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Preface

These informal notes are intended to be at least somewhat introductory, par-
ticularly near the beginning. We shall also be concerned with connections with
other aspects of analysis, or other areas of mathematics, even if we do not get
into it too much here. Of course, there are many texts with more information,
some of which may be found in the bibliography.

The main prerequisites, at least near the beginning, are familiarity with
basic analysis and linear algebra, including abstract metric spaces and vector
spaces. In some places, it may be helpful for the reader to be familiar with some
general topology, measure theory and integration, or complex analysis. Some
familiarity with abstract algebra, including groups and rings, would be helpful
in some places as well. We shall sometimes consider simpler versions of some
basic notions or results, which could be treated more fully with more familiarity
or review of related facts.

Of course, linear algebra deals with vector spaces and linear mappings be-
tween them. This is already very interesting and important in the finite-
dimensional case, and one may consider infinite-dimensional vector spaces as
well. One may consider vector spaces over arbitrary fields too. Here we deal
with vector spaces over the real and complex numbers, and norms and inner
products on these vector spaces. The corresponding metrics determine topolo-
gies on these vector spaces, and we may also consider other types of topologies
on them.

Beginning in Part II, we shall consider algebras over the real and complex
numbers. These are basically vector spaces on which a bilinear operation of
multiplication is defined. Some basic examples include algebras of functions on
some nonempty set, and algebras of linear mappings from a vector space into
itself. Complex analysis can play a large role in this, and we shall often try to
include real versions where possible.

The definition of a norm uses an absolute value function on the corresponding
field of scalars. Here we normally use the standard absolute value functions on
the real and complex numbers, but one can consider absolute value functions
on arbitrary fields, as in [44, 80]. This will be discussed in Appendix A, for
which the reader should have some familiarity with some basic notions related
to fields. Some topics related to algebras over fields with non-archimedean
absolute value functions may be found in [60, 61]. Some related references
include [11, 41, 53, 95, 136, 145, 147, 149, 193].
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Norms and bounded linear
mappings
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Chapter 1

Norms and Banach Spaces

1.1 Norms on vector spaces

Let V be a vector space over the real or complex numbers. A nonnegative real-
valued function N on V is said to be a norm on V if it satisfies the following
three conditions. First, for each v ∈ V ,

N(v) = 0 if and only if v = 0.(1.1.1)

Second,

N(t v) = |t|N(v)(1.1.2)

for every v ∈ V and t ∈ R or C, as appropriate. Here |t| denotes the usual
absolute value of the real or complex number t. Third,

N(v + w) ≤ N(v) +N(w)(1.1.3)

for every v, w ∈ V . This is known as the triangle inequality for N .
Of course, the real line R and complex plane C may be considered as one-

dimensional vector spaces over themselves. The usual absolute value functions
on R and C may be considered as norms on these spaces. More precisely, the
only norms on R or C, as vector spaces over themselves, are positive constant
multiples of the usual absolute value functions.

If V is a vector space over the complex numbers, then V may be considered as
a vector space over the real numbers, by simply restricting scalar multiplication
on V to real numbers. We may use

VR(1.1.4)

to denote V considered as a vector space over R in this way. If N is a norm on
V as a vector space over C, then N may also be considered as a norm on VR.
However, a norm on VR may not be a norm on V , as a vector space over the
complex numbers.

2
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Let X be a nonempty set, and note that the spaces of all real or complex-
valued functions on X are vector spaces over the real and complex numbers,
respectively, with respect to pointwise addition and scalar multiplication of
functions on X. Also let

ℓ∞(X,R), ℓ∞(X,C)(1.1.5)

be the spaces of bounded real and complex-valued functions on X, respectively.
It is well known and not difficult to check that these are linear subspaces of
the spaces of all real and complex-valued functions on X, respectively. In par-
ticular, ℓ∞(X,R) and ℓ∞(X,C) are vector spaces over the real and complex
numbers, respectively, with respect to pointwise addition and scalar multiplica-
tion of functions on X.

If f is a bounded real or complex-valued function on X, then put

‖f‖∞ = sup{|f(x)| : x ∈ X}.(1.1.6)

One can verify that this defines a norm on each of ℓ∞(X,R) and ℓ∞(X,C), as
vector spaces over the real and complex numbers, respectively. This is known
as the supremum norm, and we may sometimes use the notation

‖f‖sup(1.1.7)

instead. We may also use the notation

‖f‖ℓ∞(X,R), ‖f‖ℓ∞(X,C)(1.1.8)

as well, to be more precise.
Let V be a vector space over the real or complex numbers again, and let N

be a norm on V . It is easy to see that

dN (v, w) = N(v − w)(1.1.9)

defines a metric on V . The metric on ℓ∞(X,R) or ℓ∞(X,C) associated to the
supremum norm in this way is the usual supremum metric, for instance.

In particular, all of the usual notions and results about metric spaces can be
used in this situation. Of course, there are a lot of additional properties in this
case.

1.2 Seminorms and convex sets

Let V be a vector space over the real numbers. A subset E of V is said to be
convex if for every v, w ∈ E and real number t with 0 ≤ t ≤ 1, we have that

(1− t) v + t w ∈ E.(1.2.1)

If V is a vector space over the complex numbers, then one can use the same
definition, which basically corresponds to considering V as a vector space over
the real numbers.
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Now let V be a vector space over the real or complex numbers. A nonnegative
real-valued function N on V is said to be a seminorm or pseudonorm if it
satisfies the homogeneity condition (1.1.2) and triangle inequality (1.1.3). Note
that (1.1.2) implies that N(0) = 0, by taking t = 0. Thus a seminorm N on V
is a norm if and only if N(v) > 0 for every v ∈ V with v 6= 0.

Let N be a seminorm on V . If v ∈ V and r is a positive real number, then
the open ball in V centered at v with radius r may be defined by

B(v, r) = BN (v, r) = {w ∈ V : N(v − w) < r}.(1.2.2)

Similarly, if r is a nonnegative real number, then the closed ball in V centered
at v with radius r may be defined by

B(v, r) = BN (v, r) = {w ∈ V : N(v − w) ≤ r}.(1.2.3)

One can check that these are convex sets in V .
If N is a norm on V , then (1.2.2) and (1.2.3) are the same as the open and

closed balls in V determined by the metric dN (·, ·) on V associated to N . If
N is a seminorm on V , then (1.1.9) defines a semimetric or pseudometric on
V . This means that it satisfies the same conditions as a metric, except that
dN (v, w) = 0 does not necessarily imply that v = w.

Let N be a nonnegative real-valued function on V that satisfies the homo-
geneity condition (1.1.2). We may still use the notation (1.2.2) and (1.2.3) in
this case, even if (1.1.9) is not necessarily a metric or semimetric on V . If the
open unit ball BN (0, 1) in V with respect to N is convex, then it is well known
that N satisfies the triangle inequality, and is thus a seminorm on V .

To see this, let v, w ∈ V be given, and let r, t be real numbers with

N(v) < r, N(w) < t.(1.2.4)

This implies that
r−1 v, t−1 w ∈ BN (0, 1).(1.2.5)

If BN (0, 1) is convex, then it follows that

(r + t)−1 (v + w) = (r (r + t)−1) (r−1 v) + (t (r + t)−1) (t−1 w)(1.2.6)

is an element of BN (0, 1) too. This means that

N(v + w) < r + t.(1.2.7)

One can use this to get (1.1.3).
Similarly, if the closed unit ball BN (0, 1) is convex, then N satisfies the

triangle inequality on V . More precisely, it would be enough to know that
(1.2.5) implies that (1.2.6) is an element of BN (0, 1). In this case, the inequality
in (1.2.7) might not be strict, but the non-strict version would be sufficient to
get (1.1.3).

If N is a seminorm on V , then

N(v) ≤ N(w) +N(v − w)(1.2.8)
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for every v, w ∈ V , and similarly with the roles of v and w interchanged. One
can use this to check that

|N(v)−N(w)| ≤ N(v − w)(1.2.9)

for all v, w ∈ V , using the ordinary absolute value of a real number on the left
side. If N is a norm on V , then this implies that N is uniformly continuous as
a real-valued function on V , with respect to the metric dN (·, ·) associated to N
on V , and the standard Euclidean metric on R.

1.3 Some norms on Rn, Cn

Let n be a positive integer, and let Rn, Cn be the usual spaces of n-tuples of
real and complex numbers, respectively. These are vector spaces over the real
and complex numbers, respectively, with respect to coordinatewise addition and
scalar multiplication.

If v ∈ Rn or Cn, then put

‖v‖∞ = max
1≤j≤n

|vj |.(1.3.1)

One can check that this defines a norm on each of Rn and Cn. This corresponds
to the suremum norm defined in Section 1.1, with X equal to the set of integers
from 1 to n.

Let p be a positive real number, and put

‖v‖p =
( n∑

j=1

|vj |p
)1/p

(1.3.2)

for each v ∈ Rn or Cn. Observe that

‖v‖p = 0 if and only if v = 0.(1.3.3)

We also have that

‖t v‖p = |t| ‖v‖p(1.3.4)

for each v ∈ Rn or Cn and t ∈ R or C, as appropriate.
If p ≥ 1, then it is well known that (1.3.2) satisfies the triangle inequality on

Rn and Cn, and thus defines a norm. This is Minkowski’s inequality for finite
sums. Of course, this follows easily from the triangle inequality for the standard
absolute value functions on R and C when p = 1.

If p > 1, then the triangle inequality can be obtained from the convexity
of the open or closed unit ball, as in the previous section. This also uses the
convexity of rp as a function of a nonnegative real number r. More precisely, if
x, y, and t are nonnegative real numbers, and t ≤ 1, then

((1− t)x+ t y)p ≤ (1− t)xp + t yp.(1.3.5)
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If p = 2, then (1.3.2) is the standard Euclidean norm on Rn, Cn. One
can also look at this in terms of inner products, and we shall return to that in
Section 1.9.

If n = 1, then (1.3.2) is the same as the standard asolute value function on
R, C. If n ≥ 2 and 0 < p < 1, then one can check that (1.3.2) does not satisfy
the triangle inequality on Rn or Cn. However, it is well known that

‖v + w‖pp ≤ ‖v‖pp + ‖w‖pp(1.3.6)

for all v, w ∈ Rn or Cn when 0 < p ≤ 1. This implies that

‖v − w‖pp(1.3.7)

defines a metric on each of Rn and Cn when 0 < p ≤ 1.
Clearly

‖v‖∞ ≤ ‖v‖p(1.3.8)

for every v ∈ Rn or Cn and positive real number p. It is also easy to see that

‖v‖p ≤ n1/p ‖v‖∞(1.3.9)

for all v ∈ Rn or Cn and 0 < p <∞. It is well known that n1/p → 1 as p→ ∞.
This implies that

lim
p→∞

‖v‖p = ‖v‖∞(1.3.10)

for all v ∈ Rn or Cn.

1.4 Linear subspaces and continuous functions

Let V be a vector space over the real or complex numbers, and let W be a linear
subspace of V . If N is a norm on V , then the restriction of N to W is a norm
on W . Similarly, if N is a seminorm on V , then the restriction of N to W is a
seminorm on W .

Let N be a norm on V , and let dN (u, v) be the corresponding metric on V .
Note that the restriction of dN (u, v) to u, v ∈ W is the same as the metric on
W associated to the restriction of N to W .

One can check that the closure W of W in V with respect to dN (·, ·) is
a linear subspace of V as well. This can be viewed in terms of convergent
sequences, which will be discussed further in the next section.

Let X be a nonempty metric space, or topological space. Consider the spaces
C(X,R), C(X,C) of continuous real and complex-valued functions on X. More
precisely, this uses the standard metrics or topologies on R, C, respectively. It is
well known that C(X,R), C(X,C) are vector spaces over the real and complex
numbers, respectively, with respect to pointwise addition and scalar multiplica-
tion of functions. Equivalently, these are linear subspaces of the corresponding
spaces of all real and complex-valued functions on X, respectively.
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Consider the spaces

Cb(X,R) = C(X,R) ∩ ℓ∞(X,R), Cb(X,C) = C(X,C) ∩ ℓ∞(X,C)(1.4.1)

of all bounded continuous real and complex-valued functions on X, respectively.
These are linear subspaces of the spaces of all continuous real and complex-
valued functions on X, respectively, as well as the spaces of all bounded real and
complex-valued functions on X. In particular, the restriction of the supremum
norm to each of these spaces is a norm, that we shall normally denote ‖ · ‖sup.

It is well known that

Cb(X,R), Cb(X,C) are closed subsets of ℓ∞(X,R), ℓ∞(X,C),(1.4.2)

respectively, with respect to the supremum metric. This basically corresponds
to the fact that if {fj}∞j=1 is a sequence of continuous real or complex-valued
functions on X that converges uniformly to a real or complex-valued function
f on X, then f is continuous on X.

If X is compact, then every continuous real or complex-valued function f
on X is bounded. More precisely, f(X) is a compact subset of the real line or
complex plane, as appropriate, with respect to the standard Euclidean metric
in this case. In particular, this implies that f(X) is a bounded subset of R or
C, as appropriate.

If X is equipped with the discrete metric or topology, then every function
on X is continuous. This means that Cb(X,R), Cb(X,C) are the same as
ℓ∞(X,R), ℓ∞(X,C) , respectively, in this case.

1.5 Sequences, series, and Banach spaces

Let V be a vector space over the real or complex numbers, let N be a norm
on V , and let dN (·, ·) be the corresponding metric on V . Suppose that {vj}∞j=1

and {wj}∞j=1 are sequences of elements of V that converge to elements v and w
of V , respectively, with respect to dN (·, ·). Under these conditions, it is easy to
see that {vj + wj}∞j=1 converges to v + w with respect to dN (·, ·), so that

lim
j→∞

(vj + wj) =
(

lim
j→∞

vj

)
+

(
lim
j→∞

wj

)
.(1.5.1)

This is analogous to the corresponding statement for convergent sequences of
real or complex numbers. Similarly, if t ∈ R or C, as appropriate, then {t vj}∞j=1

converges to t v with respect to dN (·, ·) on V , so that

lim
j→∞

(t vj) = t
(

lim
j→∞

vj

)
.(1.5.2)

If {tj}∞j=1 is a sequence of real or complex numbers that converges to t ∈ R
or C, as appropriate, then one can check that {tj vj}∞j=1 converges to t v with
respect to dN (·, ·) on V , so that

lim
j→∞

(tj vj) =
(

lim
j→∞

tj

)(
lim
j→∞

vj

)
.(1.5.3)
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More precisely, one can verify that

lim
j→∞

(tj vj) = 0(1.5.4)

when {tj}∞j=1 is a bounded sequence of real or complex numbers, as appropri-
ate, and {vj}∞j=1 converges to 0 in V . Similarly, (1.5.4) holds when {vj}∞j=1

is a bounded sequence in V , and {tj}∞j=1 converges to 0 in R or C, as appro-
priate. One can obtain (1.5.3) from these other properties of limits in V , in
essentially the same way as for products of convergent sequences of real and
complex numbers.

An infinite series
∑∞

j=1 vj with terms in V is said to converge in V if the

corresponding sequence of partial sums
∑n

j=1 vj converges in V with respect to
dN (·, ·). In this case, the value of the sum is defined by

∞∑
j=1

vj = lim
n→∞

n∑
j=1

vj ,(1.5.5)

as usual. If t ∈ R or C, as appropriate, then it is easy to see that
∑∞

j=1 t vj
converges, with

∞∑
j=1

(t vj) = t

∞∑
j=1

vj .(1.5.6)

If
∑∞

j=1 wj is another convergent series with terms in V , then
∑∞

j=1(vj + wj)
converges, with

∞∑
j=1

(vj + wj) =

∞∑
j=1

vj +

∞∑
j=1

wj .(1.5.7)

It is sometimes convenient to consider infinite series starting at j = 0, for which
there are analogous statements.

It is well known that convergent sequences in metric spaces are Cauchy
sequences. Let

∑∞
j=1 vj be an infinite series with terms in V again. One can

check that the corresponding sequence of partial sums is a Cauchy sequence if
and only if for every ϵ > 0 there is a positive integer L(ϵ) such that

N
( n∑

j=l

vj

)
< ϵ(1.5.8)

for all positive integers l, n with n ≥ l ≥ L(ϵ). In particular, this implies that

N(vl) < ϵ(1.5.9)

for all l ≥ L(ϵ), by taking n = l. This means that

lim
l→∞

vl = 0(1.5.10)

in V , with respect to dN (·, ·).
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If V is complete as a metric space with respect to dN (·, ·), then V is said to
be a Banach space with respect to N . In this case, the criterion for the sequence
of partial sums to be a Cauchy sequence in the preceding paragraph implies the
convergence of the infinite series. This is analogous to another classical fact
about convergent series of real and complex numbers.

1.6 Completeness and subsets

Let (M,d(·, ·)) be a metric space, and let E be a subset of M . The restriction
of d(·, ·) to E defines a metric on E, so that E may be considered as a metric
space as well. If M is complete as a metric space with respect to d(·, ·), and if
E is a closed set in M , then

E is complete as a metric space,(1.6.1)

with respect to the restriction of d(·, ·) to E. This uses the fact that a sequence
of elements of E is a Cauchy sequence in E if and only if it is a Cauchy sequence
as a sequence of elements of M .

If E is complete as a metric space, then one can check that

E is a closed set in M.(1.6.2)

More precisely, this does not use completeness of M . It suffices to show that if
a sequence of elements of E converges to an element of M , then the limit of the
sequence is in E. Such a sequence may be considered as a Cauchy sequence in
E, which converges to an element of E, by hypothesis. This is the same as the
limit of the sequence in M , by uniqueness of the limit.

Let V be a real or complex vector space with a norm N , and let W be a
linear subspace of V . If V is a Banach space with respect to N , and if W is
a closed set in V with respect to the metric dN (·, ·) associated to N , then it
follows that

W is a Banach space,(1.6.3)

with respect to the restriction of N to W . If W is a Banach space with respect
to the restriction of N toW , thenW is a closed set in V with respect to dN (·, ·),
as in the preceding paragraph.

If X is a nonempty set, then it is well known that

ℓ∞(X,R) and ℓ∞(X,C) are Banach spaces,(1.6.4)

with respect to the supremum norm. Indeed, let {fj}∞j=1 be a Cauchy sequence
of bounded real or complex-valued functions on X with respect to the supremum
metric. It is easy to see that for each x ∈ X,

{fj(x)}∞j=1 is a Cauchy sequence(1.6.5)

in R or C, as appropriate, with respect to the standard Euclidean metric. This
implies that {fj(x)}∞j=1 converges in R or C, as appropriate, because the real
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line and complex plane are complete with respect to their standard metrics. Put

f(x) = lim
j→∞

fj(x)(1.6.6)

for each x ∈ X, which defines f as a real or complex-valued function on X,
as appropriate. Thus {fj}∞j=1 converges to f pointwise on X, by construction.
One can use this and the fact that {fj}∞j=1 is a Cauchy sequence with respect
to the supremum metric to get that

{fj}∞j=1 converges to f uniformly on X.(1.6.7)

Using this, it is easy to see that f is bounded on X, because fj is bounded on
X for each j, by hypothesis. This means that f ∈ ℓ∞(X,R) or ℓ∞(X,C), as
appropriate, and one can verify that {fj}∞j=1 converges to f with respect to the
supremum metric.

Suppose now that X is a nonempty metric space, or topological space. Re-
member that Cb(X,R), Cb(X,C) are closed sets in ℓ∞(X,R), ℓ∞(X,C), re-
spectively, with respect to the supremum metric, as in Section 1.4. It follows
that

Cb(X,R) and Cb(X,C) are Banach spaces,(1.6.8)

with respect to the supremum norm too.

1.7 Absolute convergence

It is well known that an infinite series
∑∞

j=1 aj of nonnegative real numbers
converges if and only if the corresponding sequence of partial sums is bounded.
In this case,

∞∑
j=1

aj = sup
n≥1

n∑
j=1

aj .(1.7.1)

Let V be a vector space over the real or complex numbers, and let N be
a norm on V . An infinite series

∑∞
j=1 vj with terms in V is said to converge

absolutely with respect to N if

∞∑
j=1

N(vj)(1.7.2)

converges as an infinite series of nonnegative real numbers.
If l, n are positive integers with l ≤ n, then

N
( n∑

j=l

vj

)
≤

n∑
j=l

N(vj),(1.7.3)

by the triangle inequality. If
∑∞

j=1 vj converges absolutely with respect to N ,
then the corresponding sequence of partial sums is a Cauchy sequence with
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respect to the metric dN on V associated to N . This follows from the charac-
terization of the Cauchy condition mentioned in Section 1.5.

