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Preface

These informal notes are intended to complement more detailed texts, some of
which are mentioned in the bibliography. The reader is expected to be familiar
with some basic notions in analysis, including metric spaces and countability.

Some references concerning related topics are mentioned in the bibliography
as well. Although various aspects of history may be found in a number of the
references, one may be particularly interested in the collections [19, 20, 21, 193].
Some remarks related to the clarity of explanations in mathematics may be
found in [155].
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Chapter 1

Some basic notions in
topology

1.1 Some definitions and examples

Let X be a set.

Definition 1.1.1 A collection τ of subsets of X is said to define a topology on
X if it satisfies the following three conditions. First,

∅, X ∈ τ.(1.1.2)

Second, if U1, . . . , Un are finitely many elements of τ , then

n⋂
j=1

Uj ∈ τ.(1.1.3)

Third, if A is a nonempty set, and Uα ∈ τ for every α ∈ A, then⋃
α∈A

Uα ∈ τ.(1.1.4)

In this case, (X, τ) is said to be a topological space, and the elements of τ are
called open sets in X.

Sometimes we may refer to a topological space X, in which case the topology
τ is implicit.

Definition 1.1.5 If X is any set, then the discrete topology on X is defined
by taking τ to be the collection of all subsets of X. The indiscrete topology on
X is defined by taking τ to be the collection consisting of only the empty set and
X.

1



2 CHAPTER 1. SOME BASIC NOTIONS IN TOPOLOGY

It is easy to see that the discrete and indiscrete topologies satisfy the re-
quirements of a topology.

If d(x, y) is a metric on a set X, then the notion of an open subset of X with
respect to d(·, ·) can be defined in a standard way. An extension of this will be
mentioned in the next section. It is well known and not difficult to check that
this defines a topology on X.

In particular, the discrete metric on a set X is defined by putting d(x, y) = 1
when x and y are distinct elements of X, and d(x, x) = 0 for every x ∈ X. This
defines a metric on X, for which the corresponding topology is the discrete
topology.

Let R be the real line, as usual. If x ∈ R, then the absolute value of x
is defined by |x| = x when x ≥ 0, and |x| = −x when x ≤ 0. The standard
Euclidean metric on R is defined by

d(x, y) = |x− y|.(1.1.6)

The standard topology on R may be defined as the topology determined on R
by (1.1.6).

Let (X, τ) be a topological space.

Definition 1.1.7 We say that (X, τ) satisfies the first separation condition if
for every pair x, y of distinct elements of X, there is an open subset U of X
such that x ∈ U and y 6∈ U . Equivalently, we say that X is a T1 space in this
case.

The first separation condition is supposed to be symmetric in x and y, so
that there should also be an open set V ⊆ X such that y ∈ V and x 6∈ V .

Definition 1.1.8 We say that (X, τ) satisfies the zeroth separation condition
if for every pair x, y of distinct elements of X there is an open set W ⊆ X such
that either x ∈W and y 6∈W , or y ∈W and x 6∈W . In this case, we may also
say that (X, τ) is a T0 space.

Thus the first separation condition implies the zeroth separation condition.

Definition 1.1.9 We say that (X, τ) satisfies the second separation condition
if for every pair x, y of distinct elements of X there are disjoint open subsets
U , V of X such that x ∈ U and y ∈ V . We may also say that (X, τ) is a T2
space in this situation, or equivalently that (X, τ) is Hausdorff.

Hausdorff spaces obviously satisfy the first separation condition. If X is a
set with at least two elements equipped with the indiscrete topology, then X
does not satisfy the zeroth separation condition. Any set equipped with the
discrete topology is Hausdorff.
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1.2 Semimetrics and intervals

Let X be a set.

Definition 1.2.1 A nonnegative real-valued function d(x, y) defined for x, y in
X is said to be a semimetric or pseudometric on X if it satisfies the following
three conditions. First,

d(x, x) = 0(1.2.2)

for every x ∈ X. Second, d(x, y) is symmetric in x and y, so that

d(x, y) = d(y, x)(1.2.3)

for every x, y ∈ X. Third, the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z)(1.2.4)

holds for every x, y, z ∈ X. If we also have that

d(x, y) > 0(1.2.5)

for every x, y ∈ X with x 6= y, then d(·, ·) is said to be a metric on X.

Let d(·, ·) be a semimetric on X. If x ∈ X and r is a positive real number,
then the open ball in X centered at x with radius r with respect to d(·, ·) is
defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(1.2.6)

A subset U of X is said to be an open set with respect to d(·, ·) if for every
x ∈ U there is an r > 0 such that

B(x, r) ⊆ U.(1.2.7)

It is well known and not difficult to show that this defines a topology on X. If
d(x, y) = 0 for every x, y ∈ X, then B(x, r) = X for every x ∈ X and r > 0,
and the corresponding topology on X is the indiscrete topology.

If w ∈ X and t > 0, then one can check that B(w, t) is an open set in X
with respect to d(·, ·). More precisely, if x ∈ B(w, t), then r = t − d(w, x) > 0,
and one can verify that

B(x, r) ⊆ B(w, t),(1.2.8)

using the triangle inequality. If w1, w2 ∈ X satisfy d(w1, w2) > 0, then it is easy
to see that

B(w1, d(w1, w2)/2) ∩B(w2, d(w1, w2)/2) = ∅,(1.2.9)

using the triangle inequality again. In particular, if d(·, ·) is a metric on X, then
X is Hausdorff with respect to the topology determined by d(·, ·). If X satisfies
the zeroth separation condition with respect to the topology determined by a
semimetric d(·, ·), then d(·, ·) is a metric on X.
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Now let X be the set of extended real numbers, which consists of the real
numbers together with +∞ and −∞, where

−∞ < x < +∞(1.2.10)

for every x ∈ R. If a, b ∈ X and a < b, then the corresponding open interval is
defined by

(a, b) = {x ∈ R : a < x < b}.(1.2.11)

It is easy to see that this is an open set in R with respect to the standard
topology. If a, b ∈ R, then this is the same as the open ball centered at the
midpoint (a+ b)/2 with radius (b−a)/2 with respect to the standard Euclidean
metric on R.

If a, b ∈ X and a ≤ b, then the corresponding closed interval is defined by

[a, b] = {x ∈ X : a ≤ x ≤ b}.(1.2.12)

If a < b, then we get the half-open, half-closed intervals

[a, b) = {x ∈ X : a ≤ x < b}(1.2.13)

and
(a, b] = {x ∈ X : a < x ≤ b}.(1.2.14)

Let us say that U ⊆ X is an open set if for each x ∈ U , one of the following
three conditions holds. If x ∈ R, then there are a, b ∈ R such that a < x < b
and

(a, b) ⊆ U.(1.2.15)

If x = +∞, then there is an a ∈ R such that

(a,+∞] ⊆ U.(1.2.16)

If x = −∞, then there is a b ∈ R such that

[−∞, b) ⊆ U.(1.2.17)

One can check that this defines a topology on X, which we may refer to as the
standard topology on the set of extended real numbers.

If U ⊆ R, then U is an open set in X if and only if U is an open set in R with
respect to the standard topology. In particular, open intervals in R are open
sets in X with respect to this topology. Similarly, one can verify that (a,+∞]
and [−∞, b) are open sets in X with respect to this topology for all a, b ∈ R.
Using this, it is easy to see that X is Hausdorff with respect to this topology.

1.3 Dense sets and stronger topologies

Let (X, τ) be a topological space.
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Definition 1.3.1 A subset E of X is said to be dense in X with respect to τ
if for every x ∈ X and open set U ⊆ X with x ∈ U there is a y ∈ E such that
y ∈ U . Equivalently, this means that for every nonempty open set U ⊆ X, we
have that

E ∩ U 6= ∅.(1.3.2)

Of course, X is dense in itself. If X is any set equipped with the discrete
topology, then X is the only dense subset of itself. If X is a nonempty set
equipped with the indiscrete topology, then E ⊆ X is dense in X if and only if
E 6= ∅. It is well known that the set Q of rational numbers is dense in the real
line with respect to the standard topology.

Proposition 1.3.3 Let X be a set, and let τ , τ̃ be topologies on X such that

τ ⊆ τ̃ .(1.3.4)

In this case, we may say that τ̃ is at least as strong as τ on X.
(a) If j ∈ {0, 1, 2} and (X, τ) satisfies the jth separation condition, then

(X, τ̃) satisfies the jth separation condition as well.
(b) If E ⊆ X is dense in X with respect to τ̃ , then E is dense in X with

respect to τ .

This can be verified directly from the definitions.
Let τ+ be the collection of subsets U of the real line such that for every

x ∈ U there is a b ∈ R with x < b and

[x, b) ⊆ U.(1.3.5)

Similarly, let τ− be the collection of subsets U of R such that for every x ∈ U
there is an a ∈ R with a < x and

(a, x] ⊆ U.(1.3.6)

One can check that τ+ and τ− define topologies on R. Every open set in R
with respect to the standard topology is an open set with respect to τ+ and τ−.
More precisely,

τ+ ∩ τ−(1.3.7)

is the same as the standard topology on R.
If a ∈ R, b ∈ R ∪ {+∞}, and a < b, then it is easy to see that

[a, b)(1.3.8)

is an open set with respect to τ+. Similarly, if a ∈ R∪{−∞}, b ∈ R, and a < b,
then

(a, b](1.3.9)

is an open set with respect to τ−. Note that the real line is Hausdorff with
respect to τ+ and τ−, by Proposition 1.3.3, and because R is Hausdorff with
respect to the standard topology. If E ⊆ R is dense in R with respect to the
standard topology, then one can check that E is dense in R with respect to τ+
and τ−. Of course, if E is dense in R with respect to τ+ or τ−, then E is dense
in R with respect to the standard topology, as in Proposition 1.3.3.
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1.4 Closed sets and limit points

Let (X, τ) be a topological space.

Definition 1.4.1 A subset E of X is said to be a closed set in X with respect
to τ if the complement

X \ E = {x ∈ X : x 6∈ E}(1.4.2)

of E in X is an open set in X with respect to τ .

Of course,
X \ (X \W ) = W(1.4.3)

for every subset W of X. This implies that the complement of an open subset
of X is a closed set. Note that X and the empty set are closed subsets of X.
If E1, . . . , En are finitely many closed subsets of X, then their union is a closed
set as well. More precisely,

X \
( n⋃

j=1

Ej

)
=

n⋂
j=1

(X \ Ej)(1.4.4)

is an open set in X, by the definition of a topology. If A is a nonempty set, and
Eα is a closed set in X for every α ∈ A, then

⋂
α∈AEα is a closed set in X too.

Indeed,

X \
( ⋂

α∈A

Eα

)
=

⋃
α∈A

(X \ Eα)(1.4.5)

is an open set in X in this case, by the definition of a topological space.

Definition 1.4.6 A point p ∈ X is said to be a limit point of E ⊆ X if for
every open set U ⊆ X with p ∈ U there is a q ∈ E ∩U such that p 6= q. We say
that p ∈ X is adherent to E if for every open set U ⊆ X with p ∈ U , we have
that E ∩ U 6= ∅.

Thus every element of E and every limit point of E in X is adherent to E.
If p ∈ X is adherent to E and p 6∈ E, then p is a limit point of E in X.

Definition 1.4.7 The closure of a subset E of X is the set E consisting of all
points in X that are adherent to E. Equivalently, E is the set of p ∈ X such
that p ∈ E, p is a limit point of E, or both.

Note that E ⊆ X is dense in X if and only if E = X.

Proposition 1.4.8 If E ⊆ X is a closed set, then E = E.

It suffices to check that E ⊆ E. If E is a closed set and p ∈ X \ E, then it
is easy to see that p is not adherent to E, because X \ E is an open set. Thus
p 6∈ E, as desired.
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Definition 1.4.9 The interior of a subset A of X is the set IntA of p ∈ A for
which there is an open set U ⊆ X such that p ∈ U and U ⊆ A. Equivalently,
IntA is the union of all the open subsets of X that are contained in A.

Thus IntA is automatically an open subset of X, and IntA = A when A is
an open set in X.

Proposition 1.4.10 If E is any subset of X, then

X \ E = Int(X \ E).(1.4.11)

In particular, E is a closed set in X.

Indeed, p ∈ X is not adherent to E exactly when there is an open set U ⊆ X
such that p ∈ U and U ∩ E = ∅. This is the same as saying that p ∈ U and
U ⊆ X \ E, which means that p ∈ Int(X \ E).

1.5 Induced topologies

Let (X, τ) be a topological space, and let Y be a subset of X.

Definition 1.5.1 A subset E of Y is said to be relatively open in Y if there is
an open set U ⊆ X such that

E = U ∩ Y.(1.5.2)

Proposition 1.5.3 The collection of relatively open subsets of Y defines a
topology on Y , which is called the induced topology on Y .

Clearly Y = X ∩ Y and ∅ = ∅ ∩ Y are relatively open in Y . If E1, . . . , En

are finitely many relatively open subsets of Y , then there are open subsets
U1, . . . , Un of X such that Ej = Uj ∩ Y for each j = 1, . . . , n. This implies that

n⋂
j=1

Ej =

n⋂
j=1

(Uj ∩ Y ) =
( n⋂

j=1

Uj

)
∩ Y(1.5.4)

is relatively open in Y . Let A be a nonempty set, and suppose that Eα ⊆ Y is
relatively open for every α ∈ A. Thus, for each α ∈ A, there is an open subset
Uα of X such that Eα = Uα ∩ Y . It follows that⋃

α∈A

Eα =
⋃
α∈A

(Uα ∩ Y ) =
( ⋃

α∈A

Uα

)
∩ Y(1.5.5)

is relatively open in Y , as desired.

Proposition 1.5.6 A subset A of Y is a closed set with respect to the induced
topology if and only if there is a closed set A1 ⊆ X such that

A = A1 ∩ Y.(1.5.7)
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If A1 is a closed set in X, then X \ A1 is an open set in X, and hence
(X \A1) ∩ Y is relatively open in Y . One can check that

Y \ (A1 ∩ Y ) = (X \A1) ∩ Y,(1.5.8)

so that A1 ∩ Y is a closed set in Y with respect to the induced topology. Con-
versely, if A ⊆ Y is a closed set with respect to the induced topology, then Y \A
is relatively open in Y . This implies that there is an open subset U of X such
that

Y \A = U ∩ Y.(1.5.9)

This means that A1 = X \ U is a closed set in X, and it is easy to see that
(1.5.7) holds.

Proposition 1.5.10 If j ∈ {0, 1, 2} and X satisfies the jth separation condi-
tion, then Y satisfies the jth separation condition, with respect to the induced
topology.

This can be verified directly from the definitions.

Let d(·, ·) be a semimetric on X, and suppose now that X is equipped with
the topology determined by d(·, ·). It is easy to see that the restriction of d(x, y)
to x, y ∈ Y defines a semimetric on Y .

Proposition 1.5.11 Under the conditions just mentioned, the induced topology
on Y is the same as the topology determined on Y by the restriction of d(·, ·) to
Y .

If x ∈ X and r > 0, then let BX(x, r) be the open ball in X centered at x
with radius r with respect to d(·, ·). Similarly, if x ∈ Y , then let BY (x, r) be the
open ball in Y centered at x with radius r > 0 with respect to the restriction
of d(·, ·) to Y . It is easy to see that

BY (x, r) = BX(x, r) ∩ Y(1.5.12)

for every x ∈ Y and r > 0.

If E is a relatively open subset of Y , then there is an open subset U of X
such that E = U ∩ Y . One can check directly that E is an open set in Y with
respect to the topology determined by the restriction of d(·, ·) to Y , using the
analogous property of U in X.

To show the converse, observe first that (1.5.12) is relatively open in Y for
every x ∈ Y and r > 0, because open balls in X are open sets. If E ⊆ Y is an
open set with respect to the topology determined by the restriction of d(·, ·) to
Y , then E can be expressed as a union of open balls in Y . This implies that
E is relatively open in Y , because the union of any family of relatively open
subsets of Y is relatively open in Y , as before.
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1.6 Convergent sequences

Let (X, τ) be a topological space.

Definition 1.6.1 A sequence {xj}∞j=1 of elements of X is said to converge to
an element x of X if for every open subset U of X with x ∈ U there is a positive
integer L such that

xj ∈ U(1.6.2)

for every j ≥ L.

If xj = x for all but finitely many j, then {xj}∞j=1 automatically converges
to x. If X is equipped with the discrete topology, and {xj}∞j=1 converges to x,
then xj = x for all but finitely many j. If X is equipped with the indiscrete
topology, then every sequence of elements of X converges to every element of
X.

Proposition 1.6.3 If (X, τ) is a Hausdorff topological space, then a sequence
of elements of X can converge to at most one element of X.

This is not difficult to show, and an extension of this will be discussed soon.

Proposition 1.6.4 Let E be a subset of X, and let {xj}∞j=1 be a sequence of
elements of E. If {xj}∞j=1 converges to an element x of X, then x is adherent
to E. If, for each positive integer j, we also have that xj 6= x, then x is a limit
point of E in X.

This can be verified directly from the definitions.

Proposition 1.6.5 Let Y be a subset of X, let {xj}∞j=1 be a sequence of ele-
ments of Y , and let x be an element of Y . Under these conditions, {xj}∞j=1

converges to x in X if and only if {xj}∞j=1 converges to x in Y , with respect to
the induced topology.

This can also be verified directly from the definitions.
Let {xj}∞j=1 be a sequence of real numbers, and let x be a real number

too. If {xj}∞j=1 converges to x with respect to either of the topologies τ+ or τ−
defined in Section 1.3, then {xj}∞j=1 converges to x with respect to the standard
topology on R. More precisely, if {xj}∞j=1 converges to x with respect to τ+,
then

xj ≥ x for all but finitely many j.(1.6.6)

This can be seen by taking U = [x,+∞) in (1.6.2). Conversely, if {xj}∞j=1 sat-
isfies (1.6.6), and {xj}∞j=1 converges to x with respect to the standard topology
on R, then {xj}∞j=1 converges to x with respect to τ+. Similarly, if {xj}∞j=1

converges to x with respect to τ−, then

xj ≤ x for all but finitely many j.(1.6.7)

Conversely, if {xj}∞j=1 satisfies (1.6.7), and if {xj}∞j=1 converges to x with respect
to the standard topology on R, then {xj}∞j=1 converges to x with respect to τ−.
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1.7 Local bases

Let (X, τ) be a topological space, and let x be an element of X.

Definition 1.7.1 A collection B(x) of open subsets of X is said to be a local
base for the topology of X at x if it satisfies the following two conditions. First,
for every U ∈ B(x), we have that x ∈ U . Second, if V is an open subset of X
such that x ∈ V , then there is an element U of B(x) with

U ⊆ V.(1.7.2)

The collection of all open subsets U of X with x ∈ U is a local base for the
topology of X at x. If X is equipped with the indiscrete topology, then X is
the only element of this collection. If X is equipped with the discrete topology,
then the collection consisting only of {x} is a local base for the topology of X
at x.

We are often particularly interested in situations where there may be a local
base for the topology of X at x with only finitely or countably many elements,
which can therefore be listed in a sequence. Equivalently, we may wish to have
a sequence U1(x), U2(x), U3(x), . . . of open subsets of X such that the collection
of the Uj(x)’s is a local base for the topology of X at x. This means that

x ∈ Uj(x) for every j,(1.7.3)

and that

for every open set V ⊆ X with x ∈ V(1.7.4)

we have that Uj(x) ⊆ V for some j.

In this situation, it is frequently helpful to also ask that

Uj+1(x) ⊆ Uj(x) for every j.(1.7.5)

This can always be arranged, by replacing Uj(x) with
⋂j

l=1 Ul(x) for each j, if
necessary.

If the topology on X is determined by a semimetric d(·, ·), then

Uj(x) = B(x, 1/j)(1.7.6)

satisfies the conditions just mentioned. If X is the real line equipped with the
topology τ+ defined in Section 1.3, then

Uj(x) = [x, x+ 1/j)(1.7.7)

satisfies these conditions. Similarly, if X = R equipped with the topology τ−,
then

Uj(x) = (x− 1/j, x](1.7.8)

satisfies these conditions.
Let (X, τ) be any topological space again, and let x ∈ X be given.
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Proposition 1.7.9 Suppose that {Uj(x)}∞j=1 is a sequence of open subsets of X
that satisfies (1.7.3), (1.7.4), and (1.7.5). Let {xj}∞j=1 be a sequence of elements
of X such that

xj ∈ Uj(x)(1.7.10)

for every j. Under these conditions, {xj}∞j=1 converges to x in X.

This is easy to check, directly from the definitions.

Corollary 1.7.11 Suppose that there is a local base for the topology of X at x
with only finitely or countably many elements. If x is adherent to E ⊆ X, then
there is a sequence {xj}∞j=1 of elements of E that converges to x in X. If x is
a limit point of E in X, then we may also ask that xj 6= x for each j.

The hypothesis of the corollary implies that there is a sequence {Uj(x)}∞j=1

of open sets in X as in the previous proposition. If x is adherent to E, then we
can choose

xj ∈ E ∩ Uj(x)(1.7.12)

for each j. If x is a limit point of E, then we can also choose xj to be different
from x for every j.

Proposition 1.7.13 Let Y be a subset of X such that x ∈ Y . If B(x) is a local
base for the topology of X at x, then

BY (x) = {U ∩ Y : U ∈ B(x)}(1.7.14)

is a local base for the induced topology on Y at x.

This can be verified directly from the definitions. Note that if B(x) has only
finitely or countably many elements, then BY (x) has only finitely or countably
many elements.

Definition 1.7.15 We say that (X, τ) satisfies the first countability condition
if for every x ∈ X there is a local base B(x) for the topology of X at x with only
finitely or countably many elements.

If (X, τ) satisfies the first countability condition and Y ⊆ X, then Y satisfies
the first countability condition with respect to the induced topology, by the
previous remark.

1.8 Directed systems and nets

Let A be a set.

Definition 1.8.1 A binary relation � on A is said to be a partial ordering if
it satisfies the following three conditions. First, � should be reflexive on A, in
the sense that

a � a for every a ∈ A.(1.8.2)
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Second,

if a, b ∈ A satisfy a � b and b � a, then a = b.(1.8.3)

Third, � should be transitive on A, in the sense that

if a, b, c ∈ A satisfy a � b and b � c, then a � c.(1.8.4)

If, in addition,

for every a, b ∈ A, we have that a � b or b � a,(1.8.5)

then � is said to be a linear ordering or total ordering on A.

A binary relation on A that is reflexive and transitive may be called a pre-
order on A.

Definition 1.8.6 We say that (A,�) is a directed system if � is a partial
ordering on A, and if

for every a, b ∈ A there is a c ∈ A such that a � c and b � c.(1.8.7)

Sometimes one also considers pre-orderings that satisfy (1.8.7), which can
work just as well for some purposes. Note that linearly-ordered sets are directed
systems.

Suppose that (A,�) is a nonempty directed system, and let X be a set.

Definition 1.8.8 A net {xa}a∈A of elements of X indexed by A assigns to each
a ∈ A an element xa of X.

Thus this is a function defined on A with values in X, where A is also
equipped with the partial ordering �. If A is the set Z+ of positive integers
with the standard ordering, then this is the same as a sequence of elements of
X.

Now let (X, τ) be a topological space.

Definition 1.8.9 A net {xa}a∈A of elements of X indexed by A is said to
converge to an element x of X if for every open subset U of X with x ∈ U there
is a b ∈ A such that

xa ∈ U(1.8.10)

for every a ∈ A with b � a.

This reduces to the earlier definition of convergent sequences when A = Z+

with the standard ordering.

Proposition 1.8.11 Let {xa}a∈A be a net of elements of X that converges to
elements x and x′ of X. If (X, τ) is Hausdorff, then x = x′.
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Suppose for the sake of a contradiction that x 6= x′. This implies that there
are disjoint open subsets U and V of X such that x ∈ U and x′ ∈ V , because
X is Hausdorff. Using the convergence of {xa}a∈A to x, we get that there is a
b ∈ A such that (1.8.10) holds for every a ∈ A with b � a. Similarly, there is a
c ∈ A such that

xa ∈ V(1.8.12)

for every a ∈ A with c � a, because {xa}a∈A converges to x′ in X. There is
an a ∈ A such that b � a and c � a, by the definition of a directed system.
In this case, we get that xa ∈ U ∩ V , contradicting the disjointness of U and
V . Conversely, if (X, τ) is not Hausdorff, then one can find a net of elements of
X indexed by some nonempty directed system that converges to two different
elements of X. If (X, τ) also satisfies the first countability condition, then one
can find a sequence of elements of X that converges to two different elements
of X.

1.9 More on convergent nets

Let (A,�) be a nonempty directed system, and let (X, τ) be a topological space.

Proposition 1.9.1 Let E be a subset of X, and let {xa}a∈A be a net of elements
of E indexed by A. If {xa}a∈A converges to an element x of X, then x is
adherent to E in X. If, for every a ∈ A, we also have that xa 6= x, then x is a
limit point of E in X.

This follows easily from the definitions, as in the case of sequences.

Proposition 1.9.2 Let Y be a subset of X, let {xa}a∈A be a net of elements of
Y indexed by A, and let x be an element of Y . Under these conditions, {xa}a∈A

converges to x in X if and only if {xa}a∈A converges to x in Y , with respect to
the induced topology.

This can also be verified directly from the definitions, as before.
Let x ∈ X be given, and let B(x) be a local base for the topology of X at x.

Let us define a binary relation � on B(x) by

U � V when U, V ∈ B(x) satisfy V ⊆ U.(1.9.3)

Proposition 1.9.4 With respect to the binary relation � defined in (1.9.3),
B(x) is a directed system.

It is easy to see that � is a partial ordering on B(x). To check that B(x) is
a directed system with respect to �, let U, V ∈ B(x) be given. Thus U and V
are open subsets of X that contain x, so that U ∩V is an open set that contains
x too. It follows that there is a W ∈ B(x) such that

W ⊆ U ∩ V,(1.9.5)

by definition of a local base. This implies that U �W and V �W , as desired.
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Proposition 1.9.6 If {xU}U∈B(x) is a net of elements of X indexed by B(x)
such that

xU ∈ U(1.9.7)

for every U ∈ B(x), then {xU}U∈B(x) converges to x in X.

Let W be an arbitrary open subset of X that contains x. By the definition
of a local base, there is a V ∈ B(x) such that V ⊆W . If U ∈ B(x) and V � U ,
then

xU ∈ U ⊆ V ⊆W,(1.9.8)

as desired.

Corollary 1.9.9 If x is adherent to E ⊆ X, then there is a net {xU}U∈B(x) of
elements of E indexed by B(x) that converges to x. If x is a limit point of E in
X, then we may also ask that xU 6= x for every U ∈ B(x).

If x is adherent to E, then we can choose

xU ∈ E ∩ U(1.9.10)

for every U ∈ B(x). If x is a limit point of E, then we can also choose xU to be
different from x for every U ∈ B(x).

1.10 Regular topological spaces

Let (X, τ) be a topological space.

Definition 1.10.1 We say that (X, τ) is regular in the strict sense if for every
point p ∈ X and closed set E ⊆ X with p 6∈ E there are disjoint open subsets U
and V of X such that

p ∈ U and E ⊆ V.(1.10.2)

If (X, τ) also satisfies the zeroth separation condition, then (X, τ) is said to be
regular in the strong sense.

Sometimes one may say that (X, τ) is regular when X is regular in the strict
sense. In this case, one may say that X satisfies the third separation condition,
or equivalently that (X, τ) is a T3 space, when X is regular in the strong sense.
However, the opposite convention is sometimes used as well. Alternatively,
regularity, the third separation condition, and T3 spaces may be used to refer to
regularity in the strong sense, and regularity in the strict sense may be described
in other ways.

Proposition 1.10.3 If (X, τ) is regular in the strong sense, then (X, τ) is
Hausdorff.
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To see this, let x and y be distinct elements of X. Thus there is an open
set that contains one of x and y and not the other, because (X, τ) satisfies the
zeroth separation condition. Equivalently, this means that there is a closed set
in X that contains one of x and y, and not the other. It follows that x and y
are contained in disjoint open subsets of X, as desired.

Proposition 1.10.4 If the topology on X is determined by a semimetric d(·, ·),
then X is regular in the strict sense. If d(·, ·) is a metric on X, then X is regular
in the strong sense.

Of course, the second statement follows from the first.

Lemma 1.10.5 If p ∈ X and r is a nonnegative real number, then

V (p, r) = {x ∈ X : d(p, x) > r}(1.10.6)

is an open set in X.

If x ∈ V (p, r), then t = d(p, x) − r > 0, and one can check that

B(x, t) ⊆ V (p, r),(1.10.7)

using the triangle inequality.
To prove the first part of Proposition 1.10.4, let p ∈ X and a closed set

E ⊆ X be given, with p 6∈ E. Thus X \ E is an open set in X that contains p,
so that

B(p, r) ⊆ X \ E(1.10.8)

for some r > 0. It is easy to see that U = B(p, r/2) and V = V (p, r/2) are
disjoint open subsets of X that contain p and E, respectively.

Proposition 1.10.9 The real line is regular in the strong sense with respect to
the topologies τ+ and τ− defined in Section 1.3.

Of course, we already know that R is Hausdorff with respect to τ+ and τ−,
and so we only need to verify regularity in the strict sense. We shall do this for
τ+, the argument for τ− being analogous. Let p ∈ R and a closed set E ⊆ R
with respect to τ+ be given, with p 6∈ E. This means that R \E is an open set
in R with respect to τ+ that contains p, so that there is a b ∈ R such that p < b
and

[p, b) ⊆ R \ E.(1.10.10)

Equivalently,

E ⊆ R \ [p, b) = (−∞, p) ∪ [b,+∞).(1.10.11)

In this situation, [p, b) and (−∞, p) ∪ [b,+∞) are disjoint open subsets of R
with respect to τ+ that contain p and E, as desired.

Let (X, τ) be a topological space again, and let Y be a subset of X.
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Proposition 1.10.12 If (X, τ) is regular in the strict sense, then Y is regular
in the strict sense, with respect to the induced topology. Similarly, if (X, τ) is
regular in the strong sense, then Y is regular in the strong sense, with respect
to the induced topology.

The second statement follows from the first, and the analogous fact for the
zeroth separation condition. To prove the first statement, let p ∈ Y and a
closed set A ⊆ Y with respect to the induced topology be given, with p 6∈ A.
Remember that there is a closed set A1 ⊆ X such that A = A1 ∩ Y , because A
is a closed set with respect to the induced topology. Note that p 6∈ A1, because
p ∈ Y \ A. It follows that there are disjoint open subsets U and V of X that
contain p and A1, respectively, because (X, τ) is regular in the strict sense.
This implies that U ∩Y and V ∩Y are disjoint relatively open subsets of Y that
contain p and A, respectively, as desired.

1.11 Completely Hausdorff spaces

Let (X, τ) be a topological space.

Proposition 1.11.1 The following condition is equivalent to (X, τ) being regu-
lar in the strict sense: for every point p ∈ X and open set W ⊆ X with p ∈W ,
there is an open set U ⊆ X such that p ∈ U and the closure U of U in X is
contained in W .

Let p ∈ X and an open set W ⊆ X with p ∈W be given, so that E = X \W
is a closed set that does not contain p. If (X, τ) is regular in the strict sense,
then there are disjoint open subsets U and V of X such that p ∈ U and E ⊆ V .
It is easy to see that U ∩ V = ∅ in this situation, which means that

U ⊆ X \ V ⊆ X \ E = W,(1.11.2)

as desired.
Conversely, let p ∈ X and a closed set E ⊆ X with p 6∈ E be given. Thus

W = X \ E is an open set that contains p. If (X, τ) satisfies the condition in
the statement of the proposition, then there is an open set U ⊆ X such that
p ∈ U and U ⊆ W . Put V = X \ U , which is an open set in X, because U is a
closed set. Clearly U ∩ V = ∅, and

E = X \W ⊆ X \ U = V,(1.11.3)

as desired.

Definition 1.11.4 We say that (X, τ) is completely Hausdorff if for every pair
x, y of distinct elements of X there are open subsets U and V of X such that
x ∈ U , y ∈ V , and

U ∩ V = ∅.(1.11.5)

In this case we may also say that (X, τ) satisfies separation condition number
two and a half, or equivalently that (X, τ) is a T2 1

2
space.
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Of course, completely Hausdorff spaces are Hausdorff in particular.

Proposition 1.11.6 If (X, τ) is regular in the strong sense, then (X, τ) is com-
pletely Hausdorff.

Let x, y be distinct elements of X. If (X, τ) is regular in the strong sense,
then (X, τ) is Hausdorff, and so there are disjoint open subsets U and V of X
with x ∈ U and y ∈ V . Using Proposition 1.11.1, we get open subsets U1 and V1
of X such that x ∈ U1, U1 ⊆ U , y ∈ V1, and V1 ⊆ V . It follows that U1∩V1 = ∅,
as desired.

Proposition 1.11.7 Let τ̃ be another topology on X such that τ ⊆ τ̃ . If (X, τ)
is completely Hausdorff, then (X, τ̃) is completely Hausdorff too.

If E is any subset of X, then let Eτ and E
τ̃

be the closures of E with respect
to τ and τ̃ , respectively. It is easy to see that

E
τ̃
⊆ Eτ ,(1.11.8)

because τ ⊆ τ̃ . Using this, one can verify the proposition directly from the
definition of the completely Hausdorff property.

Suppose for the moment that (X, τ) is regular in the strict or strong sense.
If τ̃ is as before, then it is not so clear if (X, τ̃) should have the same property.

Proposition 1.11.9 If (X, τ) is completely Hausdorff and Y ⊆ X, then Y is
completely Hausdorff with respect to the induced topology.

If E ⊆ Y and p ∈ Y , then one can check that

p is adherent to E in X(1.11.10)

if and only if

p is adherent to E in Y, with respect to the induced topology.(1.11.11)

This implies that the closure of E in Y , with respect to the induced topology,
is the same as the intersection of Y with the closure of E in X. Using this, the
proposition can be verified directly from the definitions.

1.12 Separated sets and connectedness

Let (X, τ) be a topological space.

Definition 1.12.1 A pair A, B of subsets of X are said to be separated in X
if

A ∩B = A ∩B = ∅.(1.12.2)

Disjoint closed subsets of X are obviously separated in X. It is easy to see
that disjoint open subsets of X are separated in X as well.
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Proposition 1.12.3 Let Y be a subset of X, and let A, B be subsets of Y .
Under these conditions, A and B are separated in X if and only if A and B are
separated in Y , with respect to the induced topology.

This follows from the fact that the closure of a subset E of Y , with respect
to the induced topology on Y , is the same as the intersection of Y with the
closure of E in X.

Proposition 1.12.4 If A and B are separated subsets of X such that A∪B =
X, then A and B are both open and closed in X.

It is easy to see that A = A and B = B in this case, so that A and B are
closed sets. This implies that A and B are open sets in X too, because their
complements in X are closed sets.

Definition 1.12.5 A subset E of X is said to be connected in X if E cannot
be expressed as the union of two nonempty separated sets in X.

It is well known that a subset E of the real line is connected with respect
to the standard topology on R if and only if for every x, y ∈ E with x < y, we
have that

[x, y] ⊆ E.(1.12.6)

Proposition 1.12.7 Let Y be a subset of X, and let E be a subset of Y . Under
these conditions, E is connected as a subset of X if and only if E is connected
as a subset of Y , with respect to the induced topology.

This follows from Proposition 1.12.3.

Proposition 1.12.8 The following three statements are equivalent: (a) X is
connected, as a subset of itself; (b) X cannot be expressed as the union of two
nonempty disjoint open sets; (c) X cannot be expressed as the union of two
nonempty disjoint closed sets.

This follows from Proposition 1.12.4.
If X is any set equipped with the indiscrete topology, then X is connected.

If X is any set with at least two elements equipped with the discrete topology,
then X is not connected.

1.13 Normality and complete normality

Let (X, τ) be a topological space.

Definition 1.13.1 We say that (X, τ) is normal in the strict sense if for every
pair A, B of disjoint closed subsets of X, there are disjoint open subsets U , V
of X such that A ⊆ U and B ⊆ V . If (X, τ) also satisfies the first separation
condition, then (X, τ) is said to be normal in the strong sense.
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Sometimes one may say that (X, τ) is normal when X is normal in the
strict sense, and that X satisfies the fourth separation condition, or equivalently
that X is a T4 space, when X is normal in the strong sense. The opposite
convention may be used sometimes as well. One may also use normality, the
fourth separation condition, and T4 spaces for normality in the strong sense,
and refer to normality in the strict sense in other ways.

Proposition 1.13.2 If (X, τ) is normal in the strong sense, then (X, τ) is
Hausdorff, and regular in the strong sense.

One can check that (X, τ) satisfies the first separation condition if and only
if for every p ∈ X, {p} is a closed set in X. Of course, this is the same as
saying that X \ {p} is an open set in X for every p ∈ X. More precisely, the
first separation condition says that every element of X \{p} is an element of the
interior of X \ {p}. The proposition follows easily from this and the definitions.

Proposition 1.13.3 The following condition is equivalent to (X, τ) being nor-
mal in the strict sense: if A ⊆ X is a closed set, W ⊆ X is an open set, and
A ⊆W , then there is an open set U ⊆ X such that A ⊆ U and U ⊆W .

Let a closed set A ⊆ X and an open set W ⊆ X with A ⊆ W be given, so
that B = X \W is a closed set in X that is disjoint from A. If (X, τ) is normal
in the strict sense, then there are disjoint open subsets U , V of X such that
A ⊆ U and B ⊆ V . In this situation, we have that U ∩ V = ∅, so that

U ⊆ X \ V ⊆ X \B = W,(1.13.4)

as desired.
Conversely, let A and B be disjoint closed subsets of X, so that W = X\B is

an open set that contains A. If (X, τ) satisfies the condition in the statement of
the proposition, then there is an open set U ⊆ X such that A ⊆ U and U ⊆W .
Thus V = X \U is an open set in X that is disjoint from U . We also have that

B = X \W ⊆ X \ U = V,(1.13.5)

as desired.

Definition 1.13.6 We say that (X, τ) is completely normal in the strict sense
if for every pair A, B of separated subsets of X there are disjoint open sets
U, V ⊆ X such that A ⊆ U and B ⊆ V . If (X, τ) also satisfies the first
separation condition, then (X, τ) is said to be completely normal in the strong
sense.

If (X, τ) is completely normal in the strict sense, then (X, τ) is normal in the
strict sense, because disjoint closed subsets of X are separated in X. Similarly,
if (X, τ) is completely normal in the strong sense, then (X, τ) is normal in the
strong sense. Sometimes one may say that (X, τ) is completely normal when
(X, τ) is completely normal in the strict sense, and that (X, τ) satisfies the



20 CHAPTER 1. SOME BASIC NOTIONS IN TOPOLOGY

fifth separation condition, or equivalently that (X, τ) is a T5 space, when (X, τ)
is completely normal in the strong sense. As before, the opposite convention
may sometimes be used too. One may also use complete normality, the fifth
separation condition, and T5 spaces for complete normality in the strong sense,
and refer to complete normality in the strict sense in other ways.

