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Preface

These informal notes are intended to complement more detailed treatments, as
in the references. Some familiarity with basic analysis and linear algebra would
be helpful, and some definitions and results along these lines are reviewed here.
Some familiarity with Lebesgue measure and integration could be helpful as
well, but we shall normally not be getting into this too much here.

Of course, there are many connections between complex analysis and partial
differential equations. The reader is not necessarily expected to be familiar
with complex analysis here, although some familiarity would be helpful in some
places.

The subject of partial differential equations is obviously closely related to
that of ordinary differential equations. Often only basic facts about ordinary
differential equations are used here, but some familiarity with standard results
related to existence and uniqueness of solutions would be helpful in some places.
More precisely, some familiarity with standard results concerning the depen-
dence of solutions on initial conditions and other parameters would be helpful
in some places.

There are many connections between partial differential equations, Fourier
analysis, and functional analysis too. We shall not get into this too much here,
but some of these connections will be mentioned a bit, or are fairly close.

A number of the texts in the bibliography include some aspects of the his-
tory of differential equations and related matters, such as Fourier analysis. In
particular, one may be interested in [7, 8, 26, 27, 46, 49, 50, 54, 56, 58, 59, 96,
98, 99, 100] in this regard.
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Chapter 1

Some basic facts

Some very interesting introductory remarks about partial differential equations
can be found in the first chapter of [35]. Another interesting overview with
a somewhat different perspective is in Section A of Chapter 1 of [38]. Here
we begin with some basic notions related to Euclidean spaces and functions on
them, which are helpful for this.

1.1 Some preliminaries about Rn

Let n be a positive integer, and let Rn be the usual space of n-tuples x =
(x1, . . . , xn) of real numbers. If x, y ∈ Rn and t ∈ R, then x+ y and t x can be
defined as elements of Rn using coordinatewise addition and scalar multiplica-
tion, as usual.

The standard Euclidean norm of x ∈ Rn is defined by

|x| =
( n∑

j=1

x2j

)1/2

,(1.1.1)

using the nonnegative square root on the right side. This reduces to the usual
absolute value of a real number when n = 1. Observe that

|t x| = |t| |x|(1.1.2)

for every t ∈ R and x ∈ Rn. It is well known that

|x+ y| ≤ |x|+ |y|(1.1.3)

for every x, y ∈ Rn. This is called the triangle inequality for the standard
Euclidean norm.

The standard Euclidean metric on Rn is defined by

d(x, y) = |x− y|(1.1.4)

1
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for every x, y ∈ Rn. This may also be described as the distance between x and
y, with respect to the standard Euclidean metric.

If x ∈ Rn and r is a positive real number, then the open ball in Rn centered
at x with radius r is defined by

B(x, r) = {y ∈ Rn : |x− y| < r}.(1.1.5)

Similarly, the closed ball in Rn centered at x with radius r is defined by

B(x, r) = {y ∈ Rn : |x− y| ≤ r}.(1.1.6)

A subset U of Rn is said to be an open set with respect to the standard
Euclidean metric if for every x ∈ U there is an r > 0 such that

B(x, r) ⊆ U.(1.1.7)

It is well known and not too difficult to show that any open ball in Rn is an
open set in this sense.

Let E be a subset of Rn. The closure of E in Rn with respect to the
standard Euclidean metric is defined to be the set E of all x ∈ Rn with the
following property: for every r > 0 there is a y ∈ E such that

|x− y| < r.(1.1.8)

Equivalently, this means that for every r > 0,

E ∩B(x, r) 6= ∅.(1.1.9)

Note that E ⊆ E.
If

E = E,(1.1.10)

then E is said to be a closed set in Rn with respect to the standard Euclidean
metric. It is well known and not too difficult to show that any closed ball in
Rn is a closed set. If E is any subset of Rn, then it is well known and not too
hard to show that E is a closed set.

If x ∈ Rn and r > 0, then one can check that the closure of B(x, r) in Rn is
equal to B(x, r). However, this does not always work in arbitrary metric spaces.

If U is an open subset of Rn, then the boundary may be defined as the set
∂U of points in the closure of U that are not in U ,

∂U = U \ U.(1.1.11)

If x ∈ Rn and r > 0, then

∂B(x, r) = {y ∈ Rn : |x− y| = r},(1.1.12)

but this does not always work in arbitrary metric spaces.
If E is any subset of Rn, then the boundary of E is defined by

∂E = E ∩ (Rn \ E).(1.1.13)

One can check that this is equivalent to the definition in the preceding paragraph
when E is an open set.
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1.2 Some spaces of functions

Let U be a nonempty open subset of Rn, for some n ≥ 1. The space of contin-
uous real-valued functions on U may be denoted C(U).

Let f be a real-valued function on U , let x be an element of U , and let l be
a positive integer less than or equal to n. The lth partial derivative of f at x
may be denoted

∂lf(x) = Dlf(x) =
∂f

∂xl
(x),(1.2.1)

when it exists.
If (1.2.1) exists for every x ∈ U and l = 1, . . . , n, then f is said to be continu-

ously differentiable on U . It is well known that this implies that f is continuous
on U , although that may be included in the definition, for convenience. The
space of continuously-differentiable real-valued functions on U may be denoted
C1(U).

If k is any positive integer, then we may say that f is k-times continuously
differentiable if f is continuous on U , and all derivatives of f up to order k of
f exist at every point in U , and are continuous on U . The space of k-times
continuously-differentiable real-valued functions on U may be denoted Ck(U).
More precisely, this may be defined recursively when k ≥ 2, by saying that
Ck(U) consists of all continuously-differentiable real-valued functions f on U
such that

∂f

∂xl
∈ Ck−1(U)(1.2.2)

for each l = 1, . . . , n. It is sometimes convenient to take C0(U) = C(U).
If derivatives of f of all orders exist everywhere on U and are continuous,

then f is said to be infinitely differentiable, or smooth, on U . The space of
infinitely-differentiable real-valued functions on U may be denoted C∞(U).

An n-tuple α = (α1, . . . , αn) of nonnegative integers is said to be a multi-
index, of order

|α| =
n∑

j=1

αj .(1.2.3)

Of course, this is not necessarily the same as the standard Euclidean norm of
α, as an element of Rn, and it should normally be clear which is intended. If
f ∈ Ck(U) for some k ≥ 1 and |α| ≤ k, then the corresponding derivative of f
of order |α| may be denoted

∂αf = Dα f =
∂|α|f

∂xα1
1 · · · ∂xαn

n
.(1.2.4)

Note that this function is continuously differentiable of order

k − |α|(1.2.5)

on U under these conditions.
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If f is a twice continuously-differentiable function on U , then it is well known
that

∂2f

∂xj ∂xl
=

∂2f

∂xl ∂xj
(1.2.6)

on U for every j, l = 1, . . . , n. Similarly, if f is k-times continuously differentiable
on U , then derivatives of f up to order k may be taken in any order.

Sometimes derivatives are expressed using subscripts to indicate the variables
in which the derivative is taken. Thus one may put

fxj
=

∂f

∂xj
, fxj xl

=
∂2f

∂xj ∂xl
,(1.2.7)

and so on, where appropriate.
If x ∈ Rn, then we may put

xα = xα1
1 · · ·xαn

n ,(1.2.8)

where x
αj

j is interpreted as being equal to 1 when αj = 0, even when xj = 0.
This defines a real-valued function on Rn, which is the monomial of degree |α|
associated to α.

Similarly, (1.2.4) corresponds to

∂α = ∂α1
1 · · · ∂αn

n(1.2.9)

or

Dα = Dα1
1 · · ·Dαn

n(1.2.10)

applied to f . More precisely, ∂j = Dj defines a linear mapping from Ck(U)
into Ck−1(U) for each k ≥ 1. Composition of these mappings can be considered
as a type of multiplication, with ∂

αj

j = D
αj

j interpreted as being the identity
mapping when αj = 0.

1.3 Partial differential equations

Let k and n be positive integers, and let U be a nonempty open subset of Rn.
Also let u be a k-times continuously-differentiable real-valued function on U . A
kth-order partial differential equation for u on U can be expressed as

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x), x) = 0,(1.3.1)

as in Section 1.1 of [35], and Section A of Chapter 1 of [38]. Here Dlu(x) is
intended to represent the collection of all possible derivatives of u of order l at

x, which may be identified with an element of Rnl

. Thus F may be considered
as a real-valued function on

Rnk

×Rnk−1

× · · · ×Rn ×R× U.(1.3.2)
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A linear kth-order partial differential equation for u on U can be expressed
as ∑

|α|≤k

aα(x) ∂
αu(x) = f(x),(1.3.3)

as in Section 1.1 of [35], and Section A of Chapter 1 of [38]. More precisely, the
sum is taken over all multi-indices α with |α| ≤ k, which is of course a finite
set. Thus aα(x) should be a function on U for each such α, as well as f(x). If
f(x) = 0 for every x ∈ U , then (1.3.3) is said to be homogeneous.

One may also consider systems of partial differential equations, as in [35].
In this case, one can think of u as taking values in Rm for some positive integer
m. Continuous differentiability of u of order k on U means that each of the m
components of u is k-times continuously differentiable as a real-valued function
on U . One considers finitely many equations involving the components of u and
their deriviatives of order up to k on U , as before.

Let us say that a partial differential equation as in (1.3.1) is invariant under
translations if F does not depend on x in the last variable. This means that F
may be considered as a real-valued function on

Rnk

×Rnk−1

× · · · ×Rn ×R,(1.3.4)

so that (1.3.1) becomes

F (Dku(x), Dk−1u(x), . . . , Du(x), u(x)) = 0.(1.3.5)

If u satisfies this equation on U and a ∈ Rn, then

u(x− a)(1.3.6)

satisfies the same equation on

U + a = {x+ a : x ∈ U}.(1.3.7)

Note that this is also an open set in Rn. Of course, there are analogous notions
for systems.

The left side of (1.3.3) is said to have constant coefficients if aα(x) is a
constant for each multi-index α. If f is also a constant, then (1.3.3) is invariant
under translations, as in the preceding paragraph. There are analogous notions
for linear systems, as before.

Let v be a continuously-differentiable Rn-valued function on U . The diver-
gence of v is the real-valued function on U defined as usual by

div v =

n∑
j=1

∂vj
∂xj

,(1.3.8)

where vj(x) is the jth coordinate of v(x) for each j = 1, . . . , n.
Let f be a real-valued function on U . The directional derivative of f at

x ∈ U in the direction w ∈ Rn is defined to be the derivative of

f(x+ t w)(1.3.9)
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as a function of t ∈ R at t = 0, if it exists. If f is continuously differentiable on
U , then it is well known that the directional derivative exists, and is equal to

n∑
j=1

wj
∂f

∂xj
(x).(1.3.10)

1.4 Complex numbers

A complex number z can be expressed in a unique way as

z = x+ y i,(1.4.1)

where x, y ∈ R and i2 = −1. In this case, x and y are called the real and
imaginary parts of z, and may be denoted Re z, Im z, respectively. The complex
conjugate of z is the complex number

z = x− y i,(1.4.2)

and the absolute value or modulus of z is the nonnegative real number

|z| = (x2 + y2)1/2.(1.4.3)

In particular, the complex conjugate of z is z, and |z| = |z|.
The real line R may be considered as a subset of the set C of complex

numbers, and addition and multiplication of real numbers can be extended to
complex numbers in a standard way. Note that

z + w = z + w,(1.4.4)

z w = z w(1.4.5)

and
z z = |z|2(1.4.6)

for every z, w ∈ C. One can use this to get that

|z w| = |z| |w|(1.4.7)

for every z, w ∈ C. If z ∈ C and z 6= 0, then z has a multiplicative inverse in
C, namely,

1

z
=

z

|z|2
.(1.4.8)

Of course, (1.4.3) is the same as the standard Euclidean norm of (x, y) ∈ R2.
The triangle inequality for the standard Euclidean norm on R2 is the same as
saying that

|z + w| ≤ |z|+ |w|(1.4.9)

for every z, w ∈ C, which can also be verified more directly in this case. The
standard metric on C is defined by

d(z, w) = |z − w|,(1.4.10)
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which corresponds exactly to the standard Euclidean metric on R2.
Let n be a positive integer, let U be an open subset of Rn, and let f be

a complex-valued function on U . Continuity of f on U can be defined in the
same way as for real-valued functions, and is equivalent to continuity of the
real and imaginary parts of f . Similarly, differentiability properties of f can
be defined in the same way as for real-valued functions, and are equivalent to
the corresponding differentiability properties of the real and imaginary parts of
f . Complex analysis deals with different types of differentiability properties of
complex-valued functions on open subsets of C. This is related to the Cauchy–
Riemann equations for the real and imaginary parts of such a function.

1.5 Complex exponentials

The exponential of a complex number z can be defined by

exp z =

∞∑
j=0

zj

j!
,(1.5.1)

where the absolute convergence of the series can be obtained from the ratio test,
for instance. This is equivalent to taking

exp(x+ y i) = (exp x) (cos y + i sin y)(1.5.2)

for every x, y ∈ R.
It is well known that

exp(z + w) = (exp z) (expw)(1.5.3)

for every z, w ∈ C. This can be obtained using the binomial theorem, and
standard results about products of absolutely convergent series.

In particular, if z ∈ C, then one can take w = −z in (1.5.3) to get that
exp z 6= 0, with

1/(exp z) = exp(−z).(1.5.4)

Of course, if x ∈ R, then exp x ∈ R, with exp x ≥ 1 when x ≥ 0. If x ≤ 0, then
0 < expx = 1/(exp(−x)) ≤ 1.

It is easy to see that
(exp z) = exp z(1.5.5)

for every z ∈ C. One can use this to get that

| exp(i y)| = 1(1.5.6)

for every y ∈ R.
It is well known that exp z is complex-analytic, or equivalently holomorphic,

as a complex-valued function of z ∈ C. Here we shall be more concerned with
related complex-valued functions of real variables. If a ∈ C, then exp(a t) may
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be considered as a complex-valued function of t ∈ R. It is well known that this
function is differentiable, with

d

dt
(exp(a t)) = a (exp(a t)).(1.5.7)

Let n be a positive integer, and let Cn be the space of n-tuples a =
(a1, . . . , an) of complex numbers. If a, b ∈ Cn, then put

a · b =
n∑

j=1

aj bj .(1.5.8)

If a ∈ Cn and x ∈ Rn, then exp(a · x) is a complex number, which defines a
complex-valued function of x on Rn. This function is continuously differentiable
on Rn, with

∂

∂xj
exp(a · x) = aj (exp(a · x))(1.5.9)

for every j = 1, . . . , n.
More precisely, exp(a ·x) is infinitely differentiable as a complex-valued func-

tion of x on Rn. If α is a multi-index, then

∂α exp(a · x) = aα exp(a · x).(1.5.10)

Here aα = aα1
1 · · · aαn

n , as in Section 1.2, which is now a complex number.

1.6 Complex-valued functions

Let n be a positive integer, and let U be a nonempty open subset of Rn. The
space of continuous complex-valued functions on U may be denoted C(U,C),
and we may use C(U,R) for the space of continuous real-valued functions on
U , to be more precise. Note that a complex-valued function on U is continuous
if and only if its real and imaginary parts are continuous.

Similarly, if k is a positive integer, then we let Ck(U,C) be the space of k-
times continuously-differentiable complex-valued functions on U . Equivalently,
these are the complex-valued functions on U whose real and imaginary parts
are k-times continuously differentiable. We may use Ck(U,R) for the space of
k-times continuously-differentiable real-valued functions on U . As before, we
may use the same notation with k = 0 for the corresponding spaces of real
and complex-valued continuous functions. The space of infinitely-differentiable
complex-valued functions on U may be denoted C∞(U,C), and we may use
C∞(U,R) for the space of smooth real-valued functions on U .

Note that C(U,R) and C(U,C) are vector spaces over the real and complex
numbers, respectively, with respect to pointwise addition and scalar multiplica-
tion of functions. We may consider Ck(U,R), Ck(U,C) as linear subspaces of
C(U,R), C(U,C), respectively, for each k ≥ 1. Similarly, C∞(U,R), C∞(U,C)
are linear subspaces of Ck(U,R), Ck(U,C), respectively, for each k.
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If α is a multi-index with |α| ≤ k, then ∂α defines a linear mapping from each
of Ck(U,R), Ck(U,C) into Ck−|α|(U,R), Ck−|α|(U,C), respectively. Similarly,
∂α defines a linear mapping from each of C∞(U,R), C∞(U,C) into itself.

Let a ∈ Cn be given, so that exp(a · x) is a smooth complex-valued function
on Rn, as in the previous section. This function is an eigenvector for ∂/∂xj for
each j = 1, . . . , n, as a linear mapping from C∞(Rn,C) into itself, as before.
Similarly, exp(a · x) is an eigenvector for ∂α for each muli-index α, as a linear
mapping from C∞(Rn,C) into itself.

1.7 Polynomials in n variables

Let n be a positive integer, and let us consider polynomials in the n variables
w1, . . . , wn with coefficients in R or C. Such a polynomial can be expressed as

p(w) =
∑

|α|≤N

aα w
α,(1.7.1)

where N is a nonnegative integer, and the sum is taken over all multi-indices
α with |α| ≤ N . The coefficients aα may be real or complex numbers for each
such α, and the monomial wα is as defined in Section 1.2. More precisely, p is
said to have degree less than or equal to N in this case. Note that p(w) ∈ C
when w ∈ Cn, and p(w) ∈ R when w ∈ Rn and the coefficients aα are real
numbers.

If p is as in (1.7.1), then put

p(∂) =
∑

|α|≤N

aα ∂
α,(1.7.2)

or equivalently

p(D) =
∑

|α|≤N

aαD
α.(1.7.3)

This defines a differential operator on Rn with constant coefficients in R or C,
as appropriate, of order less than or equal to N .

Let U be a nonempty open subset of Rn, and suppose that f is a k-times
continuously-differentiable real or complex-valued function on U , with N ≤ k.
Under these conditions,

p(∂)(f) =
∑

|α|≤N

aα ∂
αf(1.7.4)

defines a (k−N)-times continuously-differentiable real or complex-valued func-
tion on U , as appropriate. More precisely, this defines a linear mapping from
Ck(U,R) or Ck(U,C) into Ck−N (U,R) or Ck−N (U,C), respectively, as appro-
priate. Similarly, this defines a linear mapping from C∞(U,R) or C∞(U,C)
into itself, as appropriate.
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If b ∈ Cn, then exp(b · x) defines an infinitely-differentiable complex-valued
function of x on Rn, as in Section 1.5. Observe that

p(∂)(exp(b · x)) = p(b) exp(b · x).(1.7.5)

Thus exp(b · x) is an eigenvector for p(∂) as a linear mapping from C∞(Rn,C)
into itself, with eigenvalue p(b).

If α, β are multi-indices, then α+ β can be defined by coordinatewise addi-
tion, as usual, and is another multi-index. Clearly

|α+ β| = |α|+ |β|,(1.7.6)

where | · | refers to the order of the multi-index, as in Section 1.2. Observe that

wα wβ = wα+β .(1.7.7)

Similarly,
∂α ∂β = ∂α+β ,(1.7.8)

because of the commutativity of derivatives under suitable conditions, as in
Section 1.2.

Let p1(w), p2(w) be polynomials in w1, . . . , wn with real or complex coeffi-
cients, and of degrees less than or equal to nonnegative integers N1, N2. The
product

p(w) = p1(w) p2(w)(1.7.9)

can be defined as a polynomial of degree less than or equal to N1 + N2 in the
usual way, using (1.7.7). Similarly,

p(∂) = p1(∂) p2(∂),(1.7.10)

because of (1.7.8).
More precisely, let f be a k-times continuously-differentiable real or complex-

valued function on a nonempty open subset U of Rn again. If α, β are multi-
indices with |α|+ |β| ≤ k, then ∂βf is (k−|β|)-times continuously differentiable
on U , and

∂α(∂βf) = ∂α+βf(1.7.11)

on U . If p1, p2, and p are as in the preceding paragraph and N1 +N2 ≤ k, then
p2(∂)(f) is (k −N2)-times continuously differentiable on U , and

p1(∂)(p2(∂)(f)) = p(∂)(f)(1.7.12)

on U .

1.8 Connectedness and convexity

Let n be a positive integer, and let E be a subset of Rn. We say that E is
convex if for every x, y ∈ E and t ∈ R with 0 ≤ t ≤ 1, we have that

(1− t)x+ t y ∈ E.(1.8.1)
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It is well known and not too difficult to show that open and closed balls in Rn,
with respect to the standard Euclidean metric (or the metric associated to any
norm), are convex.

We say that E is path connected if for every x, y ∈ E there is a continuous
path in E connecting x and y. More precisely, this means that there is a
continuous mapping f from the closed unit interval [0, 1] in the real line into
Rn such that

f(0) = x, f(1) = y,(1.8.2)

and f(t) ∈ E for every t ∈ [0, 1]. If fj(t) is the jth coordinate of f(t) for every
j = 1, . . . , n and t ∈ [0, 1], then the continuity of f as a mapping from [0, 1] into
Rn is equivalent to the continuity of fj as a real-valued function on [0, 1] for
each j. If E is convex, then E is clearly path connected.

The precise definition of connectedness of subsets of Rn is a bit complicated,
and although we shall not discuss it here, we shall mention some of its properties.
It is well known and not too difficult to show that

path-connected sets are connected.(1.8.3)

It is also well known that

a subset of the real line is connected if and only if it is convex.(1.8.4)

Another well-known theorem states that

connected open subsets of Rn are path connected.(1.8.5)

Let U be an open subset of Rn. In this case,

U is not connected(1.8.6)

if and only if

U can be expressed as the union of two(1.8.7)

nonempty disjoint open subsets of Rn.

This is close to the definition of connectedness, depending on how it is formu-
lated.

If U 6= ∅,Rn, then
∂U 6= ∅.(1.8.8)

This is the same as saying that U is not a closed set, because U is an open set, by
hypothesis. This can be obtained from the connectedness of Rn. Alternatively,
if x ∈ U and z ∈ Rn \ U , then one can show that there is a t0 ∈ R such that
0 < t0 ≤ 1 and

(1− t0)x+ t0 z ∈ ∂U.(1.8.9)

More precisely, one can take t0 to be the infimum of the set of t > 0 such that

(1− t)x+ t z ∈ Rn \ U.(1.8.10)
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Let E be a nonempty subset of Rn, and let f be a function on E with values
in any set. Let us say that f is locally constant at a point x ∈ E if there is an
r > 0 such that

f(x) = f(y)(1.8.11)

for every y ∈ E with |x− y| < r. If E is connected, and f is locally constant at
every point in E, then one can show that

f is constant on E.(1.8.12)

One can also show that connectedness is characterized by this property.
Let U be a nonempty open subset of Rn, and let f be a real or complex-

valued function on U . Observe that f is locally constant on U if and only if f is
continuously-dfferentiable on U , with all of its first partial derivatives equal to
0 on U . The remarks in the preceding paragraph are also a bit simpler in this
case.

1.9 Compactness in Rn

Let n be a positive integer, and let E be a subset of Rn. We say that E is
bounded if there is a nonnegative real number C such that

|x| ≤ C(1.9.1)

for every x ∈ E. It is easy to see that open and closed balls in Rn with respect
to the standard Euclidean metric are bounded sets.

The precise definition of compactness of a subset of Rn, or of an arbitrary
metric space, is a bit complicated, and we shall not discuss it here. However, we
would like to mention the following two well-known results about compactness.
The first is that a subset E of Rn is compact if and only if it is closed and
bounded. The second is the extreme value theorem, which states that if f
is a continuous real-valued function on a nonempty compact set E, then the
maximum and minimum of f on E are attained.

Let U be an open subset of Rn. The relative closure of a subset E of U may
be defined to be the intersection of the closure of E in Rn with U ,

E ∩ U.(1.9.2)

In particular, E is said to be relatively closed in U if

E = E ∩ U.(1.9.3)

If E is closed as a subset of Rn, then it follows that E is relatively closed in U .
Note that U is automatically relatively closed as a subset of itself.

There is a notion of compactness of a subset E of U relative to U , with
respect to the restriction of the standard Euclidean metric on Rn. However, it
is well known that this holds if and only if E is compact as a subset of Rn.
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Let f be a real or complex-valued function on Rn, or a function with values
in Rm for some positive integer m. The support of f is the subset of Rn defined
by

supp f = {x ∈ Rn : f(x) 6= 0}.(1.9.4)

Of course, this is a closed set in Rn, by construction.
Thus the support of f is compact exactly when it is bounded. This is the

same as saying that f(x) = 0 when |x| is sufficiently large.
Suppose now that f is a function defined on an open set U ⊆ Rn. We say

that f has compact support in U if there is a compact set E ⊆ Rn such that
E ⊆ U and

{x ∈ U : f(x) 6= 0} ⊆ E.(1.9.5)

1.10 Some derivatives

Let n be a positive integer, and let α be a multi-index. It is customary to put

α! = α1!α2! · · ·αn!,(1.10.1)

which is a positive integer. Observe that

∂αxα = α!.(1.10.2)

Let β be another multi-index. If

βj < αj for some j,(1.10.3)

then

∂αxβ = 0.(1.10.4)

In particular, this holds when |α| = |β| and α 6= β.
Suppose now that αj ≤ βj for each j = 1, . . . , n, so that β − α is a multi-

index. Of course, ∂αxβ is a multiple of xβ−α in this case. If α 6= β, then we get
that ∂α xβ is equal to 0 at 0.

Let U be a nonempty open subset of Rn, let k be a positive integer, and
let f be a k-times continuously-differentiable real-valued function on U . The
degree k Taylor polynomial of f at a point w ∈ U may be expressed as

P (x) =
∑
|α|≤k

1

α!
∂αf(w)xα,(1.10.5)

where the sum is taken over all multi-indices α with |α| ≤ k. Using the remarks
in the previous paragraphs, we get that

∂βP (0) = ∂βf(w)(1.10.6)

for every multi-index β with |β| ≤ k.
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Put
g(x) = f(w + x)− P (x)(1.10.7)

for x ∈ U −w. This is a k-times continuously-differentiable function on U −w,
with

∂βg(0) = ∂βP (0)− ∂βf(w) = 0(1.10.8)

for every multi-index β with |β| ≤ k.
If x ∈ Rn and |x| is sufficiently small, then

t x ∈ U − w(1.10.9)

for all t ∈ [0, 1]. In this case,
g(t x)(1.10.10)

may be considered as a k-times continuously-differentiable function of t on an
open set in the real line that contains [0, 1]. The derivatives of g(t x) in t up to
order k can be expressed in terms of derivatives of g, as a function on U −w, of
the same order. These derivatives are equal to 0 at t = 0, because of (1.10.8).

One can use this to show that

lim
x→0

|x|−k g(x) = 0,(1.10.11)

which is Taylor’s theorem in n dimensions. This uses the fact that ∂βg is small
near 0 when |β| = k, because of (1.10.8) and the continuity of ∂βg on U − w.
More precisely, this implies that the kth derivative of (1.10.10) in t is small
when |x| is small and t ∈ [0, 1].

1.11 Some smooth functions

Consider the real-valued function defined on R by

ψ(t) = exp(−1/t) when t > 0(1.11.1)

= 0 when t ≤ 0.

It is well known and not too difficult to show that ψ is infinitely differentiable
on R, with all of its derivatives at 0 equal to 0.

Let a, b be real numbers with a < b, and put

ψa,b(t) = ψ(t− a)ψ(b− t).(1.11.2)

This is an infinitely-differentiable function on R that is positive on (a, b), and
equal to 0 otherwise.

One can integrate ψa,b to get an infinitely-differentiable function on R that is
equal to 0 when t ≤ a, is a positive constant when t ≥ b, and strictly increasing
on (a, b). Using this, one can get infinitely-differentiable nonnegative real-valued
functions on R that are equal to 1 on any given closed interval, and equal to 0
on the complement of a slightly larger open interval.
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Alternatively,
ψ(t− a) + ψ(b− t)(1.11.3)

is a positive smooth function on R, so that

ψ(t− a)

ψ(t− a) + ψ(b− t)
(1.11.4)

and
ψ(b− t)

ψ(t− a) + ψ(b− t)
(1.11.5)

are nonnegative smooth functions on R. It is easy to see that (1.11.4) is equal
to 0 when t ≤ a, and to 1 when t ≥ b. Similarly, (1.11.5) is equal to 0 when
t ≥ b, and to 1 when t ≤ a. Note that the sum of (1.11.4) and (1.11.5) is equal
to 1 for every t ∈ R.

If n is any positive integer, then one can use functions like these to get a lot of
infinitely-differentiable nonnegative real-valued functions on Rn with compact
support. One can take products of smooth functions on R with compact support
in each variable, for instance. If a ∈ Rn, then

|x− a|2 =

n∑
j=1

(xj − aj)
2(1.11.6)

is a polynomial in x, and infinitely differentiable on Rn in particular. If ϕ is a
smooth real-valued function on R, then

ϕ(|x− a|2)(1.11.7)

is a smooth function on Rn. If ϕ(t) = 0 when t ∈ R is sufficiently large, then
(1.11.7) has compact support in Rn.

1.12 Semilinearity and quasilinearity

Let k and n be positive integers, let U be a nonempty open subset of Rn, and let
u be a k-times continuously-differentiable real-valued function on U . One may
be interested in kth-order partial differential equations for u on U that have
some linearity properties, without being linear in u and its derivatives. Such a
differential equation is said to be semilinear if it can be expressed as∑

|α|=k

aα(x) ∂
αu(x) + a0(D

k−1u(x), . . . , Du(x), u(x), x) = 0,(1.12.1)

as in Section 1.1 of [35]. Here the sum is taken over all multi-indices α with
|α| = k, and aα(x) should be a real-valued function on U for each such α. As
before, a0 may be considered as a real-valued function on

Rnk−1

× · · · ×Rn ×R× U.(1.12.2)
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Similarly, a kth order partial differential equation for u on U is said to be
quasilinear if it can be expressed as∑

|α|=k

aα(D
k−1u(x), . . . , Du(x), u(x), x) ∂αu(x)(1.12.3)

+a0(D
k−1u(x), . . . , Du(x), u(x), x) = 0,

as in Section 1.1 of [35], and Section A of Chapter 1 of [38]. In this case,
the coefficients aα as well as a0 may be considered as real-valued functions on
(1.12.2).

A kth-order partial differential equation for u on U is said to be fully non-
linear if it depends nonlinearly on at least some of the kth-order derivatives
of u, as in [35]. Of course, there are analogous notions for systems of partial
differential equations.

As in Section 1.3, one may be interested in partial differential equations
that are invariant under translations. In the case of a semilinear equation as in
(1.12.1), this means that aα is a constant for each multi-index α with |α| = k,
and that a0 does not depend on x in the last variable. Thus a0 may considered
as a real-valued function on

Rnk−1

× · · · ×Rn ×R.(1.12.4)

Similarly, a quasilinear equation as in (1.12.3) is invariant under translations
when the aα’s and a0 do not depend on x in the last variable, so that they
may be considered as real-valued functions on (1.12.4). There are analogous
statements for systems of partial differential equations, as usual.

1.13 More on Rn

Let n be a positive integer, and let U be an open subset of Rn. Suppose that
K is a compact subset of Rn such that

K ⊆ U.(1.13.1)

Under these conditions, it is well known that there is a positive real number t
such that for every x ∈ K, we have that

B(x, t) ⊆ U.(1.13.2)

Suppose now that w is an element of U and r is a positive real number such
that

B(w, r) ⊆ U.(1.13.3)

Remember that closed balls in Rn are closed and bounded, as in Sections 1.1
and 1.9, and thus compact. It follows that there is a positive real number ϵ such
that

B(w, r + ϵ) ⊆ U,(1.13.4)
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by the remarks in the preceding paragraph.
Let y ∈ U be given, and let A be the set of positive real numbers r such that

B(y, r) ⊆ U.(1.13.5)

Note that A is nonempty, because U is an open set, by hypothesis. Suppose
that

U 6= Rn,(1.13.6)

so that there is a point z in the complement of U in Rn. If r ∈ A, then we get
that

r ≤ |y − z|,(1.13.7)

because z 6∈ B(y, r). This means that |y − z| is an upper bound for A in R.
It is well known that A has a least upper bound or supremum ρ in R under

these conditions. One can check that

B(y, ρ) ⊆ U,(1.13.8)

because otherwise A would have an upper bound strictly less that ρ. We also
have that

B(y, ρ+ ϵ) 6⊆ U(1.13.9)

for every ϵ > 0, because ρ is an upper bound for A.
Using (1.13.9), we obtain that

B(y, ρ) 6⊆ U,(1.13.10)

because of the earlier remarks. This means that

∂B(y, ρ) 6⊆ U,(1.13.11)

because of (1.13.8).
It is easy to see that

B(y, ρ) ⊆ U,(1.13.12)

using (1.13.8). Combining this with (1.13.11), we get that

∂B(y, ρ) ∩ ∂U 6= ∅.(1.13.13)

In particular, ∂U 6= ∅, as mentioned in Section 1.8.

1.14 More on complex exponentials

Let a be a complex number. Suppose that f is a differentiable complex-valued
function on the real line such that

f ′ = a f(1.14.1)
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on R. This implies that

d

dt
(exp(−a t) f(t)) = 0(1.14.2)

on R. Of course, this means that exp(−a t) f(t) is constant on R. It follows
that

f(t) = f(0) exp(a t)(1.14.3)

for every t ∈ R.

Let n be a positive integer, and let b be an element of Cn. Suppose that
u is a complex-valued function on Rn such that for each j = 1, . . . , n, the jth
partial derivative of u exists at every point in Rn, with

∂u

∂xj
= bj u.(1.14.4)

Under these conditions, one can check that

u(x) = u(0) exp(b · x)(1.14.5)

for every x ∈ Rn, using the remarks in the preceding paragraph.

Let a be a complex number again. If t is a positive real number, then put

ta = exp(a log t).(1.14.6)

This is a smooth complex-valued function of t on the set R+ of positive real
numbers, with

d

dt
(ta) = a ta−1(1.14.7)

for every t > 0.

Let g be a differentiable complex-valued function on R+ such that

g′(t) = a t−1 g(t)(1.14.8)

for every t > 0. Using this, we get that

d

dt
(t−a g(t)) = 0(1.14.9)

on R+. This implies that t−a g(t) is constant on R+, so that

g(t) = g(1) ta(1.14.10)

for every t > 0.
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1.15 The dot product on Rn

If x, y ∈ Rn for some positive integer n, then their dot product is defined by

x · y =

n∑
j=1

xj yj ,(1.15.1)

which is consistent with the notation in Section 1.5. This is also known as the
standard inner product on Rn. Clearly

x · y = y · x(1.15.2)

for every x, y ∈ Rn.
Note that

x · x =

n∑
j=1

x2j = |x|2(1.15.3)

for every x ∈ Rn. This means that the standard Euclidean norm on Rn is the
same as the norm associated to the standard inner product.

It is well known that

|x · y| ≤ |x| |y|(1.15.4)

for every x, y ∈ Rn, which is a version of the Cauchy–Schwarz inequality. This
can be used to obtain the triangle inequality for the standard Euclidean norm
on Rn, by a standard argument.

If x, y ∈ Rn, then

|x+ y|2 = (x+ y) · (x+ y) = x · x+ x · y + y · x+ y · y(1.15.5)

= |x|2 + 2x · y + |y|2.

Thus

x · y = (1/2) (|x+ y|2 − |x|2 − |y|2),(1.15.6)

which is known as a polarization identity.
Let T be a linear mapping from Rn into itself. It is easy to see that

kerT = {x ∈ Rn : T (x) = 0}(1.15.7)

is a linear subspace of Rn, which is called the kernel of T .
One can check that T is one-to-one on Rn if and only if kerT = {0}, using

linearity. It is well known that T is one-to-one on Rn if and only if T maps Rn

onto itself, which is to say that T (Rn) = Rn. In this case, the inverse mapping
T−1 is linear on Rn too.

A one-to-one linear mapping T fromRn onto itself is said to be an orthogonal
transformation if T preserves the standard inner product on Rn. This means
that

T (x) · T (y) = x · y(1.15.8)
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for every x, y ∈ Rn. Under these conditions, the inverse mapping T−1 is an
orthogonal transformation on Rn as well.

If we take x = y in (1.15.8), then we get that

|T (x)| = |x|.(1.15.9)

Conversely, if (1.15.9) holds for every x ∈ Rn, then (1.15.8) holds for every
x, y ∈ Rn. This uses the linearity of T and the polarization identity (1.15.6).

Of course, if (1.15.9) holds for every x ∈ Rn, then kerT = {0}. This implies
that T is one-to-one on Rn, and thus that T maps Rn onto itself, as before.

If T is any linear mapping from Rn into itself, then it is well known that
there is a unique linear mapping T ′ from Rn into itself such that

T (x) · y = x · T ′(y)(1.15.10)

for every x, y ∈ Rn. More precisely, every linear mapping from Rn into itself
corresponds to an n × n matrix of real numbers in a standard way using the
standard basis for Rn. The matrix associated to T ′ in this way is the transpose
of the matrix associated to T .

If T is an orthogonal transformation on Rn, then one can check that T ′ is
the same as the inverse of T . Conversely, if T is an invertible linear mapping
on Rn, with inverse equal to T ′, then one can verify that T is an orthogonal
transformation on Rn.



Chapter 2

Some related notions

2.1 The Laplacian

Let n be a positive integer. The Laplacian on Rn defined by

∆ =

n∑
j=1

∂2

∂x2j
.(2.1.1)

Let p(w) be the polynomial in n variables w1, . . . , wn with real coefficients
defined by

p(w) =

n∑
j=1

w2
j .(2.1.2)

Observe that

p(∂) =

n∑
j=1

∂2j = ∆,(2.1.3)

using the notation in Section 1.7.
If w ∈ Cn, then

p(w) = w · w,(2.1.4)

using the notation in Section 1.5. If w ∈ Rn, then

p(w) = |w|2.(2.1.5)

If b ∈ Cn, then

∆(exp(b · x)) = (b · b) exp(b · x),(2.1.6)

as in Section 1.7. In particular,

∆(exp(b · x)) = 0(2.1.7)

when b · b = 0.

21
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Let U be a nonempty open subset of Rn, and let u be a twice continuuously-
differentiable real or complex-valued function on U . We say that u is harmonic
on U if it satisfies Laplace’s equation

∆u = 0(2.1.8)

on U .
Let T be a linear mapping from Rn into itself. It is easy to see that T is

continuous, so that the inverse image T−1(U) of U under T is an open subset
of Rn too. If u is any twice continuously-differentiable function on U , then the
composition u ◦ T of T and u is twice continuously differentiable on T−1(U).

If T is an orthogonal transformation on Rn, then one can check that

∆(u ◦ T ) = (∆u) ◦ T(2.1.9)

on T−1(U). In particular, if u is harmonic on U , then u ◦ T is harmonic on
T−1(U).

2.2 Two differential operators on R2

Consider the differential operators

L =
1

2

( ∂

∂x1
− i

∂

∂x2

)
(2.2.1)

and

L =
1

2

( ∂

∂x1
+ i

∂

∂x2

)
(2.2.2)

on R2. Observe that

L(x1 + i x2) = L(x1 − i x2) = 1(2.2.3)

and
L(x1 − i x2) = L(x1 + i x2) = 0.(2.2.4)

If z = x1 + i x2 is considered as a complex variable, then L and L may be
denoted ∂/∂z and ∂/∂z, respectively.

Let U be a nonempty open subset of R2, and let f be a continuously-
differentiable complex-valued function on U . If

L(f) = 0(2.2.5)

on U , then f is said to be complex analytic or holomorphic on U , as a function
of the complex variable z. More precisely, (2.2.5) is equivalent to the usual
Cauchy–Riemann equations for the real and imaginary parts of f . In this case,

f ′ = L(f)(2.2.6)

is the usual complex derivative of f .
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Note that

LL = LL =
1

4
∆.(2.2.7)

Let u be a twice continuously-differentiable complex-valued function on U . This
implies that L(u) and L(u) are continuously differentiable on U , and we have
that

L(L(u)) = L(L(u)) =
1

4
∆(u)(2.2.8)

on U . If u is harmonic on U , then it follows that L(u) is holomorphic on U .

If f is holomorphic on U , then it is well known that f is smooth on U , and
twice continuously differentiable in particular. It follows that

∆(f) = 4L(L(f)) = 0,(2.2.9)

so that f is harmonic on U .

If f , g are any continuously-differentiable complex-valued functions on U ,
then

L(f g) = L(f) g + f L(g)(2.2.10)

and

L(f g) = L(f) g + f L(g)(2.2.11)

on U , by the product rule. In particular, if f and g are holomorphic on U , then
their product f g is holomorphic on U .

If f is any continuously-differentiable complex-valued function on U again,
then it is easy to see that

L(f) = L(f)(2.2.12)

on U . It follows that L(f) = 0 on U if and only if f is holomorphic on U .

Observe that

V = {(x1,−x2) : (x1, x2) ∈ U}(2.2.13)

is an open subset of R2 as well. If f is a continuously-differentiable complex-
valued function on U again, then

f̃(x1, x2) = f(x1,−x2)(2.2.14)

is a continuously-differentiable complex-valued function on V . One can check
that f is holomorphic on U if and only if

f̃(x1, x2) = f(x1,−x2)(2.2.15)

is holomorphic on V .
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2.3 Some complex first-order operators

Let n be a positive integer, and let U be a nonempty open subset of Rn. Suppose
that a1, . . . , an are n complex-valued functions on U . Thus

a(x) = (a1(x), . . . , an(x))(2.3.1)

may be considered as a mapping from U into Cn. If u is a continuously-
differentiable complex-valued function on U , then

La(u) =

n∑
j=1

aj
∂u

∂xj
(2.3.2)

defines a complex-valued function on U .
Let v be another continuously-differentiable complex-valued function on U ,

so that the product of u and v is continuously-differentiable on U as well. Ob-
serve that

La(u v) = La(u) v + uLa(v)(2.3.3)

on U , by the product rule. If La(u) = 0 on U , then

La(u v) = uLa(v)(2.3.4)

on U . If La(v) = 0 on U too, then

La(u v) = 0(2.3.5)

on U .
Suppose now that a1, . . . , an are continuously differentiable on U , and let

b1, . . . , bn be another n continuously-differentiable complex-valued functions on
U . Let b and Lb be as before, and put

cj = La(bj)− Lb(aj)(2.3.6)

for j = 1, . . . , n. These are continuous complex-valued functions on U , and we
let c and Lc be as before again.

Suppose that u is twice continuously differentiable on U . This implies that
La(u) and Lb(u) are continuously differentiable on U , because the aj ’s and bj ’s
are continuously differentiable on U , by hypothesis. It is easy to see that

La(Lb(u))− Lb(La(u)) = Lc(u)(2.3.7)

on U .
Put

Re a(x) = (Re a1(x), . . . ,Re an(x))(2.3.8)

and

Im a(x) = (Im a1(x), . . . , Im an(x))(2.3.9)
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for each x ∈ U , which define mappings from U into Rn. If u is any continuously-
differentiable complex-valued function on U , then LRe a(u) and LIm a(u) can be
defined on U as before, and we have that

La(u) = LRe a(u) + i LIm a(u).(2.3.10)

Of course, if u is real-valued on U , then LRe a(u) and LIm a(u) are real-valued
on U as well. Otherwise,

ReLa(u) = LRe a(Reu)− LIm a(Imu)(2.3.11)

and

ImLa(u) = LRe a(Imu) + LIm a(Reu)(2.3.12)

on U . In particular, La(u) = 0 may be considered as a system of first-order
homogeneous linear partial differential equations in the real and imaginary parts
of u, with real coefficients.

2.4 Linear differential operators

Let n be a positive integer, and let U be a nonempty open subset of Rn again.
Also let N be a nonnegative integer, and for each multi-index α with order
|α| ≤ N , let aα be a real or complex-valued function on U . If u is an N -times
continuously-differentiable real or complex-valued function on U , then put

L(u) =
∑

|α|≤N

aα ∂
αu(2.4.1)

on U , where the sum is taken over all multi-indices α with |α| ≤ N , as usual.
This defines a differential operator on U , which can have variable coefficients.

Let r be a nonnegative integer, and suppose that aα is r-times continuously
differentiable on U for each multi-index α with |α| ≤ N . If u is (N + r)-times
continuously differentiable on U , then L(u) is r-times continuously differentiable
on U . In this case, L defines a linear mapping from CN+r(U,C) into Cr(U,C).
If aα is real-valued on U for each α, then L defines a linear mapping from
CN+r(U,R) into Cr(U,R).

Similarly, suppose that aα is infinitely differentiable on U for every multi-
index α with |α| ≤ N . If u is infinitely differentiable on U , then L(u) is infinitely
differentiable on U too. This means that L defines a linear mapping from
C∞(U,C) into itself. If aα is real-valued on U for each α, then L defines a
linear mapping from C∞(U,R) into itself.

One can check that the coefficients aα are uniquely determined by L(u) for
polynomials u of degree less than or equal to N . More precisely, a0 is the same
as L(u) when u(x) ≡ 1 on U . If α 6= 0, then aα can be obtained from L(xα)
and the coefficients aβ with |β| < |α|.
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Let Ñ be another nonnegative integer, and let bβ be a real or complex-

valued function on U for each multi-index β with |β| ≤ Ñ . If u is an Ñ -times
continuously-differentiable real or complex-valued function on U , then

L̃(u) =
∑

|β|≤Ñ

bβ ∂
βu(2.4.2)

defines a real or complex-valued function on U , as appropriate.
Suppose that bβ is N -times continuously differentiable on U for each multi-

index β with |β| ≤ Ñ . If u is (N + Ñ)-times continuously differentiable on U ,

then L̃(u) is N -times continuously differentiable on U . This means that

L(L̃(u))(2.4.3)

is defined as a real or complex-valued function on U , as appropriate.
Under these conditions, (2.4.3) may be expressed as

L̂(u) =
∑

|γ|≤N+Ñ

cγ ∂
γu,(2.4.4)

where cγ is a real or complex-valued function on U for every multi-index γ with

|γ| ≤ N + Ñ . More precisely, the cγ ’s can be expressed as sums of products of
the αα’s with the bβ ’s and their derivatives of order less than or equal to N .

Let r be a nonnegative integer again, and suppose that aα is r-times contin-
uously differentiable on U for every α with |α| ≤ N . If the bβ ’s are (N+r)-times

continuously differentiable on U for every β with |β| ≤ Ñ , then the cγ ’s are r-

times continuously differentiable on U for every γ with |γ| ≤ N + Ñ . If u is also

(N + Ñ + r)-times continuously differentiable on U , then L̃(u) is (N + r)-times

continuously differentiable on U , and L̂(u) is r-times continuously differentiable
on U .

Similarly, if the aα’s and bβ ’s are infinitely differentiable on U , then the cγ ’s
are infinitely differentiable on U . If u is infinitely differentiable on U too, then
L̃(u) and L̂(u) are infinitely differentiable on U as well.

2.5 Some remarks about polynomials

Let n be a positive integer, and let

p(x) =
∑

|α|≤N

aα x
α(2.5.1)

be a polynomial in the n variables x1, . . . , xn with complex coefficients, as in
Section 1.7. Thus N is a nonnegative integer, aα ∈ C for each multi-index α
with order |α| ≤ N , and the sum is taken over all such multi-indices, as before.

If
p(x) = 0 for every x ∈ Rn,(2.5.2)
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then ∂βp(x) = 0 for every x ∈ Rn and multi-index β. In particular, this implies
that

∂βp(0) = 0 for every multi-index β.(2.5.3)

In this case, this means that

aα = 0 for every multi-index α, |α| ≤ N.(2.5.4)

If x ∈ Cn, then p(x) can be defined as a complex number as in (2.5.1). If
(2.5.4) holds, then we get that

p(x) = 0 for every x ∈ Cn.(2.5.5)

Let r be a positive real number, and suppose that

p(x) = 0 for every x ∈ Rn with |x| < r.(2.5.6)

This implies that ∂βp(x) = 0 for every x ∈ Rn with |x| < r, and every multi-
index β. It follows that (2.5.3) holds in particular under these conditions.

If b ∈ Rn or Cn, then p(x + b) can be expressed as a polynomial in x with
complex coefficients too. If

p(x+ b) = 0 for every x ∈ Rn with |x| < r,(2.5.7)

then the previous remarks imply that p(x + b) = 0 for every x ∈ Cn. This is
the same as saying that (2.5.5) holds.

Note that
{x ∈ Rn : p(x) = 0}(2.5.8)

is a closed set in Rn, because p is continuous on Rn. If this set contains a ball
of positive radius, then (2.5.8) is equal to Rn, as in the preceding paragraph.

Equivalently,
{x ∈ Rn : p(x) 6= 0}(2.5.9)

is an open set in Rn. If this set is nonempty, then its intersection with any ball
in Rn of positive radius is nonempty, as in the previous paragraph. This means
that the closure of (2.5.9) in Rn is equal to Rn in this case, which is the same
as saying that (2.5.9) is dense in Rn, with respect to the standard Euclidean
metric.

Of course, if n = 1 and aα 6= 0 for some α, then it is well known that
p(x) = 0 for at most N points x ∈ C.

2.6 Some remarks about Cn

Let n be a positive integer, and consider the space Cn of n-tuples of complex
numbers. If z = (z1, . . . , zn) ∈ Cn, then put

|z| =
( n∑

j=1

|zj |2
)1/2

,(2.6.1)
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using the nonnegative square root on the right side, as usual. Here |zj | is the
modulus of zj ∈ C for each j = 1, . . . , n, as in Section 1.4. We may call (2.6.1)
the standard Euclidean norm on Cn.

If z, w ∈ Cn and t ∈ C, then z+w and t z may be defined as elements of Cn

using coordinatewise addition and scalar multiplication. It is easy to see that

|t z| = |t| |z|(2.6.2)

for every z ∈ Cn and t ∈ C. One can check that

|z + w| ≤ |z|+ |w|(2.6.3)

for every z, w ∈ Cn, using the analogous statements for the modulus of a com-
plex number and the standard Euclidean norm on Rn, as in Sections 1.1 and
1.4. The standard Euclidean metric on Cn is defined by

d(z, w) = |z − w|(2.6.4)

for every z, w ∈ Cn.
If z, w ∈ Cn, then we put

〈z, w〉 = 〈z, w〉Cn =

n∑
j=1

zj wj .(2.6.5)

This is the standard inner product on Cn. Observe that (2.6.5) is Hermitian
symmetric, in the sense that

〈z, w〉 = 〈w, z〉(2.6.6)

for every z, w ∈ Cn.
Of course,

〈z, z〉 =
n∑

j=1

|zj |2 = |z|2(2.6.7)

for every z ∈ Cn. This means that the standard Euclidean norm on Cn is the
same as the norm associated to the standard inner product. It is well known
that

|〈z, w〉| ≤ |z| |w|(2.6.8)

for every z, w ∈ Cn, which is another version of the Cauchy–Schwarz inequality.
This can also be used to obtain the triangle inequality for the standard Euclidean
norm on Cn.