If V is a Banach space with respect to N , then we get that
∑∞

j=1 vj converges
in V . One can also check that

N
( ∞∑

j=1

vj

)
≤

∞∑
j=1

N(vj)(1.7.4)

under these conditions.

More precisely, it is well known that the completeness of V with respect to dN
is characterized by the condition that absolute convergence of an infinite series
with respect to N imply convergence. To see this, let {wj}∞j=1 be a Cauchy
sequence of elements of V with respect to dN . One can find a subsequence
{wjl}∞l=1 of {wj}∞j=1 such that

∞∑
l=1

N(wjl − wjl+1
)(1.7.5)

converges as an infinite series of nonnegative real numbers. Indeed, one can
choose the jl’s so that

N(wjl − wjl+1
) ≤ 2−l(1.7.6)

for each l, for instance.

Thus we get that
∞∑
l=1

(wjl − wjl+1
)(1.7.7)

converges in V , by hypothesis. Note that

n∑
l=1

(wjl − wjl+1
) = wj1 − wjn+1

(1.7.8)

for every positive integer n. This means that the convergence of (1.7.7) is
equivalent to the convergence of {wjl}∞l=1 to an element of V .

It is well known and not difficult to check that if a Cauchy sequence of
elements of a metric space has a subsequence that converges to an element of
the metric space, then the whole Cauchy sequence converges to the same limit.
It follows that {wj}∞j=1 converges to an element of V with respect to dN .

Let X be a nonempty set, and suppose that V is the space of bounded real
or complex-valued functions on X, equipped with the supremum norm. In this
case, the absolute convergence of an infinite series with terms in V with respect
to the supremum norm corresponds to a well-known criterion of Weierstrass for
the uniform convergence of the corresponding sequence of partial sums.
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1.8 Holomorphic functions

Let U be a nonempty open subset of the complex plane, with respect to the
standard Euclidean metric on C. Consider the space H(U) of all complex-
valued functions on U that are complex-analytic, or holomorphic. This is a
linear subspace of the space C(U,C) of all continuous complex-valued functions
on U , with respect to the restriction of the standard Euclidean metric on C to
U .

If {fj}∞j=1 is a sequence of holomorphic functions on U that converges uni-
formly to a complex-valued function f on U , then it is well known that f is
holomorphic on U as well. Indeed, one can use the Cauchy integral formula for
the fj ’s to get that f can be expressed in the same way. This also works when
{fj}∞j=1 converges to f uniformly on compact subsets of U .

Let

H∞(U) = H(U) ∩ Cb(U,C)(1.8.1)

be the space of all bounded holomorphic functions on U . This is a linear sub-
space of each of the spaces of all holomorphic functions on U , and all bounded
continuous complex-valued functions on U . In fact, H∞(U) is a closed set in
Cb(U,C), with respect to the supremum metric, as in the preceding paragraph.
Thus H∞(U) is a Banach spaces with respect to the supremum norm.

Let U be the closure of U in C, with respect to the standard Euclidean
metric. Consider the space A(U) of continuous complex-valued functions on U
that are holomorphic on U . This is a linear subspace of the space C(U,C) of
all continuous complex-valued functions on U . Similarly, let

Ab(U) = A(U) ∩ Cb(U,C)(1.8.2)

be the space of bounded continuous complex-valued functions on U that are
holomorphic on U . Of course, if U is a bounded open set in C, then U is
compact, and Ab(U) = A(U). As before, Ab(U) is a closed linear subspace of
Cb(U,C), with respect to the supremum metric. This means that Ab(U) is a
Banach space too, with respect to the supremum norm.

There are many examples of Banach spaces related to complex analysis like
these. There are also analogous spaces of harmonic functions on open sets
in Rn, and spaces of holomorphic functions of several complex variables, for
instance. Of course, Banach spaces and related notions are involved in the
study of complex analysis and differential equations in other ways too. See
[112, 141, 153] for some nice introductions to several complex variables, as well
as [113] for more information.

1.9 Inner products and Hilbert spaces

Let V and W be vector spaces over the complex numbers. It is sometimes
convenient to refer to a linear mapping from V into W , as vector spaces over C,
as being complex-linear. Similarly, it is sometimes convenient to refer to a linear
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mapping from V into W , considered as vector spaces over the real numbers, as
being real-linear. Thus a real-linear mapping T from V intoW is complex-linear
if and only if

T (i v) = i T (v)(1.9.1)

for every v ∈ V .
A real-linear mapping T from V into W is said to be conjugate-linear if

T (i v) = −i T (v)(1.9.2)

for every v ∈ V . This implies that

T (a v) = aT (v)(1.9.3)

for every v ∈ V and a ∈ C. Here a is the complex-conjugate of a ∈ C, as usual.
Now let V be a vector space over the real or complex numbers. An inner

product on V is a real or complex-valued function 〈v, w〉 = 〈v, w〉V , as appro-
priate, defined for v, w ∈ V , that satisfies the following three conditions. First,
for each w ∈ V , 〈v, w〉 should be linear as a function of v. Second, for each
v, w ∈ V , we should have that

〈v, w〉 = 〈w, v〉(1.9.4)

in the real case, and
〈v, w〉 = 〈w, v〉(1.9.5)

in the complex case. This implies that for each v ∈ V , 〈v, w〉 is linear as a
function of w in the real case, and conjugate-linear as a function of w in the
complex case. This also implies that

〈v, v〉 ∈ R(1.9.6)

for each v ∈ V in the complex case. The third condition is that

〈v, v〉 > 0(1.9.7)

for each v ∈ V with v 6= 0. Of course, 〈v, v〉 = 0 when v = 0.
If 〈·, ·〉 is an inner product on V , then we put

‖v‖ = ‖v‖V = 〈v, v〉1/2(1.9.8)

for each v ∈ V , using the nonnegative square root on the right side. Note that
‖v‖ = 0 if and only if v = 0, and that

‖t v‖ = |t| ‖v‖(1.9.9)

for each v ∈ V and t ∈ R or C, as appropriate. The Cauchy–Schwarz inequality
states that

|〈v, w〉| ≤ ‖v‖ ‖w‖(1.9.10)
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for all v, w ∈ V . This can be obtained from the fact that

〈v + t w, v + t w〉 ≥ 0(1.9.11)

for every t ∈ R or C, as appropriate. One can use the Cauchy–Schwarz inequal-
ity to get that

‖v + w‖ ≤ ‖v‖+ ‖w‖(1.9.12)

for all v, w ∈ V , so that (1.9.8) defines a norm on V .
If V is a complex vector space, then

〈v, w〉VR
= Re〈v, w〉V(1.9.13)

defines an inner product on V as a vector space over the real numbers, where
Re a is the real part of a complex number a. Clearly the norm associated to
(1.9.13) is the same as before.

If n is a positive integer, then the standard inner product on Rn is defined
by

〈v, w〉 = 〈v, w〉Rn =

n∑
j=1

vj wj .(1.9.14)

Similarly, the standard inner product on Cn is defined by

〈v, w〉 = 〈v, w〉Cn =

n∑
j=1

vj wj .(1.9.15)

The norms associated to these inner products are the same as the standard
Euclidean norms, as in Section 1.3.

Let V be a real or complex vector space with an inner product 〈·, ·〉 again. If
V is complete with respect to the metric associated to the corresponding norm
‖ · ‖, then V is said to be a Hilbert space. In particular, this means that V is a
Banach space with respect to ‖ · ‖.

1.10 Sums of orthogonal vectors

Let
∑∞

j=1 aj be a convergent series of nonnegative real numbers. It is well known

that
∑∞

j=1 a
2
j also converges under these conditions. This uses the fact that the

sequence of aj ’s is bounded in this case. More precisely, we have that

∞∑
j=1

a2j ≤
(
sup
l≥1

al

) ∞∑
j=1

aj .(1.10.1)

Let V be a vector space over the real or complex numbers with an inner
product 〈·, ·〉, and let ‖ · ‖ be the corresponding norm on V , as in the previous
section. We say that v, w ∈ V are orthogonal with respect to 〈·, ·〉 if

〈v, w〉 = 0.(1.10.2)
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Note that this condition is symmetric in v and w. In this case, we get that

‖v + w‖2 = ‖v‖2 + ‖w‖2.(1.10.3)

Suppose that
∑∞

j=1 vj is an infinite series of pairwise-orthogonal vectors in
V . This means that

〈vj , vl〉 = 0(1.10.4)

when j 6= l. If l, n are positive integers with l ≤ n, then∥∥∥∥ n∑
j=l

vj

∥∥∥∥2 =

n∑
j=l

‖vj‖2.(1.10.5)

If we take l = 1 in (1.10.5), then we get that the sequence of partial sums

n∑
j=1

vj(1.10.6)

is bounded in V with respect to ‖ · ‖ if and only if the sequence of partial sums

n∑
j=1

‖vj‖2(1.10.7)

is bounded in R. Of course, this happens if and only if

∞∑
j=1

‖vj‖2(1.10.8)

converges as an infinite series of nonnegative real numbers. If this series con-
verges, then the right side of (1.10.5) is as small as we want when l is large
enough. This implies that the sequence of partial sums (1.10.6) is a Cauchy
sequence in V with respect to the metric associated to ‖ · ‖, as in Section 1.5.

Suppose now that V is a Hilbert space. If (1.10.8) converges, then it follows
that

∑∞
j=1 vj converges in V . In this case, we also get that∥∥∥∥ ∞∑

j=1

vj

∥∥∥∥2 =

∞∑
j=1

‖vj‖2.(1.10.9)

Of course, if the sequence of partial sums (1.10.6) is a Cauchy sequence in V
with respect to the metric associated to ‖ · ‖, then it is bounded. In particular,
this happens when

∑∞
j=1 vj converges in V .

1.11 Arbitrary norms on Rn, Cn

Let n be a positive integer, and let N be a seminorm on Rn or Cn. Also let
e1, . . . , en be the standard basis vectors in Rn or Cn, so that the lth coordinate
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of ej is equal to 1 when j = l, and to 0 otherwise. It is easy to see that

N(v) ≤
n∑

j=1

N(ej) |vj |(1.11.1)

for all v ∈ Rn or Cn, as appropriate, by expressing v as a linear combination of
the ej ’s, and using the triangle inequality. This implies that

N(v) ≤
( n∑

j=1

N(ej)
2
)1/2

‖v‖2(1.11.2)

for each v ∈ Rn or Cn, as appropriate, where ‖v‖2 is the standard Euclidean
norm of v, as in Section 1.3. This also uses the Cauchy–Schwarz inequality.

It follows that

|N(v)−N(w)| ≤ N(v − w) ≤
( n∑

j=1

N(ej)
2
)1/2

‖v − w‖2(1.11.3)

for all v, w ∈ Rn or Cn, as appropriate, using (1.2.9) in the first step. In
particular, this means that N is uniformly continuous as a real-valued function
onRn orCn, as appropriate, with respect to the corresponding Euclidean metric
on the domain and range.

Suppose now that N is a norm on Rn or Cn, as appropriate. The extreme
value theorem implies that N attains its minimum on the unit sphere in Rn

or Cn, as appropriate, with respect to the standard Euclidean metric. The
minimum of N on the unit sphere is positive, because N is a norm. This
implies that there is a positive real number c such that

N(u) ≥ c(1.11.4)

for each v ∈ Rn or Cn, as appropriate, with ‖v‖2 = 1. Using this, one can
check that

c ‖v‖2 ≤ N(v)(1.11.5)

for all v ∈ Rn or Cn, as appropriate.
It is well known that Rn and Cn are complete with respect to their standard

Euclidean metrics. One can use this and (1.11.2), (1.11.5) to get the complete-
ness of Rn or Cn, as appropriate, with respect to the metric associated to N .

If V is any vector space over the real or complex numbers of positive finite
dimension n, then V is isomorphic to Rn or Cn, as appropriate, as a vector
space. If NV is a norm on V , then it follows that V is complete with respect to
the metric associated to NV , as before.

1.12 Functions with finite support

Let X be a nonempty set, and let f be a real or complex-valued function on X.
The support of f in X may be defined by

supp f = {x ∈ X : f(x) 6= 0}.(1.12.1)
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Let c00(X,R), c00(X,C) be the spaces of real and complex-valued functions f
on X such that

supp f has only finitely many elements,(1.12.2)

respectively. These are linear subspaces of the spaces of all real and complex-
valued functions on X, as vector spaces over R and C, respectively, with respect
to pointwise addition and scalar multiplication. Of course, if X has only finitely
many elements, then every real or complex-valued function on X has finite
support.

A real or complex-valued function on X with finite support is obviously
bounded, so that c00(X,R), c00(X,C) may be considered as linear subspaces of
ℓ∞(X,R), ℓ∞(X,C), respectively. In particular, the supremum norm defines a
norm on each of c00(X,R), c00(X,C).

If f is a real or complex-valued function on X with finite support, then∑
x∈X

f(x)(1.12.3)

may be defined as a real or complex number, as appropriate. This is the same as
the sum of f(x) over any nonempty finite subset of X that contains the support
of f . Similarly, if p is a positive real number and f is a real or complex-valued
function on X with finite support, then |f(x)|p is a nonnegative real-valued
function on X with finite support, so that∑

x∈X

|f(x)|p(1.12.4)

may be defined as a nonnegative real number, as before. Under these conditions,
we put

‖f‖p =
( ∑

x∈X

|f(x)|p
)1/p

.(1.12.5)

This corresponds to the definition of ‖ · ‖p on Rn, Cn in Section 1.3 when X is
the set of integers from 1 to n.

Clearly ‖f‖p = 0 if and only if f = 0 on X. It is easy to see that

‖t f‖p = |t| ‖f‖p(1.12.6)

for every t ∈ R or C, as appropriate. If p ≥ 1, then

‖f + g‖p ≤ ‖f‖p + ‖g‖p(1.12.7)

for all real and complex-valued functions f , g on X with finite support. This
can be obtained from the analogous statement on Rn, Cn in Section 1.3, or
shown in essentially the same way. Thus (1.12.5) defines a norm on each of
c00(X,R) and c00(X,C) when p ≥ 1.

As before,
‖f‖∞ ≤ ‖f‖p(1.12.8)
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for every p > 0. If 0 < p1 ≤ p2 < +∞, then

‖f‖p2
p2

=
∑
x∈X

|f(x)|p2 ≤ ‖f‖p2−p1
∞

∑
x∈X

|f(x)|p1(1.12.9)

= ‖f‖p2−p1
∞ ‖f‖p1

p1
≤ ‖f‖p2

p1
.

This means that

‖f‖p2
≤ ‖f‖p1

.(1.12.10)

If 0 < p ≤ 1, then it is well known that

(a+ b)p ≤ ap + bp(1.12.11)

for all nonnegative real numbers a, b. This can be obtained from (1.12.10), with
p1 = p, and p2 = 1. Using this, one can check that

‖f + g‖pp ≤ ‖f‖pp + ‖g‖pp(1.12.12)

for all real or complex-valued functions on on X finite support. This implies
that

‖f − g‖pp(1.12.13)

defines a metric on each of c00(X,R) and c00(X,C).
It is easy to see that

〈f, g〉 = 〈f, g〉c00(X,R) =
∑
x∈X

f(x) g(x)(1.12.14)

and

〈f, g〉 = 〈f, g〉c00(X,C) =
∑
x∈X

f(x) g(x)(1.12.15)

define inner products on c00(X,R) and c00(X,C), respectively. The norms
associated to these inner products are equal to (1.12.5), with p = 2. These
inner products correspond to the standard inner products on Rn and Cn when
X is the set of integers from 1 to n.

If x ∈ X, then let δx be the real-valued function on X defined by

δx(y) = 1 when y = x(1.12.16)

= 0 when y 6= x.

It is easy to see that the collection of δx’s, x ∈ X, is a basis for each of c00(X,R)
and c00(X,C), as vector spaces over the real and complex numbers, respectively.
Of course,

‖δx‖p = 1(1.12.17)

for every x ∈ X and 0 < p ≤ ∞. The δx’s are also pairwise orthogonal with
respect to the inner products defined in the preceding paragraph.
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1.13 Vanishing at infinity

Let X be a nonempty set, and let f be a real or complex-valued function on X
again. We say that f vanishes at infinity on X if for every ϵ > 0,

|f(x)| < ϵ(1.13.1)

for all but finitely many x ∈ X. This holds automatically when f has finite
support in X, and in particular when X has only finitely many elements. If X
is the set Z+ of all positive integers, then f vanishes at infinity if and only if

lim
j→∞

f(j) = 0.(1.13.2)

If f is a real or complex-valued function on X that vanishes at infinity, then

supp f has at most finitely or countably many elements.(1.13.3)

Indeed, for each positive integer n,

{x ∈ X : |f(x)| ≥ 1/n}(1.13.4)

has only finitely many elements, and the support of f is the same as the union
of these sets.

Suppose that E is a countably infinite subset of X, and let {xj}∞j=1 be a
sequence of elements of E such that every element of E occurs in the sequence
exactly once. Let f be a real or complex-valued function on X with support
contained in E. Under these conditions, f vanishes at infinity on X if and only
if

lim
j→∞

f(xj) = 0.(1.13.5)

Let

c0(X,R), c0(X,C)(1.13.6)

be the spaces of real and complex-valued functions on X that vanish at infinity,
respectively. If f is a real or complex-valued function on X that vanishes at
infinity, then it is easy to see that f is bounded on X. Thus

c00(X,R) ⊆ c0(X,R) ⊆ ℓ∞(X,R)(1.13.7)

and

c00(X,C) ⊆ c0(X,C) ⊆ ℓ∞(X,C).(1.13.8)

More precisely, one can check that c0(X,R), c0(X,C) are linear subspaces of
ℓ∞(X,R), ℓ∞(X,C), respectively.

One can also verify that

c0(X,R), c0(X,C) are closed sets in ℓ∞(X,R), ℓ∞(X,C),(1.13.9)
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respectively, with respect to the supremum metric. Equivalently, if a real or
complex-valued function f on X can be approximated uniformly on X by func-
tions that vanish at infinity on X, then f vanishes at infinity on X as well.
Thus

c0(X,R), c0(X,C) are Banach spaces(1.13.10)

with respect to the supremum norm.
If f is a real or complex-valued function on X that vanishes at infinity, then

it is easy to see that f can be approximated by functions with finite support
on X, uniformly on X. This means that c0(X,R), c0(X,C) are the same as
the closures of c00(X,R), c00(X,C) in ℓ∞(X,R), ℓ∞(X,C), respectively, with
respect to the supremum metric.

Suppose that {xj}∞j=1 is a sequence of distinct elements of X, and let δxj
be

as in (1.12.16) for each j. Also let a1, a2, a3, . . . be an infinite sequence of real
or complex numbers. One can check that

∞∑
j=1

aj δxj
(1.13.11)

converges with respect to the supremum metric if and only if {aj}∞j=1 converges
to 0. More precisely, it is easy to see that the sequence of partial sums

n∑
j=1

aj δxj
(1.13.12)

converges pointwise on X to the function that is equal to aj at xj for every j,
and to 0 at all other points in X. The previous statement is basically the same
as saying that this sequence of partial sums converges uniformly on X to the
function just mentioned if and only if {aj}∞j=1 converges to 0.

1.14 Separability

A metric or topological space X is said to be separable if there is a dense set
E in X such that E has only finitely or countably many elements. It is well
known that Rn and Cn are separable with respect to their standard Euclidean
metrics for each positive integer n.

Let V be a vector space over the real or complex numbers with a norm N .
If V has finite dimension, then one can check that V is separable, with respect
to the metric associated to N .

Similarly, suppose that v1, v2, v3, . . . is a sequence of elements of V whose
linear span is dense in V , with respect to the metric associated to N . One can
verify that

V is separable with respect to the metric associated to N(1.14.1)

under these conditions. More precisely, one can get a countable dense set in V
by taking linear combinations of the vj ’s with rational coefficients in the real
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case, and with coefficients that have rational real and imaginary parts in the
complex case.

If X is an infinite set, then it is well known and not too difficult to show
that ℓ∞(X,R) is not separable with respect to the supremum metric. If X
is countably infinite, then c00(X,R), c00(X,C) are separable with respect to
the metric associated to any norm, as in the preceding paragraph. Similarly,
c0(X,R) and c0(X,C) are separable with respect to the supremum metric in
this case.

A collection B of open subsets of a metric or topological space X is said
to be a base for the topology of X if every open set in X can be expressed
as a union of elements of B. If there is a base B for the topology of X such
that B has only finitely or countably many elements, then X is said to satisfy
the second countability condition. It is well known that X is separable in this
case. Topological spaces that satisfy the second countability condition are also
sometimes said to be completely separable. It is well known that separable metric
spaces satisfy the second countability condition.

Let Y be a subset of X, equipped with the induced topology. If X satisfies
the second countability condition, then it is easy to see that Y satisfies the
second countability condition too. In particular, this implies that Y is separable,
as before.