Proposition 1.13.7 If (X, τ) is completely normal in the strict sense and Y
is a subset of X, then Y is completely normal in the strict sense, with respect to
the induced topology. If (X, τ) is completely normal in the strong sense, then Y
is completely normal in the strong sense, with respect to the induced topology.

The first part can be obtained from the definitions, using Proposition 1.12.3.
The second part follows from the first part and the fact that Y satisfies the first
separation condition when (X, τ) has this property.

1.14 Examples of completely normal spaces

Proposition 1.14.1 If X is a set with a semimetric d(·, ·), then X is completely
normal in the strict sense with respect to the topology determined by d(·, ·). If
d(·, ·) is a metric on X, then X is completely normal in the strong sense with
respect to the topology determined by d(·, ·).

The second statement follows immediately from the first. To prove the first
statement, let A and B be separated subsets of X. Thus, for each x ∈ A, there
is a positive real number r(x) such that

B(x, r(x)) ∩B = ∅,(1.14.2)

because x 6∈ B. Similarly, for every y ∈ B, there is a t(y) > 0 such that

B(y, t(y)) ∩A = ∅,(1.14.3)

because y 6∈ A. Put

U =
⋃
x∈A

B(x, r(x)/2), V =
⋃
y∈B

B(y, t(y)/2).(1.14.4)

These are open sets in X, because open balls are open sets, and unions of open
sets are open sets. We also have that A ⊆ U and B ⊆ V , because every x ∈ A
is contained in B(x, r(x)/2), and every y ∈ B is contained in B(y, t(y)/2).

Suppose for the sake of a contradiction that U ∩ V 6= ∅. This means that
there are x ∈ A, y ∈ B, and w ∈ X such that

w ∈ B(x, r(x)/2) ∩B(y, t(y)/2).(1.14.5)

It follows that

d(x, y) ≤ d(x,w) + d(w, y) < r(x)/2 + t(y)/2.(1.14.6)
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However,

d(x, y) ≥ r(x), t(y),(1.14.7)

by (1.14.2) and (1.14.3). This is a contradiction, as desired.

Proposition 1.14.8 The real line is completely normal in the strong sense with
respect to the topologies τ+ and τ− defined in Section 1.3.

We already know that the real line is Hausdorff with respect to τ+ and τ−,
and so we only have to check complete normality in the strict sense. We shall
do this for τ+, the argument for τ− being analogous. Let A and B be subsets of
R that are separated with respect to τ+. If x ∈ A, then there is a real number
b1(x) such that x < b1(x) and

[x, b1(x)) ∩B = ∅,(1.14.9)

because x is not in the closure of B with respect to τ+. Similarly, if y ∈ B, then
there is a real number b2(y) such that y < b2(y) and

[y, b2(y)) ∩A = ∅,(1.14.10)

because y is not in the closure of A with respect to τ+. Put

U =
⋃
x∈A

[x, b1(x)), V =
⋃
y∈B

[y, b2(y)),(1.14.11)

which are open subsets of R with respect to τ+, because these intervals are open
sets with respect to τ+. Note that A ⊆ U and B ⊆ V , by construction.

If x ∈ A and y ∈ B, then

[x, b1(x)) ∩ [y, b2(y)) = ∅.(1.14.12)

More precisely, if x ≤ y, then b1(x) ≤ y, by (1.14.9). Similarly, if y ≤ x, then
b2(y) ≤ x, by (1.14.10). It is easy to see that (1.14.12) holds in both cases. This
implies that U ∩ V = ∅, as desired.

1.15 More on connectedness

Let (X, τ) be a topological space.

Proposition 1.15.1 If E is a connected subset of X, then the closure E of E
in X is connected too.

Suppose for the sake of a contradiction that E is not connected, so that there
are nonempty separated subsets A and B of X such that E = A ∪B. Put

A1 = A ∩ E, B1 = B ∩ E,(1.15.2)
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and note that E = A1 ∪ B1. It is easy to see that A1 and B1 are separated in
X, because A1 ⊆ A and B1 ⊆ B. We would like to check that A1 and B1 are
nonempty.

Let x be an element of A. Thus x 6∈ B, because A ∩ B = ∅, by hypothesis.
This means that there is an open subset U of X such that x ∈ U and B∩U = ∅.
However, E ∩ U 6= ∅, because x ∈ A ⊆ E. It follows that A1 6= ∅, because
E ∩ U ⊆ A1. Similarly, B1 6= ∅. This implies that E is not connected, as
desired.

Proposition 1.15.3 Let I be a nonempty set, and suppose that Ej is a con-
nected subset of X for every j ∈ I. If⋂

j∈I

Ej 6= ∅,(1.15.4)

then
⋃

j∈I Ej is connected in X.

Suppose for the sake of a contradiction that
⋃

j∈I Ej is not connected, so that
there are nonempty separated subsets A and B of X such that

⋃
j∈LEj = A∪B.

Let x be an element of
⋂

j∈I Ej . We may as well suppose that x ∈ A, by
interchanging the roles of A and B, if necessary. Let y be an element of B, and
let j0 be an element of I such that y ∈ Ej0 . Put

A0 = A ∩ Ej0 , B0 = B ∩ Ej0 ,(1.15.5)

and observe that Ej0 = A0 ∪ B0. As before, A0 and B0 are separated in X,
because A0 ⊆ A and B0 ⊆ B. We also have that x ∈ A0 and y ∈ B0, by
construction, so that A0, B0 6= ∅. This implies that Ej0 is not connected, which
is a contradiction.

Proposition 1.15.6 Let E be a subset of X. Suppose that for every pair of
elements x, y of E there is a connected subset E(x, y) of X such that

x, y ∈ E(x, y)(1.15.7)

and
E(x, y) ⊆ E.(1.15.8)

Under these conditions, E is connected in X.

Suppose for the sake of a contradiction that E is not connected in X, so
that there are nonempty separated subsets A and B of X such that E = A∪B.
Let x be an element of A, let y be an element of B, and let E(x, y) be as in the
statement of the proposition. Put

A2 = A ∩ E(x, y), B2 = B ∩ E(x, y),(1.15.9)

which satisfy x ∈ A2, y ∈ B2, and A2∪B2 = E(x, y). We also have that A2 and
B2 are separated in X, because A2 ⊆ A and B2 ⊆ B. This implies that E(x, y)
is not connected, which is a contradiction.



1.15. MORE ON CONNECTEDNESS 23

Of course, if E is connected, then E satisfies the condition mentioned in
Proposition 1.15.6, with E(x, y) = E for every x, y ∈ E.

Alternatively, Proposition 1.15.6 could be obtained from Proposition 1.15.3.
More precisely, Proposition 1.15.6 is trivial when E = ∅. Otherwise, one can fix
x ∈ E, and use the fact that E is the union of E(x, y), y ∈ E.

If E1 and E2 are connected subsets of X and E1 ∩ E2 6= ∅, then E1 ∪ E2

is connected in X as well, as in Proposition 1.15.3. One could also prove this
directly, and use this to obtain Proposition 1.15.3 from Proposition 1.15.6.



Chapter 2

Cardinality and some more
topology

2.1 Cardinal equivalence

Let A and B be sets, and let f be a function defined on A with values in B.
This is also known as a mapping from A into B, which may be expressed by
f : A → B. As usual, we say that f is one-to-one or injective if for every
x, y ∈ A with x 6= y, we have that f(x) 6= f(y). We say that f maps A onto
B, or equivalently that f is surjective, if for every z ∈ B there is an x ∈ A
such that f(x) = z. A one-to-one mapping from A onto B is also known as a
bijection, or a one-to-one correspondence.

Let C be another set, and let g be a mapping from B into C. Thus the
composition g ◦ f is the mapping from A into C defined by

(g ◦ f)(x) = g(f(x))(2.1.1)

for every x ∈ A. If f and g are injections, then it is easy to see that g ◦ f is an
injection. If f and g are surjections, then g ◦ f is a surjection. It follows that if
f and g are bijections, then g ◦ f is a bijection.

If f is a one-to-one mapping from A onto B, then the inverse mapping is
defined on B by f−1(f(x)) = x for every x ∈ A, which is a one-to-one mapping
from B onto A. If g is a one-to-one mapping from B onto C, then one can check
that

(g ◦ f)−1 = f−1 ◦ g−1.(2.1.2)

If there is a one-to-one mapping from A onto B, then let us express this by

#A = #B.(2.1.3)

Note that #A = #A, because the identity mapping on A is a one-to-one map-
ping from A onto itself. It is easy to see that #A = #B implies #B = #A,
because the inverse of a bijection is a bijection. Similarly, #A = #B and

24
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#B = #C imply that #A = #C, because the composition of bijections is a
bijection.

To say that A is a finite set with exactly n elements for some positive integer
n means that

#A = #{1, . . . , n}.(2.1.4)

By definition, A is countably infinite when

#A = #Z+.(2.1.5)

Let P(A) be the power set of A, which is the set of all subsets of A. Suppose
that f is a mapping from A into P(A), and put

B = {a ∈ A : a 6∈ f(a)},(2.1.6)

which is a subset of A. If x ∈ A, then it is easy to see that

f(x) 6= B.(2.1.7)

More precisely, if x ∈ f(x), then x 6∈ B, so that (2.1.7) holds. Otherwise, if
x 6∈ f(x), then x ∈ B, and (2.1.7) holds. Thus f cannot map A onto P(A). In
particular,

#A 6= #P(A).(2.1.8)

A set is said to be uncountable if it is neither finite nor countably infinite.
Note that P(Z+) is uncountable, by (2.1.8).

Let B be the set of infinite sequences x = {xj}∞j=1 such that for each positive
integer j, xj = 0 or 1. It is easy to see that

#B = #P(Z+),(2.1.9)

using the correspondence between elements of B and the subsets of Z+ on which
they are equal to 1.

It is well known that
#B = #[0, 1].(2.1.10)

More precisely, we can start with the usual mapping that sends x ∈ B to∑∞
j=1 xj 2−j , which is an element of [0, 1]. This mapping is surjective but not

injective, and we can modify it on a countable set to get a bijection. If n is a
nonnegative integer, then put

An,0 = {x ∈ B : xj = 0 for every j > n}(2.1.11)

and
An,1 = {x ∈ B : xj = 1 for every j > n}.(2.1.12)

These are finite sets with exactly 2n elements, and

A =

∞⋃
n=0

(An,0 ∪An,1)(2.1.13)
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is a countably-infinite subset of B. Also let E be the subset of [0, 1] consisting
of nonnegative integer multiples of nonnegative integer powers of 1/2, which is
countably infinite as well. The restriction of the mapping from B onto [0, 1]
mentioned earlier to B \ A is a one-to-one mapping onto [0, 1] \ E. Because A
and E are both countably infinite, one can find a one-to-one mapping from A
onto E. One can combine these two mappings to get a one-to-one mapping from
B onto [0, 1], as desired.

2.2 Comparing cardinalities

If A and B are sets, and if there is a one-to-one mapping from A into B, then
we may express this by

#A ≤ #B.(2.2.1)

If #A = #B, then it follows that #A ≤ #B and #B ≤ #A. In particular,
#A ≤ #A automatically. If A, B, and C are sets such that #A ≤ #B and
#B ≤ #C, then it is easy to see that #A ≤ #C, because the composition of
injective mappings is injective.

A famous theorem of Bernstein and Schröder states that if A and B are sets
with #A ≤ #B and #B ≤ #A, then #A = #B. This corresponds to Theorem
7 on p33 of [206].

If A is any set, then
a 7→ {a}(2.2.2)

defines a one-to-one mapping from A into the power set P(A) of A. This implies
that

#A ≤ #P(A).(2.2.3)

Let A be a nonempty set, and let f be a one-to-one mapping from A into a
set B. Let a0 be an element of A, and consider the mapping g from B into A
defined as follows. We put

g(f(a)) = a(2.2.4)

for every a ∈ A, and g(z) = a0 for every z ∈ B \ f(A). Here

f(A) = {f(a) : a ∈ A}(2.2.5)

is the image of A under f , as usual. Clearly g maps B onto A.
Let I be a nonempty set, and suppose that Xj is a nonempty set for every

j ∈ I. Under these conditions, the axiom of choice states that there is a function
f defined on I with values in

⋃
j∈I Xj such that

f(j) ∈ Xj(2.2.6)

for every j ∈ I.
Let g be a mapping from a set B onto a nonempty set A. Thus, if a ∈ A,

then
g−1({a}) = {z ∈ B : g(z) = a} 6= ∅.(2.2.7)
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Using the axiom of choice, we get a mapping f from A into B such that f(a)
is an element of g−1({a}) for every a ∈ A. This is the same as saying that
g(f(a)) = a for every a ∈ A. In particular, it follows that f is a one-to-one
mapping from A into B.

If A and B are any two sets, then there are well-known arguments using the
axiom of choice to get that #A ≤ #B or #B ≤ #A.

Let A be an infinite set, and let C be a set such that

#C ≤ #A.(2.2.8)

There are well-known arguments using the axiom of choice to get that

#A = #(A ∪ C).(2.2.9)

Of course, #A ≤ #(A∪C), because the obvious inclusion mapping from A into
A∪C is an injection. Note that we can reduce to the case where A∩C = ∅, by
replacing C with C \A.

If C has only finitely or countably many elements, then we can get (2.2.9)
more directly, as follows. Let B be a countably-infinite subset of A, so that
B ∪C is countably-infinite as well. In particular, there is a one-to-one mapping
from B onto B ∪ C. If A ∩ C = ∅, then we can combine this with the identity
mapping on A \B to get a one-to-one mapping from A onto A ∪ C, as desired.

If a and b are real numbers with a < b, then we get that

#(a, b) = #[a, b) = #(a, b] = #[a, b].(2.2.10)

One can use explicit mappings to get that #[a, b] = #[0, 1] and #R = #(−1, 1).
One can also use the argument in the previous paragraph to get that #(R\Q) =
#R.

2.3 Products and exponentials

The Cartesian product of two sets A and B is the set A × B of all ordered
pairs (a, b), with a ∈ A and b ∈ B. Let Ã and B̃ be sets, let ϕ be a one-to-one

mapping from A onto Ã, and let ψ be a one-to-one mapping from B onto B̃.
Under these conditions,

(a, b) 7→ (ϕ(a), ψ(b))(2.3.1)

is a one-to-one mapping from A×B onto Ã× B̃. This implies that

#(A×B) = #(Ã× B̃).(2.3.2)

Note that
(a, b) 7→ (b, a)(2.3.3)

is a one-to-one mapping from A×B onto B ×A. It follows that

#(A×B) = #(B ×A).(2.3.4)



28 CHAPTER 2. CARDINALITY AND SOME MORE TOPOLOGY

If A is an infinite set, then there are well-known arguments using the axiom
of choice to get that

#(A×A) = #A.(2.3.5)

Of course, this can be shown more directly when A is countably infinite.
If A and B are any two sets again, then the space of all mappings from A

into B may be denoted BA. Let Ã and B̃ be sets with one-to-one mappings ϕ
and ψ from A onto Ã and from B onto B̃, respectively, again. If f is a mapping
from A into B, then ψ ◦ f ◦ ϕ−1 is a mapping from Ã into B̃. It is easy to see
that

f 7→ ψ ◦ f ◦ ϕ−1(2.3.6)

is a one-to-one mapping from BA onto B̃Ã. Thus

#BA = #B̃Ã(2.3.7)

under these conditions.
If B = {0, 1}, then BA may be denoted 2A. There is a simple one-to-one

correspondence between 2A and the power set P(A) of A, where a subset of A
corresponds to the function on A that is equal to 1 on the subset, and to 0 on
the complement of the subset in A. This means that

#2A = #P(A).(2.3.8)

If A, B, and C are sets with A ∩ B = ∅, then there is a natural one-to-one
correspondence between CA∪B and CA × CB . This is because a mapping from
A∪B into C corresponds exactly to a pair of mappings from A into C and from
B into C. It follows that

#CA∪B = #(CA × CB).(2.3.9)

If A andB are countably infinite, then it is well known that A∪B is countably
infinite. Of course, it is easy to find disjoint countably-infinite sets, to get that

#CZ+ = #(CZ+ × CZ+).(2.3.10)

In particular, we can take C = {0, 1}, to get that

#2Z+ = #(2Z+ × 2Z+).(2.3.11)

This implies that #([0, 1] × [0, 1]) = #[0, 1], #(R×R) = #R.

2.4 Some more exponentials

Let A, B1, and B2 be sets, and suppose that ψ is a one-to-one mapping from
B1 into B2. If f is a mapping from A into B1, then ψ ◦ f is a mapping from A
into B2. Thus

f 7→ ψ ◦ f(2.4.1)
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defines a mapping from BA
1 into BA

2 . It is easy to see that (2.4.1) is injective,
because ψ is injective, by hypothesis. This shows that

#BA
1 ≤ #BA

2(2.4.2)

when #B1 ≤ #B2.
Similarly, let A1, A2, and B be sets, and suppose that ρ is a mapping from

A2 onto A1. If f is a mapping from A1 into B, then f ◦ ρ is a mapping from A2

into B. This defines a mapping

f 7→ f ◦ ρ(2.4.3)

from BA1 into BA2 . Observe that (2.4.3) is injective, because ρ(A2) = A1, by
hypothesis. This implies that

#BA1 ≤ #BA2(2.4.4)

when #A1 ≤ #A2.
If A, B, and C are sets, then there is a simple one-to-one correspondence

between the set CA×B of mappings from A × B into C and the set (CB)A of
all mappings from A into the set CB of all mappings from B into C. More
precisely, let f(a, b) be a mapping from A×B into C, and put

fa(b) = f(a, b)(2.4.5)

for every a ∈ A and b ∈ B. Thus, for each a ∈ A, this defines fa as a mapping
from B into C. It follows that

a 7→ fa(2.4.6)

defines a mapping from A into CB . This defines a mapping

f 7→ (2.4.6)(2.4.7)

from CA×B into (CB)A. Conversely, every mapping from A into CB leads to a
mapping from A×B into C in this way. In particular, we get that

#CA×B = #(CB)A.(2.4.8)

If A is an infinite set, then we can take B = A in (2.4.8) and use (2.3.5) to
obtain that

#(CA)A = #CA×A = #CA.(2.4.9)

Of course, this also uses (2.3.7) in the second step. Let E be a set such that

#C ≤ #E ≤ #CA.(2.4.10)

Using (2.4.2), we get that

#CA ≤ #EA ≤ #(CA)A = #CA,(2.4.11)

so that
#CA = #EA.(2.4.12)

In particular, we can take C = {0, 1} and E = A, to obtain that

#AA = #2A.(2.4.13)
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2.5 Strong limit points and separability

Let (X, τ) be a topological space.

Definition 2.5.1 A point p ∈ X is said to be a strong limit point of a subset
E of X if for every open subset U of X with p ∈ U , there are infinitely many
elements of E in U . Similarly, p ∈ X is said to be a condensation point if for
every open set U ⊆ X with p ∈ U , E ∩ U is uncountable.

Thus a strong limit point of E is automatically a limit point of E, and
a condensation point of E is a strong limit point of E. Of course, there are
analogous notions using other conditions on the cardinality of E ∩ U as in
Definition 2.5.1.

Proposition 2.5.2 If p ∈ X is a limit point of E ⊆ X, and if X satisfies the
first separation condition, then p is a strong limit point of E in X.

If p is not a strong limit point of E, then there is an open set U ⊆ X such
that p ∈ U and E ∩ U has only finitely many elements. If X satisfies the first
separation condition, then one can find a smaller open set V ⊆ X such that
p ∈ V and V does not contain any elements of E, other than p, if p ∈ E. This
implies that p is not a limit point of E in X.

Definition 2.5.3 We say that (X, τ) is separable if there is a dense subset E
of X such that E has only finitely or countably many elements.

Suppose that (X, τ) is a Hausdorff topological space that satisfies the first
countability condition, and that E is a dense subset of X. An infinite sequence
of elements of E is the same as a function on the set Z+ with values in E, which
is an element of EZ+ . Let C be the collection of all sequences of elements of E
that converge to an element of X, so that C may be considered as a subset of
EZ+ . Remember that the limit of a convergent sequence is unique in a Hausdorff
space. Thus

{xj}∞j=1 7→ lim
j→∞

xj(2.5.4)

defines a function on C with values in X.
If E is dense in X, and (X, τ) satisfies the first countability condition, then

every element of X is the limit of a convergent sequence of elements of E. This
means that (2.5.4) maps C onto X under these conditions. It follows that

#X ≤ #C,(2.5.5)

using the axiom of choice, as in Section 2.2. This implies that

#X ≤ #EZ+ ,(2.5.6)

because C ⊆ EZ+ . If E has only finitely or countably many elements, then we
obtain that

#X ≤ #Z
Z+

+ = #2Z+ .(2.5.7)
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Note that the real line is separable with respect to the standard topology,
because Q is a countable dense subset of R. We have also seen that R is Haus-
dorff and satisfies the first countability condition with respect to the standard
topology, and that #R = #2Z+ .

2.6 Bases for topologies

Let (X, τ) be a topological space.

Definition 2.6.1 A collection B of open subsets of X is said to be a base for
the topology τ on X if for every x ∈ X and open subset V of X with x ∈ V
there is an element U of B such that x ∈ U and U ⊆ V .

If B is a base for τ and W is an open subset of X, then

W =
⋃

{U : U ∈ B, U ⊆W}.(2.6.2)

More precisely, the right side of (2.6.2) is automatically contained in W . If B
is a base for τ , then every element of W is contained in the union on the right
side of (2.6.2). Conversely, if B is a collection of open subsets of X, and if every
open subset of X can be expressed as a union of elements of B, then it is easy
to see that B is a base for τ .

If B is a base for τ and x ∈ X, then

B(x) = {U ∈ B : x ∈ U}(2.6.3)

is a local base for the topology of X at x. Conversely, if B is a collection of open
subsets of X, and for each x ∈ X, (2.6.3) is a local base for the topology of X
at x, then B is a base for τ .

Definition 2.6.4 If there is a base B for τ such that B has only finitely or
countably many elements, then we say that (X, τ) satisfies the second count-
ability condition.

Suppose that (X, τ) satisfies the second countability condition, and let B be
a base for τ with only finitely or countably many elements. If x ∈ X, then it
follows that (2.6.3) has only finitely or countably many elements as well. This
means that (X, τ) satisfies the first countability condition.

Proposition 2.6.5 Let d(·, ·) be a semimetric on X, and suppose that τ is the
topology determined on X by d(·, ·). Also let E be a dense subset of X, and let
BE be the collection of open balls in X centered at elements of E with radius
1/j for some positive integer j. Under these conditions, BE is a base for τ . If
E has only finitely or countably many elements, then BE has only finitely or
countably many elements too.
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Let x ∈ X and a positive real number r be given, and let j be a positive
integer such that 2/j < r. Because E is dense in X, there is a y ∈ E such that

d(x, y) < 1/j.(2.6.6)

This implies that x ∈ B(y, 1/j), and one can check that

B(y, 1/j) ⊆ B(x, r),(2.6.7)

using the triangle inequality. It follows that BE is a base for τ , because B(y, 1/j)
is an element of BE , by construction.

If j is a positive integer, then let BE,j be the collection of open balls in X
centered at elements of E with radius 1/j, so that

BE =

∞⋃
j=1

BE,j .(2.6.8)

If E has only finitely or countably many elements, then it is easy to see that
BE,j has only finitely or countably many elements for each j ≥ 1. This implies
that (2.6.8) has only finitely or countably many elements, by standard results
about countable sets.

Proposition 2.6.9 If (X, τ) satisfies the second countability condition, then
(X, τ) is separable.

Let B be a base for τ . If U ∈ B and U 6= ∅, then let us choose a point xU in
U , and let E be the set of points chosen in this way. It is easy to see that E is
dense in X with respect to τ . If B has only finitely or countably many elements,
then one can check that E has only finitely or countably many elements as well.

A topological space that satisfies the second countability condition is some-
times said to be completely separable.

Proposition 2.6.10 Let Y be a subset of X. If B is a base for τ , then

BY = {U ∩ Y : U ∈ B}(2.6.11)

is a base for the induced topology on Y .
In particular, if (X, τ) satisfies the second countability condition, then Y

satisfies the second countability condition with respect to the induced topology.

The first part can be verified directly from the definitions. In the second
part, if B has only finitely or countably many elements, then one can verify that
BY has only finitely or countably many elements.

Let τ+ be the topology defined on the real line as in Section 1.3, and let B+

be a base for τ+. If x ∈ R, then there is an element U(x) of B+ such that

x ∈ U(x) and U(x) ⊆ [x,+∞),(2.6.12)
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because [x,+∞) is an open set with respect to τ+. If y ∈ R and x 6= y, then it
is easy to see that

U(x) 6= U(y).(2.6.13)

If B+ has only finitely or countably many elements, then one could use this to
get that the real line has only finitely or countably many elements, which is
a contradiction. Thus B+ is uncountable, which means that (R, τ+) does not
satisfy the second countability condition. Remember that Q is a countable set
which is dense in R with respect to τ+, so that (R, τ+) is separable. It follows
that there is no metric on R for which τ+ is the corresponding topology, by
Proposition 2.6.5. Of course, there are analogous statements for the topology
τ− defined on R in Section 1.3.

Let (X, τ) be any topological space again, and let B be a base for τ . If V is
an open subset of X, then put

ϕ(V ) = {U ∈ B : U ⊆ V },(2.6.14)

which is a subset of B. This defines ϕ as a mapping from τ into the power set
P(B) of all subsets of B. If E is any subset of B, then put

ψ(E) =
⋃
U∈E

U,(2.6.15)

which is interpreted as being the empty set when E = ∅. Note that (2.6.15)
is an open subset of X, because the elements of B are open subsets of X, by
hypothesis. This defines ψ as a mapping from P(B) into τ . The composition
ψ ◦ ϕ of ϕ and ψ is the identity mapping on τ , as in (2.6.2). Thus ϕ is an
injection, and ψ is a surjection. In particular,

#τ ≤ #P(B).(2.6.16)

2.7 Continuous mappings

Let X and Y be topological spaces.

Definition 2.7.1 A mapping f from X into Y is said to be continuous at a
point x ∈ X if for every open subset V of Y with f(x) ∈ V there is an open
subset U of X such that x ∈ U and

f(U) ⊆ V.(2.7.2)

It is easy to see that this reduces to the usual definition of continuity for
mappings between metric spaces when the topologies are determined by metrics.

Proposition 2.7.3 Let (A,�) be a nonempty directed system, and let {xa}a∈A

be a net of elements of X indexed by A that converges to x in X. If a mapping
f from X into Y is continuous at x, then {f(xa)}a∈A converges to f(x), as a
net of elements of Y indexed by A.
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Let V be an open subset of Y that contains f(x), and let U be an open
subset of X that contains x and satisfies (2.7.2). Because {xa}a∈A converges to
x in X, there is a b ∈ A such that xa ∈ U for every a ∈ A with b � a. This
implies that

f(xa) ∈ f(U) ⊆ V(2.7.4)

for every a ∈ A with b � a, as desired.
Conversely, let f be a mapping from X into Y , and suppose that f is not

continuous at x ∈ X. This means that there is an open set V ⊆ Y such that
f(x) ∈ V , and for every open set U ⊆ X with x ∈ U , we have that

f(U) 6⊆ V.(2.7.5)

Let B(x) be a local base for the topology of X at x. If U ∈ B(x), then let us
choose a point xU ∈ U such that

f(xU ) 6∈ V.(2.7.6)

Remember that B(x) is a directed system with respect to the partial ordering
defined by putting U1 � U2 when U1, U2 ∈ B(x) satisfies U2 ⊆ U1. In this
situation, we have seen that {xU}U∈B(x) converges to x, as a net of elements of
X indexed by B(x). However, {f(xU )}U∈B(x) does not converge to f(x) in Y .

Suppose for the moment that there is a local base for the topology of X at
x with only finitely or countably many elements. This implies that there is a
sequence U1(x), U2(x), U3(x), . . . of open subsets of X such that x ∈ Uj(x) for
every j ≥ 1, the collection of Uj(x)’s, j ≥ 1, is a local base for the topology of
X at x, and Uj+1(x) ⊆ Uj(x) for every j ≥ 1. If V ⊆ Y is as in the previous
paragraph, then, for each positive integer j, we can choose xj ∈ Uj(x) such that

f(xj) 6∈ V(2.7.7)

It follows that {xj}∞j=1 converges to x in X, while {f(xj)}∞j=1 does not converge
to f(x) in Y .

Definition 2.7.8 A mapping f from X into Y is said to be continuous on X
if f is continuous at every point in X.

Proposition 2.7.9 A mapping f from X into Y is continuous if and only if
for every open set V ⊆ Y ,

f−1(V ) = {x ∈ X : f(x) ∈ V }(2.7.10)

is an open subset of X. This is also equivalent to the condition that for every
closed set E ⊆ Y , f−1(E) is a closed set in X.

Suppose that f is continuous, and let V be an open subset of Y . If x is an
element of f−1(V ), then one can use the continuity of f at x to get that x is
an element of the interior of f−1(V ) in X. This implies that f−1(V ) is an open
set in X, as desired.
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Conversely, let x ∈ X and an open set V ⊆ Y that contains f(x) be given.
Observe that U = f−1(V ) contains x and satisfies

f(U) = f(f−1(V )) ⊆ V.(2.7.11)

If f−1(V ) is an open set in X, then the conditions for continuity of f at x are
satisfied.

The second part of the proposition can be obtained from the first part, using
the fact that

f−1(Y \ E) = X \ f−1(E)(2.7.12)

for every E ⊆ Y .
Let us consider a few basic classes of examples of continuous mappings. If

X is equipped with the discrete topology, then any mapping f from X into
any topological space Y is continuous. Similarly, if Y is equipped with the
indiscrete topology, then any mapping f from any topological space X into Y
is continuous.

Let X be a set, and let τ , τ̃ be topologies on X. It is easy to see that the
identity mapping on X is continuous as a mapping from X equipped with τ̃
into X equipped with τ if and only if τ ⊆ τ̃ .

Let Y be a topological space, and let X be a subset of Y , equipped with
the induced topology. One can check that the obvious inclusion mapping from
X into Y , which sends every element of X to itself, is continuous as a mapping
from X into Y .

Let X be any set equipped with the indiscrete topology, and let Y be a topo-
logical space that satisfies the zeroth separation condition. If f is a continuous
mapping from X into Y , then f is constant on X.

A mapping f from a topological space X into a set Y is said to be locally
constant if for every x ∈ X there is an open subset U(x) of X such that x ∈ U(x)
and f is constant on U(x). It is easy to see that a locally constant mapping from
a topological space X into a topological space Y is continuous. If Y is equipped
with the discrete topology, then any continuous mapping from a topological
space X into Y is locally constant.

If f is a locally constant mapping from a connected topological space X
into a set Y , then one can check that f is constant on X. Conversely, if X is
not connected, then one can find a locally constant mapping on X that is not
constant.

2.8 More on continuity

Let X, Y , and Z be topological spaces.

Proposition 2.8.1 Let f be a mapping from X into Y , and let g be a mapping
from Y into Z. If f is continuous at x ∈ X, and g is continuous at f(x), then
their composition g ◦ f is continuous at x, as a mapping from X into Z. In
particular, if f is continuous on X, and g is continuous on Y , then g ◦ f is
continuous as a mapping from X into Z.
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The first part can be verified directly from the definitions. The second part
follows from the first part, and can also be obtained from the characterization
of continuity in Proposition 2.7.9.

Definition 2.8.2 A one-to-one mapping f from X onto Y is said to be a home-
omorphism if f is continuous as a mapping from X into Y , and the inverse
mapping f−1 is continuous as a mapping from Y into X.

The identity mapping on X is a homeomorphism from X onto itself. If
f is a homeomorphism from X onto Y , then the inverse mapping f−1 is a
homeomorphism from Y onto X. In this case, if g is a homeomorphism from Y
onto Z, then g ◦ f is a homeomorphism from X onto Z.

Consider the mapping f from the real line onto itself defined by f(x) = −x
for every x ∈ R. This is a homeomorphism as a mapping from the real line onto
itself with respect to the standard topology. This is also a homeomorphism
from the real line equipped with the topology τ+ defined in Section 1.3 onto R
equipped with the analogous topology τ−.

Definition 2.8.3 A mapping f from X into Y is said to be an open mapping
if for every open subset U of X, f(U) is an open subset of Y .

If f is a one-to-one mapping from X onto Y , then f is an open mapping if
and only if f−1 is continuous as a mapping from Y into X.

Proposition 2.8.4 Let f be a continuous mapping from X into Y , and let X0

be a subset of X. Under these conditions, the restriction of f to X0 is continuous
as a mapping from X0 into Y , with respect to the topology induced on X0 by the
topology on X.

This can be verified directly from the definitions. Alternatively, one can use
the fact that the restriction of f to X0 is the same as the composition of f with
the inclusion mapping from X0 into X.

Proposition 2.8.5 Let Y0 be a subset of Y , and let f be a mapping from X
into Y0. In this situation, f is continuous as a mapping from X into Y0, with
respect to the topology induced on Y0 by the topology on Y , if and only if f is
continuous as a mapping from X into Y .

This can be verified directly from the definitions too.

Proposition 2.8.6 If f is a continuous mapping from X into Y , and E is a
connected subset of X, then f(E) is connected as a subset of Y .

It is not difficult to show this directly, using the definition of connectedness in
terms of separated sets. Alternatively, one can use the previous two propositions
to reduce to the case where E = X and f(X) = Y . This also uses Proposition
1.12.7, concerning connectedness and induced topologies, in each of X and Y .
If Y is not connected, then Y can be expressed as the union of two nonempty
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disjoint open sets V1 and V2. The continuity of f implies that f−1(V1) and
f−1(V2) are open subsets of X. It is easy to see that f−1(V1) and f−1(V2) are
disjoint subsets of X whose union is X, because of the corresponding properties
of V1 and V2 in Y . We also have that f−1(V1), f−1(V2) 6= ∅, because V1, V2 6= ∅,
and f(X) = Y . This implies that X is not connected, as desired.

Definition 2.8.7 A subset E of X is said to be path connected in X if for
every pair of points x,w ∈ E there is a continuous mapping p from the closed
unit interval [0, 1] into X such that p(0) = x, p(1) = y, and

p([0, 1]) ⊆ E.(2.8.8)

More precisely, this uses the topology induced on [0, 1] by the standard topology
on R.

Proposition 2.8.9 If E is a path-connected subset of X, then E is connected
in X.

Let x,w ∈ E be given, and let p be as in the definition of path connectedness.
Remember that [0, 1] is connected as a subset of the real line, with respect to the
standard topology on R. This implies that [0, 1] is connected as a subset of itself,
with respect to the induced topology. It follows that p([0, 1]) is connected as a
subset of X. One can use this to get the connectedness of E, as in Proposition
1.15.6.

Proposition 2.8.10 If f is a continuous mapping from X into Y , and E is a
path-connected subset of X, then f(E) is path connected in Y .

This follows from the definition of path connectedness, and the fact that
compositions of continuous mappings are continuous.

Proposition 2.8.11 Let X0 be a subset of X, and let E be a subset of X0.
Under these conditions, E is path connected in X0, with respect to the topology
induced by the topology on X, if and only if E is path connected in X.

This follows from the definition of path connectedness and Proposition 2.8.5.

2.9 The product topology

Let I be a nonempty set, and let Xj be a set for each j ∈ I. The Cartesian
product of the Xj ’s, j ∈ I, is the set∏

j∈I

Xj(2.9.1)

consisting of all functions f defined on I with values in
⋃

j∈I Xj such that
f(j) ∈ Xj for every j ∈ I. If I = {1, . . . , n} for some positive integer n, then
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the Cartesian product of the Xj ’s may be denoted

n∏
j=1

Xj ,(2.9.2)

and its elements identified with n-tuples x = (x1, . . . , xn) such that xj ∈ Xj for
each j = 1, . . . , n. Similarly, if I = Z+, then the Cartesian product of the Xj ’s
may be denoted

∞∏
j=1

Xj ,(2.9.3)

and its elements identified with sequences x = {xj}∞j=1 with xj ∈ Xj for every
j ≥ 1.

Suppose for the moment that Uj and Vj are subsets of Xj for each j ∈ I.
Observe that (∏

j∈I

Uj

)
∩
(∏

j∈I

Vj

)
=

∏
j∈I

(Uj ∩ Vj).(2.9.4)

Suppose now that Xj is a topological space for every j ∈ I. A subset W
of

∏
j∈I Xj is said to be an open set with respect to the product topology if for

every f ∈W and j ∈ I there is an open subset Uj of Xj such that

f(j) ∈ Uj for every j ∈ I,(2.9.5) ∏
j∈I

Uj ⊆W,(2.9.6)

and
Uj = Xj for all but finitely many j ∈ I.(2.9.7)

Note that (2.9.5) is the same as saying that

f ∈
∏
j∈I

Uj .(2.9.8)

Of course, (2.9.7) holds automatically when I has only finitely many elements.
One can verify that this defines a topology on

∏
j∈I Xj .

Similarly, let us say that a subset W of
∏

j∈I Xj is an open set with respect
to the strong product topology if for every f ∈ W and j ∈ I there is an open
set Uj ⊆ Xj that satisfies (2.9.5) and (2.9.6). One can check that this defines
a topology on

∏
j∈I Xj as well. Of course, the strong product topology on∏

j∈I Xj is automatically at least as strong as the product topology. If I has
only finitely many elements, then the product topology and the strong product
topology on

∏
j∈I Xj are the same.

If Uj is an open subset of Xj for every j ∈ I, then it is easy to see that

U =
∏
j∈I

Uj(2.9.9)
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is an open set in
∏

j∈I Xj with respect to the strong product topology. The col-
lection of these open sets is a base for the strong product topology on

∏
j∈I Xj ,

by construction. Similarly, if Uj ⊆ Xj is an open set for every j ∈ I, and if
Uj = Xj for all but finitely many j ∈ I, then (2.9.9) is an open set with respect
to the product topology on

∏
j∈I Xj . The collection of these open sets is a base

for the product topology on
∏

j∈I Xj , by construction again.

Suppose for the moment that Xj is equipped with the discrete topology for
every j ∈ I. In this case, the strong product topology on

∏
j∈I Xj is the same

as the discrete topology. Suppose in addition that Xj 6= ∅ for every j ∈ I,
and that Xj has at least two elements for infinitely many j ∈ I. Under these
conditions, one can check that the product topology on

∏
j∈I Xj is not the

discrete topology.

If n is a positive integer, then the space Rn of n-tuples of real numbers
is the same as the nth Cartesian power of R. The product topology on Rn

corresponding to the standard topology on the real line may be considered as
the standard topology on Rn.

2.10 Coordinate mappings

Let I be a nonempty set again, let Xj be a set for each j ∈ I, and let

X =
∏
j∈I

Xj(2.10.1)

be the corresponding Cartesian product. If l ∈ I, then let pl be the lth coordinate
mapping from X into Xl, which is defined by

pl(f) = f(l)(2.10.2)

for every f ∈ X. Let Wl be a subset of Xl, and for each j ∈ I, let W̃j,l be the
subset of Xj defined by

W̃j,l = Wl when j = l(2.10.3)

= Xj when j 6= l.

