Cauchy nets

A net {xa}a∈A of elements of a metric space (M,d(x, y)) is said to be a Cauchy
net if for each ǫ > 0 there is an a ∈ A such that

d(xb, xc) < ǫ(24.1)

for every b, c ∈ A that satisfy a ≺ b and a ≺ c. This clearly reduces to the usual
definition of a Cauchy sequence when A = Z+ with the standard ordering.
Conversely, if {xa}a∈A is a Cauchy net in M , then for each positive integer j
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there is an aj ∈ A such that

d(xb, xc) < 1/j(24.2)

for every b, c ∈ A with aj ≺ b, c. One can also choose the aj ’s recursively so
that aj ≺ aj+1 for each j as well, although we do not really need this here.
At any rate, it is east to see that {xaj

}∞j=1 is a Cauchy sequence in M . If
{xaj

}∞j=1 converges to an element x of M , then one can also check that {xa}a∈A

converges to x as a net of elements of M . In particular, if M is complete as a
metric space, then every Cauchy net of elements of M converges to an element
of M . Of course, a convergent net of elements of any metric space is a Cauchy
net, by the usual argument with the triangle inequality.

Now let V be a topological vector space over the real or complex numbers.
A net {va}a∈A of elements of V is said to be a Cauchy net if for each open set
U in V with 0 ∈ U there is an a ∈ A such that

vb − vc ∈ U(24.3)

for every b, c ∈ A with a ≺ b, c. This reduces to the notion of a Cauchy
sequence in a topological vector space defined earlier when A = Z+ with the
standard ordering. This also reduces to the preceding definition of a Cauchy
net in a metric space when V is equipped with a translation-invariant metric
that determines the same topology.

Suppose that {va}a∈V is a net of elements of V that converges to an element
v of V , and let us check that {va}a∈A is a Cauchy net in V . Let U be an open
set in V that contains 0, and let U1, U2 be open subsets of V that contain 0 and
satisfy U1 + U2 ⊆ U , which exist because of the continuity of addition on V at
0, as usual. If W = U1 ∩ (−U2), then W is also an open set in V that contains
0, by the continuity of the mapping w 7→ −w on V , and

W + (−W ) ⊆ U1 + U2 ⊆ U.(24.4)

Of course, v + W is an open set in V that contains v, and so the convergence
of {va}a∈A to v in V implies that there is an a ∈ A such that

vb ∈ v + W(24.5)

for every b ∈ A with a ≺ b. Equivalently,

vb − v ∈ W(24.6)

when a ≺ b, and so

vb − vc = (vb − v) − (vc − v) ∈ W − W ⊆ U(24.7)

for every b, c ∈ A with a ≺ b, c, as desired.
If there is a countable local base for the topology of V at 0, then there is

a translation-invariant metric d(v, w) on V that determines the same topology,
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as in Section 12. In this case, a Cauchy net {va}a∈A of elements of V as a
topological vector space is the same as a Cauchy net of elements of V as a
metric space with respect to d(·, ·), as mentioned earlier. The discussion of
metric spaces at the beginnning of the section shows that we can extract a
Cauchy sequence in V from this Cauchy net, whose convergence implies the
convergence of the whole net. If every Cauchy sequence in V converges, then it
follows that every Cauchy net in V converges, when there is a countable local
base for the topology of V at 0. The proof of this could also be given more
directly in terms of topological vector spaces, without using metrics explicitly.

25 Completeness

Let us say that a topological vector space V over the real or complex numbers
is complete if every Cauchy net of elements of V converges in V . If there is a
countable local base for the topology of V at 0, then this reduces to sequential
completeness, as in the previous section. In particular, the real and complex
numbers are complete as one-dimensional topological vector spaces, with their
standard topologies, since they are complete as metric spaces with their standard
metrics. Similarly, Rn and Cn are complete with respect to their standard
topologies, for each positive integer n.

Let V be the vector space of real or complex-valued functions on a nonempty
set X, equipped with the topology discussed in Section 10. If {fa}a∈A is a
Cauchy net of functions on X with respect to this topology, then it is easy to
see that {fa(x)}a∈A is a Cauchy net in R or C, as appropriate, for each x ∈ X.
Hence {fa(x)}a∈A converges in R or C, as appropriate, for each x ∈ X, by
the completeness of R and C. If f(x) denotes the limit of {fa(x)}a∈A for each
x ∈ X, then f(x) determines an element of V , and it is easy to see that {fa}a∈A

converges to f with respect to this topology on V . Thus V is complete with
respect to this topology.

Now let V be the vector space of real or complex-valued functions on an
infinite set X with the stronger topology discussed in Section 20. Although V is
no longer a topological vector space, it is still a commutative topological group
with respect to addition, and the same basic notions make sense as before. If
{fa}a∈A is a Cauchy net of functions on X with respect to this stronger topology,
then it is easy to see that {fa(x)}a∈A is again a Cauchy net in R or C for each
x ∈ X, which therefore converges to a real or complex number f(x) for each
x ∈ X, as appropriate. To check that {fa}a∈A converges to f with respect to
this stronger topology on V , let ρ be a positive real-valued function on X. As
in Section 20,

Bρ/2(0) = {g ∈ V : |g(x)| < ρ(x)/2 for every x ∈ X}(25.1)

is an open subset of V that contains 0. Because {fa}a∈A is supposed to be a
Cauchy net in V , there is an a ∈ A such that

fb − fc ∈ Bρ/2(0)(25.2)
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for every b, c ∈ A with a ≺ b, c, which is to say that

|fb(x) − fc(x)| < ρ(x)/2(25.3)

for every b, c ∈ A with a ≺ b, c and every x ∈ X. This implies that

|fb(x) − f(x)| ≤ ρ(x)/2 < ρ(x)(25.4)

for every b ∈ A with a ≺ b and every x ∈ X, by taking the pointwise limit over
c in (25.3). This shows that {fa}a∈A converges to f with respect to the strong
topology on V , as desired.

We also saw in Section 20 that the linear subspace W of V consisting of
functions with finite support on X is a topological vector space with respect to
the topology induced by the one on V . It is easy to see that W is complete as
a topological vector space, using the remarks in the preceding paragraph, and
the fact that W as a subset of V . More precisely, if {fa}a∈A is a Cauchy net
in W , then {fa}a∈A converges to some f ∈ V in the topology of V , as in the
preceding paragraph. The fact that W is closed in V implies that f ∈ W , and
hence that {fa}a∈A converges in W , as desired.

Suppose that W is any vector space over the real or complex numbers, and
that the algebraic dual W ∗ of W is equipped with the weak∗ topology, as in
Section 16. If {λa}a∈A is a Cauchy net in W ∗, then it is easy to see that
{λa(w)}a∈A is a Cauchy net in R or C, as appropriate, for each w ∈ W . This
implies that {λa(w)}a∈A converges to a real or complex number λ(w) for each
w ∈ W , by the completeness of R and C. One can also check that λ(w) defines
a linear functional on W , using the linearity of λa(w) for each a ∈ A. It is easy
to see that {λa}a∈A converges to λ with respect to the weak∗ topology on W ∗,
and hence that W ∗ is complete with respect to the weak∗ topology.