If d(·, ·) is a metric on X, then the restriction of d(·, ·) to Y is a metric on Y .
It is well known that the topology determined on Y by the restriction of d(·, ·)
to Y is the same as the topology induced on Y by the topology determined
on X by d(·, ·). If X is separable, then one can show more directly that Y is
separable in this case.

1.15 Some continuous extensions

Let (X, dX) and (Y, dY ) be metric spaces. Suppose for the moment that f is a
uniformly continuous mapping from X into Y . If {xj}∞j=1 is a Cauchy sequence
of elements of X, then one can check that

{f(xj)}∞j=1 is a Cauchy sequence in Y.(1.15.1)

Of course, if Y is complete, then it follows that {f(xj)}∞j=1 converges to an
element of Y .

Suppose now that E is a dense set in X, and that f is a uniformly continuous
mapping from E into Y , with respect to the restriction of dX(·, ·) to E. If Y is
complete, then it is well known that

f has a unique extension to a uniformly(1.15.2)

continuous mapping from X into Y.

More precisely, uniqueness of the extension only requires ordinary continuity on
X.
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To get the existence of the extension, let x ∈ X be given, and let {xj}∞j=1

be a sequence of elements of E that converges to x. Thus {xj}∞j=1 may be
considered as a Cauchy sequence in E, so that

{f(xj)}∞j=1 converges to an element of Y,(1.15.3)

as before. One can check that the limit only depends on x, and not the particular
sequence {xj}∞j=1. One can also verify that this defines a uniformly continuous
extension of f to X.

A mapping ϕ from X into Y is said to be an isometry if

dY (ϕ(x), ϕ(w)) = dX(x,w)(1.15.4)

for every x,w ∈ X. If ϕ is an isometry from X into Y , and X is complete, then

ϕ(X) is a closed set in Y.(1.15.5)

More precisely, ϕ(X) is complete with respect to the restriction of dY to ϕ(X)
in this case. This implies that ϕ(X) is a closed set in Y , as in Section 1.6.

A completion of X as a metric space may be defined as an isometric em-
bedding of X onto a dense subset of a complete metric space. If X is already
complete, then one can simply use the identity mapping on X. It is well known
that every metric space has a completion. One can also show that completions
are unique, up to a sutiable isometric equivalence, using the previous remarks.

Let V be a vector space over the real or complex numbers with a norm
N . If V is not already complete with respect to the metric associated to N ,
then it is well known that V has a completion that is a Banach space. More
precisely, this may be considered as an isometric linear mapping from V onto
a dense linear subspace of a Banach space. If one uses a standard abstract
construction of the completion, then one can check that the completion has
these additional properties in this case. Alternatively, one can show that the
vector space operations and norm on V can be extended to any completion of
V as a metric space in a natural way.

Similarly, if V is an inner product space that it not already complete with
respect to the metric associated to the corresponding norm, then it is well known
that V has a completion that is a Hilbert space. As before, this can be shown
using a standard abstract construction of the completion, or by extending the
inner product to any completion of V in a natural way.



Chapter 2

Lipschitz and bounded
linear mappings

2.1 Lipschitz mappings

Let (X, dX) and (Y, dY ) be metric spaces. A mapping f from X into Y is said
to be Lipschitz if

dY (f(x), f(w)) ≤ C dX(x,w)(2.1.1)

for some nonnegative real number C and all x,w ∈ X. In this case, we may say
that f is Lipschitz with constant C, to be more precise. Note that

Lipschitz mappings are uniformly continuous.(2.1.2)

Clearly a mapping f from X into Y is Lipschitz with constant C = 0 if and
only if f is constant on X.

One can check that a real-valued function f on X is Lipschitz with constant
C ≥ 0 if and only if

f(x) ≤ f(w) + C dX(x,w)(2.1.3)

for every x,w ∈ X. This uses the standard Euclidean metric on the real line,
as the range of f . In particular, if p ∈ X, then

fp(x) = dX(x, p)(2.1.4)

is Lipschitz with constant 1 on X.
Let f be a continuous mapping from X into Y , and let E be a dense set

in X. Suppose that f is Lipschitz with constant C on E, with respect to the
restriction of dX to E. Under these conditions, one can check that

f is Lipschitz with constant C on all of X.(2.1.5)

The space of all Lipschitz mappings from X into Y may be denoted

Lip(X,Y ).(2.1.6)

23
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Suppose that X 6= ∅, and that f is a Lipschitz mapping from X into Y . If
X has at least two elements, then put

Lip(f) = LipX,Y (f) = sup

{
dY (f(x), f(w))

dX(x,w)
: x,w ∈ X, x 6= w

}
.(2.1.7)

Otherwise, if X has only one element, then this may be interpreted as being
equal to 0. It is easy to see that f is Lipschitz with constant Lip(f). More pre-
cisely, Lip(f) is the smallest nonnegative real number C such that f is Lipschitz
with constant C.

Let (Z, dZ) be another metric space, and suppose that f is a Lipschitz map-
ping from X into Y , and that g is a Lipschitz mapping from Y into Z. It is
easy to see that the compostion g ◦ f of f and g is a Lipschitz mapping from X
into Z, with

LipX,Z(g ◦ f) ≤ LipX,Y (f) LipY,Z(g).(2.1.8)

Suppose now that Y is a vector space over the real or complex numbers. The
space of all functions on X with values in Y is a vector space over R orC as well,
as appropriate, with respect to pointwise addition and scalar multiplication of
functions. Let NY be a norm on Y , and suppose that dY = dNY

is the metric
on Y associated to NY . One can check that

Lip(X,Y ) is a linear subspace of the space(2.1.9)

of all functions on X with values in Y,

and that

Lip(f) is a seminorm on Lip(X,Y ).(2.1.10)

Let us take Y = R with the standard Euclidean metric again, and let fp be
as in (2.1.4) for each p ∈ X. One can verify that fp − fq is bounded on X for
every p, q ∈ X, with

sup
x∈X

|fp(x)− fq(x)| = dX(p, q).(2.1.11)

If X is bounded with respect to dX , then fp is bounded on X for each p ∈ X.
This means that

p 7→ fp(2.1.12)

defines an isometric embedding of X into the space Cb(X,R) of all bounded
continuous real-valued functions on X, with respect to the supremum metric.

If X is not bounded, then let us fix a basepoint p0 ∈ X. Thus fp − fp0
is

bounded on X for each p ∈ X, as in the preceding paragraph. It is easy to see
that

p 7→ fp − fp0(2.1.13)

is an isometric embedding of X into Cb(X,R), with respect to the supremum
metric.
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2.2 Bounded linear mappings

Let V , W be vector spaces, both real or both complex. The space of all linear
mappings from V into W may be denoted

L(V,W ).(2.2.1)

This is a linear subspace of the space of all functions on V with values in W .
Let ‖ · ‖V , ‖ · ‖W be norms on V , W , respectively. A linear mapping T from

V into W is said to be bounded with respect to these norms if

‖T (v)‖W ≤ C ‖v‖V(2.2.2)

for some nonnegative real number C and all v ∈ V . This implies that

‖T (u)− T (v)‖W = ‖T (u− v)‖W ≤ C ‖u− v‖V(2.2.3)

for all u, v ∈ V , so that T is Lipschitz with constant C with respect to the
metrics on V , W associated to the norms.

If T is a linear mapping from V into W , and if ‖T (v)‖W is bounded on a
ball of positive radius in V centered at 0 with respect to the metric associated
to ‖ · ‖V , then one can check that

T is a bounded linear mapping.(2.2.4)

In particular, this holds when T is continuous at 0 with respect to the metrics
on V , W associated to the norms.

Let
BL(V,W )(2.2.5)

be the space of all bounded linear mappings from V into W . One can verify
that this is a linear subspace of L(V,W ).

If T is a bounded linear mapping from V into W , then put

‖T‖op = ‖T‖op,VW = sup{‖T (v)‖W : v ∈ V, ‖v‖V ≤ 1}.(2.2.6)

This is the same as the smallest nonnegative real number C such that (2.2.2)
holds. This is also the same as the Lipschitz constant Lip(T ) of T as in the
previous section, with respect to the metrics on V ,W associated to their norms.
One can check that

‖ · ‖op defines a norm on BL(V,W ),(2.2.7)

which is the operator norm associated to the norms on V , W .
Let Z be another vector space over the real or complex numbers, as appro-

priate, and with a norm ‖ · ‖Z . If T1 is a bounded linear mapping from V into
W , and T2 is a bounded linear mapping from W into Z, then their composition
T2 ◦ T1 is a bounded linear mapping from V into Z, with

‖T2 ◦ T1‖op,V Z ≤ ‖T1‖op,VW ‖T2‖op,WZ .(2.2.8)
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If W is complete with respect to the metric associated to ‖ · ‖W , then it is
well known that

BL(V,W ) is complete(2.2.9)

with respect to the metric asociated to the operator norm. To see this, let
{Tj}∞j=1 be a Cauchy sequence in BL(V,W ) with respect to the metric associated
to the operator norm. This means that for each ϵ > 0 there is a positive integer
L(ϵ) such that

‖Tj − Tl‖op < ϵ(2.2.10)

for every j, l ≥ L(ϵ). It follows that

‖Tj(v)− Tl(v)‖W ≤ ϵ ‖v‖V(2.2.11)

for every v ∈ V and j, l ≥ L(ϵ). In particular, this implies that

{Tj(v)}∞j=1 is a Cauchy sequence in W(2.2.12)

for each v ∈ V , with respect to the metric associated to ‖·‖W . Thus {Tj(v)}∞j=1

converges to an element of W for each v ∈ V , by completeness. If we put

T (v) = lim
j→∞

Tj(v)(2.2.13)

for each v ∈ V , then it is easy to see that T defines a linear mapping from V
into W .

It is well known and easy to see that a Cauchy sequence in any metric space
is bounded. In this case, this means that {Tj}∞j=1 is bounded with respect to
the operator norm, so that {‖Tj‖op}∞j=1 is a bounded sequence of nonnegative
real numbers. If v ∈ V , then one can check that

‖T (v)‖W ≤ sup
j≥1

‖Tj(v)‖W ≤
(
sup
j≥1

‖Tj‖op
)
‖v‖V .(2.2.14)

This means that T is a bounded linear mapping from V into W , with

‖T‖op ≤ sup
j≥1

‖Tj‖op.(2.2.15)

Similarly, one can verify that

‖T (v)− Tl(v)‖W ≤ ϵ ‖v‖V(2.2.16)

for every v ∈ V and l ≥ L(ϵ). This implies that

‖T − Tl‖op ≤ ϵ(2.2.17)

for every l ≥ L(ϵ). This shows that {Tl}∞l=1 converges to T with respect to the
metric on BL(V,W ) associated to the operator norm, as desired.

Let V0 be a linear subspace of V that is dense in V , with respect to the
metric associated to ‖ · ‖V . Also let T0 be a bounded linear mapping from V0
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into W , with respect to the restriction of ‖ · ‖V to V0. If W is complete with
respect to the metric associated to ‖ · ‖W , then there is a unique extension of
T0 to a uniformly continuous mapping T from V into W , as in Section 1.15. In
this case, one can check that

T is a linear mapping from V into W.(2.2.18)

More precisely,

T is a bounded linear mapping from V into W,(2.2.19)

with operator norm equal to the operator norm of T0 on V0.

2.3 Some linear mappings

Let X be a nonempty set, and let W be a vector space over the real or complex
numbers. If f is a function on X with values in W , then the support of f may
be defined as the set supp f of x ∈ X such that

f(x) 6= 0,(2.3.1)

just as for real or complex-valued functions on X, as in Section 1.12. Let
c00(X,W ) be the space of W -valued functions f on X such that

supp f has only finitely many elements.(2.3.2)

This is a linear subspace of the space of all W -valued functions on X.
If f ∈ c00(X,W ), then ∑

x∈X

f(x)(2.3.3)

may be defined as an element of W . This is the same as the sum of f(x) over
any nonempty finite subset of X that contains the support of f , as before. This
defines a linear mapping from c00(X,W ) into W .

It is convenient to put

V = c00(X,R) or c00(X,C)(2.3.4)

for the moment, depending on whether W is a vector space over R or C. Let a
be any W -valued function on X. If f ∈ V , then

a f ∈ c00(X,W ),(2.3.5)

and we put

Ta(f) =
∑
x∈X

a(x) f(x).(2.3.6)

This defines a linear mapping from V into W .
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If y ∈ X, then let δy be the real-valued function on X equal to 1 at x and 0
otherwise, as in Section 1.12. Note that

Ta(δy) = a(y)(2.3.7)

for every y ∈ X. It is easy to see that

every linear mapping T from V into W is of the form Ta(2.3.8)

for a unique W -valued function a on X. This uses the fact that the collection
of δy’s, y ∈ X, is a basis for V as a vector space over R or C, as appropriate,
as in Section 1.12. More precisely, this holds with

a(y) = T (δy)(2.3.9)

for every y ∈ X.
Let ‖ · ‖W be a norm on W . A W -valued function a on X is said to be

bounded on X with respect to ‖ · ‖W if

‖a(x)‖W is bounded as a real-valued function on X.(2.3.10)

Let

ℓ∞(X,W )(2.3.11)

be the space of W -valued functions on X that are bounded with respect to
‖ · ‖W . This is a linear subspace of the space of all W -valued functions on X.

If a ∈ ℓ∞(X,W ), then put

‖a‖∞ = ‖a‖sup = ‖a‖ℓ∞(X,W ) = sup{‖a(x)‖W : x ∈ X}.(2.3.12)

One can check that this defines a norm on ℓ∞(X,W ), which is another ver-
sion of the supremum norm. The metric associated to the supremum norm on
ℓ∞(X,W ) is the same as the supremum metric corresponding to the metric on
W associated to ‖ · ‖W . If W is a Banach space with respect to ‖ · ‖W , then

ℓ∞(X,W ) is a Banach space(2.3.13)

with respect to (2.3.12), by standard arguments. This is analogous to the cases
of bounded real and complex-valued functions on X, as in Section 1.6.

Let a be a W -valued function on X again, and let Ta be as in (2.3.6). Also
let ‖ · ‖1 be the norm defined on V as in Section 1.12, with p = 1. Note that

‖δy‖1 = 1(2.3.14)

for every y ∈ X. If Ta is bounded as a linear mapping from V into W , with
respect to ‖ · ‖1 and ‖ · ‖W , respectively, then

‖a(y)‖W = ‖Ta(δy)‖W ≤ ‖Ta‖op ‖δy‖1 = ‖Ta‖op(2.3.15)



2.4. NONNEGATIVE SUMS 29

for every y ∈ X. This means that a ∈ ℓ∞(X,W ), with

‖a‖∞ ≤ ‖Ta‖op.(2.3.16)

If a is any element of ℓ∞(X,W ) and f ∈ V , then

‖Ta(f)‖W ≤
∑
x∈X

‖a(x)‖W |f(x)| ≤ ‖a‖∞ ‖f‖1.(2.3.17)

This implies that Ta is a bounded linear mapping from V into W , with respect
to ‖ · ‖1 and ‖ · ‖W , respectively, with

‖Ta‖op ≤ ‖a‖∞.(2.3.18)

It follows that
‖Ta‖op = ‖a‖∞(2.3.19)

under these conditions.

2.4 Nonnegative sums

Let X be a nonempty set, and let f be a nonnegative real-valued function on
X. If A is a nonempty finite subset of X, then the sum∑

x∈A

f(x)(2.4.1)

is defined as a nonnegative real number in the usual way. This may be inter-
preted as being equal to 0 when A = ∅.

The sum ∑
x∈X

f(x)(2.4.2)

may be defined as a nonnegative extended real number as the supremum of the
finite subsums (2.4.1) over all nonempty finite subsets A of X. Of course, if X
has only finitely many elements, then this is the same as the usual sum over X.
This definition of the sum over an arbitrary nonempty set X is the same as the
Lebesgue integral of f over X, with respect to counting measure on X.

If t is a positive real number, then∑
x∈X

t f(x) = t
∑
x∈X

f(x),(2.4.3)

where the right side is interpreted as being equal to +∞ when (2.4.2) is equal
to +∞, as usual. This also works when t = 0, with the right side interpreted as
being equal to 0 even when (2.4.2) is +∞.

If g is another nonnegative real-valued function on X, then one can check
that ∑

x∈X

(f(x) + g(x)) =
∑
x∈X

f(x) +
∑
x∈X

g(x).(2.4.4)
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The right side should be interpreted as being equal to +∞ when either of the
sums is +∞.

If (2.4.2) is finite, then f is said to be summable on X. It is easy to see that

f vanishes at infinity on X(2.4.5)

in this case, in the sense of Section 1.13. In particular, this implies that

the support of f has only finitely or countably many elements,(2.4.6)

as before.
Let {xj}∞j=1 be a sequence of distinct elements of X, and suppose for the

moment that the support of f is contained in the set of xj ’s. Under these
conditions, one can verify that∑

x∈X

f(x) =

∞∑
j=1

f(xj).(2.4.7)

More precisely, the sum on the right should be interpreted as being +∞ when
the series does not converge.

If E is any subset of X, then
∑

x∈E f(x) may be defined as a nonnegative
extended real number, as before. If E1 and E2 are disjoint subsets of X, then∑

x∈E1∪E2

f(x) =
∑
x∈E1

f(x) +
∑
x∈E2

f(x),(2.4.8)

as in (2.4.4).
Suppose for the moment that f is summable on X, and let ϵ > 0 be given.

Observe that there is a finite subset A(ϵ) of X such that∑
x∈X

f(x) <
∑

x∈A(ϵ)

f(x) + ϵ,(2.4.9)

by the definition of the sum (2.4.2). This means that∑
x∈X\A(ϵ)

f(x) < ϵ.(2.4.10)

Let {fj}∞j=1 be a sequence of nonnegative real-valued functions on X that
converges to f pointwise on X. Suppose that there is a nonnegative real-number
C such that ∑

x∈X

fj(x) ≤ C(2.4.11)

for each j. Under these conditions, it is well known that∑
x∈X

f(x) ≤ C.(2.4.12)

Indeed, if A is any finite subset of X, then∑
x∈A

f(x) = lim
j→∞

∑
x∈A

fj(x) ≤ C.(2.4.13)
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2.5 p-Summability

Let X be a nonempty set, and let p be a positive real number. A nonnegative
real-valued function f on X is said to be p-summable on X if

f(x)p is summable on X.(2.5.1)

If g is another nonnegative real-valued function on X, and f , g are both p-
summable on X, then one can check that

f + g is p-summable on X(2.5.2)

too.
More precisely, if 0 < p ≤ 1, then∑

x∈X

(f(x) + g(x))p ≤
∑
x∈X

(f(x)p + g(x)p) =
∑
x∈X

f(x)p +
∑
x∈X

g(x)p,(2.5.3)

using (1.12.11) in the first step. If p ≥ 1, and f , g are p-summable on X, then( ∑
x∈X

(f(x) + g(x))p
)1/p

≤
( ∑

x∈X

f(x)p
)1/p

+
( ∑

x∈X

g(x)p
)1/p

.(2.5.4)

This is Minkowski’s inequality for arbitrary sums. This can be obtained from
Minkowski’s inequality for finite sums, as in Section 1.3, or shown using similar
arguments.

If f is p-summable on X for some p > 0, then f is bounded on X, with

sup
x∈X

f(x) ≤
( ∑

x∈X

f(x)p
)1/p

.(2.5.5)

We also have that f vanishes at infinity on X, because f(x)p vanishes at infinity
on X, as in the previous section. In fact, for each ϵ > 0, we have that

ϵp (#{x ∈ X : f(x) ≥ ϵ}) ≤
∑
x∈X

f(x)p.(2.5.6)

Here #E denotes the number of elements of a set E.
Suppose that 0 < p1 ≤ p2 < ∞, and that f is p1-summable on X. Under

these conditions, f is p2-summable on X, with∑
x∈X

f(x)p2 ≤
(
sup
x∈X

f(x)
)p2−p1 ∑

x∈X

f(x)p1 ≤
( ∑

x∈X

f(x)p1

)p2/p1

,(2.5.7)

using (2.5.5) with p = p1 in the second step. This implies that( ∑
x∈X

f(x)p2

)1/p2

≤
(
sup
x∈X

f(x)
)1−(p1/p2) ( ∑

x∈X

f(x)p1

)1/p2

(2.5.8)

≤
( ∑

x∈X

f(x)p1

)1/p1

.
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One can use (2.5.5) and the first inequality in (2.5.8) to get that

lim
p→∞

( ∑
x∈X

f(x)p
)1/p

= sup
x∈X

f(x)(2.5.9)

in this case.