Observe that

p−1
l (Wl) =

∏
j∈I

W̃j,l.(2.10.4)

Similarly, let Uj be a subset of Xj for every j ∈ I, and put U =
∏

j∈I Uj . If
Uj 6= ∅ for every j ∈ I, then

pl(U) = Ul(2.10.5)

for every l ∈ I.

Suppose now that Xj is a topological space for each j ∈ I.
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Proposition 2.10.6 If l ∈ I, then pl is a continuous mapping from X into Xl

with respect to the product topology on X, and hence with respect to the strong
product topology on X. We also have that pl is an open mapping from X into
Xl with respect to the strong product topology on X, and hence with respect to
the product topology.

If Wl is an open subset of Xl for some l ∈ I, then (2.10.4) is an open set
in X with respect to the product topology. This implies the first part of the
proposition. The second part can be obtained from (2.10.5).

Corollary 2.10.7 If Ej is a closed set in Xj for each j ∈ I, then E =
∏

j∈I Ej

is a closed set in X with respect to the product topology, and hence with respect
to the strong product topology.

If l ∈ I, then p−1
l (El) is a closed set in X with respect to the product

topology, by the previous proposition. This implies that

E =
⋂
l∈I

p−1
l (El)(2.10.8)

is a closed set in X with respect to the product topology as well. Alternatively,
one can verify that X \ E is an open set with respect to the product topology
on X.

Proposition 2.10.9 Let (A,�) be a nonempty directed system, let {fa}a∈A be
a net of elements of X indexed by A, and let f be another element of X. Under
these conditions, {fa}a∈A converges to f with respect to the product topology on
X if and only if for each l ∈ I, {fa(l)}a∈A converges to f(l) as a net of elements
of Xl.

The “only if” part of the proposition follows from the fact that pl is contin-
uous with respect to the product topology on X for every l ∈ I. The “if” part
can be verified directly from the definitions.

Of course, if {fa}a∈A converges to f with respect to the strong product topol-
ogy on X, then {fa}a∈A converges to f with respect to the product topology
on X.

Proposition 2.10.10 Let Aj be a subset of Xj for each j ∈ I, and let Aj be
the closure of Aj in Xj for every j ∈ I, as usual. The closure of A =

∏
j∈I Aj

in X with respect to the product topology or the strong product topology is equal
to

∏
j∈I Aj.

This can be verified directly from the definitions. More precisely, the closure
of A with respect to the strong product topology on X is contained in the closure
of A with respect to the product topology on X. One can check that the closure
of A with respect to the product topology on X is contained in

∏
j∈I Aj , and

that
∏

j∈I AJ is contained in the closure of A with respect to the strong product
topology on X.
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Proposition 2.10.11 Let k ∈ {0, 1, 2, 2 1
2} be given, and suppose that Xj sat-

isfies the kth separation condition for every j ∈ I. Under these conditions, X
satisfies the kth separation condition with respect to the product topology, and
hence with respect to the strong product topology.

If f and g are distinct elements of X, then there is an l ∈ I such that
f(l) 6= g(l). In this situation, the kth separation condition for f and g in X can
be obtained from the analogous condition for f(l) and g(l) in Xl.

Proposition 2.10.12 If Xj is regular in the strict sense for every j ∈ I, then
X is regular in the strict sense with respect to the product topology and the strong
product topology.

Let f ∈ X be given, and let W be an open subset of X with respect to the
product topology or strong product topology, with f ∈ W . It follows that for
every j ∈ I there is an open set Vj ⊆ Xj such that f(j) ∈ Vj ,

V =
∏
j∈I

Vj ⊆W,(2.10.13)

and Vj = Xj for all but finitely many j ∈ I in the case of the product topology.
If j ∈ I, there is an open set Uj ⊆ Xj such that

f(j) ∈ Uj and Uj ⊆ Vj ,(2.10.14)

because Xj is regular in the strict sense. We may as well take

Uj = Xj when Vj = Xj ,(2.10.15)

so that Uj = Xj for all but finitely many j ∈ I in the case of the product
topology. Thus U =

∏
j∈I Uj is an open set in X with respect to the product

topology or strong product topology, as appropriate. Of course, f ∈ U , by
construction. The closure of U with respect to the product topology or strong
product topology is equal to

∏
j∈I Uj , as before. This is contained in V , by

construction, and hence in W , as desired.

Corollary 2.10.16 If Xj is regular in the strong sense for every j ∈ I, then X
is regular in the strong sense with respect to the product topology and the strong
product topology.

2.11 Bases and finite products

Let X1, . . . , Xn be finitely many topological spaces, and let X =
∏n

j=1Xj be
their Cartesian product, equipped with the product topology. Also let

x = (x1, . . . , xn) ∈ X(2.11.1)
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be given. Suppose that for each j = 1, . . . , n, Bj(xj) is a local base for the
topology of Xj at xj . Put

B(x) =

{ n∏
j=1

Uj : Uj ∈ Bj(xj) for each j = 1, . . . , n

}
.(2.11.2)

It is easy to see that this is a local base for the product topology on X at x.
Suppose that for each j = 1, . . . , n, Bj(xj) has only finitely or countably

many elements. We would like to verify that (2.11.2) has only finitely or count-
ably many elements as well. In this case,

n∏
j=1

Bj(xj)(2.11.3)

has only finitely or countably many elements, by standard results. There is
an obvious mapping from (2.11.3) onto (2.11.2), which sends (U1, . . . , Un) in
(2.11.3) to

∏n
j=1 Uj in (2.11.2). One can use this to show that (2.11.2) has

only finitely or countably many elements, because of the analogous property for
(2.11.3).

Alternatively, suppose again that for each j = 1, . . . , n, there is a local base
for the topology of Xj at xj with only finitely or countably many elements.
This means that for each j = 1, . . . , n there is a sequence {Uj,l(xj)}∞l=1 of open
subsets of Xj such that xj ∈ Uj,l(xj) for every l ≥ 1, and the collection of
Uj,l(xj)’s, l ≥ 1, is a local base for the topology of Xj at xj . We may also ask
that

Uj,l+1(xj) ⊆ Uj,l(xj)(2.11.4)

for each j = 1, . . . , n and l ≥ 1, since otherwise we can replace Uj,l(xj) with⋂l
k=1 Uj,k(xj) for every j = 1, . . . , n and l ≥ 1, as before. Put

Ul(x) =

n∏
j=1

Uj,l(xj)(2.11.5)

for each l ∈ Z+, so that Ul(x) is an open subset of X with respect to the product
topology, and x ∈ Ul(x). One can check that the collection of Ul(x)’s, l ∈ Z+,
is a local base for the product topology on X at x.

Similarly, let Bj be a base for the topology of Xj for each j = 1, . . . , n. It is
easy to see that

B =

{ n∏
j=1

Uj : Uj ∈ Bj for each j = 1, . . . , n

}
(2.11.6)

is a base for the product topology on X. If Bj has only finitely or countably
many elements for each j = 1, . . . , n, then (2.11.6) has only finitely or countably
many elements as well. More precisely,

n∏
j=1

Bj(2.11.7)
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has only finitely or countably many elements in this situation, as before. We
can map (2.11.7) onto (2.11.6), by sending (U1, . . . , Un) in (2.11.7) to

∏n
j=1 Uj

in (2.11.6). One can use this and the fact that (2.11.7) has only finitely or
countably many elements to get that (2.11.6) has only finitely or countably
many elements, as before.

2.12 Bases and countable products

Let X1, X2, X3, . . . be an infinite sequence of topological spaces, and let X =∏∞
j=1Xj be their Cartesian product, equipped with the product topology. Also

let x = {xj}∞j=1 ∈ X be given, and let Bj(xj) be a local base for the topology
of Xj at xj for each j ∈ Z+. If n is a positive integer, then put

Bn(x) =

{ ∞∏
j=1

Uj : Uj ∈ Bj(xj) for each j = 1, . . . , n,(2.12.1)

and Uj = Xj when j > n

}
.

Note that every element of Bn(x) is an open subset of X with respect to the
product topology. One can check that

B(x) =

∞⋃
n=1

Bn(x)(2.12.2)

is a local base for the product topology on X at x.
Suppose that for every j ∈ Z+, Bj(xj) has only finitely or countably many

elements. This implies that
n∏

j=1

Bj(xj)(2.12.3)

has only finitely or countably many elements for each n ∈ Z+, by standard
arguments, as before. Let (U1, . . . , Un) be an element of (2.12.3), and put Uj =
Xj when j > n. Under these conditions,

∏∞
j=1 Uj is an element of (2.12.1).

This defines a mapping from (2.12.3) onto (2.12.1). One can use this and the
fact that (2.12.3) has only finitely or countably many elements to obtain that
(2.12.1) has only finitely or countably many elements for each n ∈ Z+. It follows
that (2.12.2) has only finitely or countably many elements as well.

Alternatively, suppose again that for each positive integer j, there is a local
base for the topology of Xj at xj with only finitely or countably many elements.
This means that for each j ∈ Z+ there is a sequence {Uj,l(xj)}∞l=1 of open subsets
of Xj such that xj ∈ Uj,l(xj) for every l ≥ 1, and the collection of Uj,l(xj)’s,
l ≥ 1, is a local base for the topology of Xj at xj . We may also ask that
Uj,l+1(xj) ⊆ Uj,l(xj) for every j, l ≥ 1, as before. If n ∈ Z+, then put

Vj,n(xj) = Uj,n(xj) for j = 1, . . . , n(2.12.4)

= Xj when j > n.
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Using this, we put

Vn(x) =

∞∏
j=1

Vj,n(xj).(2.12.5)

This is an open subset of X with respect to the product topology, and x ∈ Vn(x).
One can check that the collection of Vn(x)’s, n ∈ Z+, is a local base for the
product topology on X at x.

Now let Bj be a base for the topology of Xj for every positive integer j. If
n ∈ Z+, then put

Bn =

{ ∞∏
j=1

Uj : Uj ∈ Bj for each j = 1, . . . , n(2.12.6)

and Uj = Xj when j > n

}
.

Every element of Bn is an open subset of X with respect to the product topology,
by construction. It is not difficult to verify that

B =

∞⋃
n=1

Bn(2.12.7)

is a base for the product topology on X. Suppose that Bj has only finitely or
countably many elements for each j ∈ Z+. This implies that

∏n
j=1 Bj has only

finitely or countably many elements for each positive integer n, as usual. One
can use this to check that (2.12.6) has only finitely or countably many elements
for every n ∈ Z+, as before. This implies that (2.12.7) has only finitely or
countably many elements too.

Let I be a nonempty set, let Xj be a topological space for each j ∈ I, and
let X =

∏
j∈I Xj be the Cartesian product of the Xj ’s. Also let f ∈ X be given,

and let Bj(f(j)) be a local base for the topology of Xj at f(j) for each j ∈ I.
Under these conditions, one can check that

B(f) =

{∏
j∈I

Uj : Uj ∈ Bj(f(j)) for each j ∈ I

}
(2.12.8)

is a local base for the strong product topology on X at f .
If Bj(f(j)) has only finitely many elements for some j ∈ I, then one can re-

duce to the case where Bj(f(j)) has only one element, because the interesection
of finitely many open subsets of Xj is an open set too. Note that∏

j∈I

Bj(f(j))(2.12.9)

is uncountable when Bj(f(j)) has at least two elements for infinitely many j ∈ I.
Similarly, if Bj is a base for the topology of Xj for each j ∈ I, then one can

verify that

B =

{∏
j∈I

Uj : Uj ∈ Bj for each j ∈ I

}
(2.12.10)
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is a base for the strong product topology on X. Suppose that Xj 6= ∅ for each
j ∈ I, so that Bj 6= ∅ for each j ∈ I. If Bj has at least two elements for infinitely
many j ∈ I, then ∏

j∈I

Bj(2.12.11)

is uncountable.

2.13 Finite products and semimetrics

Let n be a positive integer, and let Xj be a set with a semimetric dj(·, ·) for
each j = 1, . . . , n. Put X =

∏n
j=1Xj . If x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X,

then one can check that

d(x, y) = max
1≤j≤n

dj(xj , yj)(2.13.1)

defines a semimetric on X. If dj(·, ·) is a metric on Xj for every j = 1, . . . , n,
then (2.13.1) is a metric on X.

Let
Bj(xj , r) = {wj ∈ Xj : dj(xj , wj) < r}(2.13.2)

be the open ball in Xj centered at xj ∈ Xj with radius r > 0 with respect to
dj(·, ·) for each j = 1, . . . , n, and let

B(x, r) = {w ∈ X : d(x,w) < r}(2.13.3)

be the open ball in X centered at x ∈ X with radius r > 0 with respect to
d(·, ·). It is easy to see that

B(x, r) =

n∏
j=1

Bj(xj , r)(2.13.4)

for every x ∈ X and r > 0, directly from the definitions. More precisely, w ∈ X
satisfies d(x,w) < r if and only if dj(xj , wj) < r for each j = 1, . . . , n.

Let us use the term “product topology” to refer to the product topology on
X corresponding to the topologies determined on X1, . . . , Xn by the semimetrics
d1, . . . , dn, respectively. It is well known and not difficult to show that this is the
same as the topology determined on X by the semimetric (2.13.1). Remember
that an open ball is an open set with respect to the topology determined by the
corresponding semimetric. This implies that (2.13.4) is an open set in X with
respect to the product topology for every x ∈ X and r > 0. One can use this
to check that every open set in X with respect to the topology determined by
the semimetric (2.13.1) is also an open set with respect to the product topology.
If W ⊆ X is an open set with respect to the product topology, then one can
verify that W is an open set with respect to the topology determined by the
semimetric (2.13.1). More precisely, if x ∈ W , then one can find an r > 0 such
that (2.13.4) is contained in W .
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It is easy to see that

d̃(x, y) =

n∑
j=1

dj(xj , yj)(2.13.5)

defines a semimetric on X as well. If dj(·, ·) is a metric on Xj for each j =
1, . . . , n, then (2.13.5) is a metric on X, as before. Observe that

d(x, y) ≤ d̃(x, y) ≤ nd(x, y)(2.13.6)

for every x, y ∈ X. Using this, one can check that the topologies determined on
X by (2.13.1) and (2.13.5) are the same.

Similarly, put

d̂(x, y) =
( n∑

j=1

dj(xj , yj)
2
)1/2

(2.13.7)

for each x, y ∈ X, using the nonnegative square root on the right side. One
can check that this satisfies the triangle inequality on X, using the triangle
inequality for the standard Euclidean norm on Rn. Using this, it is easy to see
that (2.13.7) is a semimetric on X, which is a metric on X when dj(·, ·) is a
metric on Xj for each j = 1, . . . , n. One can also verify that

d(x, y) ≤ d̂(x, y) ≤ n1/2 d(x, y)(2.13.8)

for every x, y ∈ X. This implies that the topologies determined on X by (2.13.1)
and (2.13.7) are the same, as before.

2.14 Truncating semimetrics

Let X be a set, let d(x, y) be a semimetric on X, and let t be a positive real
number. If x, y ∈ X, then put

dt(x, y) = min(d(x, y), t).(2.14.1)

One can check that this defines a semimetric on X. If d(x, y) is a metric on X,
then (2.14.1) is a metric on X too.

If x ∈ X and r is a positive real number, then let

Bd(x, r) = {w ∈ X : d(x,w) < r}(2.14.2)

be the open ball in X centered at x with radius r with respect to d(·, ·). Similarly,
let

Bdt
(x, r) = {w ∈ X : dt(x,w) < r}(2.14.3)

be the open ball in X centered at x with radius r with respect to (2.14.1).
Observe that

Bdt
(x, r) = Bd(x, r) when r ≤ t(2.14.4)

= X when r > t.

Using this, one can check that the topologies determined on X by d(·, ·) and
(2.14.1) are the same.
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2.15 Countable products and semimetrics

Let X1, X2, X3, . . . be a sequence of sets, let dj(·, ·) be a semimetric on Xj for
each j ≥ 1, and put X =

∏∞
j=1Xj . Put

d′j(xj , yj) = min(dj(xj , yj), 1/j)(2.15.1)

for each j ∈ Z+ and xj , yj ∈ Xj . As in the previous section, for every j ∈ Z+,
(2.15.1) defines a semimetric on Xj that determines the same topology on Xj

as dj(·, ·). If dj(·, ·) is a metric on Xj , then (2.15.1) is a metric on Xj too, as
before.

If x = {xj}∞j=1, y = {yj}∞j=1 ∈ X, then put

d(x, y) = max
j∈Z+

d′j(xj , yj).(2.15.2)

Of course, this is equal to 0 when d′j(xj , yj) = 0 for every j ≥ 1, and in particular
when x = y. Otherwise, suppose that there is a positive integer j0 such that
d′j0(xj0 , yj0) > 0. In this case,

d′j(xj , yj) ≤ 1/j < dj0(xj0 , yj0)(2.15.3)

for all but finitely many j ∈ Z+. This means that the right side of (2.15.2) re-
duces to the maximum of finitely many terms, so that the maximum is attained.

One can check that (2.15.2) defines a semimetric on X. If dj(·, ·) is a metric
on Xj for each j ≥ 1, then (2.15.2) is a metric on X as well. If j ∈ Z+, xj ∈ Xj ,
and r is a positive real number, then let

Bj(xj , r) = {wj ∈ Xj : dj(xj , wj) < r}(2.15.4)

and
B′

j(xj , r) = {wj ∈ Xj : d′j(xj , wj) < r}(2.15.5)

be the open balls in Xj centered at xj with radius r with respect to dj(·, ·) and
(2.15.1), respectively. Thus

B′
j(xj , r) = Bj(xj , r) when r ≤ 1/j(2.15.6)

= Xj when r > 1/j,

as in (2.14.4). Also let

B(x, r) = {w ∈ X : d(x,w) < r}(2.15.7)

be the open ball in X centered at x ∈ X with radius r > 0 with respect to
(2.15.2).

One can verify that

B(x, r) =

∞∏
j=1

B′
j(xj , r)(2.15.8)
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for every x ∈ X and r > 0. This is the same as saying that w ∈ X satisfies
d(x,w) < r if and only if d′j(xj , wj) < r for every j ∈ Z+. This uses the fact
that the maximum is attained on the right side of (2.15.2).

Let us use the term “product topology” to refer to the product topology on
X corresponding to the topology determined on Xj by dj(·, ·) for each j ∈ Z+.
Observe that (2.15.8) is an open set in X with respect to the product topology
for every x ∈ X and r > 0, because of (2.15.6). One can use this to check
that every open set in X with respect to (2.15.2) is an open set with respect
to the product topology. If W is an open subset of X with respect to the
product topology and x ∈ W , then it is not too difficult to find an r > 0 such
that (2.15.8) is contained in W , so that W is an open set with respect to the
topology determined by (2.15.2). Thus the product topology on X is the same
as the topology determined on X by (2.15.2).



Chapter 3

Compactness and related
topics

3.1 Compact sets

Let X be a topological space, and let K be a subset of X.

Definition 3.1.1 If A is a nonempty set, Uα is an open subset of X for each
α ∈ A, and

K ⊆
⋃
α∈A

Uα,(3.1.2)

then {Uα}α∈A is said to be an open covering of K in X. We say that K is
compact in X if every open covering of K can be reduced to a finite subcovering.
This means that for every open covering {Uα}α∈A of K in X there are finitely
many indices α1, . . . , αn ∈ A such that

K ⊆
n⋃

j=1

Uαj
.(3.1.3)

If K has only finitely many elements, then it is easy to see that K is compact.
If X is equipped with the discrete topology and K ⊆ X is compact, then K
has only finitely many elements. This follows by covering K with subsets of X
with only one element, which are open sets in this case. If a, b are real numbers
with a ≤ b, then it is well known that the closed interval [a, b] in the real line is
compact, with respect to the standard topology on R. If X is any set equipped
with the indiscrete topology, then every subset of X is compact.

Similarly, let X be any set equipped with the cofinite topology. This means
that U ⊆ X is an open set when U = ∅ or X \ U has only finitely many
elements. We also have that every subset K of X is compact in this situation.
More precisely, let {Uα}α∈A be any open covering of K in X. We may as
well suppose that K 6= ∅, which implies that there is an α0 ∈ A such that

49



50 CHAPTER 3. COMPACTNESS AND RELATED TOPICS

Uα0 6= ∅. It follows that Uα0 contains all but finitely many elements of X, and
in particular that Uα0 contains all but finitely many elements of K. The finitely
many elements of K \ Uα0

can easily be covered by finitely many Uα’s, so that
K can be covered by finitely many Uα’s, as desired.

Let X be any topological space again.

Proposition 3.1.4 Let Y be a subset of X, and let K be a subset of Y . Under
these conditions, K is compact as a subset of X if and only if K is compact as
a subset of Y , with respect to the induced topology.

This can be verified directly from the definitions.

Proposition 3.1.5 If K is a compact subset of X, and E is a closed set in X,
then K ∩ E is compact in X as well.

To see this, let {Uα}α∈A be an arbitrary open covering of K ∩E in X. Note
that X \ E is an open set in X, because E is a closed set. We also have that

K = (K ∩ E) ∪ (K \ E) ⊆
( ⋃

α∈A

Uα

)
∪ (X \ E).(3.1.6)

Thus the collection of Uα’s, α ∈ A, together with X \ E, forms an open cov-
ering of K in X. Because K is compact in X, there are finitely many indices
α1, . . . , αn ∈ A such that

K ⊆
( n⋃

j=1

Uαj

)
∪ (X \ E).(3.1.7)

This implies that

K ∩ E ⊆
n⋃

j=1

Uαj
,(3.1.8)

as desired.

Proposition 3.1.9 If {xj}∞j=1 is a sequence of elements of X that converges to
an element x of X, then

K = {xj : j ∈ Z+} ∪ {x}(3.1.10)

is a compact set in X.

This can be verified directly from the definitions.

3.2 Compactness in Hausdorff spaces

Let X be a topological space.
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Proposition 3.2.1 If X is Hausdorff, K is a compact subset of X, and x is
an element of X not in K, then there are disjoint open subsets U and V of X
such that x ∈ U and K ⊆ V .

If y ∈ K, then x 6= y, and hence there are disjoint open sets U(y), V (y) ⊆ X
such that x ∈ U(y) and y ∈ V (y). The collection of open sets V (y) of this type,
with y ∈ K, forms an open covering of K in X. Because K is compact, there
are finitely many elements y1, . . . , yn of K such that

K ⊆
n⋃

j=1

V (yj).(3.2.2)

Put

U =

n⋂
j=1

U(yj), V =

n⋃
j=1

V (yj),(3.2.3)

which are open subsets of X. By construction, x ∈ U and K ⊆ V . It is easy to
see that

U ∩ V = ∅,(3.2.4)

because U(yj) ∩ V (yj) = ∅ for each j = 1, . . . , n. In particular,

U ⊆ X \K,(3.2.5)

because K ⊆ V .

Corollary 3.2.6 If X is Hausdorff, and K is a compact subset of X, then K
is a closed set in X.

Indeed, the previous argument shows that every element of X \K is in the
interior of X \K.

Proposition 3.2.7 If X is Hausdorff, and H, K are disjoint compact subsets
of X, then there are disjoint open subsets U1, V1 of X such that H ⊆ U1 and
K ⊆ V1.

If x ∈ H, then x ∈ X \ K, and so there are disjoint open subsets U1(x),
V1(x) of X such that x ∈ U1(x) and K ⊆ V1(x), as before. The collection of
open sets U1(x) of this type, with x ∈ H, forms an open covering of H in X.
Thus there are finitely many elements x1, . . . , xm of H such that

H ⊆
m⋃
l=1

U1(xl),(3.2.8)

because H is compact. Put

U1 =

m⋃
l=1

U1(xl), V1 =

m⋂
l=1

V1(xl),(3.2.9)
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which are open subsets of X. Observe that H ⊆ U1 and K ⊆ V1, by construc-
tion. One can check that

U1 ∩ V1 = ∅,(3.2.10)

because U1(xl) ∩ V1(xl) = ∅ for every l = 1, . . . ,m.

Corollary 3.2.11 If X is Hausdorff and compact as a subset of itself, then X
is normal in the strong sense.

This follows from the previous proposition and the fact that closed subsets
of X are compact, by Proposition 3.1.5.

Proposition 3.2.12 If X is regular in the strict sense, K is a compact subset
of X, E is a closed set in X, and

K ∩ E = ∅,(3.2.13)

then there are disjoint open subsets U0, V0 of X such that K ⊆ U0 and E ⊆ V0.

This can be shown using the same type of argument as for Proposition 3.2.7.

Corollary 3.2.14 If X is regular in the strict sense, and X is compact as a
subset of itself, then X is normal in the strict sense.

This uses the fact that closed subsets of X are compact when X is compact,
as before.

3.3 Continuity and compactness

Let X and Y be topological spaces.

Theorem 3.3.1 If f is a continuous mapping from X into Y , and K is a
compact subset of X, then f(K) is a compact subset of Y .

Let {Vα}α∈A be an arbitrary open covering of f(K) in Y . Note that f−1(Vα)
is an open set in X for each α ∈ A, because f is continuous. It is easy to see
that

K ⊆
⋃
α∈A

f−1(Vα),(3.3.2)

because f(K) ⊆
⋃

α∈A Vα, by hypothesis. Thus {f−1(Vα)}α∈A is an open
covering of K in X. If K is compact, then there are finitely many indices
α1, . . . , αn ∈ A such that

K ⊆
n⋃

j=1

f−1(Vαj
).(3.3.3)

This implies that

f(K) ⊆
n⋃

j=1

Vαj
,(3.3.4)

as desired.
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Corollary 3.3.5 (Extreme value theorem) Suppose that f is a continuous
real-valued function on X, with respect to the standard topology on R. If K is a
nonempty compact subset of X, then f attains its maximum and minimum on
K.

In this case, f(K) is a closed set in R, as in the previous section, because
the real line is Hausdorff with respect to the standard topology. It is well known
and not difficult to show that compact subsets of the real line are bounded too.
If K 6= ∅, then f(K) 6= ∅, and one can use the previous statements to show that
f(K) contains its supremum and infimum in R, as desired.

Proposition 3.3.6 If X is compact, Y is Hausdorff, and f is a one-to-one
continuous mapping from X onto Y , then f is a homeomorphism.

Let g = f−1 be the inverse of f , as a mapping from Y onto X. We have
seen previously that g is continuous if and only if for every closed set E ⊆ X,
g−1(E) is a closed set in Y . In this situation, this means that for every closed
set E ⊆ X, f(E) is a closed set in Y .

If X is compact, and E ⊆ X is a closed set, then it follows that E is
compact, as in Proposition 3.1.5. In this case, we get that f(E) is compact
in Y , as before. If Y is Hausdorff, then f(E) is a closed set in Y , as in the
previous section. This implies that g = f−1 is continuous in this situation, as
in the preceding paragraph.

3.4 The limit point property

Let X be a topological space.

Definition 3.4.1 A subset K of X is said to have the limit point property if
for every subset L of K such that L has infinitely many elements, there is an
element x of K that is a limit point of L in X. Similarly, let us say that K has
the strong limit point property if for every infinite subset L of K there is an
x ∈ K such that x is a strong limit point of L in X.

If K has the strong limit point property, then K automatically has the limit
point property. If K has the limit point property, and if X satisfies the first
separation condition, then K has the strong limit point property.

Proposition 3.4.2 If K is a compact subset of X, then K has the strong limit
point property.

To see this, let an infinite subset L of K be given. Suppose for the sake of
a contradiction that L does not have a strong limit point in K. This means
that for each x ∈ K there is an open set U(x) ⊆ X such that x ∈ U(x) and
U(x)∩L has only finitely many elements. Thus K can be covered by open sets
of this type. If K is compact, then K can be covered by finitely many open
sets of this type. This implies that L has only finitely many elements, because
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L ⊆ K. This contradicts the hypothesis that L have infinitely many elements,
as desired.

Proposition 3.4.3 Suppose that K ⊆ X has the strong limit point property. If
V1, V2, V3, . . . is an infinite sequence of open subsets of X such that

K ⊆
∞⋃
j=1

Vj ,(3.4.4)

then there is a positive integer n such that

K ⊆
n⋃

j=1

Vj .(3.4.5)

Suppose for the sake of a contradiction that for each positive integer n,

K 6⊆
n⋃

j=1

Vj .(3.4.6)

Thus, for every n ∈ Z+, we can choose a point

xn ∈ K \
( n⋃

j=1

Vj

)
.(3.4.7)

Let L be the set of points xn, n ∈ Z+, that have been chosen in this way. Let
us check that L has infinitely many elements. Otherwise, there is an element y
of K such that y = xn for infinitely many n ∈ Z+. Note that y ∈ Vj0 for some
j0 ∈ Z+, because y ∈ K. This implies that xn 6= y when n ≥ j0, by the way
that xn was chosen. This contradicts the hypothesis that y = xn for infinitely
many n, as desired.

Thus L has infinitely many elements. If K has the strong limit point prop-
erty, then it follows that there is an x ∈ K such that x is a strong limit point
of L in X. In particular, x ∈ Vj1 for some j1 ∈ Z+, because x ∈ K. This
implies that Vj1 contains infinitely many elements of L, because x is a strong
limit point of L in X, and Vj1 is an open set in X. This means that xn ∈ Vj1
for infinitely many n ∈ Z+, by the way that L was chosen. However, if n ≥ j1,
then xn 6∈ Vj1 , by construction. This is a contradiction, so that (3.4.5) holds for
some n ∈ Z+.

Proposition 3.4.8 Let K be a subset of a subset Y of X. Under these con-
ditions, K has the limit point property as a subset of X if and only if K has
the limit point property as a subset of Y , with respect to the induced topology.
Similarly, K has the strong limit point property as a subset of X if and only if
K has the strong limit point property in Y , with respect to the induced topology.

This is easy to see, directly from the definitions.
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Proposition 3.4.9 Let E be a closed set in X. If K ⊆ X has the limit point
property, then K ∩E has the limit point property too. If K has the strong limit
point property, then K ∩ E has the strong limit point property as well.

This follows from the fact that E contains all of its limit points in X.

Proposition 3.4.10 Let f be a continuous mapping from X into another topo-
logical space Y . If K ⊆ X has the strong limit point property, then f(K) has
the strong limit point property in Y .

Let L be an infinite subset of f(K). If y ∈ L, then choose an element w of
K such that y = f(w), and let L0 be the set of points in K chosen in this way.
Thus L0 is an infinite subset of K, which has a strong limit point x in K, by
hypothesis. One can check that f(x) is a strong limit point of L in Y , using
the continuity of f at x. This also uses the fact that f is injective on L0, by
construction.

3.5 Sequential compactness

Let {xj}∞j=1 be a sequence of elements of some set X. Also let {jl}∞l=1 be
a strictly increasing sequence of positive integers, so that jl < jl+1 for every
l ∈ Z+. Under these conditions, {xjl}∞l=1 is called a subsequence of {xj}∞j=1.
Now let X be a topological space. If {xj}∞j=1 converges to an element x of X,
then it is easy to see that every subsequence {xjl}∞l=1 of {xj}∞j=1 converges to x
in X too.

Definition 3.5.1 A subset K of X is said to be sequentially compact if for
every sequence {xj}∞j=1 of elements of K there is a subsequence {xjl}∞l=1 of
{xj}∞j=1 that converges to an element x of K.

Proposition 3.5.2 If K ⊆ X is sequentially compact, then K has the strong
limit point property.

Let L be an infinite subset of K. Because L has infinitely many elements,
we can find a sequence {xj}∞j=1 of distinct elements of L. If K is sequentially
compact, then there is a subsequence {xjl}∞l=1 of {xj}∞j=1 that converges to an
element x of K. If U is an open set in X that contains x, then it follows that
xjl ∈ U for all but finitely many l ≥ 1. This implies that x is a strong limit
point of L in X, because the terms of the sequence are distinct elements of L.

Proposition 3.5.3 If K ⊆ X has the strong limit point property, and if X
satisfies the first countability condition, then K is sequentially compact.

Let {xj}∞j=1 be a sequence of elements of K, and let

L = {xj : j ∈ Z+}(3.5.4)
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be the subset of K consisting of the terms in the sequence. If L has only finitely
many elements, then there is an x ∈ K such that xj = x for infinitely many
j ∈ Z+. This means that there is a subsequence {xjl}∞l=1 of {xj}∞j=1 such that
xjl = x for every l ≥ 1. Of course, {xjl}∞l=1 converges to x in X in this case.

Suppose now that L has infinitely many elements. If K has the strong limit
point property, then there is an element x of K that is a strong limit point of
L in X. Thus, if V is an open subset of X that contains x, then V contains
infinitely many elements of L. This implies that

xj ∈ V(3.5.5)

for infinitely many positive integers j.
If X satisfies the first countability condition, then there is a local base B(x)

for the topology of X at the point x mentioned in the preceding paragraph such
that B(x) has only finitely or countably many elements. Equivalently, there is a
sequence U1(x), U2(x), U3(x), . . . of open subsets of X that contain x and form
a local base for the topology of X at x. We may also suppose that

Un+1(x) ⊆ Un(x)(3.5.6)

for every n ≥ 1, by replacing Un(x) with U1(x) ∩ · · · ∩ Un(x) for every n, as
usual.

Using (3.5.5) with V = U1(x), we can get a positive integer j1 such that
xj1 ∈ U1(x). Suppose that jl ∈ Z+ has been chosen for some positive integer
l. Using (3.5.5) with V = Ul+1(x), we get that xj ∈ Ul+1(x) for infinitely
many j ∈ Z+. In particular, we can choose jl+1 ∈ Z+ such that jl+1 > jl and
xjl+1

∈ Ul+1(x).
This leads to a subsequence {xjl}∞l=1 of {xj}∞j=1 such that

xjl ∈ Ul(x)(3.5.7)

for every l ∈ Z+. It follows that {xjl}∞l=1 converges to x in X, as desired.

Proposition 3.5.8 Suppose that K ⊆ Y ⊆ X. Under these conditions, K is
sequentially compact as a subset of X if and only if K is sequentially compact
as a subset of Y , with respect to the induced topology.

This is easy to verify, using the analogous statement for convergence of
sequences in Y .

Definition 3.5.9 A subset E of X is said to be sequentially closed if for every
sequence {xj}∞j=1 of elements of E that converges to an element x of X, we have
that x ∈ E.

It is easy to see that closed subsets of X are sequentially closed. If X satisfies
the first countability condition, then sequentially closed subsets of X are closed
sets.
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Proposition 3.5.10 If K ⊆ X is sequentially compact and E ⊆ X is sequen-
tially closed, then K ∩ E is sequentially compact in X.

This can be verified directly from the definitions.

Proposition 3.5.11 If E ⊆ X is sequentially compact, and X is Hausdorff,
then E is sequentially closed in X.

Indeed, let {xj}∞j=1 be a sequence of elements of E that converges to an
element x of X. Because E is sequentially compact in X, there is a subsequence
{xjl}∞l=1 of {xj}∞j=1 that converges to an element x′ of E. Note that {xjl}∞l=1

converges to x too, as before. If X is Hausdorff, then x = x′, so that x ∈ E, as
desired.

Let Y be another topological space.

Definition 3.5.12 A mapping f from X into Y is said to be sequentially con-
tinuous at a point x ∈ X if for every sequence {xj}∞j=1 of elements of X that
converges to x, {f(xj)}∞j=1 converges to f(x) in Y . If f is sequentially con-
tinuous at every point in X, then f is said to be sequentially continuous on
X.

If f is continuous at x in the usual sense, then f is sequentially continuous
at x. The converse holds when there is a local base for the topology of X at x
with only finitely or countably many elements.

Proposition 3.5.13 If f is a sequentially continuous mapping from X into Y ,
and K ⊆ X is sequentially compact, then f(K) is sequentially compact in Y .

Let {yj}∞j=1 be a sequence of elements of f(K). If j is a positive integer, then
let us choose an element xj of K such that yj = f(xj). Because K is sequentially
compact, there is a subsequence {xjl}∞l=1 of {xj}∞j=1 that converges to an element
x of K. This implies that {f(xjl)}∞l=1 converges to f(x) in Y , because f is
sequentially continuous at x, by hypothesis. Thus {yjl}∞l=1 = {f(xjl)}∞l=1 is a
subsequence of {yj}∞j=1 that converges to y = f(x) ∈ f(K) in Y , as desired.

3.6 Countable compactness

Let X be a topological space, and let K be a subset of X.

Definition 3.6.1 We say that K is countably compact in X if for every se-
quence U1, U2, U3, . . . of open subsets of X such that

K ⊆
∞⋃
j=1

Uj ,(3.6.2)

there is a positive integer n such that

K ⊆
n⋃

j=1

Uj .(3.6.3)
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We say that K has the Lindelöf property in X if for every open covering
{Uα}α∈A of K in X there is a subset A1 of A such that A1 has only finitely or
countably many elements and

K ⊆
⋃

α∈A1

Uα.(3.6.4)

It is easy to see that K is compact if and only if K is countably compact
and K has the Lindelöf property. If K has the strong limit point property, then
K is countably compact, as in Section 3.4.

Theorem 3.6.5 (Lindelöf) Let A be a nonempty set, and let Uα be an open
subset of X for each α ∈ A. If X satisfies the second countability condition,
then there is a subset A1 of A such that A1 has only finitely or countably many
elements and ⋃

α∈A1

Uα =
⋃
α∈A

Uα.(3.6.6)

By hypothesis, there is a base B for the topology of X such that B has only
finitely or countably many elements. If α ∈ A, then put

Bα = {V ∈ B : V ⊆ Uα}.(3.6.7)

Observe that

Uα =
⋃

{V : V ∈ Bα}(3.6.8)

for every α ∈ A. More precisely, the union on the right is automatically con-
tained in Uα, by the definition of Bα. In order to get that the union is equal to
Uα, one uses the hypothesis that B be a base for the topology of X.

Put

B̃ =
⋃
α∈A

Bα.(3.6.9)

Of course, B̃ ⊆ B, by construction. It follows that B̃ has only finitely or count-
ably many elements, because B has only finitely or countably many elements,
by hypothesis. If V ∈ B̃, then let us choose an element α(V ) of A such that
V ∈ Bα(V ). Thus

V ⊆ Uα(V )(3.6.10)

for every V ∈ B̃, by definition of Bα.
Let A1 be the set of elements of A of the form α(V ) for some V ∈ B̃

that have been chosen in this way. It is easy to see that A1 has only finitely
or countably many elements, because B̃ has only finitely or countably many
elements. Observe that ⋃

α∈A1

Uα =
⋃
V ∈B̃

Uα(V ) ⊇
⋃
V ∈B̃

V,(3.6.11)
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using (3.6.10) in the second step. We also have that⋃
V ∈B̃

V =
⋃
α∈A

⋃
V ∈Bα

V =
⋃
α∈A

Uα.(3.6.12)

This uses the definition (3.6.9) of B̃ in the first step, and (3.6.8) in the second
step. Combining (3.6.11) and (3.6.12), we obtain that⋃

α∈A

Uα ⊆
⋃

α∈A1

Uα.(3.6.13)

This implies (3.6.6), because A1 ⊆ A, by construction.