If X is a nonempty set, V is the vector space of real or complex-valued
functions on X, and W is the linear subspace of V consisting of functions with
finite support, then we can identify V with the algebraic dual W ∗ of W , as in
Section 16. Conversely, any real or complex vector space W can be identified
with the space of real or complex-valued functions with finite support on some
set, using a basis as in Section 17. Thus this last example is basically the same
as the one in Section 10.

Suppose that X is a locally compact Hausdorff topological space, and let
C(X) be the vector space of real or complex-valued continuous functions on X,
with the topology discussed in Section 22. If {fa}a∈A is a Cauchy net in C(X),
then {fa(x)}a∈A is a Cauchy net in R or C, as appropriate, for each x ∈ X,
and hence converges to a real or complex number f(x) for each x ∈ X. If K is
a nonempty compact subset of X and ǫ > 0, then there is an a ∈ A such that

NK(fb − fc) = sup
x∈K

|fb(x) − fc(x)| < ǫ/2(25.5)

for every b, c ∈ A with a ≺ b, c, because {fa}a∈A is a Cauchy net in C(X). Thus

|fb(x) − fc(x)| < ǫ/2(25.6)
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for every b, c ∈ A with a ≺ b, c and every x ∈ K, which implies that

|fb(x) − f(x)| ≤ ǫ/2(25.7)

for every b ∈ A with a ≺ b and every x ∈ K, by passing to the limit in c. This
shows that f can be approximated uniformly by continuous functions on each
compact set, and hence that the restriction of f to any compact set in X is
continuous. It follows that f is continuous on X, because X is locally compact.
The previous remarks also imply that {fa}a∈A converges to f in C(X), so that
C(X) is complete.

Let V be any topological vector space over the real or complex numbers,
and let W be a linear subspace of V . If v ∈ V is an element of the closure W
of W in V , then there is a net {wa}a∈A of elements of W that converges to
v. In particular, {wa}a∈A is a Cauchy net in W , as a topological vector space
with respect to the topology induced by the one on V . If W is complete as a
topological vector space, then {wa}a∈A converges to an element of W , which is
equal to v by the uniqueness of limits of convergent nets in Hausdorff topological
spaces. This implies that W is a closed linear subspace of V when it is complete
with respect to the topology induced by the one on V .

26 Filters

A filter on a set X is a nonempty collection F of nonempty subsets of X that
satisfy the following two additional conditions. First, if A and B are elements
of F , then their intersection A ∩ B is also an element of F . Second, if A is an
element of F and E is a subset of X such that A ⊆ E, then E is an element of
F as well.

If X is a topological space, then we say that a filter F on X converges to
a point p ∈ X if for each open set U in X with p ∈ U we have that U ∈ F .
It is easy to see that the limit of a convergent filter on X is unique when X is
Hausdorff. Conversely, if X is not Hausdorff, then one can show that there are
filters on X that converge to more than one element of X.

A nonempty collection F0 of nonempty subsets of a set X is said to be a
pre-filter if for any A,B ∈ F0 there is a C ∈ F0 such that

C ⊆ A ∩ B.(26.1)

In this case, it is easy to check that

F = {E ⊆ X : A ⊆ E for some A ∈ F0}(26.2)

is a filter on X, and we say that F is generated by F0. Alternatively, if F is
any filter on a set X, then we say that B ⊆ F is a base for F if for each E ∈ F
there is an A ∈ B such that A ⊆ E. Observe that a base B for a filter F on X is
a pre-filter on X, and that F is generated by B as before. Similarly, a pre-filter
F0 on X is a base for the filter F that it generates.
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Suppose that F is a filter on a topological space X that converges to a point
p ∈ X, and that E is a subset of X that is also an element of F . If U is any
open set in X that contains p as an element, then U ∈ F , and hence E∩U ∈ F .
This implies that E ∩ U 6= ∅, so that p is an element of the closure E of E.
Conversely, let p be an element of the closure of E, and let F0 be the collection
of subsets of X of the form E∩U , where U is an open subset of X that contains
p as an element. Under these conditions, one can check that F0 is a pre-filter
on X, and that the filter generated by F converges to p.

Let (A,≺) be a nonempty directed system, and let {xa}a∈A be a net of
elements of a set X indexed by A. Put

Ea = {xt : t ∈ A, a ≺ t}(26.3)

for each a ∈ A, so that
Eb ⊆ Ea(26.4)

when a, b ∈ A and a ≺ b. If a, b are any two elements of A, then there is another
element c of A such that a, b ≺ c, because (A,≺) is a directed system. If F0 is
the collection of subsets of X of the form Ea with a ∈ A, then it follows that
F0 is a pre-filter on X. If X is a topological space, then one can check that
{xa}a∈A converges to an element x of X if and only if the filter F generated by
F0 converges to x.

Now let F be a filter on a set X, and let B be a base for F . Of course, one
can always take B = F , but in many situations there may be simpler choices.
Let ≺ be the partial ordering defined on B by saying that A ≺ B when A,B ∈ B
satisfy B ⊆ A. The fact that B is a pre-filter implies that B is a directed system
with respect to this ordering.

Suppose that X is a topological space, and that F converges to a point
x ∈ X. If x(A) is an element of A for each A ∈ B, then {x(A)}A∈B converges as
a net indexed by B to x in X, using the ordering on B described in the previous
paragraph. Conversely, if F does not converge to x, then there is an open set U
in X such that x ∈ U and U 6∈ F . This implies that A 6⊆ U for every A ∈ F , by
the definition of a filter, and in particular this holds for every A ∈ B. If x(A) is
an element of A\U for each A ∈ B, then {x(A)}A∈B is a net associated to F in
the same way as before, but {x(A)}A∈B does not converge to x in X.

27 Cauchy filters

Let (M,d(x, y)) be a metric space. Remember that the diameter of a nonempty
bounded subset E of M is defined by

diam E = sup{d(x, y) : x, y ∈ E}.(27.1)

Note that the closure E is also a bounded set under these conditions, with the
same diameter as E.

A filter F on M is said to be a Cauchy filter if for each ǫ > 0 there is an
E ∈ F such that

diam E < ǫ.(27.2)
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It is easy to see that convergent filters on M are Cauchy, and that Cauchy filters
on complete metric spaces converge. More precisely, if F is a Cauchy filter on
M , then there is a sequence E1, E2, . . . of elements of F such that Ej+1 ⊆ Ej

and
diam Ej < 1/j(27.3)

for each j. If xj is an element of Ej for each j, then it follows that {xj}
∞
j=1 is a

Cauchy sequence in M . If M is complete, then {xj}
∞
j=1 converges to an element

x of M , and one can check that F also converges to x under these conditions.
Now let V be a topological vector space over the real or complex numbers.