2.6 ℓp Spaces

Let X be a nonempty set again, and let p be a positive real number. Also let
W be a vector space over the real or complex numbers, with a norm ‖ · ‖W .
Consider the space

ℓp(X,W )(2.6.1)

of W -valued functions f on X such that

‖f(x)‖W is p-summable as a nonnegative real-valued function on X.(2.6.2)

In particular, we can take W = R or C, considered as one-dimensional vector
spaces over themselves, with the usual absolute value function as the norm.

One can check that ℓp(X,W ) is a linear subspace of the space of allW -valued
functions on X. If f ∈ ℓp(X,W ), then put

‖f‖p = ‖f‖ℓp(X,W ) =
( ∑

x∈X

‖f(x)‖pW
)1/p

.(2.6.3)

This defines a norm on ℓp(X,W ) when p ≥ 1. If 0 < p ≤ 1, then this satisfies
the usual homogeneity property of a norm, as well as

‖f + g‖pp ≤ ‖f‖pp + ‖g‖pp(2.6.4)

for all f, g ∈ ℓp(X,W ). This implies that

‖f − g‖pp(2.6.5)

defines a metric on ℓp(X,W ) when p ≤ 1, as usual.
If 0 < p1 ≤ p2 ≤ +∞, then

ℓp1(X,W ) ⊆ ℓp2(X,W ),(2.6.6)

as in the previous section. We also have that

‖f‖p2
≤ ‖f‖p1

(2.6.7)

for all f ∈ ℓp1(X,W ) in this case.
Let us say that a W -valued function f on X vanishes at infinity on X with

respect to ‖ · ‖W on W if

‖f(x)‖W vanishes at infinity as a(2.6.8)

nonnegative real-valued function on X.
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Let c0(X,W ) be the space of W -valued functions on X that vanish at infinity
on X with respect to ‖ · ‖W on W . It is easy to see that

c0(X,W ) is a linear subspace of ℓ∞(X,W ).(2.6.9)

More precisely, one can check that

c0(X,W ) is the same as the closure of c00(X,W ) in ℓ∞(X,W )(2.6.10)

with respect to the supremum metric, as in Section 1.13.
If 0 < p <∞, then

c00(X,W ) ⊆ ℓp(X,W ) ⊆ c0(X,W ).(2.6.11)

One can verify that

c00(X,W ) is dense in ℓp(X,W )(2.6.12)

when p < ∞, using (2.4.10). This uses the metric on ℓp(X,W ) associated to
(2.6.3) when p ≥ 1, and the metric ‖f − g‖pp when p ≤ 1.

If W is complete with respect to the metric associated to ‖ · ‖W , then

ℓp(X,W ) is complete(2.6.13)

with respect to the metric associated to (2.6.3) when p ≥ 1, and with respect to
the metric ‖f − g‖pp when p ≤ 1. To see this, let {fj}∞j=1 be a Cauchy sequence
in ℓp(X,W ) with respect to the appropriate metric. If x ∈ X, then {fj(x)}∞j=1

is a Cauchy sequence in W , with respect to the metric associated to ‖·‖W . This
sequence converges in W , by hypothesis. This means that {fj}∞j=1 converges to
a W -valued function f pointwise on X.

It is well known that a Cauchy sequence in any metric space is bounded.
One can use this and (2.4.12) to get that f ∈ ℓp(X,W ). Similarly, one can
use the Cauchy condition for {fj}∞j=1 in ℓp(X,W ) and (2.4.12) to get that the
distance from fj to f is small when j is sufficiently large. This means that
{fj}∞j=1 converges to f with respect to the appropriate metric on ℓp(X,W ).

In particular, ℓp(X,R) and ℓp(X,C) are complete with respect to their ap-
propriate metrics.

2.7 Generalized convergence of sums

Let X be a nonempty set, and let W be a vector space over the real or complex
numbers with a norm ‖ · ‖W . Also let f be a function on X with values in W .
We say that that the sum ∑

x∈X

f(x)(2.7.1)

converges in the generalized sense with respect to the metric on W associated
to ‖ · ‖W if there is a w ∈ W with the following property: for each ϵ > 0 there
is a finite set A(ϵ) ⊆ X such that for every finite set A ⊆ X with

A(ϵ) ⊆ A,(2.7.2)
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we have that ∥∥∥∥∑
x∈A

f(x)− w

∥∥∥∥
W

< ϵ.(2.7.3)

One can check that such a w ∈ W is unique when it exists, in which case it is
considered to be the value of the sum (2.7.1).

If X has only finitely many elements, then this is the same as treating (2.7.1)
as a finite sum. If the support of f in X has only finitely many elements, then
this is the same as reducing (2.7.1) to a finite sum in W , as in Section 2.3.

Of course, if A, B are finite subsets of X, then A∪B is a finite subset of X
that contains A and B. This means that the collection of all finite subsets of X
is a directed system, as a partially-ordered set with respect to inclusion. The
sums ∑

x∈A

f(x)(2.7.4)

of f over finite subsets A of X may be considered as a net in W , indexed by
this directed system. The convergence of the sum (2.7.1) is the same as the
convergence of this net in W , with respect to the metric associated to ‖ · ‖W .

Let us say that the sum (2.7.1) satisfies the generalized Cauchy condition if
for every ϵ > 0 there is a finite subset A0(ϵ) of X with the following property:
if A, B are finite subsets of X such that

A0(ϵ) ⊆ A,B,(2.7.5)

then ∥∥∥∥∑
x∈A

f(x)−
∑
x∈B

f(x)

∥∥∥∥
W

< ϵ.(2.7.6)

This is the same as saying that the net of finite sums (2.7.4) is a Cauchy net
with respect to the metric on W associated to ‖ · ‖W . If (2.7.1) converges in the
generalized sense, then it is easy to see that it satisfies the generalized Cauchy
condition, with

A0(ϵ) = A(ϵ/2)(2.7.7)

for each ϵ > 0.
Equivalently, (2.7.1) satisfies the generalized Cauchy condition if and only if

for every ϵ > 0 there is a finite subset A1(ϵ) of X with the following property:
if C is a finite subset of X such that

A1(ϵ) ∩ C = ∅,(2.7.8)

then ∥∥∥∥∑
x∈C

f(x)

∥∥∥∥
W

< ϵ.(2.7.9)

More precisely, the previous version implies this one, with

A1(ϵ) = A0(ϵ),(2.7.10)
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by taking A = A0(ϵ) ∪ C and B = A0(ϵ) in (2.7.6). Conversely, this version
implies the previous one, with

A0(ϵ) = A1(ϵ/2)(2.7.11)

for each ϵ > 0.
If (2.7.1) satisfies the generalized Cauchy condition, then f vanishes at in-

finity on X with respect to ‖ · ‖W on W . Indeed, (2.7.9) implies that

‖f(x)‖W < ϵ(2.7.12)

when x ∈ X \ A1(ϵ), by taking C = {x}. In particular, this means that the
support of f has only finitely or countably many elements, as in Section 1.13.

Let {xj}∞j=1 be a sequence of distinct elements of X, and suppose for the
moment that the support of f is contained in the set of xj ’s. If (2.7.1) converges
in the generalized sense, then it is easy to see that

∞∑
j=1

f(xj)(2.7.13)

converges in W , and that the value of the sum is the same as for (2.7.1).
Similarly, if (2.7.1) satisfies the generalized Cauchy condition, and (2.7.13)

converges in W , then one can check that (2.7.1) converges in the generalized
sense, and with the same value of the sum.

If (2.7.1) satisfies the generalized Cauchy condition, then the sequence of
partial sums

n∑
j=1

f(xj)(2.7.14)

of (2.7.13) is a Cauchy sequence in W with respect to the metric associated to
‖ · ‖W . If W is complete with respect to this metric, then (2.7.13) converges in
W . This implies that (2.7.1) converges in the generalized sense, with sum equal
to (2.7.13), as in the preceding paragraph.

If W is a Banach space, and (2.7.1) satisfies the generalized Cauchy condi-
tion, then one can use the remarks in the prevous paragraphs to get that (2.7.1)
converges in the generalized sense. Note that if (2.7.1) converges in the gener-
alized sense, then every rearrangement of (2.7.13) converges, and with the same
value of the sum. Conversely, if every rearrangement of (2.7.13) converges, then
it is well known that (2.7.1) satisfies the generalized Cauchy condition, as in
Proposition 1.c.1 on p15 of [131].

If f is any W -valued function on X, then∥∥∥∥∑
x∈C

f(x)

∥∥∥∥
W

≤
∑
x∈C

‖f(x)‖W(2.7.15)

for every finite subset C of X, by the triangle inequality. If f ∈ ℓ1(X,W ), then
one can use this to get that (2.7.1) satisfies the generalized Cauchy condition.
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If (2.7.1) converges in the generalized sense, then we have that∥∥∥∥∑
x∈X

f(x)

∥∥∥∥
W

≤
∑
x∈X

‖f(x)‖W(2.7.16)

in this case.
Suppose now that ‖ · ‖W is the norm associated to an inner product 〈·, ·〉W

on W , and that the values of f on X are pairwise-orthogonal in W . This means
that

〈f(x), f(y)〉W = 0(2.7.17)

for every x, y ∈ X with x 6= y. If C is a finite subset of X, then it follows that∥∥∥∥∑
x∈C

f(x)

∥∥∥∥2
W

=
∑
x∈C

‖f(x)‖2W .(2.7.18)

If f ∈ ℓ2(X,W ), then one can use this to get that (2.7.1) satisfies the generalized
Cauchy condition. If (2.7.1) converges in the generalized sense, then one can
verify that ∥∥∥∥∑

x∈X

f(x)

∥∥∥∥2
W

=
∑
x∈X

‖f(x)‖2W(2.7.19)

under these conditions.

2.8 More on generalized convergence

Let X be a nonempty set again, and let W be a vector space over the real or
complex numbers with a norm ‖ · ‖W . Consider the space

Sum(X,W )(2.8.1)

of W -valued functions f on X such that the sum (2.7.1) converges in the gen-
eralized sense. It is easy to see that this is a linear subspace of the space of all
W -valued functions on X, and that

f 7→
∑
x∈X

f(x)(2.8.2)

is a linear mapping from Sum(X,W ) into W .
Similarly, let

GCC(X,W )(2.8.3)

be the space of W -valued functions f on X such that (2.7.1) satisfies the gen-
eralized Cauchy condition. This is also a linear subspace of the space of all
W -valued functions on X, with

c00(X,W ) ⊆ Sum(X,W ) ⊆ GCC(X,W ) ⊆ c0(X,W ),(2.8.4)
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as in the previous section. If W is a Banach space, then

Sum(X,W ) = GCC(X,W ),(2.8.5)

as before.
Remember that

ℓ1(X,W ) ⊆ GCC(X,W ),(2.8.6)

so that
ℓ1(X,W ) ⊆ Sum(X,W )(2.8.7)

when W is a Banach space. In this case, (2.8.2) is a bounded linear mapping
from ℓ1(X,W ) into W , with operator norm equal to 1.

Let f be a nonnegative real-valued function on X. If f is summable on X,
then one can check that the sum (2.7.1) converges in the generalized sense, with
the same value of the sum as in Section 2.4.

Similarly, if f is a real or complex-valued function on X such that |f | is
summable as a nonnegative real-valued function on X, then (2.7.1) converges in
the generalized sense. This can be seen by expressing f as a linear combination
of summable nonnegative real-valued functions on X, and using the remark in
the preceding paragraph. Alternatively, this follows from (2.8.7), with W = R
or C, as appropriate.

Let f , g be real or complex-valued functions on X such that |f |, |g| are 2-
summable on X. One can check that |f | |g| is summable on X. More precisely,
one can use the Cauchy–Schwarz inequality for finite sums to get that∑

x∈X

|f(x)| |g(x)| ≤
( ∑

x∈X

|f(x)|2
)1/2 ( ∑

x∈X

|g(x)|2
)1/2

.(2.8.8)

This could also be obtained more directly, using the same type of arguments as
for finite sums.

Suppose that ‖ · ‖W is the norm associated to an inner product 〈·, ·〉W on
W . If f , g are W -valued functions on X, then

|〈f(x), g(x)〉W | ≤ ‖f(x)‖W ‖g(x)‖W(2.8.9)

for every x ∈ X, by the Cauchy–Schwarz inequality. If f, g ∈ ℓ2(X,W ), then
we get that

|〈f(x), g(x)〉W |(2.8.10)

is summable as a nonnegative real-valued function on X, as in the preceding
paragraph. In this case, we put

〈f, g〉ℓ2(X,W ) =
∑
x∈X

〈f(x), g(x)〉W .(2.8.11)

where the right side converges in the generalized sense, as before. One can check
that this defines an inner product on ℓ2(X,W ), for which the corresponding
norm is the usual norm on ℓ2(X,W ) associated to ‖ · ‖W . If W is a Hilbert
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space, then ℓ2(X,W ) is complete with respect to the metric associatived to this
norm, as in Section 2.6. This means that ℓ2(X,W ) is a Hilbert space under
these conditions.

Of course, the standard absolute value functions on R and C may be consid-
ered as norms associated to inner products. These are the same as the standard
inner products on Rn and Cn, respectively, as in Section 1.9, with n = 1. This
leads to inner products

〈f, g〉ℓ2(X,R) =
∑
x∈X

f(x) g(x)(2.8.12)

on ℓ2(X,R) and

〈f, g〉ℓ2(X,C) =
∑
x∈X

f(x) g(x)(2.8.13)

on ℓ2(X,C) as in the preceding paragraph. Thus ℓ2(X,R) and ℓ2(X,C) are
Hilbert spaces over the real and complex numbers, respectively, as before.

2.9 Bounded finite sums

Let X be a nonempty set, and let W be a vector space over the real or complex
numbers with a norm ‖ · ‖W . Let us say that a W -valued function f on X has
bounded finite sums on X with respect to ‖ · ‖W if the norms∥∥∥∥∑

x∈A

f(x)

∥∥∥∥
W

(2.9.1)

of the sums of f over all finite subsets A of X are bounded. It is easy to see
that the space

BFS(X,W )(2.9.2)

of W -valued functions on X with bounded finite sums is a linear subspace of
the space of all W -valued functions on X.

Let us check that

GCC(X,W ) ⊆ BFS(X,W ) ⊆ ℓ∞(X,W ).(2.9.3)

If f ∈ GCC(X,W ), then there is a finite set A1(1) ⊆ X such that∥∥∥∥∑
x∈C

f(x)

∥∥∥∥
W

< 1(2.9.4)

for all finite sets C ⊆ X such that A1(1) ∩ C = ∅, as in (2.7.9). If A is a finite
subset of X, then we can take C = A \ A1(1) in (2.9.4), and use the triangle
inequality to get that∥∥∥∥∑

x∈A

f(x)

∥∥∥∥
W

≤
∥∥∥∥ ∑
x∈A∩A1(1)

f(x)

∥∥∥∥
W

+

∥∥∥∥ ∑
x∈A\A1(1)

f(x)

∥∥∥∥
W

(2.9.5)

<
∑

x∈A1(1)

‖f(x)‖W + 1.
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This shows that f ∈ BFS(X,W ). The second inclusion in (2.9.3) corresponds
to taking A to be a subset of X with only one element in (2.9.1).

If f ∈ BFS(X,W ), then put

‖f‖BFS = ‖f‖BFS(X,W )(2.9.6)

= sup

{∥∥∥∥∑
x∈A

f(x)

∥∥∥∥
W

: A is a finite subset of X

}
.

This defines a norm on BFS(X,W ), with

‖f‖∞ ≤ ‖f‖BFS(2.9.7)

for every f ∈ BFS(X,W ). If f ∈ ℓ1(X,W ), then f ∈ BFS(X,W ), with

‖f‖BFS ≤ ‖f‖1,(2.9.8)

by the triangle inequality. If f ∈ Sum(X,W ), then f ∈ BFS(X,W ), by (2.8.4)
and (2.9.3), and one can check that∥∥∥∥∑

x∈X

f(x)

∥∥∥∥
W

≤ ‖f‖BFS .(2.9.9)

One can also verify that

GCC(X,W ) is the same as the closure(2.9.10)

of c00(X,W ) in BFS(X,W ).

Let {fj}∞j=1 be a sequence ofW -valued functions on X that converges point-
wise to aW -valued function f on X, with respect to the metric onW associated
to ‖ · ‖W . If A is a finite subset of X, then it follows that

lim
j→∞

∑
x∈A

fj(x) =
∑
x∈A

f(x).(2.9.11)

Suppose that fj ∈ BFS(X,W ) for each j, and that there is a nonnegative real
number C such that

‖fj‖BFS ≤ C(2.9.12)

for all j. This implies that f ∈ BFS(X,W ), with

‖f‖BFS ≤ C,(2.9.13)

because of (2.9.11).
If W is complete with respect to the metric associated to ‖ · ‖W , then

BFS(X,W ) is complete(2.9.14)

with respect to the metric associated to (2.9.6). Indeed, if {fj}∞j=1 is a Cauchy
sequence in BFS(X,W ), then {fj}∞j=1 is a Cauchy sequence with respect to the
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supremum metric, and in particular {fj}∞j=1 converges pointwise to a W -valued
function f on X. One can check that f is an element of BFS(X,W ), because
Cauchy sequences are bounded. One can also verify that {fj}∞j=1 converges to
f with respect to the metric associated to (2.9.6), using the fact that {fj}∞j=1 is
a Cauchy sequence with respect to this metric again.

Suppose for the moment thatW = R, as a one-dimensional vector space over
itself, with the usual absolute value function as the norm. If f ∈ BFS(X,R),
then max(f, 0) and max(−f, 0) are summable on X, with∑

x∈X

max(f(x), 0),
∑
x∈X

max(−f(x), 0) ≤ ‖f‖BFS .(2.9.15)

This implies that f ∈ ℓ1(X,R), with

‖f‖1 ≤ 2 ‖f‖BFS .(2.9.16)

Thus
BFS(X,R) = ℓ1(X,R),(2.9.17)

as linear subspaces of the space of all real-valued functions on X.
Suppose now that W = C, as a one-dimensional vector space over itself, and

with the usual absolute value function as the norm. If f ∈ BFS(X,C), then
the real and imaginary parts of f are in BFS(X,R), with BFS norms less than
or equal to the BFS norm of f . This implies that f ∈ ℓ1(X,C), with

‖f‖1 ≤ 4 ‖f‖BFS ,(2.9.18)

using (2.9.16) for the real and imaginary parts of f . It follows that

BFS(X,C) = ℓ1(X,C),(2.9.19)

as linear subspaces of the space of all complex-valued functions on X.
Let W be a vector space over the real or complex numbers again, and let

〈·, ·〉W be an inner product onW , with associated norm ‖·‖W . Also let f be aW -
valued function onX with pairwise-orthogonal values, so that 〈f(x), f(y)〉W = 0
for every x, y ∈ X with x 6= y. Under these conditions,

f ∈ BFS(X,W ) if and only if f ∈ ℓ2(X,W ),(2.9.20)

because of (2.7.18). In this case, we have that

‖f‖BFS = ‖f‖2.(2.9.21)

2.10 Some related linear mappings

Let X be a nonempty set, and let W , Z be vector spaces, both real or both
complex. Also let T be a linear mapping from W into Z. If f is a W -valued
function on X, then T (f(x)) is a Z-valued function on X. More precisely,

f 7→ T ◦ f(2.10.1)
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is a linear mapping from the space of allW -valued functions on X into the space
of all Z-valued functions on X.

Suppose that ‖ · ‖W , ‖ · ‖Z are norms on W , Z, respectively, and that T is
bounded with respect to these norms. If f is a W -valued function on X, then

‖T (f(x))‖Z ≤ ‖T‖op,WZ ‖f(x)‖W(2.10.2)

for every x ∈ X. If f ∈ ℓp(X,W ) for some 0 < p ≤ +∞, then it follows that

T ◦ f ∈ ℓp(X,Z),(2.10.3)

with
‖T ◦ f‖ℓp(X,Z) ≤ ‖T‖op,WZ ‖f‖ℓp(X,W ).(2.10.4)

Similarly, if f ∈ c0(X,W ), then

T ◦ f ∈ c0(X,Z).(2.10.5)

If f ∈ BFS(X,W ), then it is easy to see that

T ◦ f ∈ BFS(X,Z),(2.10.6)

with
‖T ◦ f‖BFS(X,Z) ≤ ‖T‖op,WZ ‖f‖BFS(X,W ).(2.10.7)

If f ∈ GCC(X,W ), then one can check that

T ◦ f ∈ GCC(X,Z).(2.10.8)

If f ∈ Sum(X,W ), then one can verify that

T ◦ f ∈ Sum(X,Z),(2.10.9)

with ∑
x∈X

T (f(x)) = T
( ∑

x∈X

f(x)
)
.(2.10.10)

If
∑∞

j=1 wj is a convergent series in W , then

∞∑
j=1

T (wj) is a convergent series in Z,(2.10.11)

with
∞∑
j=1

T (wj) = T
( ∞∑

j=1

wj

)
.(2.10.12)

If
∑∞

j=1 wj converges absolutely with respect to ‖ · ‖W , then

∞∑
j=1

T (wj) converges absolutely with respect to ‖ · ‖Z .(2.10.13)
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This corresponds to the fact that (2.10.1) maps ℓ1(Z+,W ) into ℓ1(Z+, Z), as
before.