Every z ∈ Cn can be expressed in a unique way as

z = x+ i y,(2.6.9)

with x, y ∈ Rn. One can use this to identify Cn with R2n. Using this iden-
tification, the standard Euclidean norm and metric on Cn correspond exactly
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to their analogues on R2n. Similarly, one can check that the real part of the
standard inner product on Cn corresponds to the standard inner product on
R2n.

Consider the differential operators

Lj =
∂

∂zj
=

1

2

( ∂

∂xj
− i

∂

∂yj

)
(2.6.10)

and

Lj =
∂

∂zj
=

1

2

( ∂

∂xj
+ i

∂

∂yj

)
(2.6.11)

on Cn, as identified with R2n, for each j = 1, . . . , n. Let U be a nonempty
open subset of Cn, which may be identified with an open subset of R2n. Also
let f be a continuously-differentiable complex valued function on U , as an open
subset of R2n. This means that the partial derivatives of f in xj and yj exist
and are continuous on U for each j = 1, . . . , n. If

Lj(f) = 0(2.6.12)

on U for each j = 1, . . . , n, then f is said to be holomorphic on U .
It is easy to see that products of holomorphic functions on U are holomor-

phic. The coordinate functions zl are holomorphic on Cn for each l = 1, . . . , n.
It follows that polynomials in z1, . . . , zn with complex coefficients are holomor-
phic on Cn.

2.7 Polynomials on Cn

Let n be a positive integer, and let p(z) be a polynomial with complex coefficients
on Cn. If n = 1, and p(z) is not constant, then it is well known that p(z) = 0
for some z ∈ C. More precisely, the number of zeros of p, counted with their
multiplicities, is equal to the degree of p.

Suppose now that n ≥ 2, and let us identify Cn with Cn−1 × C. If z =
(z1, . . . , zn) is an element of Cn, then z′ = (z1, . . . , zn−1) ∈ Cn−1, and we
identify z with (z′, zn) ∈ Cn−1 ×C. Using this, we may express p(z) as

p(z) = p(z′, zn) =

r∑
l=0

pl(z
′) zln,(2.7.1)

where r is a nonnegative integer, and pl(z
′) is a polynomial on Cn−1 for each

l = 0, . . . , r.
Suppose that r ≥ 1, and that pr(z

′) is not identically 0 on Cn−1. Otherwise,
if pl(z

′) is identically 0 on Cn−1 for each l ≥ 1, then p(z) would not depend on
zn, and we could consider it as a polynomial in a smaller number of variables.

Let z′ ∈ Cn−1 be given, and suppose that pr(z
′) 6= 0. Under these condi-

tions, (2.7.1) may be considered as a polynomial of degree r in zn, which has r
roots, with multiplicities, as before. There is an analogous statement as long as
pl(z

′) 6= 0 for some l ≥ 1.
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2.8 The Euler operator

Let n be a positive integer, and put

aj(x) = xj(2.8.1)

for each j = 1, . . . , n and x ∈ Rn. In this case,

a(x) = (a1(x), . . . , an(x)) = (x1, . . . , xn)(2.8.2)

is the identity mapping on Rn.
Let U be a nonempty open subset of Rn, and let u be a continuously-

differentiable real or complex-valued function on U . Let La(u) be the continuous
real or complex-valued function on U , as appropriate, defined by

(La(u))(x) =

n∑
j=1

xj
∂u

∂xj
(x)(2.8.3)

for every x ∈ U , as in Section 2.3. The differential operator La is known as the
Euler operator.

In this case, (La(u))(x) is equal to the directional derivative of u at x in
the direction x. Alternatively, if x ∈ U , then u(t x) may be considered as a
continuously-differentiable real or complex-valued function of t in an open subset
of R that contains 1. The derivative of u(t x) in t at 1 is equal to (La(u))(x).

Let b be a complex number. A real or complex-valued function u on Rn\{0}
is said to be homogeneous of degree b if

u(t x) = tb u(x)(2.8.4)

for every x ∈ Rn\{0} and t ∈ R+. If u is continuously differentiable on Rn\{0},
then (2.8.4) implies that

La(u) = b u(2.8.5)

on Rn \ {0}.
Let x ∈ Rn \ {0} be given. If u is continuously differentiable on Rn \ {0},

then u(t x) is continuously differentiable as a function of t ∈ R+. In this case,

d

dt
(u(t x)) =

n∑
j=1

xj (∂ju)(t x) = t−1 (La(u))(t x)(2.8.6)

for every t > 0. If (2.8.5) holds, then we get that

d

dt
(u(t x)) = b t−1 u(t x)(2.8.7)

for every t > 0. This implies that (2.8.4) holds, as in Section 1.14.
Let U be a nonempty open subset of Rn, and let t be a positive real number.

Observe that
t−1 U = {t−1 x : x ∈ U}(2.8.8)
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is an open set in Rn too. If u is a continuously-differentiable real or complex-
valued function on U , then u(t x) is continuously differentiable as a function of
x on t−1 U . The partial derivatives of u(tx) are equal to

∂

∂xj
(u(t x)) = t (∂ju)(t x)(2.8.9)

for each j = 1, . . . , n and x ∈ t−1 U .
Let us now take U = Rn \ {0}, so that t−1 U = U for every t > 0. If u is

homogeneous of degree b ∈ C on Rn \ {0}, then

∂

∂xj
(u(t x)) = tb (∂ju)(x)(2.8.10)

for each j = 1, . . . , n. It follows that ∂ju is homogeneous of degree b − 1 on
Rn \ {0} under these conditions.

One can check that

|tb| = tRe b(2.8.11)

for every t > 0 and b ∈ C. Suppose that Re b > 0, and let us interpret tb as being
equal to 0 when t = 0. Let us say that a real or complex-valued function u on
Rn is homogeneous of degree b if (2.8.4) holds for every x ∈ Rn and nonnegative
real number t. This means that u(0) = 0, and that u is homogeneous of degree
b on Rn \ {0}.

Let u, v be real or complex-valued functions on Rn \ {0} that are homoge-
neous of degrees b, c ∈ C, respectively. It is easy to see that their product u v
is homogeneous of degree b + c on Rn \ {0}. Of course, there is an analogous
statement for homogeneous functions on Rn.

2.9 Some spaces of polynomials

Let n be a positive integer, and let P(Rn,R) and P(Rn,C) be the spaces of
polynomials on Rn with real and complex coefficients, respectively. These are
linear subspaces of the spaces C∞(Rn,R) and C∞(Rn,C) of smooth real and
complex-valued functions on Rn.

Let N be a nonnegative integer, and suppose that aα is a polynomial on Rn

for each multi-index α of order |α| ≤ N . Under these conditions,

L =
∑

|α|≤N

aα ∂
α(2.9.1)

defines a differential operator on Rn with polynomial coefficients. Of course,
the sum is taken over all mutli-indices α with |α| ≤ N , as usual.

It is easy to see that L defines a linear mapping from P(Rn,C) into itself.
If aα is a polynomial with real coefficients for each α, then L maps P(Rn,R)
into itself.
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The composition of two differential operators on Rn with polynomial coef-
ficients is a differential operator with polynomial coefficients too, as in Section
2.4.

Let k be a nonnegative integer. If α is a multi-index of order |α| = k, then
the monomial xα is homogeneous of degree k as a real-valued function on Rn.
If a polynomial p on Rn can be expressed as a finite linear combination of
monomials xα with |α| = k, then it follows that p is homogeneous of degree k
on Rn. Conversely, if a polynomial on Rn is homogeneous of degree k on Rn,
then one can check that it is of this form.

Let Pk(R
n,R) and Pk(R

n,C) be the space of polynomials on Rn with real
and complex coefficients, respectively, that are homogeneous of degree k. These
are linear subspaces of P(Rn,R) and P(Rn,C), respectively.

Let N be a nonnegative integer, and let p be a polynomial on Rn with real
or complex coefficients of degree less than or equal to N . It is easy to see that
p can be expressed in a unique way as a sum of homogeneous polynomials of
degrees from 0 to N .

If a real or complex-valued function u on Rn is k-times continuously differ-
entiable and homogeneous of degree k, then one can check that u is equal to its
degree k Taylor approximation at the origin.

2.10 Polynomials on R2

Of course,

z = x1 + i x2, z = x1 − i x2(2.10.1)

are homogeneous polynomials of degree 1 with complex coefficients on R2. We
also have that

x1 = (1/2) (z + z), x2 = (−i/2) (z − z).(2.10.2)

This means that every polynomial on R2 with complex coefficients corresponds
to a polynomial in z and z with complex coefficients, and that every polyno-
mial in z and z with complex coefficients determines a polynomial in x1, x2
with complex coefficients. More precisely, homogeneous polynomials in x1, x2
correspond to homogeneous polynomials in z, z of the same degree in this way.

Let ∂/∂z and ∂/∂z be as in Section 2.2, and remember that (∂/∂z)(z) =
(∂/∂z)(z) = 1 and (∂/∂z)(z) = (∂/∂z)(z) = 0. If j is a positive integer, then it
follows that

∂

∂z
(zj) =

∂

∂z
(zj) = 0,(2.10.3)

by the product rules for these operators. Similarly,

∂

∂z
(zj) = j zj−1(2.10.4)

and
∂

∂z
(zj) = j zj−1.(2.10.5)
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If l is another positive integer, then we get that

∆(zj zl) = 4
∂

∂z

∂

∂z
(zj zl)(2.10.6)

= 4
( ∂

∂z
(zj)

)( ∂

∂z
(zl)

)
= 4 j l zj−1 zl−1.

Note that zj zl is harmonic when j or l is equal to 0.

If k is a nonnegative integer, then a homogeneous polynomial of degree k on
R2 with complex coefficients may be expressed as

k∑
j=0

cj z
j zk−j(2.10.7)

for some complex coefficients cj , 0 ≤ j ≤ k. If j ≤ k/2, then

zj zk−j = |z|2j zk−2 j .(2.10.8)

If j ≥ k/2, then

zj zk−j = z2 j−k |z|2j(2.10.9)

If

|z|2 = x21 + x22 = 1,(2.10.10)

then we get that

zj zk−j = zk−2 j(2.10.11)

when j ≤ k/2, and that

zj zk−j = z2 j−k(2.10.12)

when j ≥ k/2. It follows that there is a harmonic polynomial on R2 of degree
less than or equal to k that is equal to (2.10.7) on the unit circle. Using this, it
is easy to see that every polynomial on R2 agrees with a harmonic polynomial
on the unit circle. This corresponds to some remarks on p138 of [136].

Let U be a nonempty bounded open subset of Rn for some positive integer
n. If f is a continuous real or complex-valued function on ∂U , then the Dirichlet
problem asks one to find a continuous real or complex-valued function u on U ,
as appropriate, such that

u = f on ∂U,(2.10.13)

and u is harmonic on U . The remarks in the preceding paragraph show that
if n = 2, U is the open unit disk in R2, and f is the restriction to the unit
circle of a polynomial on R2, then one can take u to be the restriction to U of
a harmonic polynomial on R2.
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2.11 Poisson’s equation

Let n be a positive integer, and let U be a nonempty open subset of Rn. If f
is a real or complex-valued function on U , then one might like to find a real or
complex-valued function u on U , as appropriate, such that

∆u = f(2.11.1)

on U . This is Poisson’s equation, as on p193 of [11], and p20 of [35].
Of course, one might like u to be twice continuously-differentiable on U ,

which would mean that f should be continuous on U . There are extended
formulations of the equation, which allow for less regularity. One may also be
interested in additional boundary conditions on u.

If f is a homogeneous polynomial of degree k ≥ 0 on R2, then one can find a
homogeneous polynomial u of degree k + 2 on R2 that satisfies (2.11.1) on R2,
as in the previous section. It follows that if f is any polynomial on R2, then
one can find a polynomial u on R2 that satisfies (2.11.1).

Let g be a real or complex-valued function on ∂U . Another version of the
Dirichlet problem asks one to find a real or complex-valued function u on U , as
appropriate, such that (2.11.1) holds on U and

u = g on ∂U,(2.11.2)

as in Section C of Chapter 2 of [38]. One might like u to be continuous on U ,
so that g should be continuous on ∂U . There are extended versions of this too.

The case where
u = 0 on ∂U(2.11.3)

is known as Dirichlet boundary conditions. If one can solve Poisson’s equation
(2.11.1) without restrictions on u on ∂U , and if one can solve the Dirchlet
problem for harmonic functions on U with arbitrary boundary values, then
one can get a solution to Poisson’s equation on U with prescribed boundary
values. Similarly, if one can solve Poisson’s equation U with Dirichlet boundary
conditions, then one can try to use that to solve the Dirichlet problem for
harmonic functions on U .

2.12 An interesting inner product

Let n be a positive integer, and let p, q be polynomials on Rn with complex
coefficients. Note that the complex conjugate q of q is a polynomial on Rn too.
Put

〈p, q〉 = 〈p, q〉P(Rn,C) = (p(∂)(q))(0),(2.12.1)

where p(∂) is as in Section 1.7.
If p and q are homogeneous polynomials of the same degree k, then p(∂)(q)

is a constant, and (2.12.1) is the same as

〈p, q〉 = 〈p, q〉Pk(Rn,C) = p(∂)(q).(2.12.2)
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This is the definition that is used in the proof of Proposition 2.47 in Section G
of Chapter 2 of [38], on p175 of [86], on p69 of [130], and on p139 of [136]. If p
and q are homogeneous polynomials of different degrees, then it is easy to see
that

〈p, q〉 = 0.(2.12.3)

More precisely, if α, β are multi-indices, then

〈xα, xβ〉 = α! when α = β(2.12.4)

= 0 when α 6= β.

Using (2.12.4), one can check that

〈p, q〉 = 〈q, p〉(2.12.5)

for all polynomials p, q on Rn with complex coefficients. Of course, (2.12.1)
is linear in p over the complex numbers, and conjugate-linear in q. If p(x) =∑

|α|≤N aα x
α for some nonnegative integer N and complex coefficients aα, then

〈p, p〉 =
∑

|α|≤N

|aα|2 α!.(2.12.6)

In particular, this is strictly positive, except when p = 0. It follows that (2.12.1)
defines an inner product on P(Rn,C), as a vector space over the complex num-
bers, as in the proof of Proposition 2.47 in Section G of Chapter 2 of [38], and
on p176 of [86], p69 of [130], and p139 of [136].

Note that the Laplacian maps Pk(R
n,C) into Pk−2(R

n,C) for every integer
k ≥ 2. Let us use this inner product to show that

∆(Pk(R
n,C)) = Pk−2(R

n,C)(2.12.7)

when k ≥ 2, as in the proof of Proposition 2.47 in Section G of Chapter 2 of
[38], and of Theorem 2.1 on p139 of [136]. Suppose that q ∈ Pk−2(R

n,C) is
orthogonal to every element of ∆(Pk(R

n,C)) with respect to this inner product,
so that

〈q,∆(p)〉 = 0(2.12.8)

for every p ∈ Pk(R
n,C). This means that

q(∂)(∆(p)) = 0,(2.12.9)

because ∆(p) = ∆(p). This is the same as saying that

∆(q(∂)(p)) = 0.(2.12.10)

If we take p(x) = |x|2 q(x), then we get that

〈p, p〉 = p(∂)(p) = ∆(q(∂)(p)) = 0.(2.12.11)

This implies that p = 0, as before. This means that q = 0, because of the way
that we chose p. It follows that (2.12.7) holds, by standard arguments in linear
algebra. This also uses the fact that Pk−2(R

n,C) has finite dimension, as a
vector space over C.
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2.13 An orthogonality argument

Let us continue with the same notation as in the previous section. If k is any
nonnegative integer, then let

Ak = {p ∈ Pk(R
n,C) : ∆(p) = 0}(2.13.1)

be the space of homogeneous polynomials on Rn of degree k with complex
coefficients that are harmonic, which is a linear subspace of Pk(R

n,C). Of
course, this is the same as Pk(R

n,C) when k = 0 or 1. If k ≥ 2, then put

Bk = {|x|2 q(x) : q ∈ Pk−2(R
n,C)},(2.13.2)

which is also a linear subspace of Pk(R
n,C).

Let k ≥ 2 and p ∈ Pk(R
n,C) be given, and put

rq(x) = |x|2 q(x)(2.13.3)

for every q ∈ Pk−2(R
n,C). Thus rq ∈ Pk(R

n,C), and

〈rq, p〉 = rq(∂)(p) = q(∂)(∆(p)) = 〈q,∆(p)〉.(2.13.4)

Observe that
〈q,∆(p)〉 = 0(2.13.5)

for every q ∈ Pk−2(R
n,C) if and only if ∆(p) = 0. It follows that

〈rq, p〉 = 0(2.13.6)

for every q ∈ Pk−2(R
n,C) if and only if ∆(p) = 0. This means that Ak is the

orthogonal complement of Bk in Pk(R
n,C) with respect to this inner product,

as in the proof of Proposition 2.47 in Section G of Chapter 2 of [38], on p69 of
[130], and p140 of [136].

This implies that every element of Pk(R
n,C) can be expressed in a unique

way as a sum of elements of Ak and Bk, by standard arguments in linear algebra.
More precisely, this uses the fact that Pk(R

n,C) is a finite-dimensional vector
space over C. This also corresponds to Proposition 5.5 on p76 of [11].

We can repeat the process, to get that every element of Pk(R
n,C) can be

expressed as
l∑

j=0

|x|2 j pj(x),(2.13.7)

where 2 l ≤ k, and pj ∈ Pk−2 j(R
n,C) is harmonic for each j = 1, . . . , l. This

corresponds to Theorem 5.7 on p77 of [11], Corollary 2.48 in Section G of Chap-
ter 2 of [38], Proposition 4.1.1 on p176 of [86], some remarks on p70 of [130],
and Theorem 2.1 on p139 of [136].

One can use this to get that every polynomial on Rn agrees with a harmonic
polynomial on the unit sphere, as in some remarks on p77 of [11], Corollary 2.50
in Section G of Chapter 2 of [38], Corollary 4.1.2 on p177 of [86], mentioned
on p70 of [130], and Corollary 2.2 on p140 of [136]. This corresponds to the
Dirichlet problem on the open unit ball in Rn, for the restriction to the unit
sphere of a polynomial on Rn.
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2.14 The binomial theorem

Ifm is a positive integer and x, y are real or complex numbers, then the binomial
theorem states that

(x+ y)m =

m∑
j=0

(
m

j

)
xj ym−j ,(2.14.1)

where (
m

j

)
=

m!

j! (m− j)!
(2.14.2)

is the usual binomial coefficient for each j = 0, 1, . . . , n. If we take y = 1 in
(2.14.1), then we get that

(x+ 1)m =

m∑
j=0

(
m

j

)
xj .(2.14.3)

Conversely, (2.14.1) can be obtained from (2.14.3) by replacing x with x/y when
y 6= 0.

Of course, it is easy to see that (x + 1)m can be expressed as a sum of
positive integer multiples of xj , 0 ≤ j ≤ m. To get that the multiples are given
by binomial coefficients as before, one can look at the jth derivative of (x+1)m at
0 for each j = 0, 1, . . . ,m. In particular, this shows that the binomial coefficients
are positive integers. Alternatively, one can verify (2.14.3) more directly, using
induction on m.

One can expand (x+1)m into a sum of 2m terms, each of which is a product
of m factors, where every factor is equal to x or to 1. The coefficient of xj in
(x + 1)m is the same as the number of these terms with exactly j factors of
x, and m − j factors of 1. This is also the same as the number of subsets of
{1, . . . ,m} with exactly j elements.

Let k and n be positive integers. It is well known that the number of multi-
indices α = (α1, . . . , αn) with order |α| = k is equal to(

n+ k − 1

k

)
=

(
n+ k − 1

n− 1

)
.(2.14.4)

This corresponds to Problem 2 in Section 1.5 of [35]. Equivalently, this is the
dimension of the spaces Pk(R

n,R), Pk(R
n,C) of homogeneous polynomials of

degree k on Rn with real or complex coefficients, as vector spaces over R or C,
as appropriate. This is mentioned on p78 of [11], in Proposition 2.52 of Section
G of Chapter 2 of [38], on p174f of [86], and on p139 of [136].

If x ∈ Rn or Cn, then the multinomial theorem states that

(x1 + · · ·+ xn)
k =

∑
|α|=k

(
|α|
α

)
xα,(2.14.5)
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as in Problem 3 in Section 1.5 of [35]. More precisely, the sum is taken over all
multi-indices α with order |α| = k, and we put(

|α|
α

)
=

|α|!
α!

,(2.14.6)

where α! is as in Section 1.10. Note that (2.14.5) is trivial when n = 1, and that
the n = 2 case is the same as the binomial theorem.

Let α be a multi-index, and let x, y ∈ Rn or Cn be given. One can check
that

(x+ y)α =
∑

β+γ=α

α!

β! γ!
xβ yγ ,(2.14.7)

where the sum is taken over all multi-indices β, γ with β + γ = α. This is the
same as the binomial theorem when n = 1.

If p(x) is a polynomial in x1, . . . , xn with real or complex coefficients and
b ∈ Rn or Cn, then p(x+ b) can be expressed as a polynomial in x with real or
complex coefficients, as appropriate, as in Section 2.5. One can use (2.14.7) to
get a more precise version of this.

2.15 Leibniz’ formula

Let n be a positive integer, and let α, β be multi-indices. If

βj ≤ αj(2.15.1)

for each j = 1, . . . , n, then put
β ≤ α,(2.15.2)

as in Problem 4 in Section 1.5 of [35]. Equivalently, this means that α− β is a
multi-index too. In this case, we put(

α

β

)
=

α!

β! (α− β)!
,(2.15.3)

as in [35].
Let u, v be smooth real-valued functions on Rn. Leibniz’ formula states

that

∂α(u v) =
∑
β≤α

(
α

β

)
(∂βu) (∂α−βv),(2.15.4)

as in Problem 4 in Section 1.5 of [35]. More precisely, the sum is taken over all
multi-indices β with β ≤ α. Of course, this also works when u, v are |α|-times
continuously-differentiable real or complex-valued functions on a nonempty open
subset of Rn. If |α| = 1, then this reduces to the usual product rule for partial
derivatives.

Let U be a nonempty open subset of Rn, and let N , Ñ be nonnegative
integers. Suppose that for each multi-index α with order |α| ≤ N , aα is a real
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or complex-valued function on U . This permits us to define the corresponding
differential operator

L =
∑

|α|≤N

aα ∂
α,(2.15.5)

as in Section 2.4. Similarly, suppose that bβ is a real or complex-valued function

on U for each multi-index β with |β| ≤ Ñ . This permits us to define the
differential operator

L =
∑

|β|≤Ñ

bβ ∂
β ,(2.15.6)

as before.
Suppose that bβ is N -times continuously differentiable on U for each multi-

index β with |β| ≤ Ñ . If n is an (N+Ñ)-times continuously-differentiable real or

complex-valued function on U , then L̃(u) is N -times continuously differentiable

on U , so that L(L̃(u)) is defined as a real or complex-valued function on U , as

appropriate, as in Section 2.4. In fact, this can be expressed as L̂(u), where

L̂ =
∑

|γ|≤N+Ñ

cγ ∂
γ ,(2.15.7)

and cγ is a real or complex-valued function on U for every multi-index γ with

|γ| ≤ N + Ñ , as before. Remember that the cγ ’s can be expressed in terms of
sums of products of the aα’s with the bβ ’s and their derivatives of order less
than or equal to N . This can be described more precisely using (2.15.4).



Chapter 3

Some integrals and other
matters

3.1 Eigenfunctions of differential operators

Let n be a positive integer, let U be a nonempty open set in Rn. Also let N
be a positive integer, and let aα be a complex-valued function on U for each
multi-index α with order |α| ≤ N . If f is an N -times continuously-differentiable
complex-valued function on U , then put

L(f) =
∑

|α|≤N

aα ∂
αf(3.1.1)

on U .
We say that f is an eigenfunction for L with eigenvalue λ ∈ C if

L(f) = λ f(3.1.2)

on U . One may wish to ask that f satisfy additional boundary conditions or
other restrictions, depending on the circumstances.

Let us identify Rn ×R with Rn+1, so that

V = U ×R(3.1.3)

may be considered as an open subset of Rn+1. Put

u(x, t) = exp(λ t) f(x)(3.1.4)

for every x ∈ U and t ∈ R, which defines an N -times continuously-differentiable
complex-valued function on V . It is easy to see that

∂u

∂t
= L(u)(3.1.5)

40
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on V . We also have that

u(x, 0) = f(x)(3.1.6)

for every x ∈ U .

Suppose that µ ∈ C satisfies

µ2 = λ,(3.1.7)

and put

v(x, t) = exp(µ t) f(x)(3.1.8)

for every x ∈ U and t ∈ R. Observe that v and all of its partial derivatives in t
are N -times continuously-differentiable on V , and that

∂2v

∂t2
= L(v)(3.1.9)

on V . In addition,

v(x, 0) = f(x)(3.1.10)

and
∂v

∂t
(x, 0) = µ f(x)(3.1.11)

for every x ∈ U .

Similarly,

w(x, t) = exp(−µ t) f(x)(3.1.12)

and all of its partial derivaitves in t are N -times continuously-differentiable on
V . As before,

∂2w

∂t2
= L(w)(3.1.13)

on V , because (−µ)2 = λ too. In this case,

w(x, 0) = f(x)(3.1.14)

and
∂w

∂t
(x, 0) = −µ f(x)(3.1.15)

for every x ∈ U .

Of course, one may consider multiple eigenfunctions of L on U , with possibly
different eigenvalues, to get more solutions of partial differential equations like
these on V . One may also consider infinite sums, under suitable conditions.

Mark Kac’ famous question of whether one can hear the shape of a drum
involves eigenvalues for the Laplacian. See [28, 51, 52, 53, 76] for more informa-
tion.
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3.2 The spherical Laplacian

Let n be a positive integer, and let

Sn−1 = {x ∈ Rn : |x| = 1}(3.2.1)

be the unit sphere in Rn, with respect to the standard Euclidean norm. If u is
a complex-valued function on Rn \ {0} that is homogeneous of degree b ∈ C,
then

u(x) = |x|b u(|x|−1 x)(3.2.2)

for every x ∈ Rn \ {0}. In particular, this means that u is uniquely determined
by its restriction to the unit sphere. Similarly, any real or complex-valued
function on the unit sphere can be extended to a function on Rn \ {0} that is
homogeneous of any given degree in C.

Suppose that n ≥ 2, and let u be a twice continuously-differentiable real
or complex-valued function on Rn \ {0} that is homogeneous of degree 0. The
restriction of u to the unit sphere may be considered as a twice continuously-
differentiable function on Sn−1. Smoothness of functions on Sn−1 can be defined
in terms of suitable local coordinates, but it is more convenient for us to look
at it here in terms of smoothness of homogeneous extensions to Rn \ {0}.

The spherical Laplacian of u is the function ∆Su defined on Sn−1 by

∆Su = ∆u on Sn−1.(3.2.3)

Note that ∆u is homogeneous of degree −2 on Rn \{0}, as in Section 2.8. Thus

|x|2 (∆u)(x)(3.2.4)

is homogeneous of degree 0 on Rn \ {0}. Of course, this is the same as (3.2.3)
on Sn−1.

Now let v be a twice continuously-differentiable complex-valued function on
Rn \ {0} that is homogeneous of degree b ∈ C. Observe that

|x|−b v(x)(3.2.5)

is a twice continuously-differentiable function on Rn \ {0} that is homogeneous
of degree 0 and equal to v on Sn−1. The spherical Laplacian of the restriction
of v to Sn−1 is

(∆Sv)(x) = ∆(|x|−b v(x)) on Sn−1.(3.2.6)

Suppose that p is a homogeneous polynomial of degree k ≥ 0 on Rn, and
that p is harmonic on Rn. It is well known that the spherical Laplacian of the
restriction of p to Sn−1 satisfies

∆Sp = −k (k + n− 2) p on Sn−1,(3.2.7)

as in Lemma 2.61 in Section G of Chapter 2 of [38], and on p70 of [130].
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3.3 Connected components

Let n be a positive integer, and let U be a nonempty open subset of Rn. It
is well known that U can be expressed in a unique way as a union of a family
of pairwise-disjoint nonempty connected open subsets of Rn. These nonempty
connected open sets are called the connected components of U . If U is connected,
then U is the only connected component of itself.

In fact, one can define the notion of connected components for any subset E
of Rn, as well as subsets of arbitrary metric spaces or topological spaces. One
can show that the connected components of E are relatively closed in E, but
they are not necessarily relatively open in E.

The connected component of E that contains a point x ∈ E can be obtained
by taking the union of all of the connected subsets of E that contain x. One
can verify that this is a connected set too. By construction, this is the largest
possible connected subset of E that contains x.

Connected components of open subsets ofRn are open sets, basically because
Rn is locally connected. This follows from the connectedness of open balls in
Rn.

More precisely, Rn is locally path connected, because every point in an open
ball in Rn can be connected to the center of the ball by a line segment, which
is contained in the ball. Because of this, the connected components of U are
the same as the path connected components. These can be defined by saying
that x, y ∈ U are in the same path connected component of U when there is a
continuous path in U connecting x and y.

If V is a connected component of U , then it is easy to see that

V ⊆ U,(3.3.1)

because V ⊆ U . In particular, this implies that

∂V ⊆ U.(3.3.2)

One can check that
∂V ⊆ ∂U(3.3.3)

under these conditions. Otherwise, if there is an element of ∂V in U , then one
can show that that point should be in V , to get a contradiction.

Suppose that U 6= Rn, so that V 6= Rn. This implies that ∂V 6= ∅, and thus
that ∂V has an element in ∂U .

3.4 Smoothness near the boundary

Let n be a positive integer, and let V be a nonempty open subset of Rn. We
shall sometimes be concerned with smoothness properties of functions on V ,
including on the boundary. Suppose that U is an open subset of Rn with

V ⊆ U.(3.4.1)
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If u is a function on U with some smoothness property, then the restriction of
u to V may be considered as having that property on V .

However, we may also be concerned with functions that are defined only on
V . If k is a positive integer, then we let Ck(V ,R), Ck(V ,C) be the spaces
of k-times continuously-differentiable real or complex-valued functions u on V ,
respectively, such that u and all of its derivatives ∂αu with |α| ≤ k can be
extended continuously to V , as in Section A of Chapter 0 of [38]. A continuous
extension of a function on V to V is unique when it exists, by standard argu-
ments, and so we may consider u and its derivatives of order less than or equal
to k as being defined on V in this case.

This is initially defined a bit differently in Appendix A.3 of [35], where one
considers k-times continuously-differentiable functions u on V such that u and
its derivatives ∂αu with |α| ≤ k are uniformly continuous on bounded subsets
of V . It is well known that continuous functions on compact sets are uniformly
continuous, which implies that continuous functions of V are uniformly con-
tinuous on bounded subsets of V . Conversely, if a function on V is uniformly
continuous on bounded subsets of V , then it is well known and not too difficult
to show that the function has a continuous extension to V .

If m is a positive integer, then we may also be concerned with continuity
or smoothness properties of functions with values in Rm or Cm. Such a func-
tion may be considered as an m-tuple of real or complex-valued functions, and
the continuity or smoothness properties of the function are equivalent to the
analogous properties holding for each of the corresponding m components.

We may be concerned with smoothness properties of the boundary of V as
well. Properties like these are discussed in Appendix C.1 of [35], and Section B
of Chapter 0 of [38].

3.5 The divergence theorem

Let n ≥ 2 be an integer, although one could include n = 1, with suitable
interpretations. Also let V be a nonempty bounded open subset of Rn with
reasonably smooth boundary. Thus we may consider n-dimensional integrals
over V , and surface integrals over ∂V , of suitable functions on V and ∂V ,
respectively.

Let w be a continuously-differentiable function on V with values in Rn or
Cn. The divergence theorem states that∫

V

divw(x) dx =

∫
∂V

w(y′) · ν(y′) dy′,(3.5.1)

where dy′ is the element of surface area on ∂V , and ν(y′) is the outward-pointing
unit normal to ∂V at y′ ∈ ∂V .

Let u be a twice continuously-differentiable real or complex-valued function
on V . If we take

wj =
∂u

∂xj
(3.5.2)
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for each j = 1, . . . , n, then w defines a continuously-differentiable function on V
with values in Rn or Cn, as appropriate. In this case, the divergence theorem
implies that ∫

V

(∆u)(x) dx =

∫
∂V

(Dv(y′)u)(y
′) dy′,(3.5.3)

where Dν(y′) denotes the directional derivative in the direction of ν(y′). In
particular, if u is also harmonic on V , then∫

∂V

(Dν(y′)u)(y
′) dy′ = 0.(3.5.4)

Suppose that v is a continuously-differentiable real or complex-valued func-
tion on V , as appropriate. Under these conditions,∫

V

(∆u)(x) v(x) dx+

∫
V

n∑
j=1

∂u

∂xj
(x)

∂v

∂xj
(x) dx(3.5.5)

=

∫
∂V

(Dν(y′)u)(y
′) v(y′) dy′.

This follows from the divergence theorem, with

wj(x) = v(x)
∂u

∂xj
(x)(3.5.6)

for each j = 1, . . . , n. In particular, we can take v = u, to get that∫
V

(∆u)(x)u(x) dx+

∫
V

n∑
j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣2 dx =

∫
∂V

(Dν(y′)u)(y
′)u(y′) dy′.(3.5.7)

If u is any continuously-differentiable real or complex-valued function on V ,
then ∫

V

n∑
j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣2 dx(3.5.8)

is called the Dirichlet integral of u on V , as in Section E of Chapter 2 of [38],
and Section 4 of Chapter 5 of [134]. This is equal to 0 exactly when all of the
first partial derivatives of u are equal to 0 on V . This happens if and only if u
is constant on each of the connected components of V .

3.6 Some consequences

Let n be a positive integer, and let V be a nonempty proper open subset of
Rn. Suppose that u is a continuous real or complex-valued function on V that
satisfies Dirichlet boundary conditions, so that u = 0 on ∂V . If u is constant
on any connected component of V , then it is easy to see that u = 0 on that
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component. If u is constant on every connected component of V , then it follows
that u = 0 on V .

Suppose now that V is bounded, with reasonably smooth boundary, and
that u is twice continuously differentiable on V . If u satisfies Dirichlet boundary
conditions on V , then (3.5.7) reduces to∫

V

(∆u)(x)u(x) dx+

∫
V

n∑
j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣2 dx = 0.(3.6.1)

If u is harmonic on V , then it follows that u = 0 on V , as in the preceding
paragraph. This corresponds to Theorem 16 in Section 2.2.5 a of [35]. The
same conclusion could also be obtained using the maximum principle, as in
Section 6.7.

Let ν(y′) be the outward-pointing unit normal to ∂V at y′ ∈ ∂V , as in the
previous section. If

(Dν(y′)u)(y
′) = 0(3.6.2)

for every y′ ∈ ∂V , then u is said to satisfy Neumann boundary conditions on
V . Note that (3.5.7) reduces to (3.6.1) in this case too. If u is harmonic on V ,
then this implies that u is constant on every connected component of V . This
corresponds to part (a) of Problem 10 in Section 6.6 of [35] and Proposition 3.3
in Section A of Chapter 3 of [38], and is related to part (a) of Exercise 18 on
p108 of [11].

Part (b) of Problem 10 in Section 6.6 of [35] asks one to show the same
statement using the maximum principle, under suitable smoothness conditions
on V . This is related to Exercise 27 on p29 of [11].

Suppose that u is an eigenfunction for the Laplacian on V with eigenvalue
λ ∈ C, so that

∆u = λu(3.6.3)

on V . If u satisfies Dirichlet or Neumann boundary conditions on V , then we
get that

λ

∫
V

|u(x)|2 dx+

∫
V

n∑
j=1

∣∣∣∣ ∂u∂xj (x)
∣∣∣∣2 dx = 0,(3.6.4)

by (3.6.1). If u 6= 0 somewhere on V , then∫
V

|u(x)|2 dx > 0.(3.6.5)

Under these conditions, we obtain that λ ∈ R, and that λ ≤ 0. More precisely,
if u satisfies Dirichlet boundary conditions on V , then we get that λ < 0.

3.7 Another consequence

Let n ≥ 2 be an integer, and let V be a nonempty bounded open subset of Rn

with reasonably smooth boundary again. Also let u be a twice continuously-
differentiable real or complex-valued function on V , and let v be a continuously-
differentiable real or complex-valued function on V , as appropriate. Suppose
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that v satisfies Dirichlet boundary conditions on V , so that v(y′) = 0 for every
y′ ∈ ∂V . In this case, (3.5.5) reduces to∫

V

(∆u)(x) v(x) dx+

∫
V

n∑
j=1

∂u

∂xj
(x)

∂v

∂xj
(x) dx = 0.(3.7.1)

This means that ∫
V

n∑
j=1

∂u

∂xj
(x)

∂v

∂xj
(x) dx = 0(3.7.2)

if and only if ∫
V

(∆u)(x) v(x) dx = 0.(3.7.3)

Of course, (3.7.3) holds when u is harmonic on V .
Conversely, if (3.7.3) holds for every smooth function v on Rn with compact

support contained in V , then one can check that u is harmonic on V . It follows
that u is harmonic on V when (3.7.2) holds for every such v.

Suppose now that u is a twice continuously-differentiable real or complex-
valued function on V , and that v is a continuously-differentiable real or complex-
valued function on Rn with compact support contained in V . Under these con-
ditions, for each j = 1, . . . , n, we can define wj as a continuously-differentiable
real or complex-valued function on Rn with compact support contained in V ,
using (3.5.6) on V , and putting wj(x) = 0 when x ∈ Rn \ V . Similarly,

v(x) (∆u)(x)(3.7.4)

and
n∑

j=1

∂u

∂xj
(x)

∂v

∂xj
(x)(3.7.5)

can be extended to continuous real or complex-valued functions on Rn with
compact support contained in V . One can use the divergence theorem to get
that (3.7.1) holds in this case as well.

3.8 The Dirichlet principle

Let n ≥ 2 be an integer, and let V be a nonempty bounded open subset of
Rn with reasonably smooth boundary. Suppose that u and v are continuously-
differentiable complex-valued functions on V . Put

D(u, v) =

∫
V

n∑
j=1

∂u

∂xj
(x)

∂v

∂xj
(x) dx,(3.8.1)

as in Section E of Chapter 2 of [38]. It is easy to see that this is Hermitian
symmetric, in the sense that

D(u, v) = D(v, u).(3.8.2)
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Of course, if u and v are real-valued, then D(u, v) is a real number, and sym-
metric in u and v.

If u = v, then (3.8.1) is the same as the Dirichlet integral (3.5.8), which is
a nonnegative real number. One might be interested in trying to minimize this
quantity, under suitable conditions.

We can express v as u+ (v − u), to get that

D(v, v) = D(u, u) +D(u, v − u) +D(v − u, u) +D(v − u, v − u)

= D(u, u) + 2 ReD(u, v − u) +D(v − u, v − u).(3.8.3)

Suppose now that u is twice continuously differentiable on V , and that

u = v on ∂V.(3.8.4)

This means that v − u = 0 on ∂U , so that

D(u, v − u) = −
∫
V

(∆u)(x) (v(x)− u(x)) dx,(3.8.5)

as in the previous section.
If u is harmonic on U , then it follows that

D(u, v − u) = 0.(3.8.6)

This implies that

D(v, v) = D(u, u) +D(v − u, v − u),(3.8.7)

by (3.8.3). In particular, we get that

D(u, u) ≤ D(v, v),(3.8.8)

which is part of the Dirichlet principle. More precisely, equality holds in (3.8.8)
if and only if

D(v − u, v − u) = 0.(3.8.9)

This condition holds if and only if u = v on V , because of (3.8.4).
Conversely, suppose that (3.8.8) holds whenever (3.8.4) holds. If t ∈ C, then

w = u+ t (v − u)(3.8.10)

is another continuously-differentiable complex-valued function on V , and u = w
on ∂U , by construction. This means that

D(u, u) ≤ D(w,w),(3.8.11)

by hypothesis. Note that

D(w,w) = D(u, u) + 2 Re tD(u, v − u) + |t|2D(v − u, v − u),(3.8.12)

as in (3.8.3). One can use this and (3.8.11) to get that (3.8.6) holds, because
t ∈ C is arbitrary. This implies that u is harmonic on U , because of (3.8.5), as
in the previous section. This is another part of the Dirichlet principle. See also
Section 4 of Chapter 5 of [134].
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3.9 Another helpful fact about integrals

Let n ≥ 2 be an integer, and let V be a nonempty bounded open subset of Rn

with reasonably smooth boundary. One could also include n = 1, with suitable
interpretations, as before. If u, v are twice continuously-differentiable real or
complex-valued functions on V , then∫

V

(u(x) (∆v)(x)− v(x) (∆u)(x)) dx(3.9.1)

=

∫
∂V

(u(y′) (Dν(y′)v)(y
′)− v(y′) (Dν(y′)u)(y

′)) dy′.

Here ν(y′) is the outward-pointing unit normal to ∂V at y′ ∈ ∂V , and Dν(y′)

denotes the directional derivative in the direction of ν(y′), as usual. This can
be obtained from the divergence theorem, with

wj = u
∂v

∂xj
− v

∂u

∂xj
(3.9.2)

for each j = 1, . . . , n.
Suppose for the moment that u and v both satisfy Dirichlet boundary con-

ditions on V , so that
u = v = 0 on ∂V.(3.9.3)

In this case, (3.9.1) reduces to∫
V

(u(x) (∆v)(x)− v(x) (∆u)(x)) dx = 0.(3.9.4)

Similarly, suppose that u and v both satisfy Neumann boundary conditions on
V , which is to say that

(Dν(y′)u)(y
′) = (Dν(y′)v)(y

′) = 0(3.9.5)

for every y′ ∈ ∂V . Clearly (3.9.1) reduces to (3.9.4) in this case as well.
Suppose now that u and v are eigenfunctions for the Laplacian on V with

eigenvalues λ and µ, respectively. This means that

∆u = λu(3.9.6)

and
∆v = µ v(3.9.7)

on V . Suppose also that either u and v both satisfy Dirichlet boundary condi-
tions on V , or that they both satisfy Neumann boundary conditions on V , so
that (3.9.4) holds. This means that

(µ− λ)

∫
V

u(x) v(x) dx = 0.(3.9.8)

If λ 6= µ, then it follows that ∫
V

u(x) v(x) dx = 0.(3.9.9)
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3.10 Some remarks about zero sets

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also
let ϕ be a continuous real-valued function on U , and consider the corresponding
zero set of ϕ in U ,

{x ∈ U : ϕ(x) = 0}.(3.10.1)

This is a relatively closed set in U .

Suppose now that ϕ is continuously-differentiable on U . Let w be an element
of U such that

ϕ(w) = 0(3.10.2)

and
∂ϕ

∂xl
(w) 6= 0(3.10.3)

for some l ∈ {1, . . . , n}. Under these conditions, the implicit function theorem
implies that near w, the zero set (3.10.1) can be represented as the graph of a
continuously-differentiable real-valued function of the other variables xj , j 6= l.
Note that the implicit function theorem for real-valued functions can be shown
more directly than for Rm-valued functions with m ≥ 2, as in Theorem 3.2.1
on p36 of [94].

One can also look at this in terms of the inverse function theorem. Consider
the mapping Φ from U into Rn defined by

Φ(x) = (x1, . . . , xl−1, ϕ(x), xl+1, . . . , xn)(3.10.4)

for each x ∈ U . Equivalently, the jth coordinate of Φ(x) is defined to be xj when
j 6= l, and to be ϕ(x) when j = l. This mapping is continuously differentiable
on U , because ϕ is continuously differentiable on U , by hypothesis.

The differential of Φ at a point x ∈ U is the linear mapping from Rn into
itself that sends v ∈ Rn to the directional derivative (DvΦ)(x) of Φ in the
direction v at x. This linear mapping corresponds to the matrix of partial
derivatives of the components of Φ. One can check that the differential of Φ at
w is invertible as a linear mapping on Rn, because of (3.10.3).

Under these conditions, the inverse function theorem implies that the restric-
tion of Φ to a small neighborhood of w is invertible, where the inverse mapping
is continuously differentiable too. Of course, the zero set (3.10.1) is the same as
the inverse image of the xl = 0 hyperplane under Φ.

3.11 The Neumann problem

Let n be a positive integer, and let U be a nonempty bounded open subset
of Rn with reasonably smooth boundary. If y′ ∈ ∂U , then we let ν(y′) be
the outward-pointing unit normal to ∂U at y′, and we let Dν(y′) denote the
directional derivative in the direction ν(y′), as usual.
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Let f be a real or complex-valued function on U , and let g be a real or
complex-valued function on ∂U . A version of the Neumann problem asks one
to find a real or complex-valued function u on U , as appropriate, such that

∆u = f(3.11.1)

on U , and

(Dν(y′)u)(y
′) = g(y′)(3.11.2)

for every y′ ∈ ∂U . This is discussed in Section C of Chapter 2 of [38].
Of course, one could add a constant to u without affecting (3.11.1) or

(3.11.2). More precisely, one could add a different constant to u on each con-
nected component of U , without affecting these conditions.

If u is twice-continuously differentiable on U , harmonic on U , and satisfies
Neumann boundary conditions on U , then u is constant on every connected
component of U , as in Section 3.6. This implies an appropriate uniqueness
result for the Neumann problem.

Suppose that u is a twice continuously-differentiable real or complex-valued
function on U that satisfies (3.11.1) and (3.11.2). If V is a connected component
of U , then the restriction of u to V satisfies the analogous conditions there. It
follows that ∫

V

f(x) dx =

∫
∂V

g(y′) dy′,(3.11.3)

as in Section 3.5.
One may be particularly concerned with the Neumann problem with f = 0

on U , which may be described as the Neumann problem for harmonic functions.
Of course, (3.11.3) reduces to ∫

∂V

g(y′) dy′ = 0(3.11.4)

in this case. Alternatively, one may be particularly concerned with the case
where g = 0 on ∂U , so that u satisfies Neumann boundary conditions on U . In
this case, (3.11.3) reduces to ∫

V

f(x) dx = 0.(3.11.5)

As with the Dirichlet problem, these two cases of the Neumann problem are
related to each other. If one can solve the Poisson equation (3.11.1) without
(3.11.2), then a solution to a Neumann problem for harmonic functions could
be used to obtain (3.11.2). If one can solve the Poisson equation with Neumann
boundary conditions, then one can use that to try to solve the Neumann problem
for harmonic functions.

The Dirichlet and Neumann problems for harmonic functions are also dis-
cussed in Chapter 3 of [38]. Another approach is discussed in Chapter 7 of [38].
See also Problem 4 in Section 6.6 of [35].
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3.12 The unit ball in Rn

Let n be a positive integer, and let us consider the case where U = B(0, 1) is the
open unit ball inRn in the previous section. If y′ is an element of ∂U = ∂B(0, 1),
which is the unit sphere in Rn, then

ν(y′) = y′(3.12.1)

is the outward-pointing unit normal to ∂B(0, 1) at y′. If u is a continuously-
differentiable complex-valued function on U = B(0, 1), then

(Dν(y′)u)(y
′)(3.12.2)

is the same as the Euler operator applied to u at y′, as in Section 2.8.
Suppose that p is a polynomial on Rn with complex coefficients that is

homogeneous of degree k for some nonnegative integer k. If y′ ∈ ∂B(0, 1), then

(Dν(y′)p)(y
′) = k p(y′),(3.12.3)

as in Section 2.8. If k ≥ 1, and

q = k−1 p,(3.12.4)

then
(Dν(y′)q)(y

′) = p(y′).(3.12.5)

This may be considered as an instance of the Neumann problem for harmonic
functions on B(0, 1) when p is harmonic, so that q is harmonic as well.

If p is a harmonic polynomial on Rn that is homogeneous of degree k ≥ 1,
then ∫

∂B(0,1)

p(y′) dy′ = 0.(3.12.6)

This follows from (3.5.4) and (3.12.3).
If g is any polynomial on Rn with complex coefficients, then g agrees with

a harmonic polynomial on ∂B(0, 1), as in Section 2.13. More precisely, g is
equal to a sum of homogeneous harmonic polynomials on ∂B(0, 1), as before.
If these homogeneous harmonic polynomials are all homogeneous of positive
degree, then one can get a polynomial solution to the corresponding Neumann
problem for harmonic functions on B(0, 1), using (3.12.5). This condition on g
is equivalent to asking that ∫

∂B(0,1)

g(y′) dy′ = 0,(3.12.7)

because of (3.12.6). This is related to Exercise 18 on p108 of [11].
Let p1, p2 be harmonic polynomials on Rn with complex coefficients that

are homogeneous of degrees k1, k2 ≥ 0, respectively. Observe that

(k1 − k2)

∫
∂B(0,1)

p1(y
′) p2(y

′) dy′ = 0,(3.12.8)
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because of (3.9.1) and (3.12.3). If k1 6= k2, then we get that∫
∂B(0,1)

p1(y
′) p2(y

′) dy′ = 0.(3.12.9)

Note that this includes (3.12.6) as a particular case. This corresponds to Propo-
sition 5.9 on p79 of [11], part of Theorem 2.51 in Section G of Chapter 2 of [38],
Proposition 4.1.5 on p179 of [86], 3.1.1 on p69 of [130], and Corollary 2.4 on
p141 of [136].

3.13 Some integrals over spheres

Let n be a positive integer, and let p be a polynomial on Rn with complex
coefficients. If p is harmonic on Rn and homogeneous of degree k ≥ 1, then∫

∂B(0,r)

p(y′) dy′ = 0(3.13.1)

for every r > 0. This is the same as (3.12.6) when r = 1. Otherwise, one can
reduce to that case using a change of variables, or use an analogous argument
for any r > 0.

If p is any polynomial on Rn of degree less than or equal to N for some
nonnegative integer N , then p can be expressed in a unique way as a sum of
homogeneous polynomials of degrees from 0 to N , as in Section 2.9. If p is
a harmonic polynomial, then one can use this to get that p can be expressed
as a sum of harmonic homogeneous polynomials of degrees from 0 to N . This
uses the fact that the Laplacian of a homogeneous polynomial of degree l is a
homogeneous polynomial of degree l − 2 when l ≥ 2. Of course, the Laplacian
of a homogeneous polynomial of degree l is 0 when l = 0 or 1.

If p is a harmonic polynomial on Rn, then

1

|∂B(0, r)|

∫
∂B(0,r)

p(y′) dy′ = p(0)(3.13.2)

for every r > 0. Here |∂B(0, r)| denotes the (n− 1)-dimensional surface area of
∂B(0, r). More precisely, (3.13.2) follows from (3.13.1) when p is homogeneous
of degree k ≥ 1. If p is homogeneous of degree 0, and thus a constant, then
(3.13.2) is clear. One can reduce to the case where p is homogeneous of some
degree k ≥ 0, using the remarks in the preceding paragraph.