Corollary 3.6.14 If X satisfies the second countability condition, then every
subset of X has the Lindelöf property.

Proposition 3.6.15 Suppose that K ⊆ Y ⊆ X. Under these conditions, K is
countably compact as a subset of X if and only if K is countably compact as a
subset of Y , with respect to the induced topology. Similarly, K has the Lindelöf
property as a subset of X if and only if K has the Lindelöf property as a subset
of Y , with respect to the induced topology.

This can be verified directly from the definitions, as in the case of ordinary
compactness.

Proposition 3.6.16 Let E be a closed set in X. If K ⊆ X is countably com-
pact, then K ∩E is countably compact too. If K has the Lindelöf property, then
K ∩ E has the Lindelöf property as well.

This can be shown in essentially the same way as for ordinary compactness.

Proposition 3.6.17 Let f be a continuous mapping from X into another topo-
logical space Y . If K ⊆ X is countably compact, then f(K) is countably compact
in Y . If K has the Lindelöf property, then f(K) has the Lindelöf property in
Y .

This is similar to the analogous statement for ordinary compactness.

3.7 The finite intersection property

Let X be a set, and let K be a subset of X.

Definition 3.7.1 Let I be a nonempty set, and let Ej be a subset of X for each
j ∈ I. We say that {Ej}j∈I has the finite intersection property with respect to
K if for every finite collection j1, . . . , jn of elements of I, we have that( n⋂

l=1

Ejl

)
∩K 6= ∅.(3.7.2)

If {Ej}j∈I has the finite intersection property with respect to X, then we may
simply say that {Ej}j∈I has the finite intersection property.
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Of course, (3.7.2) holds when( ⋂
j∈I

Ej

)
∩K 6= ∅.(3.7.3)

Suppose now that X is a topological space.

Proposition 3.7.4 A subset K of X is compact if and only if for all nonempty
families {Ej}j∈I of closed subsets of X with the finite intersection property with
respect to K, we have that (3.7.3) holds.

To see this, let a nonempty set I be given again. If Ej ⊆ X is a closed set
for some j ∈ I, then

Uj = X \ Ej(3.7.5)

is an open set in X. Similarly, if Uj ⊆ X is an open set for some j ∈ I, then

Ej = X \ Uj(3.7.6)

is a closed set in X. This defines a simple correspondence between families
{Ej}j∈I of closed subsets of X indexed by I and families {Uj}j∈I of open
subsets of X indexed by I.

Using this correspondence, we have that (3.7.2) holds for some finite collec-
tion of indices j1, . . . , jn ∈ I if and only if

K 6⊆ X \
( n⋂

j=1

Ej

)
=

n⋃
l=1

Ujl .(3.7.7)

Thus {Ej}j∈I has the finite intersection property with respect to K exactly
when K cannot be covered by finitely many Uj ’s, j ∈ I. Similarly, (3.7.3) holds
if and only if

K 6⊆ X \
( ⋂

j∈I

Ej

)
=

⋃
j∈I

Uj .(3.7.8)

This is the same as saying that K is not covered by the Uj ’s, j ∈ I. Using this,
it is easy to see that the condition mentioned in the proposition is equivalent to
compactness.

Let us now consider the case where I = Z+.

Proposition 3.7.9 A subset K of X is countably compact if and only if for
every sequence E1, E2, E3, . . . of closed subsets of X that satisfies( n⋂

j=1

Ej

)
∩K 6= ∅(3.7.10)

for each positive integer n, we have that( ∞⋂
j=1

Ej

)
∩K 6= ∅.(3.7.11)
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Let Ej be a subset of X for each positive integer j. Observe that {Ej}j∈Z+

has the finite intersection property with respect to K ⊆ X if and only if (3.7.10)
holds for every positive integer n. In this situation, (3.7.11) is the same as (3.7.3)
with I = Z+. Thus the proposition follows from the same type of argument as
before.

3.8 The strong limit point property

Let X be a topological space.

Proposition 3.8.1 If K ⊆ X is countably compact, then K has the strong limit
point property.

To show this, let an infinite subset L of K be given. As before, we can find
an infinite sequence {xj}∞j=1 of distinct elements of L, because L has infinitely
many elements. Put

Al = {xj : j ≥ l}(3.8.2)

for each positive integer l. Note that for each l, Al 6= ∅ and

Al+1 ⊆ Al.(3.8.3)

Let

El = Al(3.8.4)

be the closure of Al in X for each l ≥ 1. Thus

Al ⊆ El(3.8.5)

for every l ≥ 1, which implies in particular that El 6= ∅. It is easy to see that

El+1 ⊆ El(3.8.6)

for every l ≥ 1, because of (3.8.3).
Of course, El is a closed set in X for each l ≥ 1, by construction. Observe

that
n⋂

l=1

El = En(3.8.7)

for every positive integer n, by (3.8.6). It follows that

( n⋂
l=1

El

)
∩K = En ∩K(3.8.8)

for each n ≥ 1. We also have that

An ⊆ En ∩K(3.8.9)



62 CHAPTER 3. COMPACTNESS AND RELATED TOPICS

for each n ≥ 1, because of (3.8.5) and the fact that An ⊆ L ⊆ K for every n,
by construction. This implies that (3.8.8) is nonempty for every n.

Thus E1, E2, E3, . . . is a sequence of closed sets in X with the finite inter-
section property with respect to K. Because K is countably compact, we get
that ( ∞⋂

l=1

El

)
∩K 6= ∅,(3.8.10)

as in the previous section. Let x be an element of the left side of (3.8.10). In
particular, x ∈ K, and we would like to check that x is a strong limit point of
L in X.

Note that x is adherent to Al in X for each l ≥ 1, because x ∈ El. Let
U ⊆ X be an open set that contains x. It follows that

Al ∩ U 6= ∅(3.8.11)

for each l ≥ 1, because x is adherent to Al. This means that for each l ≥ 1
there is a j ≥ l such that

xj ∈ U,(3.8.12)

by the definition (3.8.2) of Al. Thus (3.8.12) holds for infinitely many positive
integers j. In particular, U contains infinitely many elements of L, because the
xj ’s are distinct elements of L. This implies that x is a strong limit point of L
in X, as desired.

3.9 Compactness and bases

Let X be a topological space, and let B be a collection of open subsets of X.

Definition 3.9.1 We say that K ⊆ X is compact with respect to B if every
open covering of K by elements of B can be reduced to a finite subcovering. More
precisely, this means that if {Uα}α∈A is an open covering of K with Uα ∈ B
for every α ∈ A, then there are finitely many indices α1, . . . , αn ∈ A such that
K ⊆

⋃n
j=1 Uαj

.

Of course, if K is a compact subset of X, then K is automatically compact
with respect to B. Countable compactness and the Lindelöf property with
respect to B can be defined analogously.

Proposition 3.9.2 Suppose that B is a base for the topology of X. If K ⊆ X
is compact with respect to B, then K is compact in X in the usual sense.

The analogous statement for the Lindelöf property can be shown similarly.
Note that Lindelöf’s theorem follows from the version of Proposition 3.9.2 for
the Lindelöf property. However, the proofs of Proposition 3.9.2 and its version
for the Lindelöf property are also very similar to the proof of Lindelöf’s theorem.
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To see this, let {Uα}α∈A be any open covering of K in X. Put

Bα = {V ∈ B : V ⊆ Uα}(3.9.3)

for each α ∈ A. Because B is a base for the topology of X,

Uα =
⋃

{V : V ∈ Bα}(3.9.4)

for every α ∈ A, as before. Put

B̃ =
⋃
α∈A

Bα.(3.9.5)

Observe that ⋃
V ∈B̃

V =
⋃
α∈A

⋃
V ∈Bα

V =
⋃
α∈A

Uα,(3.9.6)

using the definition of B̃ in the first step, and (3.9.4) in the second step. It
follows that

K ⊆
⋃
α∈A

Uα =
⋃
V ∈B̃

V.(3.9.7)

If K is compact with respect to B, then there are finitely many elements
V1, . . . , Vn of B̃ such that

K ⊆
n⋃

j=1

Vj .(3.9.8)

By definition of B̃, for each j = 1, . . . , n there is an αj ∈ A such that Vj ∈ Bαj
,

which means that
Vj ⊆ Uαj

.(3.9.9)

Combining this with (3.9.8), we get that

K ⊆
n⋃

j=1

Uαj
,(3.9.10)

as desired.
Let B be any collection of open subsets of X. Consider the collection B1

of all subsets of X that can be expressed as the intersection of finitely many
elements of B. Note that the elements of B1 are all open subsets of X. If B1 is
a base for the topology of X, then B is said to be a subbase for the topology of
X.

As an example, let B be the collection of subsets of the real line that are open
half-lines, which is to say sets of the form (a,+∞) and (−∞, b) for a, b ∈ R. In
this case, B1 consists of all open half-lines in R, as well as all open intervals in
R. It is easy to see that B1 is a base for the standard topology on R, so that B
is a subbase for this topology.

If K ⊆ X is compact with respect to a subbase B for the topology of X, then
Alexander’s subbase theorem says that K is compact in X in the usual sense.
The proof of this theorem uses the axiom of choice in a significant way. More
precisely, this involves Zorn’s lemma or the Hausdorff maximality principle,
which will be discussed in the next chapter.
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3.10 Products of two compact sets

Let X and Y be topological spaces, and consider their Cartesian product X×Y ,
equipped with the corresponding product topology.

Theorem 3.10.1 (Tychonoff) If H ⊆ X and K ⊆ Y are compact, then their
product H ×K is compact in X × Y .

To show this, let B be the collection of subsets of X × Y of the form U × V ,
where U ⊆ X and V ⊆ Y are open sets. This is a base for the product topology
on X × Y . Thus it suffices to verify that H ×K is compact with respect to B,
as in the previous section.

Let {Uα×Vα}α∈A be a covering of H×K by elements of B, so that Uα ⊆ X
and Vα ⊆ Y are open sets for every α ∈ A, and

H ×K ⊆
⋃
α∈A

(Uα × Vα).(3.10.2)

Let x ∈ H be given, so that

{x} ×K ⊆
⋃
α∈A

(Uα × Vα).(3.10.3)

because {x} ×K ⊆ H ×K. Put

A(x) = {α ∈ A : x ∈ Uα}.(3.10.4)

Observe that
K ⊆

⋃
α∈A(x)

Vα,(3.10.5)

by (3.10.3). More precisely, if y ∈ K, then (x, y) ∈ {x} ×K, and hence there is
an α ∈ A such that (x, y) ∈ Uα × Vα, by (3.10.3). This means that x ∈ Uα, so
that α ∈ A(x), and y ∈ Vα, as desired. It follows that there is a finite subset
A1(x) of A(x) such that

K ⊆
⋃

α∈A1(x)

Vα,(3.10.6)

because K is compact in Y .
Put

U1(x) =
⋂

α∈A1(x)

Uα.(3.10.7)

This is an open set inX, because Uα is an open set inX for every α ∈ A1(x) ⊆ A,
and A1(x) has only finitely many elements. Of course, x ∈ U1(x), because
x ∈ Uα for every α ∈ A1(x) ⊆ A(x). We can do this for every x ∈ H, to get
an open covering of H in X. This implies that there are finitely many elements
x1, . . . , xn of H such that

H ⊆
n⋃

j=1

U1(xj),(3.10.8)
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because H is compact in X.
Using (3.10.8), we get that

H ×K ⊆
( n⋃

j=1

U1(xj)
)
×K =

n⋃
j=1

(U1(xj) ×K).(3.10.9)

We also have that

U1(xj) ×K ⊆ U1(xj) ×
( ⋃

α∈A1(xj)

Vα

)
=

⋃
α∈A1(xj)

(U1(xj) × Vα)

⊆
⋃

α∈A1(xj)

(Uα × Vα)(3.10.10)

for each j = 1, . . . , n. This uses (3.10.6) in the first step, and the fact that
U1(xj) ⊆ Uα when α ∈ A1(xj), by the definition (3.10.7) of U1(xj), in the third
step. Combining (3.10.9) and (3.10.10), we get that

H ×K ⊆
n⋃

j=1

⋃
α∈A1(xj)

(Uα × Vα).(3.10.11)

Of course,
⋃n

j=1A1(xj) is a finite subset of A, because A1(xj) is a finite subset
of A for each j = 1, . . . , n, as desired.

3.11 Products of more compact sets

Let X1, . . . , Xn be finitely many topological spaces for some positive integer n,
and consider their Cartesian product

X =

n∏
j=1

Xj ,(3.11.1)

equipped with the product topology. Also let Kj be a compact subset of Xj for
each j = 1, . . . , n, and put

K =

n∏
j=1

Kj .(3.11.2)

Under these conditions, K is a compact subset of X. This is trivial when n = 1,
and the n = 2 case was discussed in the previous section. Otherwise, one can
use induction, as follows.

Suppose that n ≥ 2, and that the analogous statement holds for n−1. Thus∏n−1
j=1 Kj is a compact subset of

∏n−1
j=1 Xj , with respect to the product topology.

There is a natural identification of X with( n−1∏
j=1

Xj

)
×Xn,(3.11.3)
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where x = (x1, . . . , xn) ∈ X is identified with ((x1, . . . , xn−1), xn), as an element

of (3.11.3). Let us take
∏n−1

j=1 Xj to be equipped with the product topology, and
use the corresponding product topology on (3.11.3). One can check that this
corresponds to the product topology on X, using the identification of (3.11.3)
with X just mentioned.

As in the previous section,

( n−1∏
j=1

Kj

)
×Kn(3.11.4)

is a compact subset of (3.11.3), with respect to the product topology. Of course,
K corresponds to (3.11.4), with respect to the identification of X with (3.11.3).
It follows that K is a compact subset of X, because the identification of X
with (3.11.3) is a homeomorphism with respect to the corresponding product
topologies, as before.

Let n be a positive integer again, and Rn be the usual space of n-tuples of
real numbers. This is the same as the Cartesian product of n copies of the real
line. The standard topology on Rn may be defined as the product topology
corresponding to the standard topology on R, as before. This is the same as
the topology determined by the standard Euclidean metric on Rn.

Let aj and bj be real numbers with aj ≤ bj for each j = 1, . . . , n. Remember
that the closed interval [aj , bj ] is a compact subset of the real line for each j =
1, . . . , n, with respect to the standard topology. It follows that their Cartesian
product

n∏
j=1

[aj , bj ](3.11.5)

is compact with respect to the standard topology on Rn.
Now let I be a nonempty set, let Xj be a topological space for each j ∈ I,

and consider the Cartesian product X =
∏

j∈I Xj , equipped with the product
topology. If Kj ⊆ Xj is compact for each j ∈ I, then another famous theorem
of Tychonoff states that K =

∏
j∈I Kj is compact in X. Of course, this reduces

to the previous statement for (3.11.2) when I has only finitely many elements.
Let B be the collection of subsets of X of the form U =

∏
j∈I Uj , where

Uj = Xj for all but one j ∈ I, and Uj is an open set in Xj for that j. It is easy
to see that B is a subbase for the product topology on X. To show Tychonoff’s
theorem, it suffices to get that K is compact with respect to B, by Alexander’s
subbase theorem.

3.12 Sequential compactness and finite products

Let X1, . . . , Xn be finitely many topological spaces again, and let

X =

n∏
j=1

Xj(3.12.1)
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be their Cartesian product, equipped with the product topology.

Proposition 3.12.2 If Kj is a sequentially compact subset of Xj for each j =
1, . . . , n, then

K =

n∏
j=1

Kj(3.12.3)

is sequentially compact in X.

To see this, let {x(l)}∞l=1 be a sequence of elements of K. Thus

x(l) = (x1(l), . . . , xn(l))(3.12.4)

for each positive integer l, where xj(l) ∈ Kj for j = 1, . . . , n. In particular,
{x1(l)}∞l=1 is a sequence of elements of K1. Because K1 is sequentially com-
pact, there is a subsequence {x1(lm)}∞m=1 of {x1(l)}∞l=1 that converges to an
element x1 of K1 in X1. Using the same sequence of indices {lm}∞m=1, we get a
subsequence {x(lm)}∞m=1 of {x(l)}∞l=1.

Of course, the statement is trivial when n = 1, and so we may as well
suppose that n ≥ 2. As before, {x2(lm)}∞m=1 is a sequence of elements of K2,
and so there is a subsequence {x2(lmr

)}∞r=1 of {x2(lm)}∞m=1 that converges to
an element x2 of K2, because K2 is sequentially compact. Using the same
sequence {mr}∞r=1 of indices, we get a subsequence {x(lmr )}∞r=1 of {x(lm)}∞m=1.
In particular, {x1(lmr

)}∞r=1 is a subsequence of {x1(lm)}∞m=1. This implies that
{x1(lmr

)}∞r=1 converges to x1 in X1, because {x1(lm)}∞m=1 converges to x1 in
X1.

Note that {x(lmr
)}∞r=1 may be considered as a subsequence of the initial

sequence {x(l)}∞l=1 as well. If n = 2, then we get that {x(lmr )}∞r=1 converges to

x = (x1, x2) ∈ K1 ×K2 = K(3.12.5)

in X, as desired. Otherwise, we can repeat the process.
More precisely, suppose that the jth subsequence of {x(l)}∞l=1 has been cho-

sen in this way for some positive integer j < n. We would like to choose the
(j + 1)th subsequence of {x(l)}∞l=1 to be a subsequence of the jth subsequence,
using the sequential compactness of Kj+1, as before. The (j+1)th subsequence
is chosen so that the sequence of (j + 1)th coordinates in Kj+1 of the terms
of the (j + 1)th subsequence converges to an element xj+1 of Kj+1 in Xj+1.
Observe that the (j+ 1)th subsequence is a subsequence of the ith subsequence
for each i = 1, . . . , j. This implies that the sequence of ith coordinates of the
terms of the (j + 1)th subsequence converge to xi in Xi, because the sequence
of ith coordinates of the terms of the ith subsequence converge to xi in Xi, by
construction.

We can continue in this way until the nth subsequence of {x(l)}∞l=1 is chosen.
As before, for each i = 1, . . . , n, the sequence of ith coodinates of the nth
subsequence converges to xi ∈ Ki in Xi. This implies that the nth subsequence
converges to

x = (x1, . . . , xn) ∈ K(3.12.6)
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in X. We also have that the nth subsequence is a subsequence of the initial
sequence {x(l)}∞l=1, as desired.

3.13 Sequential compactness in countable prod-
ucts

If {lm}∞m=1 is a strictly increasing sequence of positive integers, then it is easy
to see that

lm ≥ m(3.13.1)

for every positive integer m.
Let X1, X2, X3, . . . be an infinite sequence of topological spaces, and consider

their Cartesian product

X =

∞∏
j=1

Xj ,(3.13.2)

equipped with the product topology.

Proposition 3.13.3 If Kj is a sequentially compact subset of Xj for each pos-
itive integer j, then

K =

∞∏
j=1

Kj(3.13.4)

is sequentially compact in X.

To show this, let a sequence {x(l)}∞l=1 of elements of K be given. Note that

x(l) = {xj(l)}∞j=1(3.13.5)

is a sequence for each l, where xj(l) ∈ Kj for every j ≥ 1. In particular,
{x1(l)}∞l=1 is a sequence of elements of K1, as before. Hence there is a subse-
quence {x1(lm)}∞m=1 of {x1(l)}∞l=1 that converges to an element x1 of K1 in X1,
because K1 is sequentially compact. We can use the same sequence {lm}∞m=1 of
indices to get a subsequence {x(lm)}∞m=1 of {x(l)}∞l=1.

We can repeat the process, as in the previous section, to get an infinite
sequence of subsequences of {x(l)}∞l=1. More precisely, for each positive integer
j, we can get a sequence {x(r, j)}∞r=1 of elements of K with the following two
poperties. First,

{x(r, 1)}∞r=1 is a subsequence of {x(l)}∞l=1,(3.13.6)

and
{x(r, j)}∞r=1 is a subsequence of {x(m, j − 1)}∞m=1(3.13.7)

when j ≥ 2. This implies that

{x(r, j)}∞r=1 is a subsequence of {x(l)}∞l=1(3.13.8)
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for every j ≥ 1, and that

{x(r, j)}∞r=1 is a subsequence of {x(m, i)}∞m=1(3.13.9)

when 1 ≤ i ≤ j. The second property is that for every positive integer j there
is an element xj of Kj such that

{xj(r, j)}∞r=1 converges to xj in Xj .(3.13.10)

It follows that
{xi(r, j)}∞r=1 converges to xi in Xi(3.13.11)

when 1 ≤ i ≤ j, because of (3.13.9). Put

x = {xj}∞j=1,(3.13.12)

which defines an element of K.
We would like to find a subsequence of {x(l)}∞l=1 that converges to x in X.

Put
y(r) = x(r, r)(3.13.13)

for each positive integer r, which is the rth term of the rth subsequence described
in the previous paragraph. One can check that

{y(r)}∞r=1 is a subsequence of {x(l)}∞l=1.(3.13.14)

Indeed, for each r ≥ 1, y(r) is one of the terms of {x(l)}∞l=1, by construction.
One can verify that y(r+ 1) is chosen among the terms of {x(l)}∞l=1 that occurs
after the one corresponding to y(r), using (3.13.1). More precisely, y(r + 1) is
the (r + 1)th term of the (r + 1)th subsequence, and the (r + 1)th subsequence
is a subsequence of the rth subsequence, by construction. This implies that
y(r + 1) occurs in the rth subsequence after y(r), as in (3.13.1). It follows that
y(r + 1) occurs after y(r) in the previous subsequences, including the initial
sequence {x(l)}∞l=1.

Similarly, one can check that for each positive integer j,

{y(r)}∞r=j is a subsequence of {x(m, j)}∞m=1.(3.13.15)

In particular, if r ≥ j, then y(r) is one of the terms of {x(m, j)}∞m=1, because
the rth subsequence is a subsequence of the jth subsequence, as in (3.13.9). We
also have that y(r+1) is chosen among the terms of {x(m, j)}∞m=1 after the one
corresponding to y(r) when r ≥ j, as in the preceding paragraph.

It follows that
{yj(r)}∞r=j converges to xj in Xj(3.13.16)

for each positive integer j, because of (3.13.10) and (3.13.15). This implies that

{yj(r)}∞r=1 converges to xj in Xj(3.13.17)

for every j ≥ 1. This means that {y(r)}∞r=1 converges to x with respect to the
product topology on X, as desired.
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3.14 Compactness and sequential compactness

If a topological space X satisfies the first countability condition and K ⊆ X is
compact, then

K is sequentially compact.(3.14.1)

More precisely, compactness implies the strong limit point property, which im-
plies sequential compactness when X satisfies the first countability condition.

Suppose for the moment that X is any set equipped with the cofinite topol-
ogy, as in Section 3.1. Remember that every subset of X is compact in this
case. One can check that every subset of X is also sequentially compact in this
case. However, one can verify that X satisfies the first countability condition
only when X has only finitely or countably many elements.

One can get examples of compact Hausdorff topological spaces that do not
satisfy the first countability condition using uncountable products of compact
Hausdorff spaces and Tychonoff’s theorem. One can use uncountable products
of finite sets, each of which has at least two elements, and is equipped with
the discrete topology, for instance. One could also use uncountable products
of closed intervals in the real line, equipped with the topology induced by the
standard topology on R.

Let I be a nonempty set, let Xj be a topological space for each j ∈ I,
and let X =

∏
j∈I Xj be the Cartesian product of the Xj ’s, equipped with the

product topology. Suppose that Kj ⊆ Xj is compact for each j ∈ I, so that
K =

∏
j∈I Kj is a compact subset of X, by Tychonoff’s theorem. If I has

only finitely or countably many elements, and Xj satisfies the first countability
condition for each j ∈ I, then we have seen that X satisfies the first countability
condition with respect to the product topology. In this case, the compactness
of K implies that K is sequentially compact, as before. Alternatively, Kj is
sequentially compact in Xj for each j ∈ I under these conditions, which implies
that K is sequentially compact, as in the previous two sections.

If K is a sequentially compact subset of a topological space X, then we have
seen that K has the strong limit point property, which implies that

K is countably compact.(3.14.2)

If K also satisfies the Lindelöf property, then it follows that K is compact.
If X satisfies the second countability condition, then K automatically satisfies
the Lindelöf property, by Lindelöf’s theorem. If X is the Cartesian product
of finitely or countably many topological spaces, each of which satisfies the
second countability condition, then we have seen that X satisfies the second
countability condition as well, with respect to the product topology.

It is well known that

sequentially compact subsets of metric spaces are compact.(3.14.3)

More precisely, one can reduce to showing that a sequentially compact metric
space X is compact. Part of the proof is to show that X is “totally bounded”.
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This implies that X is separable, and thus satisfies the second countability
condition.

Suppose that X is the product of finitely or countably many topological
spaces, each of which has a metric that determines the topology. We have seen
that X has a metric that determines the corresponding product topology in this
case. This implies that sequentially compact subsets of X are compact, as in
the preceding paragraph.

3.15 Another result of Tychonoff

Let X be a topological space. If X has the Lindelöf property, and X is regular
in the strict sense, then a well-known result of Tychonoff states that X is normal
in the strict sense.

To see this, let A and B be disjoint closed subsets of X. Note that A and B
each have the Lindelöf property in X, because A and B are closed subsets of X
and X has the Lindelöf property, as in Proposition 3.6.16. If x ∈ A, then there
is an open set U(x) ⊆ X such that

x ∈ U(x) and U(x) ⊆ X \B,(3.15.1)

because X is regular in the strict sense, and X \B is an open set that contains
x. Similarly, if y ∈ B, then there is an open set V (y) ⊆ X such that

y ∈ V (y) and V (y) ⊆ X \A.(3.15.2)

Using the Lindelöf property for A and B in X, we can get sequences {Uj}∞j=1

and {Vj}∞j=1 of open subsets of X such that

A ⊆
∞⋃
j=1

Uj , B ⊆
∞⋃
j=1

Vj ,(3.15.3)

and
Uj ⊆ X \B, Vj ⊆ X \A(3.15.4)

for every j ≥ 1. Put

Ũj = Uj \
j⋃

l=1

Vl, Ṽj = Vj \
j⋃

l=1

Ul(3.15.5)

for each j ≥ 1. It is easy to see that Ũj and Ṽj are open subsets of X for every
j ≥ 1. One can check that

A ⊆
∞⋃
j=1

Ũj , B ⊆
∞⋃
j=1

Ṽj ,(3.15.6)

using (3.15.3) and (3.15.4).
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Thus

Ũ =

∞⋃
j=1

Ũj , Ṽ =

∞⋃
j=1

Ṽj(3.15.7)

are open subsets of X that contain A and B, respectively. We would like to
verify that Ũ ∩ Ṽ = ∅. To do this, it suffices to check that

Ũj ∩ Ṽl = ∅(3.15.8)

for every j, l ≥ 1. If l ≤ j, then this follows from the definition of Ũj , and the

fact that Ṽl ⊆ Vl. The case where j ≤ l can be handled analogously.



Chapter 4

Some more set theory

4.1 Zorn’s lemma

Let (A,�) be a partially-ordered set. An element b of A is said to be an upper
bound of a subset E of A if for every a ∈ E, we have that

a � b.(4.1.1)

A subset C of A is said to be a chain if C is linearly ordered by the restriction
of � to C. This means that for every x, y ∈ C,

either x � y or y � x (or both, i.e., x = y).(4.1.2)

An element x of A is said to be maximal in A with respect to � if

for every y ∈ A with x � y,we have that x = y.(4.1.3)

Let us say that b ∈ A is a top element of A if b is an upper bound for A, so
that (4.1.1) holds for every a ∈ A. A top element of A is unique when it exists,
and is maximal in A. However, a maximal element of a partially-order set is not
necessarily a top element, or unique. A maximal element of a linearly-ordered
set is a top element. It is easy to see that a nonempty linearly-ordered set with
only finitely many elements has a top element.

If A is a nonempty partially-ordered set with only finitely many elements,
then A has a maximal element. To see this, let a1 be any element of A. If a1 is
maximal in A, then we can stop. Otherwise, there is an element a2 of A such
that

a1 � a2 and a1 6= a2.(4.1.4)

We can repeat the process a finite number of times to get a maximal element
of A, because A has only finitely many elements.

Let A be any partially-ordered set again. If

every chain in A has an upper bound in A,(4.1.5)

73
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then Zorn’s lemma states that

A has a maximal element.(4.1.6)

Note that the empty set may be considered as a chain in A, so that the hypoth-
esis of Zorn’s lemma implies that A 6= ∅. There are well-known arguments for
obtaining Zorn’s lemma from the axiom of choice, as in [206], for instance. The
converse is much simpler, and we shall return to that later.

Suppose that A is countably infinite, and let {xj}∞j=1 be a sequence of ele-
ments of A in which every element of A occurs exactly once. We can try to find
a maximal element of A using a more precise version of the argument for finite
sets, as follows. Put j1 = 1, and suppose that jl ∈ Z+ has been chosen for some
positive integer l. If there is an integer k > jl such that

xjl � xk,(4.1.7)

then we take jl+1 to be the smallest such integer k, and otherwise we stop. If
this process stops after finitely many steps, then we get a maximal element of
A. Otherwise, we get an infinite subsequence {xjl}∞l=1 of {xj}∞j=1 such that

xjl � xjl+1
(4.1.8)

for every l ≥ 1. In particular,

C = {xjl : l ∈ Z+}(4.1.9)

is a chain in A. If C has an upper bound in A, then this upper bound is of
the form xn for some positive integer n. In this case, there would have to be
a positive integer l0 such that jl0 = n, because of the way that the jl’s were
chosen. This would contradict (4.1.8), because the xj ’s are supposed to be
distinct elements of A.

4.2 Hausdorff’s maximality principle

Let (A,�) be a partially-ordered set again. Hausdorff’s maximality principle
states that

there is a chain in A that is maximal with respect to inclusion.(4.2.1)

More precisely, this means that there is a chain C0 in A such that

if C is any chain in A with C0 ⊆ C, then C0 = C.(4.2.2)

If A has only finitely many elements, then A has only finitely many subsets,
and in particular there are only finitely many chains in A. In this case, one can
find a maximal chain in A as in the previous section. Alternatively, one can
keep adding points to a chain in A until it is no longer possible to have a chain
in A.
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Similarly, suppose that A is countably infinite, and let {xj}∞j=1 be a sequence
of elements of A in which every element of A occurs exactly once. Of course,
C1 = {x1} is a chain in A. If x1 � x2 or x2 � x1, then put C2 = {x1, x2},
which is a chain in A, and otherwise put C2 = C1. If Cn ⊆ {x1, . . . , xn} has
been chosen in this way for some positive integer n, then we can define Cn+1 as
follows. If Cn ∪ {xn+1} is a chain in A, then we take it to be Cn+1. Otherwise,
put Cn+1 = Cn. One can check that Cn is a maximal chain in {x1, . . . , xn} for
each positive integer n, as in the preceding paragraph. One can also verify that

C =

∞⋃
n=1

Cn(4.2.3)

is a maximal chain in A.
There are well-known arguments for obtaining Hausdorff’s maximality prin-

ciple from the axiom of choice, as in [206] again.
Let us see how Zorn’s lemma can be obtained from Hausdorff’s maximality

principle. Let (A,�) be a partially-ordered set, and let C0 be a maximal chain
in A, as in Hausdorff’s maximality principle. The hypothesis of Zorn’s lemma
implies that there is a b ∈ A such that

b is an upper bound for C0.(4.2.4)

We would like to check that

b is a maximal element of A(4.2.5)

under these conditions. To do this, suppose that y ∈ A satisfies b � y. It is
easy to see that

C0 ∪ {b, y} is a chain in A(4.2.6)

too in this situation. This implies that

C0 = C0 ∪ {b, y},(4.2.7)

because C0 is a maximal chain in A. This means that b, y ∈ C0. It follows that
y � b, because y ∈ C0 and b is an upper bound for C0. Thus b = y, because
b � y, by hypothesis, as desired.

4.3 Maximal chains from Zorn’s lemma

We can also obtain Hausdorff’s maximality principle from Zorn’s lemma. Let
(A,�) be a partially-ordered set again, and let C be the collection of all chains
in A. We may consider C as a partially-ordered set with respect to inclusion,
i.e., using C1 ⊆ C2 for C1, C2 ∈ C as the partial ordering on C. Hausdorff’s
maximality principle is exactly the statement that

C has a maximal element.(4.3.1)
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Let us check that C satisfies the hypothesis of Zorn’s lemma.

Let E be a chain in C. This means that E is a collection of chains in A such
that for every C1, C2 ∈ E , either C1 ⊆ C2 or C2 ⊆ C1. We would like to show
that E has an upper bound in C.

Put

C(E) =
⋃
C∈E

C.(4.3.2)

More precisely, each element C of E is a subset of A, so that their union is a
subset of A as well. If E = ∅, then C(E) is interpreted as being the empty set
too.

We would like to verify that C(E) is a chain in A. Let x, y ∈ C(E) be given.
By definition of C(E), there are Cx, Cy ∈ E such that

x ∈ Cx and y ∈ Cy.(4.3.3)

Because E is a chain in C, we have that Cx ⊆ Cy or Cy ⊆ Cx. It follows that
x and y are both contained in Cx, or that x and y are both contained in Cy.
In either case, we get that x � y or y � x, because Cx and Cy are chains in A.
This shows that C(E) is a chain in A.

Equivalently, this means that C(E) ∈ C. Of course, if C ∈ E , then

C ⊆ C(E),(4.3.4)

by construction. Thus C(E) is an upper bound for E in C. This implies that
C satisfies the hypothesis of Zorn’s lemma. In this situation, the conclusion of
Zorn’s lemma is that C has a maximal element, as desired.

4.4 The axiom of choice

Let us show how the axiom of choice can be obtained from Zorn’s lemma or
Hausdorff’s maximality principle. Let I be a nonempty set, and let Xj be a
nonempty set for each j ∈ I. We would like to show that there is a mapping f
from I into

⋃
j∈I Xj such that

f(j) ∈ Xj(4.4.1)

for every j ∈ I.

Let A be the set of ordered pairs (I0, f0), where I0 is a subset of I, and f0
is a mapping from I0 into

⋃
j∈I0

Xj such that f0(j) ∈ Xj for every j ∈ I0. If
(I1, f1), (I2, f2) ∈ A, then put

(I1, f1) � (I2, f2)(4.4.2)

when I1 ⊆ I2 and f1 = f2 on I1. It is easy to see that this defines a partial
ordering on A.



4.5. INJECTIVE MAPPINGS 77

Let C be a chain in A, and let us check that C has an upper bound in A.
Put

IC =
⋃

(I0,f0)∈C

I0,(4.4.3)

which is a subset of I. We would like to define a mapping fC from IC into⋃
j∈IC

Xj as follows. If j ∈ IC , then there is an element (I1, f1) of C such that
j ∈ I1, by definition of IC . In this case, we would like to put

fC(j) = f1(j).(4.4.4)

We need to check that this does not depend on the particular choice of (I1, f1).
Suppose that (I2, f2) is another element of C such that j ∈ I2. Note that

(I1, f1) � (I2, f2) or (I2, f2) � (I1, f1),(4.4.5)

because C is a chain in A. In both cases, we have that f1(j) = f2(j), so that
fC(j) is well defined. Of course, fC(j) = f1(j) ∈ Xj , so that (IC , fC) ∈ A. If
(I0, f0) is an element of C, then I0 ⊆ IC and f0 = fC on I0, by construction.
This means that

(I0, f0) � (IC , fC),(4.4.6)

so that (IC , fC) is an upper bound for C in A.
This shows that A satisfies the hypothesis of Zorn’s lemma, so that Zorn’s

lemma implies that A has a maximal element. Alternatively, Hausdorff’s max-
imality principle says that A has a maximal chain. The previous argument
implies that such a maximal chain has an upper bound in A, which is a maxi-
mal element of A, as before.

If (I0, f0) is a maximal element of A, then we would like to show that

I0 = I.(4.4.7)

Otherwise, there is an element j1 of I not in I0, and we put I1 = I0 ∪ {j1}.
Let xj1 be an element of Xj1 . Consider the mapping f1 from I1 into

⋃
j∈I1

Xj

defined by putting f1(j) = f0(j) when j ∈ I0 and f1(j1) = xj1 . Thus f1(j) ∈ Xj

for every j ∈ I1, so that (I1, f1) ∈ A. We also have that (I0, f0) � (I1, f1) and
(I0, f0) 6= (I1, f1), by construction. This contradicts the maximality of (I0, f0)
in A. It follows that I0 = I, as desired.

4.5 Injective mappings

Let A and B be sets. We would like to show how Zorn’s lemma or Hausdorff’s
maximality principle implies that there is either a one-to-one mapping from A
into B, or a one-to-one mapping from B into A. Let A be the collection of
ordered triples (A0, B0, f0), where A0 ⊆ A, B0 ⊆ B, and f0 is a one-to-one
mapping from A0 onto B0. If (A1, B1, f1), (A2, B2, f2) ∈ A, then put

(A1, B1, f1) � (A2, B2, f2)(4.5.1)
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when A1 ⊆ A2, B1 ⊆ B2, and f1 = f2 on A1. One can check that this defines a
partial ordering on A.

Let C be a chain in A, and let us verify that C has an upper bound in A.
Put

AC =
⋃

(A0,B0,f0)∈C

A0(4.5.2)

and
BC =

⋃
(A0,B0,f0)∈C

B0,(4.5.3)

which are subsets of A and B, respectively. We would like to define a mapping
fC from AC into BC as follows. If x ∈ AC , then there is an element (A1, B1, f1)
of C such that x ∈ A1, and we would like to put

fC(x) = f1(x).(4.5.4)

One can check that this does not depend on the particular choice of (A1, B1, f1),
as in the previous section. Note that (4.5.4) is an element of B1 ⊆ BC , so that
fC is a well-defined mapping from AC into BC . We would like to verify that fC
is a one-to-one mapping from AC onto BC , so that (AC , BC , fC) ∈ A.

Let x1 and x2 be distinct elements of AC . It follows that there are elements
(A1, B1, f1) and (A2, B2, f2) of C such that x1 ∈ A1 and x2 ∈ A2, by the
definition (4.5.2) of AC . Because C is a chain in A, we have that

either (A1, B1, f1) � (A2, B2, f2) or (A2, B2, f2) � (A1, B1, f1).(4.5.5)

In the first case, we get that A1 ⊆ A2, x1, x2 ∈ A2, and hence fC(x1) = f2(x1),
fC(x2) = f2(x2). Of course, f2 is injective on A2, by hypothesis, so that

f2(x1) 6= f2(x2)(4.5.6)

This means that
fC(x1) 6= fC(x2)(4.5.7)

in this case, and and the other case can be handled in the same way. This shows
that fC is injective on AC .