If
‖T (w)‖Z = ‖w‖W(2.10.14)

for every w ∈ W , then T is said to be an isometric linear mapping from W
into Z. This implies that T is an isometry from W into Z, with respect to the
metrics associated to the norms. In particular, this means that T is injective.

Suppose now that ‖·‖W , ‖·‖Z are associated to inner products 〈·, ·〉W , 〈·, ·〉Z
on W , Z, respectively. If

〈T (u), T (w)〉Z = 〈u,w〉W(2.10.15)

for every u,w ∈ W , then (2.10.14) holds for every w ∈ W , by taking u = w in
(2.10.15).

Conversely, if (2.10.14) holds for every w ∈ W , then it is well known that
(2.10.15) holds for every u,w ∈ W . This can be obtained from suitable polar-
ization identities, which can be used to express an inner product in terms of the
corresponding norm. If u,w ∈W , then

(1/2) (‖u+ w‖2W − ‖u‖2W − ‖w‖2W )(2.10.16)

is equal to 〈u,w〉W in the real case. In the complex case, this is equal to the
real part of the inner product. To get the imaginary part, one can multiply u
by −i.

If T maps W onto Z and satisfies (2.10.15) for every u,w ∈ W , then T is
said to be a unitary mapping from W onto Z. In the real case, one may say
that T is an orthogonal transformation.

2.11 Distances to sets

Let (X, d) be a metric space, and let A be a nonempty subset of X. If x ∈ X,
then put

dist(x,A) = inf
a∈A

d(x, a).(2.11.1)

If y ∈ X and a ∈ A, then

dist(x,A) ≤ d(x, a) ≤ d(x, y) + d(y, a).(2.11.2)

This means that
dist(x,A)− d(x, y) ≤ d(y, a),(2.11.3)

so that
dist(x,A)− d(x, y) ≤ dist(y,A).(2.11.4)

It follows that dist(x,A) is Lipschitz with constant 1 as a real-valued function
on X, as in Section 2.1.

It is easy to see that
dist(x,A) = 0(2.11.5)
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if and only if x is an element of the closure A of A in X. If A ⊆ B ⊆ X, then

dist(x,B) ≤ dist(x,A)(2.11.6)

for every x ∈ X. One can check that

dist(x,A) = dist(x,A)(2.11.7)

for every x ∈ A.
Let V be a vector space over the real or complex numbers with a norm ‖·‖V ,

and let V0 be a linear subspace of V . If v ∈ V , then put

NV0
(v) = inf

w∈V0

‖v − w‖V .(2.11.8)

Equivalently,
NV0

(v) = dist(v, V0),(2.11.9)

where the right side is defined as in (2.11.1), using the metric on V associated
to ‖ · ‖V . Thus

NV0(v) = 0(2.11.10)

if and only if v is an element of the closure V0 of V0 in V , as in the preceding
paragraph. Similarly,

NV0
= NV0

(2.11.11)

on V , as in (2.11.7).
One can check that

NV0(t v) = |t|NV0(v)(2.11.12)

for all v ∈ V and t ∈ R or C, as appropriate. If v1, v2 ∈ V and w1, w2 ∈ V0,
then

NV0
(v1 + v2) ≤ ‖(v1 + v2)− (w1 + w2)‖V(2.11.13)

≤ ‖v1 − w1‖V + ‖v2 − w2‖V .

One can use this to verify that

NV0(v1 + v2) ≤ NV0(v1) +NV0(v2).(2.11.14)

Thus NV0
is a seminorm on V .

Note that
NV0

(v) ≤ ‖v‖V(2.11.15)

for every v ∈ V . This implies that

|NV0(v)−NV0(u)| ≤ NV0(u− v) ≤ ‖u− v‖V(2.11.16)

for all u, v ∈ V0, where the first step is as in Section 1.2. This is another way
to look at the Lipschitz condition for NV0

as a real-valued function on V , with
respect to the metric associated to ‖ · ‖V .
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2.12 Distances and orthogonality

Let V be a vector space over the real or complex numbers with an inner product
〈·, ·〉V and the associated norm ‖ ·‖V . Also let W be a linear subspace of V , and
let v ∈ V be given. We shall sometimes be interested in trying to get a u ∈ W
such that

〈v − u,w〉V = 0(2.12.1)

for every w ∈ W . Let us first check that such an element of W is unique.
Suppose that u′ ∈W satisfies

〈v − u′, w〉V = 0(2.12.2)

for every w ∈W as well. This implies that

〈u− u′, w〉V = 0(2.12.3)

for every w ∈W . It follows that

u = u′,(2.12.4)

because we can take w = u− u′ in (2.12.3).
If u ∈W satisfies (2.12.1), then we can take w = u to get that

‖v‖2V = ‖v − u‖2V + ‖u‖2V .(2.12.5)

Similarly, if y ∈W , then

‖v − y‖2V = ‖(v − u) + (u− y)‖2V = ‖v − u‖2V + ‖u− y‖2V ,(2.12.6)

because of (2.12.1), with w = u− y. In particular,

‖v − u‖V ≤ ‖v − y‖V ,(2.12.7)

with equality if and only if u = y. This implies that

dist(v,W ) = ‖v − u‖V ,(2.12.8)

where the left side is as in the previous section, using the metric on V associated
to ‖ · ‖V . Note that

‖u‖V ≤ ‖v‖V ,(2.12.9)

with equality if and only if u = v, by (2.12.5).
Suppose that v1, . . . , vn are finitely many orthonormal vectors in V , so that

‖vj‖V = 1(2.12.10)

for each j = 1, . . . , n, and

〈vj , vl〉V = 0(2.12.11)
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when j 6= l. Let W be the linear subspace of V spanned by v1, . . . , vn. If v ∈ V ,
then put

PW (v) =

n∑
j=1

〈v, vj〉V vj .(2.12.12)

This defines a linear mapping from V into W . This is known as the orthogonal
projection of V onto W , because of the properties mentioned in the next two
paragraphs.

It is easy to see that

PW (vl) = vl(2.12.13)

for each l = 1, . . . , n. This implies that

PW (v) = v(2.12.14)

for every v ∈W , so that PW maps V onto W in particular. If v ∈ V , then

〈PW (v), vl〉V = 〈v, vl〉V(2.12.15)

for each l = 1, . . . , n. This means that

〈v − PW (v), vl〉V = 0(2.12.16)

for each l = 1, . . . , n, so that

〈v − PW (v), w〉V = 0(2.12.17)

for every w ∈ W . Note that PW (v) = 0 if and only if 〈v, w〉V = 0 for every
w ∈W , by the definition (2.12.12) of PW (v) and (2.12.15).

Thus u = PW (v) ∈W satisfies (2.12.1), and is uniquely determined by these
properties, as before. It follows that PW (v) does not depend on the particular
orthonormal vectors v1, . . . , vn spanning W . Observe that

‖PW (v)‖2V =

n∑
j=1

|〈v, vj〉V |2.(2.12.18)

Combining this with (2.12.5), we get that

‖v‖2V = ‖v − PW (v)‖2V +

n∑
j=1

|〈v, vj〉V |2.(2.12.19)

We also have that

dist(v,W ) = ‖v − PW (v)‖V ,(2.12.20)

as in (2.12.8).
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2.13 Orthonormal families of vectors

Let V be a vector space over the real or complex numbers with an inner product
〈·, ·〉V and the associated norm ‖ · ‖V again. Also let A be a nonempty set, and
let {vα}α∈A be an orthonormal family of vectors in V indexed by A. This means
that

‖vα‖V = 1(2.13.1)

for all α ∈ A, and that
〈vα, vβ〉V = 0(2.13.2)

for all α, β ∈ A with α 6= β.
If E is a nonempty subset of A, then

let WE be the linear subspace of V(2.13.3)

spanned by the vα’s with α ∈ E.

This may be interpreted as being {0} when E = ∅. If E1 ⊆ E2 ⊆ A, then

WE1 ⊆WE2 .(2.13.4)

If E is a nonempty finite subset of A, then let

PWE
(v) =

∑
α∈E

〈v, vα〉V vα(2.13.5)

be the corresponding orthogonal projection of V onto WE , as in the previous
section. Thus

‖v‖2V = ‖v − PWE
(v)‖2V +

∑
α∈E

|〈v, vα〉V |2(2.13.6)

and
dist(v,WE) = ‖v − PWE

(v)‖V(2.13.7)

for every v ∈ V , as before. If E1 ⊆ E2 are nonempty finite subsets of A, then

‖v − PWE2
(v)‖V = dist(v,WE2

) ≤ dist(v,WE1
) = ‖v − PWE1

(v)‖V ,(2.13.8)

because of (2.13.4). This also corresponds to the fact that the sum on the right
side of (2.13.6) can only increase as E gets larger.

If v ∈ V , then put
fv(α) = 〈v, vα〉V(2.13.9)

for every α ∈ A. This defines a real or complex-valued function on A, as
appropriate. If E is a nonempty finite subset of A, then∑

α∈E

|fv(α)|2 ≤ ‖v‖2V ,(2.13.10)

by (2.13.6). This means that fv ∈ ℓ2(A,R) or ℓ2(A,C), as appropriate, with

‖fv‖22 =
∑
α∈A

|fv(α)|2 ≤ ‖v‖2V .(2.13.11)
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Note that
v 7→ fv(2.13.12)

is a linear mapping from V into ℓ2(A,R) or ℓ2(A,C), as appropriate.
Every element of WA is an element of WE for some finite set E ⊆ A. Using

this, one can check that

dist(v,WA) = inf{dist(v,WE) : E ⊆ A, E 6= ∅, E has only

finitely many elements}.(2.13.13)

Note that
‖v‖2V = dist(v,WE)

2 +
∑
α∈E

|〈v, vα〉V |2(2.13.14)

for every nonempty finite subset E of A, by (2.13.6) and (2.13.7). One can use
(2.13.13) and (2.13.14) to get that

‖v‖2V = dist(v,WA)
2 + ‖fv‖22.(2.13.15)

Let
W be the closure WA of WA in V,(2.13.16)

with respect to the metric associated to ‖ · ‖V . It follows from (2.13.15) that
v ∈W if and only if

‖v‖V = ‖fv‖2.(2.13.17)

Observe that ∑
α∈A

fv(α) vα(2.13.18)

satisfies the generalized Cauchy condition, as in Section 2.7. If E is a nonempty
finite subset of A, then ∑

α∈E

fv(α) vα = PWE
(v),(2.13.19)

by (2.13.5) and (2.13.9). If v ∈WA, then (2.13.9) is equal to 0 for all but finitely
many α ∈ A, so that (2.13.18) reduces to a finite sum, which is equal to v. If
v ∈ W , then one can check that (2.13.18) converges in the generalized sense,
with ∑

α∈A

fv(α) vα = v,(2.13.20)

using (2.13.7), (2.13.8), and (2.13.19).
Suppose for the rest of the section that V is a Hilbert space. This implies

that (2.13.18) converges in V in the generalized sense for every v ∈ V , as in
Section 2.7. More precisely, the sum is an element of W , and we put

PW (v) =
∑
α∈A

fv(α) vα(2.13.21)
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for each v ∈ V . This defines a linear mapping from V into W , with

PW (v) = v(2.13.22)

for every v ∈ W , as in (2.13.20). Of course, this is the same as in the previous
section when A has only finitely many elements.

If v ∈ V and β ∈ A, then it is easy to see that

〈PW (v), vβ〉V = fv(β) = 〈v, vβ〉V ,(2.13.23)

using a remark in Section 2.10. Equivalently,

〈v − PW (v), vβ〉V = 0(2.13.24)

for every β ∈ A. This implies that

〈v − PW (v), w〉V = 0(2.13.25)

for every w ∈WA. It follows that this holds for every w ∈W .
Note that PW (v) ∈W is uniquely determined by (2.13.25), as in the previous

section. Thus PW (v) depends only on v and W , and not on the particular
orthonormal family of vectors whose closed linear span is W . As before, PW is
known as the orthogonal projection of V onto W .

2.14 Orthonormal bases

Let (V, 〈·, ·〉V ) be a Hilbert space over the real or complex numbers, with the
corresponding norm ‖ · ‖V . A collection of orthonormal vectors in V is said to
be an orthonormal basis for V if

its linear span is dense in V,(2.14.1)

with respect to the metric associated to ‖ · ‖V .
If V has finite dimension as a vector space over R or C, then V is spanned

by finitely many vectors. In this case, one can use the Gram–Schmidt process
to get finitely many orthonormal vectors in V that span V .

Similarly, for any sequence of vectors in V , one can use the Gram–Schmidt
process to get a finite or infinite sequence of orthonormal vectors in V with the
same linear span. If the linear span of the initial sequence is dense in V , then
we get an orthonormal basis for V .

Let A be a nonempty set, let {vα}α∈A be an orthonormal family of vectors
in V indexed by A, and let W be the closure of the linear span of the vα’s,
α ∈ A, as in the previous section. Suppose that

W 6= V,(2.14.2)

and let u be an element of V not in W . If PW is the orthogonal projection of
V onto W , as in the previous section, then

u 6= PW (u),(2.14.3)
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because PW (u) ∈W . Put

y = ‖u− PW (u)‖−1
V (u− PW (u)),(2.14.4)

so that ‖y‖V = 1 and

〈y, w〉V = 0(2.14.5)

for every w ∈ W , by construction. This implies that the collection of vα’s,
α ∈ A, together with y, is an orthonormal collection of vectors in V .

The remarks in the preceding paragraph imply that if a collection of or-
thonormal vectors in V is maximal with respect to inclusion, then it is an
orthonormal basis for V . There are well-known arguments to get a maximal
orthonormal collection of vectors using the axiom of choice, based on Zorn’s
lemma or Hausdorff’s maximality principle.

Suppose now that {vα}α∈A is an orthonormal basis for V . If f ∈ ℓ2(A,R)
or ℓ2(A,C), as appropriate, then ∑

α∈A

f(α) vα(2.14.6)

converges in the generalized sense in V , as in Section 2.7. Put

T (f) =
∑
α∈A

f(α) vα,(2.14.7)

which defines a linear mapping from ℓ2(A,R) or ℓ2(A,C), as appropriate, into
V . More precisely,

this defines an isometric linear mapping from(2.14.8)

ℓ2(A,R) or ℓ2(A,C), as appropriate, into V,

as in Section 2.7 again. This implies that T preserves the appropriate inner
products, as in Section 2.10, which could also be verified more directly in this
case.

In fact,

T maps ℓ2(A,R) or ℓ2(A,C), as appropriate, onto V(2.14.9)

under these conditions. This follows from the remarks in the previous section,
because W = V in this case. Alternatively, one can observe that

the image of T is a closed set in V,(2.14.10)

because of the completeness of ℓ2(A,R) or ℓ2(A,C), as appropriate.
If V0 is a closed linear subspace of V , then V0 may be considered as a Hilbert

space, using the restriction of 〈·, ·〉V to V0. One can use an orthonormal basis
for V0 to get the orthogonal projection of V onto V0, as in the previous section.
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2.15 Minimizing distances

Let (V, 〈·, ·〉V ) be an inner product space over the real or complex numbers, with
the corresponding norm ‖ · ‖V . If v, w ∈ V , then it is easy to see that

‖v + w‖2V + ‖v − w‖2V = 2 ‖v‖2V + 2 ‖w‖2V .(2.15.1)

This is known as the parallelogram law.
Let E be a nonempty subset of V , and let y ∈ V be given. Also let {zj}∞j=1

be a sequence of elements of E such that

lim
j→∞

‖y − zj‖V = dist(y,E),(2.15.2)

where the distance from y to E is defined using the metric on V associated to
‖ · ‖V . Using the parallelogram law, we get that

‖(y − zj) + (y − zl)‖2V + ‖zj − zl‖2V = 2 ‖y − zj‖2V + 2 ‖y − zl‖2V(2.15.3)

for all j, l ≥ 1.
Suppose now that E is convex, so that (zj + zl)/2 ∈ E for all j, l. This

implies that

‖(y − zj) + (y − zl)‖V = 2 ‖y − ((zj + zl)/2)‖V ≥ 2 dist(y,E)(2.15.4)

for all j, l. It follows that {zj}∞j=1 is a Cauchy sequence in V with respect to
the metric associated to ‖ · ‖V .

Suppose that V is a Hilbert space, and that E is a closed set in V , with
respect to the metric associated to ‖ · ‖V . Under these conditions, {zj}∞j=1

converges to an element z of E, and

‖y − z‖V = dist(y,E).(2.15.5)

Suppose that E is a closed linear subspace of V , so that

‖y − z + w‖V ≥ dist(y,E)(2.15.6)

for every w ∈ E. Equivalently, this means that

‖y − z + t w‖2V ≥ ‖y − z‖2V(2.15.7)

for every w ∈ E and t ∈ R or C, as appropriate. One can use this to get that

〈y − z, w〉V = 0(2.15.8)

for every w ∈ E.
Remember that z ∈ E is uniquely determined by (2.15.8), as in Section

2.12. Thus we get a mapping PE from V into E which sends y ∈ V to the
corresponding z ∈ E. It is easy to see that PE is a linear mapping, because of
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this characterization of z. Of course, z = y when y ∈ E. This is another way
to get the orthogonal projection of V onto a closed linear subspace E.

If V is any inner product space and V0 is a linear subspace of V , then put

V ⊥
0 = {u ∈ V : 〈u,w〉V = 0 for every w ∈ V0}.(2.15.9)

This is called the orthogonal complement of V0 in V , and it is a closed linear
subspace of V . It is easy to see that

V0 ∩ V ⊥
0 = {0}.(2.15.10)

We also have that
(V0)

⊥ = V ⊥
0 ,(2.15.11)

where V0 is the closure of V0 in V with respect to the metric associated to ‖·‖V .
The orthogonal complement of V ⊥

0 in V can be defined in the same way, and
we have that

V0 ⊆ (V ⊥
0 )⊥.(2.15.12)

If V is a Hilbert space and V0 is a closed linear subspace of V , then

V ⊥
0 is the same as the kernel(2.15.13)

of the orthogonal projection PV0
of V onto V0.

In this case,

every element of V can be expressed(2.15.14)

as a sum of elements of V0 and V ⊥
0 in a unique way,

as before. One can use this to check that

(V ⊥
0 )⊥ = V0.(2.15.15)

More precisely, let v ∈ (V ⊥
0 )⊥ be given, and let us express v as

v = w + u,(2.15.16)

with w ∈ V0 and u ∈ V ⊥
0 . This implies that

v − w = u(2.15.17)

is an element of V ⊥
0 and (V ⊥

0 )⊥, and is thus equal to 0, as in (2.15.10).
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Bounded linear functionals

3.1 Dual spaces

Let V a vector space over the real or complex numbers. A linear functional
on V is a linear mapping from V into R or C, as appropriate, considered as
a one-dimensional vector space over itself. We shall call the space V alg of all
linear functionals on V the algebraic dual of V . This is a linear subspace of the
space of all real or complex-valued functions on V , as appropriate.

Let ‖ · ‖V be a norm on V . A bounded linear functional is a linear functional
on V that is bounded as a linear mapping, using the standard absolute value
function on R or C as the norm, as appropriate. Let V ′ be the dual space of
all bounded linear functionals on V , which is a linear subspace of the algebraic
dual V alg.

If λ ∈ V ′, then put

‖λ‖V ′ = sup{|λ(v)| : v ∈ V, ‖v‖V ≤ 1}.(3.1.1)

This is the same as the operator norm of λ, as a bounded linear mapping from
V into R or C, as appropriate. Thus ‖ · ‖V ′ defines a norm on V ′, which is
known as the dual norm associated to ‖ · ‖V on V . Note that

V ′ is complete(3.1.2)

with respect to the metric associated to the dual norm, as in Section 2.2.