A filter F on V is said to be a Cauchy filter on V if for each open set U in V
with 0 ∈ U there is an element E of F such that

E − E = {y − z : y, z ∈ E} ⊆ U.(27.4)

This is equivalent to the previous definition of a Cauchy filter on a metric space
when V is equipped with a translation-invariant metric that determines the
same topology.

Suppose that a filter F on a topological vector space V converges to an
element v of V , and let us check that F is a Cauchy filter on X. Let U be any
open set in V that contains 0, and let W be an open set in V that contains 0
and satisfies

W − W ⊆ U,(27.5)

as in Section 24. Thus v + W is an open set in V that contains v, so that

v + W ∈ F ,(27.6)

by the definition of convergence of a filter. Of course,

(v + W ) − (v + W ) = W − W,(27.7)

so that (27.4) holds with E = v + W , as desired.
Let {va}a∈A be a net of elements of V , and let F be the filter associated to

this net as in the previous section. Thus {va}a∈A converges to an element v of
V if and only if F converges to v, as before. Similarly, {va}a∈A is a Cauchy net
in V if and only if F is a Cauchy filter on V .

In the other direction, let F be a filter on V , and let B be a base for F .
As in the previous section, B is a directed system with respect to the ordering
defined by reverse inclusion. If F is a Cauchy filter on V and x(A) is an element
of A for each A ∈ B, then it is easy to see that {x(A)}A∈B is a Cauchy net of
elements of V indexed by B. If F is a Cauchy filter on V , x(A) ∈ A for every
A ∈ B, and {x(A)}A∈B converges to an element x of V , then one can check that
F also converges to x. It follows from the remarks in this and the preceding
paragraph that every Cauchy net of elements of V converges to an element of
V if and only if every Cauchy filter on V converges to an element of V , so that
the definition of completeness of a topological vector space in Section 25 could
just as well have been given in terms of Cauchy filters.
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A filter F ′ on a set X is said to be a refinement of a filter F on X if F ⊆ F ′

as collections of subsets of X. This is analogous to the notion of a subsequence
of a sequence. If X is a topological space and F is a filter on X that converges
to a point p ∈ X, then it is easy to see that every refinement of F converges to
p as well.

If F is a Cauchy filter on a topological vector space V , and F ′ is a filter on V
that is a refinement of F , then it is easy to see that F ′ is also a Cauchy filter on
V . If F is a Cauchy filter on V and F ′ is a refinement of F that converges to a
vector v ∈ V , then one can check that F converges to v on V too. Note that the
corresponding statements for Cauchy filters on metric spaces also hold. These
statements are analogous to the classical facts that subsequences of Cauchy
sequences are Cauchy sequences, and that a Cauchy sequence with a convergent
subsequence converges to the same limit.

If F is a filter on a topological space X, and F ′ is a refinement of F that
converges to a point p ∈ X, then p ∈ E for each E ∈ F ′, as in the previous
section, and hence p ∈ E for each E ∈ F . Conversely, if p ∈ E for each E ∈ F ,
then there is a refinement F ′ of F that converges to p. More precisely, let F0

be the collection of subsets of X of the form E ∩ U , where E ∈ F and U is
an open set in X that contains p as an element. Under these conditions, one
can check that F0 is a pre-filter on X, and that the filter F ′ that it generates
is a refinement of F that converges to p on X. This gives a criterion for the
convergence of Cauchy filters, by the remarks in the preceding paragraph.

28 Compactness

Let X be a topological space, and let K be a subset of X. Let us say that
a collection {Ei}i∈I of closed subsets of X has the finite intersection property
relative to K if ( n⋂

j=1

Eij

)
∩ K 6= ∅(28.1)

for every finite subcollection i1, . . . , in of indices in I. If K is compact, then this
implies that ( ⋂

i∈I

Ei

)
∩ K 6= ∅.(28.2)

Otherwise, if (28.2) does not hold, then the collection of open sets Ui = X\Ei

would form an open covering of K in X, and the existence of a finite subcovering
of K would contradict (28.1). Similarly, if every collection {Ei}i∈I of closed
subsets of X with the finite intersection property relative to K satisfies (28.2),
then one can reverse the argument to show that K is compact.

Now let F be a filter on X such that K ∈ F . If E1, . . . , En are finitely many
elements of F , then

( n⋂

j=1

Ej

)
∩ K(28.3)
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is also an element of F , and hence is nonempty. In particular,

( n⋂

j=1

Ej

)
∩ K 6= ∅,(28.4)

so that the collection of closures E of elements E of F has the finite intersection
property relative to K. If K is compact, then it follows that

( ⋂

E∈F

E
)
∩ K 6= ∅.(28.5)

This is equivalent to saying that F has a refinement that converges to an element
of K, as discussed at the end of the previous section.

Conversely, let {Ei}i∈I be a collection of closed subsets of X with the finite
intersection property relative to K ⊆ X. Let F0 be the collection of subsets of
X of the form ( n⋂

j=1

Eij

)
∩ K,(28.6)

where i1, . . . , in are finitely many elements of I. Note that F0 is a pre-filter on
X, and let F be the filter on X generated by F . Observe also that

K ∈ F and Ei ∈ F for each i ∈ I,(28.7)

by construction. If F has a refinement that converges to an element of K, then
(28.5) holds, by the discussion at the end of the previous section. In particular,
this implies that (28.2) holds, because Ei is a closed subset of X and an element
of F for each i ∈ I. It follows that K ⊆ X is compact when every filter F on
X that contains K as an element has a refinement that converges to an element
of K, by the characterization of compactness mentioned at the beginning of the
section.

Let V be a topological vector space over the real or complex numbers, let
F be a Cauchy filter on V , and let K be a compact subset of V which is also
an element of F . The preceding discussion implies that F has a refinement
that converges to an element p of K, and hence that F converges to p. Of
course, the corresponding statement for metric spaces instead of topological
vector spaces also holds. This is analogous to the classical fact that a Cauchy
sequence {xj}

∞
j=1 of elements of a compact subset K of a metric space M has a

subsequence that converges to an element p of K, and hence {xj}
∞
j=1 converges

to p too.

29 Ultrafilters

A filter F on a set X is said to be an ultrafilter if it is maximal with respect
to refinement, in the sense that if F ′ is a filter on X that is a refinement of F ,
then F ′ = F . If p ∈ X, then one can check that

Fp = {A ⊆ X : p ∈ A}(29.1)
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is an ultrafilter on X, for instance. If F is any filter on X, then one can use the
axiom of choice through Zorn’s lemma or the Hausdorff maximality principle to
show that there is an ultrafilter F̃ on X which is a refinement of F .

If X is a topological space, K ⊆ X is compact, and F is an ultrafilter on X
that contains K as an element, then F converges on X to an element of K. This
is because any filter F on X that contains K as an element has a refinement
F ′ that converges to an element of K, as in the previous section, and because
F ′ = F when F is an ultrafilter. Conversely, suppose that a set K ⊆ X has the
property that every ultrafilter on X that contains K as an element converges
to an element of K, and let us check that K is compact. To see this, it suffices
to show that any filter F on X that contains K as an element has a refinement
that converges to an element of K, by the discussion in the previous section. If
F ′ is a refinement of F that is an ultrafilter on X, then K is also an element of
F ′, so that F ′ converges to an element of K by hypothesis, as desired.