Now let y ∈ BC be given. By the definition (4.5.3) of BC , there is an element
(A0, B0, f0) of C such that y ∈ B0. This implies that there is an x ∈ A0 such
that

f0(x) = y,(4.5.8)

because f0 maps A0 onto B0, by hypothesis. It follows that x ∈ AC , and that

fC(x) = y,(4.5.9)

by the definitions of AC and fC . Thus fC maps AC onto BC .
This shows that (AC , BC , fC) ∈ A. It is easy to see that (AC , BC , fC) is

an upper bound for C in A, by construction. This means that A satisfies the
hypothesis of Zorn’s lemma, so that Zorn’s lemma implies that A has a maximal
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element. Alternatively, Hausdorff’s maximality principle says that A has a
maximal chain, and the upper bound in A for such a maximal chain obtained
as before is a maximal element of A.

If (A0, B0, f0) is a maximal element of A, then we would like to show that

A0 = A or B0 = B.(4.5.10)

Otherwise, there is an element a1 of A not in A0, and an element b1 of B not
in B0. Put A1 = A0 ∪ {a1} and B1 = B0 ∪ {b1}, so that A1 ⊆ A and B1 ⊆ B.
Let f1 be the mapping from A1 into B1 defined by putting f1(x) = f0(x) when
x ∈ A0 and f1(a1) = b1. Thus f1 is a one-to-one mapping from A1 onto
B1, so that (A1, B1, f1) ∈ A. By construction, (A0, B0, f0) � (A1, B1, f1) and
(A0, B0, f0) 6= (A1, B1, f1), contradicting the maximality of (A0, B0, f0) in A.
This shows that A0 = A or B0 = B.

If A0 = A, then f0 is a one-to-one mapping from A into B. If B0 = B, then
the inverse of f0 is a one-to-one mapping from B into A.

4.6 Well-ordered sets

Let (A,�) be a linearly-ordered set. Thus, for each x, y ∈ A, we have that x � y
or y � x. We say that A is well ordered by � if

every nonempty subset of A has a smallest element.(4.6.1)

More precisely, this means that if E is a nonempty subset of A, then

there is an x ∈ E such that x � y for every y ∈ E.(4.6.2)

Note that the smallest element in E is automatically unique.
It is easy to see that a linearly-ordered set with only finitely many elements

is well ordered. The set Z+ of positive integers is well ordered by its standard
ordering.

Zermelo’s well-ordering principle states that every set can be well ordered.
This can be obtained from the axiom of choice, as discussed in [206], for instance.

It is easy to see how the axiom of choice can be obtained from the well-
ordering principle. Let I be a nonempty set, and suppose that Xj is a nonempty
set for each j ∈ I. The well-ordering principle implies that

⋃
j∈I Xj can be well

ordered. If j ∈ I, then let f(j) be the smallest element of Xj with respect to this
ordering. This defines a mapping f from I into

⋃
j∈I Xj such that f(j) ∈ Xj

for each j ∈ I.
Let (A,�) be a partially-ordered set, and let B be a subset of A. It is easy

to see that the restriction of � to B is a partial ordering on B. If A is linearly
ordered by �, then B is linearly ordered by the restriction of � to B. If A is
well ordered by �, then B is well ordered by � too.

Let (A,�) be a partially-ordered set again. A subset B of A is said to be an
ideal in A if

for every x ∈ A and y ∈ B with x � y we have that x ∈ B.(4.6.3)
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If a ∈ A, then the segment in A associated to a is defined by

S(a) = SA(a) = {x ∈ A : x � a, x 6= a}.(4.6.4)

It is easy to see that segments in A are ideals in A. Of course, A is an ideal in
itself.

Suppose that (A,�) is a linearly-ordered set. If a ∈ A, then it is easy to see
that

A \ S(a) = {x ∈ A : a � x}.(4.6.5)

Suppose now that (A,�) is a well-ordered set, and that B ⊆ A is an ideal in
A. If B 6= A, then there is a smallest element a0 of A \B. One can check that

B = S(a0)(4.6.6)

under these conditions. More precisely,

S(a0) ⊆ B(4.6.7)

automatically, because a0 is the smallest element of A \B. To show that

B ⊆ S(a0),(4.6.8)

suppose for the sake of a contradiction that x ∈ B and x 6∈ S(a0). This implies
that a0 � x, because A is linearly ordered by �, as in (4.6.5). It follows that
a0 ∈ B, because B is an ideal in A. This contradicts the fact that a0 ∈ A \ B,
as desired.

Let (A,�) be a linearly-ordered set. If

every segment in A is well ordered by �,(4.6.9)

then A is well ordered by �. To see this, let E be a nonempty subset of A, and
let us show that E has a smallest element. Let a be an element of E. If a is
already the smallest element of E, then we can stop. Otherwise,

E ∩ S(a) 6= ∅.(4.6.10)

In this case, E ∩ S(a) has a smallest element, because S(a) is well ordered, by
hypothesis. It is easy to see that the smallest element of E ∩ S(a) is also the
smallest element of E, using (4.6.5), as desired.

4.7 The well-ordering principle

The well-ordering principle can be obtained from Zorn’s lemma or Hausdorff’s
maximality principle as follows. Let A be a set, on which we would like to find
a well ordering. Let A be the collection of ordered pairs (A0,�0), where A0 is
a subset of A well ordered by �0. If (A1,�1), (A2,�2) ∈ A, then put

(A1,�1) �A (A2,�2)(4.7.1)
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when A1 ⊆ A2, the restriction of �2 to A1 is the same as �1, and A1 is an ideal
in A2 with respect to �2. One can check that this defines a partial ordering on
A.

Let C be a chain in A. We would like to show that C has an upper bound in
A, as usual. Put

AC =
⋃

(A0,⪯0)∈C

A0,(4.7.2)

which is a subset of A. We first need to define an ordering �C on AC .
Let x, y ∈ AC be given, so that there are (A1,�1), (A2,�2) ∈ C such that

x ∈ A1 and y ∈ A2. Because C is a chain in A, we have that

(A1,�1) �A (A2,�2) or (A2,�2) �A (A1,�1).(4.7.3)

In particular, this means that A1 ⊆ A2 or A2 ⊆ A1. It follows that x, y ∈ A1 or
x, y ∈ A2.

Let (A0,�0) be any element of C such that x, y ∈ A0, the existence of which
follows from the remarks in the preceding paragraph. We would like to put

x �C y(4.7.4)

when x �0 y. One can check that this does not depend on the particular element
(A0,�0) of C with x, y ∈ A0, because C is a chain in A.

It is not difficult to show that AC is linearly ordered by �C , using the fact
that the elements of C are linearly-ordered sets. More precisely, to check that
�C is transitive on AC , let x, y, z ∈ AC be given. One can verify that there is
an element (A0,≺0) of C such that x, y, z ∈ A0, using the fact that C is a chain
in A, as before. If x �C y and y �C z, then one can get that x �C z using
transitivity of �0 on A0.

Let (A1,�1) be any element of C. By construction, A1 ⊆ AC , and �C agrees
with �1 on A1. Let us check that A1 is an ideal in AC with respect to �C .
Let x ∈ AC and y ∈ A1 be given, with x �C y. By definition of AC , there is
an element (A2,�2) of C such that x ∈ A2. We also have that (4.7.3) holds,
because C is a chain in A. In the first case, x, y ∈ A2 and x �2 y, which implies
that x ∈ A1, because y ∈ A1 and A1 is an ideal in A2. In the second case,
x ∈ A2 ⊆ A1. Thus x ∈ A1 in both cases, as desired.

Let us check that AC is well ordered by �C . Let a ∈ AC be given, and let us
verify that the corresponding segment SAC (a) in AC is well ordered by �C . By
construction, there is an (A0,�0) ∈ C such that a ∈ A0. We also have that

SAC (a) ⊆ A0,(4.7.5)

because A0 is an ideal in AC , as in the preceding paragraph. It follows that
SAC (a) is well ordered by �C , because �0 and �C are the same on A0, and A0

is well ordered by �0.
This shows that (AC ,�C) is an element of A. If (A0,�0) ∈ C, then it is easy

to see that (A0,�0) �A (AC ,�C), by the previous remarks. This means that
(AC ,�C) is an upper bound for C in A. It follows that A has a maximal element,
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by Zorn’s lemma. Alternatively, Hausdorff’s maximality principle implies that
A has a maximal chain, and an upper bound for such a chain is a maximal
element of A, as usual.

Let (A1,�1) be a maximal element of A. We would like to show that A1 = A.
Otherwise, there is an a2 ∈ A such that a2 6∈ A1. Put A2 = A1 ∪ {a2}, and let
us define �2 on A2 as follows. We take �2 to be the same as �1 on A1, and we
put x �2 a2 for every x ∈ A2. It is easy to see that A2 is well ordered by �2,
because A1 is well ordered by �1. Clearly A1 is an ideal in A2, by construction.
Thus (A2,�2) ∈ A and (A1,�1) �A (A2,�2). This contradicts the maximality
of (A1,�1) in A, because A1 6= A2.

4.8 Order isomorphisms

Let (A1,�1) and (A2,�2) be partially-ordered sets. A one-to-one mapping f
from A1 onto A2 is said to be an order isomorphism if for every x, y ∈ A1,

x �1 y if and only if f(x) �2 f(y).(4.8.1)

In this case, the inverse mapping f−1 is an order isomorphism from A2 onto
A1. Let (A3,�3) be another partially-ordered set, and suppose that g is an
order isomorphism from A2 onto A3. Under these conditions, g ◦ f is an order
isomorphism from A1 onto A3.

An order isomorphism from a partially-ordered set onto itself may be called
an order automorphism. Of course, the identity mapping on any partially-
ordered set is an order automorphism.

Now let (A1,�1) and (A2,�2) be well-ordered sets, and let f be an order
isomorphism from A1 onto A2. If E1 is a nonempty subset of A1, then f maps
the smallest element of E1 to the smallest element of f(E1). In particular, if
A1 6= ∅, then f maps the smallest element of A1 to the smallest element of A2.

Let (A,�) be a well-ordered set, and let f be an order automorphism on A.
We would like to check that

f is the identity mapping on A.(4.8.2)

Otherwise, let a be the smallest element of A such that f(a) 6= a. Thus f
is the identity mapping on the segment S(a), and in particular f maps S(a)
onto itself. This implies that f maps the complement of S(a) in A onto itself.
However, a is the smallest element of the complement of S(a) in A. It follows
that f(a) = a, which is a contradiction.

Let (A1,�1) and (A2,�2) be well-ordered sets, and suppose that f and g
are order isomorphisms from A1 onto A2. This implies that g−1 ◦ f is an order
automorphism on A1. It follows that g−1 ◦ f is the identity mapping on A1, as
in the preceding paragraph. Of course, this means that

g = f,(4.8.3)

so that an order isomorphism between well-ordered sets is unique when it exists.
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Let (A,�) be a well-ordered set again, and let B be an ideal in A. As
before, B is well ordered by the restriction of � to B. Suppose that f is an
order isomorphism from A onto B. Under these conditions, f is the identity
mapping on A, so that

B = f(A) = A.(4.8.4)

This is an extension of the earlier statement for order automorphisms on A,
which can be shown in essentially the same way. More precisely, if f is not
the identity mapping on A, then there is a smallest element a of A such that
f(a) 6= a. This means that f is equal to the identity mapping on S(a), so
that f(S(a)) = S(a). It follows that f(a) 6∈ S(a), because a 6∈ S(a) and f
is injective, which is to say that a � f(a). This implies that a ∈ B, because
f(a) ∈ f(A) = B and B is an ideal in A. Note that

f(A \ S(a)) = f(A) \ f(S(a)) = f(A) \ S(a).(4.8.5)

Of course, a is the smallest element of A \ S(a), and a is the smallest element
of (4.8.5) too. Thus f(a) = a, which is a contradiction.

Alternatively, one can show more directly that a well-ordered set cannot be
order-isomorphic to any of its segments, as in Theorem 20 on p51 of [206].

Let (A1,�1) and (A2,�2) be partially-ordered sets again, and let f be an
order isomorphism from A1 onto A2. If B1 is an ideal in A1, then f(B1) is an
ideal in A2. If a1 ∈ A1, then f maps the corresponding segment SA1(a1) in A1

onto the segment SA2
(f(a1)) associated to f(a1) in A2.

Suppose that A1 and A2 are well ordered by �1 and �2, respectively. If
a1 ∈ A1, then there is at most one a2 ∈ A2 such that SA1(a1) is order isomorphic
to SA2(a2), with respect to the restrictions of �1 and �2 to SA1(a1) and SA2(a2),
respectively. Otherwise, there are elements a′2 and a′′2 of A2 such that a′2 6= a′′2
and SA2

(a′2) is order isomorphic to SA2
(a′′2). We may as well suppose that a′2 �2

a′′2 , because A2 is linearly ordered by �2, and otherwise we could interchange
the roles of a′2 and a′′2 . This means that a′2 ∈ SA2

(a′′2), because a′2 6= a′′2 . Thus
SA2

(a′2) may be considered as a segment in SA2
(a′′2). This contradicts the fact

that a well-ordered set cannot be order isomorphic to any of its segments, as
before.

This can also be used to prove the uniqueness of order isomorphisms be-
tween well-ordered sets, by considering the images of segments under the order
isomorphisms.

4.9 Order isomorphisms, continued

Let (A,�A) and (B,�B) be well-ordered sets. Under these conditions, Theorem
21 on p51 of [206] states that

A is order-isomorphic to an ideal in B,(4.9.1)

or B is order-isomorphic to an ideal in A.
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More precisely, this means that

either A is order-isomorphic to B,(4.9.2)

A is order-isomorphic to a segment in B,

or B is order-isomorphic to a segment in A.

It is easy to see that only one of these three possibilities can occur, because a
well-ordered set cannot be order-isomorphic to any of its segments, as in the
previous section.

Let IA be the set of a ∈ A for which there is a b ∈ B such that the seg-
ment SA(a) corresponding to a in A is order-isomorphic to the segment SB(b)
corresponding to b in B. One can check that b is uniquely determined by this
property, because a well-ordered set cannot be order-isomorphic to any of its
segments. If a ∈ IA, then let f(a) be the element of B such that SA(a) is
order-isomorphic to SB(f(a)). This defines a mapping from IA into B.

Let a ∈ IA be given, so that there is an order isomorphism ϕa from SA(a)
onto SB(f(a)). More precisely, this uses the restrictions of �A and �B to
SA(a) and SB(f(a)), respectively. If a0 ∈ SA(a), then SA(a0) is the same as
the segment corresponding to a0 in SA(a). Similarly, ϕa(a0) ∈ SB(f(a)), and
SB(ϕa(a0)) is the same as the segment corresponding to ϕa(a0) in SB(f(a)). It
follows that

ϕa(SA(a0)) = SB(ϕa(a0)),(4.9.3)

as in the previous section. Note that the restriction of ϕa to SA(a0) is an order
isomorphism onto SB(ϕa(a0)). This means that a0 ∈ IA, with

f(a0) = ϕa(a0).(4.9.4)

Thus
SA(a) ⊆ IA,(4.9.5)

and
f(SA(a)) = ϕa(SA(a)) = SB(f(a)).(4.9.6)

In particular, IA is an ideal in A.
Similarly, let IB be the set of b ∈ B such that SB(b) is order-isomorphic to

SA(a) for some a ∈ A. This means that a ∈ IA and f(a) = b, and in fact

f(IA) = IB .(4.9.7)

It is easy to see that IB is an ideal in B, using (4.9.6). One can check that f is
an order isomorphism from IA onto IB , with respect to the restrictions of �A

and �B to IA and IB , respectively.
Suppose for the sake of a contradiction that IA 6= A and IB 6= B. This

implies that there are x ∈ A and y ∈ B such that IA = SA(x) and IB = SB(y),
as in Section 4.6. It follows that x ∈ IA and y ∈ IB , because f is an order
isomorphism from IA onto IB . This is a contradiction, and so we get that
IA = A or IB = B, as desired.



Chapter 5

Some additional notions in
topology

5.1 Continuous real-valued functions

Let X be a nonempty topological space, and let C(X) be the space of continuous
real-valued functions on X. This uses the standard topology on the real line,
as the range of the functions on X. Of course, constant functions on X are
continuous.

If f, g ∈ C(X), then
f + g, f g ∈ C(X)(5.1.1)

too. This can be shown using the same type of arguments as for continuous
real-valued functions on the real line, or on a metric space. Alternatively, it is
easy to see that

x 7→ (f(x), g(x))(5.1.2)

is continuous as a mapping from X into R2, using the product topology on R2

corresponding to the standard topology on R. One can also show that

addition and multiplication on R are continuous(5.1.3)

as mappings from R2 into R,

using standard arguments. To get the continuity of f + g and f g, one can
consider these functions as the compositions of (5.1.2) with the mappings from
R2 into R that correspond to addition and multiplication of real numbers,
respectively.

Similarly, if f ∈ C(X) and f(x) 6= 0 for each x ∈ X, then

1/f ∈ C(X).(5.1.4)

This can be obtained using the same type of arguments as for functions on the
real line or a metric space, or by considering 1/f as the composition of f with
the mapping t 7→ 1/t from R \ {0} into itself.

85
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Let us say that C(X) separates points in X if for every x, y ∈ X with x 6= y
there is an f ∈ C(X) such that

f(x) 6= f(y).(5.1.5)

In this case, X is said to be a Urysohn space. One can check that

Urysohn spaces are completely Hausdorff,(5.1.6)

because the real line is completely Hausdorff with respect to the standard topol-
ogy.

Let X be a set, and suppose that τ and τ̃ are topologies on X, with τ ⊆ τ̃ .
If a real-valued function f on X is continuous with respect to τ , then

f is continuous with respect to τ̃(5.1.7)

too. If (X, τ) is a Urysohn space, then it follows that

(X, τ̃) is a Urysohn space(5.1.8)

as well.
Now let X be a set with a semimetric d(x, y). If p ∈ X, then one can verify

that
fp(x) = d(p, x)(5.1.9)

is continuous on X, with respect to the topology determined by d(·, ·). If d(·, ·)
is a metric on X, then it follows that X is a Urysohn space with respect to this
topology.

If f and g are continuous real-valued functions on a topological space X
again, then it is not difficult to show that

max(f(x), g(x)) and min(f(x), g(x))(5.1.10)

are continuous on X as well, directly from the definitions. Alternatively, one
can check that

the maximum and minimum of two real numbers(5.1.11)

define continuous mappings from R2 into R.

The continuity of the maximum and minimum of f and g can be obtained from
this and the continuity of (5.1.2) as a mapping from X into R2, as before. In
particular, if a and b are real numbers, then

max(f(x), a) and min(f(x), b)(5.1.12)

are continuous on X. This can also be seen using the continuity of

max(t, a) and min(t, b)(5.1.13)

as functions of t ∈ R, by composing f with these functions.
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5.2 Urysohn functions

Let X be a topological space, and let A and B be disjoint subsets of X. A
continuous real-valued function f on X is said to be a Urysohn function for A
and B if

f(x) = 0 for every x ∈ A,(5.2.1)

f(y) = 1 for every y ∈ B,(5.2.2)

and
0 ≤ f(w) ≤ 1 for every w ∈ X.(5.2.3)

The third condition can always be arranged by replacing f with

min(max(f, 0), 1),(5.2.4)

as in the previous section.
If f is a Urysohn function on X for A and B, then

1 − f is a Urysohn function on X for B and A.(5.2.5)

It is easy to see that X is a Urysohn space if and only if every pair A, B of
disjoint subsets of X with only one element each has a Urysohn function.

If X is normal in the strict sense, and A, B are disjoint closed subsets of X,
then Urysohn’s lemma states that

there is a Urysohn function on X for A and B.(5.2.6)

One can check that this property implies that X is normal in the strict sense.
If X is normal in the strong sense, then it follows that X is a Urysohn space.

Urysohn’s metrization theorem states that if X is second countable and nor-
mal in the strong sense, then there is a metric on X that determines the same
topology. Tychonoff extended this to second countable spaces that are regular
in the strong sense.

Suppose that X is a Urysohn space, and let x, y be distinct elements of X.
Thus there is a Urysohn function f on X for {x} and {y}, as before. Under
these conditions,

2 min(f, 1/2)(5.2.7)

is a Urysohn function on X for {x} and

{z ∈ X : f(z) ≥ 1/2}.(5.2.8)

Note that
{z ∈ X : f(z) > 1/2}(5.2.9)

is an open subset of X that contains y and is contained in (5.2.8).
Let B be a compact subset of X, and suppose that x ∈ X \B. One can get

a Urysohn function on X for {x} and B,(5.2.10)
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as follows. If y ∈ B, then there is a Urysohn function on X for {x} and a
neighborhood of y in X, as in the preceding paragraph. Because B is compact,
B can be covered by finitely many such neighborhoods of its elements. The
maximum of the corresponding Urysohn functions for {x} and these finitely
many neighborhoods of elements of B is a Urysohn function for {x} and B.

If A and B are disjoint compact subsets of X, then one can get

a Urysohn function on X for A and B(5.2.11)

using analogous arguments. More precisely, for each x ∈ A, one can get a
Urysohn function for {x} and B, as before. One can use this to get a Urysohn
function on X for a neighborhood of x and B. Because A is compact, A can be
covered by finitely many such neighborhoods of its elements. The minimum of
the corresponding Urysohn functions is a Urysohn function on X for A and B.

5.3 Complete regularity

Let us say that a topological space X is completely regular in the strict sense if
for every x ∈ X and closed set E ⊆ X with x 6∈ E there is an f ∈ C(X) such
that f(x) 6= 0 and

f(y) = 0 for every y ∈ E.(5.3.1)

In this case, it is easy to modify f a bit, if necessary, to get that

f is a Urysohn function for E and {x}.(5.3.2)

If X also satisfies the zeroth separation condition, then we say that X is com-
pletely regular in the strong sense. In this case, X is said to be a Tychonoff
space as well.

As usual, completely regular spaces in the strict sense are sometimes said to
be completely regular, and completely regular spaces in the strong sense may be
said to satisfy separation condition number three and a half, or equivalently be
T3 1

2
spaces, but these terms may be used the other way. Alternatively, complete

regularity, separation condition number three and a half, and T3 1
2

spaces may be
used for complete regularity in the strong sense, and one may refer to complete
regularity in the strict sense in other ways.

If X is completely regular in the strict sense, then it is easy to see that

X is regular in the strict sense,(5.3.3)

because the real line is Hausdorff with respect to the standard topology. If X
is completely regular in the strong sense, then it follows that

X is regular in the strong sense.(5.3.4)

We also have that
X is a Urysohn space(5.3.5)
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in this situation. If X is normal in the strong sense, then

X is completely regular in the strong sense,(5.3.6)

by Urysohn’s lemma.

If X is regular in the strict sense, and X is normal in the strict sense, then

X is completely regular in the strict sense.(5.3.7)

To see this, let x ∈ X and a closed set E ⊆ X be given, with x 6∈ E. One can
use regularity in the strict sense to get an open set U ⊆ X such that x ∈ U and
U ⊆ X \E. In particular, E and U are disjoint closed subsets of X, and x ∈ U .
Thus one can use Urysohn’s lemma to get a suitable element of C(X).

Let X be a topological space again, and let Y be a subset of X, equipped
with the induced topology. If f is a continuous real-valued function on X, then

the restriction of f to Y is continuous.(5.3.8)

If X is a Urysohn space, then it is easy to see that

Y is a Urysohn space.(5.3.9)

Similarly, if X is completely regular in the strict sense, then one can check that

Y is completely regular in the strict sense(5.3.10)

too, with respect to the induced topology. In particular, if X is normal in the
strong sense, then X is completely regular in the strong sense, by Urysohn’s
lemma, and hence

Y is completely regular in the strong sense.(5.3.11)

Suppose that X is completely regular in the strict sense, and let x ∈ X and
a closed set E ⊆ X be given, with x 6∈ E. Thus there is a Urysohn function on
X for E and {x}, as before. One can use this to get

a Urysohn function on X for E and a neighborhood of x in X,(5.3.12)

as in the previous section.

Suppose now that E ⊆ X is a closed set, K ⊆ X is compact, and E∩K = ∅.
If x ∈ K, then there is a Urysohn function on X for E and a neighborhood of x
in X, as in the preceding paragraph. Because K is compact, K can be covered
by finitely many such neighborhoods of its elements. The maximum of the
corresponding Urysohn functions for E and these finitely many neighborhoods
of elements of K

is a Urysohn function for E and K.(5.3.13)
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5.4 Local compactness and manifolds

A topological space X is said to be locally compact if for every x ∈ X there is
an open set U ⊆ X and a compact set K ⊆ X such that

x ∈ U and U ⊆ K.(5.4.1)

If X is Hausdorff, then K is a closed set in X, and it follows that the closure U
of U in X is contained in K. This implies that

U is compact in X,(5.4.2)

because U is a closed set contained in a compact set. Sometimes local compact-
ness is defined by asking that U be compact. Note that Rn is locally compact
with respect to the standard topology for each positive integer n.

Suppose that X is a locally compact Hausdorff space. It is not too difficult
to show that

X is regular as a topological space.(5.4.3)

More precisely, one can show that

X is completely regular.(5.4.4)

This can be reduced to Urysohn’s lemma, or obtained using similar arguments.
Let X be a topological space, and let n be a positive integer. We say that

X is locally Euclidean of dimension n if for every x ∈ X there is an open set
U ⊆ X such that x ∈ U and

U is homeomorphic to an open subset W of Rn.(5.4.5)

More precisely, this uses the standard topology on Rn, and the appropriate
induced topologies on U and W .

Suppose that X is locally Euclidean of dimension n, and let us check that

X satisfies the first separation condition.(5.4.6)

Let x and y be distinct elements of X, so that we would like to find an open
subset of X that contains x and not y. By hypothesis, there is an open set
U ⊆ X such that x ∈ U and U is homeomorphic to an open subset of Rn. If
y 6∈ U , then we can take U to be the open set that we want. Otherwise, if y ∈ U ,
we can use the fact that Rn satisfies the first separation condition to find an
open set that contains x and not y.

Note that
X satisfies the first countability condition,(5.4.7)

because of the analogous property of Rn.
Let x ∈ X be given again, and let U ⊆ X be an open set such that x ∈ U

and U is homeomorphic to an open subset W of Rn. If K ⊆ Rn is compact
and K ⊆W , then

K is compact as a subset of W,(5.4.8)
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with respect to the induced topology. This means that

K corresponds to a compact subset of U,(5.4.9)

with respect to the induced topology. It follows that

the subset of U corresponding to K is compact as a subset of X(5.4.10)

as well. In particular, one can use this to check that X is locally compact.
However, X may not be Hausdorff, and this is often included as an additional

condition. In this case, one can use the regularity of Rn to get that X is
regular, a bit more directly than for arbitrary locally compact Hausdorff spaces.
Similarly, complete regularity of X can be obtained more directly from the
complete regularity of Rn.

An n-dimensional topological manifold is often defined as

a Hausdorff topological space X that is locally Euclidean(5.4.11)

of dimension n and satisfies the second countability condition.

There is also a notion of an n-dimensional topological manifold with bound-
ary, although we shall not get into the details of this here. A basic example is
a closed ball of positive radius in Rn, with respect to the standard Euclidean
metric, equipped with the induced topology. Another example is the set of
x ∈ Rn with first coordinate x1 ≥ 0, equipped with the topology induced by
the standard topology on Rn.

Let X be any topological space again. If U1, . . . , Un are finitely many dense
open subsets of X, then one can check that their intersection

⋂n
j=1 Uj is a dense

open set in X too. If U1, U2, U3, . . . is an infinite sequence of dense open sets in
X, then a famous theorem of Baire gives conditions under which

∞⋂
j=1

Uj is dense in X.(5.4.12)

One condition for this to hold is that there be a metric d(·, ·) on X such that
X is equipped with the topology determined by d(·, ·), and that

X is complete with respect to d(·, ·),(5.4.13)

which is to say that every Cauchy sequence in X with respect to d(·, ·) converges
to an element of X. Another condition for this to hold is that X be a locally
compact Hausdorff space.

5.5 σ-Compactness

Let X be a topological space. It is easy to see that

the union of finitely many compact subsets of X is compact as well.(5.5.1)
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Similarly,

the union of finitely or countably many subsets of X(5.5.2)

with the Lindelöf property has the Lindelöf property too.

A subset E of X is said to be σ-compact if there is a sequence K1,K2,K3, . . .
of compact subsets of X such that

E =

∞⋃
j=1

Kj .(5.5.3)

This implies that E has the Lindelöf property, as before.
Suppose that X is locally compact, so that X can be covered by open sets

that are contained in compact sets. If X also has the Lindelöf property, then it
follows that X can be covered by finitely or countably many open sets, each of
which is contained in a compact set. In particular, this means that

X is σ-compact.(5.5.4)

Remember that X has the Lindelöf property when X satisfies the second
countability condition, by Lindelöf’s theorem. It follows that

topological manifolds are σ-compact,(5.5.5)

for instance.
Let {Uα}α∈A be an open covering of X, and suppose that for each α ∈ A,

Bα is a base for the topology induced on Uα by the topology on X. Note that
the elements of Bα are open subsets of X for each α ∈ A, because the Uα’s are
open subsets of X. Thus

B =
⋃
α∈A

Bα(5.5.6)

is a collection of open subsets of X. Under these conditions, one can check that

B is a base for the topology of X.(5.5.7)

Of course, if A has only finitely or countably many elements, and if Bα has
only finitely or countably many elements for each α ∈ A, then

B has only finitely or countably many elements.(5.5.8)

If X has the Lindelöf property, then one can automatically reduce to the case
where A has only finitely or countably many elements.

Suppose that X is locally Euclidean of dimension n for some positive integer
n. Thus X can be covered by open sets that are homeomorphic to open subsets
of Rn. If X has the Lindelöf property, then it follows that X can be covered by
finitely or countably many open sets that are homeomorphic to open subsets of
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Rn. Each of these open sets has a countable base for its topology, because of
the analogous property for open subsets of Rn. This leads to

a countable base for the topology of X,(5.5.9)

as in the preceding paragraph.
One can show that the set R \ Q of irrational numbers is not σ-compact

with respect to the standard topology on R, using the Baire category theorem.
Note that every subset of the real line has the Lindelöf property, by Lindelöf’s
theorem.

5.6 Quotient spaces

Let X be a set. A binary relation ∼ on X is said to be an equivalence relation
on X if it is reflexive, symmetric, and transitive on X, as usual. In this case, if
x ∈ X, then

[x] = {y ∈ X : x ∼ y}(5.6.1)

is called an equivalence class in X. This is a subset of X that contains x, by
reflexivity. If x,w ∈ X, then [x] = [w] if and only if x ∼ w, and otherwise [x]
and [w] are disjoint.

Conversely, let P be a partition of X, which is to say a collection of pairwise-
disjoint nonempty subsets of X whose union is equal to X. If x, y ∈ X, then
put

x ∼P y when x and y lie in the same element of P.(5.6.2)

This defines an equivalence relation on X, for which the corresponding equiva-
lence classes are the elements of P.

If ∼ is any equivalence relation on X, then let

X/ ∼(5.6.3)

be the corresponding quotient set, which is the set of equivalence classes in X.
In this situation, there is a natural quotient mapping from X onto X/ ∼, which
sends x ∈ X to [x] ∈ X/ ∼.

Let Y be another set, and let f be a mapping from X onto Y . If x,w ∈ X,
then put

x ∼f w when f(x) = f(w).(5.6.4)

This defines an equivalence relation on X, for which the corresponding equiva-
lence classes are the sets of the form f−1({y}), y ∈ Y .

Suppose now that X is a topological space. Let us say that

V ⊆ Y is an open set(5.6.5)

exactly when

f−1(V ) is an open set in X.(5.6.6)
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One can check that this defines a topology on Y , which is called the quotient
topology or identification topology associated to f . Equivalently, this means that

E ⊆ Y is a closed set if and only if f−1(E) is a closed set in X.(5.6.7)

Note that f is automatically continuous with respect to the quotient topology
on Y .

Remember that Y satisfies the first separation condition if and only if for
each y ∈ Y , {y} is a closed set in Y . Thus Y satisfies the first separation
condition with respect to the quotient topology associated to f if and only if

for each y ∈ Y, f−1({y}) is a closed set in X.(5.6.8)

Let Z be another topological space, and let g be a mapping from Y into Z.
One can check that g is continuous with respect to the quotient topology on Y
associated to f if and only if g ◦ f is continuous as a mapping from X into Z.

5.7 Local connectedness

Let X be a topological space, and let x be an element of X. Let us say that X
is locally connected at x if for every open subset W of X that contains x, there
is an open subset U0 of X such that x ∈ U0, U0 ⊆W , and

every element of U0 can be connected to x in W.(5.7.1)

More precisely, this means that

for every y ∈ U0 there is a connected set E(x, y) ⊆ X(5.7.2)

such that x, y ∈ E(x, y) and E(x, y) ⊆W.

If there is a connected open subset U of X such that x ∈ U and U ⊆ W , then
we can take U0 = U .

Alternatively, let W be an open subset of X that contains x, and let U1 be

the union of all the connected subsets of W that contain x.(5.7.3)

Thus x ∈ U1, because {x} is a connected set that contains x, U1 ⊆ W by
construction, and U1 is connected, by Proposition 1.15.3. In this situation,
local connectedness of X at x says exactly that

x is an element of the interior of U1.(5.7.4)

If X is locally connected at every point in X, then X is said to be locally
connected as a topological space. Let W be an open subset of X that contains
x again, and let U1 be as in the preceding paragraph. If X is locally connected,
then one can check that

U1 is an open set in X.(5.7.5)
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Similarly, X is said to be locally path connected at x if for every open subset
W of X that contains x, there is an open subset V0 of X such that x ∈ V0,
V0 ⊆W , and

every element of V0 can be connected to x(5.7.6)

by a continuous path in W.

If there is a path-connected open subset V of X such that x ∈ V and V ⊆ W ,
then we can take V0 = V . Note that local path connectedness at x implies local
connectedness at x.

Let W be an open subset of X that contains x, and let V1 be the set of
points in W that can be connected to x by a continuous path in W . Note that
V1 contains the images of these paths, so that V1 is a path-connected subset of
W . Local path connectedness of X at x says exactly that

x is in the interior of V1,(5.7.7)

as before.
If X is locally path connected at every point, then X is said to be locally

path connected as a topological space. Thus local path connectedness implies
local connectedness. Let W be an open subset of X that contains x, and let V1
be as in the previous paragraph. If X is locally path connected, then one can
verify that

V1 is an open set in X.(5.7.8)

It is easy to see that

Rn is locally path connected(5.7.9)

for every positive integer n, with respect to the standard topology. Similarly,
locally Euclidean spaces of dimension n are locally path connected. If X0 is
an open subset of X, and if X is locally connected or path connected, then X0

has the same property, with respect to the induced topology. If X is connected
and locally path connected, then one can show that X is path connected. In
particular, connected open subsets of Rn are path connected.

5.8 Connected and path-connected components

Let X be a topological space, and consider the binary relation ∼c defined on X
by putting x ∼c y when x, y ∈ X and there is a connected subset E(x, y) of X
such that

x, y ∈ E(x, y).(5.8.1)

One can check that this defines an equivalence relation on X, using Proposition
1.15.3 to get that ∼c is transitive.

One can also verify that

the equivalence classes in X corresponding to ∼c(5.8.2)

are connected subsets of X,
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using Proposition 1.15.3 or 1.15.6. These equivalence classes are called the
connected components of X. It is easy to see that the connected components of
X are the maximal connected subsets of X, with respect to inclusion.

Observe that

the connected components of X are closed sets in X,(5.8.3)

by Proposition 1.15.1. If X is locally connected, then

the connected components of X are open sets in X.(5.8.4)

Similarly, consider the binary relation ∼p defined on X by putting x ∼p y
when x, y ∈ X are connected by a continuous path in X. This means that there
are real numbers a, b with a < b and a continuous mapping p from [a, b] into X
such that

p(a) = x, p(b) = y.(5.8.5)

This uses the topology induced on [a, b] by the standard topology on R. Note
that one can always reduce to the case where a = 0 and b = 1, by reparameter-
izing the path.

It is not too difficult to show that ∼p defines an equivalence relation on X.
The equivalence classes in X corresponding to ∼p are path-connected subsets
of X, by construction. These equivalence classes are called the path-connected
components of X. As before, these are the maximal path-connected subsets of
X, with respect to inclusion.

If x, y ∈ X, then
x ∼p y implies x ∼c y.(5.8.6)

Indeed, if a, b ∈ R and a < b, then [a, b] is connected as a subset of R with
respect to the standard topology. This implies that [a, b] is connected as a subset
of itself, with respect to the induced topology. If p is a continuous mapping from
[a, b] into X, then it follows that p([a, b]) is a connected set in X.

If X is locally path connected, then

the path-connected components of X are open subsets of X.(5.8.7)

If X is also connected, then one can check that X is path connected.

5.9 One-point compactifications

Let X be a Hausdorff topological space that is not compact. The one-point
compactification of X can be defined initially as a set by

X∗ = X ∪ {p∗},(5.9.1)

where p∗ 6∈ X. One often refers to p∗ as the point at infinity in X∗. Let us say
that U ⊆ X∗ is an open set if either

U is an open subset of X,(5.9.2)
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or if

p∗ ∈ U and X∗ \ U is a compact subset of X.(5.9.3)

Remember that compact subsets of X are closed sets in X, because X is
Hausdorff, by hypothesis. If U ⊆ X∗ is an open set and p∗ ∈ U , then it follows
that X∗ \ U is a closed set in X. Note that

X \ (U ∩X) = X \ U = X∗ \ U,(5.9.4)

because p∗ ∈ U . Thus

U ∩X is an open set in X(5.9.5)

in this case.
Of course, the empty set is an open subset of X∗, because it is an open

subset of X. We also have that X∗ is an open set in itself, because it contains
p∗ and its complement in itself is the empty set, which is a compact subset of
X.

If U1, . . . , Un are finitely many open sets in X∗, then we would like to check
that their intersection is an open set in X∗ as well. If Ul ⊆ X for some l, then

n⋂
j=1

Uj ⊆ X,(5.9.6)

and it suffices to verify that
⋂n

j=1 Uj is an open set in X. This follows from the
fact that Uj ∩X is an open set in X for each j = 1, . . . , n, so that

n⋂
j=1

Uj =

n⋂
j=1

(Uj ∩X)(5.9.7)

is an open set in X. Otherwise, if p∗ ∈ Uj for each j = 1, . . . , n, then we should
verify that

X∗ \
( n⋂

j=1

Uj

)
=

n⋃
j=1

(X∗ \ Uj)(5.9.8)

is a compact subset of X. In fact, it is easy to see that the union of finitely many
compact subsets of any topological space is compact, as mentioned in Section
5.5.