Suppose now that ‖ · ‖V is the norm associated to an inner product 〈·, ·〉V
on V . If w ∈ V , then

λw(v) = 〈v, w〉V(3.1.3)

defines a linear functional on V . More precisely, this is a bounded linear func-
tional on V , because of the Cauchy–Schwarz inequality. In fact,

‖λw‖V ′ = ‖w‖V ,(3.1.4)

52
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because λw(w) = ‖w‖2V . Note that

w 7→ λw(3.1.5)

is linear in the real case, and conjugate-linear in the complex case.
Suppose that V is a Hilbert space. If λ is a bounded linear functional on V ,

then the Riesz representation theorem states that

λ = λw(3.1.6)

for a unique w ∈ V . The uniqueness of w follows from the remarks in the
preceding paragraph. To get existence, we may suppose that λ 6= 0, since
otherwise we could take w = 0. If λ 6= 0, then the kernel of λ is a proper closed
linear subspace of V . In this case, one can use the orthogonal projection from
V onto the kernel of λ to get y ∈ V such that y 6= 0 and

y is in the orthogonal complement of the kernel of λ.(3.1.7)

One can check that (3.1.6) holds with w equal to a suitable multiple of y.

3.2 Duals of ℓ1 spaces

Let X be a nonempty set, and let f be a real or complex-valued function on
X such that |f | is summable on X. If g is a bounded real or complex-valued
function on X, as appropriate, then it is easy to see that |f | |g| is summable on
X, with ∑

x∈X

|f(x)| |g(x)| ≤ ‖f‖1 ‖g‖∞.(3.2.1)

Put
λg(f) =

∑
x∈X

f(x) g(x),(3.2.2)

where the sum on the right converges in the generalized sense. Observe that

|λg(f)| ≤ ‖f‖1 ‖g‖∞,(3.2.3)

by (3.2.1).
This defines a bounded linear functional on ℓ1(X,R) or ℓ1(X,C), as appro-

priate. One can check that

the dual norm of λg with respect to the usual ℓ1 norm(3.2.4)

is equal to the supremum norm of g.

More precisely, one can verify that ‖g‖∞ is less than or equal to the dual norm
of λg, by considering functions f on X that are equal to 1 at one point, and
equal to 0 at all other points in X.

Note that
g 7→ λg(3.2.5)
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defines a linear mapping from each of ℓ∞(X,R), ℓ∞(X,C) into the duals of
ℓ1(X,R), ℓ1(X,C), respectively. We would like to show that this mapping is
surjective in both cases.

If g is any real or complex-valued function on X, then (3.2.2) defines a
linear functional on c00(X,R) or c00(X,C), as appropriate. It is easy to see
that every linear functional on c00(X,R) or c00(X,C) corresponds to a unique
real or complex-valued function g on X, as appropriate, in this way.

Let λ be a bounded linear functional on ℓ1(X,R) or ℓ1(X,C), with respect
to the usual ℓ1 norm. In particular,

the restriction of λ to c00(X,R) or c00(X,C), as appropriate,(3.2.6)

is of the form λg as in (3.2.2)

for some real or complex-valued function g on X, as appropriate, as in the
preceding paragraph. One can use the boundedness of λ with respect to the ℓ1

norm to get that

g is bounded on X,(3.2.7)

with supremum norm bounded by the dual norm of λ, as before. Thus λg also
defines a bounded linear functional on ℓ1(X,R) or ℓ1(X,C), as appropriate, as
before.

By construction,

λ = λg(3.2.8)

on c00(X,R) or c00(X,C), as appropriate. One can use this to get that they
are the same on ℓ1(X,R) or ℓ1(X,C), as appropriate. This uses the fact that
c00(X,R), c00(X,C) are dense in ℓ1(X,R), ℓ1(X,C), respectively, with respect
to the metrics associated to the ℓ1 norms.

Of course, if X has only finitely many elements, then c00(X,R), c00(X,C)
are the same as ℓ1(X,R), ℓ1(X,C), respectively. This means that every linear
functional on ℓ1(X,R) or ℓ1(X,C) may be expressed as in (3.2.2), with dual
norm with respect to the ℓ1 norm corresponding to ‖g‖∞, as before.

3.3 Duals of c0 spaces

Let X be a nonempty set, and let f be a bounded real or complex-valued
function on X. If g is a real or complex-valued function on X such that |g| is
summable on X, then |f | |g| is summable on X, with∑

x∈X

|f(x)| |g(x)| ≤ ‖f‖∞ ‖g‖1,(3.3.1)

as in the previous section. Put

λg(f) =
∑
x∈X

f(x) g(x),(3.3.2)
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where the sum on the right converges in the generalized sense, as before. We
also have that

|λg(f)| ≤ ‖f‖∞ ‖g‖1,(3.3.3)

by (3.3.1). This defines a bounded linear functional on ℓ∞(X,R) or ℓ∞(X,C),
as appropriate.

It is easy to see that

the dual norm of λg with respect to the supremum norm(3.3.4)

is equal to ‖g‖1.

More precisely, one can do this using a bounded real or complex-valued function
f on X, as appropriate, such that ‖f‖∞ = 1 and

f(x) g(x) = |g(x)|(3.3.5)

for every x ∈ X. Of course,
g 7→ λg(3.3.6)

defines a linear mapping from each of ℓ1(X,R), ℓ1(X,C) into the duals of
ℓ∞(X,R), ℓ∞(X,C), respectively.

We may also consider λg as a bounded linear functional on c0(X,R) or
c0(X,C), as appropriate, with respect to the supremum norm. One can check
that (3.3.4) holds in this case too. Indeed, if A is a nonempty finite subset of
X, then one can verify that ∑

x∈A

|g(x)|(3.3.7)

is less than or equal to the dual norm of λg, as a bounded linear functional
on c0(X,R) or c0(X,C), as appropriate, with respect to the supremum norm.
This uses a real or complex-valued function f on X supported on A such that
‖f‖∞ = 1 and (3.3.5) holds for every x ∈ A.

Let λ be a bounded linear functional on c0(X,R) or c0(X,C), with respect
to the supremum norm. As in the previous section, the restriction of λ to
c00(X,R) or c00(X,C), as appropriate, is of the form λg as in (3.3.2) for some
real or complex-valued function g on X, as appropriate. If A is a nonempty
finite subset of X, then (3.3.7) is less than or equal to the dual norm of λ, as in
the preceding paragraph. This implies that

g ∈ ℓ1(X,R) or ℓ1(X,C),(3.3.8)

as appropriate, with ℓ1 norm less than or equal to the dual norm of λ.
Thus λg defines a bounded linear functional on c0(X,R) or c0(X,C), as

appropriate, with respect to the supremum norm, as before. One can check
that

λ = λg(3.3.9)

on c0(X,R) or c0(X,C), as appropriate. This uses the density of c00(X,R),
c00(X,C) in c0(X,R), c0(X,C), respectively, with respect to the supremum
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metric. If X has only finitely many elements, then c00(X,R), c0(X,R), and
ℓ∞(X,R) are all the same, as are c00(X,C), c0(X,C), and ℓ∞(X,C).

Suppose that X has infinitely many elements. Let us say that a real or
complex-valued function f on X has a limit at infinity on X if there is a real or
complex number t, as appropriate, such that

f(x)− t vanishes at infinity on X,(3.3.10)

as a real or complex-valued function of x ∈ X, as appropriate. It is easy to see
that t is unique when it exists, in which case t is called the limit at infinity of
f on X. Under these conditions, f is bounded on X, and

|t| ≤ ‖f‖∞.(3.3.11)

If X is countably infinite, and {xj}∞j=1 is a sequence of elements of X in which
every element of X occurs exactly once, then f has a limit at infinity on X if
and only if {f(xj)}∞j=1 converges as a sequence of real or complex numbers, as
appropriate.

Let clai(X,R), clai(X,C) be the spaces of real and complex-valued functions
on X, respectively, with a limit at infinity. Observe that these are linear sub-
spaces of ℓ∞(X,R), ℓ∞(X,C), respectively. One can check that these are also
closed sets in ℓ∞(X,R), ℓ∞(X,C), respectively, with respect to the supremum
metric. More precisely, let {fj}∞j=1 be a sequence of real or complex-valued
functions on X with limits at infinity such that {fj}∞j=1 converges uniformly to
a real or complex-valued function f on X, as appropriate. If tj is the limit of
fj at infinity on X for each j, then one can verify that

{tj}∞j=1 is a Cauchy sequence(3.3.12)

in R or C, as appropriate, with respect to the standard Euclidean metric. This
implies that {tj}∞j=1 converges to a real or complex number t, as appropriate.
One can use this to get that (3.3.10) holds.

Of course, constant functions on X have a limit at infinity. The mapping

f 7→ the limit of f at infinity on X(3.3.13)

is a bounded linear functional on each of clai(X,R) and clai(X,C), with respect
to the supremum norm, and with dual norm equal to 1. If λ is any linear
functional on clai(X,R) or clai(X,C) that is equal to 0 on c0(X,R) or c0(X,C),
as appropriate, then λ is a constant multiple of (3.3.13). This constant is equal
to the value of λ at the function on X equal to 1 at every x ∈ X.

3.4 Hölder’s inequality for sums

Let p, q be real numbers with 1 < p, q <∞. Suppose that

1/p+ 1/q = 1,(3.4.1)
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in which case p and q are said to be conjugate exponents. One may also allow
p = 1, q = ∞ or p = ∞, q = 1, which were basically considered already in the
previous two sections. Note that (3.4.1) implies that

p = q/(q − 1), q = p/(p− 1).(3.4.2)

Let a, b be nonnegative real numbers. It is well known that

a b ≤ ap/p+ bq/q.(3.4.3)

Of course, this is clear when a or b is 0, and so we may as well suppose that
a, b > 0. This can be obtained from the convexity of the exponential function
on the real line. Alternatively, the derivative of

ap/p− a b+ bq/q,(3.4.4)

as a function of a, is equal to
ap−1 − b.(3.4.5)

It is easy to see that this is equal to 0 if and only if (3.4.6) holds, using (3.4.2).
If

ap = bq,(3.4.6)

then
a b = ap = bq,(3.4.7)

and equality holds in (3.4.3). More precisely, the strict convexity of the expo-
nential function on R implies that equality only holds in (3.4.3) when (3.4.6)
holds. This can also be obtained by considering (3.4.5).

Let X be a nonempty set, and let f , g be real or complex-valued functions
on X. If |f | is p-summable on X, and |g| is q-summable on X, then |f | |g| is
summable on X, with∑

x∈X

|f(x)| |g(x)| ≤ (1/p)
∑
x∈X

|f(x)|p + (1/q)
∑
x∈X

|g(x)|q,(3.4.8)

because of (3.4.3). Under these conditions, Hölder’s inequality states that∑
x∈X

|f(x)| |g(x)| ≤ ‖f‖p ‖g‖q.(3.4.9)

This follows from (3.4.8) when ‖f‖p = ‖g‖q = 1. Otherwise, one can reduce to
that case, using scalar multiplication.

Let A be a nonempty subset of X, and suppose for the moment that

f(x) g(x) = |f(x)|p = |g(x)|q(3.4.10)

for every x ∈ A. This implies that∑
x∈A

f(x) g(x) =
∑
x∈A

|f(x)|p =
∑
x∈A

|g(x)|q(3.4.11)

=
(∑

x∈A

|f(x)|p
)1/p (∑

x∈A

|g(x)|q
)1/q

.



58 CHAPTER 3. BOUNDED LINEAR FUNCTIONALS

Of course, if A has only finitely many elements, then this works without any
summability conditions on f or g.

If g ∈ ℓq(X,R) or ℓq(X,C), then put

λg(f) =
∑
x∈X

f(x) g(x)(3.4.12)

for all f ∈ ℓp(X,R) or ℓp(X,C), as appropriate, where the sum on the right
converges in the generalized sense, as usual. This defines a bounded linear
functional on ℓp(X,R) or ℓp(X,C), as appropriate. One can check that

the dual norm of λg with respect to the ℓp norm is equal to ‖g‖q,(3.4.13)

using (3.4.11) with A = X. More precisely, one can choose f so that (3.4.10)
holds for every x ∈ X. As before,

g 7→ λg(3.4.14)

defines a linear mapping from each of ℓq(X,R), ℓq(X,C) into the duals of
ℓp(X,R), ℓp(X,C), respectively.

Let λ be a bounded linear functional on ℓp(X,R) or ℓp(X,C). As in the
previous two sections, the restriction of λ to c00(X,R) or c00(X,C), as appro-
priate, is of the form λg as in (3.4.12) for some real or complex-valued function
g on X, as appropriate. If A is a finite subset of X, then one can verify that(∑

x∈A

|g(x)|q
)1/q

(3.4.15)

is less than or equal to the dual norm of λ, using (3.4.11). Here we choose f so
that (3.4.10) holds when x ∈ A, and f = 0 on X \A.

This implies that
g ∈ ℓq(X,R) or ℓq(X,C),(3.4.16)

as appropriate, with ℓq norm less than or equal to the dual norm of λ. It
follows that λg defines a bounded linear functional on ℓp(X,R) or ℓp(X,C), as
appropriate, as before. Of course,

λ = λg(3.4.17)

on c00(X,R) or c00(X,C), as appropriate, by construction. Remember that
c00(X,R), c00(X,C) are dense in ℓp(X,R), ℓp(X,C), respectively, with respect
to the metrics associated to the ℓp norms when p <∞. One can use this to get
that (3.4.17) holds on ℓp(X,R) or ℓp(X,C), as appropriate, as before.

3.5 Hilbert space adjoints

Let (V, 〈·, ·〉V ) and (W, 〈·, ·〉W ) be Hilbert spaces, both real or both complex, and
let ‖·‖V , ‖·‖W be the norms corresponding to these inner products, respectively.
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Also let T be a bounded linear mapping from V into W . One can check that
the operator norm of T may be given equivalently by

‖T‖op,V W = sup{|〈T (v), w〉W | : v ∈ V, w ∈W, ‖v‖V , ‖w‖W ≤ 1}.(3.5.1)

More precisely, right side is less than or equal to the operator norm of T , because
of the Cauchy–Schwarz inequality. To get the opposite inequality, one can use
the fact that

‖y‖W = sup{|〈y, w〉W | : w ∈W, ‖w‖W ≤ 1}(3.5.2)

for every y ∈W .
If w ∈W , then

µw(v) = 〈T (v), w〉W(3.5.3)

defines a bounded linear functional on V . More precisely,

|µw(v)| ≤ ‖T (v)‖W ‖w‖W ≤ ‖T‖op,V W ‖w‖W ‖v‖V(3.5.4)

for every v ∈ V . It follows that there is a unique element of V that we shall
denote T ∗(w) such that

〈T (v), w〉W = 〈v, T ∗(w)〉V(3.5.5)

for every v ∈ V , as in Section 3.1. Note that

|〈v, T ∗(w)〉V | = |〈T (v), w〉W | ≤ ‖T‖op,V W ‖w‖W ‖v‖V(3.5.6)

for all v ∈ V , as in (3.5.4). One can use this to get that

‖T ∗(w)‖V ≤ ‖T‖op,V W ‖w‖W ,(3.5.7)

as in (3.5.2).
It is easy to see that T ∗ is a linear mapping from W into V . Using (3.5.7),

we get that T ∗ is a bounded linear mapping, with

‖T ∗‖op,WV ≤ ‖T‖op,V W .(3.5.8)

As in (3.5.1), we have that

‖T ∗‖op,WV = sup{|〈v, T ∗(w)〉V | : v ∈ V, w ∈W, ‖v‖V , ‖w‖W ≤ 1}.(3.5.9)

One can use this, (3.5.1), and (3.5.5) to get that

‖T ∗‖op,WV = ‖T‖op,V W .(3.5.10)

The operator T ∗ is called the adjoint of T .
Similarly, the adjoint (T ∗)∗ of T ∗ is a bounded linear mapping from V into

W . One can check that
(T ∗)∗ = T.(3.5.11)

One can also use this to get (3.5.10) from (3.5.8) and its analogue for T ∗.
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Note that

T 7→ T ∗(3.5.12)

is a linear mapping from BL(V,W ) into BL(W,V ) in the real case. In the
complex case, this mapping is conjugate-linear.

Let (Z, 〈·, ·〉Z) be another Hilbert space, which is real or complex, depending
on whether V , W are real or complex. If T1 is a bounded linear mapping from
V into W , and T2 is a bounded linear mapping from W into Z, then their
composition T2 ◦ T1 is a bounded linear mapping from V into Z. Observe that

〈T2(T1(v)), z〉Z = 〈T1(v), T ∗
2 (z)〉W = 〈v, T ∗

1 (T
∗
2 (z))〉Z(3.5.13)

for every v ∈ V and z ∈ Z. This implies that

(T2 ◦ T1)∗ = T ∗
1 ◦ T ∗

2 ,(3.5.14)

as bounded linear mappings from Z into V .
If T is any bounded linear mapping from V intoW , then T ∗◦T is a bounded

linear mapping from V into itself. Note that

〈T ∗(T (u)), v〉V = 〈T (u), T (v)〉W(3.5.15)

for every u, v ∈ V . It follows that T is an isometric linear mapping from V into
W if and only if

〈T ∗(T (u)), v〉V = 〈u, v〉V(3.5.16)

for every u, v ∈ V . One can check that this happens if and only if

T ∗ ◦ T is the identity mapping IV on V.(3.5.17)

If we take u = v in (3.5.15), then we get that

‖T (v)‖2W = 〈T ∗(T (v)), v〉V(3.5.18)

for every v ∈ V . This implies that

‖T (v)‖2V ≤ ‖T ∗(T (v))‖V ‖v‖V ≤ ‖T ∗ ◦ T‖op,V V ‖v‖2V(3.5.19)

for every v ∈ V , using the Cauchy–Schwarz inequality in the first step. It follows
that

‖T‖2op,V W ≤ ‖T ∗ ◦ T‖op,V V .(3.5.20)

It is easy to see that the opposite inequality holds too, so that

‖T‖2op,V W = ‖T ∗ ◦ T‖op,V V .(3.5.21)

This is the C∗ identity for the operator norm of a bounded linear mapping
between Hilbert spaces.
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3.6 Sublinear functions

Let V be a vector space over the real numbers, and let p be a real-valued function
on V . If

p(v + w) ≤ p(v) + p(w)(3.6.1)

for every v, w ∈ V , then p is said to be subadditive on V . If

p(t v) = t p(v)(3.6.2)

for every v ∈ V and nonnegative real number t, then p is said to be homogeneous
of degree 1 on V . Of course, this implies that

p(0) = 0,(3.6.3)

by taking t = 0. If p is both subadditive and homogeneous of degree 1, then p
is said to be sublinear on V .

Let us say that p is symmetric on V if

p(−v) = p(v)(3.6.4)

for every v ∈ V . If p is subadditive on V , then it is easy to see that

p(0) ≥ 0.(3.6.5)

We also have that
p(0) ≤ p(v) + p(−v)(3.6.6)

for every v ∈ V . If p is symmetric on V as well, then we get that

0 ≤ p(0)/2 ≤ p(v)(3.6.7)

for every v ∈ V . Thus a seminorm on V is the same as a symmetric sublinear
function on V .

Note that linear functionals on V are sublinear. More precisely, if p is
sublinear on V , then p is linear on V if and only if

p(−v) = −p(v)(3.6.8)

for every v ∈ V .
Let p1, p2 be real-valued functions on V . If p1, p2 are subadditive on V ,

then it is easy to see that

max(p1, p2) is subadditive on V.(3.6.9)

If p1, p2 are both homogeneous of degree 1, or both symmetric on V , then
max(p1, p2) has the same property.

If p is sublinear on V , then clearly

p(−v) is sublinear on V.(3.6.10)
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It follows that

max(p(v), p(−v)) is a seminorm on V.(3.6.11)

Note that

max(p(v), 0) is sublinear on V(3.6.12)

in this case too.

If p is subadditive on V , then

p(v) ≤ p(w) + p(v − w)(3.6.13)

for every v, w ∈ V . Similarly,

p(w) ≤ p(v) + p(w − v)(3.6.14)

for every v, w ∈ V . It follows that

|p(v)− p(w)| ≤ max(p(v − w), p(w − v))(3.6.15)

for every v, w ∈ V . If p is symmetric on V , then this reduces to

|p(v)− p(w)| ≤ p(v − w)(3.6.16)

for every v, w ∈ V . Of course, the analogous statement for seminorms was
mentioned in Section 1.2.

If p is sublinear on V , then

{v ∈ V : p(v) < r}(3.6.17)

is a convex set in V for every real number r. Similarly,

{v ∈ V : p(v) ≤ r}(3.6.18)

is a convex set in V for every r ∈ R. Note that 0 is an element of (3.6.17)
when r > 0, and an element of (3.6.18) when r ≥ 0. Analogous statements for
seminorms were mentioned in Section 1.2.