Let F be a filter on a set X, and let us say that a subset E of X has property
PF if

A ∩ E 6= ∅(29.2)

for every A ∈ F . In this case, it is easy to see that

F0 = {A ∩ E : A ∈ F}(29.3)

is a pre-filter on X, and that the filter F ′ generated by F0 is a refinement of
F . If F is an ulrafilter, then it follows that F ′ = F , and hence that E ∈ F ,
because E ∈ F ′ by construction. Conversely, if F is a filter on X, F ′ is another
filter on X which is a refinement of F , and E ∈ F ′, then E has property PF .
This is because A∩E ∈ F ′ when A ∈ F ⊆ F ′ and E ∈ F ′, so that (29.2) holds.
Thus F ′ = F when F ′ is a refinement of F and F contains every set E ⊆ X
that satisfies property PF . This shows that a filter F on X is an ultrafilter if
and only if F contains every set E ⊆ X that satisfies property PF .

Let F be an ultrafilter on a set X, and let E be a subset of X. If E has
the property PF discussed in the previous paragraph, then E ∈ F , as before.
Otherwise, there is an A ∈ F such that

A ∩ E = ∅,(29.4)

in which case A ⊆ X\E and hence X\E ∈ F . Thus for each set E ⊆ X,

either E ∈ F or X\E ∈ F(29.5)

when F is an ultrafilter on X. Conversely, if F is a filter on X such that (29.5)
holds for every E ⊆ X, then F is an ultrafilter on X, because (29.5) implies
that E ∈ F when E ⊆ X satisfies the property PF discussed in the previous
paragraph.

Let F be an ultrafilter on a set X again, and let A be a subset of X which
is an element of F . Also let B1, . . . , Bn be finitely many subsets of X such that

A ⊆
n⋃

j=1

Bj .(29.6)

39



Under these conditions,
Bj ∈ F(29.7)

for at least one j, 1 ≤ j ≤ n. Otherwise, if Bj 6∈ F for each j = 1, . . . , n, then
we would have that X\Bj ∈ F for each j, as in the previous paragraph. This
would imply that

X\
( n⋃

j=1

Bj

)
=

n⋂

j=1

(X\Bj) ∈ F ,(29.8)

contradicting (29.6) and the hypothesis that A ∈ F .
Now let V be a topological vector space over the real or complex numbers,

let K be a totally bounded subset of V , and let F be an ultrafilter on V that
contains K as an element. We would like to show that F is a Cauchy filter on
V under these conditions. Let U be an open set in V that contains 0 as an
element, and let W be another open set in V such that 0 ∈ W and W −W ⊆ U .
Because K is totally bounded, there are finitely many vectors v1, . . . , vn in V
such that

K ⊆
n⋃

j=1

(vj + W ).(29.9)

It follows from the remarks in the previous paragraph that

vj + W ∈ F(29.10)

for some j, because F is an ultrafilter and K ∈ F . Of course,

(vj + W ) − (vj + W ) = W − W ⊆ U,(29.11)

by construction. Thus F is a Cauchy filter on V , as desired.
Suppose that K ⊆ V has the completeness property that every Cauchy filter

on V that contains K as an element converges to an element of K. This is
equivalent to asking that every Cauchy net of elements of K converge to an
element of K. If K is also totally bounded, then the argument in the previous
paragraph would imply that every ultrafilter on V that contains K as an element
is a Cauchy filter, and hence converges to an element of K. This shows that
totally bounded subsets of V with the completeness property just mentioned
are compact, using the characterization of compactness in terms of ultrafilters
discussed earlier in the section. Conversely, compact subsets of V are totally
bounded, and it is easy to see that they have this completeness property too.
More precisely, if K ⊆ V is compact and F is a filter on V that contains K
as an element, then F has a refinement that converges to an element of K, as
in Section 28. If F is actually a Cauchy filter on V , then it follows that F
converges to the same element of K, as desired.

30 A technical point

Let V be a topological vector space over the real or complex numbers, and let
B be a local base for the topology of V at 0. As usual, B may be considered as

40



a directed system with respect to the ordering which is the reverse of inclusion.
Let F be a Cauchy filter on V , so that for each U ∈ B there is a set E(U) ∈ F
such that

E(U) − E(U) ⊆ U.(30.1)

If x(U) ∈ E(U) for each U ∈ B, then {x(U)}U∈B is a Cauchy net in V indexed
by B. To see this, let U0 be an open set in V that contains 0, and let U1 be an
element of B such that

U1 + U1 ⊆ U0.(30.2)

The existence of U1 follows from the continuity of addition on V at 0, and the
fact that B is a local base for the topology of V at 0. We would like to check
that

x(U ′) − x(U ′′) ∈ U0(30.3)

for every U ′, U ′′ ∈ B such that U ′, U ′′ ⊆ U1.
If U ′, U ′′ are any two elements of B, then

E(U ′) ∩ E(U ′′) 6= ∅,(30.4)

because E(U ′)∩E(U ′′) ∈ F . If y(U ′, U ′′) is an element of E(U ′)∩E(U ′′), then
we get that

x(U ′) − x(U ′′) = (x(U ′) − y(U ′, U ′′)) + (y(U ′, U ′′) − x(U ′′))(30.5)

is an element of

(E(U ′) − E(U ′)) + (E(U ′′) − E(U ′′)) ⊆ U ′ + U ′′.(30.6)

Hence
x(U ′) − x(U ′′) ∈ U ′ + U ′′ ⊆ U1 + U1 ⊆ U0(30.7)

when U ′, U ′′ ⊆ U1, as desired. This shows that {x(U)}U∈B is a Cauchy net in
V , where B is ordered by reverse inclusion.

If {x(U)}U∈B converges to an element x of V , then one can check that F also
converges to x. This is a bit different from the analogous statement in Section
27, where the convergence of a Cauchy filter was reduced to the convergence of
a Cauchy net index by a base for the filter. If there is a countable local base for
the topology of V at 0, for instance, then one can take B to be countable and
linearly ordered by inclusion, to reduce the convergence of a Cauchy filter on V
to the convergence of a Cauchy sequence in V .

Similarly, if {va}a∈A is a Cauchy net of elements of V indexed by any directed
system A, then one can get a Cauchy net indexed by B whose convergence in
V implies the convergence of {va}a∈A. One can apply the previous argument
to the filter associated to {va}a∈A as in Section 26, or argue a bit more directly
and take for each U ∈ B an index a(U) in A such that vb − vc ∈ U for every
b, c ∈ A with a(U) ≺ b, c. This leads to the net {va(U)}U∈B indexed by B, which
is a Cauchy net for essentially the same reasons as before, and the convergence
of which implies the convergence of {va}a∈A, to the same limit. If there is
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a countable local base for the topology of V at 0, then one can take B to
be countable and linearly ordered, to get a Cauchy sequence of elements of V
whose convergence implies the convergence of {va}a∈A. This fact was mentioned
previously in Section 24, and the present discussion gives a more general version
of this, without using metrics.