It follows that
1

|∂B(a, r)|

∫
∂B(a,r)

p(y′) dy′ = p(a)(3.13.3)

for every a ∈ Rn and r > 0 under these conditions. This uses the fact that
p(x + a) is also a harmonic polynomial in x on Rn. If one replaces p(x) with
p(x+ a) in (3.13.2), then the result is the same as (3.13.3), using a translation
by a to go from an integral over ∂B(0, r) to an integral over ∂B(a, r). Of course,
the surface area |∂B(a, r)| of ∂B(a, r) is the same as the surface area of ∂B(0, r).
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This is known as the mean-value property of p, which will be discuseed
further in Chapter 6. Any harmonic function on an open subset of Rn has
a suitable version of this property, as in Section 6.2. A twice continuously-
differentiable function with the mean-value property is harmonic, as in Section
6.3. One can also use the mean-value property to get smoothness, as in Section
6.4.

3.14 Some remarks about compositions

Let W be a nonempty open subset of R2, and suppose that f is a continuously-
differentiable complex-valued function on W . If v ∈ R2, then the directional
derivative of f in the direction v is equal to

Dvf = v1 ∂1f + v2 ∂2f(3.14.1)

on W . If we identify v with the complex number v1 + i v2, then it is easy to see
that

Dvf = v
∂f

∂z
+ v

∂f

∂z
,(3.14.2)

where ∂f/∂z and ∂f/∂z are as in Section 2.2.
Let n be a positive integer, let U be a nonempty open subset of Rn, and let

u be a continuously-differentiable complex-valued function on U . Suppose that

u(U) ⊆W,(3.14.3)

whereW is considered as a subset of C, and that f is holomorphic onW . Under
these conditions, we get that

∂

∂xj
(f(u(x))) = f ′(u(x))

∂u

∂xj
(x)(3.14.4)

on U for each j = 1, . . . , n, where f ′ = ∂f/∂z is the usual complex derivative
of f .

Suppose for the moment that n = 2, and that u is holomorphic on U . In
this case, one can check that f ◦ u is holomorphic on U , using (3.14.4).

It is well known that the complex exponential function is holomorphic on C,
with complex derivative equal to itself. If u is any continuously-differentiable
complex-valued function on U , then it follows that

∂

∂xj
(expu(x)) = (exp u(x))

∂u

∂xj
(x)(3.14.5)

on U for each j = 1, . . . , n.
Suppose now that u is a continuously-differentiable real-valued function on

U , and that W is an open subset of R that satisfies (3.14.3). If f is any
continuously-differentiable complex-valued function on W , then (3.14.4) holds
on U , by the usual chain rule.
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3.15 More on first-order operators

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also
let a1, . . . , an be n complex-valued functions on U , so that a = (a1, . . . , an) may
be considered as a mapping from U into Cn. If u is a continuously-differentiable
complex-valued function on U , then

La(u) =

n∑
j=1

aj
∂u

∂xj
(3.15.1)

defines a complex-valued function on U , as in Section 2.3.
Let b be another complex-valued function on U , and put

L(u) = La(u) + b u.(3.15.2)

This defines a differential operator on U , as in Section 2.4, with N = 1.
If c is a continuously-differentiable complex-valued function on U , then

La(c u) = La(c)u+ cLa(u)(3.15.3)

on U , as in Section 2.3. If c(x) 6= 0 for every x ∈ U , then we get that

c−1 La(c u) = La(u) + c−1 La(c)u(3.15.4)

on U . This is the same as (3.15.2) when

b = c−1 La(c).(3.15.5)

If γ is a continuously-differentiable complex-valued function on U , then

c(x) = exp γ(x)(3.15.6)

is a continuously-differentiable complex-valued function on U with c(x) 6= 0 for
every x ∈ U . We also have that

c−1 La(c) = La(γ)(3.15.7)

on U , as in (3.14.5).
Suppose that u, v are continuously-differentiable complex-valued functions

on U that are eigenfunctions for La, with eigenvalues λ, µ ∈ C, respectively.
Observe that

La(u v) = La(u) v + uLa(v) = (λ+ µ)u v(3.15.8)

on U , so that u v is an eigenfunction for La with eigenvalue λ+ µ.



Chapter 4

First-order equations

4.1 Some real first-order operators

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also
let a1, . . . , an be n real-valued functions on U . Alternatively,

a(x) = (a1(x), . . . , an(x))(4.1.1)

defines a mapping from U into Rn.
If u is a continuously-differentiable real-valued function on U , then put

La(u) =

n∑
j=1

aj
∂u

∂xj
.(4.1.2)

This defines a real-valued function on U . The value of this function at x ∈ U is
the directional derivative of u at x in the direction a(x).

Let I be a nonempty open interval in the real line, or an open half-line,
or the whole real line, and let w(t) be a continuously-differentiable function
of t ∈ I with values in Rn. Equivalently, this means that the jth component
wj(t) of w(t) is a continuously-differentiable real-valued function on I for each
j = 1, . . . , n. One could also allow I to contain one or both endpoints, with
suitable interpretations using one-sided derivatives at the endpoints. Suppose
that

w(t) ∈ U for every t ∈ I,(4.1.3)

so that
z(t) = u(w(t))(4.1.4)

defines a real-valued function on I. It is well known that z(t) is continuously
differentiable on I under these conditions, with

z′(t) =

n∑
j=1

w′
j(t) (∂ju)(w(t))(4.1.5)

56
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for every t ∈ I.
Suppose that

w′
j(t) = aj(w(t))(4.1.6)

for every t ∈ I. This is the same as saying that

w′(t) = a(w(t))(4.1.7)

for every t ∈ I, as elements of Rn. In this case, we get that

z′(t) =

n∑
j=1

aj(w(t)) (∂ju)(w(t)) = (La(u))(w(t))(4.1.8)

for every t ∈ I.
Suppose for the moment that we also have that

La(u) = 0 on U.(4.1.9)

This implies that
z′(t) = 0(4.1.10)

for every t ∈ I, so that z(t) is constant on I.
Suppose now that u satisfies the semilinear equation

(La(u))(x) + b(u(x), x) = 0(4.1.11)

for some real-valued function b on R× U . In this case, we get that

z′(t) + b(z(t), w(t)) = 0(4.1.12)

for every t ∈ I.
The equations (4.1.7) and (4.1.12) are called the characteristic equations for

(4.1.11). This is related to some remarks in Section 3.2.2 a of [35], and Section
B of Chapter 1 of [38].

It is interesting to consider the case where a is a nonzero constant, as in
Section 2.1 in [35].

4.2 Quasilinear first-order equations

Let n be a positive integer again, and let U be a nonempty open subset of
Rn. In this section, we let a1, . . . , an and b be real-valued functions on R× U .
Consider the quasi-linear first-order partial differential equation

n∑
j=1

aj(u(x), x)
∂u

∂xj
(x) + b(u(x), x) = 0,(4.2.1)

where u is a continuously-differentiable real-valued function on U .
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Let I be an interval in the real line with nonempty interior, which may
be unbounded, as in the previous section. Also let w(t) be a continuously-
differentiable function of t ∈ I with values in Rn, and in fact in U , as before. If
u is a continuously-differentiable real-valued function on U , then

z(t) = u(w(t))(4.2.2)

is a continuously-differentiable real-valued function of t ∈ I, with derivative as
in (4.1.5).

Suppose that
w′

j(t) = aj(u(w(t)), w(t))(4.2.3)

for every t ∈ I. If we consider a = (a1, . . . , an) as an Rn-valued function on
R× U , then this is the same as saying that

w′(t) = a(u(w(t)), w(t))(4.2.4)

for every t ∈ I, as alements of Rn. Under these conditions, (4.2.1) implies that

z′(t) + b(z(t), w(t)) = 0(4.2.5)

for every t ∈ I.
Observe that (4.2.3) is the same as saying that

w′
j(t) = aj(z(t), w(t))(4.2.6)

for every t ∈ I. Equivalently, this means that

w′(t) = a(z(t), w(t))(4.2.7)

for every t ∈ I, as elements of Rn. This together with (4.2.5) form a coupled
system of ordinary differential equations for w(t) and z(t) that does not depend
on u. These are the characteristic equations for (4.2.1). This is related to some
remarks in Section 3.2.2 b of [35], and in Section B of Chapter 1 of [38].

There is an important difference between this case and the one discussed
in the previous section. It is well known that solutions of the initial value
problem for systems of ordinary differential equations are unique under suitable
conditions. This implies that different curves corresponding to solutions of
(4.1.7) cannot cross each other, under suitable conditions. Although one also
has uniqueness for the initial value problem for the system (4.2.5), (4.2.7) under
suitable conditions, it is possible for the curves corresponding to the w(t)’s to
cross each other. This corresponds to some remarks in Sections 3.2.5 a, b of
[35].

4.3 Fully nonlinear first-order equations

Let n be a positive integer, let U be a nonempty open subset of Rn, and let
F (q, y, x) be a real-valued function on

Rn ×R× U.(4.3.1)
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Consider the fully nonlinear first-order partial differential equation

F (Du(x), u(x), x) = 0,(4.3.2)

where u is a continuously-differentiable real-valued function on U .
As in the previous sections, we would like to find some systems of ordinary

differential equations that are related to (4.3.2). Let I be an interval in the real
line with nonempty interior, and which may be unbounded, and let w(t) be a
continuously-differentiable function of t ∈ I with values in U again. Suppose
that u is a continuously-differentiable real-valued function on U , so that

z(t) = u(w(t))(4.3.3)

is a continuously-differentiable real-valued function of t ∈ I, as before.
If t ∈ I, then let p(t) ∈ Rn be defined by

p(t) = Du(w(t)),(4.3.4)

so that

pj(t) = (∂ju)(w(t))(4.3.5)

for each j = 1, . . . , n. We would like to find a nice system of ordinary differential
equations for w(t), z(t), and p(t). To do this, we suppose that u is twice
continuously-differentiable on U , so that p(t) is continuously differentiable on
I. More precisely,

p′j(t) =

n∑
l=1

w′
l(t) (∂j∂lu)(w(t))(4.3.6)

for every j = 1, . . . , n and t ∈ I.
Suppose that u satisfies (4.3.2) on U , and that F is continuously differen-

tiable on (4.3.1). If we differentiate the left side of (4.3.2) with respect to xj ,
then we get that

n∑
l=1

∂F

∂ql
(Du(x), u(x), x)

∂2u

∂xj ∂xl
(x) +

∂F

∂y
(Du(x), u(x), x)

∂u

∂xj
(x)(4.3.7)

+
∂F

∂xj
(Du(x), u(x), x) = 0.

If t ∈ I, then we can take x = w(t), to get that

n∑
l=1

∂F

∂ql
(p(t), z(t), w(t)) (∂j∂lu)(w(t)) +

∂F

∂y
(p(t), z(t), w(t)) pj(t)(4.3.8)

+
∂F

∂xj
(p(t), z(t), w(t)) = 0

for each j = 1, . . . , n.
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Suppose that

w′
l(t) =

∂F

∂ql
(p(t), z(t), w(t))(4.3.9)

for each l = 1, . . . , n and t ∈ I. Using this and (4.3.8), we obtain that

p′j(t) = −∂F
∂y

(p(t), z(t), w(t)) pj(t)−
∂F

∂xj
(p(t), z(t), w(t))(4.3.10)

for each j = 1, . . . , n and t ∈ I.
Remember that z′(t) can be expressed as in (4.1.5). Using (4.3.9), we get

that

z′(t) =

n∑
j=1

∂F

∂qj
(p(t), z(t), w(t)) pj(t)(4.3.11)

for every t ∈ I.
Thus (4.3.9), (4.3.10), and (4.3.11) form a coupled system of ordinary dif-

ferential equations for w(t), z(t), and p(t) that does not depend on u. These
are the characteristic equations for (4.3.2). This corresponds to some remarks
in Section 3.2.1 of [35], and Section B of Chapter 1 of [38].

4.4 More on fully nonlinear equations

Let n be a positive integer, let U be a nonempty open subset of Rn, and let
F (q, y, x) be a continuously-differentiable real-valued function on Rn ×R × U
again. If w(t), z(t), and p(t) are any continuously-differentiable functions on I
with values in Rn, R, and U , respectively, then

d

dt
F (p(t), q(t), w(t)) =

n∑
j=1

∂F

∂qj
(p(t), z(t), w(t)) p′j(t)(4.4.1)

+
∂F

∂y
(p(t), z(t), w(t)) z′(t)

+

n∑
j=1

∂F

∂xj
(p(t), z(t), w(t))w′

j(t)

on I.
If w(t), z(t), and p(t) satisfy the characteristic equations (4.3.9), (4.3.10),

and (4.3.11) on I, then it is easy to see that

d

dt
F (p(t), q(t), w(t)) = 0(4.4.2)

on I. Of course, this means that F (p(t), z(t), w(t)) is constant on I.
If

F (p(t), z(t), w(t)) = 0(4.4.3)
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for some t ∈ I, then it follows that this holds for all t ∈ I under these conditions.
This corresponds to step 2 in the proof of Theorem 2 in Section 3.2.4 of [35],
and a remark near the end of Section B of Chapter 1 of [38].

Of course, if w(t), p(t), and z(t) are associated to a solution u of (4.3.2) as in
the previous section, then (4.4.3) holds by construction. Alternatively, one may
consider initial value problems for the characteristic equations (4.3.7), (4.3.10),
and (4.3.11) that satisfy (4.4.3) for some t, and thus for all t. Solutions to initial
value problems of this type can be used to try to find solutions of (4.3.2), as in
the next section.

In the quasilinear case, we have that

F (q, y, x) =

n∑
j=1

aj(y, x) qj + b(y, x)(4.4.4)

for some real-valued functions aj(y, x), 1 ≤ j ≤ n, and b(y, x) on R× U . Note
that (4.3.9) is the same as (4.2.6) in this case. If (4.4.3) holds, then (4.3.11) is
the same as (4.2.5). This corresponds to a remark in Section 3.2.2 b of [35], and
just after (1.14) in Section B of Chapter 1 of [38].

If c is a real number, then

F̂ (q, y, x) = F (q, y, x)− c(4.4.5)

is another continuously-differentiable real-valued function on Rn × R × U . If
u is a continuously-differentiable real-valued function on U , then the first-order
partial differential equation

F̂ (Du(x), u(x), x) = 0(4.4.6)

on U is the same as saying that

F (Du(x), u(x), x) = c(4.4.7)

on U . Note that the characteristic equations associated to F̂ as in the previous
section are the same as for F , because they only involve the derivatives of F ,
F̂ .

If F is as in (4.4.4), then

F̂ (q, y, x) =

n∑
j=1

aj(y, x) qj + b̂(y, x),(4.4.8)

with b̂(y, x) = b(y, x) − c. However, the characteristic equations associated to

the quasilinear equations corresponding to F and F̂ as in Section 4.2 are not
the same when c 6= 0. The equations for w′

j(t) are the same, but the analogue

of the equation (4.2.5) for z′(t) with b̂(y, x) instead of b(y, x) is a bit different.
The conditions under which this equation is supposed to be the same as in the
previous section are also a bit different.
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4.5 Non-characteristic conditions

Let n be a positive integer, and let U be a nonempty open set in Rn. In Sections
4.1 – 4.3, we started with a solution u of a first-order partial differential equation
on U , and found systems of ordinary differential equations that described the
behavior of u along certain curves. These systems of ordinary differential equa-
tions do not depend on u, and may be used to try to find solutions of the partial
differential equation, at least locally, as in Section 3.2.4 of [35], and Section B
of Chapter 1 of [38].

More precisely, this normally involves additional regularity conditions on the
functions used to define the original partial differential equation, in order to use
appropriate results about systems of ordinary differential equations. One might
suppose that u is given along a nice (n− 1)-dimensional submanifold Σ of Rn,
with suitable regularity on Σ, as in [35, 38]. One would like to a find a solution
to the partial differential equation near Σ, with the given values on Σ, perhaps
at least near a given point on Σ. This may be considered as an initial value
problem or Cauchy problem for the partial differential equation.

Remember that we considered systems of ordinary differential equations for
w(t), z(t), and possibly p(t) defined on an interval I in the rel line. To deal
with the initial value problem for the partial differential equation along Σ, we
want to consider suitable initial value problems for these systems of ordinary
differential equations associated to points in Σ. Let σ ∈ Σ and t0 ∈ R be given,
although one might normally simply take t0 = 0. The initial conditions for w(t)
and z(t) at t = t0 are

w(t0) = σ(4.5.1)

and
z(t0) = u(σ).(4.5.2)

In the fully nonlinear case, we would also need to specify p(t0), and we shall
return to that later.

We would like to define u near Σ in such a way that

u(w(t)) = z(t).(4.5.3)

In particular, we would like to be able to reach points in U near Σ by such a path
w(t). In order to do this, there is an additional non-characteristic condition,
as in Section 3.2.3 c of [35], and Section B of Chapter 1 of [38]. The non-
characteristic condition at σ asks that w′(t0) not be tangent to Σ at w(t0). If
ν(σ) is a nonzero element of Rn that is normal to Σ at σ, then this means that

w′(t0) · ν(w(t0)) = w′(t0) · ν(σ) 6= 0.(4.5.4)

In Section 4.1, the ordinary differential equations for w are given in terms of
the functions aj(x), 1 ≤ j ≤ n, and the non-characteristic condition at σ ∈ Σ
can be expressed as

a(σ) · ν(σ) =
n∑

j=1

aj(σ) νj(σ) 6= 0.(4.5.5)
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In Section 4.2, the ordinary differential equations for w are coupled with those
for z, and the non-characteristic condition at σ can be expressed as

a(u(σ), σ) · ν(σ) =
n∑

j=1

aj(u(σ), σ) νj(σ) 6= 0.(4.5.6)

In particular, this depends on the value of u at σ.

In Section 4.3, the ordinary differential equations for w are coupled with
those for z and p, and the non-characteristic condition at σ can be expressed as

n∑
j=1

∂F

∂qj
(p(t0), z(t0), w(t0)) νj(w(t0))(4.5.7)

=

n∑
j=1

∂F

∂qj
(p(t0), u(σ), σ) νj(σ) 6= 0.

This depends on the value of u at σ, and p(t0), which is supposed to represent
the values of the first partial derivatives of u at σ.

The directional derivative of u at σ in a direction that is tangent to Σ at
σ is determined by the restriction of u to Σ. Another condition on the first
partial derivatives of u at σ is given by the partial differential equation. One
basically needs to be able to choose p(t0) in a way that is compatible with these
conditions, and the non-characteristic condition (4.5.7) depends on the choice
of p(t0).

In particular, p(t0) should satisfy

F (p(t0), z(t0), w(t0)) = F (p(t0), u(σ), σ) = 0.(4.5.8)

This implies that (4.4.3) holds along the curve, as before.

In Section 3.2.3 c of [35], one starts with a suitable choice of p(t0) for a
point σ ∈ Σ. If the non-characteristic condition (4.5.7) holds at σ, then one
can use the implicit function theorem to get suitable initial conditions for p
corresponding to other points in Σ that are close to σ.

In Section B of Chapter 1 of [38], one simply asks to have suitable initial
conditions for p corresponding to points along Σ. An important case where this
is easy to get will be discussed in Section 4.10.

4.6 More on the Euler operator

Let n be a positive integer, and put aj(x) = xj on Rn for each j = 1, . . . , n.
Thus a = (a1, . . . , an) is the identity mapping on Rn, and

La =

n∑
j=1

xj
∂

∂xj
(4.6.1)
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is the Euler operator, as in Section 2.8. In this case, (4.1.6) reduces to

w′
j(t) = wj(t).(4.6.2)

This is solved on the real line by

wj(t) = cj exp t,(4.6.3)

with cj ∈ R for j = 1, . . . , n. Equivalently, (4.1.7) reduces to

w′(t) = w(t),(4.6.4)

which is solved on the real line by

w(t) = (exp t) c,(4.6.5)

where c = (c1, . . . , cn) ∈ Rn.
Let u be a continuously-differentiable real or complex-valued function on

Rn \{0}. Suppose that c 6= 0, so that (4.6.5) is nonzero for each t ∈ R. Observe
that

d

dt
(u((exp t) c)) =

n∑
j=1

(exp t) cj (∂ju)((exp t) c) = (La(u))((exp t) c)(4.6.6)

for every t ∈ R. This is the same as (4.1.8) in this case. Of course, this is
analogous to considering u(τ x) for x ∈ Rn \ {0} and τ > 0, and differentiating
in τ , as in Section 2.8.

If
La(u) = b u(4.6.7)

on Rn \ {0} for some b ∈ C, then (4.6.6) implies that

d

dt
(u((exp t) c)) = b u((exp t) c)(4.6.8)

for every t ∈ R. This means that

u((exp t) c) = u(c) exp(b t)(4.6.9)

for every t ∈ R, which holds automatically when t = 0. One can use this to get
that u is homogeneous of degree b on Rn \ {0}, as in Section 2.8. Conversely,
if u is homogeneous of degree b on Rn \ {0}, then (4.6.9) holds, which implies
that (4.6.8) holds, and thus (4.6.7) holds.

4.7 Angular derivatives in the plane

Let a1(x), a2(x) be the real-valued functions on R2 defined by

a1(x) = −x2, a2(x) = x1.(4.7.1)
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Thus

a(x) = (a1(x), a2(x)) = (−x2, x1)(4.7.2)

defines a mapping from R2 onto itself. If we identify x = (x1, x2) ∈ R2 with
x1 + x2 i ∈ C, then

a(x) = −x2 + x1 i = i x.(4.7.3)

The corresponding system of ordinary differential equations (4.1.6) reduces
to

w′
1(t) = −w2(t), w

′
2(t) = w1(t)(4.7.4)

in this case. If we identify w(t) = (w1(t), w2(t)) with w1(t) + w2(t) i, as before,
then this is the same as saying that

w′(t) = i w(t),(4.7.5)

as in (4.1.7). This is solved on the real line by

w(t) = (exp(i t)) c,(4.7.6)

where c = (c1, c2) ∈ R2 is identified with c1 + c2 i ∈ C, as usual. Note that
w(0) = c.

Let U be a nonempty open subset of R2, and let u be a continuously-
differentiable real or complex-valued function on U . Let La(u) be the continuous
real or complex-valued function on U , as appropriate, defined by

(La(u))(x) = −x2
∂u

∂x1
(x) + x1

∂u

∂x2
(x)(4.7.7)

for every x ∈ U , as in Section 4.1. This is the same as the directional derivative
of u at x, in the direction corresponding to i x, because of (4.7.3).

Let x ∈ R2 be given, and consider

{t ∈ R : exp(i t)x ∈ U},(4.7.8)

where R2 is identified with C as before. This is an open subset of R, and

u(exp(i t)x)(4.7.9)

may be considered as a continuously-differentiable real or complex-valued func-
tion of t in (4.7.8). Observe that

d

dt
(u(exp(i t)x)) = (La(u))(exp(i t)x)(4.7.10)

for every t in (4.7.8).

A nice example related to this case is discussed in Section 3.2.2 a of [35].
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4.8 Another example on R2

Now let a1(x), a2(x) be the real-valued functions on R2 defined by

a1(x) = x1, a2(x) = −x2,(4.8.1)

and put
a(x) = (a1(x), a2(x)) = (x1,−x2)(4.8.2)

for every x ∈ R2. This leads to the system of ordinary differential equations

w′
1(t) = w1(t), w

′
2(t) = −w2(t),(4.8.3)

as in (4.1.6) again. These equations are solved on the real line by

w1(t) = c1 exp t, w2(t) = c2 exp(−t),(4.8.4)

with c1, c2 ∈ R. If we put w(t) = (w1(t), w2(t)) and c = (c1, c2), then we get
that w(0) = c. It follows from (4.8.4) that

w1(t)w2(t) = c1 c2(4.8.5)

for every t ∈ R.
Let U be a nonempty subset of R2 again, and let u be a continuously-

differentiable real or complex-valued function on U . Also let La(u) be the
continuous real or complex-valued function defined on U by

(La(u))(x) = x1
∂u

∂x1
(x)− x2

∂u

∂x2
(x),(4.8.6)

as in Section 4.1.
Let x ∈ R2 be given, and note that

{r ∈ R+ : (r x1, r
−1 x2) ∈ U}(4.8.7)

is an open subset of R. We may consider

u(r x1, r
−1 x2)(4.8.8)

as a continuously-differentiable real or complex-valued function of r on (4.8.7).
If r is in (4.8.7), then

d

dr
(u(r x1, r

−1 x2)) = x1 (∂1u)(r x1, r
−1 x2)− r−2 x2 (∂2u)(r x1, r

−1 x2)

= r−1 (La(u))(r x1, r
−1 x2).(4.8.9)

Alternatively,

{t ∈ R : ((exp t)x1, (exp(−t))x2) ∈ U}(4.8.10)
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is an open subset of R, and

u((exp t)x1, (exp(−t))x2)(4.8.11)

may be considered as a continuously-differentiable real or complex-valued func-
tion of t on (4.8.10). If t is in (4.8.10), then

d

dt
(u((exp t)x1, (exp(−t))x2)) = (La(u))((exp t)x1, (exp(−t))x2).(4.8.12)

This is related to Exercise (3) in Section B of Chapter 1 of [38]. In particular,
if f is a continuously-differentiable real or complex-valued function on an open
subset V of the real line, then

u(x1, x2) = f(x1 x2)(4.8.13)

is a continuously-differentiable function on the open set

{(x1, x2) ∈ Rn : x1 x2 ∈ V }(4.8.14)

in the plane, and

La(u) = 0(4.8.15)

on (4.8.14).

4.9 Some simpler quasilinear equations

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also let
a1, . . . , an be real-valued functions on R×U , and let b be a real-valued function
on R. Consider the quasilinear first-order partial differential equation

n∑
j=1

aj(u(x), x)
∂u

∂xj
(x) + b(u(x)) = 0,(4.9.1)

where u is a continuously-differentiable real-valued function on U . This is the
same as in Section 4.2, with b not depending on x ∈ U .

Let I be an interval in the real line with nonempty interior, and which may be
unbounded, and let w(t) be a continuously-differentiable function of t ∈ I with
values in U , as before. We previously considered a system of ordinary differential
equations for w(t) and a continuously-differentiable real-valued function z(t) of
t ∈ I. The equation for w(t) is

w′(t) = a(z(t), w(t))(4.9.2)

for every t ∈ I, as before. In this case, the equation for z(t) is

z′(t) + b(z(t)) = 0(4.9.3)
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for every t ∈ I. This does not depend on w(t), and so a solution to (4.9.3) can
be used to get that (4.9.2) is a system of ordinary differential equations for w(t)
on I.

If b ≡ 0 on R, then (4.9.1) reduces to

n∑
j=1

aj(u(x), x)
∂u

∂xj
(x) = 0,(4.9.4)

on U . Similarly, (4.9.3) reduces to

z′(t) = 0(4.9.5)

for every t ∈ I. Of course, this means that z(t) is constant on I.
Suppose now that a1, . . . , an are real-valued functions on R, which is to say

that they do not depend on x ∈ U . This means that (4.9.1) reduces to

n∑
j=1

aj(u(x))
∂u

∂xj
(x) + b(u(x)) = 0(4.9.6)

on U . Similarly, (4.9.2) reduces to

w′(t) = a(z(t))(4.9.7)

on I.
If we also ask that b ≡ 0 on R again, then (4.9.4) reduces to

n∑
j=1

aj(u(x))
∂u

∂xj
(x) = 0(4.9.8)

on U . The right side of (4.9.7) is constant on I under these conditions, as
before. This means that the curve corresponding to w(t) follows a straight line,
at constant speed.

However, it is possible for curves like these to cross each other, as men-
tioned in Section 3.2.5 b of [35]. This can lead to limitations on continuously-
differentiable solutions of (4.9.8), as in [35].

Some equations like these will be mentioned in Section 4.12.

4.10 A simplification with xn

Let n be an integer greater than or equal to 2, and let U be a nonempty open
subset of Rn. Also let F (q, y, x) = F (q1, . . . , qn, y, x) be a real-valued function
on Rn×R×U , as in Section 4.3. If u is a continuously-differentiable real-valued
function on U , then the first-order partial differential equation corresponding
to F (q, y, x) can be expressed as

F
( ∂u

∂x1
(x), . . . ,

∂u

∂xn
(x), u(x), x

)
= 0.(4.10.1)
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Suppose that F (q, y, x) can be expressed as

F (q1, . . . , qn−1, qn, y, x) = qn + F̃ (q1, . . . , qn−1, y, x)(4.10.2)

for some real-valued function F̃ (q1, . . . , qn−1, y, x) on Rn−1 × R × U . In this
case, (4.10.1) is the same as saying that

∂u

∂xn
(x) + F̃

( ∂u

∂x1
(x), . . . ,

∂u

∂xn−1
(x), u(x), x

)
= 0.(4.10.3)

Suppose that F̃ is continuously differentiable on Rn−1 ×R × U , so that F
is continuously differentiable on Rn ×R × U . This leads to a coupled system
of ordinary differential equations for w(t), z(t), and p(t) as in Section 4.3. The
differential equation for the nth component wn(t) of w(t) reduces to

w′
n(t) = 1(4.10.4)

for every t in the interval I.
In the quasilinear case, as in Section 4.2, the analogous condition is that

an ≡ 1(4.10.5)

on R × U . In this case, we have a coupled system of ordinary differential
equations for w(t) and z(t), as before. The differential equation for wn(t) reduces
to (4.10.4) again. Similarly, one may consider the condition (4.10.5) in Section
4.1, where an is a real-valued function on U . The system of ordinary differential
equations for w(t) depends only on a, and the differential equation for wn(t)
reduces to (4.10.4).

Suppose that the hypersurface Σ mentioned in Section 4.5 is contained in
a hyperplane where xn is constant. Note that the non-characteristic condition
holds when the differential equation for wn(t) is as in (4.10.4).

The directional derivatives of u at a point in Σ in directions tangent to Σ
are determined by the restriction of u to Σ, as before. In this case, this means
that the derivative of u with respect to xj on Σ is determined by the restriction
of u to Σ for j = 1, . . . , n − 1. If u satisfies a partial differential equation as
in (4.10.3), then it follows that the derivative of u with respect to xn on Σ is
determined by the restriction of u to Σ as well.

If u is given on Σ, then this makes it easy to get initial conditions for p at
points in Σ, as in Section 4.5. More precisely, the initial condition for pj at a
point in Σ is given by the derivative of u with respect to xj at the point when
j = 1, . . . , n− 1, and is determined by (4.10.3) when j = n.

4.11 Some simpler fully nonlinear equations

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also
let F (q, x) be a real-valued function on Rn×U , and consider the fully nonlinear
first-order partial differential equation

F (Du(x), x) = 0,(4.11.1)
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where u is a continuously-differentiable real-valued function on U . This is the
same as in Section 4.3, where the function F (q, y, x) on Rn ×R × U does not
depend on y ∈ R.

Let I be an interval in the real line with nonempty interior, and which may be
unbounded, and let w(t), z(t), and p(t) be continuously-differentiable functions
of t ∈ I with values in U , R, and Rn, respectively. If F (q, x) is continuously
differentiable on Rn×U , then we get a system of ordinary differential equations
for w(t), z(t), and p(t), as in Section 4.3, which has some simplifications in this
case. The equations for w′(t) are now

w′
l(t) =

∂F

∂ql
(p(t), w(t))(4.11.2)

for each l = 1, . . . , n and t ∈ I. The equations for p′(t) reduce to

p′j(t) = − ∂F

∂xj
(p(t), w(t))(4.11.3)

for each j = 1, . . . , n and t ∈ I. The equation for z′(t) is

z′(t) =

n∑
j=1

∂F

∂qj
(p(t), w(t)) pj(t)(4.11.4)

on I.
The right sides of these equations do not involve z(t). Thus (4.11.2) and

(4.11.3) form a system of ordinary differential equations for w(t) and p(t). If
one has solutions for these equations, then (4.11.4) can be solved directly.

Suppose now that n ≥ 2, and that F (q, x) can be expressed as

F (q1, . . . , qn−1, qn, x) = qn + F̃ (q1, . . . , qn−1, x)(4.11.5)

for some real-valued function F̃ (q1, . . . , qn−1, x) on Rn−1×U , as in the previous
section. This means that (4.11.1) is the same as saying that

∂u

∂xn
(x) + F̃

( ∂u

∂x1
(x), . . . ,

∂u

∂xn−1
(x), x

)
= 0,(4.11.6)

on U , as before. Of course, (4.11.2) reduces to (4.10.4) when l = n. Similarly,
(4.11.4) can be reexpressed as

z′(t) =

n−1∑
j=1

∂F̃

∂qj
(p1(t), . . . , pn−1(t), w(t)) pj(t) + pn(t)(4.11.7)

in this case.
If F̃ (q1, . . . , qn−1, x) = F̃ (q1, . . . , qn−1, x1, . . . , xn−1, xn) does not depend on

xn, then (4.11.6) is the same as the Hamilton–Jacobi equation. Under these
conditions, (4.11.3) says that

p′n(t) = 0(4.11.8)

for every t ∈ I when j = n, so that pn is constant on I. This type of equation
is discussed in [35], starting in Section 3.2.5 c. These equations are normally
expressed a bit differently, as in the next section.
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4.12 Other notation in n+ 1 variables

Let n be a positive integer, and let us identify Rn ×R with Rn+1 in the usual
way. An element of Rn × R may be expressed as (x, τ), where x ∈ Rn and
τ ∈ R.

Let U be a nonempty open subset of Rn ×R, and let

F (q1, . . . , qn, qn+1, y, x, τ )(4.12.1)

be a real-valued function on Rn+1 × R × U . This means that (4.12.1) is de-
fined for q1, . . . , qn, qn+1, y ∈ R and (x, τ) ∈ U . If u(x, τ) is a continuously-
differentiable real-valued function on U , then the first-order partial differential
equation corresponding to (4.12.1) can be expressed as

F
( ∂u

∂x1
(x, τ), . . . ,

∂u

∂xn
(x, τ),

∂u

∂τ
(x, τ), u(x, τ), x, τ

)
= 0.(4.12.2)

Suppose that (4.12.1) can be expressed as

qn+1 + F̃ (q1, . . . , qn, y, x, τ )(4.12.3)

for some real-valued function F̃ (q1, . . . , qn, y, x, τ ) on Rn ×R×U . Under these
coditions, (4.12.2) is the same as saying that

∂u

∂τ
(x, τ) + F̃

( ∂u

∂x1
(x, τ), . . . ,

∂u

∂xn
(x, τ), u(x, τ), x, τ

)
= 0.(4.12.4)

This corresponds to (4.10.3), in this notation.

If F̃ is continuously differentiable on Rn ×R×U , then we can consider the
associated system of ordinary differential equations, as before. The analogue
of (4.10.4) with n replaced by n + 1 permits us to identify t with τ , perhaps
with a suitable translation. Of course, an equation of the form (4.12.4) is often
expressed with t in place of τ .

If F̃ (q1, . . . , qn, y, x, τ ) does not depend on y or τ , then (4.12.4) is the same as
the Hamilton–Jacobi equation, as in the previous section, with slightly different
notation.

Let Φ be a continuously-differentiable function on the real line with values
in Rn. The partial differential equation

∂u

∂τ
+ divΦ(u) = 0(4.12.5)

is called a scalar conservation law, as in Example 5 in Section 3.2.5 b of [35].
More precisely, the divergence is taken in the x variables here. Equivalently,
this can be expressed as

∂u

∂τ
+

n∑
j=1

Φ′
j(u)

∂u

∂xj
= 0,(4.12.6)
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where Φj is the jth component of Φ for each j = 1, . . . , n. This may be consid-
ered as one of the types of equations mentioned in Section 4.9.

If n = 1 and b ∈ R, then

∂u

∂τ
(x, τ) + u(x, τ)

∂u

∂x
(x, τ) = b(4.12.7)

is a quasilinear first-order equation with some additional properties as in Section
4.9. This is the inviscid form of Burger’s equation when b = 0, which is discussed
in Section 3.4.1 of [35]. Note that Burger’s equation is an example of a scalar
conservation law. This equation with b = 1 is mentioned in Problem 5 (c) in
Section 3.5 of [35], as well as Example 2 and exercise (4) in Section B of Chapter
1 of [38].

4.13 Some other fully nonlinear equations

Let n be a positive integer, and let F (q, y) be a real-valued function on Rn×R.
Also let U be a nonempty open subset of Rn, and consider the fully nonlinear
first-order partial differential equation

F (Du(x), u(x)) = 0,(4.13.1)

where u is a continuously-differentiable real-valued function on U . This is the
same as in Section 4.3 again, where the function F (q, y, x) on Rn ×R×U does
not depend on x ∈ U .

Let I be an interval in the real line with nonempty interior, and which may be
unbounded, and let w(t), z(t), and p(t) be continuously-differentiable functions
of t ∈ I with values in U , R, and Rn, respectively, as before. If F (q, y) is
continuously differentiable on Rn ×R, then the system of ordinary differential
equations for w(t), z(t), and p(t) discussed in Section 4.3 can be simplified in
this case too. The equations for w′(t) are

w′
l(t) =

∂F

∂ql
(p(t), z(t))(4.13.2)

for each l = 1, . . . , n and t ∈ I. The equations for p′(t) now reduce to

p′j(t) = −∂F
∂y

(p(t), z(t)) pj(t)(4.13.3)

for each j = 1, . . . , n and t ∈ I. The equation for z′(t) reduces to

z′(t) =

n∑
j=1

∂F

∂qj
(p(t), z(t)) pj(t)(4.13.4)

for every t ∈ I.
The right sides of these equations do not involve w(t), so that (4.13.3) and

(4.13.4) form a system of ordinary differential equations for p(t) and z(t). If one
has solutions to these equations, then (4.13.2) can be solved directly, as before.
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Suppose for the moment that the derivative of F (q, y) in y does not depend
on y. This means that

F (q, y) = F (q, 0) +
∂F

∂y
(q, 0) y(4.13.5)

for every q ∈ Rn and y ∈ R. Note that F (q, 0) and (∂F/∂y)(q, 0) can be
arbitrary continuously-differentiable real-valued functions of q ∈ Rn here. It
follows that the right side of (4.13.3) does not involve z(t), so that one gets a
system of ordinary differential equations for p(t). If one has a solution for this
system, then (4.13.4) gives an ordinary differential equation for z(t).

Suppose now that the derivative of F (q, y) in y is a constant c ∈ R, so that

F (q, y) = F (q, 0) + c y(4.13.6)

for every q ∈ Rn and y ∈ R. In this case, (4.13.3) is the same as saying that

p′j(t) = −c pj(t)(4.13.7)

on I for each j = 1, . . . , n. This is solved by taking

pj(t) = aj exp(−c t)(4.13.8)

for some real numbers a1, . . . , an. Note that the right side of (4.13.4) does not
involve z(t) under these conditions. Example 3 in Section 3.2.2 c of [35] is a
nice example of this type.

4.14 A simpler case

Let n be a positive integer again, and let F (q) be a real-valued function on Rn.
Consider the fully nonlinear first-order partial differential equation

F (Du(x)) = 0,(4.14.1)

where u is a continuously-differentiable real-valued function on a nonempty open
subset U of Rn. This is the same as in Section 4.3, where the function F (q, y, x)
on Rn × R × U does not depend on either y ∈ R or x ∈ U . This may also
be considered as a particular case of the classes of fully nonlinear equations
discussed in Sections 4.11 and 4.13. If a ∈ Rn and b ∈ R, then

u(x) = a · x+ b(4.14.2)

satisfies (4.14.1) on Rn if and only if

F (a) = 0.(4.14.3)

Let I be an interval n the real line with nonempty interior, and which may be
unbounded, and let w(t), z(t), and p(t) be continuously-differentiable functions
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on I with values in U , R, and Rn, respectively, as usual. If F (q) is continuously
differentiable on Rn, then the system of ordinary differential equations for w(t),
z(t), and p(t) discussed in Section 4.3 can be simplified further, as follows. The
equations for w′(t) are

w′
l(t) =

∂F

∂ql
(p(t))(4.14.4)

for each l = 1, . . . , n and t ∈ I. The equations for p′(t) are simply

p′j(t) = 0(4.14.5)

for each j = 1, . . . , n and t ∈ I. The equation for z′(t) is

z′(t) =

n∑
j=1

∂F

∂qj
(p(t)) pj(t)(4.14.6)

for every t ∈ I.
Of course, (4.14.5) implies that p(t) is constant on I. This means that the

right sides of (4.14.4) and (4.14.6) are constant on I as well.
The eikonal equation

|∇u(x)| = 1(4.14.7)

is a partial differential equation of this type. More precisely, this is equivalent
to saying that

|∇u(x)|2 = 1(4.14.8)

on U . This corresponds to taking

F (q) = |q|2 − 1 =

n∑
j=1

q2j − 1,(4.14.9)

which is a smooth function on Rn.
Suppose that n ≥ 2, and that F (q) can be expressed as

F (q1, . . . , qn) = qn + F̃ (q1, . . . , qn−1)(4.14.10)

for some real-valued function F̃ (q1, . . . , qn−1) on Rn−1, as in Section 4.10. In
this case, (4.14.1) is the same as saying that

∂u

∂xn
(x) + F̃

( ∂u

∂x1
(x), . . . ,

∂u

∂xn−1
(x)

)
= 0(4.14.11)

on U , as before. Remember that (4.14.4) reduces to (4.10.4) when l = n.
Similarly, (4.14.6) reduces to

z′(t) =

n−1∑
j=1

∂F̃

∂qj
(p1(t), . . . , pn−1(t)) pj(t) + pn(t)(4.14.12)

under these conditions. Of course, (4.14.11) is a type of Hamilton–Jacobi equa-
tion, as in Section 4.11. This may normally be expressed a bit differently, as in
Section 4.12. This type of Hamilton–Jacobi equation is discussed in Section 3.3
of [35].
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4.15 Quasilinearity and derivatives

Let n be a positive integer, let U be a nonempty open subset of Rn, and let
F (q, y, y) be a continuously-differentiable real-valued function on Rn ×R× U .
Also let u be a twice continuously-differentiable real-valued function on U , and
suppose that

F (Du(x), u(x), x) is constant on U.(4.15.1)

This implies that
∂

∂xj
(F (Du(x), u(x), x)) = 0(4.15.2)

on U for each j = 1, . . . , n. This can be expanded using the chain rule to get
differential equations that are linear in the second derivatives of u, as in Section
4.3.

Suppose that there is a real number c such that

F (q, y, x) = F (q, 0, x) + c y(4.15.3)

on Rn ×R× U . This implies that the equations (4.15.2) only involve the first
and second derivatives of u, and not u itself.

Suppose now that n ≥ 2, and that F (q, y, x) can be expressed as

F (q, y, x) = F̂ (q1, x) +

n∑
l=2

al ql + c y(4.15.4)

onRn×R×U . Here F̂ (q1, x) is a continuously-differentiable real-valued function
on R × U , and a1, . . . , an and c are real numbers. In this case, the equation
(4.15.2) with j = 1 reduces to

∂F̂

∂q1

( ∂u

∂x1
(x), x

) ∂2u
∂x21

(x) +

n∑
l=2

al
∂2u

∂x1 ∂xl
(x)(4.15.5)

+c
∂u

∂x1
(x) +

∂F̂

∂x1

( ∂u

∂x1
(x), x

)
= 0.

This may be considered as a first-order quasilinear partial differential equation
in ∂u/∂x1.

Suppose that n = 2, and that F (q, y, x) can be expressed as

F (q, y, x) = F̃ (q1) + q2,(4.15.6)

where F̃ is a continuously-differentiable real-valued function on R. This means
that (4.15.5) reduces to

F̃ ′
( ∂u

∂x1
(x)

) ∂2u
∂x21

(x) +
∂2u

∂x1 ∂x2
(x) = 0.(4.15.7)

This may be considered as a scalar conservation law in ∂u/∂x1, as in Section
4.12. This corresponds to a remark about the initial value problem (26) in
Section 3.4.2 in [35].



Chapter 5

Some flows and
exponentials

5.1 Some flows on Rn

Let n be a positive integer, and let us identify Rn × R with Rn+1, as in the
previous section. An element of Rn×R may be expressed as (x, τ), with x ∈ Rn

and τ ∈ R, as before. Let I be an interval in R with nonempty interior, which
may be unbounded, and let W be a nonempty open subset of Rn.

Suppose that for each t ∈ I, ϕt is a mapping from W into itself. Typically
we might have that 0 ∈ I, and that ϕ0 is the identity mapping on W . If ξ ∈W ,
then we ask that ϕt(ξ) be differentiable as a function of t ∈ I with values in Rn.
This should be interpreted in terms of one-sided derivatives at any endpoints of
I that are contained in I.

Let u(x, τ) be a continuously-differentiable real or complex-valued function
on W × I. If x ∈ W and τ is an endpoint of I that is contained in I, then
the partial derivative of u at (x, τ) in xj can be defined in the usual way for
j = 1, . . . , n, and the partial derivative in τ can be defined as a one-sided
derivative.

If ξ ∈ W , then u(ϕt(ξ), t) is differentiable as a real or complex-valued func-
tion of t ∈ I, with

d

dt
(u(ϕt(ξ), t)) =

n∑
j=1

dϕt,j(ξ)

dt

∂u

∂xj
(ϕt(ξ), t) +

∂u

∂τ
(ϕt(ξ), t).(5.1.1)

Here ϕt,j(ξ) is the jth coordinate of ϕt(ξ) for each j = 1, . . . , n.
Note that

Φ(ξ, t) = (ϕt(ξ), t)(5.1.2)

defines a mapping from W × I into itself. Suppose now that for each t ∈ I, ϕt
is a one-to-one mapping from W onto itself. Equivalently, this means that Φ is
a one-to-one mapping from W × I onto itself.

76
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If 1 ≤ j ≤ n, then let aj be the real-valued function on W × I such that

aj(ϕt(ξ), t) =
dϕt,j(ξ)

dt
(5.1.3)

for every ξ ∈W and t ∈ I. Also put

an+1 ≡ 1(5.1.4)

on W × I, so that
a = (a1, . . . , an, an+1)(5.1.5)

defines a mapping from W × I into Rn+1.
Put

La(u) =

n∑
j=1

aj
∂u

∂xj
+
∂u

∂τ
(5.1.6)

on W × I, as in Section 4.1. By construction,

(La(u))(ϕt(ξ), t) =
d

dt
(u(ϕt(ξ), t))(5.1.7)

for every ξ ∈W and t ∈ I. Similarly, if ξ ∈W , then

(ϕt(ξ), t)(5.1.8)

satisfies the system of ordinary differential equations associated to a as a func-
tion of t ∈ I as for w(t) in Section 4.1.

Suppose for the moment that I = R, and that

ϕr+t(ξ) = ϕr(ϕt(ξ))(5.1.9)

for every ξ ∈W and r, t ∈ R. This implies that the derivative of ϕt(ξ) in t at t
is the same as the derivative of ϕr(ϕt(ξ)) in r at r = 0. This means that

a(ϕt(ξ), t) = a(ϕt(ξ), 0),(5.1.10)

so that a(x, τ) does not depend on τ . Note that (5.1.9) implies that ϕ0 is the
identity mapping on W , because ϕ0 is supposed to map W onto itself.

5.2 A more local version

Let n be a positive integer, and let us identify Rn ×R with Rn+1 again. Let
U be an open subset of Rn ×R, and put

Ut = {x ∈ Rn : (x, t) ∈ U}(5.2.1)

for each t ∈ R, which is an open set in Rn. Let V be another open subset of
Rn ×R, and let Vt be as in (5.2.1) for each t ∈ R. If ξ ∈ Rn, then

{t ∈ R : (ξ, t) ∈ V }(5.2.2)
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is an open subset of R.
Suppose that for each t ∈ R, ϕt is a mapping from Vt into Ut. This means

that
Φ(ξ, t) = (ϕt(ξ), t)(5.2.3)

defines a mapping from V into U . If ξ ∈ Rn, then we ask that ϕt(ξ) be
differentiable as a function of t in (5.2.2) with values in Rn.

Let u be a continuously-differentiable real or complex-valued function on U ,
and let ξ ∈ Rn be given. If t is an element of (5.2.2), then (ξ, t) ∈ V , ξ ∈ Vt,
ϕt(ξ) ∈ Ut, and thus

(ϕt(ξ), t) ∈ U.(5.2.4)

This means that
u(ϕt(ξ), t)(5.2.5)

is defined as a real or complex-valued function on (5.2.2). In fact, (5.2.5) is
differentiable as a real or complex-valued function of t in (5.2.2), with derivative
in t as in (5.1.1).

Suppose now that for each t ∈ R, ϕt is a one-to-one mapping from Vt onto
Ut. Equivalently, this means that the mapping Φ in (5.2.3) is a one-to-one
mapping from V onto U . If 1 ≤ j ≤ n, then let aj be the real-valued function
on U such that

aj(ϕt(ξ), t) =
dϕt,j(ξ)

dt
(5.2.6)

for every (ξ, t) ∈ V . Also put an+1 ≡ 1 on U , so that a = (a1, . . . , an, an+1)
defines a mapping from U into Rn+1.

Let La(u) be defined on U as in (5.1.6). If (ξ, t) ∈ V , then

(La(u))(ϕt(ξ), t) =
d

dt
(u(ϕt(ξ), t)),(5.2.7)

as before. Similarly, if ξ ∈ Rn, then

(ϕt(ξ), t)(5.2.8)

satisfies the system of ordinary differential equations associated to a as a func-
tion of t in (5.2.2) as for w(t) in Section 4.1.

Let (ξ, t) ∈ V be given, and suppose that

(ϕt(ξ), 0) ∈ V.(5.2.9)

This implies that
(ϕt(ξ), r) ∈ V(5.2.10)

for every r ∈ R with |r| sufficiently small. Of course, we also have that

(ξ, t+ r) ∈ V(5.2.11)

when |r| is sufficiently small.
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Suppose that
ϕr+t(ξ) = ϕr(ϕt(ξ))(5.2.12)

when r is sufficiently small. This implies that the derivative of ϕt(ξ) in t at t
is equal to the derivative of ϕr(ϕt(ξ)) in r at r = 0, as in the previous section.
This means that

a(ϕt(ξ), t) = a(ϕt(ξ), 0),(5.2.13)

as before.

5.3 Some basic first-order operators

Let n be a positive integer, and suppose that aj(x) is a real-valued linear function
on Rn for each j = 1, . . . , n. This can be expressed as

aj(x) =

n∑
l=1

aj,l xl(5.3.1)

for x ∈ Rn and j = 1, . . . , n, where (aj,l) = (aj,l)
n
j,l=1 is an n× n matrix of real

numbers. Equivalently,

a(x) = (a1(x), . . . , an(x))(5.3.2)

is a linear mapping from Rn into itself, which corresponds to this matrix in the
usual way.

Let U be a nonempty open subset of Rn, and let u be a continuously-
differentiable real or complex-valued function on U . Thus

(La(u))(x) =

n∑
j=1

aj(x)
∂u

∂xj
(x)(5.3.3)

defines a continuous real or complex-valued function on U , as appropriate. Note
that the examples mentioned in Sections 2.8, 4.7, and 4.8 are of this form.