If E is any subset of V , then put

−E = {−v : v ∈ E}.(3.6.19)

If

−E = E,(3.6.20)

then E is said to be symmetric about 0 in V . If p is symmetric in V , then
(3.6.17) and (3.6.18) are symmetric about 0 in V for every r ∈ R.
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3.7 Convex cones

Let V be a vector space over the real numbers again. A subset C of V is said to
be a convex cone in V if it satisfies the following two conditions. First, if v ∈ C
and t is a positive real number, then

t v ∈ C.(3.7.1)

Second, if v, w ∈ C, then
v + w ∈ C.(3.7.2)

It is easy to see that

convex cones are convex sets.(3.7.3)

If a subset C of V satisfies (3.7.1) and is convex, then (3.7.2) holds.
Linear subspaces of V are convex cones. If a nonempty convex cone C in V

is symmetric about 0 in V , then

C is a linear subspace of V.(3.7.4)

If C is a convex cone in V , and if

C ∩ (−C)(3.7.5)

is nonempty, then (3.7.5) is a linear subspace of V .
If p is a sublinear real-valued function on V , then

{v ∈ V : p(v) ≤ 0}(3.7.6)

is a convex cone in V . If p is a seminorm on V , then this is the same as

{v ∈ V : p(v) = 0},(3.7.7)

which is a linear subspace of V .
Let C be a nonempty convex cone in V , and let p be a nonnegative real-

valued function on V . If v ∈ V , then put

pC(v) = inf{p(v − w) : w ∈ C}.(3.7.8)

If p(0) = 0, then
pC(v) = 0(3.7.9)

for every v ∈ C. If p is a norm on V , then pC is the same as the distance to C
with respect to the metric associated to C, as in Section 2.11.

If p is homogeneous of degree 1 on V , then one can check that pC is homo-
geneous of degree 1 on V as well. More precisely, one can verify that

pC(t v) = t pC(v)(3.7.10)
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for every v ∈ V and positive real number t. We also have that

pC(0) = 0,(3.7.11)

so that (3.7.10) holds when t = 0 too.
Suppose that p is subadditive on V . If v1, v2 ∈ V and w1, w2 ∈ C, then

pC(v1 + v2) ≤ p(v1 + v2 − w1 − w2) ≤ p(v1 − w1) + p(v2 − w2).(3.7.12)

One can use this to get that

pC(v1 + v2) ≤ pC(v1) + pC(v2).(3.7.13)

3.8 Minkowski functionals

Let V be a vector space over the real numbers, and let E be a subset of V . If
t ∈ R, then put

t E = {t v : v ∈ E}.(3.8.1)

We say that E is starlike about 0 if

t E ⊆ E(3.8.2)

for every t ∈ [0, 1]. Of course, this implies that 0 ∈ E when E 6= ∅. If E is
convex and 0 ∈ E, then E is starlike about 0.

Let us say that a subset A of V is radial at 0 if for every v ∈ V there is a
positive real number r(v) such that

r v ∈ A(3.8.3)

for every r ∈ R with 0 ≤ r ≤ r(v), as on p14 of [105]. Note that this implies that
0 ∈ A. This is a type of “absorbing” property, although that term is used in
slightly different ways as well. A convex set A ⊆ V may be said to be absorbing
if

every v ∈ V is an element of tA for some t > 0,(3.8.4)

as on p24 of [162]. This implies that 0 ∈ A, and that A is radial at 0, which
would also work when A is starlike about 0 instead of convex.

Let p be a real-valued function on V that is homogeneous of degree 1. If
r is a positive real number, then (3.6.17) and (3.6.18) are starlike about 0 and
radial at 0.

Suppose that A ⊆ V satisfies (3.8.4). The corresponding Minkowski func-
tional on V is defined by

ρA(v) = inf{t > 0 : t−1 v ∈ A} = inf{t > 0 : v ∈ tA},(3.8.5)

as on p15 of [105], and p24 of [162]. Clearly

ρA(0) = 0,(3.8.6)
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because 0 ∈ A. It is easy to see that

ρA(r v) = r ρA(v)(3.8.7)

for every v ∈ V and r > 0, so that ρA is homogeneous of degree 1 on V . If A is
symmetric about 0 in V , then ρA is symmetric on V .

Put
B = {v ∈ V : ρA(v) < 1}(3.8.8)

and
C = {v ∈ V : ρA(v) ≤ 1}.(3.8.9)

By construction,
A ⊆ C.(3.8.10)

If A is starlike about 0, then
B ⊆ A.(3.8.11)

If A is convex, then one can check that

ρA is subadditive on V,(3.8.12)

using the argument in Section 1.2.

3.9 Some one-step extensions

Let V be a vector space over the real numbers, and let p be a sublinear real-
valued function on V . Also let V0 be a linear subspace of V , and let λ0 be a
linear functional on V0. Suppose that

λ0(v0) ≤ p(v0)(3.9.1)

for every v0 ∈ V0.
If V0 6= V , then let u1 be an element of V not in V0. Consider

V1 = {v0 + t u1 : v0 ∈ V0, t ∈ R},(3.9.2)

which is the linear subspace of V spanned by V0 and u1. Under these conditions,
there is an extension λ1 of λ0 to a linear functional on V1 such that

λ1(v1) ≤ p(v1)(3.9.3)

for every v1 ∈ V1. This is part of the theorem of Hahn and Banach.
One can check that every element of V1 can be expressed in a unique way as

v0 + t u1(3.9.4)

for some v0 ∈ V0 and t ∈ R, because u1 6∈ V0. If α1 is a real number, then we
can get an extension λ1 of λ0 to a linear functional on V1 by putting

λ1(v0 + t u1) = λ0(v0) + t α1(3.9.5)
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for every v0 ∈ V0 and t ∈ R. In fact, every such extension λ1 of λ0 corresponds
to a unique α1 ∈ R in this way.

Thus we would like to choose α1 so that

λ0(v0) + t α1 ≤ p(v0 + t u1)(3.9.6)

for every v0 ∈ V0 and t ∈ R. This condition holds when t = 0, by (3.9.1). In
order to get that this condition holds when t 6= 0, one can reduce to the cases
where t = ±1, because p is homogeneous of degree 1 on V , and V0 is a linear
subspace of V . This means that it suffices to choose α1 so that

λ0(v0) + α1 ≤ p(v0 + u1)(3.9.7)

and
λ0(v0)− α1 ≤ p(v0 − u1)(3.9.8)

for every v0. Equivalently, we would like to choose α1 so that

λ0(v0)− p(v0 − u1) ≤ α1 ≤ p(w0 + u1)− λ0(w0)(3.9.9)

for every v0, w0 ∈ V0.
Let us check that

λ0(v0)− p(v0 − u1) ≤ p(w0 + u1)− λ0(w0)(3.9.10)

for every v0, w0 ∈ V0. This is the same as saying that

λ0(v0) + λ0(w0) ≤ p(v0 − u1) + p(w0 + u1)(3.9.11)

for all v0, w0 ∈ V0. If v0, w0 ∈ V0, then

λ0(v0) + λ0(w0) = λ0(v0 + w0) ≤ p(v0 + w0)(3.9.12)

≤ p(v0 − u1) + p(w0 + u1).

This uses (3.9.1) in the second step, and the subadditivity of p on V in the third
step. This shows that (3.9.10) holds, which implies that there is an α1 ∈ R such
that (3.9.9) holds.

More precisely,

sup{λ0(v0)− p(v0 − u1) : v0 ∈ V0}(3.9.13)

≤ inf{p(w0 + u1)− λ0(w0) : w0 ∈ V0},

because of (3.9.10). In order to get (3.9.9), one can take any α1 ∈ R such that

sup{λ0(v0)− p(v0 − u1) : v0 ∈ V0}(3.9.14)

≤ α1 ≤ inf{p(w0 + u1)− λ0(w0) : w0 ∈ V0}.

Of course, (3.9.1) is the same as saying that

−λ0(v0) = λ0(−v0) ≤ p(−v0)(3.9.15)
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for every v0 ∈ V0. This means that

−p(−v0) ≤ λ0(v0)(3.9.16)

for every v0 ∈ V0. Thus (3.9.1) implies that

|λ0(v0)| ≤ max(p(v0), p(−v0))(3.9.17)

for every v0 ∈ V0.
Let ‖ · ‖V be a norm on V , and suppose that

p(v) ≤ C ‖v‖V(3.9.18)

for some nonnegatve real number C and every v ∈ V . This implies that

p(−v) ≤ C ‖ − v‖V = C ‖v‖V(3.9.19)

for every v ∈ V as well. It follows that

|p(v)− p(w)| ≤ max(p(v − w), p(w − v)) ≤ C ‖v − w‖V(3.9.20)

for every v, w ∈ V , using (3.6.15) in the first step. In particular, this means
that p is continuous as a real-valued function on V , with respect to the metric
associated to ‖ · ‖V .

Similarly,
|λ0(v0)| ≤ C ‖v0‖V(3.9.21)

for every v0 ∈ V0, by (3.9.17). Under these conditions,

λ0 has a unique extension to a bounded linear functional(3.9.22)

on the closure V0 of V0 in V,

with respect to the metric associated to ‖ · ‖V , as in Section 2.2. This extension
satisfies the analogue of (3.9.1) on V0, because p is continuous on V , as in the
preceding paragraph.

3.10 The Hahn–Banach theorem

Let us continue with the same notation and hypotheses as at the beginning of
the previous section. Under these conditions, the Hahn–Banach theorem states
that there is an extension λ of λ0 to a linear functional on V that satisfies

λ(v) ≤ p(v)(3.10.1)

for every v ∈ V .
If V is spanned by V0 and finitely many additional vectors, then λ can be

obtained by repeating the argument in the previous section finitely many times.
If V is spanned by V0 and a sequence of additional vectors, then one can continue
to repeat the argument to get λ.
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Otherwise, there is an argument based on the axiom of choice using Zorn’s
lemma or Hausdorff’s maximality principle to get a maximal extension of λ0
to a linear subspace of V on which the extension is less than or equal to p.
The argument in the previous section implies that such a maximal extension is
defined on all of V .

Let ‖ · ‖V be a norm on V again, and suppose that p is less than or equal to
a nonnegative real number C times ‖ · ‖V on V , as in (3.9.18). In this case, it
suffices to find an extension of λ0 to a dense linear subspace of V , with respect
to the metric associated to ‖ · ‖V , on which the extension is less than or equal
to p, as in the previous section. If the linear span of V0 and a sequence of
additional vectors is dense in V , then such an extension of λ0 can be obtained
by repeating the argument in the previous section, as before.

If p is a seminorm on V , then (3.9.1) is the same as saying that

|λ0(v0)| ≤ p(v0)(3.10.2)

for every v0 ∈ V0, as in the previous section. Similarly, (3.10.1) is the same as
saying that

|λ(v)| ≤ p(v)(3.10.3)

for every v ∈ V . This corresponds to Theorem 3.3 on p57 of [162] in the real
case.

In particular, we can take

p(v) = C ‖v‖V(3.10.4)

on V for some C ≥ 0. Using this, we get that the Hahn–Banach theorem implies
that if λ0 is a bounded linear functional on V0 with respect to the restriction
of ‖ · ‖V to V0, then λ0 has an extension to a bounded linear functional on V ,
with the same dual norm with respect to ‖ · ‖V .

Let u0 ∈ V with u0 6= 0 be given, and let V0 be the linear span of u0 in V .
Consider the linear functional λ0 defined on V0 by

λ0(t u0) = t ‖u0‖V(3.10.5)

for every t ∈ R. The Hahn–Banach theorem implies that λ0 has an extension to
a bounded linear functional on V with dual norm equal to 1. This corresponds
to the corollary on p58 of [162] in the real case.

LetW0 be a closed linear subspace of V , with respect to the metric associated
to ‖ · ‖V , and suppose that u0 ∈ V \W0. Thus there is a positive real number
r such that

‖u0 − w0‖V ≥ r(3.10.6)

for every w0 ∈ W0. Let V0 be the linear subspace of V spanned by W0 and u0,
so that every element of V0 can be expressed in a unique way as

w0 + t u0(3.10.7)

for some w0 ∈ W0 and t ∈ R. This uses the fact that t u0 ∈ W0 only when
t = 0.
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Consider the linear functional λ0 defined on V0 by

λ0(w0 + t u0) = t(3.10.8)

for every w0 ∈W0 and t ∈ R. One can check that

|λ0(w0 + t u0)| = |t| ≤ r−1 ‖w0 + t u0‖V(3.10.9)

for every w0 ∈ W0 and t ∈ R, using (3.10.6) in the second step. The Hahn–
Banach theorem implies that λ0 can be extended to a bounded linear functional
λ on V , with dual norm less than or equal to 1/r. Note that λ(u0) = 1, and that
λ(w0) = 0 for every w0 ∈ W0. This corresponds to a simplification of Theorem
3.5 on p59 of [162] in the real case.

3.11 Some separation results

Let V be a vector space over the real numbers, and let ‖ · ‖V be a norm on
V . Also let A be a nonempty convex open subset of V , with respect to the
metric associated to ‖ · ‖V , and let v be an element of V not in A. Under these
conditions, there is a bounded linear functional λ on V such that

λ(a) < λ(v)(3.11.1)

for every a ∈ A. This corresponds to a simplification of part (a) of Theorem 3.4
on p58 of [162] in the real case.

To see this, we start by reducing to the case where 0 ∈ A, which we can do
using a translation on V . It is easy to see that A is radial at 0, or equivalently
that A has the absorbing property mentioned in Section 3.8, because A is an
open set in V . Let ρA be the Minkowski functional on V associated to A, as in
Section 3.8. Remember that ρA is sublinear on V under these conditions.

Let V0 be the linear subspace of V spanned by v, and let λ0 be the linear
functional on V0 defined by

λ0(t v) = t ρA(v)(3.11.2)

for every t ∈ R. Observe that

λ0(t v) ≤ ρA(t v)(3.11.3)

for every t ∈ R, with equality when t ≥ 0. More precisely, if t < 0, then the
right side is greater than or equal to 0, and the left side is less than or equal to
0. The Hahn–Banach theorem implies that there is an extension λ of λ0 to a
linear functional on V that satisifes

λ(w) ≤ ρA(w)(3.11.4)

for every w ∈ V .
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It is easy to see that
ρA(v) ≥ 1,(3.11.5)

because v 6∈ A, by hypothesis. If a ∈ A, then one can check that

ρA(a) < 1,(3.11.6)

because A is an open set in V . This implies (3.11.1).
Because A is an open set in V that contains 0, there is a positive real number

r such that a ∈ A when a ∈ V and ‖a‖V < r. Using this, one can verify that

ρA(w) ≤ r−1 ‖w‖V(3.11.7)

for every w ∈ V . It follows from this and (3.11.4) that λ is a bounded linear
functional on V , as in Section 3.9.

If E1, E2 ⊆ V , then put

E1 + E2 = {w1 + w2 : w1 ∈ E1, w2 ∈ E2}.(3.11.8)

It is easy to see that this is an open set in V , with respect to the metric associated
to ‖ · ‖V , when E1 or E2 is an open set. If E1 is an open set in V , for instance,
then E1+E2 is the same as the union of the translates of E1 by elements of E2,
and each of these translates of E1 is an open set in V . If E1 and E2 are both
convex sets in V , then E1 + E2 is convex in V as well.

Now let B be a nonempty closed convex set in V , with respect to the metric
associated to ‖ · ‖V , and suppose that v 6∈ B. Thus there is a positive real
number r1 such that

‖v − b‖V ≥ r1(3.11.9)

for every b ∈ B. Put
A1 = B +B(0, r1),(3.11.10)

where B(0, r1) is the usual open ball in V centered at 0 with radius r1 with
respect to the metric associated to ‖ · ‖V . This is a convex open subset of V , as
in the preceding paragraph. We also have that v 6∈ A1, by construction.

It follows that there is a bounded linear functional λ on V such that

λ(a1) < λ(v)(3.11.11)

for every a1 ∈ A1, as before. Equivalently, this means that

λ(b) + λ(w) = λ(b+ w) < λ(v)(3.11.12)

for every b ∈ B and w ∈ V with ‖w‖V < r1. Of course, λ 6≡ 0 on V , so that

λ(w) > 0(3.11.13)

for some w ∈ V with ‖w‖V < r1. Using this, we get that

sup
b∈B

λ(b) ≤ λ(v)− λ(w) < λ(v).(3.11.14)

This corresponds to a simplification of part (b) of Theorem 3.4 on p58 of [162]
in the real case.
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3.12 Complex linear functionals

Let V be a vector space over the complex numbers, and let VR be V considered
as a vector space over the real numbers, as before. If λ is a linear functional on
V , then

µ = Reλ(3.12.1)

is a linear functional on VR. It is easy to see that λ is uniquely determined by
µ. More precisely,

λ(v) = µ(v)− i µ(i v)(3.12.2)

for every v ∈ V , as in (1) on p56 of [162]. Conversely, if µ is a linear functional
on VR, then one can check that (3.12.2) defines a linear functional on V , as in
[162].

Let ‖ · ‖V be a norm on V , which may also be considered as a norm on VR.
It is easy to see that λ is bounded as a linear functional on V with respect to
‖ · ‖V if and only if µ is bounded as a linear functional on VR with respect to
‖ · ‖V . In fact, the corresponding dual norms of λ and µ are the same, which is
to say that

‖λ‖V ′ = ‖µ‖V ′
R
.(3.12.3)

Indeed, if v ∈ V , then

|λ(v)| = sup{Re(tλ(v)) : t ∈ C, |t| = 1}(3.12.4)

= sup{µ(t v) : t ∈ C, |t| = 1}.

Let N be a seminorm on V , which may be considered as a seminorm on VR
too. Also let V0 be a linear subspace of V , and let λ0 be a linear functional on
V0 such that

|λ0(v0)| ≤ N(v0)(3.12.5)

for every v0 ∈ V0. Thus µ0 = Reλ0 is a linear functional on V0, as a linear
subspace of VR, with

µ0(v0) ≤ N(v0)(3.12.6)

for every v0 ∈ V0. It follows that µ0 can be extended to a linear functional µ on
VR such that

µ(v) ≤ N(v)(3.12.7)

for every v ∈ VR, as in Section 3.10. Let λ be the linear functional on V whose
real part is equal to µ, as before. Observe that

|λ(v)| ≤ N(v)(3.12.8)

for every v ∈ V , because of (3.12.4). We also have that λ = λ0 on V0, be-
cause their real parts are the same on V0, by construction. This corresponds to
Theorem 3.3 on p57 of [162] in the complex case.

If u0 ∈ V and u0 6= 0, then there is a bounded linear functional λ on V such
that

λ(u0) = ‖u0‖V and ‖λ‖V ′ = 1.(3.12.9)
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This can be obtained from the remarks in the preceding paragraph in the same
way as in Section 3.10. This corresponds to the corollary on p58 of [162] in the
complex case.

Similarly, letW0 be a closed linear subapace of V , with respect to the metric
associated to ‖ ·‖V , and let u0 be an element of V \W0. Under these conditions,
there is a bounded linear function λ on V such that

λ(u0) = 1 and λ(w0) = 0 for every w0 ∈W0,(3.12.10)

as in Section 3.10 again. This corresponds to a simplification of Theorem 3.5
on p59 of [162] in the complex case.

3.13 Dual linear mappings

Let V , W be vector spaces, both real or both complex. Also let T be a linear
mapping from V into W . If λ is a linear functional on W , then

λ ◦ T(3.13.1)

is a linear functional on V . Put

T alg(λ) = λ ◦ T,(3.13.2)

which defines a linear mapping from W alg into V alg. This is the dual linear
mapping associated to T between the corresponding algebraic dual spaces.

Observe that
T 7→ T alg(3.13.3)

defines a linear mapping from L(V,W ) into L(W alg, V alg). Let Z be another
vector space over the real or complex numbers, depending on whether V , W are
real or complex. If T1 is a linear mapping from V into W , and T2 is a linear
mapping from W into Z, then one can check that

(T2 ◦ T1)alg = T alg
1 ◦ T alg

2 ,(3.13.4)

as linear mappings from Zalg into V alg. More precisely, if µ ∈ Zalg, then

((T2 ◦ T1)alg)(µ) = µ ◦ (T2 ◦ T1) = (µ ◦ T2) ◦ T1 = T alg
1 (T alg

2 (µ)).(3.13.5)

Let ‖ · ‖V , ‖ · ‖W be norms on V , W , respectively. If T is a bounded linear
mapping from V into W , and λ is a bounded linear functional on W , then
(3.13.1) is a bounded linear functional on V . Put

T ′(λ) = λ ◦ T,(3.13.6)

which defines a linear mapping from W ′ into V ′. Of course, this is the same as
the restriction of T alg to W ′. This is the dual linear mapping of T between the
dual spaces W ′, V ′ of W , V associated to the norms ‖ · ‖W , ‖ · ‖V , respectively.
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Note that

‖T ′(λ)‖V ′ ≤ ‖T‖op,V W ‖λ‖W ′(3.13.7)

for every λ ∈ W ′. This implies that T ′ is a bounded linear mapping from W ′

into V ′, with respect to the dual norms corresponding to ‖ · ‖W , ‖ · ‖V , with

‖T ′‖op,W ′V ′ ≤ ‖T‖op,V W .(3.13.8)

We also have that

T 7→ T ′(3.13.9)

is a linear mapping from BL(V,W ) into BL(W ′, V ′).