31 Dual spaces

Let W be a finite-dimensional vector space over the real or complex numbers.
Thus the algebraic dual space W ∗ of linear functionals on W is also a finite-
dimensional vector space, with the same dimension as W . If Z is a linear
subspace of W ∗ which is not equal to W ∗, then there is a nonzero vector w ∈ W
such that λ(w) = 0 for every λ ∈ Z. More precisely, the collection of w ∈ W
such that λ(w) = 0 for every λ ∈ Z is a linear subspace of W , whose dimension
is equal to the dimension of W minus the dimension of Z.

Now let V be a topological vector space over the real or complex numbers,
and suppose that for each nonzero vector v ∈ V there is a continuous linear
functional λ on V such that λ(v) 6= 0. Let W be a finite-dimensional linear sub-
space of V , and remember that V ′ denotes the vector space of continuous linear
functionals on V . If Z is the linear subspace of W ∗ consisting of restrictions of
continuous linear functionals on V to W , then it follows from the remarks in
the previous paragraph that Z = W ∗. This implies that V ′ is a dense linear
subspace of the algebraic dual V ∗ of V with respect to the weak∗ topology under
these conditions.

Of course, V ′ is normally a proper linear subspace of V ∗ when V is infinite-
dimensional, although we have seen some situations where V ′ = V ∗. If V is
any real or complex vector space, then one can consider the weak topology
on V associated to the space V ∗ of all linear functionals on V , as in Section
15. In this case, every linear functional on V is continuous by construction.
Alternatively, one can consider the topology on V determined by the collection
of all seminorms on V , which also came up in Section 21.

In particular, the topological dual V ′ of an infinite-dimensional topological
vector space V is normally not complete in the sense of Section 25 with respect
to the weak∗ topology. However, V ′ is sequentially complete with respect to
the weak∗ topology when V is an F -space, which is to say that V is metrizable
and sequentially complete. If V is any real or complex vector space, then a
sequence {λj}∞j=1 of linear functionals on V is a Cauchy sequence with respect
to the weak∗ topology if and only if {λj}

∞
j=1 is a Cauchy sequence in R or C,

as appropriate, for each v ∈ V . This implies that {λj(v)}∞j=1 converges to a
real or complex number λ(v) for each v ∈ V , because of the completeness of the
real and complex numbers. As usual, it is easy to see that λ(v) defines a linear
functional on V under these conditions. Note that {λj(v)}∞j=1 is in particular
a bounded sequence of real or complex numbers for each v ∈ V . If V is an
F -space and λj is a continuous linear functional on V for each j, then it follows
that there is an open set U in V with 0 ∈ U such that the λj ’s are uniformly
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bounded on U , as in Section 18. This implies that λ is uniformly bounded on
U , and hence that λ is continuous on V , as desired.

32 Bounded linear mappings

Let V and W be topological vector spaces, both real or both complex. A linear
mapping T from V into W is said to be bounded if for each bounded set E ⊆ V ,
T (E) is a bounded set in W . It is easy to see that continuous linear mappings
are bounded. Let CL(V,W ) denote the space of continuous linear mappings
from V into W , and let BL(V,W ) be the space of bounded linear mappings
from V into W , so that

CL(V,W ) ⊆ BL(V,W ).(32.1)

Of course, CL(V,W ) is a vector space with respect to pointwise addition and
scalar multiplication, since the sum of two continuous linear mappings is also
continuous, as are scalar multiples of continuous mappings. One can check
that the analogous statements hold for bounded linear mappings as well, using
the fact that the sum of two bounded sets is bounded, as in Section 4. It
follows that BL(V,W ) is a vector space with respect to pointwise addition and
scalar multiplication, and that CL(V,W ) is a linear subspace of BL(V,W ). Note
that compositions of bounded linear mappings are bounded, as in the case of
continuous mappings.

Let us say that a linear mapping T : V → W is strongly bounded if there is
an open set U in V with 0 ∈ U such that T (U) is a bounded set in W . It is easy
to see that strongly bounded mappings are continuous. If the topology on V is
determined by a norm, then every bounded linear mapping from V into W is
obviously strongly bounded, and hence continuous. This works more generally
when there is a bounded open set in V that contains 0, such as an Lp space
for any p > 0. Similarly, if the topology on W is determined by a norm, or
more generally if there is a bounded open set in W that contains 0, then every
continuous linear mapping from V into W is strongly bounded.

There is a nice theorem that states that a bounded linear mapping T from V
into W is continuous when there is a countable local base for the topology of V
at 0. In this case, it suffices to show that T is sequentially continuous at 0. Let
{vj}

∞
j=1 be a sequence of vectors in V that converges to 0. A key lemma implies

that there is a sequence {rj}
∞
j=1 of positive real numbers such that {rj}

∞
j=1

converges to 0 in R and {r−1
j vj}

∞
j=1 converges to 0 in V . In particular, the set

K consisting of r−1
j vj for j ∈ Z+ and 0 is compact, and hence bounded. If T is

bounded, then it follows that T (K) is bounded in W . Under these conditions,
it is easy to see that

T (vj) = rj T (r−1
j vj) → 0(32.2)

in W as j → ∞, as desired, because {rj}∞j=1 converges to 0 in R and T (K) is
bounded in W .
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As in Section 12, the hypothesis that V have a countable local base for its
topology at 0 implies that there is a translation-invariant metric d(v, w) on V
that determines the same topology on V . In this case, one can check that

d(n v, 0) ≤ nd(v, 0)(32.3)

for each positive integer n. More precisely, this uses the fact that

d((j + 1) v, j v) = d(v, 0)(32.4)

for each positive integer j, by translation-invariance of the metric. The key
lemma mentioned in the previous paragraph can easily be verified using this
inequality, although it can also be derived more directly from the existence of a
countable local base for the topology of V at 0.

33 Bounded linear functionals

Let V be a topological vector space over the real or complex numbers, and let
V ♭ be the vector space of bounded linear functionals on V . More precisely, V ♭

is the same as the space of bounded linear mappings from V into R or C, as
appropriate. Thus V ♭ may be considered as a linear subspace of the algebraic
dual V ∗ of all linear functionals on V , and V ♭ contains the topological dual V ′

of continuous linear functionals on V as a linear subspace. If V has a countable
local base for its topology at 0, then V ′ = V ♭, as in the previous section.