Suppose for the moment that U = Rn \ {0}, and that u is homogeneous of
degree b ∈ C. It is easy to see that La(u) is homogeneous of degree b as well,
because the partial derivatives of u are homogeneous of degree b−1, as in Section
2.8. Similarly, if p is a polynomial on Rn with real or complex coefficients that
is homogeneous of degree k for some nonnegative integer k, then La(p) is a
homogeneous polynomial of degree k on Rn too.

Let b1(x), . . . , bn(x) be n more real-valued linear functions on Rn, and let b
and Lb be as before. Observe that

cj = La(bj)− Lb(aj)(5.3.4)

is a real-valued linear function on Rn for each j = 1, . . . , n, as in the preceding
paragraph. If c and Lc are as before, then Lc corresponds to the commutator
of La and Lb, as in Section 2.3.
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Let (bj,l) and (cj,l) be the matrices corresponding to b and c, respectively,
as before. Clearly

La(bj) =

n∑
k=1

n∑
l=1

ak,l xl
∂bj
∂xk

=

n∑
k=1

n∑
l=1

ak,lbj,k xl(5.3.5)

for each j = 1, . . . , n. Similarly,

Lb(aj) =

n∑
k=1

n∑
l=1

bk,l aj,k xl(5.3.6)

for each j = 1, . . . , n. It follows that

cj,l =

n∑
k=1

bj,k ak,l −
n∑

k=1

aj,k bk,l(5.3.7)

for each j, l = 1, . . . , n.

5.4 Exponentiating real matrices

Let n be a positive integer, and let A be a linear mapping from Rn into itself.
This corresponds to an n × n matrix of real numbers in a standard way, as in
the previous section. Of course, the composition of two linear mappings on Rn

is another linear mapping on Rn. It is well known and not difficult to see that
this corresponds to matrix multiplication of the corresponding matrices.

If j is a positive integer, then Aj denotes the composition of A with itself
a total of j − 1 times, so that there are j factors of A. This is interpreted as
being the identity mapping I on Rn when j = 0. One would like to define the
exponential of A by

expA =

∞∑
j=0

(1/j!)Aj ,(5.4.1)

as another linear mapping on Rn.
More precisely, it is well known and not difficult to show that there is a

nonnegative real number C such that

|A(v)| ≤ C |v|(5.4.2)

for every v ∈ Rn. The smallest such C is known as the operator norm of A
with respect to the standard Euclidean norm on Rn. It follows that

|Aj(v)| ≤ Cj |v|(5.4.3)

for every j ≥ 1 and v ∈ Rn. This also works with j = 0, and Cj interpreted as
being equal to 1, as usual.



5.4. EXPONENTIATING REAL MATRICES 81

If v ∈ Rn, then
∞∑
j=0

(1/j!)Cj |v|(5.4.4)

is a convergent series of nonnegative real numbers, with sum equal to

(expC) |v|,(5.4.5)

because of the usual series expansion for expC. It follows that

∞∑
j=0

(1/j!) |Aj(v)|(5.4.6)

is a convergent series of nonnegative real numbers, with sum less than or equal
to (5.4.5), because of (5.4.3) and the comparison test. Let (Aj(v))l be the lth
coordinate of Aj(v) ∈ Rn for every l = 1, . . . , n, so that

|(Aj(v))l| ≤ |Aj(v)|(5.4.7)

for each j ≥ 0 and l = 1, . . . , n. Thus

∞∑
j=0

(1/j!) |(Aj(v))l|(5.4.8)

is a convergent series of nonnegative real numbers for every l = 1, . . . , n. This
means that

∞∑
j=0

(1/j!) (Aj(v))l(5.4.9)

is an absolutely convergent series of real numbers for every l = 1, . . . , n.
We would like to put

(expA)(v) =

∞∑
j=0

(1/j!)Aj(v),(5.4.10)

as an element of Rn. The lth coordinate of the right side is equal to (5.4.9) for
every l = 1, . . . , n. It is easy to see that this defines a linear mapping from Rn

into itself. One could also look at this in terms of matrices, where the entries
of the matrix corresponding to expA can be expressed as absolutely convergent
series of real numbers.

Suppose that v is an eigenvector of A with eigenvalue λ ∈ R, so that

A(v) = λ v.(5.4.11)

This implies that

Aj(v) = λj v(5.4.12)
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for every j ≥ 0. It follows that

(expA)(v) = (expλ) v.(5.4.13)

Let T be a one-to-one linear mapping from Rn onto itself, so that the inverse
mapping T−1 is linear on Rn too. It is easy to see that

T ◦Aj ◦ T−1 = (T ◦A ◦ T−1)j(5.4.14)

for every j ≥ 0. This means that

T ◦ (expA) ◦ T−1 = exp(T ◦A ◦ T−1).(5.4.15)

5.5 Exponentials of sums

Let n be a positive integer, and let A, B be linear mappings from Rn into itself.
Suppose that A and B commute on Rn, so that

A ◦B = B ◦A.(5.5.1)

If l is a positive integer, then one can check that

(A+B)l =

l∑
j=0

(
l

j

)
Aj ◦Bl−j ,(5.5.2)

as in the binomial theorem.
This implies that

exp(A+B) =

∞∑
l=0

(1/l!) (A+B)l(5.5.3)

=

∞∑
l=0

( l∑
j=0

(1/j!) (1/(l − j)!)Aj ◦Bl−j
)
.

The right side corresponds to the Cauchy product of the series used to define
expA and expB. In particular, this means that the same terms are being
summed, but in different ways. One can use this to show that

exp(A+B) = (expA) ◦ (expB)(5.5.4)

under these conditions. More precisely, this also uses absolute convergence of
the sums, to ensure that the different ways of arranging the sums lead to the
same results.

Note that expA automatically commutes with A. Similarly, if A commutes
with B, then expA commutes with B. Of course, if A = 0, then expA = I. If
A is any linear mapping on Rn, then

(expA) ◦ (exp(−A)) = (exp(−A)) ◦ (expA) = I,(5.5.5)
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by (5.5.4). This implies that expA is invertible on Rn, with inverse equal to
exp(−A).

Let A, B be any two linear mappings on Rn, and let A′, B′ be the linear
mappings corresponding to them as in Section 1.15. If v, w ∈ Rn, then

(A ◦B)(v) · w = A(B(v)) · w = B(v) ·A′(w)

= v ·B′(A′(w)) = v · (B′ ◦A′)(w).(5.5.6)

This means that
(A ◦B)′ = B′ ◦A′.(5.5.7)

In particular,
(Aj)′ = (A′)j(5.5.8)

for each j ≥ 0. It follows that

(expA)′ = exp(A′).(5.5.9)

If
A′ = −A,(5.5.10)

then we get that

(expA)′ = exp(A′) = exp(−A) = (expA)−1.(5.5.11)

This means that expA is an orthogonal transformation on Rn, as in Section
1.15.

5.6 The exponential of t A

Let n be a positive integer, let A be a linear mapping from Rn into itself, and
let t be a real number. Of course, tA may be considered as a linear mapping on
Rn, with (tA)(v) = tA(v) for every v ∈ Rn. Thus the exponential of tA may
be defined as before, so that

exp(tA) =
∞∑
j=0

(1/j!) tj Aj .(5.6.1)

This may be considered as a power series in t, whose coefficients are linear
mappings on Rn. If v ∈ Rn, then

(exp(tA))(v) =

∞∑
j=0

(1/j!) tj Aj(v)(5.6.2)

may be considered as a power series in t, with coefficients in Rn.
More precisely, for each l = 1, . . . , n, the lth coordinate of (exp(tA))(v) is

((exp(tA))(v))l =

∞∑
j=0

(1/j!) tj (Aj(v))l.(5.6.3)
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This is an absolutely convergent power series in t with coefficients in R. Sim-
ilarly, the entries of the matrix associated to exp(tA) may be expressed as
absolutely convergent power series in t with real coefficients.

In particular, these are smooth functions of t on R, by standard results
about power series. We can differentiate these series termwise, to get that

d

dt
((exp(tA))(v)) = A((exp(tA))(v))(5.6.4)

for every v ∈ Rn. This can be expressed by

d

dt
(exp(tA)) = A ◦ (exp(tA)).(5.6.5)

Let U be a nonempty open subset of Rn, and let u be a continuously-
differentiable real or complex-valued function on U . Put

(LA(u))(x) =

n∑
l=1

(A(x))l
∂u

∂xl
(x)(5.6.6)

for each x ∈ U . This is the same as in Section 5.3, with different notation. This
is related to the system of ordinary differential equations

w′(t) = A(w(t)),(5.6.7)

as in Section 4.1, where w(t) is a continuously-differentiable function on an
interval in the real line with nonempty interior, and with values in Rn. If
v ∈ Rn, then

w(t) = (exp(tA))(v)(5.6.8)

satisfies (5.6.7), as in (5.6.4).
Let I be an open interval in the real line, which may be unbounded, with

(exp(tA))(v) ∈ U(5.6.9)

for each t ∈ I. Under these conditions,

d

dt
u((exp(tA))(v)) = (LA(u))((exp(tA))(v))(5.6.10)

on I, as in Section 4.1. This can be used to analyze first-order semilinear
equations on U involving LA, as before.

5.7 Traces and determinants

Let n be a positive integer, and let (aj,l) be an n × n matrix of real numbers.
The trace of this matrix is defined as usual as

n∑
j=1

aj,j .(5.7.1)
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The determinant of (aj,l) is defined in a standard way, that we shall not repeat
here.

If A is a linear mapping from Rn into itself, then A corresponds to an n×n
matrix (aj,l) of real numbers in a standard way. The trace trA and determinant
detA of A are defined as the trace and determinant of (aj,l), respectively.

Let B be another linear mapping from Rn into itself. It is well known and
not difficult to verify that

tr(A ◦B) = tr(B ◦A).(5.7.2)

It is also well known that

det(A ◦B) = (detA) (detB).(5.7.3)

If t is a real number, then I + tA is another linear mapping from Rn. It is
clear from the definition of the determinant that

det(I + tA)(5.7.4)

is a polynomial in t of degree at most n. One can check that this polynomial is
of the form

1 + (trA) t+ · · · ,(5.7.5)

where the additional terms are multiples of tj , 2 ≤ j ≤ n. This means that the
derivative of (5.7.4) in t at t = 0 is equal to trA.

It is well known that

det(expA) = exp(trA).(5.7.6)

One way to see this is to use calculus to show that

det(exp(tA)) = exp(t trA)(5.7.7)

for every t ∈ R. Note that both sides of this equation are equal to 1 at t = 0.
The right side of (5.7.7) satisfies the differential equation

f ′(t) = (trA) f(t)(5.7.8)

on R. We would like to check that the left side of (5.7.7) satisfies the same
differential equation. If we can do that, then (5.7.7) follows, by standard argu-
ments.

One can verify directly that the left side of (5.7.7) satisfies (5.7.8) at t = 0.
Let t0 ∈ R be given, and observe that

exp(tA) = (exp((t− t0)A)) ◦ (exp(t0A))(5.7.9)

for every t ∈ R, as in Section 5.5. One can use this to obtain that the left side
of (5.7.7) satisifes (5.7.8) at t0 from the analogous statement at 0.
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5.8 Exponentiating complex matrices

Letm be a positive integer, and let A be a linear mapping from Cm into itself, as
a vector space over the complex numbers. This corresponds to an m×m matrix
of complex numbers in the usual way. The composition of two linear mappings
on Cm corresponds to matrix multiplication of the corresponding matrices of
complex numbers.

If j is a positive integer, then Aj denotes the composition of A with itself a
total of j − 1 times, so that there are j factors of A, and which is interpreted
as being the identity mapping I on Cm when j = 0. As in the real case, it is
well known and not difficult to show that there is a nonnegative real number C
such that

|A(v)| ≤ C |v|(5.8.1)

for every v ∈ Cm, and the smallest such C is the operator norm of A with
respect to the standard Euclidean norm on Cm. This implies that

|Aj(v)| ≤ Cj |v|(5.8.2)

for every j ≥ 0 and v ∈ Cm.
One would like to define the exponential of A as another linear mapping on

Cm by

expA =

∞∑
j=0

(1/j!)Aj ,(5.8.3)

as in Section 5.4. More precisely, if v ∈ Cm, then we would like to put

(expA)(v) =

∞∑
j=0

(1/j!)Aj(v),(5.8.4)

as an element of Cm, as before. This means that for each l = 1, . . . ,m, the lth
coordinate of (expA)(v) is equal to

((expA)(v))l =

∞∑
j=0

(1/j!) (Aj(v))l.(5.8.5)

The right side is an absolutely convergent series of complex numbers, by the
comparison test. This defines a linear mapping on Cm, and the entries of
the corresponding matrix can be expressed as absolutely convergent series of
complex numbers in an analogous way.

Note that a linear mapping from Rm into itself, as a vector space over the
real numbers, has a unique extension to a linear mapping from Cm into itself, as
a vector space over the complex numbers. Both linear mappings correspond to
the same m×m matrix of real numbers, which may be considered as an m×m
matrix of complex numbers too. The exponential of the linear mapping on Cm

is the same as the extension of the exponential of the linear mapping on Rm to
a linear mapping on Cm.
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Suppose that v ∈ Cm is an eigenvector of A with eigenvalue λ ∈ C, so that

A(v) = λ v.(5.8.6)

It is easy to see that

(expA)(v) = (expλ) v,(5.8.7)

as before. If T is a one-to-one linear mapping from Cm onto itself, then

T ◦ (expA) ◦ T−1 = exp(T ◦A ◦ T−1),(5.8.8)

as before.
Let B be another linear mapping from Cm into itself, and suppose that A

and B commute on Cm, so that

A ◦B = B ◦A.(5.8.9)

Under these conditions,

exp(A+B) = (expA) ◦ (expB),(5.8.10)

as in Section 5.5. We also have that expA commutes with B in this case, as
before. If we take B = −A, then we get that expA is invertible on Cm, with
inverse equal to exp(−A), as before.

The trace and determinant of anm×mmatrix of complex numbers can be de-
fined in the same way as for real numbers. Similarly, the trace and determinant
of A are defined to be the trace and determinant of the matrix corresponding
to A, respectively. These satisfy the same basic properties as in the real case.
In particular, it is well known that

det(expA) = exp(trA),(5.8.11)

which can be shown using an argument like the one in Section 5.7. Alternatively,
one can use results from linear algebra to reduce to the case where A corresponds
to an upper triangular matrix, for which (5.8.11) can be verified more directly.

5.9 More on Cm

Let m be a positive integer, and let 〈v, w〉 = 〈v, w〉Cm be the standard inner
product on Cm, as in Section 2.6. If v, w ∈ Cm, then

|v + w|2 = 〈v + w, v + w〉 = 〈v, v〉+ 〈v, w〉+ 〈w, v〉+ 〈w,w〉(5.9.1)

= |v|2 + 2 Re〈v, w〉+ |w|2.

If we replace w with i w, then we get that

|v + iw|2 = |v|2 + 2Re(−i 〈v, w〉) + |w|2 = |v|2 + 2 Im〈v, w〉+ |w|2.(5.9.2)
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It follows that

〈v, w〉 = (1/2) (|v + w|2 − |v|2 − |w|2) + (i/2) (|v + i w|2 − |v|2 − |w|2).(5.9.3)

This is another polarization identity.
Let T be a linear mapping from Cm into itself, as a vector space over the

complex numbers. As in the real case,

kerT = {v ∈ Cm : T (v) = 0}(5.9.4)

is a linear subspace of Cm, called the kernel of T . This is equal to {0} if and
only if T is one-to-one, as before. It is is well known that T is one-to-one on Cm

if and only if T maps Cm onto itself, in which case the inverse mapping T−1 is
linear on Cm too.

A one-to-one linear mapping T from Cm onto itself is said to be unitary if

〈T (v), T (w)〉 = 〈v, w〉(5.9.5)

for every v, w ∈ Cm. Note that this implies that T−1 is unitary as well. In this
case, we can take v = w in (5.9.5), to get that

|T (v)| = |v|.(5.9.6)

Conversely, if (5.9.5) holds for every v ∈ Cm, then (5.9.5) holds for every v. w
in Cm, because of the polarization identity (5.9.3). Of course, (5.9.6) implies
that kerT = {0}.

If T is any linear mapping from Cm into itself, then it is well known that
there is a unique linear mapping T ∗ from Cm into itself such that

〈T (v), w〉 = 〈v, T ∗(w)〉(5.9.7)

for every v, w ∈ Cm. This is called the adjoint of T . As in the real case, every
linear mapping from Cm into itself corresponds to an m×m matrix of complex
numbers in a standard way. The matrix associated to T ∗ is obtained by taking
the complex conjugates of the entries of the transpose of the matrix associated
to T .

If T is a unitary transformation on Cm, then one can verify that T ∗ is the
same as the inverse of T . Conversely, if T is an invertible linear mapping on
Cm, with inverse equal to T ∗, then T is a unitary transformation on Cm.

Let A, B be linear mappings from Cm into itself, and let t be a complex
number. Under these conditions, A + B and tA are linear mappings on Cm,
and one can check that

(A+B)∗ = A∗ +B∗(5.9.8)

and
(tA)∗ = tA∗.(5.9.9)

One can also verify that
(A ◦B)∗ = B∗ ◦A∗.(5.9.10)
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This implies that
(Aj)∗ = (A∗)j(5.9.11)

for each nonnegative integer j, so that

(expA)∗ = exp(A∗).(5.9.12)

If
A∗ = −A,(5.9.13)

then it follows that

(expA)∗ = exp(A∗) = exp(−A) = (expA)−1,(5.9.14)

so that expA is a unitary transformation on Cm.
A linear mapping A on Cm is said to be self-adjoint with respect to the

standard inner product on Cm if

A∗ = A.(5.9.15)

If T is any linear mapping on Cm, then it is easy to see that

(T ∗)∗ = T.(5.9.16)

One can use this to check that

A = (1/2) (T + T ∗)(5.9.17)

and
B = (−i/2) (T − T ∗)(5.9.18)

are self-adjoint. Note that
T = A+ i B.(5.9.19)

5.10 The exponential of z A

Let m be a positive integer, let A be a linear mapping from Cm into itself, and
let z be a complex number. Thus z A is another linear mapping from Cm into
itself, whose exponential

exp(z A) =

∞∑
j=0

(1/j!) zj Aj(5.10.1)

may be considered as a power series in z, with coefficients that are linear map-
pings on Cm. If v ∈ Cm, then

(exp(z A))(v) =

∞∑
j=0

(1/j!) zj Aj(v)(5.10.2)
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may be considered as a power series in z, with coefficients in Cm.
As in Section 5.6, the lth coordinate of (exp(z A))(v) is

((exp(z A))(v))l =

∞∑
j=0

(1/j!) zj(Aj(v))l(5.10.3)

for each l = 1, . . . ,m, which is an absolutely convergent power series in z with
complex coefficients. Similarly, the entries of the matrix associated to exp(z A)
may be expressed as absolutely convergent power series in z with complex co-
efficients. One can differentiate these series termwise, to get that they are
holomorphic functions of z, with

∂

∂z
((exp(z A))(v)) = A((exp(z A))(v))(5.10.4)

for every v ∈ Cm. This can be expressed by

∂

∂z
(exp(z A)) = A ◦ (exp(z A)),(5.10.5)

as before.
Let r be a nonnegative integer, and suppose that

Ar+1 = 0(5.10.6)

on Cm. In this case, A is said to be nilpotent on Cm. It is well known that if A
is nilpotent on Cm, then one can take r ≤ m − 1. Of course, if (5.10.6) holds,
then Aj = 0 when j ≥ r + 1. This means that

exp(z A) =

r∑
j=0

(1/j!) zj Aj(5.10.7)

is a polynomial in z, with coefficients that are linear mappings on Cm.
Note that

exp(c z I) = (exp(c z)) I(5.10.8)

for every c, z ∈ C, where I is the identity maping on Cm. If A is any linear
mapping on Cm, then A commutes with c I on Cm. This implies that

exp(z (c I +A)) = (exp(c z I)) ◦ (exp(z A)) = (exp(c z)) exp(z A).(5.10.9)

5.11 Polynomials and differential operators

Let n be a positive integer, and remember that P(Rn,R) and P(Rn,C) are the
spaces of polynomials on Rn with real and complex coefficients, respectively, as
in Section 2.9. If k is a nonnegative integer, then let Pk(Rn,R) and Pk(Rn,C)
be the spaces of polynomials onRn with real and complex coefficients and degree
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less than or equal to k, respectively. These are linear subspaces of P(Rn,R)
and P(Rn,C), as vector spaces over R and C, respectively.

Consider the collection of monomials xβ , where β is a multi-index with order
|β| ≤ k. This collection is a basis for Pk(Rn,R) and Pk(Rn,C), as vector spaces
over R and C, respectively. In particular, Pk(Rn,R) and Pk(Rn,C) have the
same finite dimension, as vector spaces over R and C, respectively.

Let N be a nonnegative integer, and suppose that aα is a polynomial on Rn

with real or complex coefficients for each multi-index α with |α| ≤ N , so that

L =
∑

|α|≤N

aα ∂
α(5.11.1)

defines a differential operator on Rn with polynomial coefficients, as in Section
2.9. Remember that L maps P(Rn,R) or P(Rn,C) into itself, as appropriate.
Suppose that

deg aα ≤ |α|(5.11.2)

for each α, |α| ≤ N . If p is a polynomial on Rn with real or complex coefficients,
as appropriate, then

degL(p) ≤ deg p.(5.11.3)

This means that L maps Pk(Rn,R) or Pk(Rn,C) into itself for each k ≥ 0, as
appropriate.

Similarly, let c be a nonnegative integer, and suppose that

deg aα ≤ |α| − c(5.11.4)

for each α, |α| ≤ N . This is interpreted to mean that

aα = 0 when |α| < c.(5.11.5)

If p is a polynomial on Rn with real or complex coefficients, as appropriate,
then

degL(p) ≤ deg p− c.(5.11.6)

As before, this means that

L(p) = 0 when deg p < c.(5.11.7)

If j is a positive integer, then we get that

degLj(p) ≤ deg p− c j.(5.11.8)

This means that
Lj(p) = 0 when deg p < c j,(5.11.9)

as usual. Suppose that c ≥ 1, and let k be a nonnegative integer. If

k < c j,(5.11.10)

then it follows that

Lj = 0 on Pk(Rn,R) or Pk(Rn,C),(5.11.11)

as appropriate. Thus the restriction of L to Pk(Rn,R) or Pk(Rn,C), as ap-
propriate, is nilpotent under these conditions.
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5.12 Some related differential equations

Let n be a positive integer, let N be a nonnegative integer, and let L be a
differential operator of order less than or equal to N on Rn with polynomial
coefficients, as in the previous section. Suppose that the coefficients satisfy
(5.11.2) for each α, |α| ≤ N , and let k be a nonnegative integer. Thus L maps
Pk(Rn,R) or Pk(Rn,C) into itself, as before. Let Lk be the restriction of L to
Pk(Rn,R) or Pk(Rn,C), as appropriate.

Let m = m(k) be the number of multi-indices β with order |β| ≤ k. We can
identify Pk(Rn,R) and Pk(Rn,C) with Rm and Cm, respectively, by listing
the coefficients of a polynomial on Rn with degree less than or equal to k in
any reasonable way. This means that we can identify Lk with a linear mapping
from Rm or Cm into itself, as appropriate.

If t ∈ R, then we can define the exponential of t Lk as a linear mapping on
Pk(Rn,R) or Pk(Rn,C), as appropriate, as before. Let p be a polynomial on
Rn with real or complex coefficients, as appropriate, and of degree less than or
equal to k. Thus

(exp(t Lk))(p)(5.12.1)

is another polynomial on Rn with real or complex coefficients, as appropriate,
and degree less than or equal to k. Of course, the coefficients of (5.12.1), as a
polynomial on Rn, depend on t, and in fact they are smooth functions of t. It
follows that

u(x, t) = ((exp(t Lk))(p))(x)(5.12.2)

is smooth as a function of (x, t) on Rn ×R, which we can identify with Rn+1.
Suppose for the moment that the coefficients of L satisfy (5.11.4) for some

c ≥ 1. This implies that Lk is nilpotent on Pk(Rn,R) or Pk(Rn,C), as ap-
propriate, as in the previous section. It follows that exp(t Lk) is a polynomial
in t with coefficients that are linear mappings on Pk(Rn,R) or Pk(Rn,C), as
appropriate, as in Section 5.10. This means that (5.12.2) is a polynomial in x
and t in this case.

Note that
u(x, 0) = p(x)(5.12.3)

for every x ∈ Rn. We also have that

∂

∂t
((exp(t Lk))(p)) = Lk((exp(t Lk))(p)),(5.12.4)

as before. This means that
∂u

∂t
= L(u)(5.12.5)

on Rn ×R.

5.13 Some additional related equations

Let us continue with the same notation and hypotheses as at the beginning of the
previous section. Suppose now that we are interested in the partial differential
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equation
∂2u

∂t2
= L(u)(5.13.1)

on Rn ×R. If we put

v =
∂u

∂t
,(5.13.2)

then (5.13.1) is the same as saying that

∂v

∂t
= L(u).(5.13.3)

Let us consider (5.13.2) and (5.13.3) as a system of partial differential equations
in u and v on Rn ×R.

Of course, we can identify Rm × Rm and Cm × Cm with R2m and C2m,
respectively. Similarly, we can identify

Pk(Rn,R)× Pk(Rn,R)(5.13.4)

and
Pk(Rn,C)× Pk(Rn,C)(5.13.5)

with R2m and C2m, respectively, using the analogous identifications mentioned
in the previous section. Let Tk be the mapping from (5.13.4) or (5.13.5) into
itself, as appropriate, defined by

Tk(p, q) = (q, Lk(p))(5.13.6)

for every p, q ∈ Pk(Rn,R) or Pk(Rn,C), as appropriate. Observe that

T 2
k (p, q) = Tk(Tk(p, q)) = Tk(q, Lk(p)) = (Lk(p), Lk(q))(5.13.7)

for all such p, q. We can identify Tk with a linear mapping from R2m or C2m

into itself, as before.
If t ∈ R, then we can define the exponential of t Tk as a linear mapping on

(5.13.4) or (5.13.5), as appropriate, in the usual way. Let p, q be elements of
Pk(Rn,R) or Pk(Rn,C), as appropriate, so that

(exp(t Tk))(p, q)(5.13.8)

is an element of (5.13.4) or (5.13.5), as appropriate. Let u(·, t), v(·, t) be the
elements of Pk(Rn,R) or Pk(Rn,C), as appropriate, such that

(exp(t Tk))(p, q) = (u(·, t), v(·, t)).(5.13.9)

The coefficients of u(x, t) and v(x, t), as polynomials in x on Rn, are smooth
functions of t, as before. This implies that u(x, t) and v(x, t) are smooth as
functions of (x, t) on Rn ×R, which we can identify with Rn+1, as usual.

Note that

∂

∂t
((exp(t Tk))(p, q)) = Tk((exp(t Tk))(p, q)),(5.13.10)
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as before. This means that

∂

∂t
(u(·, t), v(·, t)) = Tk(u(·, t), v(·, t)) = (v(·, t), L(u(·, t))),(5.13.11)

which is the same as saying that u and v satisfy (5.13.2) and (5.13.3). We also
have that

u(·, 0) = p, v(·, 0) = q.(5.13.12)

Suppose that the coefficients of L satisfy (5.11.4) for some c ≥ 1, so that Lk

is nilpotent on Pk(Rn,R) or Pk(Rn,C), as appropriate, as before. This implies
that Tk is nilpotent on (5.13.4) or (5.13.5), as appropriate, because of (5.13.7).
This means that exp(t Tk) is a polynomial in t with coefficients that are linear
mappings on (5.13.4) or (5.13.5), as appropriate, as in Section 5.10. It follows
that u(x, t) and v(x, t) are polynomials in x and t under these conditions.

5.14 Some products with exp(b · x)
Let n be a positive integer, and let b ∈ Rn or Cn be given. Also let N be
a nonnegative integer, and let p be a polynomial on Rn with real or complex
coefficients of degree less than or equal to N . Thus

pb(x) = p(x+ b)(5.14.1)

can be expressed as a polynomial of degree less than or equal to N with real or
complex coefficients, as appropriate, as in Section 2.5.

Let p(∂) and pb(∂) be the differential operators corresponding to p and pb as
in Section 1.7, respectively. If f is a continuously-differentiable real or complex-
valued function on Rn, then

∂

∂xj
(f(x) exp(b · x)) =

( ∂f
∂xj

(x) + bj f(x)
)
exp(b · x).(5.14.2)

If f is N -times continuously differentiable on Rn, then we get that

p(∂)(f(x) exp(b · x)) = (pb(∂)(f))(x) exp(b · x).(5.14.3)

If b ∈ Rn, then let

P(Rn,R) exp(b · x)(5.14.4)

be the space of functions on Rn of the form

q(x) exp(b · x),(5.14.5)

where q ∈ P(Rn,R). This is a linear subspace of C∞(Rn,R), as a vector space
over the real numbers. If p is a polynomial with real coefficients, then pb is a
polynomial with real coefficients as well. In this case, p(∂) maps (5.14.4) into
itself, because of (5.14.3).
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Similarly, if b ∈ Cn, then let

P(Rn,C) exp(b · x)(5.14.6)

be the space of functions on Rn of the form (5.14.5), with q ∈ P(Rn,C). This
is a linear subspace of C∞(Rn,C), as a vector space over the complex numbers.
We also have that p(∂) maps (5.14.6) into itself, because of (5.14.3), as before.

Let k be a nonnegative integer, and if b ∈ Rn, then let

Pk(Rn,R) exp(b · x)(5.14.7)

be the space of functions on Rn of the form (5.14.5), with q ∈ Pk(Rn,R). This
is a linear subspace of (5.14.4), as a vector space over the real numbers. If p is
a polynomial with real coefficients, then p(∂) maps (5.14.7) into itself, because
of (5.14.3) again.

If b ∈ Cn, then let
Pk(Rn,C) exp(b · x)(5.14.8)

be the space of functions on Rn of the form (5.14.5), with q ∈ Pk(Rn,C). This
is a linear subspace of (5.14.6), as a vector space over the complex numbers. As
usual, p(∂) maps (5.14.8) into itself, because of (5.14.3).

Suppose that
pb(0) = p(b) = 0.(5.14.9)

If q is a polynomial on Rn with real or complex coefficients, then

deg(pb(∂))(q) ≤ deg q − 1.(5.14.10)

This implies that the restriction of pb(∂) to Pk(Rn,C) is nilpotent, as in Section
5.11. It follows that the restriction of p(∂) to (5.14.8) is nilpotent, because of
(5.14.3). If b ∈ Rn, and p is a polynomial with real coefficients, then the
restriction of p(∂) to (5.14.7) is nilpotent, for the same reasons.

5.15 Some remarks about derivatives

Let m be a positive integer, and let I be an interval in the real line, which may
be unbounded, and which has nonempty interior. One can define continuity of a
mapping from I into Cm in the usual way, using the restriction of the standard
Euclidean metric on R to I, and the standard Euclidean metric on Cm. It is
well known and not difficult to see that this is equivalent to the continuity of
the corresponding m component functions, as complex-valued functions on I.
Similarly, a complex-valued function on I is continuous if and only if its real
and imaginary parts are continuous.

Suppose that for each t ∈ I, A(t) is a linear mapping from Cm into itself, as a
vector space over the complex numbers. The continuity of A(t) as a function on
I with values in the space L(Cm) of linear mappings from Cm into itself can also
be defined in the usual way, using the restrction of the standard Euclidean metric
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on R, and a suitable version of the standard Euclidean metric on L(Cm). More
prcisely, we can use the standard correspondence between elements of L(Cm)

and m×m matrices of complex numbers to identify L(Cm) with Cm2

, and use
the standard Euclidean metric there. The continuity of A(t) on I is equivalent
to the continuity of the m2 complex-valued functions on I corresponding to the
matrix entries of A(t). This is equivalent to the continuity of

(A(t))(v)(5.15.1)

for each v ∈ Cm, as a function of t ∈ I with values in Cm.
One can define differentiability of a mapping from I into Cm directly, using

one-sided derivatives at any endpoints of I. This is equivalent to the differen-
tiability of the m component functions, as complex-valued functions on I. The
differentiability of a complex-valued function on I is equivalent to the differen-
tiability of its real and imaginary parts.

Differentiability of A(t) on I can be defined directly, and is equivalent to
the differentiability of the m2 complex-valued functions on I corresponding to
the matrix entries of A(t). This is equivalent as well to the differentiability of
(5.15.1) for each v ∈ Cm, as a function of t ∈ I with values in Cm.

Let v(t) be a function on I with values in Cm, so that

(A(t))(v(t))(5.15.2)

is an element of Cm for each t ∈ I. Of course, the components of (5.15.2) can
be expressed as a sum or products of matrix entries of A(t) and components
of v(t) in the usual way. If v(t) is continuous at a point t0 ∈ I, and if A(t) is
continuous at t0, then (5.15.2) is continuous at t0 too, as a function of t ∈ I
with values in Cm. If v(t) is differentiable at t0, and A(t) is differentiable at t0,
then (5.15.2) is differentiable at t0, with derivative equal to

(A′(t0))(v(t0)) + (A(t0))(v
′(t0)).(5.15.3)

This is basically another version of the product rule.
Let B be a linear mapping from Cm into itself, and consider

A(t) = exp(−tB).(5.15.4)

This is a differentiable function of t ∈ R with values in L(Cm), with derivative

A′(t) = −B ◦A(t) = −A(t) ◦B.(5.15.5)

Suppose that v(t) is differentiable on I, and put

w(t) = (A(t))(v(t)) = (exp(−tB))(v(t))(5.15.6)

for each t ∈ I. Thus w(t) is differentiable on I, with

w′(t) = −B(w(t)) + (A(t))(v′(t)),(5.15.7)
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by (5.15.5). Note that
v(t) = (exp(tB))(w(t))(5.15.8)

for each t ∈ I.
Suppose for the moment that

v′(t) = B(v(t))(5.15.9)

on I. In this case,
w′(t) = 0(5.15.10)

on I, by (5.15.7). This means that w(t) is constant on I, because of the analo-
gous statement for real-valued functions.

Similarly, consider the differential equation

v′(t) = B(v(t)) + z(t),(5.15.11)

where z(t) is a function of t ∈ I with values in Cm. This corresponds to the
differential equation

w′(t) = (exp(−tB))(z(t))(5.15.12)

on I. Note that the right side is continuous on I when z(t) is continuous on I.



Chapter 6

More on harmonic functions

Some nice references concerning harmonic functions include [11, 35, 38, 136],
and some additional information may be found in [130]. See also [124, 134], for
instance.

6.1 Some particular harmonic functions

It is well known and not difficult to verify that

|x|2−n(6.1.1)

is harmonic on Rn \ {0} when n ≥ 3. This implies that

|x− a|2−n(6.1.2)

is harmonic on Rn \ {a} for every a ∈ Rn when n ≥ 3.
Similarly, one can check that

log |x| = (1/2) log |x|2(6.1.3)

is harmonic on R2 \ {0}. This means that

log |x− a|(6.1.4)

is harmonic on R2 \ {a} for every a ∈ R2, as before.
If we put z = x1 + i x2, then we can express (6.1.3) as

(1/2) log |z|2.(6.1.5)

Let ∂/∂z and ∂/∂z be the differential operators defined in Section 2.2. Observe
that

∂

∂z
((1/2) log |z|2) = 1

2 |z|2
∂

∂z
(|z|2) = 1

2 |z|2
∂

∂z
(z z) =

1

2 |z|2
z =

1

2 z
(6.1.6)

98
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when z 6= 0.
It is well known and not difficult to check that

∂

∂z

(1
z

)
= 0(6.1.7)

for z 6= 0, which is to say that 1/z is holomorphic for z 6= 0. It follows that
(6.1.3) is harmonic on R2 \ {0}, as in Section 2.2.

If n ≥ 3 and 1 ≤ j ≤ n, then

∂

∂xj
(|x|2−n) =

∂

∂xj
((|x|2)(2−n)/2)

= ((2− n)/2) (|x|2)((2−n)/2)−1 (2xj) = (2− n)
xj
|x|n

(6.1.8)

on Rn \ {0}. Similarly,

∂

∂xj
(log |x|) = ∂

∂xj
((1/2) log |x|2) = (1/2) |x|−2 (2xj) =

xj
|x|2

(6.1.9)

on R2 \ {0} for j = 1, 2, which is basically the same as (6.1.6). Note that these
are harmonic functions too.

6.2 The mean-value property

Let n ≥ 2 be an integer, and let V be a nonempty bounded open subset of
Rn with reasonably smooth boundary. It is convenient to use |V | for the n-
dimensional volume of V , and |∂V | for the (n − 1)-dimensional surface area of
∂V .

In particular, if a ∈ Rn and r > 0, then |B(a, r)| denotes the volume of
B(a, r), and |∂B(a, r)| denotes the surface area of ∂B(a, r). Note that

|B(a, r)| = rn |B(0, 1)|(6.2.1)

and

|∂B(a, r)| = rn−1 |∂B(0, 1)|.(6.2.2)

Let U be a nonempty open subset of Rn, and let u be a twice continuously-
differentiable real or complex-valued function on U that is harmonic on U . Also
let a ∈ U and r > 0 be given, with

B(a, r) ⊆ U.(6.2.3)

Under these conditions, it is well known that

u(a) =
1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′.(6.2.4)
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To see this, it suffices to show that

1

|∂B(a, t)|

∫
∂B(a,t)

u(y′) dy′ =
1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′(6.2.5)

when 0 < t < r. Indeed, one can check that

lim
t→0+

1

|∂B(a, t)|

∫
∂B(a,t)

u(y′) dy′ = u(a),(6.2.6)

because u is continuous at a. This permits one to obtain (6.2.4) from (6.2.5).
Note that ∫

∂B(a,r)

(Dν(y′)u)(y
′) dy′ = 0,(6.2.7)

where ν(y′) is the outward-pointing unit normal to ∂B(a, r) at a point y′ in
∂B(a, r). This follows from (3.5.4), with V = B(a, r). Similarly,∫

∂B(a,t)

(Dν(y′)u)(y
′) dy′ = 0,(6.2.8)

where ν(y′) is the outward-pointing unit normal to ∂B(a, t) at a point y′ in
∂B(a, t).

To get (6.2.5), consider

V = B(a, r) \B(a, t),(6.2.9)

which is a nonempty bounded open subset of Rn. Observe that

∂V = (∂B(a, r)) ∪ (∂B(a, t)).(6.2.10)

The outward-pointing unit normal to ∂V is the same as the outward-pointing
unit normal to ∂B(a, r) at points in ∂B(a, r), and it is −1 times the outward-
pointing unit normal to ∂B(a, t) at points in ∂B(a, t).

Put
v(x) = |x− a|2−n(6.2.11)

on Rn \ {a} when n ≥ 3, and

v(x) = log |x− a|(6.2.12)

on R2 \ {a} when n = 2. In both cases, v(x) is harmonic on Rn \ {a}, as in the
previous section.

We would like to use (3.9.1) in this case. The left side of that equation is
equal to 0, because u and v are harmonic on V . One can check that the part
of the right side of the equation involving the normal derivative of u is equal to
0, because of (6.2.7) and (6.2.8). This also uses the fact that v is constant on
∂B(a, r) and ∂B(a, t).

It follows that the part of the right side of the equation involving the normal
derivative of v is equal to 0. One can use this to get (6.2.5), as desired.
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Alternatively,

1

|∂B(a, t)|

∫
∂B(a,t)

u(y′) dy′ =
1

|∂B(0, 1)|

∫
∂B(0,1)

u(a+ t z′) dz′(6.2.13)

when 0 < t ≤ r. The derivative of the right side in t is equal to

1

|∂B(0, 1)|

∫
∂B(0,1)

n∑
j=1

∂u

∂xj
(a+ t z′) z′j dz

′(6.2.14)

=
1

|∂B(a, t)|

∫
∂B(a,t)

n∑
j=1

∂u

∂xj
(y′) t−1 (y′j − aj) dy

′

=
1

|∂B(a, t)|

∫
∂B(a,t)

(Dν(y′)u)(y
′) dy′,

where ν(y′) is the outward-pointing unit normal to ∂B(a, t) at y′ ∈ ∂B(a, t)
again. More precisely, one can verify that differentiation under the integral sign
is permitted here, using the continuous differentiability of u. If u is harmonic
on U , then the right side of (6.2.14) is equal to 0, as in (6.2.8). This implies
that the right side of (6.2.13) is constant for 0 < t ≤ r, so that (6.2.5) holds.

6.3 More on mean values

Let n be a positive integer, let U be a nonempty open subset of Rn, and let u
be a continuous real or complex-valued function on U . Let us say that u has the
mean-value property on U if for every a ∈ U and r > 0 such that B(a, r) ⊆ U ,
we have that (6.2.4) holds. Equivalently, this means that∫

∂B(a,r)

u(y′) dy′ = |∂B(a, r)|u(a) = rn−1 |∂B(0, 1)|u(a).(6.3.1)

In this case, we get that∫
B(a,r)

u(x) dx = |B(a, r)|u(a) = rn |B(0, 1)|u(a),(6.3.2)

by integrating in r. Of course, this is the same as saying that

u(a) =
1

|B(a, r)|

∫
B(a,r)

u(x) dx.(6.3.3)

Conversely, one can get (6.3.1) from (6.3.2), by differentiating in r.
One can check that∫

∂B(a,r)

(y′j − aj) dy
′ =

∫
B(a,t)

(xj − aj) dx = 0(6.3.4)
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for every a ∈ Rn, r > 0, and j = 1, . . . , n. Similarly,∫
∂B(a,t)

(y′j − aj) (y
′
l − al) dy

′ =

∫
B(a,t)

(xj − aj) (xl − al) dx = 0(6.3.5)

when j 6= l. We also have that∫
∂B(a,r)

(y′j − aj)
2 dy′ =

∫
∂B(a,r)

(y′l − al)
2 dy′(6.3.6)

and ∫
B(a,r)

(xj − aj)
2 dx =

∫
B(a,r)

(xl − al)
2 dx(6.3.7)

for every j, l = 1, . . . , n. One can use these remarks to show directly that a
polynomial on Rn of degree less than or equal to 2 satisfies the mean value
property if and only if it is harmonic.

If u is twice continuously differentiable on U , and u has the mean-value
property on U , then u is harmonic on U . This can be seen using the Taylor
approximation to u at a point a ∈ U of degree 2, to estimate the difference
between the average of u on balls or spheres centered at a with small radius and
u(a).

Alternatively, the mean-value property implies that the right side of (6.2.14)
is 0 when B(a, t) ⊆ U . This means that∫

B(a,t)

(∆u)(x) dx = 0,(6.3.8)

because of (3.5.3). One can use this to get that (∆u)(a) = 0.

6.4 Mean values and smoothness

Let n be a positive integer, and let U be a nonempty open subset of Rn. Also
let u be a continuous real or complex-valued function on U with the mean-value
property. Let r > 0 be given, and let ϕ be a continuous real-valued function
on Rn supported in B(0, r). Suppose too that ϕ is a radial function on Rn, so
that ϕ(x) depends only on |x|.

Let a ∈ U be given, and suppose that B(a, r) ⊆ U . If 0 < t ≤ r, then∫
∂B(a,t)

u(y′)ϕ(y′ − a) dy′ =
(∫

∂B(a,t)

ϕ(y′ − a) dy′
)
u(a).(6.4.1)

This uses the mean-value property of u, and the fact that ϕ(y′ − a) is constant
as a function of y′ on ∂B(a, t), because ϕ is radial on Rn. It follows that∫

∂B(a,t)

u(y′)ϕ(y′ − a) dy′ =
(∫

∂B(0,t)

ϕ(z′) dz′
)
u(a).(6.4.2)
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We can integrate over t to get that∫
B(a,t)

u(x)ϕ(x− a) dx =
(∫

B(0,r)

ϕ(w) dw
)
u(a).(6.4.3)

If ∫
B(0,r)

ϕ(w) dw = 1,(6.4.4)

then we get that ∫
B(a,r)

u(x)ϕ(x− a) dx = u(a).(6.4.5)

Of course, we can get (6.4.4) by dividing ϕ by its integral over B(0, r), as long
as the integral is not zero. It is easy to see that the integral is positive when ϕ
is nonnegative and not equal to 0 at every point in B(0, r).

Remember that B(a, r) ⊆ U implies that

B(a, r + ϵ) ⊆ U(6.4.6)

for some ϵ > 0, as in Section 1.13. If b ∈ Rn and |a− b| ≤ ϵ, then it follows that

B(b, r) ⊆ B(a, r + ϵ) ⊆ U,(6.4.7)

using the triangle inequality in the first step. This means that

u(b) =

∫
B(b,r)

u(x)ϕ(x− b) dx,(6.4.8)

as before. This can also be expressed as

u(b) =

∫
B(a,r+ϵ)

u(x)ϕ(x− b) dx,(6.4.9)

because ϕ is supported in B(0, r).
Suppose that ϕ is a smooth function on Rn too, which can be arranged

by taking a suitable smooth function of |x|2. Under these conditions, one can
differentiate under the integral sign in (6.4.9), to get that u is smooth near a.

One can use this type of argument at every point in U , to get that u is
smooth on U . It follows that u is harmonic on U , as in the previous section.

If u is twice continuously differentiable and harmonic on U , then u has the
mean value property, as in Section 6.2. This implies that u is smooth on U , as
in the preceding paragraph.

6.5 Uniform convergence

Let E be a nonempty set, let {fj}∞j=1 be a sequence of real or complex-valued
functions on E, and let f be another real or complex-valued function on E. We
say that {fj}∞j=1 converges to f pointwise on E if for every x ∈ E, {fj(x)}∞j=1
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converges to f(x) in the usual sense, as a sequence of real or complex numbers.
We say that {fj}∞j=1 converges uniformly to f on E if for every ϵ > 0 there is a
positive integer L such that

|fj(x)− f(x)| < ϵ(6.5.1)

for every x ∈ E and j ≥ L. Uniform convergence on E clearly implies pointwise
convergence on E.

Let n be a positive integer, and suppose now that E is a nonempty subset
of Rn. If {fj}∞j=1 is a sequence of continuous real or complex-valued functions
on E that converges uniformly to a real or complex-valued function f on E, as
appropriate, then it is well known that f is continuous on E too.

Let U be a nonempty open subset of Rn, let {fj}∞j=1 be a sequence of real or
complex-valued functions on U , and let f be a real or complex-valued function
on U . We say that {fj}∞j=1 converges to f uniformly on compact subsets of U
if for every compact subset E of Rn such that E ⊆ U , {fj}∞j=1 converges to
f uniformly on E. Uniform convergence on U implies uniform convergence on
compact subsets of U , and uniform convergence on compact subsets of U implies
pointwise convergence on U .

If {fj}∞j=1 is a sequence of continuous real or complex-valued functions on
U that converges to f uniformly on compact subsets of U , then f is continuous
on U as well.

Let {uj}∞j=1 be a sequence of harmonic functions on U that converges to
a function u on U , uniformly on compact sets contained in U . This implies
that u is continuous on U , as before. One can use the mean-value property for
uj for each j to get that u has the mean-value property on U too, because of
standard results about uniform convergence and integration. This means that u
is harmonic on U , as in the previous section. One can also show that derivatives
of the uj ’s converge to the corresponding derivatives of u, uniformly on compact
subsets of U , by expressing the derivatives in terms of integrals of the functions,
as in the previous section.

6.6 Liouville’s theorem

Let n be a positive integer, and let u be a bounded harmonic function on Rn.
Under these conditions, Liouville’s theorem states that u is a constant function
on Rn. To see this, let x, y ∈ Rn and r > 0 be given, so that

u(x)− u(y) =
1

|B(x, r)|

∫
B(x,r)

u(w) dw − 1

|B(y, r)|

∫
B(y,r)

u(w)

=
1

|B(0, 1)| rn

∫
B(x,r)\B(y,r)

u(w) dw(6.6.1)

− 1

|B(0, 1)| rn

∫
B(y,r)\B(x,r)

u(w) dw
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If r > |x− y|, then one can check that

B(x, r) \B(y, r) ⊆ B(x, r) \B(x, r − |x− y|),(6.6.2)

and similarly with the roles of x and y interchanged. The n-dimensional volume
of the right side is equal to

|B(x, r)| − |B(x, r − |x− y|)| = |B(0, 1)| (rn − (r − |x− y|)n)

= |B(0, 1)|
n−1∑
j=0

(−1)n−j+1 rj |x− y|n−j ,(6.6.3)

and similarly with the roles of x and y interchanged.
If u is bounded on Rn, then one can use this to check that right side of

(6.6.1) tends to 0 as r → ∞. This implies that u(x) = u(y), as desired.
Alternatively, we can use arguments like those in Section 6.4 to estimate

first derivatives of harmonic functions. These estimates will show that bounded
harmonic functions on Rn have all of their first derivatives equal to 0.

Let ϕ be a smooth real-valued radial function on Rn supported on the closed
unit ball B(0, 1), and with ∫

B(0,1)

ϕ(w) dw = 1.(6.6.4)

Put

ϕr(w) = r−n ϕ(r−1 w)(6.6.5)

for every w ∈ Rn and r > 0. It is easy to see that ϕr is a smooth real-valued
radial function on Rn that is supported on B(0, r) and satisfies∫

B(0,r)

ϕr(w) dw = 1.(6.6.6)

Let U be a nonempty open subset of Rn, and let u be a real or complex-
valued harmonic function on U . If a ∈ U , r > 0, and B(a, r) ⊆ U , then

u(a) =

∫
B(a,r)

u(x)ϕr(x− a),(6.6.7)

as in (6.4.5). If ϵ > 0 is as in (6.4.6), b ∈ Rn, and |a− b| ≤ ϵ, then we get that

u(b) =

∫
B(a,r+ϵ)

u(x)ϕr(x− b) dx,(6.6.8)

as in (6.4.9).
Observe that

∂

∂wj
(ϕr(w)) = r−n−1(∂jϕ)(r

−1w)(6.6.9)
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for each j = 1, . . . , n. We can differentiate under the integral sign in (6.6.8) to
get that

(∂ju)(a) = −r−n−1

∫
B(a,r)

u(x) (∂jϕ)(r
−1 (x− a)) dx(6.6.10)

for each j = 1, . . . , n. This also uses the fact that ∂jϕ is supported in B(0, 1).
If U = Rn and u is bounded on Rn, then one can check that the right side

of (6.6.10) tends to 0 as r → ∞. This implies that ∂ju = 0 on Rn for each
j = 1, . . . , n, so that u is constant on Rn.

6.7 The maximum principle

Let n be a positive integer, let U be a nonempty open subset of Rn, and let u
be a continuous real-valued function on U . Suppose that for every a ∈ U there
is an r > 0 such that B(a, r) ⊆ U and the average of u on B(a, r) is equal to
u(a), as in (6.3.3). In particular, this happens when u is harmonic on U , as in
Section 6.2.