Let {Uα}α∈A be a family of open subsets of X∗, and let us check that their
union is an open set in X∗. If Uα ⊆ X for every α ∈ A, then Uα is an open set in
X for each α ∈ A. This implies that

⋃
α∈A Uα is an open set in X, and hence in

X∗. Otherwise, suppose that p∗ ∈ Uα0 for some α0 ∈ A, so that p∗ ∈
⋃

α∈A Uα.
In this case, we would like to verify that

X∗ \
( ⋃

α∈A

Uα

)
is a compact subset of X.(5.9.9)
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Observe that

X∗ \
( ⋃

α∈A

Uα

)
= X \

( ⋃
α∈A

Uα

)
=

⋂
α∈A

(X \ Uα).(5.9.10)

This is a closed set in X, because X \ Uα is a closed set in X for every α ∈ A.
We also have that X \ Uα0

= X∗ \ Uα0
is compact in X, because p∗ ∈ Uα0

.
It follows that (5.9.9) holds, because it is a closed set that is contained in the
compact set X \ Uα0

.

This shows that the collection of open subsets of X∗ defined earlier is a
topology on X∗. By construction, X is an open subset of X∗, and the topology
induced on X by this topology on X∗ is the same as the given topology on X.
Note that

p∗ is a limit point of X in X∗,(5.9.11)

because X is not compact, by hypothesis.

Let us check that

X∗ is compact(5.9.12)

with respect to this topology. Let {Uα}α∈A be an arbitrary open covering of
X∗ in itself. In particular, there is an α0 ∈ A such that p∗ ∈ Uα0

. Thus

X \ Uα0
= X∗ \ Uα0

is a compact subset of X.(5.9.13)

We may consider {Uα ∩X}α∈A as an open covering of X \ Uα0 in X, because
Uα∩X is an open set in X for each α ∈ A, and the union of these open sets is X.
Because X \Uα0

is compact in X, there are finitely many indices α1, . . . , αn ∈ A
such that

X∗ \ Uα0
= X \ Uα0

⊆
n⋃

j=1

(Uαj
∩X).(5.9.14)

This implies that

X∗ ⊆
n⋃

j=0

Uαj
,(5.9.15)

as desired.

Observe that X∗ is Hausdorff if and only if for every x ∈ X there are disjoint
open subsets U and V of X∗ such that x ∈ U and p∗ ∈ V , because X is Hausdorff
by hypothesis. One can verify that this happens exactly when

X is locally compact.(5.9.16)

The one-point compactification of a topological space X can also be defined
a bit more carefully when X is not necessarily Hausdorff.
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5.10 Homotopic mappings

Let X and Y be topological spaces, and let f , g be continuous mappings from
X into Y . A homotopy between f and g is a mapping H from X × [0, 1] into Y
that satisfies the following two conditions. First, H should be continuous with
respect to the product topology on X × [0, 1]. Of course, this uses the topology
induced on [0, 1] by the standard topology on R. Second,

H(x, 0) = f(x),(5.10.1)

H(x, 1) = g(x)(5.10.2)

for every x ∈ X. In this case, one may say that f is homotopic to g. It is well
known and not too difficult to show that this defines an equivalence relation on
the space C(X,Y ) of continuous mappings from X into Y .

In many cases, one may wish to include additional conditions on f and g,
and the same conditions on H(x, t) for each t ∈ [0, 1]. Suppose for instance that
X = [0, 1], and let p, q ∈ Y be given. Let f , g be continuous mappings from
[0, 1] into Y such that

f(0) = g(0) = p, f(1) = g(1) = q.(5.10.3)

If a homotopy H(x, t) between f and g also satisfies

H(0, t) = p, H(1, t) = q(5.10.4)

for every t ∈ [0, 1], then one says that f and g are homotopic with endpoints
fixed. One can show that this defines an equivalence relation on the space of
continuous paths in Y from p to q.

Suppose now that Y is a convex subset of Rn for some positive integer n.
This means that for every y, z ∈ Y , the line segment in Rn connecting y and z
is contained in Y too. We consider Y as a topological space, using the topology
induced by the standard topology on Rn. Let X be any topological space again,
and let f , g be continuous mappings from X into Y . One can check that

H(x, t) = (1 − t) f(x) + t g(x)(5.10.5)

defines a homotopy between f and g, as continuous mappings from X into Y .

Let p, q ∈ Y be given again, and suppose that f , g are continuous mappings
from [0, 1] into Y that satisfy (5.10.3). Note that (5.10.5) satisfies (5.10.4) in
this case.

Let Z be another topological space, and let ϕ be a continuous mapping from
Y into Z. If f , g are homotopic continuous mappings from X into Y , with
homotopy H, then ϕ ◦H is a homotopy between ϕ ◦ f and ϕ ◦ g, as continuous
mappings from X into Z. There is an analogous statement for homotopic paths
with endpoints fixed, as usual.
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5.11 Countable unions and intersections

A subset E of a topological space X is said to be an Fσ set if

E can be expressed as the union of(5.11.1)

a sequence of closed subsets of X.

Similarly, a subset A of X is said to be a Gδ set if

A can be expressed as the intersection of(5.11.2)

a sequence of open subsets of X.

It is easy to see that

E ⊆ X is an Fσ set if and only if X \ E is a Gδ set.(5.11.3)

Of course, closed sets are Fσ sets, and open sets are Gδ sets.
Suppose for the moment that X satisfies the first separation condition. Let

x be an element of X, and let B(x) be a local base for the topology of X at x.
Under these conditions, the intersection of the elements of B(x) is equal to {x}.
If B(x) has only finitely many elements, then {x} is an open set in X. If B(x)
is countable, then {x} is a Gδ set in X.

Suppose now that d(x, y) is a semimetric on X, and that X is equipped with
the topology determined by d(·, ·). If A is any subset of X and r is a positive
real number, then put

Ar =
⋃
x∈A

B(x, r).(5.11.4)

This is an open subset of X that contains A. One can check that

A =

∞⋂
j=1

A1/j .(5.11.5)

This implies that every closed set in X is a Gδ set, and hence that every open
set in X is an Fσ set.

Let X and Y be arbitrary topological spaces, and let f be a continuous
mapping from X into Y . If E ⊆ Y is an Fσ set, then

f−1(E) is an Fσ set in X.(5.11.6)

Similarly, if A ⊆ Y is a Gδ set, then

f−1(A) is a Gδ set in X.(5.11.7)

In particular, suppose that f is a continuous real-valued function on X, with
respect to the standard topology on R. If t ∈ R, then {t} is a Gδ set in R, so
that

f−1({t}) is a Gδ set in X.(5.11.8)
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Let us say that X is perfectly normal in the strict sense if X is normal in
the strict sense, and every closed set in X is a Gδ set. If X also satisfies the
first separation condition, then we say that X is perfectly normal in the strong
sense. One may say that X is perfectly normal when X is perfectly normal in
the strict sense, and perfectly T4 when X is perfectly normal in the strong sense,
but the opposite convention is used sometimes too.

A subset E of X is said to be nowhere dense if the interior of the closure E
of E in X is empty. Equivalently, this means that X \ E is dense in X. This
is the same as saying that the interior of X \ E is dense in X. Remember that
the intersection of finitely many dense open subsets of X is a dense open set in
X, as in Section 5.4. One can use this to check that the union of finitely many
nowhere dense subsets of X is nowhere dense in X.

A subset A of X is said to be of the first category or meager in X if A can
be expressed as the union of a sequence of nowhere dense sets. Otherwise, A is
said to be of the second category or non-meager in X. The theorem of Baire
mentioned in Section 5.4 is equivalent to saying that if A is of the first category
in X, then

X \A is dense in X,(5.11.9)

under the same conditions as before. This is the same as saying that the interior
of A in X is empty. In particular, it follows that X is of second category in this
case.

5.12 Distance functions

Let X be a set with a semimetric d(x, y), and let A be a nonempty subset of
X. If x ∈ X, then the distance from x to A with respect to d(·, ·) is defined by

dist(x,A) = inf{d(x, a) : a ∈ A},(5.12.1)

which is a nonnegative real number. One can check that dist(x,A) = 0 if and
only if x is an element of the closure A of A with respect to the topology
determined on X by d(·, ·).

Observe that

dist(x,A) ≤ d(x, a) ≤ d(x, y) + d(y, a)(5.12.2)

for every x, y ∈ X and a ∈ A. Using this, one can check that

dist(x,A) ≤ d(x, y) + dist(y,A)(5.12.3)

for every x, y ∈ X. One can use this to verify that dist(x,A) is continuous as a
real-valued function on X, with respect to the standard topology on R.

Suppose that A and B are nonempty separated subsets of X. Put

U = {x ∈ X : dist(x,A) < dist(x,B)}(5.12.4)
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and
V = {x ∈ X : dist(x,B) < dist(x,A)}.(5.12.5)

It is easy to see that these are open subsets of X. We also have that A ⊆ U ,
B ⊆ V , and U ∩ V = ∅. This is another way to look at the complete normality
of X in the strict sense, with respect to the topology determined by d(·, ·).

Suppose now that A and B are disjoint nonempty closed subsets of X. Note
that

dist(x,A) + dist(x,B) > 0(5.12.6)

for every x ∈ X. Thus
dist(x,A)

dist(x,A) + dist(x,B)
(5.12.7)

defines a nonnegative real-valued function on X, which is less than or equal to
1 for every x ∈ X. This function is continuous on X, equal to 0 on A, and equal
to 1 on B. Of course, this corresponds to Urysohn’s lemma in this case.

5.13 Local finiteness

Let X be a topological space, let A be a nonempty set, and let Eα be a subset
of X for every α ∈ A. Let us say that {Eα}α∈A is locally finite at a point x ∈ X
if there is an open subset U of X such that x ∈ U and

Eα ∩ U = ∅(5.13.1)

for all but finitely many α ∈ A. If {Eα}α∈A is locally finite at every x ∈ X,
then {Eα}α∈A is said to be locally finite in X.

Of course, if x ∈ X is adherent to Eβ for some β ∈ A, then x is adherent
to

⋃
α∈AEα. Let x ∈ X be given, and suppose that for each α ∈ A, x is not

adherent to Eα. Suppose also that {Eα}α∈A is locally finite at x, so that there
is an open set U ⊆ X such that x ∈ U and (5.13.1) holds for all but finitely
many α ∈ A. Let α1, . . . , αn be a list of the finitely many α ∈ A such that Eα

intersects U , if there are any. By hypothesis, for each j = 1, . . . , n, x is not
adherent to Eαj , and so there is an open subset Vj of X such that x ∈ Vj and
Eαj ∩ Vj = ∅. It follows that

W = U ∩
( n⋂

j=1

Vj

)
(5.13.2)

is an open subset of X such that x ∈W and

W ∩
( ⋃

α∈A

Eα

)
= ∅.(5.13.3)

This means that x is not adherent to
⋃

α∈AEα. Equivalently, if x ∈ X is
adherent to

⋃
α∈AEα, and if {Eα}α∈A is locally finite at x, then x is adherent

to Eα for some α ∈ A.
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If {Eα}α∈A is locally finite in X, then it follows that( ⋃
α∈A

Eα

)
=

⋃
α∈A

Eα.(5.13.4)

Of course, the right side is automatically contained in the left side, as before.
If α ∈ A satisfies (5.13.1) for some open set U ⊆ X, then

Eα ∩ U = ∅.(5.13.5)

If {Eα}α∈A is locally finite at x, then we get that {Eα}α∈A is locally finite at
x too. If {Eα}α∈A is locally finite in X, then {Eα}α∈A is locally finite in X as
well.

Let X0 be a subset of X, equipped with the induced topology. If {Eα}α∈A is
locally finite at x ∈ X0, then {Eα ∩X0}α∈A is locally finite at x, as a family of
subsets of X0. Similarly, if {Eα}α∈A is locally finite in X, then {Eα ∩X0}α∈A

is locally finite in X0.
Suppose for the moment that {Eα}α∈A is a family of subsets of X0. If

{Eα}α∈A is locally finite at x ∈ X0, as a family of subsets of X0, then it is easy
to see that {Eα}α∈A is locally finite at x, as a family of subsets of X.

Let {Eα}α∈A be a family of subsets of X again, and let K be a subset of X.
Suppose that {Eα}α∈A is locally finite at every x ∈ K. Thus, for each x ∈ K,
there is an open subset U(x) of X such that x ∈ U(x) and Eα∩U(x) = ∅ for all
but finitely many α ∈ A. If K is compact, then there are finitely many elements
x1, . . . , xn of K such that

K ⊆
n⋃

j=1

U(xj).(5.13.6)

We also have that

Eα ∩
( n⋃

j=1

U(xj)
)

= ∅(5.13.7)

for all but finitely many α ∈ A in this situation.
In particular, suppose that {Eα}α∈A is locally finite in X, and that X is

compact. Under these conditions, we get that Eα = ∅ for all but finitely many
α ∈ A.

5.14 Sums of real-valued functions

Let X be a set, let I be a nonempty set, and let ϕj be a real-valued function on
X for each j ∈ I. If x ∈ X, then put

I(x) = {j ∈ I : ϕj(x) 6= 0}.(5.14.1)

If I(x) has only finitely many elements, then the sum

Φ(x) =
∑
j∈I

ϕj(x)(5.14.2)
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can be defined as a real number, by reducing to a finite sum. More precisely,
(5.14.2) is the same as the sum over any nonempty finite subset of I that contains
I(x).

Put
Ej = {x ∈ X : ϕj(x) 6= 0}(5.14.3)

for each j ∈ I. If x ∈ X, then I(x) is the same as the set of j ∈ I such that
x ∈ Ej . If U0 is a subset of X, then put

I(U0) =
⋃

x∈U0

I(x) = {j ∈ I : ϕj(x) 6= 0 for some x ∈ U0}.(5.14.4)

This is the same as the set of j ∈ I such that Ej ∩ U0 6= ∅.
Suppose now that X is a topological space. Observe that {Ej}j∈I is locally

finite at a point x0 ∈ X if and only if there is an open set U0 ⊆ X such that
x0 ∈ U0 and I(U0) has only finitely many elements. In particular, this implies
that for each x ∈ U0, I(x) has only finitely many elements.

Suppose that ϕj is continuous on X for each j ∈ I, with respect to the
standard topology on R. If {Ej}j∈I is locally finite in X, then (5.14.2) defines
a real-valued function on X. It is easy to see that this function is continuous at
every point in X, under these conditions.

Of course, if ϕj(x) ≥ 0 for every j ∈ I and x ∈ X, then Φ(x) ≥ 0 for every
x ∈ X. If we also have that for each x ∈ X there is a j ∈ I such that ϕj(x) > 0,
then we get that Φ(x) > 0 for every x ∈ X. Note that 1/Φ(x) is continuous on
X in this case. Put

ψl(x) = ϕl(x)/Φ(x)(5.14.5)

for every l ∈ I and x ∈ X, which defines a continuous real-valued function on
X. By construction, ψl(x) ≥ 0 for every l ∈ I and x ∈ X, and

{x ∈ X : ψl(x) > 0} = El.(5.14.6)

Thus, for each x ∈ X, ψl(x) > 0 for only finitely many l ∈ I, and∑
l∈I

ψl(x) =
(∑

l∈I

ϕl(x)/Φ(x)
)

= Φ(x)/Φ(x) = 1.(5.14.7)

The family of functions ψl, l ∈ I, is said to be a partition of unity on X.

5.15 Local compactness and σ-compactness

Let X be a locally compact topological space. If K is a compact subset of X,
then there is an open set U ⊆ X such that K ⊆ U and U is contained in a
compact subset of X. Indeed, every element of K is contained in an open set
that is contained in a compact subset of X, because X is locally compact. It
follows that K is contained in the union of finitely many of these open sets,
because K is compact. By construction, the union of these finitely many open
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sets is contained in the union of finitely many compact subsets of X, which is
compact as well.

If X is Hausdorff, then every element of X is contained in an open set whose
closure in X is compact, as in Section 5.4. Similarly, if K ⊆ X is compact, then
there is an open set U ⊆ X such that K ⊆ U and U is compact.

Suppose now that X is σ-compact, so that there is a sequence K1,K2,K3, . . .
of compact subsets of X with

X =

∞⋃
j=1

Kj .(5.15.1)

If X is locally compact too, then there is an open set U1 ⊆ X and a compact set
E1 ⊆ X such that K1 ⊆ U1 and U1 ⊆ E1, as before. Similarly, for each j ≥ 1,
we can choose an open set Uj ⊆ X and a compact set Ej ⊆ X such that

j⋃
l=1

Kl ⊆ Uj ⊆ Ej ,(5.15.2)

and so that
Ej−1 ⊆ Uj(5.15.3)

when j ≥ 2. More precisely, suppose that Uj and Ej have been chosen in this
way for some j, and let us see how we can choose Uj+1 and Ej+1. Note that
Ej ∪Kj+1 is compact in X, because Ej and Kj+1 are compact. Thus there is
an open set Uj+1 ⊆ X such that Ej ∪Kj+1 ⊆ Uj+1 and Uj+1 is contained in a

compact set Ej+1 ⊆ X, as before. It follows that
⋃j+1

l=1 Kl ⊆ Uj+1, because of
(5.15.2). If X is Hausdorff, then we can take Ej = Uj for each j.

Of course,

X =

∞⋃
j=1

Uj =

∞⋃
j=1

Ej ,(5.15.4)

by (5.15.1) and (5.15.2). Put

A1 = E1 and Aj = Ej \ Uj−1 when j ≥ 2.(5.15.5)

It is easy to see that Aj is compact in X for every j, because Aj = Ej∩(X\Uj−1)
is the intersection of a compact set and a closed set when j ≥ 2. One can check
that

X =

∞⋃
j=1

Aj ,(5.15.6)

using (5.15.4). More precisely, if x ∈ X and j0 is the smallest positive integer
such that x ∈ Ej0 , then x ∈ Aj0 . In this case, x 6∈ Aj when j < j0, and when
j > j0 + 1. By construction,

Aj ∩ Ul = ∅(5.15.7)

when j > l, which implies that the family of Aj ’s is locally finite in X.
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Suppose now that X is Hausdorff, so that we can take Ej = U j for each j,
as before. Clearly Aj ⊆ Uj+1 for every j, by (5.15.3), and in fact

Aj ⊆ Uj+1 \ Uj−2(5.15.8)

when j ≥ 3. Put

V2 = U3 and Vj = Uj+1 \ Uj−2 when j ≥ 3,(5.15.9)

so that Vj is an open subset of X for every j ≥ 2. It is easy to see that

X =

∞⋃
j=2

Vj ,(5.15.10)

using (5.15.3) and (5.15.4). Observe that

Vj ∩ Vl = ∅(5.15.11)

when j ≥ l + 3, and in particular that the family of Vj ’s is locally finite in X.



Chapter 6

Some spaces of mappings

6.1 Bounded sets and mappings

Let Y be a set with a semimetric dY (·, ·). A subset A of Y is said to be bounded
with respect to dY (·, ·) if A is contained in a ball in Y with respect to dY (·, ·).
It is convenient to consider A = ∅ as a bounded subset of Y even when Y = ∅.

If A ⊆ Y is countably compact with respect to the topology determined on
Y by dY (·, ·), then it is easy to see that A is bounded in Y . More precisely, this
can be obtained by covering A by open balls in Y centered at a fixed point in
Y and with positive integer radii.

A mapping f from a set X into Y is said to be bounded if f(X) is a bounded
set in Y . Suppose that X is a topological space, and that f is a continuous
mapping from X into Y , with respect to the topology determined on Y by
dY (·, ·). If K ⊆ X is countably compact, then f(K) is countably compact in
Y , and hence f(K) is bounded in Y . In particular, if X is countably compact,
then f is bounded.

Let p be an element of Y , let f be a mapping from X into Y , and let E be
a subset of X. One can check that f(E) is bounded in Y if and only if

dY (p, f(x))(6.1.1)

is bounded as a real-valued function on E. If X is a topological space and
f is continuous with respect to the topology determined on Y by dY (·, ·), then
(6.1.1) is continuous as a real-valued function on X, with respect to the standard
topology on R. Indeed, (6.1.1) is the same as the composition of f with the
real-valued function on Y defined by dY (p, ·), which is continuous with respect
to the topology determined on Y by dY (·, ·).

Let X be a set, and let E be a nonempty subset of X. Consider the space
BE(X,Y ) of mappings f from X into Y such that f(E) is a bounded set in
Y . If f, g ∈ BE(X,Y ), then one can check that dY (f(x), g(x)) is bounded as a
real-valued function on E. In this case, we put

θE(f, g) = sup{dY (f(x), g(x)) : x ∈ E}.(6.1.2)

107
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One can verify that this defines a semimetric on BE(X,Y ), which is called the
supremum semimetric on BE(X,Y ) associated to dY (·, ·).

If E = X, then we may use B(X,Y ) instead of BX(X,Y ), which is the space
of all bounded mappings from X into Y . Similarly, we may use θ(f, g) instead
of θX(f, g). Note that this is a metric on B(X,Y ) when dY (·, ·) is a metric on
Y .

Let X be a topological space, and let C(X,Y ) be the space of continuous
mappings from X into Y . Also let K be a nonempty countably compact subset
of X, so that

C(X,Y ) ⊆ BK(X,Y ),(6.1.3)

as before. Thus the restriction of θK(f, g) to f, g ∈ C(X,Y ) defines a semimetric
on C(X,Y ).

If f, g ∈ C(X,Y ), then one can check that

dY (f(x), g(x))(6.1.4)

is continuous as a real-valued function on X, with respect to the standard
topology on R. If K is a nonempty compact subset of X, then the maximum of
(6.1.4) on K is attained, by the extreme value theorem. This also works when
K is countably compact, by analogous arguments. More precisely, one can use
the fact that countably compact subsets of the real line are compact, because
there is a countable base for the standard topology on R. One can also show
more directly that countably compact subsets of R are closed and bounded.

Let

Cb(X,Y ) = C(X,Y ) ∩ B(X,Y )(6.1.5)

be the space of mappings from X into Y that are both bounded and continuous.
If X is countably compact, then this is the same as C(X,Y ), as before.

6.2 Uniform convergence

Let X be a nonempty set, and let Y be a topological space. Also let (A,�)
be a nonempty directed system, let {fa}a∈A be a net of mappings from X into
Y indexed by A, and let f be another mapping from X into Y . We say that
{fa}a∈A converges to f pointwise on X if for every x ∈ X, {fa(x)}a∈A converges
to f(x) as a net of elements of Y .

The space Y X of mappings from X into Y may be considered as the Carte-
sian product of copies of Y indexed by X. Thus the product and strong product
topologies can be defined on Y X in the usual way, using the topology determined
on Y by dY (·, ·). Note that pointwise convergence of a net of mappings from
X into Y is the same as convergence with respect to the product topology.
The product topology on Y X is sometimes also called the topology of pointwise
convergence.

Now let dY (·, ·) be a semimetric on Y , and suppose that Y is equipped with
the topology determined by dY (·, ·). A net {fa}a∈A of mappings from X into Y
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is said to converge uniformly on X to a mapping f from X into Y with respect
to dY (·, ·) on Y if for every ϵ > 0 there is a b ∈ A such that

dY (fa(x), f(x)) < ϵ(6.2.1)

for every x ∈ X and a ∈ A with b � a. Clearly uniform convergence implies
pointwise convergence, and the converse holds when X has only finitely many
elements.

Let f be a mapping from X into Y , and let ϵ be a positive real number.
Consider the set Nϵ(f) of all mappings g from X into Y such that

dY (f(x), g(x)) < ϵ for every x ∈ X.(6.2.2)

Similarly, let Ñϵ(f) be the set of all mappings g from X into Y such that
dY (f(x), g(x)) is bounded as a real-valued function on X, with

sup{dY (f(x), g(x)) : x ∈ X} < ϵ.(6.2.3)

Clearly
Ñϵ(f) ⊆ Nϵ(f),(6.2.4)

because (6.2.3) implies (6.2.2). If η is any positive real number greater than ϵ,
then

Nϵ(f) ⊆ Ñη(f).(6.2.5)

This is because (6.2.2) implies that

sup{dY (f(x), g(x)) : x ∈ X} ≤ ϵ.(6.2.6)

Of course, if the supremum on the left is attained, then (6.2.2) implies (6.2.3).
Let us say that W ⊆ Y X is an open set with respect to the topology of

uniform convergence if for every f ∈W there is an ϵ > 0 such that

Nϵ(f) ⊆W.(6.2.7)

This is equivalent to saying that for every f ∈W there is an η > 0 such that

Ñη(f) ⊆W,(6.2.8)

by the remarks in the previous paragraph. One can check that this defines a
topology on Y X . It is easy to see that this topology is at least as strong as the
product topology on Y X . The strong product topology on Y X is at least as
strong as the topology of uniform convergence on Y X .

Let f , g, and h be mappings from X into Y , and suppose that dY (f(x), g(x))
and dY (g(x), h(x)) are bounded as real-valued functions on X. Observe that

dY (f(x), h(x)) ≤ dY (f(x), g(x)) + dY (g(x), h(x))(6.2.9)

≤ sup
w∈X

dY (f(w), g(w)) + sup
w∈X

dY (g(w), h(w))
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for every x ∈ X, using the triangle inequality in the first step. This implies that
dY (f(x), h(x)) is bounded as a real-valued function on X, with

sup
x∈X

dY (f(x), h(x)) ≤ sup
x∈X

dY (f(x), g(x)) + sup
x∈X

dY (g(x), h(x)).(6.2.10)

Suppose that g ∈ Ñη(f) for some η > 0, so that

δ = η − sup
x∈X

dY (f(x), g(x)) > 0.(6.2.11)

Under these conditions, one can check that

Ñδ(g) ⊆ Ñη(f),(6.2.12)

using (6.2.10). This implies that Ñη(f) is an open set in Y X , with respect to
the topology of uniform convergence.

Let {fa}a∈A be a net of mappings from X into Y indexed by A again, and let
f be another mapping from X into Y . One can check that {fa}a∈A converges
to f uniformly on X with respect to dY (·, ·) if and only if {fa}a∈A converges to
f with respect to the topology of uniform convergence on Y X .

Let θ(f, g) be the supremum semimetric on the space B(X,Y ) of bounded
mappings from X into Y with respect to dY (·, ·), as in the previous section.
One can verify that the topology determined on B(X,Y ) by θ(·, ·) is the same
as the topology induced on B(X,Y ) by the topology of uniform convergence on
Y X .

Suppose that X is a topological space, and let x0 ∈ X be given. Also let
{fa}a∈A be a net of mappings from X into Y indexed by A that converges
uniformly to a mapping f from X into Y . If, for each a ∈ A, fa is continuous
at x0, then it is well known and not too difficult to show that f is continuous
at x0. Similarly, C(X,Y ) is a closed set in Y X with respect to the topology of
uniform convergence.

6.3 Infinite series of functions

Let X be a set, and let a1(x), a2(x), a3(x), . . . be an infinite sequence of real-
valued functions on X. Also let A1, A2, A3, . . . be an infinite sequence of non-
negative real numbers such that

|aj(x)| ≤ Aj(6.3.1)

for every j ≥ 1 and x ∈ X. Suppose that
∑∞

j=1Aj converges as an infinite series

of nonnegative real numbers, so that
∑∞

j=1 aj(x) converges absolutely for every
x ∈ X, by the comparison test. Under these conditions, it is not too difficult
to show that the sequence of partial sums

∑n
j=1 aj(x) converges to

∑∞
j=1 aj(x)

uniformly on X. This is a well-known criterion of Weierstrass.
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Suppose now that X is a topological space. If aj(x) is continuous on X for
each j ≥ 1, with respect to the standard topology on R, in addition to the con-
ditions mentioned in the preceding paragraph, then it follows that

∑∞
j=1 aj(x)

is continuous on X as well.

Suppose that X is normal in the strict sense, and let E ⊆ X be a closed
Gδ set. Thus there is an infinite sequence U1, U2, U3, . . . of open subsets of X
such that E =

⋂∞
j=1 Uj . Urysohn’s lemma implies that for each j ≥ 1 there is a

continuous real-valued function fj on X such that 0 ≤ fj(x) ≤ 1 for every j ≥ 1
and x ∈ X, fj(x) = 0 for every j ≥ 1 and x ∈ E, and fj(x) = 1 for every j ≥ 1
and x ∈ X \ Uj . Put

f(x) =

∞∑
j=1

2−j fj(x)(6.3.2)

for every x ∈ X, where the series on the right converges by comparison with
the convergent geometric series

∑∞
j=1 2−j = 1. Note that f(x) = 0 for every

x ∈ E, and that 0 ≤ f(x) ≤ 1 for every x ∈ X, by construction. If x ∈ X \ E,
then x ∈ X \Uj for some j ≥ 1, which means that fj(x) = 1. This implies that
f(x) > 0 for every x ∈ X \ E. Using the remarks in the preceding paragraph,
we get that f is continuous on X.

Suppose that X is perfectly normal in the strict sense, and let A and B be
separated subsets of X. The closures A, B of A, B in X are closed sets in
X, and Gδ sets in X too, by hypothesis. It follows that there are nonnegative
continuous real-valued functions fA, fB on X such that fA(x) = 0 if and only if
x ∈ A, and fB(x) = 0 if and only if x ∈ B, as in the preceding paragraph. Put

U = {x ∈ X : fA(x) < fB(x)}(6.3.3)

and

V = {x ∈ X : fB(x) < fA(x)}.(6.3.4)

These are open subsets of X, because fA and fB are continuous on X. It is
easy to see that A ⊆ U , B ⊆ V , and U ∩ V = ∅, by construction. This shows
that X is completely normal in the strict sense.

6.4 Tietze’s extension theorem

Let X be a topological space that is normal in the strict sense, and let E be
a closed set in X. Also let f be a continuous real-valued function on E, with
respect to the induced topology on E and the standard topology on R, that
satisfies |f(x)| ≤ 1 for every x ∈ E. Under these conditions, Tietze’s extension
theorem implies that f can be extended to a continuous real-valued function on
X that takes values in the interval [−1, 1] as well.

To see this, observe that

A0 = {x ∈ E : f(x) ≤ −1/3}(6.4.1)
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and

B0 = {x ∈ E : f(x) ≥ 1/3}(6.4.2)

are disjoint closed subsets of X. More precisely, A0 and B0 are closed subsets
of E, with respect to the induced topology, because f is continuous on E. This
implies that A0 and B0 are closed subsets of X, because E is a closed set in X.
Using Urysohn’s lemma, one can find a continuous real-valued function g0 on
X such that g0 = −1/3 on A0, g0 = 1/3 on B0, and |g0| ≤ 1/3 on X. If x ∈ E,
then one can check that

|f(x) − g0(x)| ≤ 2/3.(6.4.3)

Of course, f − g0 defines a continuous real-valued function on E. One can
repeat the process, to get a sequence {gj}∞j=0 of continuous real-valued functions

on X such that |gj | ≤ (1/3) (2/3)j on X for each j ≥ 0, and

∣∣∣∣f −
n∑

j=0

gj

∣∣∣∣ ≤ (2/3)n+1(6.4.4)

on E for every n ≥ 0. In particular,
∑∞

j=0 gj(x) converges as an infinite series of
nonnegative real numbers for every x ∈ X, by comparison with the convergent
series

∑∞
j=0(1/3) (2/3)j . More precisely, the sequence of partial sums

∑n
j=0 gj

converges uniformly on X, by Weierstrass’ criterion. This implies that
∑∞

j=0 gj
is continuous on X, as before. Note that∣∣∣∣ ∞∑

j=0

gj(x)

∣∣∣∣ ≤ ∞∑
j=0

|gj(x)| ≤
∞∑
j=0

(1/3) (2/3)j = 1(6.4.5)

for every x ∈ X. If x ∈ E, then
∑∞

j=0 gj(x) = f(x), by (6.4.4).

If |f(x)| < 1 for every x ∈ E, then one might wish to have an extension of f
to a continuous mapping from X into (−1, 1). This can obtained by multiplying
the previous extension by a suitable continuous real-valued function on X. More
precisely, note that the set where the previous extension is ±1 is a closed set
in X. This set is disjoint from E, because |f | < 1 on E. Thus one can use
Urysohn’s lemma to find a continuous mapping from X into [0, 1] that is equal
to 1 on E and to 0 on the set where the previous extension is equal to ±1.

Now let f be any continuous real-valued function on E, with respect to
the induced topology on E, and the standard topology on R. Also let ϕ be a
homeomorphism from the real line onto (−1, 1), with respect to the standard
topology on R, and the induced topology on (−1, 1). It follows that ϕ ◦ f is a
continuous mapping from E into (−1, 1), which can be extended to a continuous
mapping from X into (−1, 1), as in the preceding paragraph. The composition
of this extension with the inverse of ϕ is a continuous extension of f on X. This
corresponds to Exercise 6 on p78 of [143].
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6.5 Uniform convergence on compact sets

Let X and Y be sets, and let dY (·, ·) be a semimetric on Y . Also let E be
a nonempty subset of X, let f be a mapping from X into Y , and let ϵ be a
positive real number. Consider the set NE,ϵ(f) of all mappings g from X into
Y such that

dY (f(x), g(x)) < ϵ for every x ∈ E.(6.5.1)

As before, let ÑE,ϵ(f) be the set of all mappings g from X into Y such that
dY (f(x), g(x)) is bounded on E, with

sup
x∈E

dY (f(x), g(x)) < ϵ.(6.5.2)

Thus

ÑE,ϵ(f) ⊆ NE,ϵ(f),(6.5.3)

and

NE,ϵ(f) ⊆ ÑE,η(f)(6.5.4)

for every η > ϵ, as in Section 6.2.
If f , g, and h are mappings from X into Y such that dY (f(x), g(x)) and

dY (g(x), h(x)) are bounded on E, then dY (f(x), h(x)) is bounded on E, and

sup
x∈E

dY (f(x), h(x)) ≤ sup
x∈E

dY (f(x), g(x)) + sup
x∈E

dY (g(x), h(x)),(6.5.5)

as before. If g ∈ ÑE,η(f) for some η > 0, then

δ = η − sup
x∈E

dY (f(x), g(x)) > 0,(6.5.6)

and

ÑE,δ(g) ⊆ ÑE,η(f),(6.5.7)

as in Section 6.2.
Let E0 be a nonempty subset of X such that

E0 ⊆ E.(6.5.8)

If f is a mapping from X into Y , then

NE,ϵ(f) ⊆ NE0,ϵ(f)(6.5.9)

and

ÑE,ϵ(f) ⊆ ÑE0,ϵ(f)(6.5.10)

for every ϵ > 0.
Suppose now that X is a nonempty topological space. A subset W of the

space Y X of all mappings from X into Y is said to be an open set with respect
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to the topology of uniform convergence on compact subsets of X if for every
f ∈W there are a nonempty compact subset K of X and an ϵ > 0 such that

NK,ϵ(f) ⊆W.(6.5.11)

This is equivalent to saying that for every f ∈W there are a nonempty compact
set K ⊆ X and an η > 0 such that

ÑK,ϵ(f) ⊆W.(6.5.12)

One can check that this defines a topology on Y X . More precisely, this uses the
fact that the union of finitely many compact subsets of X is compact, to get
that the intersection of finitely many open subsets of Y X is an open set with
respect to this topology.

Of course, finite subsets of X are automatically compact. This implies that
the topology of uniform convergence on compact subsets of X is at least as
strong as the topology of pointwise convergence. If X is equipped with the
discrete topology, then every compact subset of X is a finite set, and these two
topologies on Y X are the same. The topology of uniform convergence on Y X is
at least as strong as the topology of uniform convergence on compact subsets
of X. If X is compact, then these two topologies on Y X are the same.

If K is a nonempty compact subset of X, f is a mapping from X into Y ,
and η is a positive real number, then ÑK,η(f) is an open set in Y X with respect
to the topology of uniform convergence on compact subsets of X. This follows
from (6.5.7).

Let (A,�) be a nonempty directed system, let {fa}a∈A be a net of mappings
from X into Y indexed by A, and let f be another mapping from X into Y . One
can check that {fa}a∈A converges to f with respect to the topology of uniform
convergence on compact subsets of X if and only if for every compact subset K
of X, the restriction of fa to K converges uniformly to the restriction of f to
K, as a net of mappings from K into Y indexed by A.

6.6 The compact-open topology

Let X and Y be nonempty topological spaces. If K is a subset of X and V is a
subset of Y , then let N(K,V ) be the collection of mappings f from X into Y
such that

f(K) ⊆ V.(6.6.1)

A subset W of the space Y X of all mappings from X into Y is said to be an
open set with respect to the compact-open topology if there are finitely many
compact subsets K1, . . . ,Kn of X and open sets V1, . . . , Vn of Y such that

f(Kj) ⊆ Vj(6.6.2)

for each j = 1, . . . , n, and

n⋂
j=1

N(Kj , Vj) ⊆W.(6.6.3)
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One can verify that this defines a topology on Y X .
If K is a compact subset of X, and V is an open subset of Y , then N(K,V ) is

an open subset of Y X with respect to the compact-open topology. The collection
of these open sets forms a subbase for the compact-open topology on Y X .

Remember that Y X is the same as the Cartesian product of copies of Y
indexed by X. It is easy to see that the compact-open topology on Y X is at least
as strong as the product topology, because finite subsets of X are compact. If
X is equipped with the discrete topology, then one can check that the compact-
open topology on Y X is the same as the product topology, because compact
subsets of X are finite. The strong product topology on Y X is at least as strong
as the compact-open topology.

Sometimes one may be particularly concerned with the topology induced on
the space C(X,Y ) of continuous mappings from X into Y by the compact-open
topology on Y X . This may be called the compact-open topology on C(X,Y ). If
K is a compact subset of X and V is an open subset of Y , then

NC(K,V ) = N(K,V ) ∩ C(X,Y )(6.6.4)

is relatively open in C(X,Y ), and the collection of these relatively open subsets
of C(X,Y ) is a subbase for the compact-open topology on C(X,Y ).

Let dY (·, ·) be a semimetric on Y , and suppose from now on in this section
that Y is equipped with the topology determined by dY (·, ·). Under these condi-
tions, it is well known that the compact-open topology on C(X,Y ) is the same
as the topology induced by the topology of uniform convergence on compact
subsets of X. Before showing this, let us mention a property of compact subsets
of Y .

Let A be a compact subset of Y , and let V be an open subset of Y that
contains K. It is well known that there is a positive real number r such that⋃

a∈A

BY (a, r) ⊆ V,(6.6.5)

where BY (a, r) is the open ball in Y centered at a with radius r with respect
to dY (·, ·). Indeed, if a ∈ A, then a ∈ V , and there is a positive real num-
ber r(a) such that BY (a, r(a)) ⊆ V . The collection of open balls of the form
BY (a, r(a)/2), a ∈ A, is an open covering of A in Y , and so there are finitely
many elements a1, . . . , an of A such that

A ⊆
n⋃

j=1

BY (aj , r(aj)/2),(6.6.6)

because A is compact. One can check that (6.6.5) holds with

r = min
1≤j≤n

r(aj)/2.(6.6.7)

Let f be a continuous mapping from X into Y , let K be a nonempty compact
subset of X, and let V be an open subset of Y such that f(K) ⊆ V . Because
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f(K) is a compact subset of Y , there is a positive real number r such that⋃
y∈f(K)

BY (y, r) ⊆ V,(6.6.8)

as in the preceding paragraph. If g is a continuous mapping from X into Y such
that

dY (f(x), g(x)) < r for every x ∈ K,(6.6.9)

then it follows that g(K) ⊆ V too. This shows that NC(K,V ) is a open
subset of C(X,Y ) with respect to the topology induced by the topology of
uniform convergence on compact subsets of X. Using this, it is easy to see that
the topology induced on C(X,Y ) by the topology of uniform convergence on
compact subsets of X is at least as strong as the compact-open topology.