If E ⊆ V is a nonempty bounded set, and λ is a bounded linear functional
on V , then λ is bounded on E, and we put

N ♭
E(λ) = sup

v∈E
|λ(v)|.(33.1)

If E consists of a single element v, then this reduces to the corresponding semi-
norm N∗

v (λ) used in Section 16 to define the weak∗ topology. In particular,
if λ 6= 0, then there is a v ∈ V such that λ(v) 6= 0, and hence N ♭

E(λ) 6= 0
when v ∈ E. Thus the collection of all of these seminorms N ♭

E(λ) associated to
nonempty bounded sets E ⊆ V is a nice collection of seminorms on V ♭, which
defines a topology on V ♭ that makes V ♭ into a topological vector space, as in
Section 9. This topology on V ♭ is at least as strong as the weak∗ topology, since
this collection of seminorms contains the seminorms used to define the weak∗

topology.
If the topology on V is determined by a norm N , then one can take E to

be the unit ball in V associated to N , and N ♭
E(λ) is the usual dual norm on

V ♭ = V ′ corresponding to N . More generally, if U is a bounded open set in V
that contains 0, then N ♭

U (λ) is a norm on V ♭ = V ′. In this case, if E ⊆ V is
any nonempty bounded set, then E ⊆ t U when |t| is sufficiently large, which
implies that

N ♭
E(λ) ≤ C N ♭

U (λ)(33.2)
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for some C ≥ 0 and every λ ∈ V ♭. It follows that the topology on V ♭ determined
by N ♭

U is the same as the topology determined by all of these seminorms N ♭
E

when U ⊆ V is a bounded open set with 0 ∈ U .
If V is any topological vector space, then V ♭ is complete with respect to the

topology determined by the collection of seminorms N ♭
E , in the sense of Section

25. To see this, one can begin with a Cauchy net or filter in V ♭ with respect to
this topology, which one would like to show converges to an element of V ♭ with
respect to this topology. This net or filter automatically satisfies the Cauchy
condition with respect to the weak∗ topology too, since the topology on V ♭

determined by the seminorms N ♭
E is at least as strong as the weak∗ topology.

Hence the Cauchy net or filter converges pointwise on V to a linear functional
λ on V , as discussed previously. Because the Cauchy condition is actually
satisfied with respect to the topology on V ♭ determined by the seminorms N ♭

E ,
one can check that the Cauchy net or filter converges to λ uniformly on bounded
subsets of V . In particular, this implies that λ is a bounded linear functional on
V , since the linear functionals on V in the Cauchy net or filter are bounded by
hypothesis. The remaining point is that the Cauchy net or filter converges to λ
with respect to the topology on V ♭ determined by the seminorms N ♭

E , which is
not difficult to verify.

34 The dual norm

Let V be a real or complex vector space, and let N be a norm on V . Thus V is
a topological vector space with respect to the topology determined by N , and
bounded linear functionals on V are the same as continuous linear functionals,
so that V ♭ = V ′. The dual norm N ′ on V ′ corresponding to N is defined by

N ′(λ) = sup{|λ(v)| : v ∈ V, N(v) ≤ 1}.(34.1)

It is easy to see that this defines a norm on V ′, which is the same as N ♭
E in

(33.1), with E equal to the closed unit ball in V with respect to N . One can
also check that V ′ is complete with respect to the metric corresponding to N ′.
Although this may be treated as a special case of the discussion of completeness
at the end of the previous section, it is somewhat simpler, because one only
needs to consider Cauchy sequences in V ′. As usual, if {λj}

∞
j=1 is a Cauchy

sequence in V ′ with respect to N ′, then one can first observe that {λj(v)}∞j=1 is
a Cauchy sequence in R or C, as appropriate, for each v ∈ V . Hence {λj(v)}∞j=1

converges to a real or complex number λ(v) for each v ∈ V , and one can then
verify that λ is a bounded linear functional on V , and that {λj}∞j=1 converges
to λ with respect to N ′.

As in the previous section, the topology on V ′ determined by N ′ is at least
as strong as the weak∗ topology on V ′. In particular, bounded subsets of V ′

with respect to N ′ are also bounded with respect to the weak∗ topology. If V
is complete, then bounded subsets of V ′ with respect to the weak∗ topology are
also bounded with respect to N ′, as in Section 18. If V is infinite-dimensional,
then the Hahn–Banach theorem implies that V ′ is also infinite-dimensional, and
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it is easy to see that the topology on V ′ determined by the dual norm N ′ is
strictly stronger than the weak∗ topology on V ′. It follows that the identity
mapping on V ′ is bounded as a mapping from V ′ with the weak∗ topology
into V ′ with the topology determined by N ′, and not continuous, when V is
infinite-dimensional and complete.

Similarly, the bounded linear functionals on V ′ with respect to the weak∗

topology are the same as the bounded linear functionals on V ′ with respect to
N ′ when V is complete, since the bounded subsets of V ′ with respect to the two
topologies are the same. If v ∈ V , then

Lv(λ) = λ(v)(34.2)

defines a linear functional on V ′ which is continuous with respect to the weak∗

topology, and hence also with respect to the topology on V ′ determined by N ′.
Every continuous linear functional on V ′ with respect to the weak∗ topology
is of this form, as in Section 15. Every bounded linear functional on V ′ with
respect to the topology determined by N ′ is continuous with respect to this
topology as well. However, there may be bounded linear functionals on V ′ with
respect to N ′ which are not of the form Lv for some v ∈ V .

One of the simplest situations where this occurs is with V = c0, the space of
sequences of real or complex numbers that converges to 0, with respect to the
supremum norm. In this case, the dual space V ′ can be identified with ℓ1, the
space of sequences of real or complex numbers that are absolutely summable.
The dual of ℓ1 can then be identified with the space ℓ∞ of bounded sequences of
real or complex numbers, with the supremum norm. The mapping from v ∈ V
to a linear functional Lv on V ′ corresponds to the standard inclusion of c0 in ℓ∞

with respect to these identifications, and of course c0 is a proper linear subspace
of ℓ∞.

35 The second dual

Let V be a real or complex vector space again, and let N be a norm on V . As
in the previous sections, the space V ♭ of bounded linear functionals on V is the
same as the space V ′ of continuous linear functionals on V , and we let N ′ be
the dual norm on V ♭ = V ′ associated to N on V . Thus V ′ is now a vector space
with a norm N ′, and we can repeat the process to get a vector space V ′′ with a
norm N ′′. More precisely, V ′′ is the space of bounded linear functionals on V ′

with respect to the dual norm N ′, which is the same as the space of continuous
linear functionals on V ′ with respect to the topology on V ′ determined by V ′.
If L is a bounded linear functional on V ′ with respect to N ′, then the dual norm
of L with respect to N ′ is given by

N ′′(L) = sup{|L(λ)| : λ ∈ V ′, N ′(λ) ≤ 1}.(35.1)

If v ∈ V , then Lv(λ) = λ(v) defines a bounded linear functional on V ′, as in
the preceding section. Observe that

|Lv(λ)| = |λ(v)| ≤ N ′(λ)N(v)(35.2)
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for each λ ∈ V ′, by the definition (34.1) of the dual norm N ′. This implies that

N ′′(Lv) ≤ N(v)(35.3)

for each v ∈ V . Using the Hahn–Banach theorem, one can show that

N ′′(Lv) = N(v)(35.4)

for every v ∈ V , by finding λ ∈ V ′ for which equality holds in (35.2).
Remember that the weak topology on V is defined as in Section 15, using

the space V ′ of continuous linear functionals on V with respect to V . Basically,
the weak topology on V is the weakest topology on V such that the elements
of V ′ are continuous. In particular, every open set in V with respect to the
weak topology is also an open set with respect to the topology determined by
N , and we mentioned earlier that the weak topology is strictly weaker than
the topology determined by N when V is infinite-dimensional. It follows that
bounded subsets of V with respect to N are automatically bounded with respect
to the weak topology, and one can check that the converse holds too. Basically,
one can use the embedding of V into V ′′ described in the previous paragraph to
reduce this to the analogous statement for the weak∗ topology discussed in the
preceding section, applied to V ′ instead of V . Thus it is the completeness of
V ′ with respect to the dual norm N ′ that is important in this case, rather than
the completeness of V . As a consequence, we get that the identity mapping on
V is bounded as a mapping from V with the weak topology into V with the
topology determined by the norm, even though this mapping is not continuous
when V is infinite-dimensional.