Let A be a real number such that

u(x) ≤ A(6.7.1)

for every x ∈ U . Note that

{x ∈ U : u(x) = A}(6.7.2)

is a relatively closed set in U , because u is continuous on U . Equivalently,

{x ∈ U : u(x) < A}(6.7.3)

is an open set.
Suppose that

u(a) = A(6.7.4)

for some a ∈ U . If B(a, r) ⊆ U and (6.3.3) holds, then one can verify that

u(x) = A(6.7.5)

for every x ∈ B(a, r).
This shows that (6.7.2) is an open set under these conditions. If (6.7.2) is

nonempty, and U is connected, then it follows that (6.7.2) is equal to U . This
is often called the strong maximum principle.

Suppose now that U is also bounded, and let u be a continuous real-valued
function on U . As before, we ask that for each a ∈ U there be an r > 0 such
that B(a, r) ⊆ U and (6.3.3) holds. Note that U is a nonempty compact subset
of Rn, so that u attains its maximum on U , by the extreme value theorem.

Suppose that u attains its maximum on U at a point a ∈ U . If V is the
connected component of U that contains a, then it follows that u is constant
on V , as before. More precisely, u is constant on V , by continuity. This implies
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that u attains its maximum on U at a point in ∂V , which is contained in ∂U ,
as in Section 3.3.

Otherwise, if u does not attain its maximum on U at a point in U , then
u attains its maximum on U at a point in ∂U . This means that u attains its
maximum on U at a point in ∂U in either case, which is another version of the
maximum principle.

In particular, if

u(x) = 0 for every x ∈ ∂U,(6.7.6)

then we get that u(x) ≤ 0 for every x ∈ U . The same argument can be used for
−u, to obtain that

u(x) = 0 for every x ∈ U.(6.7.7)

6.8 A helpful integral formula

Let n ≥ 2 be an integer, and let N(x) be the real-valued function defined on
Rn \ {0} by

N(x) =
|x|2−n

(2− n) |∂B(0, 1)|
when n ≥ 3(6.8.1)

=
1

2π
log |x| when n = 2.

Thus N(x) is harmonic on Rn \ {0}, as in Section 6.1.
Let V be a nonempty bounded open subset of Rn with reasonably smooth

boundary, and let u be a twice continuously-differentiable real or complex-valued
function on V , as in Section 3.4. Also let a ∈ V be given, and suppose that

B(a, r) ⊆ V(6.8.2)

for some r > 0. Put

Vr = V \B(a, r),(6.8.3)

which is an open subset of Rn. Note that

Vr = V \B(a, r)(6.8.4)

and that

∂Vr = (∂V ) ∪ (∂B(a, r)).(6.8.5)

We would like to use (3.9.1), with V replaced with Vr, and v(x) = N(x−a).
This implies that

−
∫
Vr

N(x− a) (∆u)(x) dx

=

∫
∂Vr

(u(y′) (Dνr(y′)N)(y′ − a)−N(y′ − a) (Dνr(y′)u)(y
′)) dy′,(6.8.6)
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where Dνr(y′) denoted the directional derivative in the direction νr(y
′) of the

outward-pointing unit normal to ∂Vr at y′ ∈ ∂Vr. It follows that

−
∫
Vr

N(x− a) (∆u)(x) dx

=

∫
∂V

(u(y′) (Dν(y′)N)(y′ − a)−N(y′ − a) (Dν(y′)u)(y
′)) dy′

−
∫
∂B(a,r)

(u(y′) (Dµ(y′)N)(y′ − a)−N(y′ − a) (Dµ(y′)u)(y
′)) dy′,(6.8.7)

where ν(y′) is the outward-pointing unit normal to ∂V at y′ ∈ ∂V , and µ(y′) is
the outward-pointing unit normal to ∂B(a, r) at y′ ∈ ∂B(a, r). Of course,

νr(y
′) = ν(y′) when y′ ∈ ∂V(6.8.8)

= −µ(y′) when y′ ∈ ∂B(a, r).

One can check that∫
∂B(a,r)

u(y′) (Dµ(y′)N)(y′ − a) dy′ =
1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′,(6.8.9)

by expressing the partial derivatives of N as in Section 6.1. This tends to u(a)
as r → 0+, because u is continuous at a.

One can also verify that

lim
r→0+

∫
∂B(a,r)

N(y′ − a) (Dµ(y′)u)(y
′) dy′ = 0.(6.8.10)

This uses the continuous differentiability of u to get that the first derivatives of
u are bounded near a.

This implies that

lim
r→0+

∫
Vr

N(x− a) (∆u)(x) dx(6.8.11)

=

∫
∂V

(N(y′ − a) (Dν(y′)u)(y
′)− u(y′) (Dν(y′)N)(y′ − a)) dy′ + u(a).

The left side may be considered as∫
V

N(x− a) (∆u)(x) dx,(6.8.12)

defined as an improper integral, because N(x − a) is unbounded near a. One
can check that ∫

Vr

|N(x− a)| |(∆u)(x)| dx(6.8.13)

stays bounded as r → 0+, using polar coordinates near a, and the fact that
|(∆u)(x)| is bounded near a, because ∆u is continuous, by hypothesis. In par-
ticular, (6.8.12) can be defined as a Lebesgue integral.

If u is harmonic on V , then we get that

u(a) =

∫
∂V

(u(y′) (Dν(y′)N)(y′ − a)−N(y′ − a) (Dν(y′)u)(y
′)) dy′.(6.8.14)
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6.9 Poisson’s equation on Rn

Let n ≥ 2 be an integer, and let N(x) be as in (6.8.1). If f is a real or
complex-valued function on Rn, then one might like to define u as a real or
complex-valued function on Rn, as appropriate, by

u(x) =

∫
Rn

N(x− y) f(y) dy =

∫
Rn

N(y) f(x− y) dy.(6.9.1)

If f is a continuous function on Rn with compact support, then the integral
on the right may be considered as an improper integral over a bounded region
for each x ∈ Rn. One can use the Lebesgue integral to define u as a locally
integrable function on Rn under suitable integrability conditions on f .

One would like to have
∆u = f(6.9.2)

on Rn, under suitable conditions, or interpreted in a suitable way. Suppose
that f is twice continuously differentiable on Rn, with compact support. In
this case, one can show that u is twice continuously differentiable on Rn, by
differentiating the second integral in (6.9.1) under the integral sign. One can
also use this to get (6.9.2), by taking V large enough in the previous section so
that the support of f is contained in V . This corresponds to some remarks on
p193 of [11], and to Theorem 1 in Section 2.2.1 b in [35].

Let v be a twice continuously-differentiable real or complex-valued function
on Rn with compact support. Thus∫

Rn

N(x− y) (∆v)(x) dx = v(y)(6.9.3)

for every y ∈ Rn, as in the previous section, with V taken large enough to
contain the support of v. Under suitable integrability conditions on f , we have
that ∫

Rn

u(x) (∆v)(x) dx =

∫
Rn

(∫
Rn

N(x− y) f(y) dy
)
(∆v)(x) dx

=

∫
Rn

(∫
Rn

N(x− y) (∆v)(x) dx
)
f(y) dy(6.9.4)

=

∫
Rn

f(y) v(y) dy.

This means that u satisfies (6.9.2) in the sense of distributions, as in Theorem
2.16 in Section B of Chapter 2 of [38].

If f is continuous on Rn, and u is twice continuously differentiable on Rn,
then one can use (6.9.4) to get that (6.9.2) holds on Rn. If f has a bit more
regularity, then one can get that u is twice continuously differentiable under
suitable conditions, as in Theorem 2.17 in Section B of Chapter 2 of [38].

Some topics related to integrals like those in (6.9.1) are discussed in Chapter
5 of [130].
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6.10 The Poisson kernel

Let n ≥ 2 be an integer, and put

p(w′, x) =
1

|∂B(0, 1)|
(1− |x|2)
|x− w′|n

(6.10.1)

for every w′, x ∈ Rn with |w′| = 1 and x 6= w′. This is the Poisson kernel
associated to the unit ball in Rn.

Let w′ ∈ Rn with |w′| = 1 be given, and let us check that p(w′, x) is harmonic
as a function of x for x 6= w′. Observe that

|x|2 = |(x− w′) + w′|2 = |x− w′|2 + 2 (x− w′) · w′ + |w′|2(6.10.2)

= |x− w′|2 + 2 (x− w′) · w′ + 1.

Thus

p(w′, x) =
1

|∂B(0, 1)|

( −1

|x− w′|n−2
− 2

(x− w′) · w′

|x− w′|n
)
.(6.10.3)

The first term on the right is harmonic in x for x 6= w′, as mentioned in Section
6.1 when n ≥ 3, and trivially when n = 2. The second term on the right can
be expressed in terms of derivatives of harmonic functions in x for x 6= w′, as
before, which are harmonic too.

Suppose that w′, x′ ∈ Rn, |w′| = |x′| = 1, r ∈ R, and 0 ≤ r < 1. It is easy
to see that

|r x′ − w′| = |x′ − r w′|,(6.10.4)

by squaring both sides and expanding using the dot product on Rn. This means
that

p(w′, r x′) = p(x′, r w′).(6.10.5)

The mean-value property for harmonic functions implies that

1

|∂B(0, 1)|

∫
∂B(0,1)

p(x′, r w′) dw′ = p(x′, 0) =
1

|∂B(0, 1)|
.(6.10.6)

This implies that ∫
∂B(0,1)

p(w′, r x′) dw′ = 1,(6.10.7)

because of (6.10.5).
Note that

p(w′, x) > 0(6.10.8)

for every w′, x ∈ Rn with |w′| = 1 and |x| < 1. If x′ ∈ Rn, |x′| = 1, and η is a
positive real number, then one can check that∫

(∂B(0,1))\B(x′,η)

p(w′, r x′) dw′ → 0(6.10.9)
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as r → 1−, uniformly in x′. More precisely,

1 = |w′| ≤ |w′ − r x′|+ |r x′| = |w′ − r x′|+ r(6.10.10)

for every r ≥ 0, so that
1− r ≤ |w′ − r x′|.(6.10.11)

This implies that

|w′ − x′| ≤ |w′ − r x′|+ |r x′ − x′| = |w − r x′|+ 1− r ≤ 2 |w′ − r x′|(6.10.12)

when 0 ≤ r ≤ 1.

6.11 The Poisson integral

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let f be a continuous complex-valued function on the unit sphere ∂B(0, 1).
Consider the complex-valued function u defined on the closed unit ball B(0, 1)
by

u(x) =

∫
∂B(0,1)

f(w′) p(w′, x) dw′ when |x| < 1(6.11.1)

= f(x) when |x| = 1.

It is not too difficult to show that u is harmonic on B(0, 1), because p(w′, x)
is harmonic in x on B(0, 1) for every w′ ∈ ∂B(0, 1), as in the previous section.
One way to do this is to use standard results about differentiation under the
integral sign. Another way to do this is to check that u is continuous and
satisfies the mean-value property on B(0, 1). This uses the mean-value property
for p(w′, x) in x for each w′, and well known results about interchanging the
order of integration.

One can also show that u is continuous on B(0, 1). The continuity of u
on B(0, 1) is reasonably straightforward, as in the preceding paragraph. If
y′ ∈ ∂B(0, 1), then one would like to verify that u is continuous at y′, as a
function on B(0, 1). Equivalently, this means that

u(x) → u(y′) = f(y′)(6.11.2)

as x ∈ B(0, 1) tends to y′. More precisely, it suffices to consider only x ∈ B(0, 1)
here, because f is continuous on ∂B(0, 1), by hypothesis.

Note that ∫
∂B(0,1)

p(w′, x) dw′ = 1(6.11.3)

for every x ∈ B(0, 1), by (6.10.7). This implies that

u(x)− f(y′) =

∫
∂B(0,1)

p(w′, x) (f(w′)− f(y′)) dw′(6.11.4)
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for every x ∈ B(0, 1). It follows that

|u(x)− f(y′)| ≤
∫
∂B(0,1)

p(w′, x) |f(w′)− f(y′)| dw′(6.11.5)

for every x ∈ B(0, 1), because of (6.10.8).
We would like to get that the right side of (6.11.5) is as small as we like

when x is sufficiently close to y′. If η > 0, then the right side of (6.11.5) can be
expressed as the sum of∫

(∂B(0,1))∩B(y′,η)

p(w′, x) |f(w′)− f(y′)| dw′(6.11.6)

and ∫
(∂B(0,1))\B(y′,η)

p(w′, x) |f(w′)− f(y′)| dw′.(6.11.7)

If η is sufficiently small, then

|f(w′)− f(y′)|(6.11.8)

is as small as we like when |w′ − y′| < η, because f is continuous at y′, by
hypothesis. We can use this to get that (6.11.6) is as small as we like, because
of (6.11.3). Let us now fix η > 0 in this way.

With η fixed, we can get that (6.11.7) is as small as we like when x is suffi-
ciently close to y′. Note that f is bounded on ∂B(0, 1), because f is continuous
on ∂B(0, 1), and ∂B(0, 1) is compact. If x is sufficiently close to y′, then |x| is
as close as we like to 1, and x/|x| is as close as we like to y′. We can use this to
get that (6.11.7) is as small as we like, as in (6.10.9).

If v is any continuous complex-valued function on B(0, 1) that is harmonic
on B(0, 1) and equal to f on ∂B(0, 1), then v = u on B(0, 1), as in Section 6.7.

6.12 Some more integral formulas

Let n be a positive integer, and let N(x) be the real-valued function defined on
Rn \ {0} as in Section 6.8. Put

cr =
r2−n

(2− n) |∂B(0, 1)|
when n ≥ 3(6.12.1)

=
1

2π
log r when n = 2

for each r > 0, so that N(x) = cr when |x| = r. Let a ∈ Rn and r > 0 be given,
and suppose that u is a twice continuously-differentiable real or complex-valued
function on B(a, r), as in Section 3.4.

Let 0 < t < r be given, and put

V = B(a, r) \B(a, t).(6.12.2)
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If y′ ∈ ∂V = (∂B)(a, r)) ∪ (∂B)(a, t)), then let ν(y′) be the outward pointing
unit normal to ∂V at y′, as usual. We would like to use (3.9.1), with

v(x) = N(x− a)− cr.(6.12.3)

This implies that

−
∫
V

v(x) (∆u)(x) dx(6.12.4)

=

∫
∂V

(u(y′) (Dν(y′)v)(y
′)− v(y′) (Dν(y′)u)(y

′)) dy′.

If ρ > 0 and y′ ∈ ∂B(a, ρ), then put

µρ(y
′) = ρ−1 (y′ − a),(6.12.5)

which is the outward-pointing unit normal to ∂B(a, ρ) at y′. Thus

ν(y′) = µr(y
′) when y′ ∈ ∂B(a, r)(6.12.6)

= −µt(y
′) when y′ ∈ ∂B(a, t).

Using this and (6.12.4), we get that

−
∫
V

v(x) (∆u)(x) dx

=

∫
∂B(a,r)

u(y′) (Dµr(y′)v)(y
′)dy′

−
∫
∂B(a,t)

(u(y′) (Dµt(y′)v)(y
′)− v(y′) (Dµt(y′)u)(y

′)) dy′,(6.12.7)

because v = 0 on ∂B(a, r), by construction.
It follows from this and (6.12.3) that∫

V

(cr −N(x− a)) (∆u)(x) dx

=
1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′ − 1

|∂B(a, t)|

∫
∂B(a,t)

u(y′) dy′(6.12.8)

+(ct − cr)

∫
∂B(a,t)

(Dµt(y′)u)(y
′) dy′,

using also (6.8.9) and its analogue for ∂B(a, t). Remember that∫
∂B(a,t)

(Dµt(y′)u)(y
′) dy′ =

∫
B(a,t)

(∆u)(x) dx,(6.12.9)

as in Section 3.5. Using this, we can reexpress (6.12.8) as∫
B(a,r)

min(cr −N(x− a), cr − ct) (∆u)(x) dx

=
1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′ − 1

|∂B(a, t)|

∫
∂B(a,t)

u(y′) dy′.(6.12.10)
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We can take the limit as t → 0+ on both sides of (6.12.8) or (6.12.10) to get
that ∫

B(a,r)

(cr −N(x− a)) (∆u)(x) dx(6.12.11)

=
1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′ − u(a),

as in Section 6.8. More precisely, the left side of the equation should be consid-
ered as an improper integral, or a Lebesgue integral, as before.

Alternatively, if 0 < ρ ≤ r, then

d

dρ

( 1

|∂B(a, ρ)|

∫
∂B(a,ρ)

u(y′) dy′
)

(6.12.12)

=
1

|∂B(a, ρ)|

∫
∂B(a,ρ)

(Dµρ(y′)u)(y
′) dy′,

as in Section 6.2. This means that

d

dρ

( 1

|∂B(a, ρ)|

∫
∂B(a,ρ)

u(y′) dy′
)

(6.12.13)

=
1

|∂B(a, ρ)|

∫
B(a,ρ)

(∆u)(x) dx,

by (6.12.9). One can get (6.12.10) by integrating both sides of (6.12.13) in ρ from
t to r. This also involves interchanging the order of integration on the right side.
In some cases, we may be particularly interested simply in the nonnegativity of
some of these integrals of ∆u when ∆u ≥ 0, as in the next section.

6.13 Subharmonic functions

Let n be a positive integer, and let U be a nonempty open subset of Rn. A twice
continuously-differentiable real-valued function u on U is said to be subharmonic
if

∆u ≥ 0(6.13.1)

on U . Equivalently, umay be considered as a subsolution of the Laplace equation
in this case. If n = 1, then this corresponds to convexity of u.

Let a ∈ U and r > 0 be given, with B(a, r) ⊆ U . If u is subharmonic on U ,
then it is well known that

u(a) ≤ 1

|∂B(a, r)|

∫
∂B(a,r)

u(y′) dy′.(6.13.2)

This can be obtained from suitable integral formulas, as in the previous section.
One can use this to get that

u(a) ≤ 1

|B(a, r)|

∫
B(a,r)

u(x) dx,(6.13.3)
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as before. Conditions like these may be used to extend the notion of subhar-
monicity to functions with less regularity.

Suppose that u is a continuous real-valued function on U , and that there is
a real number A such that

u(x) ≤ A(6.13.4)

for every x ∈ U . Suppose also for the moment that

u(a) = A(6.13.5)

for some a ∈ U , and that (6.13.3) holds for some r > 0 such that B(a, r) ⊆ U .
Under these conditions, one can check that

u(x) = A(6.13.6)

for every x ∈ B(a, r). More precisely, A− u(x) ≥ 0 for every x ∈ U , and∫
B(a,r)

(A− u(x)) dx ≤ 0,(6.13.7)

because of (6.13.3) and (6.13.5).
Suppose now that for every a ∈ U there is an r > 0 such that B(a, r) ⊆ U

and (6.13.3) holds. This implies that the set of x ∈ U such that (6.13.6) holds is
an open set, as in the preceding paragraph. This set is relatively closed in U as
well, because u is continuous on U . If this set is nonempty, and U is connected,
then this set is equal to U , so that

u ≡ A on U.(6.13.8)

This is another version of the strong maximum principle.
Suppose that U is bounded, and that u is a continuous real-valued function

on U such that for every a ∈ U there is an r > 0 with B(a, r) ⊆ U and for which
(6.13.3) holds. The extreme value theorem implies that u attains its maximum
on U . In fact, the maximum of u on U is attained as a point in ∂U , as in Section
6.7. More precisely, this uses the remarks in the previous paragraph too. This
is another version of the maximum priciple.

6.14 Another approach to local maxima

Let n be a positive integer, let U be a nonempty open subset of Rn, and let
u be a twice continuously-differentiable real-valued function on U . If u has
a local maximum at a point a ∈ U , then a is a critical point of U , and the
second derivatives of u at a in any direction are less than or equal to 0, by the
second-derivative test. In particular, this means that

(∆u)(a) ≤ 0.(6.14.1)

If
(∆u)(x) > 0(6.14.2)
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for every x ∈ U , then it follows that u has no local maxima in U .
Suppose from now on in this section that U is bounded, and that u is a

continuous real-valued function on U that is twice continuously differentiable
on U . The extreme value theorem implies that u attains its maximum on U .
If (6.14.2) holds at every point in U , then the maximum of u on U cannot be
attained at a point in U , as in the preceding paragraph. This implies that the
maximum of u on U is attained at a point in ∂U .

Suppose that u is subharmonic on U , so that ∆u ≥ 0 on U . Let ϵ > 0 be
given, and put

vϵ(x) = u(x) + ϵ |x|2(6.14.3)

for every x ∈ U . Note that vϵ is continuous on U , twice continuously differen-
tiable on U , and that

(∆vϵ)(x) ≥ 2n ϵ > 0(6.14.4)

for every x ∈ U . It follows that the maximum of vϵ on U is attained at a point
in ∂U , as in the previous paragraph.

Of course, U is bounded in Rn, because U is bounded, so that there is a
nonnegative real number R such that

|x| ≤ R(6.14.5)

for every x ∈ U . This means that

vϵ(x) ≤ u(x) + ϵR2(6.14.6)

for every x ∈ U . It follows that

max
x∈U

vϵ(x) = max
x∈∂U

vϵ(x) ≤ max
x∈∂U

u(x) + ϵR2,(6.14.7)

using the remarks in the previous paragraph in the first step. This implies that

max
x∈U

u(x) ≤ max
x∈∂U

u(x) + ϵR2,(6.14.8)

because u ≤ vϵ on U , by construction. Thus

max
x∈U

u(x) ≤ max
x∈∂U

u(x),(6.14.9)

because ϵ > 0 is arbitrary.
This is the same as saying that the maximum of u on U is attained at a

point in ∂U . This is another approach to the maximum principle under these
conditions.

6.15 Positive harmonic functions

Let n be a positive integer, and suppose for the moment that u is a positive
real-valued harmonic function on Rn. Another version of Liouville’s theorem
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states that u has to be constant on Rn. This can be shown in a way that is
somewhat analogous to the first proof in Section 6.6, with some adjustments.
This is Theorem 3.1 on p45 of [11].

Now let u be a positive harmonic function on a nonempty open subset U of
Rn. Suppose that x, y ∈ U and r > 0 satisfy

|x− y| ≤ r(6.15.1)

and
B(x, 2 r) ⊆ U.(6.15.2)

It is easy to see that
B(y, r) ⊆ B(x, 2 r),(6.15.3)

using (6.15.1) and the triangle inequality. It follows that

u(y) =
1

|B(y, r)|

∫
B(y,r)

u(z) dz ≤ 1

|B(y, r)|

∫
B(x,2 r)

u(z) dz

=
2n

|B(x, 2 r)|

∫
B(x,2 r)

u(z) dz = 2n u(x).(6.15.4)

Similarly, if (6.15.1) holds and

B(y, 2 r) ⊆ U,(6.15.5)

then
u(x) ≤ 2n u(y).(6.15.6)

Note that
B(y, 2 r) ⊆ B(x, 3 r),(6.15.7)

by (6.15.1) and the triangle inequality again. If

B(x, 3 r) ⊆ U,(6.15.8)

then (6.15.7) implies (6.15.5).
Suppose that U is connected, and that K is compact subset of Rn that is

contained in U . In this case, it is well known that there is a real number C ≥ 1
such that

C−1 u(x) ≤ u(y) ≤ C u(x)(6.15.9)

for every x, y ∈ K. More precisely, this constant C does not depend on u. This
is Harnack’s inequality, as in Theorem 3.6 on p48 of [11], and Theorem 11 in
Section 2.2.3 f of [35].

One can get more precise estimates on balls using the Poisson integral for-
mula, as in 3.4, 3.5 on p47f of [11].



Chapter 7

The heat equation

7.1 Some basic solutions

Let n be a positive integer, and let us identify Rn×R with Rn+1, as usual. Let
U be a nonempty open subset of Rn × R, and let u be a twice continuously-
differentiable real or complex-valued function on U . We shall use ∆u = ∆xu to
refer to the Laplacian of u(x, t) as a function of x, with t fixed.

We say that u(x, t) satisfies the heat equation on U if

∂u

∂t
= ∆u =

n∑
j=1

∂2u

∂x2j
(7.1.1)

on U . One may also consider continuously-differentiable functions u(x, t) on U
whose second derivatives in x exist and are continuous on U .

Let V be a nonempty open subset of Rn, and let v be a twice continuously-
differentiable real or complex-valued function on V . Thus W = V × R is an
open set in Rn ×R, and

w(x, t) = v(x)(7.1.2)

is twice continuously-differentiable on W . Clearly w satisfies the heat equation
on W if and only if v is harmonic on V .

Let a ∈ C and b ∈ Cn be given, and put

u(x, t) = exp(a t+ b · x)(7.1.3)

for every x ∈ Rn and t ∈ R. This satisfies the heat equation on Rn ×R if and
only if

a = b · b.(7.1.4)

If b ∈ Rn, then it follows that a ≥ 0. If b = i c for some c ∈ Rn, then (7.1.4)
implies that

a = −c · c ≤ 0.(7.1.5)

118
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Put
K(x, t) = (4π t)−n/2 exp(−|x|2/(4 t))(7.1.6)

for x ∈ Rn and t > 0. One can check directly that this satisfies the heat
equation on Rn ×R+. This is known as the Gauss–Weierstrass or heat kernel,
as in Section A of Chapter 4 of [38] and p8 of [136]. This is also discussed in
Section 2.3.1 a of [35].

With this normalization, we have that∫
Rn

K(x, t) dx = 1(7.1.7)

for every t > 0. The integral on the left may be considered as an improper
integral or as a Lebesgue integral, and this will be discussed in the next two
sections.

Put
K(x, t) = 0(7.1.8)

when t = 0 and x 6= 0, and for every x ∈ Rn when t < 0. This together with
(7.1.6) defines K(x, t) on (Rn × R) \ {(0, 0)}. One can verify that K(x, t) is
smooth on this set, and satisfies the heat equation there, as in Section 2.3.1 b
of [35], and Section A of Chapter 4 of [38].

Of course, the heat equation is invariant under translations. In particular,
if y ∈ Rn and r ∈ R, then

K(x− y, t− r)(7.1.9)

is smooth as a function of (x, t) on (Rn × R) \ {(y, r)}, and satisfies the heat
equation there.

Note that
(−t)−n/2 exp(−|x|2/(4t))(7.1.10)

satisfies the heat equation on Rn × (−∞, 0), for the same reasons as before. If
y ∈ Rn and r ∈ R, then it follows that

(r − t)−n/2 exp(|x− y|2/(4(r − t)))(7.1.11)

satisfies the heat equation as a function of (x, t) on Rn × (−∞, r).

7.2 Integrable continuous functions

Let f be a nonnegative real-valued continuous function on the real line. If a, b
are real numbers with a ≤ b, then∫ b

a

f(x) dx(7.2.1)

is defined as a Riemann integral, and is a nonnegative real number. Let us say
that f is integrable on R if the integrals (7.2.1) are bounded. In this case,∫ ∞

−∞
f(x) dx =

∫
R

f(x) dx(7.2.2)
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may be defined as the supremum of the integrals in (7.2.1) over all a, b ∈ R with
a ≤ b. This could also be considered as an improper integral, which is obtained
by taking a suitable limit of (7.2.1) as a→ −∞ and b→ ∞.

One could also use the Lebesgue integral to define (7.2.2) as a nonnegative
extended real number for any nonnegative continuous function on R. Integra-
bility of f in the sense considered in the preceding paragraph is the same as
the finiteness of (7.2.2) as a Lebesgue integral, which implies that f is Lebesgue
integrable on R.

If f is a real-valued continuous function on R, then

f+ = max(f, 0), f− = max(−f, 0)(7.2.3)

are nonnegative continuous functions on R such that

f = f+ − f−, |f | = f+ + f−.(7.2.4)

Let us say that f is integrable on R if |f | is integrable as a nonnegative contin-
uous function on R, which happens if and only if f+ and f− are integrable as
nonnegative continuous functions on R. This permits us to define the integral
(7.2.2) as the difference of the integrals of f+ and f− on R. This could also be
considered as an improper integral, as before. This is the same as the Lebesgue
integral of f on R as well.

Similarly, a complex-valued continuous function f on R is said to be inte-
grable on R if |f | is integrable as a nonnegative real-vaued continuous function
on R. This happens if and only if the real and imaginary parts of f are in-
tegrable as real-valued continuous functions on R, and the real and imaginary
parts of the integral (7.2.2) are defined as the integrals of the real and imaginary
parts of f on R. This could be considered as an improper integral too, and it
is the same as the Lebesgue integral of f on R.

There are analogous notions on Rn for any positive integer n. If f is a
nonnegative real-valued continuous function on Rn, then the integrability of f
on Rn can be defined in terms of the boundedness of the integrals of f over
any reasonable family of balls, cubes, or other regions that exhaust Rn, and the
integral of f on Rn can be defined as the supremum of these integrals. If f is
a real or complex-valued continuous function on Rn, then the integrability of
f is defined to mean that |f | is integrable, and this can be used to define the
integral of f on Rn as before. This implies that f is Lebesgue integrable on
Rn, and the integral of f on Rn is the same as the Lebesgue integral.

7.3 Some examples of integrable functions

Let n be a positive integer, and let a be a positive real number. Note that

min(1, |x|−a)(7.3.1)

is continuous on Rn, which is interpreted as being equal to 1 at x = 0. One can
check that this function is integrable on Rn exactly when a > n.
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It is easy to see that exp(−|x|2) is integrable on Rn. It is well known that∫
Rn

exp(−|x|2) dx = πn/2.(7.3.2)

More precisely, the n = 2 case can be obtained using polar coordinates. The
2-dimensional integral is the same as the square of the one-dimensional integral,
which can be used to get the n = 1 case. Similarly, the n-dimensional integral
is equal to the nth power of the one-dimensional integral.

If a is a positive real number again, then exp(−a |x|2) is integrable on Rn.
One can check that ∫

Rn

exp(−a |x|2) dx = (π/a)n/2,(7.3.3)

using a change of variables.
If b ∈ Rn, then it is easy to see that

exp(−a |x|2 + b · x)(7.3.4)

is integrable on Rn. Observe that

exp(−a |x|2 + b · x) = exp(−a |x− (2 a)−1b|2 + (4 a)−1|b|2)(7.3.5)

for every x ∈ Rn. It follows that∫
Rn

exp(−a |x|2 + b · x) dx = (π/a)n/2 exp((4 a)−1 |b|2),(7.3.6)

using (7.3.3) and a change of variables.
In fact, (7.3.4) is integrable on Rn when b ∈ Cn. It is well known that∫

Rn

exp(−a |x|2 + b · x) dx = (π/a)n/2 exp((4 a)−1 b · b)(7.3.7)

for every b ∈ Cn, which is the same as (7.3.6) when b ∈ Rn. One can first reduce
to the case where n = 1, because the left side is the same as the product of n
analogous integrals over R. If n = 1, then both sides of (7.3.7) are holomorphic
functions of b ∈ C. This permits one to reduce to the case where b ∈ R, using
standard results in complex analysis.

Alternatively, one can use the fact that

exp(−a z2 + b z) = exp(−a (z − (b/(2 a)))2 + b2/(4 a))(7.3.8)

is a holomorphic function of z ∈ C. One can reduce to the case where b ∈ R
again, using Cauchy’s theorem to make a suitable change of contour.

As another approach, one can reduce to the case where b is purely imaginary,
using a change of variables in x, as before. This corresponds to a Fourier
transform, as on p105f of [86], and Theorem 1.4 on p138 of [132].
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7.4 Some integral solutions

Let n be a positive integer, and let f be a continuous real or complex-valued
function on Rn. If x ∈ Rn and t > 0, then we would like to put

u(x, t) =

∫
Rn

K(x− y, t) f(y) dy(7.4.1)

=

∫
Rn

(4π t)−n/2 exp(−|x− y|2/(4 t)) f(y) dy.

This is called the Gauss–Weierstrass integral of f . The integral on the right is
defined as long as

exp(−|x− y|2/(4 t)) f(y)(7.4.2)

is integrable as a function of y on Rn, as in Section 7.2. Equivalently, this means
that

exp((2x · y − |y|2)/(4 t)) |f(y)|(7.4.3)

is integrable as a function of y on Rn.
Let τ be a positive real number, and suppose that there is a nonnegative

real number C(τ) such that

|f(y)| ≤ C(τ) exp(|y|2/(4 τ))(7.4.4)

for every y ∈ Rn. If 0 < t < τ and x ∈ Rn, then it follows that (7.4.3) is
integrable as a function of y on Rn. Thus u(x, t) can be defined as in (7.4.1) in
this case.

One can differentiate under the integral sign, to show that u(x, t) is smooth
on Rn × (0, τ) under these conditions. In particular, one can check that any
number of derivatives of (7.4.2) in x and t is integrable as a function of y on
Rn when 0 < t < τ , because of (7.4.4). We also get that u(x, t) satisfies the
heat equation on Rn × (0, τ), because K(x− y, t) satisfies the heat equation as
a function of (x, t) for every y ∈ Rn.

If x, z ∈ Rn and 0 < t < τ , then

u(x, t)− f(z) =

∫
Rn

K(x− y, t) (f(y)− f(z)) dy,(7.4.5)

because of (7.1.7). This implies that

|u(x, t)− f(z)| ≤
∫
Rn

K(x− y, t) |f(y)− f(z)| dy,(7.4.6)

because K(x− y, t) ≥ 0. One can use this to show that

u(x, t) → f(z)(7.4.7)

as (x, t) → (z, 0) in Rn × R. This means that u(x, t) extends continuously to
t ≥ 0, by taking it to be equal to f(x) when t = 0. Properties like these are
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mentioned in Theorem 1 in Section 2.3.1 b of [35], and Theorem 4.3 in Section
A of Chapter 4 of [38].

A related convergence property is that

u(x, t) → f(x)(7.4.8)

uniformly on bounded subsets of Rn as t → 0. This can be obtained using the
uniform continuity of f on compact subsets of Rn. The previous convergence
property can be obtained from this one and the continuity of f on Rn. This
convergence property could also be obtained from the continuous extension of
u(x, t) to t ≥ 0, and the uniform continuity of this extension on compact sets.

Suppose now that for every τ > 0 there is a nonnegative real number C(τ)
such that (7.4.4) holds. This implies that u(x, t) can be defined as in (7.4.1) for
every x ∈ Rn and t > 0.

Of course, this condition holds when f is bounded on Rn. This condition
also holds when f is the exponential of a linear function on Rn.

7.5 Some related integrability conditions

Let n be a positive integer, and let f be a continuous real or complex-valued
function on Rn. Also let τ1 be a positive real number, and suppose that

exp(−|y|2/(4 τ1)) |f(y)|(7.5.1)

is integrable on Rn, as in Section 7.2. This implies that (7.4.3) is integrable as
a function of y on Rn when 0 < t < τ1 and x ∈ Rn. This means that u(x, t)
can be defined as in (7.4.1) under these conditions.

If f satisfies (7.4.4) for some τ > 0, then it is easy to see that (7.5.1) is
integrable on Rn for 0 < τ1 < τ . If (7.5.1) is integrable on Rn for some τ1 > 0,
then u(x, t) satisfies the same properties on Rn × (0, τ1) as mentioned in the
previous section when (7.4.4) holds.

If (7.5.1) is integrable on Rn for every τ1 > 0, then u(x, t) can be defined as
in (7.4.1) for every x ∈ Rn and t > 0. In particular, this holds when for every
τ > 0 there is a C(τ) ≥ 0 such that (7.4.4) holds. Of course, if f is integrable
on Rn, then (7.5.1) is integrable on Rn for every τ1 > 0.

If one is familiar with Lebesgue integrals, then one may consider real or
complex-valued Lebesgue measurable functions f on Rn. The integral on the
right side of (7.4.1) can be defined as a Lebesgue integral when (7.4.2) is
Lebesgue integrable as a function of y on Rn. This is equivalent to the Lebesgue
integrability of (7.4.3) as a function of y on Rn, as before. Note that this implies
that f is locally integrable with respect to Lebesgue measure on Rn.

If (7.5.1) is Lebesgue integrable on Rn for some τ1 > 0, then (7.4.3) is
Lebesgue integrable as a function of y on Rn when 0 < t < τ1 and x ∈ Rn, as
before. This implies that u(x, t) can be defined as in (7.4.1) on Rn×(0, τ1). One
can differentiate under the integral sign under these conditions too, to get that
u(x, t) is smooth on Rn× (0, τ1). Note that any number of derivatives of (7.4.2)
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in x and t is Lebesgue integrable as a function of y on Rn when 0 < t < τ1,
because of the Lebesgue integrability of (7.5.1) on Rn. We also have that u(x, t)
satisfies the heat equation on Rn × (0, τ1), as before.

However, the convergence of u(x, t) to f(x) as t → 0+ is more complicated
in this case. Some results along these lines are mentioned in Theorem 4.3 in
Section A of Chapter 4 of [38], and Theorems 1.18 and 1.25 on p10, 13 of [136].

There are continuity and convergence results like those mentioned in the
previous section at points where f is continuous. One can also use Riemann
integrals on suitable regions in Rn, and corresponding improper integrals on
Rn, to deal with some types of functions that may not be continuous, instead
of Lebesgue integrals.

7.6 Translations and integrability

Let n be a positive integer, and let f be a continuous real or complex-valued
function on Rn. If a ∈ Rn, then

fa(x) = f(x− a)(7.6.1)

is a continuous function on Rn as well. Note that f is integrable on Rn if and
only if fa is integrable on Rn, in which case∫

Rn

fa(x) dx =

∫
Rn

f(x) dx.(7.6.2)

Of course, this also holds with |f | in place of f , so that∫
Rn

|fa(x)| dx =

∫
Rn

|f(x)| dx.(7.6.3)

Let x ∈ Rn and t > 0 be given. Observe that

exp(−|x− y|2/(4 t)) f(y − a)(7.6.4)

= exp(−|(x− a)− (y − a)|2/(4 t)) f(y − a)

is the same as

exp(−|(x− a)− y|2/(4 t)) f(y)(7.6.5)

with y replaced by y− a. Thus (7.6.4) is integrable on Rn if and only if (7.6.5)
is integrable on Rn, as in the preceding paragraph. In this case, we get that

u(x− a, t) =

∫
Rn

(4π t)−n/2 exp(−|x− y|2/(4 t)) f(y − a) dy,(7.6.6)

where the left side is defined as in (7.4.1).
Note that

exp(−|y|2/(4 t)) |f(y − a)|(7.6.7)
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is integrable on Rn if and only if

exp(−|y + a|2/(4 t)) |f(y)|(7.6.8)

is integrable on Rn. This is equivalent to the integrability of

exp((−2 a · y − |y|2)/(4 t)) |f(y)|(7.6.9)

If (7.5.1) is integrable on Rn for some τ1 > 0, then (7.6.9) is integrable on
Rn when 0 < t < τ1, as in the previous section. This means that (7.6.7) is
integrable on Rn when 0 < t < τ1. Of course, there are analogous statements
for Lebesgue measurable functions f using Lebesgue integrability.

Similarly, (7.6.7) is bounded on Rn if and only if (7.6.8) is bounded on Rn,
which is equivalent to the boundedness of (7.6.9) on Rn. Suppose that

exp(−|y|2/(4 τ)) |f(y)|(7.6.10)

is bounded on Rn for some τ > 0, which is the same as saying that (7.4.4) holds
for some C(τ) ≥ 0. If 0 < t < τ , then it follows that (7.6.9) is bounded on Rn,
so that (7.6.7) is bounded on Rn.

Let 0 < τ0 ≤ +∞ be given. Consider the condition that (7.5.1) be integrable
on Rn for every positive real number τ1 < τ0. This implies that fa satisfies the
analogous condition, by the earlier remarks. Similarly, consider the condition
that (7.6.10) be bounded on Rn for every 0 < τ < τ0. This implies that fa
satisfies the analogous condition, as in the preceding paragraph.

7.7 Some properties of these solutions

Let n be a positive integer, and let f be a continuous real or complex-valued
function on Rn. Also let x ∈ Rn and t > 0 be given, and suppose for the
moment that (7.4.2) or equivalently (7.4.3) is integrable as a function of y on
Rn. Thus u(x, t) may be defined as in (7.4.1), and we have that

|u(x, t)| ≤
∫
Rn

K(x− y, t) |f(y)| dy(7.7.1)

=

∫
Rn

(4π t)−n/2 exp(−|x− y|2/(4 t)) |f(y)| dy.

This also works when f is Lebesgue measurable on Rn, and (7.4.2) or equiva-
lently (7.4.3) is Lebesgue integrable as a function of y on Rn.

Of course, if f is real-valued on Rn, then u(x, t) ∈ R. If f is also nonnegative
on Rn, then

u(x, t) ≥ 0.(7.7.2)

Similarly, if f(y) ≥ a for some a ∈ R and every y ∈ Rn, then

u(x, t) ≥ a,(7.7.3)
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because of (7.1.7). If f(y) ≤ b for some b ∈ R and every y ∈ Rn then

u(x, t) ≤ b,(7.7.4)

for basically the same reasons.
If f is a bounded continuous complex-valued function on Rn, then u(x, t) is

defined for every x ∈ Rn and t > 0, as in Section 7.4. More precisely, suppose
that

|f(y)| ≤ C(7.7.5)

for some C ≥ 0 and every y ∈ Rn. This implies that

|u(x, t)| ≤ C(7.7.6)

for every x ∈ Rn and t > 0, because of (7.1.7) and (7.7.1). This works when f
is a bounded Lebesgue measurable function on Rn as well. If f is a constant
on Rn, then u(x, t) is equal to the same constant for every x ∈ Rn and t > 0.

Suppose now that f is a real or complex-valued function on Rn that is
continuous and integrable, or simply Lebesgue integrable. This implies that
u(x, t) may be defined as in (7.4.1) for every x ∈ Rn and t > 0. In this case,
u(x, t) is integrable as a function of x on Rn for every t > 0, with∫

Rn

|u(x, t)| dx ≤
∫
Rn

|f(y)| dy.(7.7.7)

This can be obtained from (7.7.1) by interchanging the order of integration and
using (7.1.7). Similarly, ∫

Rn

u(x, t) dx =

∫
Rn

f(y) dy(7.7.8)

for every t > 0.
One can also show that

lim
t→0+

∫
Rn

|u(x, t)− f(x)| dx = 0.(7.7.9)

This corresponds to taking p = 1 in Theorem 4.3 in Section A of Chapter 4 of
[38], and Theorem 1.18 on p10 of [136]. This is simpler when f is a continuous
function on Rn with compact support. Otherwise, one can approximate f by
such functions.

7.8 Parabolic boundaries and maxima

Let n be a positive integer, let V be a nonempty bounded open subset of Rn,
and let T be a positive real number. Thus

U = V × (0, T )(7.8.1)
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is a bounded open subset of Rn × R, which we identify with Rn+1, as usual.
The closure U of U in Rn ×R is given by

U = V × [0, T ],(7.8.2)

where V is the closure of V in Rn. The boundary ∂U of U in Rn ×R is given
by

∂U = (V × {0}) ∪ ((∂V )× [0, T ]) ∪ (V × {T}),(7.8.3)

where ∂V is the boundary of V in Rn.
Note that

(V × {0}) ∪ ((∂V )× [0, T ])(7.8.4)

is a closed set in Rn × R that is contained in ∂U . This may be called the
parabolic boundary of U , as in Section 2.3.2 of [35], although the term is used
slightly differently there. This is the same as

(V × {0}) ∪ ((∂V )× [0, T ]),(7.8.5)

because (∂V )× {0} is contained in the second part of the union.
Let u be a continuous real-valued function on U , and suppose that u is

continuously differentiable on U , and that the second derivatives of u(x, t) in x
exist and are continuous on U . Remember that u attains its maximum on U ,
by the extreme value theorem. If u satisfies the heat equation on U , then it is
well known that the maximum of u on U is attained on the parabolic boundary
of U . This is the maximum principle for the heat equation, as in Theorem 4.10
in Section B of Chapter 4 of [38].

This corresponds to part (i) of Theorem 4 in Section 2.3.3 a of [35]. Part (ii)
of that theorem is a version of the strong maximum principle for the heat equa-
tion. The proof uses a mean-value property for the heat equation in Theorem
3 of Section 2.3.2 of [35]. A more direct approach to the first part is indicated
in Problem 16 in Section 2.5 of [35], which is similar to the argument in [38],
that we shall follow here. This version of the maximum principle also works for
subsolutions of the heat equation, which will be discussed in the next section.

If u = 0 on the parabolic boundary of U , then the maximum principle implies
that u ≤ 0 on U . The same argument could be applied to −u, to get that u ≡ 0
on U . This corresponds to Theorem 5 in Section 2.3.3 a of [35], and to Corollary
4.11 in Section B of Chapter 4 of [38].

Of course, the parabolic boundary (7.8.4) of U is closed and bounded in
Rn × R, and thus compact. If u is any continuous real-valued function on
U , then the maximum of u on the parabolic boundary of U is attained, by
the extreme value theorem. In order to show that the maximum of u on U
is attained on the parabolic boundary of U , it suffices to show that for each
(x, t) ∈ U , u(x, t) is less than or equal to the maximum of u on the parabolic
boundary of U .

Suppose now that u is a continuous complex-valued function on U that is
continuously differentiable on U , and that the second derivatives of u(x, t) in
x exist and are continuous on U . Thus the previous statements for real-valued
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functions can be applied to the real and imaginary parts of u. Similarly, if
α ∈ C, then the previous statements can be applied to

Re(αu(x, t)).(7.8.6)

If w ∈ C, then it is easy to see that

|w| = max{Re(αw) : α ∈ C, |α| = 1}.(7.8.7)

One can use this to show that the maximum of |u| on U is attained on the
parabolic boundary of U , because of the analogous statement for (7.8.6).

7.9 Subsolutions of the heat equation

Let n be a positive integer, let U be a nonempty open subset of Rn×R, and let
u be a real-valued function on U . Suppose that u is continuously differentiable
on U , and that the second derivatives of u(x, t) exist and are continuous on U .
If

∂u

∂t
≤ ∆u(7.9.1)

on U , then u is said to be a subsolution of the heat equation, as in Problem
17 in Section 2.5 of [35]. Let us say that u is a strict subsolution of the heat
equation if

∂u

∂t
< ∆u(7.9.2)

on U .
Suppose that u has a local maximum at (ξ, τ) ∈ U . This implies that (ξ, τ)

is a critical point of u, and that the second derivative of u at (ξ, τ) in xj is
less than or equal to 0 for each j = 1, . . . , n. It follows that u is not a strict
subsolution of the heat equation on U .

Now let V , T , and U be as in the previous section, and let u be a continuous
real-valued function on U . Suppose that u is continuously differentiable on U
again, and that the second derivatives of u(x, t) in x exist and are continuous on
U . Suppose for the moment that u is a strict subsolution of the heat equation
on U .

Let R be a positive real number with R < T , and note that

V × [0, R](7.9.3)

is closed and bounded in Rn×R, and thus compact. This means that the max-
imum of u on (7.9.3) is attained, by the extreme value theorem. The maximum
of u on (7.9.3) cannot be attained at a point in

V × (0, R),(7.9.4)

as before.
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Suppose for the sake of a contradiction that u has a local maximum at (ξ,R)
for some ξ ∈ V , as a function on (7.9.3). In particular, (ξ,R) is a local maximum
for u as a function on

V × {R},(7.9.5)

so that ξ is a critical point for u(x,R) as a function of x, and the second
derivative of u at (ξ,R) in xj is less than or equal to 0 for each j = 1, . . . , n.
We also get that the derivative of u in t at (ξ,R) is greater than or equal to 0,
because (ξ,R) is a local maximum for u on (7.9.3). This is not possible, because
u is supposed to be a strict subsolution of the heat equation on U .

It follows that the maximum of u on (7.9.3) can only be attained at a point
in

(V × {0}) ∪ ((∂V )× [0, R]).(7.9.6)

This is the parabolic boundary of (7.9.4), as in the previous section.
Remember that the maximum of u on the parabolic boundary (7.8.4) of U

is attained, by the extreme value theorem. Of course, the maximum of u on
(7.9.6) is less than or equal to the maximum of u on (7.8.4), because (7.9.6) is
contained in (7.8.4). This implies that the maximum of u on (7.9.3) is less than
or equal to the maximum of u on (7.8.4), by the statement in the preceding
paragraph. One can use this to get that the maximum of u on U is attained on
(7.8.4), because the previous statement holds for all R ∈ (0, T ).

In [35], one typically asks that the regularity properties of u extend to the
“parabolic cylinder”, which includes

V × {T}.(7.9.7)

In this case, one can get directly that the maximum of u on U can only be
attained on the parabolic boundary of U , as before.

Suppose now that u is a non-strict subsolution of the heat equation on U ,
and let ϵ > 0. It is easy to see that

uϵ(x, t) = u(x, t)− ϵ t(7.9.8)

and
vϵ(x, t) = u(x, t) + ϵ |x|2(7.9.9)

are strict subsolutions of the heat equation on U . Thus the maxima of uϵ and
vϵ on U are attained on the parabolic boundary of U , as before. One can use
either of these to get that the maximum of u on U is attained on the parabolic
boundary of U . This is a version of the maximum principle for subsolutions of
the heat equation, as mentioned in the previous section.

7.10 Another approach to uniqueness

Let n be a positive integer, let V be a nonempty bounded open subset of Rn

with reasonably smooth boundary, and let T be a positive real number. Put
U = V × (0, T ), which is a bounded open subset of Rn ×R, as before. Let u
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be a continuously-differentiable real or complex-valued function on U , which is
twice continuously differentiable in x. More precisely, this means that u(x, t) is
twice continuously differentiable as a function of x on V for each t ∈ [0, T ], and
that all of the second derivatives of u(x, t) in x are continuous on U .

If 0 ≤ t ≤ T , then put

e(t) =

∫
V

|u(x, t)|2 dx.(7.10.1)

Observe that

∂

∂t
(|u(x, t)|2) =

∂

∂t
(u(x, t)u(x, t)) =

∂u

∂t
(x, t)u(x, t) + u(x, t)

∂u

∂t
(x, t)

= 2 Re
(
u(x, t)

∂u

∂t
(x, t)

)
.(7.10.2)

We can differentiate under the integral sign under these conditions, to get that

de

dt
(t) = 2 Re

∫
V

u(x, t)
∂u

∂t
(x, t) dx.(7.10.3)

If u satisfies the heat equation, then this implies that

de

dt
(t) = 2 Re

∫
V

u(x, t) (∆u)(x, t) dx.(7.10.4)

Suppose that either

u(y′, t) = 0 on (∂V )× [0, T ](7.10.5)

or
(Dν(y′)u)(y

′, t) = 0 on (∂V )× [0, T ],(7.10.6)

where ν(y′) is the outward-pointing unit normal to ∂V in Rn at y′ ∈ ∂V , as
usual, and Dν(y′) indicates the directional derivative in the direction ν(y′). In
both cases, we can use the divergence theorem, as in Section 3.5, to get that

de

dt
(t) = −2

∫
V

|∇u(x, t)|2 dx.(7.10.7)

More precisely, ∇u(x, t) = ∇xu(x, t) refers to the gradient of u(x, t) in x. In
particular, the right side of (7.10.7) is less than or equal to 0, so that e(t)
decreases monotonically on [0, T ].