Let f be a continous mapping from X into Y again, let K be a nonempty
compact subset of X, and let ϵ > 0 be given. If x ∈ K, then there is an open
subset U(x) of X such that x ∈ U(x) and

f(U(x)) ⊆ BY (f(x), ϵ/3),(6.6.10)

because f is continuous at x. The collection of open sets of this type, with
x ∈ K, forms an open covering of K in X, and so there are finitely many
elements x1, . . . , xn of K such that

K ⊆
n⋃

j=1

U(xj),(6.6.11)

because K is compact.
Put

Ej = {w ∈ X : dY (f(w), f(xj)) ≤ ϵ/3}(6.6.12)

for each j = 1, . . . , n. One can check that this is a closed set in X for every
j = 1, . . . , n, because f is continuous. This implies that K ∩ Ej is a compact
subset of X for each j = 1, . . . , n. Note that U(xj) ⊆ Ej for every j = 1, . . . , n,
by (6.6.10). It follows that

K =

n⋃
j=1

(K ∩ Ej),(6.6.13)

because of (6.6.11).
By construction,

f(K ∩ Ej) ⊆ f(Ej) ⊆ BY (f(xj), ϵ/2)(6.6.14)

for every j = 1, . . . , n. Let g be any mapping from X into Y such that

g(K ∩ Ej) ⊆ BY (f(xj), ϵ/2)(6.6.15)
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for each j = 1, . . . , n. Let w ∈ K be given, so that w ∈ U(xj0) for some
j0 ∈ {1, . . . , n}, by (6.6.11). It follows that

dY (f(w), g(w)) ≤ dY (f(w), f(xj0)) + dY (f(xj0), g(w)) < ϵ/3 + ϵ/2,(6.6.16)

using (6.6.10) and (6.6.15) in the second step. This implies that the compact-
open topology on C(X,Y ) is at least as strong as the topology induced by the
topology of uniform convergence on compact subsets of X.

6.7 Continuity on compact sets

Let X and Y be topological spaces, and let f be a mapping from X into Y .
If f is continuous on X, then the restriction of f to any subset X0 of X is
continuous as a mapping from X0 into Y , with respect to the topology induced
on X0 by the topology on X. Similarly, if f is continuous at a point x0 ∈ X, as
a mapping on X, then the restriction of f to any subset X0 of X that contains
x0 is continuous at x0 too, with respect to the induced topology on X0. In
some situations, one may be concerned with mappings on X whose restrictions
to some subsets of X have some continuity properties, such as restrictions to
compact subsets of X. One may also wish to obtain continuity properties on
X from continuity properties of these restrictions to some subsets of X, under
suitable conditions.

Let x0 be an element of X, let U0 be an open subset of X that contains x0,
and let K0 be a compact subset of X that contains x0. If f is a mapping from
X into Y , and the restriction of f to K0 is continuous at x0 with respect to the
induced topology on K0, then it is easy to see that f is continuous at x0. In
particular, if X is locally compact, and if the restriction of f to any compact
subset K of X is continuous with respect to the induced topology on K, then
f is continuous on X.

Let {xj}∞j=1 be a sequence of elements of X that converges to an element
x of X. Remember that K = {xj : j ∈ Z+} ∪ {x} is a compact subset of
X in this case. Note that {xj}∞j=1 converges to x with respect to the induced
topology on K. If the restriction of f to K is sequentially continuous at x, with
respect to the induced topology on K, then {f(xj)}∞j=1 converges to f(x) in Y .
If the restriction of f to any compact subset of X that contains x is sequentially
continuous at x, with respect to the induced topology, then it follows that f is
sequentially continuous at x.

If there is a local base for the topology of X at x with only finitely or
countably many elements, then sequential continuity at x implies continuity at
x. In this situation, we get that f is continuous at x when the restriction of f
to any compact subset of X that contains x is continuous at x, with respect to
the induced topology. If X satisfies the first countability condition, and if the
restriction of f to any compact subset of X is continuous, with respect to the
induced topology, then f is continuous on X.

Let dY (·, ·) be a semimetric on Y , and suppose that Y is equipped with
the topology determined by dY (·, ·). Also let (A,�) be a nonempty directed
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system, and let {fa}a∈A be a net of mappings from X into Y indexed by A
that converges to a mapping f from X into Y uniformly on compact subsets of
X. Suppose that for each a ∈ A, fa is continuous at a point x0 in X. If K0

is a compact subset of X that contains x0, then the restriction of fa to K0 is
continuous at x0 for every a ∈ A, with respect to the induced topology on K0.
This implies that the restriction of f to K0 is continuous at x0 as well, with
respect to the induced topology on K0.

6.8 Supports of real-valued functions

Let X be a topological space, and let f be a real-valued function on X. The
support of f in X is defined by

supp f = {x ∈ X : f(x) 6= 0},(6.8.1)

which is the closure in X of the set where f is not 0. If g is another real-valued
function on X, then it is easy to see that

supp(f + g) ⊆ (supp f) ∪ (supp g)(6.8.2)

and
supp(f g) ⊆ (supp f) ∩ (supp g).(6.8.3)

In some situations, one may be concerned with continuous real-valued func-
tions on X whose support is a compact subset of X. If f is a continuous
real-valued function on X, then

{x ∈ X : f(x) 6= 0}(6.8.4)

is an open set in X. If, for every x ∈ X, there is a continuous real-valued
function f on X such that f has compact support in X and f(x) 6= 0, then X
has to be locally compact.

Suppose that X is a locally compact Hausdorff space. If K ⊆ X is compact,
U ⊆ X is an open set, and K ⊆ U , then a version of Urysohn’s lemma implies
that there is a continuous real-valued function f on X with compact support
contained in U such that f = 1 on K and 0 ≤ f ≤ 1 on X.

6.9 Functions with finite support

Let X be a nonempty set, and let c(X) be the space of all real-valued functions
on X. Let us say that f ∈ c(X) has finite support in X if f(x) = 0 for all but
finitely many x ∈ X. If we take X to be equipped with the discrete topology,
then the support of f ∈ c(X) in X as defined in the previous section is the
same as the set of x ∈ X such that f(x) 6= 0. Let c00(X) be the subset of c(X)
consisting of functions on X with finite support. Note that c00(X) = c(X)
exactly when X has finitely many elements.
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Equivalently, c(X) is the same as the Cartesian product of copies of R
indexed by X. Using the standard topology on the real line, we get the cor-
responding product topology and strong product topology on c(X). It is easy
to see that c00(X) is dense in c(X) with respect to the product topology. It is
not too difficult to show that c00(X) is a closed set in c(X) with respect to the
strong product topology.

Let a be a positive real-valued function on X. If f, g ∈ c00(X), then put

da(f, g) = max{a(x) |f(x) − g(x)| : x ∈ X}.(6.9.1)

Note that the maximum is automatically attained, because it reduces to the
maximum of finitely many nonnegative real numbers. One can check that this
defines a metric on c00(X). It is easy to see that the topology determined on
c00(X) by (6.9.1) is at least as strong as the topology induced on c00(X) by
the product topology on c(X). One can also verify that the topology induced
on c00(X) by the strong product topology on c(X) is at least as strong as the
topology determined on c00(X) by (6.9.1). If b is another positive real-valued
function on X such that

a(x) ≤ b(x) for every x ∈ X,(6.9.2)

then

da(f, g) ≤ db(f, g)(6.9.3)

for every f, g ∈ c00(X).

Similarly, if f, g ∈ c00(X), then put

d̃a(f, g) =
∑
x∈X

a(x) |f(x) − g(x)|,(6.9.4)

where the sum on the right reduces to a finite sum of nonnegative real numbers.
It is easy to see that this defines a metric on c00(X) as well. Observe that

da(f, g) ≤ d̃a(f, g)(6.9.5)

for every f, g ∈ c00(X). If b is another positive real-valued function on X that
satisfies (6.9.2), then

d̃a(f, g) ≤ d̃b(f, g)(6.9.6)

for every f, g ∈ c00(X). If X = Z+, and
∑∞

j=1 a(j)/b(j) converges as an infinite
series of positive real numbers, then

d̃a(f, g) ≤
( ∞∑

j=1

a(j)/b(j)
)
db(f, g)(6.9.7)

for every f, g ∈ c00(Z+).
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6.10 Some subspaces of c(X)

Let X be a nonempty set again, and let E be a subset of X. Put

cE(X) = {f ∈ c(X) : f(x) = 0 for every x ∈ X \ E}(6.10.1)

and

cE00(X) = c00(X) ∩ cE(X).(6.10.2)

Of course, if E has only finitely many elements, then cE(X) ⊆ c00(X), and
cE(X) = cE00(X).

Suppose that E 6= ∅, so that c(E) and c00(E) can be defined as in the
previous section. Of course, if f ∈ c(X), then the restriction of f to E defines
an element of c(E). Similarly, if f ∈ c00(X), then the restriction of f to E
defines an element of c00(E). Any real-valued function on E can be extended
to a real-valued function on X, by setting it equal to 0 on X \ E. This defines
a one-to-one mapping from c(E) onto cE(X), which maps c00(E) onto cE00(X).

Remember that c(E) and c(X) are the same as Cartesian products of copies
of R indexed by E and X, respectively. This leads to the corresponding product
topologies and strong product topologies on c(E) and c(X), using the standard
topology on R. Note that cE(X) is a closed set in c(X) with respect to the
product topology. One can check that the product topology on c(E) corre-
sponds exactly to the topology induced on cE(X) by the product topology on
c(X), with respect to the one-to-one mapping from c(E) onto cE(X) mentioned
in the preceding paragraph. Similarly, the strong product topology on c(E)
corresponds exactly to the topology induced on cE(X) by the strong product
topology on c(X), with respect to this mapping.

In particular, if E has only finitely many elements, then the product and
strong product topologies on c(E) are the same. In this case, the topologies
induced on cE(X) by the product and strong product topologies on c(X) are
the same.

Let a be a positive real-valued function on X, and let da(f, g) and d̃a(f, g)
be the metrics defined on c00(X) in (6.9.1) and (6.9.4), respectively. Suppose
that E has only finitely many elements, and put

C(a,E) =
∑
x∈E

a(x).(6.10.3)

If f, g ∈ cE(X), then it is easy to see that

d̃a(f, g) ≤ C(a,E) da(f, g).(6.10.4)

In this situation, the topologies determined on cE(X) by the restrictions of

da(f, g) and d̃(f, g) to f, g ∈ cE(X) are the same as the topology induced on
cE(X) by the product topology on c(X).
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6.11 Mappings into products

Let A be a nonempty set, let Yα be a set for each α ∈ A, and put Y =
∏

α∈A Yα.
If β ∈ A, then let pβ be the corresponding coordinate mapping from Y into Yβ ,
so that pβ(f) = f(β) for every f ∈ Y .

Let X be another set, and let ϕ be a mapping from X into Y . Thus, for
each β ∈ A, pβ ◦ ϕ is a mapping from X into Yβ . Conversely, given a mapping
from X into Yβ for each β ∈ A, there is a unique mapping from X into Y whose
composition with pβ is the given mapping from X into Yβ for every β ∈ A.

Suppose now that Yα is a topological space for every α ∈ A, and that X is
a topological space as well. If ϕ is a continuous mapping from X into Y , with
respect to the corresponding product topology on Y , then pβ ◦ ϕ is continuous
as a mapping from X into Yβ for every β ∈ A. Conversely, if pβ ◦ϕ is continuous
as a mapping from X into Yβ for every β ∈ A, then one can check that ϕ is
continuous as a mapping from X into Y , with respect to the product topology
on Y .

Let us take Yα to be the real line for every α ∈ A, so that Y is the same as
the space c(A) of all real-valued functions on A. Remember that c00(A) is the
subset of c(A) consisting of functions on A with finite support, as in Section 6.9.
A mapping ϕ from X into c(A) takes values in c00(A) if and only if for every
x ∈ X,

pβ(ϕ(x)) = 0 for all but finitely many β ∈ A.(6.11.1)

Suppose that for every x ∈ X there is an open set U(x) ⊆ X and a finite
subset A(x) of A such that x ∈ U(x) and

pβ(ϕ(y)) = 0 for every y ∈ U(x) and β ∈ A \A(x).(6.11.2)

This is the same as saying that the family of subsets of X where pβ ◦ ϕ 6= 0 is
locally finite in X, as in Section 5.13. In particular, this condition implies that
ϕ maps X into c00(A).

Suppose also that pβ◦ϕ is continuous as a real-valued function on X for every
β ∈ A, with respect to the standard topology on R. Under these conditions, one
can verify that ϕ is continuous as a mapping from X into c00(A), with respect to
the topology induced on c00(A) by the corresponding strong product topology
on c(A), as in the previous sections.

More precisely, if B is a subset of A, then let cB(A) be the space of f ∈ c(A)
such that f(α) = 0 for every α ∈ A\B, as in the previous section. If B has only
finitely many elements, then the topologies induced on cB(A) by the product
and strong product topologies on c(A) are the same, as before. Using this
notation, (6.11.2) says that ϕ(y) is an element of cA(x)(A) for every y ∈ U(x).

Let a be a positive real-valued function on A, and remember that

d̃a(f, g) =
∑
α∈A

a(α) |f(α) − g(α)|(6.11.3)

defines a metric on c00(A), as in Section 6.9. If B ⊆ A has only finitely many
elements, then the topology determined on cB(A) by the restriction of (6.11.3)
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to f, g ∈ cB(A) is the same as the topology induced on cB(A) by the product
topology on c(A), as in the previous section.

Suppose as before that for every x ∈ X there is an open set U(x) ⊆ X and
a finite set A(x) ⊆ A such that (6.11.2) holds, and that pβ ◦ ϕ is continuous
as a real-valued function on X for every β ∈ A. Under these conditions, ϕ
is continuous as a mapping from X into c00(A), with respect to the topology
determined on c00(A) by (6.11.3).



Chapter 7

Filters and ultrafilters

7.1 Filters

Let X be a nonempty set. A nonempty collection F of nonempty subsets of X
is said to be a filter on X if it satisfies the following two conditions. First,

if A,B ∈ F , then A ∩B ∈ F .(7.1.1)

Second,
if A ∈ F , E ⊆ X, and A ⊆ E, then E ∈ F .(7.1.2)

If X0 is a nonempty subset of X, then the collection of all subsets of X that
contain X0 is a filter on X. If X has infinitely many elements, then one can
check that the collection of all subsets A of X such that X \A has only finitely
many elements is a filter on X. If X is a topological space and x ∈ X, then

{A ⊆ X : there is an open set U ⊆ X such that x ∈ U and U ⊆ A}(7.1.3)

is a filter on X. In this situation, a filter F on X is said to converge to x if for
every open subset U of X with x ∈ U , we have that

U ∈ F .(7.1.4)

Let B be a nonempty collection of nonempty subsets of a nonempty set X.
We say that B is a pre-filter or a filter base on X if

for every A,B ∈ B there is a C ∈ B such that C ⊆ A ∩B.(7.1.5)

In this case, one can check that

F = {E ⊆ X : there is an A ∈ B such that A ⊆ E}(7.1.6)

is a filter on X. Conversely, if there is a filter F on X such that (7.1.6) holds,
then it is easy to see that B is a filter base on X, and B is said to be a base for

123
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F . If X is a topological space and x ∈ X, then a local base for the topology of
X at x is the same as a base for the filter (7.1.3).

Let (A,�) be a nonempty directed system, and let {xa}a∈A be a net of
elements of X indexed by A. If a ∈ A, then put

Ea = {xb : b ∈ A, a � b}.(7.1.7)

It is easy to see that the collection of these subsets Ea, a ∈ A, of X form a filter
base on X, and we let F be the corresponding filter on X. Suppose that X is
a topological space, and let x be an element of X. One can check that {xa}a∈A

converges to x as a net of elements of X if and only if the corresponding filter
F converges to x in X.

Let F be a filter on a nonempty set X, and let B be a base for F . If A,B ∈ B,
then put A � B when B ⊆ A. This defines a partial ordering on B, which makes
B a directed system, because of (7.1.5). Suppose that X is a topological space
again, and that x ∈ X. If F converges to x on X, and if {xA}A∈B is a net of
elements of X indexed by B such that

xA ∈ A(7.1.8)

for every A ∈ B, then {xA}A∈B converges to x in X. Conversely, if F does not
converge to x in X, then there is an open set U ⊆ X such that x ∈ U and
U 6∈ F . This implies that for each A ∈ B, A 6⊆ U . If xA ∈ A \ U for every
A ∈ B, then {xA}A∈B does not converge to x, as a net of elements of X.

If X is a Hausdorff topological space, then a filter F on X can converge to
at most one element of X. Indeed, suppose for the sake of a contradiction that
F converges to distinct elements x and y of X. Because X is Hausdorff, there
are disjoint open subsets U and V of X such that x ∈ U and y ∈ V . It follows
that U, v ∈ F , so that ∅ = U ∩ V ∈ F , which is a contradiction.

Conversely, if X is not Hausdorff, then there are distinct elements x, y of X
such that for all open subsets U and V of X with x ∈ U and y ∈ V , we have
that U ∩ V 6= ∅. Observe that the collection of subsets of X of the form U ∩ V ,
where U, V ⊆ X are open sets with x ∈ U and y ∈ V , is a filter base on X. It
is easy to see that the corresponding filter on X converges to both x and y.

Let X be a topological space, let F be a filter on X that converges to x, and
let E be an element of F . If U is an open subset of X that contains x, then
U ∈ F , and hence

E ∩ U ∈ F .(7.1.9)

This implies that E ∩ U 6= ∅, so that

x ∈ E.(7.1.10)

Conversely, suppose that x ∈ X is adherent to E ⊆ X, and let B(x) be a local
base for the topology of X at x. One can check that

{E ∩ U : U ∈ B(x)}(7.1.11)
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is a filter base on X, for which the corresponding filter on X converges to x and
contains E as an element.

Let F be a filter on a nonempty set X. If Y ∈ F , then

FY = {A ∈ F : A ⊆ Y }(7.1.12)

may be considered as a filter on Y . Note that any filter on a nonempty subset of
X may be considered as a filter base on X. Suppose now that X is a topological
space, Y ∈ F , and x ∈ Y . Under these conditions, one can check that F
converges to x if and only if (7.1.12) converges to x with respect to the induced
topology on Y .

7.2 Continuity and refinements

Let X and Y be nonempty sets, and let f be a mapping from X into Y . If F
is a filter on X, then one can check that

{f(A) : A ∈ F}(7.2.1)

is a filter base on Y . More precisely, this uses the fact that if A,B ∈ F , then
A ∩B ∈ F , and

f(A ∩B) ⊆ f(A) ∩ f(B).(7.2.2)

Let f∗(F) be the filter on Y obtained from (7.2.1) as in the previous section.
Equivalently, one can verify that

f∗(F) = {E ⊆ Y : f−1(E) ∈ F}.(7.2.3)

Suppose now that X and Y are topological spaces. If F converges to x ∈ X,
and if f is continuous at x, then one can check that f∗(F) converges to f(x) in
Y . Conversely, if F is the filter (7.1.3) obtained from the open sets in X that
contain x, and if f∗(F) converges to f(x) in Y , then it is easy to see that f is
continuous at x.

Let X be a nonempty set again, and let F be a filter on X. A filter F ′ on
X is said to be a refinement of F if

F ⊆ F ′,(7.2.4)

as collections of subsets of X. If X is a topological space, x ∈ X, and F is a
filter on X that converges to x, then every filter on X that is a refinement of
F converges to x too. Note that a filter F on X converges to x exactly when
F is a refinement of the filter (7.1.3) obtained from the open subsets of X that
contain x.

Suppose that a filter F on X has a refinement F ′ that converges to x ∈ X.
If E ∈ F ′, then x ∈ E, as in the previous section. In particular, this holds for
E ∈ F , so that

x ∈
⋂
E∈F

E.(7.2.5)
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Conversely, suppose that (7.2.5) holds, and let B(x) be a local base for the
topology of X at x. One can verify that

{E ∩ U : E ∈ F , U ∈ B(x)}(7.2.6)

is a filter base on X, for which the corresponding filter is a refinement of F that
converges to x.

Let K be a compact subset of X, and let F be a filter on X such that K ∈ F .
If E1, . . . , En are finitely many elements of F , then( n⋂

j=1

Ej

)
∩K ∈ F ,(7.2.7)

so that
(⋂n

j=1Ej

)
∩K 6= ∅. In particular,

( n⋂
j=1

Ej

)
∩K 6= ∅,(7.2.8)

which means that the collection of closed sets E, E ∈ F , has the finite intersec-
tion property with respect to K. It follows that( ⋂

E∈F
E
)
∩K 6= ∅,(7.2.9)

because K is compact. This implies that F has a refinement that converges to
an element of K in X, as in the preceding paragraph.

Let X be a set, let K be a subset of X, and let {Ej}j∈I be a nonempty
family of subsets of X with the finite intersection property with respect to K.
Consider the collection of subsets of X of the form( n⋂

l=1

Ejl

)
∩K,(7.2.10)

where j1, . . . , jn are finitely many elements of I. It is easy to see that this
collection is a filter base on X.

Suppose that X is a topological space, and that K ⊆ X has the property that
every filter on X that contains K as an element has a refinement that converges
to an element of K. In order to show that K is compact, let {Ej}j∈I be any
nonempty family of closed subsets of X with the finite intersection property
with respect to K. Consider the filter F on X for which the collection of sets of
the form (7.2.10) is a base. By construction, K ∈ F , so that F has a refinement
that converges to an element x of K. This implies that

x ∈
( ⋂

j∈I

Ej

)
∩K,(7.2.11)

by (7.2.5), so that K is compact, as desired.
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7.3 Ultrafilters

A filter F on a nonempty set X is said to be an ultrafilter if F is maximal with
respect to refinement. This means that if F ′ is a filter on X that is a refinement
of F , then F = F ′. If p is any element of X, then it is easy to see that the
collection of all subsets of X that contain p as an element is an ultrafilter on X.
If F is any filter on X, then one can use Zorn’s lemma or Hausdorff’s maximality
principle to show that F has a refinement which is an ultrafilter.

Let X be a topological space. If K ⊆ X is compact and F is a filter on X
that contains K as an element, then there is a refinement of F that converges
to an element of K, as in the previous section. If F is an ultrafilter, then it
follows that F converges to an element of K.

Conversely, suppose that K ⊆ X has the property that every ultrafilter on
X that contains K as an element converges to an element of K. If F is any
filter on X that contains K, then F has a refinement that is an ultrafilter, as
before. This refinement contains K, and thus converges to an element of K, by
hypothesis. This implies that K is compact, as in the previous section.

Let F be a filter on a nonempty set X, and suppose that E ⊆ X has the
property that A ∩ E 6= ∅ for every A ∈ F . It is easy to see that

{A ∩ E : A ∈ F}(7.3.1)

is a filter base on X. The filter on X for which (7.3.1) is a base is a refinement
of F that contains E as an element. If F is an ultrafilter on X, then it follows
that E ∈ F .

If F is an ultrafilter on X and E ⊆ X, then either E or X \E is an element
of F . More precisely, if X \ E is not an element of F , then no element A of F
is contained in X \ E. This means that every element A of F intersects E, so
that E is an element of F , as in the preceding paragraph. Conversely, if F is a
filter on X, and for every E ⊆ X, either E or X \ E is an element of F , then
one can verify that F is an ultrafilter on X.

Let f be a mapping from X into a nonempty set Y . If F is an ultrafilter on
X, then the corresponding filter f∗(F) on Y defined in the previous section is
an ultrafilter. To see this, let E ⊆ Y be given, and let us check that E or Y \E
is an element of f∗(F). This is the same as saying that f−1(E) or f−1(Y \ E)
is an element of F , by (7.2.3). This holds because f−1(Y \ E) = X \ f−1(E),
as in the preceding paragraph.

Let I be a nonempty set, and let Xj be a nonempty topological space for
every j ∈ I. Also let F be a filter on the Cartesian product

∏
j∈I Xj , and let x

be an element of
∏

j∈I Xj . One can check that F converges to x with respect
to the product topology on

∏
j∈I Xj if and only if (pl)∗(F) converges to pl(x)

on Xl for every l ∈ I, where pl is the usual coordinate mapping from
∏

j∈I Xj

into Xl. Of course, the ”only if” part follows from the continuity of pl.
If Kj ⊆ Xj is compact for every j ∈ I, then Tychonoff’s theorem says that∏

j∈I Kj is compact in
∏

j∈I Xj with respect to the product topology. To show
this, let F be an ultrafilter on

∏
j∈I Xj that contains

∏
j∈I Kj as an element.
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If l ∈ I, then Kl is an element of (pl)∗(F). This implies that (pl)∗(F) converges
to an element of Kl, because (pl)∗(F) is an ultrafilter on Xl. One can use this
to get that F converges to an element of

∏
j∈I Kj .

7.4 Filter and relations

Let I be a nonempty set, and let Xj be a set for each j ∈ I. Also let F be a
filter on I. If f, g ∈

∏
j∈I Xj , then put

f ∼F g(7.4.1)

when
{j ∈ I : f(j) = g(j)} ∈ F .(7.4.2)

Note that f ∼F f automatically, because I ∈ F . Clearly (7.4.1) is symmetric
in f and g. If h ∈

∏
j∈I Xj too, then

{j ∈ I : f(j) = g(j)} ∩ {j ∈ I : g(j) = h(j)} ⊆ {j ∈ I : f(j) = h(j)}.(7.4.3)

If (7.4.1) holds and g ∼F h, then it follows that f ∼F h.
Thus (7.4.1) defines an equivalence relation on

∏
j∈I Xj . Let∏

j∈I

Xj/ ∼F(7.4.4)

be the corresponding quotient space of equivalence classes in
∏

j∈I Xj with
respect to (7.4.1), as in Section 5.6. If f ∈

∏
j∈I Xj , then the equivalence class

containing f may be denoted [f ]F .
If f, g ∈

∏
j∈I Xj , then

{j ∈ I : f(j) = g(j)} ∪ {j ∈ I : f(j) 6= g(j)} = I.(7.4.5)

If F is an ultrafilter on I, then either (7.4.1) holds, or

{j ∈ I : f(j) 6= g(j)} ∈ F .(7.4.6)

Let �j be a partial ordering on Xj for every j ∈ I. If f, g ∈
∏

j∈I Xj , then
put

f �F g(7.4.7)

when
{j ∈ I : f(j) �j g(j)} ∈ F .(7.4.8)

Of course,

{j ∈ I : f(j) = g(j)} = {j ∈ I : f(j) �j g(j)} ∩ {j ∈ I : g(j) �j f(j)},(7.4.9)

because �j is a partial ordering on Xj for each j ∈ I. This implies that (7.4.1)
holds exactly when (7.4.7) and g �F f hold. In particular, f �F f holds
automatically.
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If h ∈
∏

j∈I Xj as well, then

{j ∈ I : f(j) �j g(j)} ∩ {j ∈ I : g(j) �j h(j)}(7.4.10)

⊆ {j ∈ I : f(j) �j h(j)},

because �j is transitive on Xj for each j ∈ I. If (7.4.7) holds and g �F h, then
we get that f �F h. This means that �F is transitive as a binary relation on∏

j∈I Xj , so that it defines a pre-order on
∏

j∈I Xj .

Suppose that f̃ , g̃ ∈
∏

j∈I Xj satisfy

f ∼F f̃ , g ∼F g̃.(7.4.11)

Under these conditions, it is easy to see that (7.4.7) holds if and only if f̃ �F g̃.
If (7.4.7) holds, then put

[f ]F �F [g]F .(7.4.12)

This does not depend on the particular choices f and g of the equivalence classes,
by the previous remark. This defines �F as a binary relation on the quotient
space (7.4.4). We use the same notation as for the binary relation (7.4.7) on∏

j∈I Xj , for simplicity. Observe that (7.4.12) is reflexive and transitive on
the quotient space (7.4.4), because of the analogous properties of (7.4.7) on∏

j∈I Xj .
If (7.4.12) and [g]F �F [f ]F hold, then (7.4.7) and g �F f hold. This

implies that (7.4.1) holds, as before, so that [f ]F = [g]F . Thus (7.4.12) defines
a partial ordering on the quotient space (7.4.4).

Suppose that Xj is linearly ordered by �j for each j ∈ I. If f, g ∈
∏

j∈I Xj ,
then it follows that

{j ∈ I : f(j) �j g(j)} ∪ {j ∈ I : g(j) �j f(j)} = I.(7.4.13)

If F is an ultrafilter on I, then either (7.4.7) holds, or g �F f . This means
that either (7.4.12) holds, or [g]F �F [f ]F . This implies that the quotient space
(7.4.4) is linearly ordered by (7.4.12) in this case.
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Families and coverings

8.1 Coverings and refinements

Let X be a set, and let E be a subset of X. Also let A be a nonempty set, and
let Uα be a subset of X for every α ∈ A. As usual, {Uα}α∈A is said to be a
covering of E in X if E ⊆

⋃
α∈A Uα. If A0 is a subset of A and

E ⊆
⋃

α∈A0

Uα,(8.1.1)

then {Uα}α∈A0
is said to be a subcovering of E from {Uα}α∈A.

Let B be another nonempty set, and let {Vβ}β∈B be a family of subsets of
X indexed by B. We say that {Vβ}β∈B is a refinement of {Uα}α∈A if for every
β ∈ B there is an α ∈ A such that

Vβ ⊆ Uα.(8.1.2)

Of course, this implies that ⋃
β∈B

Vβ ⊆
⋃
α∈A

Uα.(8.1.3)

If {Uα}α∈A covers E, then we may be particularly interested in refinements that
cover E too. If A0 ⊆ A, then {Uα}α∈A0

may be considered as a refinement of
{Uα}α∈A.

Let C be another nonempty set, and let {Wγ}γ∈C be a family of subsets of
X indexed by C. If {Vβ}β∈B is a refinement of {Uα}α∈A, and {Wγ}γ∈C is a
refinement of {Vβ}β∈B , then it is easy to see that {Wγ}γ∈C is a refinement of
{Uα}α∈A.

Suppose that {Vβ}β∈B is a refinement of {Uα}α∈A again. Thus, for each
β ∈ B, we can choose an α(β) ∈ A such that Vβ ⊆ Uα(β). Let

A1 = {α(β) : β ∈ B}(8.1.4)

130
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be the set of indices in A that have been chosen in this way. By construction,
A1 ⊆ A, and ⋃

β∈B

Vβ ⊆
⋃
β∈B

Uα(β) =
⋃

α∈A1

Uα.(8.1.5)

If {Vβ}β∈B covers E, then {Uα}α∈A covers E, and {Uα}α∈A1
is a subcovering

of E from {Uα}α∈A. We also have that

#A1 ≤ #B.(8.1.6)

In particular, if B has only finitely many elements, or only finitely or countably
many elements, then A1 has the same property.

Let {Uα}α∈A and {Vβ}β∈B be arbitrary families of subsets of X, not neces-
sarily related by refinement. It is easy to see that

{Uα ∩ Vβ}(α,β)∈A×B(8.1.7)

is a refinement of both {Uα}α∈A and {Vβ}β∈B . Observe that( ⋃
α∈A

Uα

)
∩
( ⋃

β∈B

Vβ

)
=

⋃
α∈A

⋃
β∈B

(Uα ∩ Vβ).(8.1.8)

If {Uα}α∈A and {Vβ}β∈B cover E, then it follows that (8.1.7) covers E too.

8.2 Open coverings

Let X be a topological space, and let B be a base for the topology of X. Also
let {Uα}α∈A be a family of open subsets of X. If α ∈ A, then put

Bα = {V ∈ B : V ⊆ Uα}.(8.2.1)

Thus
Uα =

⋃
V ∈Bα

V,(8.2.2)

because B is a base for the topology of X. Put

B̃ =
⋃
α∈A

Bα,(8.2.3)

so that ⋃
V ∈B̃

V =
⋃
α∈A

⋃
V ∈Bα

V =
⋃
α∈A

Uα.(8.2.4)

Note that B̃ is a refinement of {Uα}α∈A, by construction. If {Uα}α∈A is an

open covering of a subset E of X, then B̃ is an open covering of E in X too.
This type of refinement was already used in the proof of Lindelöf’s theorem,

Theorem 3.6.5. More precisely, if {Uα}α∈A is any nonempty family of open
subsets of X, then {Uα}α∈A may be considered as a covering of its union E =
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⋃
α∈A Uα. As in the previous section, there is a subset A1 of A that satisfies

(8.1.5) and (8.1.6). In this situation, (8.1.5) implies that⋃
α∈A1

Uα =
⋃
α∈A

Uα,(8.2.5)

because the left side is automatically contained in the right side. If B has
only finitely or countably many elements, then (8.1.6) implies that A1 has only
finitely or countably many elements, as before.

This type of refinement was used in the proof of Proposition 3.9.2 as well. In
that case, compactness of E ⊆ X with respect to B implies that there is a finite
subcover of E from B̃. This finite subcovering from B̃ may be considered as a
refinement of {Uα}α∈A, which leads to a finite subcovering of E from {Uα}α∈A,
as before.

Let d(x, y) be a semimetric on X, and suppose now that X is equipped with
the topology determined by d(·, ·). Suppose that E ⊆ X is compact, and let
{Uα}α∈A be an open covering of E in X. A well-known result going back to
Lebesgue implies that there is a positive real number r such that for each x ∈ E
there is an α ∈ A with

B(x, r) ⊆ Uα.(8.2.6)

This means that the covering of E by the open balls B(x, r) in X centered at
elements of E with radius r is a refinement of {Uα}α∈A.

To see this, let x ∈ E be given, so that there is an index α0(x) ∈ A such
that x ∈ Uα0(x). This implies that there is a positive real number r0(x) such
that

B(x, r0(x)) ⊆ Uα0(x),(8.2.7)

because Uα0(x) is an open set in X. Consider the covering of E by open balls
of the form B(x, r0(x)/2), where x ∈ E and r0(x) > 0 is as before. If E is
compact, then there are finitely many elements x1, . . . , xn of E such that

E ⊆
n⋃

j=1

B(xj , r0(xj)/2).(8.2.8)

Put

r = min
1≤j≤n

r0(xj)/2.(8.2.9)

If x ∈ E, then x ∈ B(xj , r0(xj)/2) for some j = 1, . . . , n, by (8.2.8). This
implies that

B(x, r) ⊆ B(xj , r0(xj)/2 + r) ⊆ B(xj , r0(xj)) ⊆ Uα0(xj),(8.2.10)

using the triangle inequality in the first step.
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8.3 Paracompactness

Let us say that a topological space X is paracompact in the strict sense if for
every open covering {Uα}α∈A of X there is a refinement {Vβ}β∈B of {Uα}α∈A

such that {Vβ}β∈B is a locally finite open covering of X. If X is compact, then
X is paracompact in the strict sense.

Let us say that X is paracompact in the strong sense if X is paracompact in
the strict sense and X is Hausdorff. One may simply say that X is paracompact
in this case, but this term is sometimes used for paracompactness in the strict
sense. If X is equipped with the discrete topology, then it is easy to see that X
is paracompact in the strong sense.

Paracompactness of X is defined on p156 of [210] to mean that X is both
paracompact in the strict sense and regular in the strict sense. If X is paracom-
pact in the strong sense, then it is well known that X is regular, as we shall see
in a moment.

Let E be a closed set in X, and let {Uα}α∈A be an open covering of E in
X. Thus X \ E is an open set in X, and the collection of open subsets of X
consisting of the Uα’s, α ∈ A, together with X \E, is an open covering of X. If
X is paracompact in the strict sense, then there is an open covering {Vβ}β∈B

of X that is a refinement of the collection of Uα’s, α ∈ A, and X \ E. Put

B0 = {β ∈ B : Vβ ∩ E 6= ∅},(8.3.1)

and observe that {Vβ}β∈B0
is an open covering of E in X. It is easy to see

that {Vβ}β∈B0
is locally finite in X, because {Vβ}β∈B if locally finite in X. If

β ∈ B, then either Vβ ⊆ X \E, or there is an α ∈ A such that Vβ ⊆ Uα, because
{Vβ}β∈B is a refinement of the collection of Uα’s, α ∈ A, and X \E. If β ∈ B0,
then it follows that there is an α ∈ A such that Vβ ⊆ Uα, because Vβ ∩ E 6= ∅.
This means that {Vβ}β∈B0 is a refinement of {Uα}α∈A.

In particular, one can use this to check that E is paracompact, with respect
to the induced topology. More precisely, any open covering of E by relatively
open subsets of E can be obtained from an open covering of E in X, by taking
intersections of open subsets of X with E to get relatively open subsets of E.
The remarks in the preceding paragraph imply that an open covering of E in
X has a locally finite refinement which is an open covering of E in X too. One
can take the intersections of the open subsets of X in this refinement with E,
to get a refinement of the initial covering of E by relatively open subsets of E
that is locally finite in E and a covering of E by relatively open subsets of itself.

Suppose that X is paracompact in the strong sense, and let us verify that
X is regular. Let E be a closed set in X, and let x be an element of X not in
E. If y ∈ E, then there is an open subset Uy of X such that y ∈ Uy and x 6∈ Uy,
because X is Hausdorff. Thus the collection of open subsets of X that do not
contain x in their closures is an open covering of E in X. It follows that there
is a locally finite open covering {Wγ}γ∈C of E in X that is a refinement of the
previous open covering of E, because X is paracompact in the strict sense, as
before. If γ ∈ C, then x 6∈Wγ , because Wγ is contained in a subset of X whose
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closure does not contain x. This implies that

x 6∈
( ⋃

γ∈C

Wγ

)
,(8.3.2)

as in Section 5.13. This is equivalent to what we want for regularity, because⋃
γ∈C Wγ is an open subset of X that contains E.

Similarly, if X is paracompact in the strict sense and regular in the strict
sense, then it is well known that X is normal in the strict sense. To see this,
let E be a closed set in X, and let W be an open subset of X that contains
E. Every element of E is contained in an open subset of X whose closure is
contained in W , because X is regular in the strict sense. This means that the
collection of open subsets of X whose closures are contained in W is an open
covering of E in X. If X is paracompact in the strict sense, then there is locally
finite refinement {Vβ}β∈B of the open covering of E just mentioned that is an
open covering of E too, as before. If β ∈ B, then Vβ ⊆ W , because Vβ is
contained in a subset of X whose closure is contained in W . This implies that( ⋃

β∈B

Vβ

)
=

⋃
β∈B

Vβ ⊆W,(8.3.3)

where the first step is as in Section 5.13. Thus
⋃

β∈B Vβ is an open subset of X
that contains E and whose closure is contained in W , as desired.

It is well known and not too difficult to show that if a locally compact
Hausdorff space X is σ-compact, then X is paracompact. However, more precise
results are known, and in particular X is paracompact in the strict sense when
X is regular in the strict sense and X has the Lindelöf property. It is also well
known that X is paracompact in the strict sense when the topology on X is
determined by a semimetric.