36 Bounded sequences

Let V be a topological vector space over the real or complex numbers. If E ⊆ V
is not bounded, then there is an open set U in V with 0 ∈ U such that for
each positive integer n there is an element vn of E that is not contained in nU .
In particular, the set of vn’s is itself not bounded in this case. It follows that
E ⊆ V is bounded if and only if every countable subset of E is bounded.

If E ⊆ V is bounded, {vj}
∞
j=1 is a sequence of elements of E, and {tj}

∞
j=1

is a sequence of real or complex numbers that converges to 0, then {tj vj}∞j=1

converges to 0 in V . This is easy to see, and it was also mentioned in Section 32.
Conversely, suppose that E ⊆ V has the property that for each sequence {vj}

∞
j=1

of elements of E and every sequence {tj}∞j=1 of real or complex numbers that
converges to 0, {tj vj}

∞
j=1 converges to 0 in V . One can check that E is bounded

in V under these conditions, using the remarks in the previous paragraph.
Now let W be another topological vector space, which is real if V is real,

and complex if V is complex. Let T be a linear mapping from V into W , and
suppose that T is sequentially continuous at 0. More precisely, if {uj}

∞
j=1 is a

sequence of elements of V that converges to 0, then the sequential continuity
of T at 0 means that {T (uj)}

∞
j=1 converges to 0 in W . This implies that T
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is sequentially continuous at every point in V , because of linearity. Sequential
continuity is implied by ordinary continuity, and the converse holds when there
is a countable local base for the topology of V at 0.

It is easy to see that sequentially continuous linear mappings are bounded,
using the characterization of bounded sets in terms of convergent sequences
mentioned earlier. This extends the fact that continuous linear mappings are
bounded, as in Section 32. However, there are examples of bounded linear
mappings that are not sequentially continuous, as in the previous two sections.

37 Continuous extensions

Let V and W be topological vector spaces, both real or both complex, let Z be
a dense linear subspace of V , and let T be a continuous linear mapping from Z
into W . If W is complete, then there is a unique extension of T to a continuous
linear mapping from V into W . Of course, uniqueness follows from continuity
and the fact that the range W is Hausdorff.

To get the existence of the extension, let v be any element of V , and let
{vα}α∈A be a net of elements of Z that converges to v in V . In particular, this
is a Cauchy net in Z, with respect to the topology on Z induced by the one on
V . One can check that {T (vα)}α∈A is a Cauchy net in W , using the continuity
and linearity of T . If W is complete, then it follows that {T (vα)}α∈A converges
to an element of W . One can also check that the limit of {T (vα)}α∈A in W
does not depend on the choice of net {vα}α∈A of elements of Z converging to
v, and we define T (v) to be the common value of the limit. It remains to verify
that this extension of T to V is linear and continuous, which is not difficult to
do. Note that one can take A to be a local base for the topology of V at 0 here,
ordered by reverse inclusion.

Alternatively, for each v ∈ V , let Fv,Z be the collection of E ⊆ Z such that

(v + U) ∩ Z ⊆ E(37.1)

for some open set U in V that contains 0. It is easy to see that this is a filter on
Z, and in fact a Cauchy filter on Z. More precisely, Fv,Z can also be considered
as a pre-filter on V , which generates a filter F ′

v,Z on V that converges to v.
This implies that F ′

v,Z is a Cauchy filter on V , and hence that Fv,Z is a Cauchy
filter on Z, with respect to the topology on Z induced by the one on V . Let
T∗(Fv,Z) be the collection of subsets B of W such that

T−1(B) ∈ Fv,Z .(37.2)

One can check that this is a filter on W , and in fact a Cauchy filter on W , using
the continuity and linearity of T . If W is complete, then T∗(Fv,Z) converges to
an element T (v) of W . This defines an extension of T of V , which is equivalent
to the one described earlier using nets. It is not difficult to verify that this
extension is linear and continuous, as before.
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38 Sublinear functions

Let V be a vector space over the real or complex numbers. A real-valued function
p(v) on V is said to be sublinear if

p(t v) = t p(v)(38.1)

for every v ∈ V and nonnegative real number t, and

p(v + w) ≤ p(v) + p(w)(38.2)

for every v, w ∈ V . Thus seminorms on V are sublinear, as are linear functionals
on V when V is real, or real parts of linear functionals on V when V is complex.

If p is a sublinear function on V , then p(0) = 0, and hence

p(v) + p(−v) ≥ 0(38.3)

for every v ∈ V . If V is a real vector space and

p(−v) = p(v)(38.4)

for every v ∈ V , then it follows that p(v) ≥ 0 for every v ∈ V , and that p(v) is
a seminorm on V . Similarly, if V is a complex vector space and

p(a v) = p(v)(38.5)

for every a ∈ C with |a| = 1, then p(v) is a seminorm on V .
Suppose that U ⊆ V , 0 ∈ U , and U is star-like about 0, in the sense that

t u ∈ U(38.6)

for every u ∈ U and real number t such that 0 ≤ t ≤ 1. Equivalently, t U ⊆ U
when 0 ≤ t ≤ 1. Suppose also that U has the absorbing property that for each
v ∈ V there is an t(v) > 0 such that

t(v) v ∈ U,(38.7)

which implies that t v ∈ U when 0 ≤ t ≤ t(v), because U is star-like about 0.
The Minkowski functional on V associated to U is defined by

p(v) = inf{r > 0 : r−1 v ∈ U} = inf{r > 0 : v ∈ r U},(38.8)

which makes sense because of the absorbing property of U . Note that p(v)
automatically satisfies the homogeneity condition (38.1). If −U = U , then p(v)
satisfies (38.4) for every v ∈ V as well. If V is a complex vector space and
aU = U for every a ∈ C with |a| = 1, then p(v) satisfies (38.5).