If we also have that
u(x, 0) = 0 on V,(7.10.8)

then we get that e(0) = 0. This implies that e(t) = 0 for every t ∈ [0, T ],
because e(t) decreases monotonically on [0, T ]. This means that

u(x, t) = 0 on U = V × [0, T ].(7.10.9)

This corresponds to Theorem 10 in Section 2.3.4 a of [35] in the case of the
Dirichlet boundary conditions (7.10.5), and Problem 1 in Section 7.5 of [35] for
the Neumann boundary conditions (7.10.6).
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7.11 Some integrals of products

Let n be a positive integer, let V be a nonempty bounded open subset of Rn

with reasonably smooth boundary, and let a, b be real numbers with a < b. Thus
U = V × (a, b) is a bounded open subset of Rn×R, with closure U = V × [a, b].
Let u, v be continuously-differentiable real or complex-valued functions on U
that are twice continuously differentiable in x. Suppose that u satisfies the heat
equation, and that v satisfies the “backwards” heat equation

∂v

∂t
= −∆v.(7.11.1)

Equivalently, this means that v(x,−t) satisfies the heat equation.
Observe that

∂

∂t
(u v) =

∂u

∂t
v + u

∂v

∂t
= (∆u) v − u (∆v).(7.11.2)

If a ≤ t ≤ b, then one can differentiate under the integral sign to get that

d

dt

∫
V

u(x, t) v(x, t) dx =

∫
V

((∆u)(x, t) v(x, t)− u(x, t) (∆v)(x, t)) dx.(7.11.3)

This implies that

d

dt

∫
V

u(x, t) v(x, t) dx(7.11.4)

=

∫
∂V

((Dν(y′)u)(y
′, t) v(y′, t)− u(y′, t) (Dν(y′)v)(y

′, t)) dy′,

as in Section 3.9. Here ν(y′) is the outward-pointing unit normal to ∂V in Rn

at y′ ∈ ∂V , and Dν(y′) indicates the directional derivative in the direction ν(y′),
as before.

If we integrate in t over [a, b], then we get that∫
V

u(x, b) v(x, b) dx−
∫
V

u(x, a) v(x, a) dx(7.11.5)

=

∫ b

a

∫
∂V

((Dν(y′)u)(y
′, t) v(y′, t)− u(y′, t) (Dν(y′)v)(y

′, t))) dy′ dt.

This corresponds to Problem 3 in Section 7.5 of [35]. This could also be obtained
from the divergence theorem on U , as in the proof of Theorem 4.4 in Section A
of Chapter 4 of [38].

Let K(x, t) be the heat kernel as defined on (Rn ×R) \ {(0, 0)} in Section
7.1, so that K(x, t) is smooth and satisfies the heat equation on this set. Let
z ∈ Rn and t1 ∈ R with t1 > b be given, and consider

v(x, t) = K(x− z, t1 − t),(7.11.6)



132 CHAPTER 7. THE HEAT EQUATION

which is a smooth function on (Rn ×R) \ {(z, t1)} that satisfies the backward
heat equation. In particular, (7.11.6) is smooth and satisfies the backward heat
equation on U , so that (7.11.4) and (7.11.5) hold in this case.

If z ∈ V , then ∫
V

u(x, b)K(x− z, t1 − b) dx→ u(z, b)(7.11.7)

as t1 → b+, as in Section 7.4. This implies that

u(z, b) =

∫
V

u(x, a)K(x− z, b− a) dx(7.11.8)

+

∫ b

a

∫
∂V

(Dν(y′)u)(y
′)K(y′ − z, b− t) dy′ dt

−
∫ b

a

∫
∂V

u(y′, t) (Dν(y′)K)(y′ − z, b− t) dy′ dt,

by taking the limit as t1 → b+ in the other terms in (7.11.5).
Suppose now that u is a continuously-differentiable real or complex-valued

function on Rn× [a, b] that is twice continuously differentiable in x and satisfies
the heat equation. If z ∈ Rn, then we would like to use (7.11.8) to get that

u(z, b) =

∫
Rn

u(x, a)K(x− z, b− a) dx

=

∫
Rn

u(x, a) (4π (b− a))−n/2 exp(−|x− z|2/(4 (b− a))) dx(7.11.9)

under suitable conditions, as in the proof of Theorem 4.4 in Section A of Chapter
4 of [38].

Suppose that there are real numbers b1 > b and C,C ′ ≥ 0 such that

|u(x, t)| ≤ C exp(|x|2/(4 (b1 − t)))(7.11.10)

and
|∇u(x, t)| ≤ C ′ exp(|x|2/(4 (b1 − t)))(7.11.11)

for every x ∈ Rn and a ≤ t ≤ b. Here ∇u(x, t) = ∇xu(x, t) refers to the gradient
of u(x, t) in x, as before. In particular, if we take t = a in (7.11.10), then we
get that the integrand on the right side of (7.11.9) is integrable on Rn.

If r is a positive real number with |z| < r, then we can take V = B(0, r) in
(7.11.8). The second and third terms on the right side of (7.11.8) tend to 0 as
r → ∞, because of (7.11.10) and (7.11.11). The first term on the right side of
(7.11.8) tends to the right side of (7.11.9) as r → ∞, because of (7.11.10) with
t = a. Thus (7.11.9) holds, as desired.

Suppose that 0 < T ≤ ∞, and let u(x, t) is a continuously-differentiable real
or complex-valued function on Rn × (0, T ) that is twice continuously differen-
tiable in x and satisfies the heat equation. If 0 < a < b < T , then (7.11.9)
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holds for every z ∈ Rn under the conditions mentioned earlier. If u(x, t) has
boundary values as t → 0+ in an appropriate sense, then one can use (7.11.9)
to express u as the Gauss–Weierstrass integral of its boundary values, under
suitable conditions. A version of this is given by Theorem 4.4 in Section A of
[38] and its proof.

7.12 Upper bounds and t = 0

Let n be a positive integer, and let T be a positive real number. Also let u be
a continuous real-valued function on Rn × [0, T ]. Suppose that on Rn × (0, T ),
u(x, t) is continuously differentiable, twice continuously differentiable in x, and
satisfies the heat equation. If

u(x, 0) ≤ 0 for every x ∈ Rn,(7.12.1)

then we would like to be able to say that

u(x, t) ≤ 0 for every (x, t) ∈ Rn × [0, T ],(7.12.2)

at least under suitable conditions.
We shall do this here when

|x|−2 max(u(x, t), 0) → 0 as |x| → ∞,(7.12.3)

uniformly over t ∈ [0, T ]. An analogous statement with a much weaker condition
on u(x, t) is given in Theorem 6 in Section 2.3.3 a of [35], which will be discussed
in the next section. More precisely, it suffices to ask that u be a subsolution of
the heat equation on Rn × (0, T ), instead of satisfying the heat equation there.

Let y ∈ Rn be given, and observe that

|x|2 + 2n t(7.12.4)

satisfies the heat equation on Rn ×R. Thus, for each ϵ > 0,

v(x, t) = u(x, t)− ϵ (|x|2 + 2n t)(7.12.5)

is a subsolution of the heat equation on Rn × (0, T ). Note that

v(x, 0) ≤ u(x, 0) ≤ 0(7.12.6)

for every x ∈ Rn. We also have that

v(x, t) ≤ 0(7.12.7)

for every t ∈ [0, T ] when |x| is sufficiently large, by hypothesis.
It follows that (7.12.7) holds for every (x, t) ∈ Rn × [0, T ], by the maximum

principle. This implies (7.12.2), because ϵ > 0 is arbitrary.
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Suppose now that u satisfies the heat equation on Rn × (0, T ), and that

u(x, 0) = 0 for every x ∈ Rn.(7.12.8)

If

|x|−2 u(x, t) → 0 as |x| → ∞,(7.12.9)

then

u(x, t) = 0 for every (x, t) ∈ Rn × [0, T ],(7.12.10)

by the previous argument for u and −u. This corresponds to Theorem 7 in
Section 2.3.3 a of [35], which has a much weaker condition on the size of u(x, t),
as before.

7.13 A weaker condition on u(x, t)

Let n, T , and u be as at the beginning of the previous section, and suppose that
(7.12.1) holds. Suppose also that there are nonnegative real numbers a, A such
that

u(x, t) ≤ A exp(a |x|2)(7.13.1)

for every (x, t) ∈ Rn × [0, T ]. Under these conditions, we have that (7.12.2)
holds, as in Theorem 6 in Section 2.3.3 a of [35]. As in the previous section,
it suffices to ask that u be a subsolution of the heat equation on Rn × (0, T ),
instead of satisfying the heat equation there.

As in [35], we suppose first that

4 aT < 1.(7.13.2)

This implies that

4 a (T + η) < 1(7.13.3)

for some η > 0. Note that

(T + η − t)−n/2 exp(|x|2/(4 (T + η − t)))(7.13.4)

satisfies the heat equation on Rn × (−∞, T + η), as in Section 7.1. It follows
that for each µ > 0,

w(x, t) = u(x, t)− µ (T + η − t)−n/2 exp(|x|2/(4 (T + η − t)))(7.13.5)

is a subsolution of the heat equation on Rn × (0, T ).
Clearly

w(x, 0) ≤ u(x, 0) ≤ 0(7.13.6)

for every x ∈ Rn. One can check that

w(x, t) ≤ 0(7.13.7)
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for every t ∈ [0, T ] when |x| is sufficiently large, using (7.13.1) and (7.13.3).
This implies that (7.13.7) holds for every (x, t) ∈ Rn × [0, T ], by the maximum
principle. It follows that (7.12.2) holds, because µ > 0 is arbitrary.

If (7.13.2) does not hold, then we can use the same argument on smaller
intervals that satisfy this condition. One can use this repeatedly to get the
same conclusion as before, as in [35].

If u satisfies the heat equation on Rn × (0, T ), (7.12.8), and

|u(x, t)| ≤ A exp(a |x|2)(7.13.8)

for some a,A ≥ 0 and all (x, t) ∈ Rn × [0, T ], then (7.12.10) holds, as in the
previous section. This corresponds to Theorem 7 in Section 2.3.3 a of [35], as
before.

7.14 Some more integrals of products

Let n be a positive integer, let V be a nonempty bounded open subset of Rn

with reasonably smooth boundary, and let a, b be real numbers with a < b, as
in Section 7.11. Put U = V × (a, b), and let u, v be continuously-differentiable
real or complex-valued functions on U that are twice continuously differentiable
in x.

If a ≤ t ≤ b, then

d

dt

∫
V

u(x, t) v(x, t) dx =

∫
V

(∂u
∂t

(x, t) v(x t) + u(x, t)
∂v

∂t
(x, t)

)
dx.(7.14.1)

We can combine this with an identity from Section 3.9 to get that

d

dt

∫
V

u(x, t) v(x, t) dx

=

∫
V

(∂u
∂t

(x, t)− (∆u)(x, t)
)
v(x, t) dx

+

∫
V

u(x, t)
(∂v
∂t

(x, t) + (∆v)(x, t)
)
dx(7.14.2)

+

∫
∂V

(u(y′, t) (Dν(y′)v)(y
′, t)− v(y′, t)(Dν(y′)u)(y

′, t)) dy′.

Here ν(y′) is the outward-pointing unit normal to ∂V in Rn at y′ ∈ ∂V , and
Dν(y′) indicates the directional derivative in the direction ν(y′), as usual.

Let us integrate in t over [a, b], to get that∫
V

u(x, b) v(x, b) dx−
∫
V

u(x, a) v(x, a) dx

=

∫ b

a

∫
V

(∂u
∂t

(x, t)− (∆u)(x, t)
)
v(x, t) dx dt

+

∫ b

a

∫
V

u(x, t)
(∂v
∂t

(x, t) + (∆v)(x, t)
)
dx dt(7.14.3)
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+

∫ b

a

∫
∂V

(u(y′, t) (Dν(y′)v)(y
′, t)− v(y′, t) (Dν(y′)u)(y

′, t)) dy′ dt.

Of course, this can be simplified when u satisfies the heat equation, or v satisfies
the backward heat equation.

Let K(x, t) be the heat kernel as defined on (Rn ×R) \ {(0, 0)} in Section
7.1, which is smooth and satisfies the heat equation on this set. If z ∈ Rn and
t1 ∈ R, then

v(x, t) = K(x− z, t1 − t)(7.14.4)

is a smooth function on (Rn × R) \ {(z, t1)} that satisfies the backward heat
equation, as in Section 7.11. If t1 > b, then (7.14.4) is smooth and satisfies the
backward heat equation on U , as before. In this case, we get that∫

V

u(x, b)K(x− z, t1 − b) dx−
∫
V

u(x, a)K(x− z, t1 − a) dx

=

∫ b

a

∫
V

(∂u
∂t

(x, t)− (∆u)(x, t)
)
K(x− z, t1 − t) dx dt

+

∫ b

a

∫
∂V

u(y′, t) (Dν(y′)K)(y′ − z, t1 − t) dy′ dt(7.14.5)

−
∫ b

a

∫
∂V

K(y′ − z, t1 − t) (Dν(y′)u)(y
′, t) dy′ dt.

Suppose that z ∈ V , and consider the limit as t1 → b+ of both sides of the
equation, as in Section 7.11. We would like to say that

u(z, b)−
∫
V

u(x, a)K(x− z, b− a) dx

=

∫ b

a

∫
V

(∂u
∂t

(x, t)− (∆u)(x, t)
)
K(x− z, b− t) dx dt

+

∫ b

a

∫
∂V

u(y′, t) (Dν(y′)K)(y′ − z, b− t) dy′ dt(7.14.6)

−
∫ b

a

∫
∂V

K(y′ − z, b− t) (Dν(y′)u)(y
′, t) dy′ dt.

More precisely, the first term on the right side should be handled a bit carefully,
as in the next section.

Similarly, if z ∈ Rn and t0 ∈ R, then

u(x, t) = K(x− z, t− t0)(7.14.7)

is a smooth function on (Rn ×R) \ {(z, t0)} that satisfies the heat equation. If
t0 < a, then (7.14.7) is smooth and satisfies the heat equation on U . If v is as
at the beginning of the section again, then we obtain that∫

V

K(x− z, b− t0) v(x, b) dx−
∫
V

K(x− z, a− t0) v(x, a) dx
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=

∫ b

a

∫
V

K(x− z, t− t0)
(∂v
∂t

(x, t) + (∆v)(x, t)
)
dx dt

+

∫ b

a

∫
∂V

K(y′ − z, t− t0) (Dν(y′)v)(y
′, t) dy′ dt(7.14.8)

−
∫ b

a

∫
∂V

v(y′, t) (Dν(y′)K)(y′ − z, t− t0) dy
′ dt.

Suppose that z ∈ V again, and consider the limit as t0 → a− of both sides
of the equation. Of course, this is basically the same as the previous version,
and we get that∫

V

K(x− z, b− a) v(x, b) dx− v(z, a)

=

∫ b

a

∫
V

K(x− z, t− a)
(∂v
∂t

(x, t) + (∆v)(x, t)
)
dx dt

+

∫ b

a

∫
∂V

K(y′ − z, t− a) (Dν(y′)v)(y
′, t) dy′ dt(7.14.9)

−
∫ b

a

∫
∂V

v(y′, t) (Dν(y′)K)(y′ − z, t− a) dy′ dt.

7.15 Some integrals with K(x, t)

Let K(x, t) be the heat kernel as defined on (Rn ×R) \ {(0, 0)}, as in Section
7.1. Remember that ∫

Rn

K(x, t) dx = 1(7.15.1)

for every t > 0. This implies that∫ r2

r1

∫
Rn

K(x, t) dx dt = r2 − r1(7.15.2)

when r1, r2 are positive real numbers with r1 ≤ r2. One could also allow r1 = 0
here, by considering the integral over t as an improper integral, or defining the
integrand at t = 0, or using Lebesgue integrals.

One may consider the left side of (7.15.2) as an (n+1)-dimensional integral
over Rn × [r1, r2], even when r1 = 0, using suitable improper integrals, or
Lebesgue integrals. In particular, K(x, t) is locally integrable on Rn ×R, with
respect to (n+ 1)-dimensional Lebesgue measure.

Let W be a nonempty bounded open subset of Rn, let T be a positive real
number, and let f be a continuous real or complex-valued function onW×[0, T ].
Note that f is bounded on W × [0, T ], so that

|f(x, t)| ≤ C(7.15.3)

for some C ≥ 0 and every x ∈ W , t ∈ [0, T ]. If one is using Riemann integrals,
then one should ask for a bit more regularity of the boundary of W , or that f is
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equal to 0 on (∂W )× [0, T ]. If one is using Lebesgue integrals, then one might
simply ask that f be bounded and measurable on W × [0, T ].

If 0 < t ≤ T , then ∫
W

K(x, t) |f(x, t)| dx ≤ C,(7.15.4)

by (7.15.1) and (7.15.3). This implies that∫ r2

r1

∫
W

K(x, t) |f(x, t)| dx dt ≤ C (r2 − r1)(7.15.5)

when 0 < r1 ≤ r2 ≤ T . This also works with r1 = 0, with suitable inter-
pretations when 0 ∈ W , or using Lebesgue integrals, as before. In particular,
this means that K(x, t) |f(x, t)| is integrable with respect to (n+1)-dimensional
Lebesgue measure on W × [0, T ].

Similarly, if η is a positive real number, then∫
W

K(x, t+ η) |f(x, t)| dx ≤ C(7.15.6)

for every t ∈ [0, T ]. It follows that∫ r2

r1

∫
W

K(x, t+ η) |f(x, t)| dx dt ≤ C (r2 − r1)(7.15.7)

when 0 ≤ r1 ≤ r2 ≤ T .
Of course, ∣∣∣∣∫

W

K(x, t) f(x, t) dx

∣∣∣∣ ≤ C(7.15.8)

when 0 < t ≤ T , by (7.15.4). If r ∈ [0, T ], then∫ r

0

∫
W

K(x, t) f(x, t) dx dt(7.15.9)

may be defined directly unless 0 ∈ W , in which case the integral over t may
be considered as an improper integral, or defined a bit carefully as a Riemann
integral, or using Lebesgue integrals, as before. Note that∣∣∣∣∫ r

0

∫
W

K(x, t) f(x, t) dx dt

∣∣∣∣ ≤ C r.(7.15.10)

If 0 < r1 ≤ r2 ≤ T , then

lim
η→0+

∫ r2

r1

∫
W

K(x, t+ η) f(x, t) dx dt(7.15.11)

=

∫ r2

r1

∫
W

K(x, t) f(x, t) dx dt,

by standard arguments. It is not too difficult to show that this works with
r1 = 0 as well, using the previous remarks.



Chapter 8

Some more equations and
solutions

8.1 Another uniqueness argument

Let n be a positive integer, let V be a nonempty bounded open subset of Rn

with reasonably smooth boundary, and let T be a positive real number. Put
U = V × (0, T ), which is a bounded open subset of Rn × R, with closure
U = V ×[0, T ]. Let u(x, t) be a twice continuously-differentiable real or complex-
valued function on U . If 0 ≤ t ≤ T , then put

E(t) =
1

2

∫
V

(∣∣∣∣∂u∂t (x, t)
∣∣∣∣2 + n∑

j=1

∣∣∣∣ ∂u∂xj (x, t)
∣∣∣∣2) dx.(8.1.1)

We can differentiate under the integral sign in t, to get that

d

dt
E(t) = Re

∫
V

(∂u
∂t

(x, t)
∂2u

∂t2
(x, t) +

n∑
j=1

∂u

∂xj
(x, t)

∂2u

∂xj ∂t
(x, t)

)
dx.(8.1.2)

Suppose that
u(y′, t) = 0 on (∂V )× [0, T ],(8.1.3)

so that
∂u

∂t
(y′, t) = 0 on (∂V )× [0, T ].(8.1.4)

Under these conditions,∫
V

(∆u)(x, t)
∂u

∂t
(x, t) dx+

∫
V

n∑
j=1

∂u

∂xj
(x, t)

∂2u

∂xj ∂t
(x, t) dx = 0,(8.1.5)

as in Section 3.5, where (∆u)(x, t) refers to the Laplacian of u(x, t) in x. This
also works when

(Dν(y′)u)(y
′, t) = 0 on (∂V )× [0, T ],(8.1.6)

139
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where ν(y′) is the outward-pointing unit normal to ∂V in Rn at y′ ∈ ∂V , and
Dν(y′) indicates the directional derivative in the direction ν(y′). Combining
(8.1.2) and (8.1.5), we obtain that

d

dt
E(t) = Re

∫
V

∂u

∂t
(x, t)

(∂2u
∂t2

(x, t)− (∆u)(x, t)
)
dx.(8.1.7)

Suppose now that u satisfies the wave equation

∂2u

∂t2
= ∆u(8.1.8)

on U . In this case, (8.1.7) reduces to

d

dt
E(t) = 0.(8.1.9)

If
E(0) = 0,(8.1.10)

then it follows that
E(t) = 0(8.1.11)

for every t ∈ [0, T ]. This means that the first derivatives of u(x, t) in x and t
are equal to 0 on U .

Of course, (8.1.10) holds when

u(x, 0) =
∂u

∂t
(x, 0) = 0(8.1.12)

for every x ∈ V . If
∂u

∂t
(x, t) = 0(8.1.13)

on U , then (8.1.12) implies that

u(x, t) = 0(8.1.14)

on U . Thus (8.1.14) holds on U when (8.1.12) holds, and (8.1.11) holds for each
t ∈ [0, T ]. This means that (8.1.14) holds on U when u satisfies (8.1.3), (8.1.8),
and (8.1.12). This corresponds to Theorem 5 in Section 2.4.3 a in [35].

A more localized version of this will be discussed in the next section.

8.2 A more localized version

Let n be a positive integer, let T be a positive real number, and let u(x, t) be a
twice continuously-differentiable real or complex-valued function on Rn× [0, T ].
Also let ξ ∈ Rn and a positive real number t0 ≤ T be given, and if 0 ≤ t ≤ t0,
then put

e(t) =
1

2

∫
B(ξ,t0−t)

(∣∣∣∣∂u∂t (x, t)
∣∣∣∣2 + n∑

j=1

∣∣∣∣ ∂u∂xj (x, t)
∣∣∣∣2) dx.(8.2.1)
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Here B(ξ, t0 − t) is the open ball in Rn centered at ξ with radius t0 − t, which
may be interpreted as the empty set when t = t0. Observe that

d

dt
e(t) = Re

∫
B(ξ,t0−t)

(∂u
∂t

(x, t)
∂2u

∂t2
(x, t) +

n∑
j=1

∂u

∂xj
(x, t)

∂2u

∂xj ∂t
(x, t)

)
dx

−1

2

∫
∂B(ξ,t0−t)

(∣∣∣∣∂u∂t (y′, t)
∣∣∣∣2 + n∑

j=1

∣∣∣∣ ∂u∂xj (y′, t)
∣∣∣∣2) dy′.(8.2.2)

As in Section 3.5, we have that∫
B(ξ,t0−t)

(∆u)(x, t)
∂u

∂t
(x, t) dx(8.2.3)

+

∫
B(ξ,t0−t)

n∑
j=1

∂u

∂xj
(x, t)

∂2u

∂xj ∂t
(x, t) dx

=

∫
∂B(ξ,t0−t)

(Dνt(y′)u)(y
′, t)

∂u

∂t
(y′, t) dy′.

More precisely, if y′ ∈ ∂B(ξ, t0 − t), then νt(y
′) denotes the outward-pointing

unit normal to ∂B(ξ, t0−t) at y′, and Dνt(y′) indicates the directional derivative
in the direction νt(y

′), as usual. If u(x, t) satisfies the wave equation (8.1.8),
then the integral in the first term on the right side of (8.2.2) is the same as the
left side of (8.2.3). This means that

d

dt
e(t) = Re

∫
∂B(ξ,t0−t)

(Dνt(y′)u)(y
′, t)

∂u

∂t
(y′, t) dy′

−1

2

∫
∂B(ξ,t0−t)

(∣∣∣∣∂u∂t (y′, t)
∣∣∣∣2 + n∑

j=1

∣∣∣∣ ∂u∂xj (y′, t)
∣∣∣∣2) dy′.(8.2.4)

We would like to use this to get that

d

dt
e(t) ≤ 0(8.2.5)

To do this, note that

Re
(
(Dνt(y′)u)(y

′, t)
∂u

∂t
(y′, t)

)
≤ |(Dνt(y′)u)(y

′, t)|
∣∣∣∣∂u∂t (y′, t)

∣∣∣∣(8.2.6)

≤ |(∇u)(y′, t)|
∣∣∣∣∂u∂t (y′, t)

∣∣∣∣
for every y′ ∈ ∂B(ξ, t0 − t), where (∇u)(x, t) is the gradient of u(x, t) in x, as
before. The right side of this inequality is less than or equal to

1

2

(
|(∇u)(y′, t)|2 +

∣∣∣∣∂u∂t (y′, t)
∣∣∣∣2),(8.2.7)
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because of the well-known fact that 2 a b ≤ a2 + b2 for all a, b ∈ R. One can use
this to obtain (8.2.5) from (8.2.4).

This shows that e(t) decreases monotonically on [0, t0]. If

e(0) = 0,(8.2.8)

then we get that
e(t) = 0(8.2.9)

when 0 ≤ t ≤ t0. Suppose now that

u(x, 0) =
∂u

∂t
(x, 0) = 0(8.2.10)

for every x ∈ B(ξ, t0), which implies that (8.2.8) holds. If

0 ≤ t ≤ t0 and x ∈ B(ξ, t0 − t),(8.2.11)

then it follows that

(∇u)(x, t) = ∂u

∂t
(x, t) = 0,(8.2.12)

by (8.2.9).
One can use (8.2.10) and (8.2.12) to get that

u(x, t) = 0(8.2.13)

when (8.2.11) holds. More precisely, in this argument, we only need that u(x, t)
is twice continuously differentiable and satisfies the wave equation on the set
where (8.2.11) holds. This corresponds to Theorem 6 in Section 2.4.3 b of [35],
and Theorem 5.3 in Section A of Chapter 5 of [38].

8.3 Some differential equations on R2

Let w(y1, y2) be a twice continuously-differentiable real or complex-valued func-
tion on R2, and consider the partial differential equation

∂2w

∂y1 ∂y2
= 0.(8.3.1)

This equation obviously holds when w(y1, y2) depends only on y1 or y2. Con-
versely, it is well known and not too difficult to show that if w(y1, y2) satisfies
(8.3.1) on R2, then w(y1, y2) can be expressed as the sum of a function of y1 and
a function of y2. More precisely, (8.3.1) implies that ∂w/∂y1 does not depend
on y2, and one can use this to get the desired representation of w. Alternatively,
one could use (8.3.1) to get that ∂w/∂y2 does not depend on y1, and use this
to get the same type of representation of w.

Let u(x, t) be a twice continuously-differentiable real or complex-valued func-
tion on R2, and consider the partial differential equation

∂2u

∂t2
− ∂2u

∂x2
= 0.(8.3.2)
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This is the same as the wave equation with n = 1, and it can also be expressed
as ( ∂

∂t
+

∂

∂x

)( ∂
∂t

− ∂

∂x

)
u = 0.(8.3.3)

It is easy to see that (8.3.1) corresponds to (8.3.3) under the change of variables

y1 = x+ t, y2 = x− t.(8.3.4)

Clearly any function of x + t or of x − t satisfies (8.3.2). Conversely, if u(x, t)
satisfies (8.3.2) on R2, then u(x, t) can be expressed as a sum of a function of
x+ t and a function of x− t, as before.

Alternatively, put

v(x, t) =
( ∂
∂t

− ∂

∂x

)
u(x, t),(8.3.5)

which is a continuously differentiable function on R2. Thus (8.3.3) is the same
as saying that

∂v

∂t
+
∂v

∂x
= 0.(8.3.6)

This is a linear first-order partial differential equation in v, as in Section 4.1,
whose solutions are given by functions of x − t on R2. Given such a solution,
(8.3.5) may be considered as a linear first-order partial differential equation in
u. This corresponds to some remarks in Section 2.4.1 a in [35]. Of course, we
could consider

ṽ(x, t) =
( ∂
∂t

+
∂

∂x

)
u(x, t)(8.3.7)

instead, which is another continuously differentiable function on R2. Using this,
(8.3.3) is the same as saying that

∂ṽ

∂t
− ∂ṽ

∂x
= 0.(8.3.8)

Suppose that

u(x, t) = ϕ(x+ t) + ψ(x− t)(8.3.9)

for some continuously-differentiable real or complex-valued functions ϕ, ψ on
the real line. This implies that

u(x, 0) = ϕ(x) + ψ(x)(8.3.10)

and
∂u

∂t
(x, 0) = ϕ′(x)− ψ′(x)(8.3.11)

for every x ∈ R. Of course,

∂u

∂x
(x, 0) = ϕ′(x) + ψ′(x)(8.3.12)
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for every x ∈ R, by (8.3.10). It follows that ϕ′ and ψ′ are uniquely deter-
mined by (∂u/∂t)(x, 0) and (∂u/∂x)(x, 0) on R. This means that ϕ and ψ are
uniquely determined on R, up to adding a constant to ϕ and subtracting the
same constant from ψ, by u(x, 0) and (∂u/∂t)(x, 0) on R. Note that the right
side of (8.3.9) is not affected by adding a constant to ϕ, and subtracting the
same constant from ψ. Thus we get that u(x, t) is uniquely determined on R2

by u(x, 0) and (∂u/∂t)(x, 0) on R. This corresponds to some more remarks in
Section 2.4.1 a of [35], and some remarks in Section B of Chapter 5 of [38].

Observe that ϕ′ and ψ′ may be arbitrary continuous real or complex-valued
functions on R, so that the right sides of (8.3.11) and (8.3.12) may be arbitrary
continuous functions on R. Similarly, the right side of (8.3.10) may be any
continuously-differentiable function on R, which can be chosen at the same
time as the right side of (8.3.11), as an arbitrary continuous function on R. If
we take ϕ and ψ to be twice continuously-differentiable functions on R, then
the right side of (8.3.10) can be any twice continuously-differentiable function
on R, which can be chosen at the same time as the right side of (8.3.11), as
an arbitrary continuously-differentiable function on R. In this case, (8.3.9) is a
twice continuously-differentiable function on R2 that satisfies the wave equation
(8.3.2). This corresponds to Theorem 1 in Section 2.4.1 a of [35], and Theorem
5.6 in Section B of Chapter 5 of [38].

8.4 Some remarks about the Laplacian

Let n be a positive integer, and let a, b be real numbers with

0 ≤ a < b,(8.4.1)

although one could also permit b = +∞ here. Also let f be a twice continuously-
differentiable real or complex-valued function on (a, b). Note that

{x ∈ Rn : a < |x| < b}(8.4.2)

is an open set in Rn. Put
F (x) = f(|x|)(8.4.3)

on (8.4.2), which is a twice continuously-differentiable function on this set. A
function of the form (8.4.3) is said to be radial on (8.4.2).

One can check that

∆F (x) = f ′′(|x|) + (n− 1) |x|−1 f ′(|x|)(8.4.4)

on this set, as in Lemma 2.60 in Section G of Chapter 2 of [38]. In particular,
F is harmonic on (8.4.2) if and only if

f ′′(r) + (n− 1) r−1 f ′(r) = 0(8.4.5)

on (a, b), as in (5) in Section 2.2.1 a of [35]. This is related to some of the
remarks about harmonic functions in Section 6.1.
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Let p be a homogeneous polynomial of degree k ≥ 0 on Rn, and suppose
that p is harmonic on Rn. Thus

q(x) = |x|−k p(x)(8.4.6)

is a twice continuously-differentiable function on Rn \ {0} that is homogeneous
of degree 0 and equal to p on the unit sphere. One can check that

∆q(x) = −k (k + n− 2) |x|−2 q(x)(8.4.7)

on Rn \ {0}, as in Lemma 2.61 in Section G of Chapter 2 of [38]. This was
mentioned in Section 3.2 when |x| = 1.

Under these conditions, one can also verify that

∆(F q)(x)

=
(
f ′′(|x|) + (n− 1) |x|−1 f ′(|x|)− k (k + n− 2) |x|−2 f(|x|)

)
q(x)(8.4.8)

on (8.4.2), as in Lemma 2.62 in Section G of Chapter 2 of [38].
Suppose that

f ′′(r) + (n− 1) r−1 f ′(r)− k (k + n− 2) r−2 f(r) = µ f(r)(8.4.9)

on (a, b) for some real or complex number µ. Combining this with (8.4.8), we
get that

∆(F q) = µF q(8.4.10)

on (8.4.2). This is discussed further in Section G of Chapter 2 of [38].

8.5 More on radial functions

Let n be a positive integer, and let b be a positive real number, or +∞. Also
let f(r) be a real or complex-valued function defined for 0 ≤ r < b, so that F
may be defined on

{x ∈ Rn : |x| < b}(8.5.1)

as in (8.4.3). Suppose that f is differentiable at 0, where the derivative f ′(0) of
f at 0 is actually a derivative from the right. If

f ′(0) = 0,(8.5.2)

then it is easy to see that F is differentiable at 0, with differential at 0 equal to
0. If f(r) is continuously differentiable for 0 ≤ r < b, and (8.5.2) holds, then
one can check that

F is continuously differentiable on (8.5.1).(8.5.3)

Suppose that f(r) is twice continuously differentiable for 0 ≤ r < b, and
that (8.5.2) holds, and note that

lim
r→0+

r−1 f ′(r) = f ′′(0).(8.5.4)
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Under these conditions, one can verify that

F is twice continuously differentiable on (8.5.1).(8.5.5)

More precisely, if f ′′(0) = 0, then the second derivatives of F at 0 are equal to
0. If f(r) = r2, then F (x) = |x|2 is a polynomial. Otherise, one can reduce to
these two cases.

Similarly, let l be a positive integer, and suppose that f(r) is l-times contin-
uously differentiable for 0 ≤ r < b. If

the derivatives of f at 0 of odd order less than or equal to l(8.5.6)

are equal to 0,

then
F is l-times continuously-differentiable on (8.5.1).(8.5.7)

As before, if all of the derivatives of f at 0 of order less than or equal to l are
equal to 0, then the derivatives of F at 0 of order less than or equal to l are
equal to 0. If f(r) is a polynomial of r2, then F (x) is a polynomial. Otherwise,
one can reduce to these two cases.

8.6 Invertible linear mappings

Let V be a vector space over the real or complex numbers. A one-to-one linear
mapping T from V onto itself is said to be invertible, and the corresponding
inverse mapping is denoted T−1, as usual. In this case, T−1 is invertible on V
as well, with

(T−1)−1 = T.(8.6.1)

If T1 and T2 are invertible linear mappings on V , then it is easy to see that their
composition T2 ◦ T1 is invertible on V , with

(T2 ◦ T1)−1 = T−1
1 ◦ T−1

2 .(8.6.2)

The set of invertible linear mappings on V is denoted GL(V ). This is called
the general linear group associated to V . This is a group with respect to com-
position of mappings on V .

Suppose now that V has positive finite dimension n, as a vector space over
the real or complex numbers, as appropriate. If one chooses a basis for V , then
every linear mapping T from V into itself corresponds to an n × n matrix of
real or complex numbers, as appropriate, in a standard way. The determinant
detT of T is defined as the determinant of the corresponding matrix. It is well
known that this does not depend on the particular choice of basis for V . The
identity mapping I = IV on V corresponds to the usual identity matrix in this
way, which has determinant equal to 1, so that

det I = 1.(8.6.3)
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If T1, T2 are linear mappings from V into itself, then

det(T2 ◦ T1) = (detT2) (detT1),(8.6.4)

because of the corresponding property of determinants of products of n × n
matrices. A linear mapping T from V into itself is invertible if and only if

detT 6= 0(8.6.5)

because of the analogous characterization of invertibility of n × n matrices. In
this case, we have that

det(T−1) = (detT )−1,(8.6.6)

because of (8.6.4).
The special linear group of V is defined to be the collection SL(V ) of linear

mappings T from V into itself such that

detT = 1.(8.6.7)

This is a subgroup of GL(V ), because of (8.6.4).
Let GL(n,R) be the set of n×n matrices of real numbers that are invertible

with respect to matrix multiplication, or equivalently that have nonzero deter-
minant. This is called the general linear group of these n × n matrices of real
numbers, and it is a group with respect to matrix multiplication. The set of all
n×n matrices of real numbers can be identified with Rn2

, by listing the entries
of an n×n matrix in a sequence with n2 terms. It is well known that GL(n,R)

corresponds to an open set in Rn2

in this way. This follows from the fact that
the determinant of an n×n matrix is a polynomial in the entries of the matrix,
which defines a continuous function on Rn2

.
Similarly, let SL(n,R) be the set of n × n matrices of real numbers with

determinant equal to 1. This is called the special linear group of these n × n
matrices of real numbers, and it is a subgroup of GL(n,R). It is easy to see that

SL(n,R) corresponds to a closed set in Rn2

, because the determinant of an n×n
matrix of real numbers corresponds to a continuous function on Rn2

, as in the
preceding paragraph. It is well known that SL(n,R) is a smooth submanifold
of GL(n,R) of dimension n2 − 1, in the sense that it corresponds to a smooth

submanifold of this dimension of the open subset of Rn2

that corresponds to
GL(n,R).

8.7 Eigenvalues and eigenvectors

Let V be a vector space over the real or complex numbers, and let T be a
linear mapping from V into itself. Also let λ be a real or complex number, as
appropriate. An element v of V is said to be an eigenvector of T with eigenvalue
λ if

T (v) = λ v.(8.7.1)
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The set ET (λ) of these v ∈ V is called the eigenspace of T in V associated to
λ. It is easy to see that

ET (λ) is a linear subspace of V.(8.7.2)

More precisely, λ is normally considered to be an eigenvalue of T if there is
a nonzero v ∈ V that is an eigenvector of T with eigenvalue λ, so that

ET (λ) 6= {0}.(8.7.3)

However, v = 0 is considered to be an element of ET (λ) for every λ. Note that
(8.7.1) is the same as saying that

(T − λ I)(v) = 0,(8.7.4)

where I = IV is the identity mapping on V . It follows that λ is an eigenvalue
of T if and only if

T − λ I is not one-to-one on V.(8.7.5)

Let R be another linear mapping from V into itself. Suppose that R and T
commute with each other on V , which is to say that

R ◦ T = T ◦R.(8.7.6)

If v ∈ V is an eigenvector of T with eigenvalue λ, then

T (R(v)) = R(T (v)) = R(λ v) = λR(v).(8.7.7)

This means that R(v) is also an eigenvector of T with eigenvalue λ, so that

R(v) ∈ ET (λ).(8.7.8)

Equivalently, we have that

R(ET (λ)) ⊆ ET (λ).(8.7.9)

Suppose now that V has finite dimension, as a vector space over R or C. It
is well known that a linear mapping from V into itself is one-to-one if and only
if it maps V onto itself. In this case, (8.7.5) is the same as saying that

T − λ I is not invertible on V.(8.7.10)

This means that λ is an eigenvalue of T if and only if

det(T − λ I) = 0.(8.7.11)

The left side is a polynomial in λ, with coefficients in R or C, as appropriate,
of degree equal to the dimension of V .

If V is a vector space over the complex numbers of positive finite dimension,
then it follows that every linear mapping from V into itself has an eigenvalue,
because every polynomial of positive degree with complex coefficients has a root
in C.
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8.8 Linear mappings on Rn

Let n be a positive integer, and remember that the dot product on Rn is defined
as in Section 1.15, and is also known as the standard inner product on Rn. If T
is a linear mapping from Rn into itself, then there is a unique linear mapping
T ′ from Rn into itself such that

T (x) · y = x · T ′(y)(8.8.1)

for every x, y ∈ Rn, as before. This may be called the adjoint of T . It is easy
to see that

(T ′)′ = T,(8.8.2)

using (8.8.1), or the fact that the matrix associated to T ′ in the usual way is
the same as the transpose of the matrix associated to T , as before. Note that

I ′ = I,(8.8.3)

where I = IRn is the identity mapping on Rn.
The space L(Rn) of linear mappings from Rn into itself may be considered

as a vector space over the real numbers with respect to pointwise addition and
scalar multiplication of linear mappings. This corresponds to the space of n×n
matrices of real numbers, as a vector space over R with respect to entrywise
addition and scalar multiplication of matrices, using the matrices associated to
linear mappings in the usual way. Note that

T 7→ T ′(8.8.4)

is linear, as a mapping from L(Rn) into itself. This can be verified using the
characterization of T ′ in (8.8.1), or the fact that the matrix associated to T ′ is
the same as the transpose of the matrix associated to T .

If
T ′ = T,(8.8.5)

then we may say that T is self-adjoint or symmetric with respect to the standard
inner product on Rn. Equivalently, this means that

T (x) · y = x · T (y)(8.8.6)

for all x, y ∈ Rn. An n × n matrix of real numbers is said to be symmetric if
it is equal to its transpose. Thus T is symmetric if and only if the associated
matrix is symmetric. If T is symmetric, then it is well known that there is an
orthonormal basis for Rn, with respect to the standard inner product, consisting
of eigenvectors of T .

Similarly, if
T ′ = −T,(8.8.7)

then T is said to be anti-self-adjoint or antisymmetric with respect to the stan-
dard inner product on Rn. This is the same as saying that

T (x) · y = −x · T (y)(8.8.8)



150 CHAPTER 8. SOME MORE EQUATIONS AND SOLUTIONS

for all x, y ∈ Rn. An n× n matrix of real numbers is said to be antisymmetric
if it is equal to −1 times its transpose. It follows that T is antisymmetric if and
only if the associated matrix is antisymmetric.

If T1, T2 are any linear mappings from Rn into itself, then

(T1 ◦ T2)′ = T ′
2 ◦ T ′

1,(8.8.9)

as in Section 5.5. This corresponds to a well-known fact about the transpose of
a product of matrices. If T is antisymmetric, then one can use this to get that

(T ◦ T )′ = T ◦ T,(8.8.10)

so that T 2 = T ◦ T is self-adjoint.
If T is any linear mapping from Rn into itself, then

(1/2) (T + T ′)(8.8.11)

is symmetric,

(1/2)(T − T ′)(8.8.12)

is antisymmetric, and T is equal to the sum of (8.8.11) and (8.8.12). One
can check that this is the only way in which T can be expressed as a sum of
symmetric and antisymmetric linear mappings on Rn.

If

T ◦ T ′ = T ′ ◦ T,(8.8.13)

then one may say that T is normal, although this term is perhaps more com-
monly used for an analogous property in the complex case. It is easy to see that
T is normal if and only if (8.8.11) and (8.8.12) commute with each other.

If T is any linear mapping from Rn into itself, then

detT ′ = detT.(8.8.14)

This follows from the fact that the determinant of an n × n matrix is equal to
the determinant of its transpose.

8.9 More on adjoints of linear mappings on Rn

Let n be a positive integer, and note that the sets of linear mappings from
Rn into itself that are self-adjoint or anti-self-adjoint are linear subspaces of
L(Rn). Of course, if a linear mapping T from Rn into itself is both self-adjoint
and anti-self-adjoint, then T = 0. Clearly

dimL(Rn) = n2,(8.9.1)

because the dimension of the space of n × n matrices of real numbers is equal
to n2, as a vector space over R. The dimension of the space of self-adjoint
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linear mappings from Rn into itself is the same as the dimension of the space
of symmetric n× n matrices of real numbers, which is

n2 + n

2
.(8.9.2)

Similarly, the dimension of the space of anti-self-adjoint linear mappings from
Rn into itself is the same as the dimension of the space of antisymmetric n× n
matrices of real numbers, namely,

n2 − n

2
.(8.9.3)

If T is any linear mapping from Rn into itself, then

(T ′ ◦ T )′ = T ′ ◦ (T ′)′ = T ′ ◦ T,(8.9.4)

so that T ′ ◦ T is self-adjoint. Observe that

(T ′ ◦ T )(x) · y = T ′(T (x)) · y = T (x) · T (y)(8.9.5)

for every x, y ∈ Rn. This implies that

(T ′ ◦ T )(x) · x = |T (x)|2 ≥ 0(8.9.6)

for every x ∈ Rn. It follows that the eigenvalues of T ′ ◦ T are nonnegative.
Of course, if

T (x) = 0(8.9.7)

for some x ∈ Rn, then

(T ′ ◦ T )(x) = 0.(8.9.8)

Conversely, (8.9.8) implies (8.9.7), because of (8.9.6). This means that

ker(T ′ ◦ T ) = kerT.(8.9.9)

If T is a one-to-one linear mapping from Rn onto itself, then one can check
that T ′ is invertible on Rn as well, with

(T ′)−1 = (T−1)′,(8.9.10)

using (8.8.9). In particular, this implies that T ′ ◦ T is invertible on Rn.
Remember that a one-to-one linear mapping T from Rn onto itself is said to

be an orthogonal transformation if it preserves the standard inner product, as
in Section 1.15. This is equivalent to preserving the standard Euclidean norm
on Rn, as before.

The condition that T preserve the standard inner product on Rn is the same
as saying that

(T ′ ◦ T )(x) · y = x · y(8.9.11)
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for all x, y ∈ Rn, because of (8.9.5). Clearly this holds when

T ′ ◦ T = I.(8.9.12)

Conversely, if (8.9.11) holds for every x, y ∈ Rn, then one can check that (8.9.12)
holds.

Note that (8.9.12) implies that T is one-to-one on Rn, and thus that T maps
Rn onto itself. This means that T is invertible on Rn, so that (8.9.12) is the
same as saying that

T ′ = T−1.(8.9.13)

Of course, (8.9.13) implies that T and T ′ commute with each other. This
means that (8.8.11) and (8.8.12) commute with each other, as before.

8.10 More on orthogonal transformations

Let n be a positive integer, and let O(n) be the set of all orthogonal transforma-
tions on Rn. If T is an orthogonal transformation on Rn, then it is easy to see
that T−1 is an orthogonal transformation on Rn as well. One can also verify
that the composition of two orthogonal transformations on Rn is an orthogo-
nal transformation on Rn. This means that O(n) is a subgroup of the group
GL(Rn) of all invertible linear mappings on Rn. This is called the orthogonal
group associated to Rn, and its standard inner product.

If T ∈ O(n), then one can check that

detT = ±1,(8.10.1)

using (8.8.14). Put

SO(n) = {T ∈ O(n) : detT = 1} = O(n) ∩ SL(Rn).(8.10.2)

This is a subgroup of O(n) and of SL(Rn), called the special orthogonal group.
The elements of SO(n) are known as rotations on Rn.

An n × n matrix of real numbers is said to be an orthogonal matrix if it
is invertible, with inverse equal to its transpose. These are the same as the
matrices that correspond to elements of O(n). The set of these orthogonal
matrices is denoted O(n,R). This is a subgroup of the group GL(n,R) of all
invertible n × n matrices of real numbers. This is called the orthogonal group
of these n× n matrices of real numbers.

The elements of O(n,R) have determinant ±1, as before. The set of matrices
in O(n,R) with determinant equal to 1 is denoted SO(n,R), so that

SO(n,R) = O(n,R) ∩ SL(n,R).(8.10.3)

These are the matrices that correspond to elements of SO(n), and SO(n,R) is
a subgroup of O(n,R) and SL(n,R). This is the special orthogonal group of
these n× n matrices of real numbers.
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Note that
O(n) = {T ∈ L(Rn) : T ′ ◦ T = I},(8.10.4)

as in the previous section. Of course, there is an analogous description of
O(n,R). Let us identify the space of n × n matrices of real numbers with

Rn2

, by listing the entries of such a matrix in a sequence with n2 terms, as in
Section 8.6. It is well known that O(n,R) corresponds to a compact smooth

submanifold of Rn2

, with dimension equal to (8.9.3). This can be obtained
using the implicit function theorem.

More precisely, O(1) consists of ±1 times the identity mapping on R, and
SO(1) contains only the identity mapping on R. Similarly, O(1,R) corresponds
to {1,−1}, considered as a 0-dimensional submanifold of R. If n ≥ 2, then
n2 > n, and (8.9.3) is positive.

Because O(n,R) corresponds to a compact smooth submanifold of Rn2

, we
can define integrals over it in a standard way, with respect to the element of
volume of dimension (8.9.3). If n = 1, then this can be interpreted as a sum
with two terms in a simple way. We can also take averages over O(n,R), by
dividing the integral by the volume of O(n,R) of dimension (8.9.3). We can use
this to define integrals and avergaes over O(n).

8.11 Some spherical means

Let n be a positive integer, and let ϕ be a continuous real or complex-valued
function on Rn. If x ∈ Rn and r ∈ R, then the corresponding spherical mean
of ϕ may be defined by

Mϕ(x; r) =
1

|∂B(0, 1)|

∫
∂B(0,1)

ϕ(x+ r y′) dy′,(8.11.1)

as in Section B of Chapter 5 of [38]. Note that

Mϕ(x;−r) =Mϕ(x; r),(8.11.2)

and that
Mϕ(x; 0) = ϕ(x),(8.11.3)

as in [38]. If r > 0, then

Mϕ(x; r) =
1

|∂B(x, r)|

∫
∂B(x,r)

ϕ(z′) dz′.(8.11.4)

If x ∈ Rn is fixed, then (8.11.1) is continuous as a function of r ∈ R.
Similarly, if ϕ is k-times continuously differentiable on Rn for some positive
integer k, then (8.11.1) is k-times continuously differentiable as a function of
r ∈ R, as in [38]. In this case,

∂lMϕ(x; r)

∂rl
= 0 at r = 0(8.11.5)
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when l ≤ k and l is odd, because of (8.11.2).
Let us consider

Mϕ(x; |w|)(8.11.6)

as a real or complex-valued function of w ∈ Rn. If ϕ is k-times continuously
differentiable on Rn, then we get that (8.11.6) is k-times continuously differen-
tiable as a function of w ∈ Rn, because of (8.11.5), as in Section 8.4.

Let T be an orthogonal transformation on Rn, and consider

ϕ(x+ T (w))(8.11.7)

as a real or complex-valued function of w ∈ Rn. We can average (8.11.7) over
T ∈ O(n), as mentioned in the previous section. It may be reasonably clear
that the average is equal to (8.11.6), without getting into too many details.

Of course, if ϕ is k-times continuously differentiable on Rn, then (8.11.7) is
k-times continuously differentiable as a function of w ∈ Rn for each T ∈ O(n).
This is another way to look at the k-times continuous differentiability of (8.11.6)
as a function of w ∈ Rn under these conditions.