8.4 Closed refinements

Let X be a topological space, and consider the following condition:

if {Uα}α∈A is an open covering of X, then there is a locally(8.4.1)

finite covering {Eβ}β∈B of X that is a refinement of {Uα}α∈A.

Paracompactness in the strict sense is the same as saying that (8.4.1) holds,
with Eβ an open subset of X for every β ∈ B. In particular, paracompactness
in the strict sense implies (8.4.1) automatically. If X is regular in the strict
sense, then it is well known that (8.4.1) implies that X is paracompact in the
strict sense.

A family {Eβ}β∈B of subsets of X is said to be closed if Eβ is a closed set
in X for every β ∈ B. Consider the following variant of (8.4.1):

if {Uα}α∈A is an open covering of X, then there is a locally finite(8.4.2)

closed covering {Eβ}β∈B of X that is a refinement of {Uα}α∈A.



8.5. STAR REFINEMENTS 135

This condition obviously implies (8.4.1).
Suppose that X is regular in the strict sense and satisfies (8.4.1), and let us

check that (8.4.2) holds. Let {Uα}α∈A be an open covering of X. Let x ∈ X
be given, so that x ∈ Uα for some α ∈ A. Because X is regular in the strict
sense, there is an open subset W of X such that x ∈ W and W ⊆ Uα. Thus
the collection of open subsets W of X such that W ⊆ Uα for some α ∈ A is an
open covering of X.

By hypothesis, there is a locally finite covering {Eβ}β∈B of X that is a
refinement of the covering of X just mentioned. This implies that for each
β ∈ B there is an open subset W of X and an α ∈ A such that Eβ ⊆ W
and W ⊆ Uα. Of course, this means that Eβ ⊆ W ⊆ Uα, so that {Eβ}β∈B

is a refinement of {Uα}α∈A. We also have that {Eβ}β∈B is locally finite in X,
because {Eβ}β∈B is locally finite in X, as in Section 5.13.

Let {Uα}α∈A be an open covering of X again, and suppose that {Eβ}β∈B is
a locally finite closed covering of X that is a refinement of {Uα}α∈A. Thus, for
each β ∈ B, we can choose α(β) ∈ A such that

Eβ ⊆ Uα(β).(8.4.3)

Let x ∈ X be given, so that there is an open subset W (x) of X such that
x ∈W (x) and W (x)∩Eβ = ∅ for all but finitely many β ∈ B, because {Eβ}β∈B

is locally finite at x, by hyothesis. Put

B(x) = {β ∈ B : x ∈ Eβ}(8.4.4)

and
B1(x) = {β ∈ B : W (x) ∩ Eβ 6= ∅},(8.4.5)

so that B1(x) is a finite subset of B that contains B(x). Consider

W1(x) = W (x) ∩
( ⋂

β∈B(x)

Uα(β)

)
∩
( ⋂

β∈B1(x)\B(x)

(X \ Eβ)
)
,(8.4.6)

where the intersection over β ∈ B1(x)\B(x) can be omitted when B(x) = B1(x).
Of course, B(x) 6= ∅, because {Eβ}β∈B covers X. Note that x ∈ W1(x), by
construction. Clearly W1(x) is an open set in X, because it is the intersection
of finitely many open sets. If β ∈ B \B(x), then

W1(x) ∩ Eβ = ∅,(8.4.7)

because β is an element of B \B1(x) or B1(x) \B(x).

8.5 Star refinements

Let X be a set, let C be a nonempty set, and let Wγ be a subset of X for each
γ ∈ C. Let x ∈ X be given, and put

C(x) = {γ ∈ C : x ∈Wγ}.(8.5.1)
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The star of x with respect to {Wγ}γ∈C is defined to be⋃
γ∈C(x)

Wγ .(8.5.2)

This union is interpreted as being the empty set when C(x) = ∅. If {Wγ}γ∈C

covers X, then C(x) 6= ∅ for every x ∈ X.
Let {Uα}α∈A be another nonempty family of subsets of X. We say that

{Wγ}γ∈C is a star refinement of {Uα}α∈A if for each x ∈ X there is an α ∈ A
such that the star of x with respect to {Wγ}γ∈C is contained in Uα. Equivalently,
this means that the collection of subsets of X that are stars of elements of X
with respect to {Wγ}γ∈C is a refinement of {Uα}α∈A. It is easy to see that
{Wγ}γ∈C is a refinement of {Uα}α∈A in this case, because Wγ is contained in
the star of each of its elements.

A topological space X is said to be fully normal in the strict sense if for
every open covering {Uα}α∈A of X there is an open covering {Wγ}γ∈C that is
a star refinement of {Uα}α∈A. If X satisfies (8.4.2), then it is well known that
X is fully normal in the strict sense. More precisely, let {Uα}α∈A be an open
covering of X, and let {Eβ}β∈B be a locally finite closed covering of X that
is a refinement of {Uα}α∈A. If x ∈ X, then let B(x) and W1(x) be as in the
previous section. The family of sets W1(x), x ∈ X, is an open covering of X,
and we would like to check that it is a star refinement of {Uα}α∈A.

Let β0 ∈ B be given. If x ∈ X and W1(x) ∩ Eβ0 6= ∅, then β0 ∈ B(x), as
before. This implies that

W1(x) ⊆ Uα(β0),(8.5.3)

by the definition of W1(x).
Let y ∈ X be given, and let β0 be an element of B such that y ∈ Eβ0

. If
x ∈ X and y ∈ W1(x), then W1(x) ∩ Eβ0

6= ∅, so that (8.5.3) holds. It follows
that the star of y with respect to the family of sets W1(x), x ∈ X, is contained
in Uα(β0), as desired.

Suppose that X is fully normal in the strict sense, and let us check that
X is normal in the strict sense. Let A and B be disjoint closed subsets of
X, so that their complements X \ A, X \ B form an open covering of X. By
hypothesis, there is an open covering {Wγ}γ∈C of X that is a star refinement
of {X \A,X \B}. Put

U =
⋃

{Wγ : γ ∈ C, Wγ ∩A 6= ∅}(8.5.4)

and
V =

⋃
{Wγ : γ ∈ C, Wγ ∩B 6= ∅}.(8.5.5)

These are open subsets of X, with A ⊆ U and B ⊆ V . Suppose for the sake
of a contradiction that there is a point x in U ∩ V . This means that there are
γ1, γ2 ∈ C such that x ∈Wγ1 ∩Wγ2 , Wγ1 ∩A 6= ∅, and Wγ2 ∩B 6= ∅. Thus Wγ1

and Wγ2
are both contained in the star of x with respect to {Wγ}γ∈C . It follows

that the star of x with respect to {Wγ}γ∈C is not contained in either X \A or
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X \ B. This contradicts the hypothesis that {Wγ}γ∈C be a star refinement of
{X \A,X \B}.

Let us say that X is fully normal in the strong sense if X is fully normal
in the strict sense and X satisfies the first separation condition. One may say
that that X is fully normal when X is fully normal in the strict sense, and that
X is fully T4 when X is if fully normal in the strong sense, but the opposite
convention may be used as well.

8.6 Using another refinement

Let X be a set, and let {Wγ}γ∈C be a nonempty family of subsets of X. If E
is a subset of X, then put

C(E) = {γ ∈ C : Wγ ∩ E 6= ∅}.(8.6.1)

The star of E with respect to {Wγ}γ∈C is defined to be⋃
γ∈C(E)

Wγ ,(8.6.2)

which is interpreted as being the empty set when C(E) = ∅. Of course, if
{Wγ}γ∈C covers X, then C(E) 6= ∅ when E 6= ∅. In this case, E is contained in
its star with respect to {Wγ}γ∈C .

If x ∈ X, then C({x}) is the same as C(x) in the previous section, and the
star of {x} with respect to {Wγ}γ∈C is the same as the star of x. Observe that
C(E) is the same as the union of C(x) over x ∈ E, so that the star of E with
respect to {Wγ}γ∈C is the same as the union of the stars of the elements of E.

The star of x ∈ X with respect to {Wγ}γ∈C is the set of y ∈ X for which
there is a γ ∈ C such that x, y ∈ Wγ . This condition is symmetric in x and y,
so that y is in the star of x if and only if x is in the star of y.

The star of the star of x ∈ X with respect to {Wγ}γ∈C is the union of the
stars of the elements y of the star of x. This is the same as the union of the
stars of y ∈ X such that x is in the star of y, as in the preceding paragraph.

Let {Uα}α∈A, {Vβ}β∈B , and {Wγ}γ∈C be nonempty families of subsets of X.
Suppose that {Vβ}β∈B is a star refinement of {Uα}α∈A, and that {Wγ}γ∈C is a
star refinement of {Vβ}β∈B . Let x ∈ X be given, and suppose that y ∈ X is an
element of the star of x with respect to {Wγ}γ∈C . Equivalently, this means that
x is an element of the star of y with respect to {Wγ}γ∈C , as before. Because
{Wγ}γ∈C is a star refinement of {Vβ}β∈B , for each such y there is a β(y) ∈ B
such that

Vβ(y) contains the star of y with respect to {Wγ}γ∈C .(8.6.3)

It follows that x ∈ Vβ(y) for these points y, so that

Vβ(y) is contained in the star of x with respect to {Vβ}β∈B .(8.6.4)
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Because {Vβ}β∈B is a star refinement of {Uα}α∈A, there is an α ∈ A such that
Uα contains the star of x with respect to {Vβ}β∈B . This means that

Uα contains the star of the star of x with respect to {Wγ}γ∈C(8.6.5)

in this situation.
Now let X be a topological space, and let {Eβ}β∈B be a locally finite family

of subsets of X. Thus, for each x ∈ X, there is an open subset V (x) of X such
that x ∈ V (x) and V (x) ∩ Eβ = ∅ for all but finitely many β ∈ B. Of course,
the family of such open sets V (x) is an open covering of X. Suppose that X is
fully normal in the strict sense, so that this open covering has a star refinement
that is an open covering of X. Using full normality again, we can get an open
covering {Wγ}γ∈C of X that is a star refinement of the previous open covering
of X that is a star refinement of the family of V (x)’s, x ∈ X.

If β ∈ B, then let Zβ be the star of Eβ with respect to {Wγ}γ∈C . Note that

Eβ ⊆ Zβ ,(8.6.6)

and that Zβ is an open set in X. Let x0 ∈ X be given, and let γ0 be an element
of C such that Wγ0

contains x0. Suppose that

Wγ0 ∩ Zβ 6= ∅,(8.6.7)

and let y be an element of Wγ0
∩ Zβ . By definition of Zβ , there is a γ ∈ C

such that Wγ ∩Eβ 6= ∅ and y ∈Wγ . Thus y is in the star of x0 with respect to
{Wγ}γ∈C , and Eβ intersects the star of the star of x0 with respect to {Wγ}γ∈C .

Because {Wγ}γ∈C is a star refinement of a star refinement of the family of
V (x)’s, x ∈ X, there is an x1 ∈ X such that the star of the star of x0 with respect
to {Wγ}γ∈C is contained in V (x1), as before. Remember that V (x1) ∩ Eβ 6= ∅
for all but finitely many β ∈ B, so that the star of the star of x0 with respect to
{Wγ}γ∈C intersects Eβ for only finitely many β ∈ B. This implies that (8.6.7)
holds for only finitely many β ∈ B. This means that {Zβ}β∈B is locally finite
in X as well.

Let {Uα}α∈A be an open covering of X, and suppose that {Eβ}β∈B is also
a refinement of {Uα}α∈A. Thus, for each β ∈ B, we can choose α(β) ∈ A such
that Eβ ⊆ Uα(β). If Zβ is as before, then

Zβ ∩ Uα(β)(8.6.8)

is an open subset of X that contains Eβ and is contained in Uα(β). Of course,
the family of sets (8.6.8), with β ∈ B, is locally finite in X, because {Zβ}β∈B is
locally finite in X. If {Eβ}β∈B covers X, then the family of sets (8.6.8), with
β ∈ B, covers X as well.

Suppose that every open covering {Uα}α∈A of X has a locally finite refine-
ment {Eβ}β∈B that covers X, as in (8.4.1). If X is fully normal in the strict
sense, then we get a locally finite open covering of X that is a refinement of
{Uα}α∈A, as in the preceding paragraph. This means that X is paracompact
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in the strict sense. If every open covering of X has a locally finite closed refine-
ment that covers X, as in (8.4.2), then X satisfies (8.4.1) and is fully normal in
the strict sense, as in the previous sections. If X is regular in the strict sense
and satisfies (8.4.1), then we have see that X satisfies (8.4.2), so that X is fully
normal in the strict sense, and paracompact in the strict sense.

8.7 σ-Local finiteness

A family {Eβ}β∈B of subsets of a topological space X is said to be σ-locally
finite in X if there is a sequence B1, B2, B3, . . . of subsets of B such that

B =

∞⋃
j=1

Bj(8.7.1)

and {Eβ}β∈Bj
is locally finite in X for every j ≥ 1. Of course, if {Eβ}β∈B is

locally finite in X, then {Eβ}β∈B is σ-locally finite in X.
Consider the following condition:

if {Uα}α∈A is an open covering of X, then there is a σ-locally(8.7.2)

finite open covering {Vβ}β∈B of X that is a refinement of {Uα}α∈A.

If X is paracompact in the strict sense, then X satisfies (8.7.2), because local
finiteness implies σ-local finiteness. If X satisfies (8.7.2), then it is well known
that X satisfies (8.4.1), which is to say that every open covering of X has a
locally finite refinement that covers X.

To see this, let {Uα}α∈A be an open covering of X, so that there is a σ-
locally finite open covering {Vβ}β∈B of X that is a refinement of {Uα}α∈A.
Let B1, B2, B3, . . . be a sequence of subsets of B whose union is B such that
{Vβ}β∈Bj is locally finite in X for each j ≥ 1. We may as well suppose that the

Bj ’s are pairwise-disjoint, by replacing Bj with Bj \
(⋃j−1

l=1 Bl

)
when j ≥ 2.

If β ∈ B, then put Eβ = Vβ when β ∈ B1, and

Eβ = Vβ \
( j−1⋃

l=1

⋃
γ∈Bl

Vγ

)
(8.7.3)

when β ∈ Bj for some j ≥ 2. Thus

Eβ ⊆ Vβ(8.7.4)

for every β ∈ B. This implies that {Eβ}β∈B is a refinement of {Uα}α∈A, because
{Vβ}β∈B is a refinement of {Uα}α∈A, by hypothesis.

Let x ∈ X be given, so that x ∈
⋃

β∈B Vβ =
⋃∞

j=1

⋃
β∈Bj

Vβ . Let j0(x) be

the smallest positive integer j such that x ∈
⋃

β∈Bj
Vβ , and let β0(x) be an

element of Bj0(x) such that x ∈ Vβ0(x). Observe that

x ∈ Eβ0(x),(8.7.5)
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because j0(x) is as small as possible. Thus {Eβ}β∈B covers X. If β ∈ Bl for
some l ≥ j0(x) + 1, then

Eβ ∩ Vβ0(x) = ∅,(8.7.6)

by the definition of Eβ .
If 1 ≤ l ≤ j0(x), then there is an open subset Wl of X such that x ∈Wl and

Wl ∩ Vβ = ∅ for all but finitely many β ∈ Bl, because {Vβ}β∈Bl
is locally finite

in X. Put

W =
( j0(x)⋂

l=1

Wl

)
∩ Vβ0(x),(8.7.7)

so that W is an open subset of X that contains x. It is easy to see that
W ∩ Eβ = ∅ for all but finitely many β ∈ B. This means that {Eβ}β∈B is
locally finite in X, as desired.

If X satisfies (8.7.2) and X is regular in the strict sense, then it follows that
X is paracompact in the strict sense, as in the previous section.

8.8 Semimetrics and full normality

Let X be a set with a semimetric d(x, y), and let us show that X is fully
normal in the strict sense with respect to the topology determined by d(·, ·).
Let {Uα}α∈A be an arbitrary open covering of X. Consider the collection of
open balls in X of the form B(w, r), where w ∈ X, 0 < r ≤ 1, and

B(w, 5 r) ⊆ Uα(8.8.1)

for some α ∈ A. It is easy to see that the collection of these open balls is an
open covering of X, and we would like to verify that it is a star refinement of
{Uα}α∈A.

Let x ∈ X be given, so that we would like to check that the star of x with
respect to this collection of open balls is contained in Uα for some α ∈ A. In
this situation, the star of x is the union of the open balls of the form B(w, r),
where w ∈ X, 0 < r ≤ 1, (8.8.1) holds for some α ∈ A, and x ∈ B(w, r). In
particular, there are w0 ∈ X and r0 ∈ (0, 1] with these properties, and so that
r0 is strictly larger that one-half the supremum of the set of r ∈ (0, 1] that occur
in this way.

Suppose that w ∈ X and r ∈ (0, 1] have the properties mentioned in the
preceding paragraph. Thus

r < 2 r0,(8.8.2)

by construction. Observe that

d(w0, w) ≤ d(w0, x) + d(x,w) < r0 + r < 3 r0,(8.8.3)

because x is an element of B(w0, r0) and B(w, r). This implies that

B(w, r) ⊆ B(w0, 3 r0 + r) ⊆ B(w0, 5 r0).(8.8.4)
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It follows that the star of x with respect to this collection of open balls is
contained in B(w0, 5 r0). By construction, B(w0, 5 r0) is contained in Uα0 for
some α0 ∈ A. This means that this collection of open balls is a star refinement
of {Uα}α∈A, as desired.

8.9 Discrete families of sets

Let {Eβ}β∈B be a family of subsets of a topological space X. Let us say that
{Eβ}β∈B is discrete at a point x ∈ X if there is an open subset V of X such
that x ∈ V and

Eβ ∩ V = ∅(8.9.1)

for all but at most one β ∈ B. Of course, this implies that {Eβ}β∈B is locally
finite at x.

If {Eβ}β∈B is discrete at every x ∈ X, then {Eβ}β∈B is said to be discrete
in X. This implies that {Eβ}β∈B is locally finite in X, and that the Eβ ’s are
pairwise disjoint.

Note that (8.9.1) implies that

Eβ ∩ V = ∅,(8.9.2)

because V is an open set. If {Eβ}β∈B is discrete at x ∈ X, then {Eβ}β∈B is
discrete at x as well. If {Eβ}β∈B is discrete in X, then {Eβ}β∈B is discrete in
X too.

Let X0 be a subset of X. If {Eβ}β∈B is discrete at a point x ∈ X0, then
{Eβ ∩X0}β∈B is discrete at x as a family of subsets of X0, with respect to the
induced topology. If {Eβ}β∈B is discrete in X, then {Eβ ∩X0}β∈B is discrete
in X0. If a family of subsets of X0 is discrete at x ∈ X0, with respect to the
induced topology on X0, then this family is discrete at x as a family of subsets
of X.

Suppose that {Eβ}β∈B is discrete in X, and that X is fully normal in the
strict sense. Under these conditions, one can find an open subset Zβ of X for
each β ∈ B such that Eβ ⊆ Zβ , and {Zβ}β∈B is discrete in X too. This uses
essentially the same argument as in Section 8.6.

Suppose that {Eβ}β∈B is also a refinement of an open covering {Uα}α∈A of
X. If β ∈ B, then we can choose α(β) ∈ A such that Eβ ⊆ Uα(β). This implies
that Zβ ∩ Uα(β) is an open subset of X that contains Eβ and is contained in
Uα(β). Clearly {Zβ ∩ Uα(β)}β∈B is discrete in X, because {Zβ}β∈B is discrete
in X.

A family {Eβ}β∈B of subsets of a topological space X is said to be σ-discrete
in X if there is a sequence B1, B2, B3, . . . of subsets of B such that B =

⋃∞
j=1Bj

and {Eβ}β∈Bj is discrete in X for every j ≥ 1. In this case, {Eβ}β∈B is σ-locally
finite in X.

Suppose that {Eβ}β∈B is a σ-discrete family of subsets of X that is a re-
finement of an open convering {Uα}α∈A of X. If X is fully normal in the strict
sense, then for each β ∈ B we can find an open subset of X that contains Eβ ,
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so that the resulting family of open sets is a σ-discrete refinement of {Uα}α∈A.
This follows from the previous argument for discrete families.

8.10 Sequences of star refinements

Let X be a topological space, and suppose that X is fully normal in the strict
sense. If B0 is an open covering of X, then there is an open covering B1 of X
that is a star refinement of an open covering of X that is a star refinement of
B0. Continuing in this way, we get a sequence of open coverings Bj of X such
that Bj+1 is a star refinement of an open covering of X that is a star refinement
of Bj for each j ≥ 0. If x ∈ X and j ∈ Z+, then

the star of the star of x with respect to Bj is contained in(8.10.1)

an element of Bj−1,

as in Section 8.6.
If E ∈ Bj for some j ≥ 1, and x ∈ E, then E is contained in the star of

x with respect to Bj . This implies that the star of E with respect to Bj is
contained in the star of the star of x with respect to Bj . It follows that

the star of E with respect to Bj is contained in(8.10.2)

an element of Bj−1,

by (8.10.1).
Let E be a subset of X, and let j be a positive integer. Remember that the

star of E with respect to Bj is the same as the union of the stars of the elements
of E. The star of the star of E with respect to Bj is the same as the union of
the stars of the stars of the elements of E with respect to Bj . Using (8.10.1),
we get that

the star of the star of E with respect to Bj+1 is contained in(8.10.3)

the star of E with respect to Bj .

Put C1 = B1. If Cj has been defined for some j ∈ Z+, then let Cj+1 be the
collection of subsets of X obtained by taking the star with respect to Bj+1 of

an element of Cj . Similarly, let C̃j+1 be the collection of subsets of X obtained
by taking the star with respect to Bj+1 of an element of Cj+1. Equivalently, the

elements of C̃j+1 can be obtained by taking the star of the star of an element of
Cj , with respect to Bj+1. Thus

every element of C̃j+1 is contained in the star with respect to Bj(8.10.4)

of an element of Cj ,

by (8.10.3).
If j ≥ 2, then the elements of Cj can be obtained as the star with respect to

Bj of an element of Cj−1. This implies that every element of C̃j+1 is contained
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in the star of the star of an element of Cj−1, with respect to Bj . This means

that every element of C̃j+1 is contained in an element of C̃j , so that

C̃j+1 is a refinement of C̃j .(8.10.5)

If l ≥ 2, then we get that

C̃l is a refinement of C̃2.(8.10.6)

Every element of C̃2 is contained in the star with respect to B1 of an element
of B1 = C1, as in (8.10.4). The star with respect to B1 of an element of B1

is contained in an element of B0, as in (8.10.3). Thus every element of C̃2 is
contained in an element of B0, which is to say that

C̃2 is a refinement of B0.(8.10.7)

It follows that
C̃l is a refinement of B0(8.10.8)

for every l ≥ 2.
Note that

the star of E ⊆ X with respect to Bj contains E(8.10.9)

for every j ≥ 0, because Bj covers X, by hypothesis. This implies that Cl is a

refinement of C̃l for every l ≥ 2. Thus

Cl is a refinement of B0(8.10.10)

for every l ≥ 2. Of course, this also holds when l = 1, because B1 = C1 is a
refinement of B0, by construction.

Similarly, Cj is a refinement of Cj+1 for every j ≥ 1, by (8.10.9). This implies
that B1 = C1 is a refinement of Cj for each j ≥ 1. Thus Cj covers X for every
j ≥ 1, because B1 covers X. If E ⊆ X and j ≥ 0, then it is easy to see that

the star of E with respect to Bj is an open set,(8.10.11)

because the elements of Bj are open subsets of X. This means that Cl is an
open covering of X for each l ≥ 1.

8.11 σ-Discreteness and full normality

Let X be a topological space that is fully normal in the strict sense again. If
{Uα}α∈A is an open covering of X, then it is well known that there is a σ-
discrete open covering of X that is a refinement of {Uα}α∈A. It suffices to show
that there is a σ-discrete covering of X that is a refinement of {Uα}α∈A, as in
Section 8.9.
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Let B0 be an open covering of X that is a star refinement of {Uα}α∈A. As
in the previous section, we can find an open covering Bj of X for each positive
integer j, so that Bj is a star refinement of an open covering of X that is a star
refinement of Bj−1. Let Cj be as in the previous section for each j ∈ Z+, which
is an open covering of X. Remember that Cj is a refinement of B0 for every
j ≥ 1. This implies that Cj is a star refinement of {Uα}α∈A.

If x ∈ X and l ∈ Z+, then let Wl(x) be the star of x with respect to Cl.
This is the union of the elements of Cl that contain x. The star of each of these
elements of Cl with respect to Bl+1 is an element of Cl+1 that contains x. This
implies that

the star of Wl(x) with respect to Bl+1 is contained in Wl+1(x).(8.11.1)

Let � be a well-ordering on X. Put

W̃l(x) = Wl(x) \
⋃

{Wl+1(y) : y ∈ X, y � x, y 6= x}.(8.11.2)

We would like to check that the collection of sets W̃l(x), x ∈ X, is discrete in
X for each l ∈ Z+.

Let l ≥ 1 be given, and let x, y be distinct elements of X. We would like to
verify that

the star of W̃l(y) with respect to Bl+1 is disjoint from W̃l(x).(8.11.3)

This is the same as saying that

no element of Bl+1 intersects both W̃l(x) and W̃l(y).(8.11.4)

Of course, (8.11.4) is symmetric in x and y, so that (8.11.3) is equivalent to the

star of W̃l(x) with respect to Bl+1 being disjoint from W̃l(y).

Note that the star of W̃l(y) with respect to Bl+1 is contained in the star of

Wl(y) with respect to Bl+1, because W̃l(y) ⊆Wl(y). This implies that the star

of W̃l(y) with respect to Bl+1 is contained in Wl+1(y), by (8.11.1). If y � x,

then Wl+1(y) is disjoint from W̃l(x), by construction. It follows that (8.11.3)
holds when y � x.

Similarly, if x � y, then the star of W̃l(x) with respect to Bl+1 is disjoint

from W̃l(y). This implies (8.11.3), as before. Thus (8.11.3) holds, which means

that (8.11.4) holds. This implies that the collection of sets W̃l(x), x ∈ X, is
discrete in X, because Bl+1 is an open covering of X.

Let y ∈ X be given, and note that y ∈ Wl(y) for every l ≥ 1. Let z be the
smallest element of X, with respect to �, such that y ∈ Wl(z) for some l ≥ 1.

It is easy to see that y ∈ W̃l(z) in this case. This shows that the collection of

sets W̃l(x), with x ∈ X and l ∈ Z+, covers X.
If x ∈ X and l ∈ Z+, then there is an α0 ∈ A such that Wl(x) ⊆ Uα0

,

because Cl is a star refinement of {Uα}α∈A. This implies that W̃l(x) ⊆ Uα0
.

Thus the collection of sets W̃l(x), with x ∈ X and l ∈ Z+, is a refinement
of {Uα}α∈A. This collection is σ-discrete in X, because the collection of sets

W̃l(x), x ∈ X, is discrete in X for each l ≥ 1, as before.
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8.12 Point finiteness

A family {Eα}α∈A of subsets of a set X is said to be point finite in X if for
every x ∈ X there are only finitely many α ∈ A such that x ∈ Eα. Suppose now
that X is a topological space. If {Eα}α∈A is locally finite in X, then {Eα}α∈A

is point finite in X. If every open covering of X has a refinement that is a
point finite open covering of X, then X is said to be metacompact. If X is
paracompact in the strict sense, then X is metacompact.

Suppose that X is normal in the strict sense, and that {Vα}α∈A is a point
finite open covering of X. Under these conditions, one can choose an open
subset Uα of X for each α ∈ A such that Uα ⊆ Vα and {Uα}α∈A is an open
covering of X, as in Problem V (a) on p171 of [210]. More precisely, this can be
obtained using Zorn’s lemma or Hausdorff’s maximality principle, as follows.

Let A0 be a subset of A, and let ϕ0 be a mapping from A0 into the set of all
open subsets of X. Let us say that (A0, ϕ0) is admissible if

ϕ0(α) ⊆ Vα(8.12.1)

for every α ∈ A0, and

X =
( ⋃

α∈A0

ϕ0(α)
)
∪
( ⋃

α∈A\A0

Vα

)
.(8.12.2)

Let A be the collection of admissible pairs (A0, ϕ0). If (A1, ϕ1), (A2, ϕ2) ∈ A,
then put

(A1, ϕ1) � (A2, ϕ2)(8.12.3)

when A1 ⊆ A2 and ϕ1 = ϕ2 on A1. This defines a partial ordering on A.
Let C be a chain in A, and put

AC =
⋃

(A0,ϕ0)∈C

A0,(8.12.4)

which is a subset of A. If α ∈ AC , then there is an element (A0, ϕ0) in C such
that α ∈ A0, and we would like to put

ϕC(α) = ϕ0(α).(8.12.5)

One can check that this does not depend on the particular element (A0, ϕ0) of
C with α ∈ A0. Thus ϕC is a well-defined mapping from AC into the set of all
open subsets of X. Note that

ϕC(α) ⊆ Vα(8.12.6)

for every α ∈ AC , because of the analogous property (8.12.1) of every (A0, ϕ0)
in C.

We would like to verify that

X =
( ⋃

α∈AC

ϕC(α)
)
∪
( ⋃

α∈A\AC

Vα

)
.(8.12.7)
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Let x ∈ X be given, and let us check that x is an element of the right side of
(8.12.7). Of course, x ∈ Vα for some α ∈ A, because {Vα}α∈A covers X, by
hypothesis. If x ∈ Vα for some α ∈ A \ AC , then x is an element of the right
side of (8.12.7). Suppose now that for each α ∈ A \AC , we have that x 6∈ Vα.

Remember that there are only finitely many α ∈ A such that x ∈ Vα, because
{Vα}α∈A is point finite in X, by hypothesis. In this situation, AC contains all
of the α ∈ A with x ∈ Vα, by construction. This means that each of these α’s
is an element of A0 for some (A0, ϕ0) ∈ C, by definition of AC . More precisely,
there is an (A0, ϕ0) ∈ C such that A0 contains every α ∈ A with x ∈ Aα. This
uses the facts that there are only finitely many of these α’s, and that C is a
chain in A.

Of course, (A0, ϕ0) satisfies (8.12.2), because (A0, ϕ0) ∈ A. If α ∈ A \ A0,
then x 6∈ Vα, as in the preceding paragraph. Using (8.12.2), we get that there
is an α ∈ A0 such that x ∈ ϕ0(α). This α is contained in AC and satisfies
x ∈ ϕC(α), by definition of (AC , ϕC). It follows that x is an element of the right
side of (8.12.7).

Thus (8.12.7) holds, so that (AC , ϕC) is an element of A. Using Zorn’s lemma
or Hausdorff’s maximality principle, one can get a maximal element (A1, ϕ1) of
A. We would like to verify that A1 = A. Suppose for the sake of a contradiction
that A1 6= A, and let α2 be an element of A \A1.

Put A2 = A1 ∪ {α2} and

Eα2 = X \
(( ⋃

α∈A1

ϕ1(α)
)
∪
( ⋃

α∈A\A2

Vα

))
.(8.12.8)

Note that Eα2
is a closed set in X, because ϕ1(α) is an open set for every

α ∈ A1, and Vα is an open set for every α ∈ A. We also have that

Eα2
⊆ Vα2

,(8.12.9)

because of the analogue of (8.12.2) for (A1, ϕ1). Thus there is an open subset
Wα2

of X such that

Eα2 ⊆Wα2 and Wα2
⊆ Vα2

,(8.12.10)

because X is normal in the strict sense, by hypothesis.
Put ϕ2(α) = ϕ1(α) for every α ∈ A1, and ϕ2(α2) = Wα2

. This defines
ϕ2 as a mapping from A2 into the set of all open subsets of X. Observe that
ϕ2(α) ⊆ Vα for every α ∈ A2, because of the analogous property of ϕ1 on A1,
and the second part of (8.12.10). Using the first part of (8.12.10), we get that

X =
( ⋃

α∈A2

ϕ2(α)
)
∪
( ⋃

α∈A\A2

Vα

)
.(8.12.11)

This means that (A2, ϕ2) is admissible, and hence an element of A. By construc-
tion, (8.12.3) holds, and (A1, ϕ1) 6= (A2, ϕ2). This contradicts the maximality
of (A1, ϕ1), so that A1 = A, as desired.
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8.13 Partitions of unity

Let X be a topological space, and suppose that X is normal in the strict sense.
Also let {Vα}α∈A be a locally finite open covering of X, so that {Vα}α∈A is
point finite in X in particular. Thus, for each α ∈ A, we can choose an open
subset Uα of X such that Uα ⊆ Vα and {Uα}α∈A is an open covering of X, as
in the previous section. If α ∈ A, then we can use Urysohn’s lemma to get a
continuous real-valued function ϕα on X such that ϕα(x) = 1 for every x ∈ Uα,
ϕα(x) = 0 for every x ∈ X \ Vα, and 0 ≤ ϕα(x) ≤ 1 for every x ∈ X. In this
case,

{x ∈ X : ϕα(x) 6= 0}(8.13.1)

is contained in Vα for every α ∈ A, so that the family of these subsets of X is
locally finite too.

It follows that

Φ(x) =
∑
α∈A

ϕα(x)(8.13.2)

defines a continuous real-valued function on X, as in Section 5.14. If x ∈ Uα0

for some α0 ∈ A, then

Φ(x) ≥ ϕα0
(x) ≥ 1,(8.13.3)

because ϕα(x) ≥ 0 for every α ∈ A, by construction. This means that Φ(x) ≥ 1
for every x ∈ X, because X is covered by {Uα}α∈A. If we put

ψβ(x) = ϕβ(x)/Φ(x)(8.13.4)

for every β ∈ A and x ∈ X, then we get a partition of unity on X, as in Section
5.14. This corresponds to Problem W on p171 of [210].

8.14 Minimal coverings

Let X be a set, and let {Eα}α∈A be a point finite covering of X. Under these
conditions, there is a minimal subcovering of X from {Eα}α∈A, as in Problem
V (b) on p171 of [210]. This is also mentioned on p23 of [355], for topological
spaces, although the topology does not play a role for this part.

More precisely, let A be the collection of subsets B of A such that {Eα}α∈B

covers X. We would like to show that A has a minimal element, with respect
to inclusion. Let � be the partial ordering on A defined by putting A1 � A2

when A1, A2 ∈ A satisfy A2 ⊆ A1. We would like to show that A has a maxi-
mal element with respect to �, using Zorn’s lemma or Hausdorff’s maximality
principle.

Let C be a chain in A with respect to �, which is the same as saying that C
is a chain in A with respect to inclusion. Put

AC =
⋂

A0∈C
A0,(8.14.1)
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which is a subset of A. We would like to check that⋃
α∈AC

Eα = X,(8.14.2)

so that AC ∈ A.
Let x ∈ X be given, and remember that x ∈ Eα for only finitely many α ∈ A,

by hypothesis. If x is not an element of the union on the left side of (8.14.2),
then AC does not contain any α ∈ A such that x ∈ Eα. This means that for
each α ∈ A with x ∈ Eα, there is an element of C that does not contain α.
Because C is a chain, and there are only finitely many of these α’s, there is an
A0 ∈ C such that A0 does not contain any α ∈ A such that x ∈ Eα. This implies
that x is not an element of

⋃
α∈A0

Eα, contradicting the fact that A0 ∈ A.
Thus (8.14.2) holds, so that AC ∈ A. One can use this and Zorn’s lemma or

Hausdorff’s maximality principle to get a maximal element of A with respect
to �. This is the same as a minimal element of A with respect to inclusion, as
desired.

Now let X be a topological space, and suppose that X is metacompact, as in
Section 8.12. If X is also countably compact, then X is compact, as on p23f of
[355]. This corresponds to Problem V (c) on p171 of [210], where X is asked to
satisfy the first separation condition too. However, this additional hypothesis
appears to be included because of the way that some other results were stated,
and is not really needed. In fact, the argument indicated in [210] is the same as
the one in [355].

Let {Uα}α∈A be an arbitrary open covering of X. Because X is metacom-
pact, there is a point finite refinement {Vβ}β∈B of {Uα}α∈A that is an open
covering of X. As before, there is a minimal subset B0 of B such that {Vβ}β∈B0

covers X. If B0 has only finitely many elements, then we can get a finite sub-
covering of X from {Uα}α∈A.

If β ∈ B0, then there is a point xβ ∈ Vβ that is not in Vγ for any other γ ∈ B0,
because B0 is minimal. Let us choose such a point xβ for every β ∈ B0, and
let L be the set of points xβ , β ∈ B0, that have been chosen in this way. Note
that these points are distinct, by construction. Suppose that B0 has infinitely
many elements, so that L has infinitely many elements too. Remember that
countable compactness is equivalent to the strong limit point property, which
implies that there is a point x ∈ X that is a strong limit point of L. Because
{Vβ}β∈B0

covers X, there is a β0 ∈ B0 such that x ∈ Vβ0
. It follows that Vβ0

contains infinitely many elements of L, because x is a strong limit point of L,
and Vβ0 is an open set. This contradicts the fact that xβ0 is the only element
of L in Vβ0

.
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[90] K. Ciesielski, Sierpiński’s topological characterization of Q, Mathematics
Magazine 93 (2020), 136–138.
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cations, American Mathematical Monthly 78 (1971), 187–188.

[327] H. Samelson, Progress Reports: Hauptvermutung, American Mathematical
Monthly 85 (1978), 567–569.

[328] D. Sanderson, Advanced plane topology from an elementary standpoint,
Mathematics Magazine 53 (1980), 81–89.

[329] D. Sanderson and B. Sims, A characterization and generalization of semi-
metrizability, American Mathematical Monthly 73 (1966), 361–365.

[330] E. Schimmerling, A Course on Set Theory, Cambridge University Press,
2011.

[331] R. Schindler, Set Theory: Exploring Independence and Truth, Springer,
2014.

[332] P. Schnare, Two Definitions of Local Compactness, American Mathemat-
ical Monthly 72 (1965), 764–765.

[333] P. Schnare, The maximal T0 (respectively, T1) subspace lemma is equiva-
lent to the axiom of choice, American Mathematical Monthly 75 (1968),
7611.

[334] R. Schultz, Some recent results on topological manifolds, American Math-
ematical Monthly 78 (1971), 941–952.

[335] B. Scott, A “more topological” proof of the Tietze – Urysohn theorem,
American Mathematical Monthly 85 (1978), 192–193.

[336] B. Scott and Z. Robinson, The boundary topology of a space, American
Mathematical Monthly 89 (1982), 307–309.

[337] H. Segerman, Visualizing Mathematics with 3D Printing, Johns Hopkins
University Press, 2016.

[338] H. Sharp, Denseness and completeness in certain function spaces, Ameri-
can Mathematical Monthly 74 (1967), 266–271.

[339] D. Shimamoto and C. Vandervaart, Spaces of polygons in the plane and
Morse theory, American Mathematical Monthly 112 (2005), 289–310.

[340] W. Sierpinski, General Topology, translated by C. Krieger, University of
Toronto Press, 1952.
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