If u ∈ U , then clearly p(u) ≤ 1. If V is a topological vector space and U is
also an open set in V , then p(u) < 1 for every u ∈ U , because for each u ∈ U we
have that t u ∈ U when t is sufficiently close to 1. Conversely, if v ∈ V satisfies
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p(v) < 1, then R v ∈ U for some R > 1, and hence v ∈ U , because U is star-like
about 0. If U is convex, then p satisfies the subadditivity condition (38.2), and
is therefore sublinear. More precisely, if v, w ∈ V , p(v) < r, p(w) < t, then
r−1 v and t−1 w are contained in U , by the definition of p, and because U is
star-like about 0. If U is convex, then it follows that

(r + t)−1 (v + w) =
r

r + t
(r−1 v) +

t

r + t
(t−1 w) ∈ U.(38.9)

This implies that p(v+w) ≤ r+t, and hence that (38.2) holds, because r > p(v)
and t > p(w) are arbitrary.

39 Hahn–Banach, revisited

Let V be a vector space over the real numbers, and let p(v) be a sublinear
function on V . Suppose that W is a linear subspace of V , and that λ is a linear
functional on W that satisfies

λ(v) ≤ p(v)(39.1)

for every v ∈ W . Under these conditions, the theorem of Hahn and Banach
states that λ can be extended to a linear functional on V that satisfies (39.1)
for every v ∈ V . If p(v) satisfies (38.4), then (39.1) implies that

−λ(v) = λ(−v) ≤ p(−v) = p(v),(39.2)

and hence that
|λ(v)| ≤ p(v).(39.3)

In this case, this version of the Hahn–Banach theorem reduces to the one for
seminorms in Section 14.

Now let V be a topological vector space over the real numbers, and let U
be a convex open set in V that contains 0. Thus the corresponding Minkowski
functional (38.8) is sublinear, as before. Let v0 be any element of V , and let
W0 be the 1-dimensional linear subspace of V spanned by v0. If λ0 is the linear
functional on W0 defined by

λ0(t v0) = t p(v0)(39.4)

for each t ∈ R, then
λ0(t v) = t p(v0) = p(t v0)(39.5)

when t ≥ 0, and
λ0(t v0) = t p(v0) ≤ 0 ≤ p(t v0)(39.6)

when t ≤ 0.
The Hahn–Banach theorem implies that there is an extension of λ0 to a

linear functional on V that satisfies

λ0(v) ≤ p(v)(39.7)

50



for every v ∈ V . In particular, λ0(u) < 1 when u ∈ U , because p(u) < 1 when
u ∈ U . Similarly, −λ0(v) = λ0(−v) < 1 when v ∈ −U , so that λ0(v) > −1
when v ∈ −U . It follows that

|λ0(v)| < 1(39.8)

for every v ∈ U∩(−U), which implies that λ0 is continuous on V , since U∩(−U)
is an open set in V that contains 0. Note that p(v0) ≥ 1 when v0 ∈ V \U , so
that λ0(u) < λ0(v0) for every u ∈ U in this case.

Suppose now that E is a nonempty closed convex set in a locally convex
topological vector space V over the real numebers, and that v1 ∈ V \E. Because
E is closed and V is locally convex, there is a convex open set U1 in V such
that v1 ∈ U1 and U1 ⊆ V \E. Put U2 = E − U1, so that U2 is a nonempty
open set in V that does not contain 0. It is easy to see that U2 is also convex,
because E and U1 are convex. Under these conditions, there is a continuous
linear functional λ on V such that λ(v) < 0 for every v ∈ U2. This follows from
the argument in the previous paragraphs, applied to any translate of U2 in V
that contains 0. Equivalently, this means that

λ(x) < λ(y)(39.9)

for each x ∈ E and y ∈ U1, since x−y ∈ U2 and thus λ(x)−λ(y) = λ(x−y) < 0.
Using this, one can check that

sup
x∈E

λ(x) < λ(v1),(39.10)

because U1 is an open set in V that contains v1 and λ is not identically 0 on V ,
and hence there is a y ∈ U1 such that λ(y) < λ(v1). In particular, this implies
that E is a closed set with respect to the weak topology on V , since v1 is an
arbitrary element of V \E.

40 Convex cones

Let V be a vector space over the real numbers, and let us say that E ⊆ V is
a cone if t v ∈ E for every v ∈ V and t ∈ R with t ≥ 0. Thus 0 ∈ E when E
is a nonempty cone in V . Sometimes it is convenient to restrict one’s attention
to t > 0 in the definition of a cone, but we shall basically be concerned with
closed cones here, so that we may as well include t = 0. A convex cone in V is
a cone that is also a convex set, which is the same as a cone E ⊆ V such that
v + w ∈ E for every v, w ∈ E.

If E is any subset of V , then let C(E) be the cone generated by E, consisting
of all vectors of the form t v with v ∈ E and t ∈ R such that t ≥ 0. It is easy to
see that the convex hull con(C(E)) of C(E) is a cone in V , and hence a convex
cone in V . If E is convex, then one can check directly that C(E) is a convex
cone in V . In particular, C(con(E)) is a convex cone for any E ⊆ V , which is
in fact that same as con(C(E)). Equivalently, these are both the same as the
set of vectors in V of the form

∑n
j=1 tj vj , where v1, . . . , vn are finitely many

elements of E, and t1, . . . , tn are nonnegative real numbers.
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Suppose that V is a topological vector space, and let V ′ be the topological
dual of V , as usual. If E ⊆ V , then let Γ(E) be the set of continuous linear
functionals λ on V such that λ(v) ≥ 0 for every v ∈ E. Thus 0 ∈ Γ(E) for
any E ⊆ V , and λ(v) = 0 when λ ∈ Γ(E) and both v and −v are elements of
E. Note that Γ(E) = V ′ when E = ∅ or E = {0}, and that Γ(E) = {0} when
E = V . It is easy to see that Γ(E) is a convex cone in V ′ for every E ⊆ V , and
that Γ(E) is always a closed subset of V ′ with respect to the weak∗ topology.
Observe also that Γ(C(E)) = Γ(con(E)) = Γ(E) for every E ⊆ V , and that
Γ(E) = Γ(E). If V is locally convex and E is a nonempty closed convex cone
in V , then it turns out that E is equal to the set of w ∈ V such that λ(w) ≥ 0
for every λ ∈ Γ(E).

To see this, let w ∈ V \E be given, and let us show that there is a λ ∈ Γ(E)
such that λ(w) < 0 when V is locally convex and E is a nonempty closed convex
cone in V . As in the previous section, there is a continuous linear functional
µ on V such that µ(v) < µ(w) for every v ∈ E under these conditions, as a
consequence of the Hahn–Banach theorem. This implies that µ(w) > 0, by
taking v = 0, and that

t µ(v) = µ(t v) < µ(w)(40.1)

for every nonnegative real number t, since E is a cone. It follows that that
µ(v) ≤ 0 for every v ∈ E, so that λ = −µ has the required properties.

References

[1] C. Aliprantis and R. Tourky, Cones and Duality, American Mathematical
Society, 2007.

[2] L. Baggett, Functional Analysis, Dekker, 1992.

[3] S. Berberian, Lectures in Functional Analysis and Operator Theory,
Springer-Verlag, 1974.
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