8.12 More on spherical means

Let a and b be real numbers with a < b, although we could also allow a = −∞ or
b = +∞ here. Suppose now that ϕ(x, t) is a continuous real or complex-valued
function on Rn × (a, b). If x ∈ Rn and t ∈ (a, b), then put

Mϕ(x; r, t) =
1

|∂B(0, 1)|

∫
∂B(0,1)

ϕ(x+ r y′, t) dy′(8.12.1)

for each r ∈ R. This is the same as (8.11.1) for ϕ(x, t) as a function of x on Rn

for each t ∈ (a, b). In particular,

Mϕ(x;−r, t) =Mϕ(x; r, t)(8.12.2)

for each r ∈ R,
Mϕ(x; 0, t) = ϕ(x, t),(8.12.3)

and

Mϕ(x; r, t) =
1

|∂B(x, r)|

∫
∂B(x,r)

ϕ(z′, t) dz′(8.12.4)

when r > 0, as before. If x ∈ Rn is fixed, then (8.12.1) is continuous as a func-
tion of (r, t) ∈ R× (a, b), as before. Similarly, if ϕ(w, t) is k-times continuously
differentiable on Rn × (a, b), then (8.12.1) is k-times continuously-differentiable
as a function of (r, t) ∈ R× (a, b).

Let us now take a = 0 and b = +∞, and let u(x, t) be a twice continuously-
differentiable real or complex-valued function on Rn × R+ that satisfies the
wave equation. If x ∈ Rn, then Mu(x; r, t) satisfies

∂2Mu

∂t2
(x; r, t) =

∂2Mu

∂r2
(x; r, t) +

n− 1

r

∂Mu

∂r
(x; r, t)(8.12.5)
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for r, t > 0, as in Proposition 5.8 in Section B of Chapter 5 of [38]. This
corresponds to part of Lemma 1 in Section 2.4.1 b of [35]. This is known as the
Euler–Poisson–Darboux equation, as in [35].

The right side of (8.12.5) corresponds to the Laplacian of

Mu(x; |w|, t)(8.12.6)

as a function of w ∈ Rn \ {0}, with r = |w|, as in (8.4.4). Thus (8.12.5) is
the same as saying that (8.12.6) satisfies the wave equation as a function of w
and t, as in the remark after Proposition 5.8 in [38]. This also corresponds to a
remark after the statement of Lemma 1 in Section 2.4.1 b of [35].

Let T be an orthogonal transformation on Rn, and consider

u(x+ T (w), t)(8.12.7)

as a real or complex-valued function of w ∈ Rn and t > 0. It may be reasonably
clear that the average of (8.12.7) over T ∈ O(n) is equal to (8.12.6), without
getting into too many details, as in the previous section. In particular, this is
another way to look at the regularity of (8.12.6) as a function of w and t in
terms of the regularity of u, as before.

Remember that the Laplacian on Rn is invariant under orthogonal transfor-
mations, as in Section 2.1. Using this, it is easy to see that

u(x+ T (w), t) satisfies the wave equation, as a function of w and t.(8.12.8)

One can use this to get that (8.12.6) satisfies the wave equation, as a function of
w and t, as in the preceding paragraph. This is another way to look at (8.12.5).

8.13 Some helpful identities

Let k be a positive integer, and let ϕ be a (k+1)-times continuously-differentiable
real or complex-valued function on an open set in R \ {0}. Under these condi-
tions, it is well known that

d2

dr2

(1
r

d

dr

)k−1

(r2k−1 ϕ(r)) =
(1
r

d

dr

)k (
r2k

dϕ

dr
(r)

)
(8.13.1)

and (1
r

d

dr

)k−1

(r2k−1 ϕ(r)) =

k−1∑
j=0

cj(k) r
j+1 d

jϕ

drj
(r),(8.13.2)

where cj(k) is a constant that does not depend on ϕ for each j. More precisely,

c0(k) = 1 · 3 · 5 · · · (2 k − 1).(8.13.3)

This also works when ϕ is defined on an open subset of R that contains 0, with
suitable interpretations, because there are sufficiently many factors of r being
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differentiated that there are not really any factors of 1/r left after expanding
out the derivatives, as in (8.13.2).

This corresponds to Lemma 2 in Section 2.4.1 d of [35], and to (5.9) and
(5.10) in Section B of Chapter 5 of [38]. The proof by induction is left as an
exercise in [35], and some additional hints are given in [38].

Let n be an odd integer with n ≥ 3, so that n = 2 k + 1 for some positive
integer k. Also let u(x, t) be a (k + 1)-times continuously-differentiable real
or complex-valued function on Rn ×R+ that satisfies the wave equation. Let
x ∈ Rn be given, and let Mu(x; r, t) be as in the previous section, which is a
(k + 1)-times continuously-differentiable function of r, t > 0. Put

v(r, t) =
(1
r

d

dr

)k−1

(r2k−1Mu(x; r, t)),(8.13.4)

as mentioned some time after (5.10) in [38]. This corresponds to Ũ(r, t) in (28)
in Section 2.4.1 d of [35].

Note that v(r, t) is twice continuously differentiable, because Mu(x; r, t) is
(k+ 1)-times continuously differentiable in r, t, as in the previous section. One
can show that

∂2v

∂r2
=
∂2v

∂t2
,(8.13.5)

using (8.12.5) and (8.13.1). This corresponds to part of Lemma 3 in Section
2.4.1 d of [35], and some remarks after (5.10) in [38].

In fact, Mu(x; r, t) is (k + 1)-times continuously differentiable as a function
of (r, t) ∈ R × R+, as in the previous section. This implies that v(r, t) may
be defined as a twice continuously-differentiable function of (r, t) ∈ R × R+,
because of (8.13.2). It is easy to see that

v(0, t) = 0(8.13.6)

for all t > 0, using (8.13.2), which is another part of Lemma 3 in Section 2.4.1
d of [35]. Indeed, we have that

lim
r→0

v(r, t)

c0(k) r
= lim

r→0
Mu(x; r, t) = u(x),(8.13.7)

using (8.13.2) in the first step, and the definition of Mu(x; r, t) in the second
step. This is mentioned after Lemma 3 in Section 2.4.1 d of [35], and after (5.11)
in Section B of Chapter 5 of [38].

8.14 An inhomogeneous problem

Let n be a positive integer, and let [n/2] be the integer part of n/2, which is
equal to n/2 when n is even, and to (n − 1)/2 when n is odd. Also let f be
real or complex-valued function on Rn × (R+ ∪ {0}) that is ([n/2] + 1)-times
continuously differentiable. This may be interpreted as in Section 3.4, which
amounts in this case to using one-sided derivatives in t from the right at t = 0.
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Consider the problem of finding a twice continuously-diifeferntiable real or
complex-valued function u on Rn × (R+ ∪ {0}), as appropriate, such that

∂2u

∂t2
−∆u = f(8.14.1)

on Rn ×R+, with

u(x, 0) =
∂u

∂t
(x, 0) = 0(8.14.2)

on Rn. To deal with this, one can use Duhamel’s principle, as in Section 2.4.2
of [35], and Section C of Chapter 5 of [38].

If τ is a nonnegative real number, then let v(x, t; τ) be the real or complex-
valued function of (x, t) on Rn × (R+ ∪ {0}) that satisfies the wave equation

∂2v

∂t2
−∆v = 0(8.14.3)

on Rn ×R+, with
v(x, 0; τ) = 0(8.14.4)

and
∂v

∂t
(x, 0; τ) = f(x, τ)(8.14.5)

on Rn. More precisely, this may be obtained as in [35, 38], and is twice contin-
uously differentiable under these conditions.

If x ∈ Rn and t ≥ 0, then we take

u(x, t) =

∫ t

0

v(x, t− τ ; τ) dτ,(8.14.6)

as in [38], which is expressed a bit differently in [35]. Of course, this is equal to
0 when t = 0. We also have that

∂u

∂t
(x, t) = v(x, 0; t) +

∫ t

0

∂v

∂t
(x, t− τ ; τ) dτ =

∫ t

0

∂v

∂t
(x, t− τ ; τ) dτ,(8.14.7)

using (8.14.4) in the second step. This is equal to 0 when t = 0 as well.
Similarly,

∂2u

∂t2
(x, t) =

∂v

∂t
(x, 0; t) +

∫ t

0

∂2v

∂t2
(x, t− τ ; τ) dτ(8.14.8)

= f(x, t) +

∫ t

0

∂2v

∂t2
(x, t− τ ; τ) dτ.

Note that

∆u(x, t) =

∫ t

0

∆v(x, t− τ ; τ) dτ =

∫ t

0

∂2v

∂t2
(x, t− τ, τ) dτ,(8.14.9)

using (8.14.3) in the second step. Clearly (8.14.1) follows from these two equa-
tions. One can get solutions of (8.14.1) with other initial conditions using this
and solutions of the wave equation with prescribed initial conditions, as men-
tioned in [35, 38].
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8.15 The porous medium equation

Let n be a positive integer, and let u(x, t) be a real-valued function on an open
subset of Rn ×R, which we can identify with Rn+1, as usual. Also let γ be a
real number, and consider the partial differential equation

∂u

∂t
−∆(uγ) = 0,(8.15.1)

as in Example 2 in Section 4.1.1 of [35]. This is known as the porous medium
equation, at least for suitable γ. Of course, this reduces to the heat equation
when γ = 1. If γ = 0, then this may be interpreted as

∂u

∂t
= 0.(8.15.2)

If γ is not an integer, then we ask that u ≥ 0, so that uγ is defined. Similarly,
if γ < 0, then we ask that u 6= 0.

One way to try to solve this equation is to look for solutions of the form

u(x, t) = v(t)w(x),(8.15.3)

where v(t) and w(x) are real-valued functions defined on open subsets of R and
Rn, respectively. We also ask that v(t), w(x) ≥ 0 when γ is not an integer, and
that v(t), u(x) 6= 0 when γ < 0, as before. In this case, (8.15.1) is the same as
saying that

v′(t)w(x)− v(t)γ ∆(w(x)γ) = 0.(8.15.4)

This means that
v′(t)

v(t)γ
=

∆(w(x)γ)

w(x)
(8.15.5)

when v(t), w(x) 6= 0. To get this, we need both sides of the equation to be
constant, so that

v′(t)

v(t)γ
= µ =

∆(w(x)γ)

w(x)
,(8.15.6)

where µ is a constant.
Of course, if γ = 0, then µ = 0. The first part of (8.15.6) is the same as

saying that

v′(t) = µ v(t)γ ,(8.15.7)

and the second part is the same as saying that

∆(w(x)γ) = µw(x).(8.15.8)

One can also consider these equations when v(t) or w(x) is equal to 0, at least
if γ ≥ 0. Note that (8.15.4) holds when these two equations hold. These two
equations are much simpler when µ = 0, and so we suppose now that µ 6= 0.
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The case where γ = 1 is discussed in Example 1 in Section 4.1.1 of [35], and
is related to some of the remarks in Section 3.1. Suppose that γ 6= 1, and let us
solve (8.15.7) to get that

v(t) = ((1− γ)µ t+ λ)1/(1−γ),(8.15.9)

where λ is a constant, as in [35]. More precisely, we ask that

(1− γ)µ t+ λ 6= 0(8.15.10)

when γ > 1, and when γ < 0, as before. We also ask that

(1− γ)µ t+ λ ≥ 0(8.15.11)

when 1/(1 − γ) is not an integer, and when γ is not an integer, as before. Of
course, γ and 1/(1− γ) are both integers only when γ = 0 or 2.

Let us look for solutions of (8.15.8) of the form

w(x) = |x|α(8.15.12)

for some α ∈ R, as in [35]. One can check that

µw(x)−∆(w(x)γ) = µ |x|α − αγ (αγ + n− 2) |x|αγ−2,(8.15.13)

as in [35], where x 6= 0 when α < 0 or αγ − 2 < 0. Let us ask that

αγ − 2 = α,(8.15.14)

which means that

α =
2

γ − 1
,(8.15.15)

as in [35]. In this case, (8.15.13) is the same as saying that

µw(x)−∆(w(x)γ) = (µ− αγ (αγ + n− 2)) |x|α,(8.15.16)

where x 6= 0 when α < 0.
Under these conditions, we get that (8.15.8) holds when

µ = αγ (αγ + n− 2),(8.15.17)

as in [35]. In [35], one takes γ > 1, which implies that α > 0, and that

αγ =
2 γ

γ − 1
> 2.(8.15.18)

This means that one can take w(x) as in (8.15.12) on Rn, and that w(x)γ is
twice continuously differentiable on Rn. Note that µ > 0 in this case, as in [35].

Of course,
(1− γ)µ t+ λ > 0(8.15.19)

when γ > 1 and

t < t∗ =
λ

(γ − 1)µ
,(8.15.20)

because µ > 0. In [35], one also takes λ > 0, so that t∗ > 0.



Chapter 9

Some distribution theory

9.1 Fundamental solutions

Let n be a positive integer, and let u, v be complex-valued functions on Rn, at
least one of which has compact support in Rn. If α is a multi-index, and if u,
v are |α|-times continuously differentiable on Rn, then∫

Rn

(∂αu)(x) v(x) dx = (−1)|α|
∫
Rn

u(x) (∂αv)(x) dx,(9.1.1)

by integration by parts.
Let N be a nonnegative integer, and let

p(w) =
∑

|α|≤N

aα w
α(9.1.2)

be a polynomial in the n variables w1, . . . , wn of degree less than or equal to N ,
and with complex coefficients aα. Put

p̃(w) = p(−w) =
∑

|α|≤N

(−1)|α| aα w
α,(9.1.3)

which is another polynomial in w1, . . . , wn of degree less than or equal to n
with complex coefficients, as appropriate. Using these polynomials, we get cor-
responding differential operators p(∂) and p̃(∂), as in Section 1.7. If u, v are
N -times continuously differentiable on Rn, then∫

Rn

(p(∂)u)(x) v(x) dx =

∫
Rn

u(x) (p̃(∂)v)(x) dx,(9.1.4)

because of (9.1.1).
A complex-valued function E on Rn is said to be a fundamental solution of

p(∂) if ∫
Rn

E(x) (p̃(∂)v)(x) dx = v(0)(9.1.5)

160
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for every smooth function v on Rn with compact support. This is interpreted
as meaning that (p(∂))(E) is the Dirac delta function δ0 associated to 0, in the
sense of distributions. More precisely, this can be extended to distributions E
on Rn. If p 6= 0, then a famous theorem of Ehrenpreis and Malgrange states
that p(∂) has a fundamental solution on Rn, which may be a distribution. See
[33, 38, 45, 111, 121, 125, 149] for more information.

A fundamental solution for the Laplacian is given by the function N defined
in Section 6.8. A fundamental solution for the heat operator

∂

∂t
−∆(9.1.6)

is given by the heat kernel. Once one has a fundamental solution E for p(∂),
one can solve

(p(∂))(u) = f(9.1.7)

by convolving E with f under suitable conditions, in the sense of distributions.
If f is a smooth function with compact support on Rn, then this gives a smooth
solution u of (9.1.7).

Some basic aspects of distribution theory will be discussed in the next sec-
tions, and some additional references about this include [16, 41, 42, 44, 55, 73,
80, 98, 108, 135, 139, 144, 167].

9.2 Spaces of test functions

Let n be a positive integer, and let U be a nonempty open subset of Rn. Re-
member that a real or complex-valued function f on U is said to have compact
support in U if there is a compact set E ⊆ Rn such that E ⊆ U and f = 0 on
U \ E, as in Section 1.9. Note that the union of two compact subsets of Rn is
compact too. Using this, it is easy to see that the sum of two real or complex-
valued functions on U with compact support in U has compact support in U as
well.

Let Ccom(U,R), Ccom(U,C) be the spaces of continuous real and complex-
valued functions on U with compact support, respectively. These are linear
subspaces of the spaces C(U,R), C(U,C) of all continuous real or complex-
valued functions on U , as vector spaces over the real and complex numbers,
respectively. Similarly, if k is a positive integer, then let Ck

com(U,R), Ck
com(U,C)

be the spaces of k-times continuously-differentiable real and complex-valued
functions on U with compact support. It is sometimes convenient to use the
same notation with k = 0 for the analogous spaces of continuous functions,
as before. The spaces of smooth real or complex-valued functions on U with
compact support are denoted C∞

com(U,R), C∞
com(U,C).

Equivalently,

Ck
com(U,R) = Ck(U,R) ∩ Ccom(U,R),(9.2.1)

Ck
com(U,C) = Ck(U,C) ∩ Ccom(U,C)(9.2.2)
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for every k ≥ 1. These are linear subspaces of Ck(U,R) and Ck(U,C), respec-
tively. Similarly,

C∞
com(U,R) = C∞(U,R) ∩ Ccom(U,R),(9.2.3)

C∞
com(U,C) = C∞(U,C) ∩ Ccom(U,C),(9.2.4)

which are linear subspaces of C∞(U,R) and C∞(U,C), respectively.
If f is a real or complex-valued function on U , then we can extend f to a

function on Rn, simply by putting f = 0 on Rn\U . If f is a continuous function
on U with compact support in U , then this extension of f to Rn is continuous
too. Similarly, if f is k-times continuously differentiable on U for some k ≥ 1,
or if f is smooth on U , and f has compact support in U , then this extension
has the analogous property on Rn.

If f is a continuously-differentiable real or complex-valued function on U with
compact support in U , then it is easy to see that the partial derivatives of f have
compact support in U as well. If α is a multi-index and |α| ≤ k, then ∂α defines

linear mappings from Ck
com(U,R), Ck

com(U,C) into C
k−|α|
com (U,R), C

k−|α|
com (U,C),

respectively. Similarly, ∂α defines linear mappings from C∞
com(U,R), C∞

com(U,C)
into themselves.

If f , g are continuous real or complex-valued functions on U , then it is well
known that their product f g is continuous on U . If f and g are both k-times
continuously differentiable on U , or both smooth on U , then f g has the same
property. If either f or g has compact support in U , then f g has compact
support in U .

Smooth functions on U with compact support in U are also known as test
functions on U .

9.3 Distributions

A linear functional on a vector space V over the real or complex numbers is a
linear mapping from V into R or C, as appropriate. Let n be a positive integer,
and let U be a nonempty open subset of Rn. A distribution on U is a linear
functional on the space C∞

com(U,C) of complex-valued test functions on U that
is continuous in a certain sense. Before describing the continuity condition, let
us mention some basic examples.

Let f be a continuous complex-valued function on U . If ϕ is a test function
on U , then put

λf (ϕ) =

∫
U

f(x)ϕ(x) dx.(9.3.1)

The right side may be interpreted as a Riemann integral over any suitable region
that contains the support of ϕ. This defines a linear functional on C∞

com(U,C).
One can check that λf (ϕ) = 0 for every test function ϕ on U only when f ≡ 0
on U . This implies that f is uniquely determined by λf on C∞

com(U,C).
Similarly, if f is a complex-valued function on U that is locally integrable

on U with respect to Lebesgue measure, then the right side of (9.3.1) may
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be interpreted as a Lebesgue integral. In this case, one can show that f is
determined almost everywhere on U with respect to Lebesgue measure by λf
on C∞

com(U,C).
If x ∈ U , then

δx(ϕ) = ϕ(x)(9.3.2)

defines a linear functional on C∞
com(U,C). This is the Dirac distribution on U

associated to x.
The continuity condition used to define distributions can be described in

terms of a suitable notion of convergent sequences of test functions. Let {ϕj}∞j=1

be a sequence of test functions on U , and let ϕ be another test function on U .
We say that

{ϕj}∞j=1converges to ϕ in C∞
com(U,C)(9.3.3)

if the following two conditions hold. First, there is a compact set E ⊆ Rn such
that E ⊆ U and

ϕj = 0 on U \ E(9.3.4)

for every j ≥ 1. Second, for every multi-index α, we have that

{∂αϕj}∞j=1 converges to ∂αϕ uniformly on U.(9.3.5)

In particular, we can take α = 0, to get that {ϕj}∞j=1 converges to ϕ uniformly
on U . It follows that

ϕ = 0 on U \ E,(9.3.6)

because of (9.3.4).
A linear functional λ on C∞

com(U,C) is said to be a distribution on U if for
every sequence {ϕj}∞j=1 of test functions on U that converges to a test function
ϕ on U , in the sense described in the preceding paragraph, we have that

lim
j→∞

λ(ϕj) = λ(ϕ).(9.3.7)

Alternatively, there is a standard topology defined on C∞
com(U,C), and it is

well known that a linear functional on C∞
com(U,C) is continuous with respect

to this topology if and only if it satisfies this continuity condition in terms
of convergent sequences. More precisely, one can show that convergence of
sequences in C∞

com(U,C) with respect to this topology is equivalent to the notion
of convergence mentioned in the preceding paragraph. In particular, this implies
that continuity with respect to this topology on C∞

com(Rn,C) automatically
implies the sequential continuity condition (9.3.7). It is well known that the
converse holds for linear functionals, but this is more complicated in this case
than for metric spaces, for instance.

The space of distributions on U may be denoted

C∞
com(U,C)′.(9.3.8)

This is a vector space over the complex numbers, with respect to pointwise
addition and scalar multiplication of linear functionals on C∞

com(U,C).
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If f is a continuous complex-valued function on U , or a locally integrable
function on U with respect to Lebesgue measure, then it is easy to see that
(9.3.1) defines a distribution on U . In this case, it is enough to take α = 0 in
(9.3.5). We also have that

f 7→ λf(9.3.9)

is a linear mapping from C(U,C) into C∞
com(U,C)′, or from the space of locally

integrable functions f on U into C∞
com(U,C)′. It is very easy to see that the

Dirac distribution associated to x ∈ U is indeed a distribution on U .

9.4 Some basic properties of distributions

Let n be a positive integer, and let U be a nonempty open subset of Rn. Suppose
that {ϕj}∞j=1 is a sequence of test functions on U that converges to a test function
ϕ on U , in the sense described in the previous section. This implies that

{∂lϕj}∞j=1 converges to ∂lϕ(9.4.1)

in the same sense for each l = 1, . . . , n. Similarly, if a is a smooth complex-
valued function on U , then one can check that

{aϕj}∞j=1 converges to aϕ(9.4.2)

in this sense as well. This uses the fact that a and its derivatives of any order
are bounded on any compact subset of Rn that is contained in U .

Let λ be a distribution on U , and for each l = 1, . . . , n, put

(∂lλ)(ϕ) = −λ(∂lϕ)(9.4.3)

for every test function ϕ on U . It is easy to see that this defines a distribution
on U , which is considered as the partial derivative of λ in the lth variable. If
f is a continuously-differentiable complex-valued function on U , and λf is the
distribution associated to f as in (9.3.1), then

∂lλf = λ∂lf(9.4.4)

is the distribution associated to ∂lf on U . This basically corresponds to inte-
gration by parts. More precisely, this works when f is a continuous function
on U such that the partial derivative ∂f/∂xl in the lth variable exists at every
point in U , and is continuous on U .

It is easy to see that

∂j(∂lλ) = ∂l(∂jλ)(9.4.5)

for each j, l = 1, . . . , n, using the analogous statement for smooth functions. If
α is any multi-index, then one can differentiate λ repeatedly, to get that

(∂αλ)(ϕ) = (−1)|α| λ(∂αϕ)(9.4.6)
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for all test functions ϕ on U . If f is an |α|-times continuously-differentiable
complex-valued function on U , and λf is the distribution on U associated to f
as before, then

∂αλf = λ∂αf(9.4.7)

is the distribution associated to ∂αf on U .
If a is a smooth complex-valued function on U , then put

(aλ)(ϕ) = λ(aϕ)(9.4.8)

for every test function ϕ on U . This defines a distribution on U , which is
considered as the product of a and λ. If f is a continuous or simply locally-
integrable complex-valued function on U , then

aλf = λa f(9.4.9)

is the distribution on U associated to the usual product a f of a and f on U .
One can check that

∂l(aλ) = (∂la)λ+ a (∂lλ),(9.4.10)

as distributions on U , using the usual product rule for partial derivatives of
smooth functions on U .

One may consider λ to be real-valued as a distribution on U if

λ(ϕ) ∈ R(9.4.11)

for every real-valued test function ϕ on U . In this case, one may say that λ is
nonnegative as a distribution on U , or

λ ≥ 0,(9.4.12)

if

λ(ϕ) ≥ 0(9.4.13)

for every nonnegative real-valued test function ϕ on U . If λ is the distribution
associated to a continuous function f on U , then these conditions correspond
to their usual versions for f . If f is locally integrable with respect to Lebesgue
measure, and not necessarily continuous, then the analogous conditions on f
should be interpreted as holding almost everywhere with respect to Lebesgue
measure, as usual.

9.5 Using a fixed compact set

Let n be a positive integer, and let K be a nonempty compact subset of Rn.
Consider the space C∞

K (Rn,C) of smooth complex-valued functions ϕ on Rn

such that

suppϕ ⊆ K.(9.5.1)
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Equivalently, this means that ϕ = 0 on Rn\K. Note that C∞
K (Rn,C) is a linear

subspace of the space C∞
com(Rn,C) of all smooth complex-valued functions on

Rn with compact support, as a vector space over the complex numbers.
Let {ϕj}∞j=1 be a sequence of elements of C∞

K (Rn,C), and let ϕ be another
element of C∞

K (Rn,C). Let us say that {ϕj}∞j=1 converges to ϕ in C∞
K (Rn,C)

if for every multi-index α,

{∂αϕj}∞j=1 converges to ∂αϕ uniformly on K.(9.5.2)

Let λ be a linear functional on C∞
K (Rn,C). We can use the notion of

convergent sequences in C∞
K (Rn,C) described in the preceding paragraph to

define a natural continuity condition for λ. This condition asks that

lim
j→∞

λ(ϕj) = λ(ϕ)(9.5.3)

for every sequence {ϕj}∞j=1 of elements of C∞
K (Rn,C) that converges to an

element ϕ of C∞
K (Rn,C) in this sense.

Alternatively, there is a standard topology defined on C∞
K (Rn,C), for which

convergence of sequences is equivalent to the notion of convergence mentioned
before. In this case, one can get the equivalence between continuity and sequen-
tial continuity more directly. In particular, the continuity condition for a linear
functional mentioned in the preceding paragraph is equivalent to continuity with
respect to this topology.

One can show that λ is continuous on C∞
K (Rn,C) with respect to this topol-

ogy if and only if there are a nonnegative real number C and a nonnegative
integer N such that

|λ(ϕ)| ≤ C
∑

|α|≤N

(
max
x∈K

|(∂αϕ)(x)|
)

(9.5.4)

for every ϕ ∈ C∞
K (Rn,C). The sum on the right is taken over all multi-indices

α with |α| ≤ N , as usual. This condition implies that (9.5.3) holds whenever
(9.5.2) holds for all such multi-indices.

9.6 Compact sets in open sets

Let n be a positive integer, and let U be a nonempty open subset of Rn. Every
element of C∞

com(U,C) can be extended to an element of C∞(Rn,C), by putting
it equal to 0 on Rn\U , as in Section 9.2. Using this, we can identify C∞

com(U,C)
with a linear subspace of C∞

com(Rn,C). With this identification, C∞
com(U,C)

corresponds to the union of C∞
K (Rn,C) over all nonempty compact subsets K

of Rn such that K ⊆ U .
If K is a nonempty compact subset of Rn that is contained in U , then

a convergent sequence in C∞
K (Rn,C), in the sense described in the previous

section, may be considered as a convergent sequence in C∞
com(U,C), in the sense

of Section 9.3. Conversely, any convergent sequence in C∞
com(U,C), in the sense
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of Section 9.3, corresponds to a convergent sequence in C∞
K (Rn,C) for some

nonempty compact subset K of Rn that is contained in U .
Let λ be a linear functional on C∞

com(U,C). If K is a nonempty compact
subset of Rn that is contained in U , then the restriction of λ to C∞

K (Rn,C)
defines a linear functional on that vector space. Observe that λ satisfies the
continuity condition on C∞

com(U,C) described in Section 9.3 if and only if the
restriction of λ to C∞

K (Rn,C) satisfies the continuity condition described in the
previous section for every nonempty compact subset K of Rn that is contained
in U . This follows from the remarks about convergent sequences in the preceding
paragraph.

It is not too difficult to show that there are sequences {Kj}∞j=1 of nonempty
compact subsets of Rn such that

∞⋃
j=1

Kj = U(9.6.1)

and Kj is contained in the interior of Kj+1 for each j. If K is any compact
subset of Rn that is contained in U , then it follows that

K ⊆ Kj(9.6.2)

for some j. This implies that C∞
com(U,C) corresponds to

∞⋃
j=1

C∞
Kj

(Rn,C),(9.6.3)

as a linear subspace of C∞
com(Rn,C).

9.7 The Schwartz class

Let n be a positive integer. The Schwartz class S(Rn) is the space of smooth
complex-valued functions f on Rn such that

xα (∂βf)(x)(9.7.1)

is bounded on Rn for all multi-indices α, β. Equivalently, this means that

(1 + |x|2)k |(∂βf)(x)|(9.7.2)

is bounded on Rn for every nonnegative integer k and multi-index β. It is easy
to see that S(Rn) is a linear subspace of the space C∞(Rn,C) of all complex-
valued smooth functions on Rn, as a vector space over the complex numbers.

Clearly
C∞

com(Rn,C) ⊆ S(Rn).(9.7.3)

If a is a positive real number and b ∈ Cn, then one can check that

exp(−a |x|2 + b · x) ∈ S(Rn).(9.7.4)
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If f ∈ S(Rn) and c ∈ Rn, then one can verify that

f(x+ c) ∈ S(Rn).(9.7.5)

It is easy to see that
∂γf ∈ S(Rn)(9.7.6)

for every multi-index γ in this case too.
If f ∈ S(Rn) and p is a polynomial on Rn with complex coefficients, then

one can check that
p f ∈ S(Rn).(9.7.7)

More precisely, this holds for smooth complex-valued functions p on Rn with
the following property. If γ is any multi-index, then we ask that ∂γp has at
most polynomial growth at infinity on Rn. This means that for every such γ,
there are a nonnegative real number C(γ) and a nonnegative integer N(γ) such
that

|(∂γp)(x)| ≤ C(γ) (1 + |x|2)N(γ)(9.7.8)

for every x ∈ Rn. Of course, polynomials on Rn satisfy these conditions.
Let {fj}∞j=1 be a sequence of elements of S(Rn), and let f be another element

of S(Rn). We say that {fj}∞j=1 converges to f in S(Rn) if for every pair of
multi-indices α, β,

xα (∂βfj)(x) → xα (∂βf)(x) as j → ∞,(9.7.9)

uniformly on Rn. This is the same as saying that for every nonnegative integer
N and multi-index β,

(1 + |x|2)N |(∂βfj)(x)− (∂βf)(x)| → 0 as j → ∞,(9.7.10)

uniformly on Rn. This is also equivalent to the convergence of {fj}∞j=1 to f with
respect to a standard topology on S(Rn). Note that a convergent sequence in
C∞

com(Rn,C), in the sense described in Section 9.3, converges as a sequence in
S(Rn).

If {fj}∞j=1 converges to f in S(Rn), then it is easy to see that {∂γfj}∞j=1

converges to ∂γf in S(Rn) for every multi-index γ. If p is a smooth complex-
valued function on Rn whose derivatives of all orders grow at most polynomially
on Rn, as before, then one can check that {p fj}∞j=1 converges to p f in S(Rn).
In particular, this holds when p is a polynomial on Rn.

9.8 Tempered distributions

Let n be a positive integer, and let λ be a linear functional on S(Rn). Let us
say that λ is continuous on S(Rn) if for every sequence {ϕj}∞j=1 of elements of
S(Rn) that converges to an element ϕ of S(Rn), in the sense described in the
previous section, we have that

lim
j→∞

λ(ϕj) = λ(ϕ).(9.8.1)
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This is equivalent to the continuity of ϕ with respect to the standard topology on
S(Rn), which was mentioned in the previous section. Under these conditions,
λ is said to be a tempered distribution on Rn. The space

S(Rn)′(9.8.2)

of tempered distributions on Rn is a vector space over the complex numbers,
with respect to pointwise addition and scalar multiplication of linear functionals
on S(Rn).

Let f be a continuous complex-valued function on Rn, and suppose that f
grows at most polynomially on Rn, so that

|f(x)| ≤ C (1 + |x|2)k(9.8.3)

for some nonnegative real number C, nonnegative integer k, and every x ∈ Rn.
If ϕ ∈ S(Rn), then put

λf (ϕ) =

∫
Rn

f(x)ϕ(x) dx,(9.8.4)

where the right side may be defined as in Section 7.2. One can check that this
defines a tempered distribution on Rn. More precisely, this works when

f(x) (1 + |x|2)−l(9.8.5)

is integrable on Rn for some nonnegative integer l. This also works when f is a
locally integrable function on Rn with respect to Lebesgue measure such that
(9.8.5) is integrable, in which case (9.8.4) should be interpreted as a Lebesgue
integral.

One can define derivatives of tempered distributions in the same way as in
Section 9.4. Let p be a smooth complex-valued function on Rn whose derivatives
of all orders grow at most polynomially, as in the previous section. If λ is any
tempered distribution on Rn, then

(p λ)(ϕ) = λ(p ϕ)(9.8.6)

defines another tempered distribution on Rn. If f is as in the preceding para-
graph, then p f satisfies an analogous condition, so that λp f is defined as a
tempered distribution on Rn too. Of course,

p λf = λp f ,(9.8.7)

as tempered distributions on Rn.
If λ is a tempered distribution on Rn, then it is easy to see that

the restriction of λ to C∞
com(Rn,C) defines a distribution on Rn.(9.8.8)

It is well known that

λ is uniquely determined by its restriction to C∞
com(Rn,C).(9.8.9)
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More precisely,
C∞

com(Rn,C) is dense in S(Rn),(9.8.10)

with respect to the standard topology on S(Rn). Equivalently, this means that
if ϕ ∈ S(Rn), then there is a sequence {ϕj}∞j=1 of elements of C∞

com(Rn) that
converges to ϕ in S(Rn). The ϕj ’s can be obtained by multiplying ϕ by suitable
smooth functions on Rn with compact support, which are equal to 1 on large
bounded subsets of Rn.

Of course, if x ∈ Rn, then δx(ϕ) = ϕ(x) defines a tempered distribution
on Rn, which is another version of the Dirac distribution associated to x. See
[95, 132, 136] for more information about the Schwartz class and tempered
distributions, in addition the references about distributions mentioned in Section
9.1.

9.9 More on S(Rn), S(Rn)′

Let n be a positive integer, let f be an element of the Schwartz class S(Rn),
and let c ∈ Rn be given. One can check that f(x + c) ∈ S(Rn), as a function
of x ∈ Rn, as mentioned in Section 9.7. More precisely, if α and β are multi-
indices, then the boundedness of

xα (∂βf)(x+ c)(9.9.1)

on Rn is equivalent to the boundedness of

(x− c)α (∂βf)(x)(9.9.2)

on Rn. This can be obtained from the boundedness of

xγ (∂βf)(x)(9.9.3)

on Rn, for multi-indices γ with γj ≤ αj for each j = 1, . . . , n. This argument
also shows that one can get a bound for the absolute value of (9.9.1) on Rn that
grows at most polynomially in |c|.

Let λ be a linear functional on S(Rn). Suppose that there are a nonnegative
real number C and nonnegative integers N1, N2 such that

|λ(ϕ)| ≤ C
∑

|α|≤N1

∑
|β|≤N2

(
sup
x∈Rn

|xα (∂βϕ)(x)|
)

(9.9.4)

for every ϕ ∈ S(Rn). Here the first sum is taken over all multi-indices α with
|α| ≤ N1, and the second sum is taken over all multi-indices β with |β| ≤ N2, as
usual. Under these conditions, one can check that λ is a tempered distribution
on Rn.

In fact, let {ϕj}∞j=1 be a sequence of elements of S(Rn), and let ϕ be another
element of S(Rn). Suppose that

xα (∂βϕ)(x) → xα (∂βϕ)(x) as j → ∞,(9.9.5)
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uniformly on Rn, for all multi-indices α, β with |α| ≤ N1 and |β| ≤ N2. If
(9.9.4) holds, then it is easy to see that λ(ϕj) → ϕ as j → ∞.

Conversely, if λ is a tempered distribution on Rn, then it is well known that
(9.9.4) holds for some C,N1, N2 ≥ 0. This can be obtained from the continuity
of λ at 0, with respect to the standard topology on S(Rn).

Let f be a continuous complex-valued function on Rn, and let {cj}∞j=1 be a
sequence of elements of Rn that converges to 0. Put

fj(x) = f(x+ cj)(9.9.6)

for each x ∈ Rn and j ≥ 1. Note that

fj → f as j → ∞(9.9.7)

pointwise on Rn, because f is continuous on Rn. More precisely, one can check
that (9.9.7) holds uniformly on compact subsets of Rn, because continuous
functions are uniformly continuous on compact sets. If f is uniformly continuous
on Rn, then (9.9.7) holds uniformly on Rn.

If f is smooth on Rn, then for each multi-index α,

∂αfj → ∂αf as j → ∞,(9.9.8)

uniformly on compact subsets of Rn. If f has compact support in Rn, then one
can verify that there is a compact subset of Rn that contains the supports of f
and fj for each j.

If f ∈ S(Rn), then fj ∈ S(Rn) for each j, as before. In this case, it is not
too difficult to show that (9.9.7) holds in S(Rn), in the sense defined in Section
9.7.

9.10 Some convolutions

Let n be a positive integer, and let U be a nonempty open subset of Rn. If
a ∈ Rn and E ⊆ Rn, then put

a+ E = {a+ x : x ∈ E}(9.10.1)

and
−E = {−x : x ∈ E}.(9.10.2)

Similarly, we put a− E = a+ (−E).
Let K be a nonempty compact subset of Rn, and put

V = {a ∈ Rn : a−K ⊆ U}.(9.10.3)

One can check that this is an open subset of Rn, because U is an open set.
If ϕ is a complex-valued function on Rn, then put

ϕ̃(y) = ϕ(−y)(9.10.4)
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for every y ∈ Rn. Also let τa(ϕ) be the complex-valued function on Rn defined
by

(τa(ϕ))(y) = ϕ(y − a)(9.10.5)

for every y ∈ Rn. Thus

(τa(ϕ̃))(y) = ϕ(a− y)(9.10.6)

for every y ∈ Rn.
Suppose now that ϕ is smooth on Rn, with

suppϕ ⊆ K,(9.10.7)

and let λ be a distribution on U . Observe that

supp τa(ϕ̃) = a− suppϕ(9.10.8)

for every a ∈ Rn. In particular, if a ∈ V , then

supp τa(ϕ̃) ⊆ U.(9.10.9)

Under these conditions, the convolution of λ and ϕ is the complex-valued
function λ ∗ ϕ defined on V by

(λ ∗ ϕ)(a) = λ(τa(ϕ̃)).(9.10.10)

If b ∈ Rn, then

(δb ∗ ϕ)(a) = ϕ(a− b)(9.10.11)

for every a ∈ Rn, by (9.10.6).
If {aj}∞j=1 is a sequence of elements of V that converges to a ∈ V , then one

can check that

lim
j→∞

(λ ∗ ϕ)(aj) = (λ ∗ ϕ)(a).(9.10.12)

Equivalently, this means that

lim
j→∞

λ(τaj
(ϕ̃)) = λ(τa(ϕ̃)).(9.10.13)

This implies that λ ∗ ϕ is continuous on V .
It is well known and not too difficult to show that the first partial derivatives

of λ ∗ ϕ exist on V , with

∂l(λ ∗ ϕ) = λ ∗ (∂lϕ)(9.10.14)

for each l = 1, . . . , n. One can use this repeatedly, to get that λ ∗ ϕ is smooth
on V , with

∂α(λ ∗ ϕ) = λ ∗ (∂αϕ)(9.10.15)

on V for each multi-index α.
One can verify that

λ ∗ (∂αϕ) = (∂αλ) ∗ ϕ(9.10.16)
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on V for every multi-index α. It follows that

∂α(λ ∗ ϕ) = (∂αλ) ∗ ϕ(9.10.17)

on V , by (9.10.15).
If ϕ ∈ S(Rn) and λ ∈ S(Rn)′, then λ∗ϕ can be defined onRn as in (9.10.10).

It is well known that this satisfies the same type of properties as before.
In this case, one can also show that

λ ∗ ϕ grows at most polynomially on Rn,(9.10.18)

using the remarks in the previous section. More precisely,

the derivatives of λ ∗ ϕ of all orders grow at most polynomially(9.10.19)

too.

9.11 Local solvability

Let n be a positive integer, and let p(w) be a nonzero polynomial on Rn with
complex coefficients. As in Section 9.1, a theorem of Ehrenpreis and Malgrange
states that there is a distribution E on Rn that is a fundamental solution of
p(∂), in the sense that

p(∂)(E) = δ0.(9.11.1)

Let f ∈ C∞
com(Rn,C) be given, and put

u = E ∗ f,(9.11.2)

which is a smooth complex-valued function on Rn, as in the previous section.
Under these conditions, we have that

(p(∂))(u) = (p(∂))(E) ∗ f = δ0 ∗ f = f(9.11.3)

on Rn, as mentioned earlier.
Let

L =
∑

|α|≤N

aα(x) ∂
α(9.11.4)

be a differential operator whose coefficients aα(x) are smooth complex-valued
functions on Rn. Here N is a nonnegative integer, and the sum is taken over
all multi-indices α with |α| ≤ N , as usual. We say that L is locally solvable at
a point x0 ∈ Rn if for any smooth complex-valued function f on Rn there is a
function (or distribution) u on a neighborhood of x0 in Rn that satisfies

L(u) = f(9.11.5)

on that neighborhood, as in Section F of Chapter 1 of [38]. We may as well take
f to have compact support in Rn, as in [38], since otherwise we can multiply
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f by a smooth function on Rn with compact support that is equal to 1 on a
neighborhood of x0. Similarly, we could start with any smooth complex-valued
function f0 defined on a neighborhood of x0 in Rn, and get a smooth function
on Rn with compact support that is equal to f0 on neighborhood of x0.

If the coefficients of L are constants, not all equal to 0, then the theorem of
Ehrenpreis and Malgrange implies that L is locally solvable at every point in
Rn. If

f and the coefficients aα are real-analytic near x0,(9.11.6)

and if
aα(x0) 6= 0(9.11.7)

for some multi-index α with |α| = N , then one can get real-analytic solutions
to (9.11.5) near x0 using a famous theorem of Cauchy and Kovalevskaya, as
mentioned near the beginning of Section E of Chapter 1 of [38]. This theorem
is discussed in Section 4.6.3 of [35], Section D of Chapter 1 of [38], and Section
2.8 of [93].

There is a famous example of H. Lewy of a first-order differential operator
on R3 whose coefficients are constants or linear functions, and for which local
solvability does not hold. See Section E of Chapter 1 of [38] for more information.

9.12 Sequences of distributions

Let n be a positive integer, and let U be a nonempty open subset of Rn. A
sequence {λj}∞j=1 of distributions on U is said to converge to a distribution λ
on U if

lim
j→∞

λj(ϕ) = λ(ϕ)(9.12.1)

for every ϕ ∈ C∞
com(U,C). More precisely, this is the same as convergence with

respect to the “weak∗ topology” on C∞
com(Rn,C)′.

In this case, it is easy to see that

{∂αλj}∞j=1 converges to ∂αλ(9.12.2)

in the same sense for every multi-index α. Similarly, if a is a smooth complex-
valued function on U , then

{aλj}∞j=1 converges to aλ(9.12.3)

in this sense.
Let {fj}∞j=1 be a sequence of continuous complex-valued functions on U that

converges to a complex-valued function f uniformly on compact sets contained
in U . Under these conditions, it is easy to see that the corresponding sequence
of distributions {λfj}∞j=1, as in Section 9.3, converges to the distribution λf
corresponding to f , in the sense considered here. This also works when {fj}∞j=1

is a sequence of locally-integrable functions on U that converges to a locally-
integrable function f on U with respect to the L1 metric on any compact set
contained in U .
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Let {λj}∞j=1 be a sequence of distributions on U again, and suppose for the
moment that for each ϕ ∈ C∞

com(U,C),

{λj(ϕ)}∞j=1 is a bounded sequence in C.(9.12.4)

Let K be a nonempty compact subset of Rn that is contained in U . A famous
theorem of Banach and Steinhaus implies that there are a nonnegative real
number C(K) and a nonnegative integer N(K) such that

|λj(ϕ)| ≤ C(K)
∑

|α|≤N(K)

(
max
x∈K

|(∂αϕ)(x)|
)

(9.12.5)

for each j ≥ 1 and ϕ ∈ C∞
K (Rn,C). This uses the well-known fact that

C∞
K (Rn,C) is a “Fréchet space”.
Suppose now that for each ϕ ∈ C∞

com(U,C),

{λj(ϕ)}∞j=1 converges in C.(9.12.6)

This implies (9.12.4), because convergent sequences are bounded. If λ is defined
on C∞

com(U,C) as in (9.12.1), then it is easy to see that λ is a linear functional
on C∞

com(U,C). We also have that

|λ(ϕ)| ≤ C(K)
∑

|α|≤N(K)

(
max
x∈K

|(∂αϕ)(x)|
)

(9.12.7)

for every nonempty compact set K contained in U and ϕ ∈ C∞
K (Rn,C), where

C(K) and N(K) are as in the preceding paragraph. This implies that

λ is a distribution on U,(9.12.8)

as in Section 9.6. Thus {λj}∞j=1 converges to λ in the sense described at the
beginning of the section. This corresponds to Theorem 6.17 on p146 of [125].

Similarly, a sequence {λj}∞j=1 of tempered distributions on Rn is said to
converge to a tempered distribution λ on Rn if (9.12.1) holds for every ϕ in
S(Rn). This is the same as convergence with respect to the weak∗ topology on
S(Rn)′, as before.

If α is a multi-index, then it follows that {∂αλj}nj=1 converges to ∂αλ in the
same sense. If a is a smooth complex-valued function on Rn such that a and all
of its derivatives grow at most polynomially on Rn, then {aλj}∞j=1 converges
to aλ in this sense too.

Let {fj}∞j=1 be a sequence of complex-valued functions on Rn, let f be
another complex-valued function on Rn, and let l be a nonnegative integer.
Suppose that the fj ’s and f are continuous on Rn, or at least locally integrable,
and that the products fj(x) (1 + |x|2)−l and f(x) (1 + |x|2)−l are integrable on
Rn. Thus we get tempered distributions λfj , λf on Rn, as in Section 9.8. If

lim
j→∞

∫
Rn

|fj(x)− f(x)| (1 + |x|2)−l dx = 0,(9.12.9)
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then it is easy to see that {λfj}∞j=1 converges to λf , as tempered distributions
on Rn.

Suppose that {λj}∞j=1 is a sequence of tempered distributions on Rn that
satisfies (9.12.4) for every ϕ ∈ S(Rn). One can use the Banach–Steinhaus
theorem to get that there are a nonnegative real number C and nonnegative
integers N1, N2 such that

|λj(ϕ)| ≤ C
∑

|α|≤N1

∑
|β|≤N2

(
sup
x∈Rn

|xα (∂βϕ)(x)|
)

(9.12.10)

for each j ≥ 1 and ϕ ∈ S(Rn). This uses the fact that S(Rn) is a Fréchet space
too.

Suppose that (9.12.6) holds for every ϕ ∈ S(Rn), so that (9.12.4) holds in
particular, as before. This permits us to define λ as a linear functional on S(Rn)
by (9.12.1). Note that

|λ(ϕ)| ≤ C
∑

|α|≤N1

∑
|β|≤N2

(
sup
x∈Rn

|xα (∂βϕ)(x)|
)

(9.12.11)

for every ϕ ∈ S(Rn), by (9.12.10). This implies that λ is a tempered distribution
on Rn, as in Section 9.9.



Chapter 10

Vector-valued functions and
systems

10.1 Vector-valued functions

Let n and l be positive integers, and let U be a nonempty open subset of Rn.
If f1, . . . , fl are real or complex-valued functions on U , then

f(x) = (f1(x), . . . , fl(x))(10.1.1)

defines a mapping from U into Rl or Cl, as appropriate. The continuity of f
on U can be defined in the usual way, using the standard Euclidean metrics on
Rn and on Rl or Cl, as appropriate. It is well known and not difficult to show
that this is equivalent to the continuity of f1, . . . , fl as real or complex-valued
functions on U , as appropriate.

The spaces of continuous functions on U with values in Rl and Cl may
be denoted C(U,Rl) and C(U,Cl), respectively. These are vector spaces over
the real and complex numbers, respectively, with respect to pointwise addition
and scalar multiplication of functions. These spaces may be identified with the
spaces C(U,R)l and C(U,C)l of l-tuples of elements of C(U,R) and C(U,C),
respectively.

One can define partial derivatives of f , when they exist, in the usual way,
using the standard Euclidean metric on Rl or Cl, as appropriate. This is equiv-
alent to the existence of the corresponding partial derivative of fj for each
j = 1, . . . , l, in which case the jth component of the partial derivative of f is
equal to the corresponding partial derivative of fj . Similarly, the continuous
differentiability of f on U can be defined directly, and is equivalent to the con-
tinuous differentiability of fj on U for each j = 1, . . . , l. If k is any positive
integer, then the k-times continuous differentiability of f on U can be defined
directly as well, and is equivalent to the k-times continuous differentiability of
fj on U for each j = 1, . . . , l. If f is k-times continuously differentiable on U

177



178 CHAPTER 10. VECTOR-VALUED FUNCTIONS AND SYSTEMS

for every k ≥ 1, then f is said to be infinitely differentiable or smooth on U , as
before.

Let Ck(U,Rl) and Ck(U,Cl) be the spaces of k-times continuously differen-
tiable functions on U with values in Rl and Cl, respectively, for each k ≥ 1. We
may use the same notation with k = 0 for the corresponding spaces of continuous
functions, as before. Note that Ck(U,Rl) and Ck(U,Cl) are linear subspaces of
C(U,Rl) and C(U,Cl), as vector spaces over the real and complex numbers, for
each k. We may identify Ck(U,Rl) and Ck(U,Cl) with the spaces Ck(U,R)l

and Ck(U,C)l of l-tuples of elements of Ck(U,R) and Ck(U,C), respectively,
as usual.

Similarly, C∞(U,Rl) and C∞(U,Cl) denote the spaces of smooth functions
on U with values in Rl and Cl, respectively. These are linear subspaces of
Ck(U,Rl) and Ck(U,Cl), respectively, for each k. We may identify C∞(U,Rl)
and C∞(U,Cl) with the spaces C∞(U,R)l and C∞(U,C)l of l-tuples of elements
of C∞(U,R) and C∞(U,C), respectively, as before.

10.2 Matrix-valued functions

Let l1, l2 be positive integers, and let L(Rl1 ,Rl2), L(Cl1 ,Cl2) be the spaces
of linear mappings from Rl1 , Cl1 into Rl2 , Cl2 , respectively, as vector spaces
over the real and complex numbers. Note that L(Rl1 ,Rl2) and L(Cl1 ,Cl2)
are vector spaces over the real and complex numbers, respectively, with respect
to pointwise addition and scalar multiplication of linear mappings. Of course,
these linear mappings can be represented in terms of matrices of real or com-
plex numbers, as appropriate, in the usual way. One can use this to identify
L(Rl1 ,Rl2) and L(Cl1 ,Cl2) with Rl1 l2 and Cl1 l2 , respectively.

Let n be a positive integer, and let U be a nonempty open subset of Rn. Sup-
pose that a(x) is a function of x ∈ U with values in L(Rl1 ,Rl2) or L(Cl1 ,Cl2).
This can be identified with a function on U with values in Rl1 l2 or Cl1 l2 , as
appropriate, as before. In particular, this can be used to define the usual conti-
nuity and differentiability properties of a(x) on U , using the standard Euclidean
metric on Rl1 l2 or Cl1 l2 , as appropriate. This is equivalent to the analogous
continuity or differentiability properties of the l1 l2 real or complex-valued func-
tions on U corresponding to the matrix entries of a(x).

A version of this was mentioned in Section 5.15, for functions defined on an
interval in the real line. Similarly, if v ∈ Rl1 or Cl1 , as appropriate, then

(a(x))(v)(10.2.1)

defines a function of x ∈ U with values in Rl2 or Cl2 , as appropriate. Continuity
or differentiability properties of a(x) on U are also equivalent to the analogous
properties of (10.2.1) holding for every v ∈ Rl1 or Cl1 , as appropriate, as a
function of x ∈ U with values in Rl2 or Cl2 , as appropriate.

Suppose that v(x) is a function on U with values in Rl1 or Cl1 , as appro-
priate, so that

(a(x))(v(x))(10.2.2)
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is a function on U with values in Rl2 or Cl2 , as appropriate. If a(x)and v(x) sat-
isfy suitable continuity or differentiability properties on U , then (10.2.2) satisfies
the same property on U , as in Section 5.15. In particular,

∂

∂xj
((a(x))(v(x))) =

( ∂a

∂xj
(x)

)
(v(x)) + (a(x))

( ∂v

∂xj
(x)

)
(10.2.3)

when the partial derivatives of a(x) and v(x) exist, as before.
Let l0 be another positive integer, and let b(x) be a function of x ∈ U with

values in L(Rl0 ,Rl1) or L(Cl0 ,Cl1), as appropriate. If x ∈ U , then let

a(x) b(x)(10.2.4)

be the composition of b(x) with a(x) as linear mappings, which defines an ele-
ment of L(Rl0 ,Rl2) or L(Cl0 ,Cl2), as appropriate. Of course, this corresponds
to multiplication of the matrices associated to b(x) and a(x). If a(x) and b(x)
satisfy suitable continuity or differentiability properties on U , then (10.2.4) sat-
isfies the same property on U , as before. In particular,

∂

∂xj
(a(x) b(x)) =

( ∂a

∂xj
(x)

)
b(x) + a(x)

( ∂b

∂xj
(x)

)
,(10.2.5)

when the partial derivatives of a(x) and b(x) in xj exist.

10.3 Matrix-valued coefficients

Let l1, l2, and n be a positive integer, and let U be a nonempty open subset of
Rn. Also let N be a nonnegative integer, and for each multi-index α with order
|α| ≤ N , let aα be a function on U with values in L(Rl1 ,Rl2) or L(Cl1 ,Cl2). If
u is an N -times continuously-differentiable function on U with values in Rl1 or
Cl1 , as appropriate, then let L(u) be the function on U with values in Rl2 or
Cl2 , as appropriate, defined by

(L(u))(x) =
∑

|α|≤N

(aα(x))((∂
αu)(x))(10.3.1)

for every x ∈ U . More precisely, if x ∈ U and α is a multi-index with |α| ≤ N ,
then (∂αu)(x) is an element of Rl1 or Cl1 , aα(x) is an element of L(Rl1 ,Rl2) or
L(Cl1 ,Cl2), and (aα(x))((∂

αu)(x)) is an element of Rl2 or Cl2 , as appropriate.
Suppose that aα is r-times continuously differentiable on U for some non-

negative integer r, and each multi-index α with |α| ≤ N . If u is (N + r)-times
continuously differentiable on on U , then L(u) is r-times continuously differen-
tiable on U , as in Section 2.4. Under these conditions, L defines a linear mapping
from CN+r(U,Rl1) into Cr(U,Rl2), or from CN+r(U,Cl1) into Cr(U,Cl2), as
approrpiate.

Similarly, if aα is smooth on U for every multi-index α with |α| ≤ N , and
u is smooth on U , then L(u) is smooth on U as well. In this case, L defines
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a linear mapping from C∞(U,Rl1) into C∞(U,Rl2), or from C∞(U,Cl1) into
C∞(U,Cl2), as appropriate.

Polynomials on Rn with values in Rl or Cl for some positive integer l will
be discussed in the next section. One can check that the aα’s are uniquely
determined by L(u) for polynomials u with values in Rl1 of degree less than or
equal to N , as in Section 2.4.

Let l0 be another positive integer, and let Ñ be another nonnegative integer.
Suppose that for each multi-index β with |β| ≤ Ñ , bβ is a function on U with val-

ues in L(Rl0 ,Rl1) or L(Cl0 ,Cl1). If u is an Ñ -times continuously-differentiable
function on U with values in Rl0 or Cl0 , as appropriate, then

(L̃(u))(x) =
∑

|β|≤Ñ

(bβ(x))((∂
βu)(x))(10.3.2)

defines a function on U with values in Rl1 or Cl1 , as appropriate. If bβ is N -

times continuously-differentiable on U for every multi-index β with |β| ≤ Ñ ,

and u is (N + Ñ)-times continuously differentiable on U , then L̃(u) is N -times
continuously differentiable on U . This implies that

L(L̃(u))(10.3.3)

is defined as a function on U with values in Rl2 or Cl2 , as appropriate.
As in Section 2.4, (10.3.3) may be expressed as

(L̂(u))(x) =
∑

|γ|≤N+Ñ

(cγ(x))((∂
γu)(x)).(10.3.4)

Here cγ is a function on U with values in L(Rl0 ,Rl2) or L(Cl0 ,Cl2) for each

multi-index γ with |γ| ≤ N + Ñ . These functions can be expressed as sums of
products of the aα’s with the bβ ’s and their derivatives of order less than or equal
to N , as before. More precisely, these products correspond to compositions of
linear mappings from Rl0 or Cl0 into Rl1 or Cl1 with linear mappings from Rl1

or Cl1 into Rl2 or Cl2 to get linear mappings from Rl0 or Cl0 into Rl2 or Cl2 ,
as appropriate.

If aα is r-times continuously differentiable on U for some r ≥ 0 and every
α with |α| ≤ N , and if bβ is (N + r)-times continuously differentiable on U

for every β with |β| ≤ Ñ , then cγ is r-times continuously differentiable on U

for every γ with |γ| ≤ N + Ñ . If u is also (N + Ñ + r)-times continuously

differentiable on U , then L̃(u) is (N +r)-times continuously differentiable on U ,

and L̂(u) is r-times continuously differentiable on U , as before. In particular, if
the aα’s and bβ ’s are smooth on U , then the cγ ’s are smooth on U . In this case,

if u is smooth on U , then L̃(u) and L̂(u) are smooth on U as well.

10.4 Vector-valued polynomials

Let n and l be positive integers again, and let P(Rn,Rl) and P(Rn,Cl) be the
spaces of polynomials on Rn with coefficients in Rl and Cl, respectively. These
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spaces can be identified with the spaces P(Rn,R)l and P(Rn,C)l of l-tuples of
polynomials on Rn with real or complex coefficients, as appropriate. These are
also linear subspaces of C∞(Rn,Rl) and C∞(Rn,Cl), respectively, as vector
spaces over the real or complex numbers, as appropriate.

If k is a nonnegative integer, then let Pk(Rn,Rl) and Pk(Rn,Cl) be the
spaces of polynomials on Rn with coefficients in Rl and Cl, respectively, and
degree less than or equal to k. These are linear subspaces of P(Rn,Rl) and
P(Rn,Cl), as vector spaces over the real or complex numbers, as appropriate.
We can identify Pk(Rn,Rl) and Pk(Rn,Cl) with the spaces Pk(Rn,R)l and
Pk(Rn,C)l of l-tuples of polynomials on Rn with real and complex coefficients,
respectively, of degree less than or equal to k.

Note that Pk(Rn,Rl) and Pk(Rn,Cl) have the same finite dimension, as
vector spaces over R and C, respectively. This is equal to l times the dimension
of Pk(Rn,R) and Pk(Rn,C), which is the same as the number of multi-indices
β with order |β| ≤ k, as in Section 5.11.

Let l1, l2 be positive integers, and let

P(Rn,L(Rl1 ,Rl2)), P(Rn,L(Cl1 ,Cl2))(10.4.1)

be the spaces of polynomials on Rn with coefficients in L(Rl1 ,Rl2), L(Cl1 ,Cl2),
respectively. These spaces may be identified with P(Rn,Rl1 l2), P(Rn,Cl1 l2),
respectively, as in Section 10.2.

If k is a nonnegative integer, then let

Pk(Rn,L(Rl1 ,Rl2)), Pk(Rn,L(Cl1 ,Cl2))(10.4.2)

be the spaces of polynomials on Rn with coefficients in L(Rl1 ,Rl2), L(Cl1 ,Cl2),
respectively, and degree less than or equal to k. These may be identified with
the spaces Pk(Rn,Rl1 l2), Pk(Rn,Cl1 l2), respectively, as before.

Suppose that a(x) be a polynomial on Rn with coefficients in L(Rl1 ,Rl2) or
L(Cl1 ,Cl2), and let v(x) be a polynomial on Rn with coefficients in Rl1 or Cl1 ,
as appropriate. Observe that a(x)(v(x)) is a polynomial on Rn with coefficients
in Rl2 or Cl2 , as appropriate, and that

deg(a(x)(v(x))) ≤ deg a(x) + deg v(x).(10.4.3)

Let l0 be another positive integer, and let b(x) be a polynomial on Rn with
coefficients in L(Rl0 ,Rl1) or L(Cl0 ,Cl1), as appropriate. The product a(x) b(x)
may be defined as in Section 10.2, and is a polynomial on Rn with coefficients
in L(Rl0 ,Rl2) or L(Cl0 .Cl2), as appropriate. We also have that

deg(a(x) b(x)) ≤ deg a(x) + deg b(x).(10.4.4)

Let L(Rl) = L(Rl,Rl) and L(Cl) = L(Cl,Cl) be the spaces of linear map-
pings from Rl and Cl into themselves, respectively, as in Section 5.15. The
spaces of polynomials on Rn with coefficients in L(Rl) and L(Cl) may be de-
noted P(Rn,L(Rl)) and P(Rn,L(Cl)), respectively. Similarly, the spaces of
polynomials on Rn with coefficients in L(Rl) and L(Cl) and degree less than
or equal to k may be denoted Pk(Rn,L(Rl)) and Pk(Rn,L(Cl)), respectively.
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10.5 Matrix-valued polynomials

Let n, l1, and l2 be positive integers, and let N be a nonnegative integer. Also
let

p(w) =
∑

|α|≤N

aα w
α(10.5.1)

be a polynomial in the n variables w1, . . . , wn with coefficients in L(Rl1 ,Rl2)
or L(Cl1 ,Cl2) of degree less than or equal to N . Thus, for each multi-index α
with order |α| ≤ N , aα is a linear mapping from Rl1 or Cl1 into Rl2 or Cl2 , as
appropriate.

Using p, we get a differential operator

p(∂) =
∑

|α|≤N

aα ∂
α,(10.5.2)

as in Section 1.7. More precisely, this is a differential operator with coefficients
in L(Rl1 ,Rl2) or L(Cl1 ,Cl2), as appropriate, as in Section 10.3.

Let b be an element of Rn or Cn, as appropriate, so that exp(b · x) defines
a smooth real or complex-valued function of x ∈ Rn. If v ∈ Rl1 or Cl1 , as
appropriate, then

(exp(b · x)) v(10.5.3)

defines a smooth function of x ∈ Rn with values in Rl1 or Cl1 , as appropriate.
It is easy to see that

(p(∂))((exp(b · x)) v) = (exp(b · x)) (p(b))(v),(10.5.4)

which is a function of x ∈ Rn with values in Rl2 or Cl2 , as appropriate. More
precisely, p(b) is defined as a linear mapping from Rl1 or Cl1 into Rl2 or Cl2 ,
as appropriate, which sends v to an element of Rl2 or Cl2 , as appropriate. In
particular,

(p(∂))((exp(b · x)) v) = 0(10.5.5)

if and only if
(p(b))(v) = 0.(10.5.6)

Let l0 be another positive integer, let N0 be another nonnegative integer,
and let p0(w) be a polynomial in w1, . . . , wn with coefficients in L(Rl0 ,Rl1) or
L(Cl0 ,Cl1), as appropriate. Thus p0(∂) is a differential operator with coeffi-
cients in L(Rl0 ,Rl1) or L(Cl0 ,Cl1), as appropriate. The product p(w) p0(w) is
a polynomial in w1, . . . , wn with coefficients in L(Rl0 ,Rl2) or L(Cl0 ,Cl2), as
appropriate, of degree less than or equal to N0 +N , as in the previous section.
This leads to a differential operator (p p0)(∂) with coefficients in L(Rl0 ,Rl2) or
L(Cl0 ,Cl2), as appropriate. One can check that

(p p0)(∂) = p(∂) p0(∂),(10.5.7)

as in Section 1.7.



10.6. POLYNOMIALS, VECTORS, AND OPERATORS 183

Let U be a nonempty open subset of Rn, and let u be a function on U
with values in Rl0 or Cl0 , as appropriate, that is (N0 +N)-times continuously
differentiable on U . Thus (p0(∂))(u) is a function on U with values in Rl1 or
Cl1 , as appropriate, that is N -times continuously differentiable on U . Under
these conditions, we have that

((p p0)(∂))(u) = (p(∂))((p0(∂))(u))(10.5.8)

on U , as in (10.5.7).
Let l be a positive integer, and let us now take l1 = l2 = l. Let b be an

element of Rn or Cn again, as appropriate, so that p(b) is a linear mapping
from Rl or Cl into itself, as appropriate. Suppose that v is an element of Rl or
Cl, as appropriate, that is an eigenvector of p(b) with eigenvalue λ in R or C,
as appropriate. This implies that

(p(∂))((exp(b · x)) v) = λ (exp(b · x)) v,(10.5.9)

as in (10.5.4).
Note that det p(w) is a polynomial in w1, . . . , wn of degree less than or equal

to N l with real or complex coefficients, as appropriate.

10.6 Polynomials, vectors, and operators

Let n, l1, and l2 be positive integers, and let N be a nonnegative integer.
Suppose that for each multi-index α with |α| ≤ N , aα is a polynomial on Rn

with coefficients in L(Rl1 ,Rl2) or L(Cl1 ,Cl2). This can be identified with a
polynomial with coefficients in Rl1 l2 or Cl1 l2 , as in Section 10.2.

Using the aα’s, we can define a differential operator L acting on N -times
continuously differentiable functions u on Rn with values in Rl1 or Cl1 , as
appropriate, as in (10.3.1). In this case, L maps polynomials on Rn with coef-
ficients in Rl1 or Cl1 to polynomials on Rn with coefficients in Rl2 or Cl2 , as
appropriate.

Let c be an integer, and suppose that

deg aα ≤ |α| − c(10.6.1)

for each α, |α| ≤ N , which is interpreted as meaning that aα = 0 when |α| < c, as
usual. If p is a polynomial on Rn with coefficients in Rl1 or Cl1 , as appropriate,
then

degL(p) ≤ deg p− c,(10.6.2)

which means that L(p) = 0 when deg p < c, as before.
Suppose now that l1 = l2 = l, so that L maps P(Rn,Rl) or P(Rn,Cl) into

itself, as appropriate. If p is a polynomial on Rn with coefficients in Rl or Cl,
as appropriate, then

degLj(p) ≤ deg p− c j(10.6.3)
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for each j ≥ 1, by (10.6.2). This means that Lj(p) = 0 when deg p < c j, as
before.

Suppose that c ≥ 0, and let k be a nonnegative integer. Thus L maps
Pk(Rn,Rl) or Pk(Rn,Cl) into itself, as appropriate. Let Lk be the restriction
of L to Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate. If c ≥ 1 and

k < c j,(10.6.4)

then
Lj
k = 0,(10.6.5)

by (10.6.3). In particular, this means that Lk is nilpotent when c ≥ 1.
Let m(k) be the number of multi-indices β with order |β| ≤ k, so that

Pk(Rn,Rl) and Pk(Rn,Cl) have dimension l m(k) as vector spaces over R and
C, respectively, as in Section 10.4. This permits us to identify Lk with a linear
mapping from Rlm(k) or Clm(k) into itself, as appropriate. If t ∈ R, then
we can define the exponential of t Lk as a linear mapping on Pk(Rn,Rl) or
Pk(Rn,Cl), as appropriate, as in Sections 5.4 and 5.8.

Let q be a polynomial on Rn with coefficients in Rl or Cl, as appropriate,
and of degree less than or equal to k. Note that

(exp(t Lk))(q)(10.6.6)

is another polynomial on Rn with coefficients in Rl or Cl, as appropriate, and
degree less than or equal to k. The coefficients of this polynomial depend on t,
and are smooth functions of t. This implies that

u(x, t) = ((exp(t Lk))(q))(x)(10.6.7)

is smooth as a function of (x, t) ∈ Rn×R with values inRl orCl, as appropriate.
If c ≥ 1, then exp(t Lk) is a polynomial in t whose coefficients are linear

mappings on Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate, as in Section 5.10. It
follows that (10.6.7) is a polynomial in x and t with coefficients in Rl or Cl, as
appropriate, in this case.

Of course,
u(x, 0) = q(x)(10.6.8)

for every x ∈ Rn, and

∂

∂t
((exp(t Lk))(q)) = Lk((exp(t Lk))(q)),(10.6.9)

as in Sections 5.6 and 5.10. This implies that

∂u

∂t
= L(u)(10.6.10)

on Rn ×R, as in Section 5.12.
A standard approach to dealing with equations with higher-order derivatives

in t is to reduce to the case of systems of equations with only first-order deriva-
tives in t. A basic version of this was discussed in Section 5.13. That is much
easier to do here, since we are already working with systems of equations.
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10.7 Some more products with exp(b · x)
Let n and l be positive integers, also let N be a nonnegative integer. Also let
p(w) be a polynomial in the n variables w1, . . . , wn with coefficients in L(Rl)
or L(Cl) of degree less than or equal to N , as in Section 10.5. This leads to a
differential operator p(∂), as before.

Let b ∈ Rn or Cn be given, as appropriate. Observe that

pb(w) = p(w + b)(10.7.1)

can be expressed as a polynomial in w1, . . . , wn with coefficients in L(Rl) or
L(Cl), as appropriate, of degree less than or equal to N , as in Section 2.5.

Let pb(∂) be the differential operator associated to pb(w), and let f be an
N -times continuously-differentiable function on Rn with values in Rl or Cl, as
appropriate. Under these conditions,

p(∂)((exp(b · x)) f(x)) = (exp(b · x)) (pb(∂)(f))(x),(10.7.2)

as in Section 5.14.

If b ∈ Rn, then let

(exp(b · x))P(Rn,Rl)(10.7.3)

be the space of functions on Rn with values in Rl of the form

(exp(b · x)) q(x),(10.7.4)

where q ∈ P(Rn,Rl). This is a linear subspace of C∞(Rn,Rl), as a vector
space over the real numbers. Similarly, if k is a nonnegative integer, then let

(exp(b · x))Pk(Rn,Rl)(10.7.5)

be the space of functions on Rn with values in Rl of the form (10.7.4), with
q ∈ Pk(Rn,Rl). This is a linear subspace of (10.7.3), as a vector space over
R. If p(w) has coefficients in L(Rl), then p(∂) maps (10.7.3) and (10.7.5) into
themselves, because of (10.7.2), as in Section 5.14.

If b ∈ Cn, then let

(exp(b · x))P(Rn,Cl)(10.7.6)

be the space of functions on Rn with values in Cl of the form (10.7.4), with
q ∈ P(Rn,Cl). Similarly, if k is a nonnegative integer, then let

(exp(b · x))Pk(Rn,Cl)(10.7.7)

be the space of functions on Rn with values in Cl of the form (10.7.4), with
q ∈ Pk(Rn,Cl). These are linear subspaces of C∞(Rn,Cl), as a vector space
over the complex numbers. If p(w) has coefficients in L(Cl), then p(∂) maps
(10.7.6) and (10.7.7) into themselves, because of (10.7.2), as before.
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10.8 Some remarks about nilpotency

Let n, l, N , and p(w) be as at the beginning of the previous section. Suppose
for the moment that p(0) is nilpotent, so that

p(0)r+1 = 0(10.8.1)

onRl orCl, as appropriate, for some nonnegative integer r. If k is a nonnegative
integer, then it follows that p(∂)r+1 is nilpotent on Pk(Rn,Rl) or Pk(Rn,Cl),
as appropriate, as in Section 10.6. Of course this means that p(∂) is nilpotent
on Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate.

Put

L = p(∂),(10.8.2)

and let Lk be the restriction of L to Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate,
for each nonnegative integer k. If t ∈ R, then we can define

exp(t Lk)(10.8.3)

as a linear mapping on Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate, as in Sec-
tions 5.4 and 5.8. If p(0) is nilpotent, so that Lk is nilpotent, then (10.8.3)
is a polynomial in t whose coefficients are linear mappings on Pk(Rn,Rl) or
Pk(Rn,Cl), as appropriate, as in Section 5.10.

Let q be an element of Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate. If p(0)
is nilpotent, then (exp(t Lk))(q) may be considered as a polynomial in t with
coefficients in Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate. In particular,

((exp(t Lk))(q))(x)(10.8.4)

is a polynomial in x and t with coefficients in Rl or Cl, as appropriate.
Let b ∈ Rn or Cn be given, as appropriate, and let pb(w) be as in (10.7.1).

Suppose now that

pb(0) = p(b) is nilpotent(10.8.5)

on Rl or Cl, as appropriate. If k is a nonnegative integer, then the restriction of
pb(∂) to Pk(Rn,Rl) or Pk(Rn,Cl), as appropriate, is nilpotent, by the remarks
at the beginning of the section. This implies that the restriction of p(∂) to
(10.7.5) or (10.7.7), as appropriate, is nilpotent, because of (10.7.2).

10.9 The characteristic polynomial

Let l be a positive integer, and let A be a linear mapping from Rl or Cl into
itself. If t is a real or complex number, then A− t I is another linear mapping
from Rl or Cl into itself, as appropriate, where I is the identity mapping on Rl

or Cl. Thus

chA(t) = det(A− t I)(10.9.1)
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defines a real or complex-valued function on R or C, as appropriate. More
precisely, chA(t) is a polynomial of degree l in t, with real or complex coefficients,
as appropriate. This is known as the characteristic polynomial of A.

The characteristic polynomial may be expressed as

chA(t) =

l∑
j=0

cj t
j ,(10.9.2)

with cj ∈ R or C for each j, as appropriate. Remember that the determinant
of an l × l matrix is given by a homogeneous polynomial of degree l in the l2

entries of the matrix. This means that cj is given by a homogeneous polynomial
of degree l − j in the l2 entries of the l × l matrix corresponding to A. In
particular,

cl = (−1)l,(10.9.3)

and c0 = detA. The zeros of chA(t) in R or C are the same as the eigenvalues
of A as a linear mapping on Rl or Cl, as appropriate, by standard arguments.

A polynomial of degree l in t with complex coefficients is equal to the prod-
uct of the coefficient of tl and l linear factors, corresponding to the l zeros of
the polynomial in C, with their appropriate multiplicities, by the fundamen-
tal theorem of algebra. It follows that chA(t) is uniquely determined by the
eigenvalues of A in the complex case, because of (10.9.3).

If A is nilpotent, then it is easy to see that 0 is the only eigenvalue of A.
This implies that

chA(t) = (−1)l tl(10.9.4)

in the complex case, by the remarks in the preceding paragraph. Equivalently,
this means that

cj = 0, 0 ≤ j ≤ l − 1.(10.9.5)

One can get the same conclusion in the real case using the unique extension of
a linear mapping from Rl into itself to a linear mapping from Cl into itself, as a
vector space over the complex numbers. Another proof of this will be mentioned
in the next section.

If A is any linear mapping from Rl or Cl into itself, then the Cayley–
Hamilton theorem states that

chA(A) =

l∑
j=0

cj A
j = 0,(10.9.6)

where A0 is interpreted as being equal to I. If (10.9.4) holds, then it follows
that

Al = 0.(10.9.7)
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10.10 More on nilpotent linear mappings

Let l be a positive integer again, and let A be a linear mapping from Rl or Cl

into itself. If τ is a real or complex number, then I−τ A defines a linear mapping
from Rl or Cl into itself, as appropriate. Let r be a nonnegative integer, and
observe that

(I − τ A)

r∑
j=0

τ j Aj =

r∑
j=0

τ j Aj −
r+1∑
j=1

τ j Aj = I − τ r+1Ar+1.(10.10.1)

Similarly, ( r∑
j=0

τ j Aj
)
(I − τ A) = I − τ r+1Ar+1.(10.10.2)

If
Ar+1 = 0,(10.10.3)

then it follows that I − τ A is invertible, with

(I − τ A)−1 =

r∑
j=0

τ j Aj .(10.10.4)

Note that
det(I − τ A)(10.10.5)

and

det
( r∑

j=0

τ j Aj
)

(10.10.6)

are polynomials in τ with real or complex coefficients, as appropriate. Both of
these polynomials are equal to 1 at τ = 0. If (10.10.3) holds, then

det(I − τ A) det
( r∑

j=0

τ j Aj
)
= 1(10.10.7)

for all τ in R or C, as appropriate. One can use this to get that

det(I − τ A) = 1(10.10.8)

and

det
( r∑

j=0

τ j Aj
)
= 1(10.10.9)

for each τ .
If t is a nonzero real or complex number, as appropriate, then it is easy to

see that (10.9.4) is equivalent to (10.10.8), with τ = 1/t. Of course, if (10.9.4)
holds for all t 6= 0, then it holds when t = 0 too. One could also obtain (10.9.4)
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with t = 0 more directly from (10.10.3). This is another way to obtain (10.9.4)
from (10.10.3), as mentioned in the previous section.

If

f(t) =

m∑
j=0

bj t
j(10.10.10)

is any polynomial with real or complex coefficients, then

f(A) =

m∑
j=0

bj A
j(10.10.11)

defines a linear mapping from Rl or Cl into itself, as appropriate. If A is any
linear mapping from Rl or Cl into itself, then it is well known that one can find
a nonzero polynomial f(t) of degree at most l2 such that

f(A) = 0.(10.10.12)

Of course, this follows from the Cayley–Hamilton theorem, and it can also be
obtained more directly from the fact that L(Rl), L(Cl) have dimension l2, as
vector spaces over the real and complex numbers, respectively.

If A is a linear mapping from Cl into itself, and A − t I is invertible for
every t ∈ C with t 6= 0, then (10.10.12) implies that A is nilpotent, because f
can be expressed as the product of a nonzero constant and finitely many linear
factors. This invertibility condition holds when (10.9.2) holds for every t ∈ C,
or equivalently (10.10.8) holds for every τ ∈ C. If A is a linear mapping from
Rl into itself, then A has a unique extension to a linear mapping from Cl into
itself, as a vector space over the complex numbers, that we may denote by A as
well. If (10.9.4) holds for every t ∈ R, or equivalently (10.10.8) holds for every
τ ∈ R, then these conditions hold for all t, τ ∈ C, because the left sides of these
equations are polynomials in t, τ , respectively. The argument in the complex
case implies that A is nilpotent on Cl, and thus on Rl.



Chapter 11

Power series in several
variables

11.1 Sums over multi-indices

Let n be a positive integer, and let (Z+∪{0})n be the set of n tuples of elements
of the set Z+ ∪ {0} of nonnegative integers. Equivalently, this is the set of all
multi-indices. If f is a real or complex-valued function on (Z+ ∪{0})n, then we
may be interested in a sum of the form∑

α∈(Z+∪{0})n
f(α).(11.1.1)

Of course, this can be reduced to a finite sum when f(α) = 0 for all but finitely
many multi-indices α. If n = 1, then this may be interpreted as an infinite
series.

One can try to define (11.1.1) for any n by reducing to an infinite series. One
way to do this is to use the fact that (Z+ ∪ {0})n is countably infinite, so that
one can find a sequence {α(l)}∞l=0 of multi-indices in which every multi-index
occurs exactly once. Thus one may try to interpret the sum (11.1.1) as being
equal to the infinite series

∞∑
l=0

f(α(l)).(11.1.2)

Alternatively, let E0, E1, E2, E3, . . . be an infinite sequence of nonempty fi-
nite subsets of (Z+ ∪ {0})n such that

EN ⊆ EN+1(11.1.3)

for every nonnegative integer N , and

∞⋃
N=0

EN = (Z+ ∪ {0})n.(11.1.4)

190
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One may wish to interpret the sum (11.1.1) as being equal to

lim
N→∞

∑
α∈EN

f(α),(11.1.5)

if the limit exists.
Let {α(l)}∞l=0 be an enumeration of (Z+ ∪ {0})n, as before. If we put

EN = {α(0), α(1), . . . , α(N)}(11.1.6)

for each nonnegative integer N , then we get a sequence of nonempty finite
subsets of (Z+ ∪ {0})n that satisfies (11.1.3) and (11.1.4). In this case,

∑
α∈EN

f(α) =

N∑
l=0

f(α(l))(11.1.7)

for each N ≥ 0, so that (11.1.2) is the same as (11.1.5).
As another basic example, one can take EN to be

{α ∈ (Z+ ∪ {0})n : |α| ≤ N}(11.1.8)

for each N ≥ 0, where |α| is the order of α, as usual. Another possibility is to
take EN to be

{α ∈ (Z+ ∪ {0})n : αj ≤ N for each j = 1, . . . , N}(11.1.9)

for every N ≥ 0. These are the same when n = 1, in which case (11.1.5) is the
same as the usual interpretation of (11.1.1) as an infinite series.

Let f be a nonnegative real-valued function on (Z+ ∪ {0})n. If A is a
nonempty finite subset of (Z+ ∪ {0})n, then∑

α∈A

f(α)(11.1.10)

is a nonnegative real number. Let us say that f is summable on (Z+ ∪ {0})n
if the collection of these finite sums has an upper bound in R. Under these
conditions, the sum (11.1.1) may be defined as the supremum of the set of these
finite sums. Otherwise, it is sometimes convenient to interpret (11.1.1) as being
equal to +∞.

If n = 1, then the summability of f is equivalent to the convergence of the
corresponding infinite series of nonnegative real numbers, with the same value of
the sum. If {α(l)}∞l=0 is any enumeration of (Z+ ∪ {0})n, then the summability
of f is equivalent to the convergence of (11.1.2), with the same value of the sum.

Let E0, E1, E2, E3, . . . be an infinite sequence of nonempty finite subsets of
(Z+ ∪ {0})n that satisfies (11.1.3) and (11.1.4) again. It is easy to see that f is
summable on (Z+ ∪ {0})n if and only if the sums∑

α∈EN

f(α)(11.1.11)



192 CHAPTER 11. POWER SERIES IN SEVERAL VARIABLES

bounded. In this case, the supremum of these sums is the same as the supre-
mum of the set of sums of the form (11.1.10). We also get that the limit in
(11.1.5) exists and is equal to this supremum, because the sums (11.1.11) are
monotonically increasing in N .

Suppose that f can be expressed as

f(α) =

n∏
j=1

fj(αj),(11.1.12)

where fj is a nonnegative real-valued function on the set Z+∪{0} of nonnegative
integers for each j = 1, . . . , n. If EN is as in (11.1.9), then

∑
α∈EN

f(α) =

n∏
j=1

( N∑
αj=0

fj(αj)
)

(11.1.13)

for each N ≥ 0. If fj is summable on Z+ ∪ {0} for each j = 1, . . . , n, then it
follows that f is summable on (Z+ ∪ {0})n, with

∑
α∈(Z+∪{0})n

f(α) =

n∏
j=1

( ∞∑
αj=0

fj(αj)
)
.(11.1.14)

Conversely, if f is summable on (Z+∪{0})n, and if none of the fj ’s is identically
zero on Z+ ∪ {0}, then fj is summable on Z+ ∪ {0} for each j.

As a basic family of examples, let r be an element of the set (R+ ∪ {0})n of
n-tuples of nonnegative real numbers, and put

f(α) = rα(11.1.15)

for each multi-index α. This is of the form (11.1.12), with

fj(αj) = rαj(11.1.16)

for each j = 1, . . . , n. It follows that f is summable on (Z+ ∪ {0})n if and only
if rj < 1 for each j = 1, . . . , n, in which case

∑
α∈(Z+∪{0})n

rα =

n∏
j=1

(1− rj)
−1.(11.1.17)

11.2 Real and complex-valued functions

Let n be a positive integer, and let f be a real or complex-valued function
on (Z+ ∪ {0})n. Let us say that f is summable on (Z+ ∪ {0})n if |f(α)| is
summable as a nonnegative real-valued function on (Z+ ∪ {0})n. If f is real
valued, then this is equivalent to the summability of f+(α) = max(f(α), 0)
and f−(α) = max(−f(α), 0) on (Z+ ∪ {0})n. If f is complex valued, then
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summability of f is equivalent to the summability of the real and imaginary
parts of f .

If f is a summable real or complex-valued function on (Z+ ∪ {0})n, then
the sum (11.1.1) may be defined as a real or complex number, as appropriate,
by reducing to the case of nonnegative real-valued summable functions. More
precisely, if f is real valued, then the sum may be defined as the difference of
the analogous sums for f+ and f−. If f is complex valued, then the real and
imaginary parts of the sum may be defined as the corresponding sums of the
real and imaginary parts of f . In both cases, the sum (11.1.1) may be described
equivalently as in (11.1.2) or (11.1.5), because of the analogous statements for
nonnegative real-valued summable functions.

We also have that∣∣∣∣ ∑
α∈(Z+∪{0})n

f(α)

∣∣∣∣ ≤ ∑
α∈(Z+∪{0})n

|f(α)|(11.2.1)

in both cases. If f is real valued, then this follows directly from the definition of
the sum (11.1.1) mentioned in the preceding paragraph. If f is complex valued,
and one tries to consider the real and imaginary parts of the sum directly, then
one gets an extra factor of 2 on the right side, or

√
2 with a bit more effort.

Of course, if f(α) = 0 for all but finitely many α ∈ (Z+ ∪ {0})n, then (11.2.1)
follows from the triangle inequality for the absolute value of a complex number.
One can use this to get (11.2.1), by expressing the sum (11.1.1) as in (11.1.2)
or (11.1.5).

It is easy to see that the spaces of real and complex-valued summable func-
tions on (Z+ ∪ {0})n are linear subspaces of the spaces of all real and complex-
valued functions on (Z+ ∪ {0})n, as vector spaces over R and C, respectively.
The linearity of the sum (11.1.1) in f can be obtained from the descriptions of
the sum as in (11.1.2) or (11.1.5).

If n = 1, then the summability of f is equivalent to the absolute convergence
of the corresponding infinite series. Similarly, if {α(l)}∞l=0 is any enumeration of
(Z+∪{0})n, then the summablility of f is equivalent to the absolute convergence
of (11.1.2).

Suppose that f is as in (11.1.12), where fj is a real or complex-valued
summable function on Z+ ∪ {0} for each j = 1, . . . , n. This implies that f
is summable on (Z+ ∪ {0})n, as in the previous section. One can check that
(11.1.14) holds under these conditions, using the same type of argument as
before, or by reducing to the previous case.

Let z ∈ Cn be given, and put

f(α) = zα(11.2.2)

for each multi-index α. If |zj | < 1 for each j = 1, . . . , n, then f is summable on
(Z+ ∪ {0})n, as in the previous section. In this case,∑

α∈(Z+∪{0})n
zα =

n∏
j=1

(1− zj)
−1,(11.2.3)
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by (11.1.14).

11.3 Cauchy products

Let n be a positive integer, and let f , g be real or complex-valued functions on
(Z+ ∪ {0})n. If γ is a multi-index, then put

h(γ) =
∑

α+β=γ

f(α) g(β).(11.3.1)

More precisely, the sum on the right is taken over all multi-indices α, β such
that α+ β = γ. Note that there are only finitely many such multi-indices α, β.

Suppose for the moment that f(α) = 0 for all but finitely many multi-indices
α, and that g(β) = 0 for all but finitely many multi-indices β. This implies that
h(γ) = 0 for all but finitely many multi-indices γ. Under these conditions, one
can verify that∑

γ∈(Z+∪{0})n
h(γ) =

( ∑
α∈(Z+∪{0})n

f(α)
)( ∑

β∈(Z+∪{0})n
g(β)

)
.(11.3.2)

In fact, both sides of the equation are the same as the sum of f(α) g(β) over
all multi-indices α, β. The sum on the left may be desacribed as the Cauchy
product of the two sums on the right.

Suppose now that f , g are nonnegative real-valued functions on (Z+∪{0})n,
so that h is nonnegative as well. If N is a nonnegative integer, then let EN be
the set of multi-indices α with order |α| ≤ N , as in (11.1.8). Observe that∑

γ∈EN

h(γ) ≤
( ∑

α∈EN

f(α)
)( ∑

β∈EN

g(β)
)

(11.3.3)

and ( ∑
α∈EN

f(α)
)( ∑

β∈EN

g(β)
)
≤

∑
γ∈E2N

h(γ)(11.3.4)

for each N ≥ 0. If f and g are summable on (Z+ ∪ {0})n, then it follows that
h is summable too, and that (11.3.2) holds.

If f and g are any real or complex-valued functions on (Z+ ∪ {0})n, then

|h(γ)| ≤
∑

α+β=γ

|f(α)| |g(β)|(11.3.5)

for every multi-index γ. Suppose that f and g are summable on (Z+ ∪ {0})n,
which implies that the right side of (11.3.5) is summable as a function of γ, as
in the preceding paragraph. It follows that h is summable as well, with∑

γ∈(Z+∪{0})n
|h(γ)| ≤

( ∑
α∈(Z+∪{0})n

|f(α)|
)( ∑

β∈(Z+∪{0})n
|g(β)|

)
.(11.3.6)
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One can check that (11.3.2) holds too, by reducing to the case of nonnegative
real-valued summable functions.

Let z ∈ Cn be given, and suppose that

f(α) = aα z
α, g(β) = bβ z

β(11.3.7)

for all multi-indices α, β, where aα, bβ are complex numbers. If we put

cγ =
∑

α+β=γ

aα bβ(11.3.8)

for each multi-index γ, then we get that

h(γ) = cγ z
γ .(11.3.9)

11.4 Power series on closed polydisks

Let n be a positive integer, and let z0 = (z0,1, . . . , z0,n) ∈ Cn be given. Also let
aα be a complex number for each multi-index α, and consider the power series

f(z) =
∑

α∈(Z+∪{0})n
aα (z − z0)

α(11.4.1)

in z1, . . . , zn, centered at z0. More precisely, the sum on the right is defined as
a complex number for each z ∈ Cn such that

aα (z − z0)
α(11.4.2)

is summable as a function of α on (Z+ ∪ {0})n.
Let r ∈ (R+ ∪ {0})n be given, and suppose for the moment that

|aα| rα(11.4.3)

is summable as a function of α on (Z+ ∪ {0})n. This implies that (11.4.2) is
summable as a function of α on (Z+ ∪ {0})n when

|zj − z0,j | ≤ rj , 1 ≤ j ≤ n.(11.4.4)

This means that (11.4.1) defines a complex-valued function on the closed poly-
disk

{z ∈ Cn : |zj − z0,j | ≤ rj , 1 ≤ j ≤ n},(11.4.5)

which is a closed set in Cn, with respect to the standard Euclidean metric.
Let ϵ > 0 be given, and let A(ϵ) be a nonempty finite subset of (Z+ ∪ {0})n

such that ∑
α∈(Z+∪{0})n

|aα| rα <
( ∑

α∈A(ϵ)

|aα| rα
)
+ ϵ.(11.4.6)
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The existence of such a set follows from the definition of the sum on the left,
as the supremum of the corresponding sums over nonempty finite subsets of
(Z+ ∪ {0})n, as in Section 11.1. Using this, we get that∑

α∈(Z+∪{0})n\A(ϵ)

|aα| rα < ϵ,(11.4.7)

because of the linearity of the sum.
Let A be a nonempty finite subset of (Z+ ∪ {0})n such that

A(ϵ) ⊆ A.(11.4.8)

If z ∈ Cn satisfies (11.4.4), then∣∣∣∣f(z)− ∑
α∈A

aα (z − z0)
α

∣∣∣∣ =

∣∣∣∣ ∑
α∈(Z+∪{0})n\A

aα (z − z0)
α

∣∣∣∣(11.4.9)

≤
∑

α∈(Z+∪{0})n\A

|aα| rα

≤
∑

α∈(Z+∪{0})n\A(ϵ)

|aα| rα < ϵ.

Let E0, E1, E2, E3, . . . be an infinite sequence of nonempty finite subsets of
(Z+ ∪ {0})n that satisfy (11.1.3) and (11.1.4). If z ∈ Cn satisfies (11.4.4), then

lim
N→∞

∑
α∈EN

aα (z − z0)
α = f(z),(11.4.10)

as in Sections 11.1 and 11.2. In fact, the convergence is uniform over (11.4.5),
as in (11.4.9). This corresponds to a classical criterion for uniform convergence
of Weierstrass. It follows that f is continuous on (11.4.5), because polynomials
are continuous on Cn.

11.5 Power series on open polydisks

Let n be a positive integer, let z0 ∈ Cn be given, and let aα be a complex number
for each multi-index α. Also let t be an element of the set (R+ ∪ {+∞})n of
positive extended real numbers. Suppose that if r ∈ (R+ ∪ {0})n satisfies

rj < tj , 1 ≤ j ≤ n,(11.5.1)

then (11.4.3) is summable as a function of α on (Z+ ∪{0})n. If z ∈ Cn satisfies

|zj − z0,j | < tj , 1 ≤ j ≤ n,(11.5.2)

then it follows that (11.4.2) is summable as a function of α on (Z+ ∪ {0})n.
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This implies that (11.4.1) defines a complex-valued function on

{z ∈ Cn : |zj − z0,j | < tj , 1 ≤ j ≤ n},(11.5.3)

which is an open set in Cn, with respect to the standard Euclidean metric. This
set may be described as an open polydisk inCn, at least when t1, . . . , tn are finite.
One can check that f is continuous on (11.5.3), because its restriction to any
closed polydisk (11.4.5) is continuous when (11.5.1) holds, as in the previous
section.

Suppose for the moment that t1, . . . , tn are finite, and that

|aα| tα(11.5.4)

is bounded as a function of α on (Z+ ∪ {0})n. If r ∈ (R+ ∪ {0})n satisfies
(11.5.1), then

rα t−α(11.5.5)

is summable as a function of α on (Z+ ∪ {0})n, as in Section 11.1. This implies
that (11.4.3) is summable as a function of α on (Z+ ∪ {0})n.

Let β be a multi-index. If α is another multi-index, then αβ can be defined
as a nonnegative integer in the usual way. If r ∈ (R+ ∪ {0})n satisfies (11.5.1),
then

αβ |aα| rα(11.5.6)

is summable as a function of α on (Z+ ∪ {0})n. To see this, one can use an
n-tuple r0 = (r0,1, . . . , r0,n) of positive real numbers such that

rj < r0,j < tj , 1 ≤ j ≤ n.(11.5.7)

Under these conditions,
|aα| rα0(11.5.8)

is summable as a function of α on (Z+ ∪ {0})n, by hypothesis, and

αβ rα r−α
0(11.5.9)

is bounded as a function of α on (Z+ ∪ {0})n, by well-known results.
If one differentiates the right side of (11.4.1) term-by-term, then one gets a

power series of the same type, with suitable coefficients. The remarks in the
preceding paragraph imply that this power series has the same summability
properties as those considered for f(z) in this section. It is well known that
f(z) is smooth on (11.5.3), with derivatives given by differentiating the power
series termwise.

More precisely, f(z) is holomorphic on (11.5.3), because polynomials in
z1, . . . , zn are holomorphic on Cn. If β is any multi-index, then

∂|β|f

∂zβ
(z0) = β! aβ .(11.5.10)

Conversely, it is well known that any holomorphic function on (11.5.3) can
be expressed as a power series with these summability properties.
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11.6 Double sums

Let m and n be positive integers, and let us refer to multi-indices associated to
n as n-multi-indices, so that we may also consider m-multi-indices and (m+n)-
multi-indices. Let us identify the set (Z+∪{0})m+n of all (m+n)-multi-indices
with the set

(Z+ ∪ {0})m × (Z+ ∪ {0})n(11.6.1)

of ordered pairs (α, β), where α is an m-multi-index, and β is an n-multi-index.
Let f(α, β) be a nonnegative real-valued function on (Z+ ∪ {0})m+n, iden-

tified with (11.6.1). If f(α, β) is summable on (Z+ ∪ {0})m+n, then it is easy
to see that for each α ∈ (Z+ ∪ {0})m, f(α, β) is summable as a function of β
on (Z+ ∪ {0})n. If A is a nonempty finite subset of (Z+ ∪ {0})m, then one can
check that ∑

α∈A

( ∑
β∈(Z+∪{0})n

f(α, β)
)
≤

∑
(α,β)∈(Z+∪{0})m+n

f(α, β).(11.6.2)

This implies that ∑
β∈(Z+∪{0})n

f(α, β)(11.6.3)

is summable as a nonnegative real-valued function of α on (Z+ ∪ {0})m, with∑
α∈(Z+∪{0})m

( ∑
β∈Z+∪{0})n

f(α, β)
)
≤

∑
(α,β)∈(Z+∪{0})m+n

f(α, β).(11.6.4)

Conversely, suppose that for each α ∈ (Z+ ∪ {0})m, f(α, β) is summable as
a function of β on (Z+ ∪ {0})n, and that (11.6.3) is summable as a nonnega-
tive real-valued function of α on (Z+ ∪ {0})m. One can check that f(α, β) is
summable on (Z+ ∪ {0})m+n under these conditions, with∑

(α,β)∈(Z+∪{0})m+n

f(α, β) ≤
∑

α∈(Z+∪{0})m

( ∑
β∈(Z+∪{0})n

f(α, β)
)
.(11.6.5)

This means that∑
(α,β)∈(Z+∪{0})m+n

f(α, β) =
∑

α∈(Z+∪{0})n

( ∑
β∈(Z+∪{0})n

f(α, β)
)

(11.6.6)

in both cases. Of course, there are analogous statements for summing over α
first.

Suppose now that f(α, β) is a summable real or complex-valued function on
(Z+∪{0})m+n. This implies that for each α ∈ (Z+∪{0})m, f(α, β) is summable
as a function of β on (Z+ ∪ {0})n, as before. We also have that∣∣∣∣ ∑

β∈(Z+∪{0})n
f(α, β)

∣∣∣∣ ≤ ∑
β∈(Z+∪{0})n

|f(α, β)|(11.6.7)
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for every α ∈ (Z+ ∪ {0})m, as in Section 11.2. The right side is summable as a
function of α on (Z+ ∪ {0})m, as before. It follows that (11.6.3) is summable
as a function of α on (Z+ ∪ {0})m. One can check that (11.6.6) holds here
too, by reducing to the case of summable nonnegative real-valued functions on
(Z+ ∪ {0})m+n. There are analogous statements for summing over α first, as
before.

Now let f(α), g(β) be summable real or complex-valued functions of α, β
on (Z+ ∪ {0})m, (Z+ ∪ {0})n, respectively. One can check that

ϕ(α, β) = f(α) g(β)(11.6.8)

is summable on (Z+ ∪ {0})m+n, by summing

|ϕ(α, β)| = |f(α)| |g(β)|(11.6.9)

one variable at a time. Similarly,∑
(α,β)∈(Z+∪{0})m+n

f(α) g(β)(11.6.10)

=
( ∑

α∈Z+∪{0})m
f(α)

)( ∑
β∈(Z+∪{0})n

g(β)
)
.

11.7 Some more rearrangements

Let m and n be positive integers, and let A(γ) be a finite set of n-multi-indices
for each m-multi-index γ. Suppose that the A(γ)’s are pairwise disjoint, so that

A(γ) ∩A(γ′) = ∅(11.7.1)

for all m-multi-indices γ, γ′ with γ 6= γ′, and that⋃
γ∈(Z+∪{0})m

A(γ) = (Z+ ∪ {0})n.(11.7.2)

Let ϕ be a real or complex-valued function on (Z+ ∪ {0})n, and put

ψ(γ) =
∑

α∈A(γ)

ϕ(α)(11.7.3)

for every m-multi-index γ. This is interpreted as being equal to 0 when A(γ) =
∅. Note that

|ψ(γ)| ≤
∑

α∈A(γ)

|ϕ(α)|(11.7.4)

for every n-multi-index γ.
Suppose for the moment that ϕ is a nonnegative real-valued function on

(Z+ ∪ {0})n, so that ψ is a nonnegative real-valued function on (Z+ ∪ {0})m.
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If ϕ is summable on (Z+ ∪ {0})n then one can check that ψ is summable on
(Z+ ∪ {0})m, with ∑

γ∈(Z+∪{0})m
ψ(γ) ≤

∑
α∈(Z+∪{0})n

ϕ(α).(11.7.5)

Similarly, if ψ is summable on (Z+ ∪ {0})m, then one can verify that ϕ is
summable on (Z+ ∪ {0})n, with∑

α∈(Z+∪{0})n
ϕ(α) ≤

∑
γ∈(Z+∪{0})m

ψ(γ).(11.7.6)

It follows that ∑
γ∈(Z+∪{0})m

ψ(γ) =
∑

α∈(Z+∪{0})n
ϕ(α)(11.7.7)

in both cases.
If ϕ is a summable real or complex-valued function on (Z+ ∪ {0})n, then

one can use (11.7.4) and the remarks in the preceding paragraph to get that
ψ is summable on (Z+ ∪ {0})m. One can also check that (11.7.7) holds under
these conditions, by reducing to the case of summable nonnegative real-valued
functions on (Z+ ∪ {0})n.

As a basic class of examples, let us take n = 2m, and identify the set
(Z+ ∪ {0})2m of all (2m)-multi-indices with the set

(Z+ ∪ {0})m × (Z+ ∪ {0})m(11.7.8)

of all ordered pairs (α, β) of m-multi-indices, as in the previous section. If γ is
an m-multi-index, then put

A(γ) = {(α, β) ∈ (Z+ ∪ {0})2m : α+ β = γ}.(11.7.9)

These are pairwise-disjoint nonempty finite subsets of (Z+∪{0})2m, whose union
is all of (Z+ ∪ {0})2m.

Let f , g be real or complex-valued functions on (Z+∪{0})m, and let ϕ(α, β)
be defined on (Z+ ∪ {0})2m as in (11.6.8). In this case,

ψ(γ) =
∑

α+β=γ

f(α) g(β)(11.7.10)

is the same as h(γ) in Section 11.3, and the earlier properties of h(γ) could also
be obtained from the remarks in this and the previous section.
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[146] F. Trèves, A treasure trove of geometry and analysis: the hyperquadric,
Notices of the American Mathematical Society 47 (2000), 1246–1256.
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