If v ∈ V and λ ∈W ′, then

|λ(T (v))| = |(T ′(λ))(v)| ≤ ‖T ′(λ)‖V ′ ‖v‖V(3.13.10)

≤ ‖T ′‖op.W ′V ′ ‖λ‖W ′ ‖v‖V .

This implies that

‖T (v)‖W ≤ ‖T ′‖op,W ′V ′ ‖v‖V ,(3.13.11)

because of (3.12.9) and its analogue in the real case. It follows that

‖T‖op,VW ≤ ‖T ′‖op,W ′V ′ .(3.13.12)

This means that

‖T ′‖op,W ′V ′ = ‖T‖op,V W ,(3.13.13)

because of (3.13.8).

Suppose that T is an isometric linear mapping from V into W , as in Section
2.10. In particular, this implies that the operator norm of T is equal to 1, at
least if V 6= {0}. If V is a linear subspace of W , for instance, and ‖ · ‖V is the
same as the restriction of ‖ · ‖W to V , then one can take T to be the obvious
inclusion mapping from W into V . This means that for each v ∈ V ,

T (v) = v,(3.13.14)

considered as an element of W .

In this case, T ′ is the obvious restriction mapping from W ′ into V ′, which
sends λ ∈W ′ to its restriction to V , as an element of V ′. Note that

T ′(W ′) = V ′,(3.13.15)

by the Hahn–Banach theorem. If T is any isometric linear mapping into W ,
then it is easy to see that T ′ is surjective, for essentially the same reason.
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3.14 Second dual spaces

Let V be a vector space over the real or complex numbers. Consider the algebraic
dual

(V alg)alg(3.14.1)

of the algebraic dual V alg of V . If v ∈ V and λ ∈ V alg, then put

L̂v(λ) = λ(v).(3.14.2)

This defines a linear functional on V alg, and thus an element of (V alg)alg. In
fact,

v 7→ L̂v(3.14.3)

is a linear mapping from V into (V alg)alg.
If v 6= 0, then it is well known that there is a λ ∈ V alg such that λ(v) 6= 0.

This means that L̂v 6= 0, so that (3.14.3) is one-to-one. If V has finite dimension,
then V alg has the same dimension, by standard arguments. This implies that
(V alg)alg has the same dimension in this case, using the same argument. It
follows that (3.14.3) maps V onto (V alg)alg under these conditions.

Let ‖ · ‖V be a norm on V , so that the corresponding dual norm ‖ · ‖V ′ can
be defined on the dual space V ′ of bounded linear functionals on V in the usual
way. Thus the dual space

V ′′ = (V ′)′(3.14.4)

of bounded linear functionals on V ′ can be defined in the usual way too, with
the dual norm

‖ · ‖V ′′ = ‖ · ‖(V ′)′(3.14.5)

associated to ‖ · ‖V ′ .
If v ∈ V and λ ∈ V ′, then put

Lv(λ) = λ(v).(3.14.6)

Equivalently, Lv is the same as the restriction of L̂v to V ′. Of course,

|Lv(λ)| = |λ(v)| ≤ ‖v‖V ‖λ‖V ′ .(3.14.7)

This implies that Lv is a bounded linear functional on V ′, with

‖Lv‖V ′′ ≤ ‖v‖V .(3.14.8)

More precisely,
‖Lv‖V ′′ = ‖v‖V ,(3.14.9)

because of (3.12.9) and its analogue in the real case.
Note that

v 7→ Lv(3.14.10)

is a linear mapping from V into V ′′, as before. This mapping is one-to-one,
because of (3.14.9).
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If (3.14.10) maps V onto V ′′, then V is said to be reflexive. This can only
happen when V is a Banach space, because V ′′ is automatically a Banach space.

Of course,

{Lv : v ∈ V }(3.14.11)

is a linear subspace of V ′′. If V is a Banach space, then (3.14.11) is a closed
set in V ′′, with respect to the metric associated to ‖ · ‖V ′′ . This follows from
(3.14.9), and a remark about isometries in Section 1.15.

3.15 Second duals of linear mappings

Let V , W be vector spaces, both real or both complex, and let T be a lin-
ear mapping from V into W . Remember that T alg is the dual mapping from
W alg into V alg corresponding to T , as in Section 3.13. Using this, we get the
corresponding second dual mapping

(T alg)alg(3.15.1)

from (V alg)alg into (W alg)alg. Note that

T 7→ (T alg)alg(3.15.2)

is a linear mapping from L(V,W ) into L((V alg)alg, (W alg)alg), because of the
analogous statement in Section 3.13.

If v ∈ V , then let L̂V
v = L̂v ∈ (V alg)alg be as in (3.14.2). Similarly, if w ∈W

and µ ∈W alg, then

L̂W
w (µ) = µ(w)(3.15.3)

defines an element of (W alg)alg. Remember that v 7→ L̂V
v and w 7→ L̂W

w define
linear mappings from V and W into (V alg)alg and (W alg)alg, respectively, as in
the previous section.

Let us check that

(T alg)alg(L̂V
v ) = L̂W

T (v).(3.15.4)

Of course,

(T alg)alg(L̂V
v ) = L̂V

v ◦ T alg,(3.15.5)

by construction. If µ ∈W alg, then

(L̂V
v ◦ T alg)(µ) = L̂V

v (T
alg(µ)) = L̂V

v (µ ◦ T ) = µ(T (v)) = L̂W
T (v)(µ).(3.15.6)

This means that

L̂V
v ◦ T alg = L̂W

T (v),(3.15.7)

so that (3.15.4) holds.
Let ‖ · ‖V , ‖ · ‖W be norms on V , W , respectively, and suppose now that T

is a bounded linear mapping from V into W . Using the dual mapping T ′ from
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W ′ into V ′, we get the second dual mapping T ′′ = (T ′)′ from V ′′ into W ′′. We
also have that

‖T ′′‖op,V ′′W ′′ = ‖T ′‖op,W ′V ′ = ‖T‖op,VW ,(3.15.8)

by (3.13.13). As before,
T 7→ T ′′(3.15.9)

is a linear mapping from BL(V,W ) into BL(V ′′,W ′′), because of the analogous
statement in Section 3.13.

If v ∈ V , then let LV
v = Lv ∈ V ′′ be as in (3.14.6). Similarly, if w ∈ W and

µ ∈W ′, then
LW
w (µ) = µ(w)(3.15.10)

defines an element of W ′′, which is the same as the restriction of L̂W
w to W ′. Of

course, v 7→ LV
v and w 7→ LW

w are linear mappings from V and W into V ′′ and
W ′′, respectively, as before. Note that

LV
v ◦ T ′ = LW

T (v)(3.15.11)

on W ′, as in (3.15.7). This implies that

T ′′(LV
v ) = LV

v ◦ T ′ = LW
T (v),(3.15.12)

as in (3.15.4).



Chapter 4

Uniform boundedness and
related topics

4.1 The Baire category theorem

Let X be a metric space, or a topological space, and let E be a subset of X. As
usual, we say that E is dense in X if every element of X is an element of E, a
limit point of E, or both. Equivalently, this means that

the closure E of E in X is equal to X.(4.1.1)

It is easy to see that E is dense in X if and only if for every nonempty open
subset V of X, we have that

E ∩ V 6= ∅.(4.1.2)

Sometimes this is used as the definition of a dense set, particularly in arbitrary
topological spaces.

If E is a dense set in X and U is a dense open set in X, then one can use
this characterization of density to check that

E ∩ U is dense in X.(4.1.3)

If U1, . . . , Un are finitely many dense open sets in X, then one can use the
previous statement to get that

n⋂
j=1

Uj is a dense open set in X(4.1.4)

too. If U1, U2, U3, . . . is a sequence of dense open sets in X, then the Baire
category theorem gives conditions under which

∞⋂
j=1

Uj is dense in X.(4.1.5)

77
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More precisely, this holds when X is a complete metric space, and also when X
is a locally compact Hausdorff topological space.

It is easy to see that A ⊆ X has empty interior if and only if

X \A is dense in X.(4.1.6)

Thus A is a closed set in X with empty interior if and only if

X \A is a dense open set in X.(4.1.7)

If A1, . . . , An are finitely many closed sets in X with empty interior, then it
follows that

n⋃
j=1

Aj is a closed set in X with empty interior(4.1.8)

as well. The conclusion of the Baire category theorem is equivalent to saying
that if A1, A2, A3, . . . is a sequence of closed sets in X with empty interior, then

∞⋃
j=1

Aj has empty interior in X.(4.1.9)

A subset A of X is said to be nowhere dense in X if

the closure A of A in X has empty interior.(4.1.10)

If A1, . . . , An are finitely many nowhere dense sets in X, then

n⋃
j=1

Aj is nowhere dense in X.(4.1.11)

This uses the well-known fact that( n⋃
j=1

Aj

)
=

n⋃
j=1

Aj .(4.1.12)

A subset E of X is said to be of first category or meager in X if E can be
expressed as

E =

∞⋃
j=1

Aj ,(4.1.13)

where A1, A2, A3, . . . is a sequence of nowehere dense sets in X. Otherwise, E
is said to be of second category or non-meager in X.

The conclusion of the Baire category theorem is the same as saying that if
E is of first category in X, then

the interior of E is empty.(4.1.14)

This means that a subset of X with nonempty interior is of second category.
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4.2 Pointwise and uniform boundedness

Let X be a nonempty set, let (Y, dY ) be a nonempty metric space, and let E be
a nonempty collection of mappings from X into Y . If x ∈ X, then put

E(x) = {f(x) : f ∈ E}.(4.2.1)

We say that E is pointwise bounded on a subset A of X if for each x ∈ A,

E(x) is a bounded subset of Y,(4.2.2)

with respect to dY .
Similarly, put

E(A) = {f(x) : x ∈ A, f ∈ E}(4.2.3)

for each A ⊆ X. If this is a bounded set in Y , then we say that E is uniformly
bounded on A. Of course, this implies that E is pointwise bounded on A.

Suppose for the moment that Y is the real line, equipped with the standard
Euclidean metric. If n is a positive integer, then put

En = {x ∈ X : |f(x)| ≤ n for every f ∈ E}.(4.2.4)

Thus
∞⋃

n=1

En = {x ∈ X : E(x) is bounded in R}.(4.2.5)

Similarly, E is uniformly bounded on A ⊆ X if and only if A ⊆ En for some n.
Now let (X, dX) be a nonempty metric space, or even a topological space.

Suppose that each f ∈ E is a continuous real-valued function on X. This implies
that

En is a closed set in X(4.2.6)

for each n. If (4.2.5) is of second category in X, then

En has nonempty interior(4.2.7)

for some n. This means that

E is uniformly bounded on a nonempty open subset of X.(4.2.8)

Let Y be any nonempty metric space again, and let y0 be an element of Y .
Remember that dY (y, y0) is Lipschitz with constant 1 as a function of y ∈ Y ,
as in Section 2.1. If f is a continuous mapping from X into Y , then it follows
that

F (x) = dY (f(x), y0)(4.2.9)

is a continuous real-valued function on X.
Let E0 be the collection of real-valued functions on X of the form (4.2.9),

with f ∈ E . If x ∈ X, then it is easy to see that E(x) is a bounded subset of Y
if and only if

E0(x) is a bounded set in R.(4.2.10)
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Similarly, if A ⊆ X, then

E(A) is bounded in Y(4.2.11)

if and only if

E0(A) is bounded in R.(4.2.12)

If the set of x ∈ X such that E0(x) is bounded in R is of second category in
X, then

E0 is uniformly bounded on a nonempty open subset of X,(4.2.13)

as before. This means that if the set of x ∈ X such that E(x) is bounded in Y
is of second category in X, then E is uniformly bounded on a nonempty open
subset of X.

4.3 The Banach–Steinhaus theorem

Let V , W be vector spaces, both real or both complex, and with norms ‖ · ‖V ,
‖ · ‖W , respectively. Also let E be a collection of bounded linear mappings from
V into W . If v ∈ V , then put

E(v) = {T (v) : T ∈ E},(4.3.1)

as in the previous section.

Suppose that

{v ∈ V : E(v) is bounded in W}(4.3.2)

is of second category in V , using the metrics on V , W associated to the norms.
Note that this holds when V is a Banach space, and (4.3.2) is equal to V . This
implies that E is uniformly bounded on a nonempty open subset of V , as before.

Equivalently, this means that E is uniformly bounded on an open ball in V
of positive radius. One can reduce to the case where the ball is centered at 0,
using linearity of the elements of E . Similarly, one can reduce to the case where
the radius of the ball is one, using linearity.

It follows that the operator norms of the elements of E are bounded, so that

‖T‖op,V W ≤ C(4.3.3)

for some nonnegative real number C and every T ∈ E . This is the Banach–
Steinhaus theorem, which is also known as the uniform boundedness principle.
Note that this condition implies that E is pointwise bounded on V , and uniformly
bounded on bounded subsets of V .

One may also consider (4.3.3) as an equicontinuity property of E . It is the
same as saying that each T ∈ E is Lipschitz with constant C as a mapping from
V into W , with respect to the metrics associated to their norms.
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4.4 Pointwise convergence

Let V , W be vector spaces, both real or both complex, with norms ‖·‖V , ‖·‖W ,
respectively. Also let {Tj}∞j=1 be a sequence of bounded linear mappings from
V into W . Consider

{v ∈ V : {Tj(v)}∞j=1 is a bounded sequence in W}.(4.4.1)

It is easy to see that this is a linear subspace of V . If (4.4.1) is of second
category in V , with respect to the metric associated to ‖ · ‖V , then it follows
that {Tj}∞j=1 is bounded with respect to the operator norm, by the Banach–
Steinhaus theorem.

Similarly, consider

{v ∈ V : {Tj(v)}∞j=1 is a Cauchy sequence in W}.(4.4.2)

If W is a Banach space, then this is the same as

{v ∈ V : {Tj(v)}∞j=1 converges in W}.(4.4.3)

It is well known and easy to see that Cauchy sequences in metric spaces are
bounded, so that (4.4.2) is contained in (4.4.1). Convergent sequences in metric
spaces are Cauchy sequences, so that (4.4.3) is contained in (4.4.2). Note that
(4.4.2) and (4.4.3) are linear subspaces of V .

If v ∈ V is an element of (4.4.3), then put

T (v) = lim
j→∞

Tj(v).(4.4.4)

This defines a linear mapping from (4.4.3) into W .
Suppose that {Tj}∞j=1 is bounded with respect to the operator norm, so that

‖Tj‖op,V W ≤ C(4.4.5)

for some nonnegative real number C and each j ≥ 1. In this case, one can check
that (4.4.2) is a closed set in V , with respect to the metric associated to ‖ · ‖V .
In particular, if (4.4.2) is dense in V , then it follows that (4.4.2) is equal to V .

Suppose for the moment that T is any linear mapping from V into W .
Consider

{v ∈ V : {Tj(v)}∞j=1 converges to T (v) in W}.(4.4.6)

This is another linear subspace of V . If {Tj}∞j=1 is bounded with respect to the
operator norm, and T is a bounded linear mapping from V into W , then one
can verify that (4.4.6) is a closed set in V , with respect to the metric associated
to ‖ · ‖V .

Suppose again that {Tj}∞j=1 is bounded with respect to the operator norm,
so that (4.4.5) holds for some C ≥ 0 and each j. Equivalently, this means that

‖Tj(v)‖W ≤ C ‖v‖V(4.4.7)
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for each v ∈ V and j ≥ 1. Suppose also that (4.4.3) is equal to V , so that (4.4.4)
defines a linear mapping from V into W . Under these conditions, we have that

‖T (v)‖W ≤ C ‖v‖V(4.4.8)

for every v ∈ V . This is the same as saying that T is bounded as a linear
mapping from V into W , with ‖T‖op,V W ≤ C.

Of course, if {Tj}∞j=1 converges to a bounded linear mapping T from V into
W with respect to the metric associated to the operator norm, then {Tj}∞j=1

is bounded with respect to the operator norm, and {Tj}∞j=1 converges to T
pointwise on V . Pointwise convergence of {Tj}∞j=1 to a bounded linear mapping
T from V intoW is equivalent to the convergence of {Tj}∞j=1 to T with respect to
the strong operator topology on the space BL(V,W ) of bounded linear mappings
from V into W . We shall not discuss this topology in detail for the moment.

4.5 A sequential compactness theorem

Let V be a vector space over the real or complex numbers with a norm ‖·‖V , and
let V ′ be the dual of V with respect to ‖ · ‖V , as usual. Pointwise convergence
of a sequence of bounded linear functionals {λj}∞j=1 on V to another bounded
linear functional λ on V is equivalent to the convergence of {λj}∞j=1 to λ with
respect to the weak∗ topology on V ′. This may be described as the weakest
topology on V ′ such that

λ 7→ λ(v)(4.5.1)

is continuous for every v ∈ V . This corresponds to taking W = R or C, as
appropriate, in the previous section, using the standard absolute value function
as the norm.

This terminology is related to the common use of V ∗ for the dual of V
with respect to ‖ · ‖V , instead of V ′. The notation V ′ is being used here to be
consistent with the notation T ′ for the dual of a bounded linear mapping T ,
as compared to the notation T ∗ for the adjoint of a bounded linear mapping T
between Hilbert spaces.

Let {λj}∞j=1 be a bounded sequence in V ′ with respect to the dual norm
‖ · ‖V ′ . If v ∈ V , then {λj(v)}∞j=1 is a bounded sequence of real or com-
plex numbers, as appropriate, and there is a subsequence of {λj(v)}∞j=1 that
converges, by a well-known result. Let E be a subset of V with only finitely
or countably many elements. Under these conditions, there is a subsequence
{λjl}∞l=1 of {λj}∞j=1 such that

{λjl(v)}∞l=1 converges in R or C,(4.5.2)

as appropriate, for every v ∈ E. This can be obtained from the previous state-
ment and standard arguments.

It follows that (4.5.2) holds for every element v of the linear span of E in
V , by linearity. In fact, (4.5.2) holds for every element v of the closure of the
linear span of E in V , with respect to the metric associated to ‖ · ‖V , as in the
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previous section. Suppose now that the linear span of E is dense in V , so that
(4.5.2) holds for every v ∈ V . This means that

{λjl}∞l=1 converges pointwise to a bounded linear functional on V,(4.5.3)

as before. Remember that there is a subset E of V with these properties exactly
when V is separable with respect to the metric associated to ‖·‖V , as in Section
1.14.

The Banach–Alaoglu theorem states that

the closed unit ball in V ′ is compact(4.5.4)

with respect to the weak∗ topology.

The remarks in the previous paragraphs correspond to a variant of this, namely,
the sequential compactness of the closed unit ball in V ′ with respect to the
weak∗ topology when V is separable. Of course, the compactness or sequential
compactness of the closed unit ball in V ′ with respect to the weak∗ topology
implies the analogous property of any closed ball in V ′. If V is separable, then
it is not too difficult to show that the topology induced on the closed unit ball in
V ′ by the weak∗ topology is determined by a metric. In this case, compactness
and sequential compactness of the closed unit ball in V ′ with respect to the
weak∗ topology are the same.

4.6 A criterion for density

Let W be a vector space over the real or complex numbers with a norm ‖ · ‖W ,
and let W0 be a linear subspace of W . Suppose that there is a real number a,
0 ≤ a < 1, such that for every w ∈W there is a w0 ∈W0 with

‖w − w0‖W ≤ a‖w‖W .(4.6.1)

It is not too difficult to show that W0 is dense in W with respect to the metric
associated to ‖ · ‖W . More precisely, one can use the same condition with w
replaced by w − w0 to get a w1 ∈W0 such that

‖w − w0 − w1‖W ≤ a ‖w − w0‖W ≤ a2 ‖w‖W .(4.6.2)

Continuing in this way, we get that w is in the closure of W0 in W .
Let 0 ≤ a < 1 be given, and let Ea be a subset of W such that for every

u ∈W with ‖u‖W = 1 there is a u0 ∈ Ea with

‖u− u0‖W ≤ a.(4.6.3)

Let W0 be the linear span of Ea in W , which may be interpreted as being {0}
when W = {0}. It is easy to see that W0 satisfies the condition mentioned in
the preceding paragraph. This implies that W0 is dense in W , as before.

If W0 is a finite-dimensional linear subspace of W , then W0 is complete with
respect to the metric associated to the restriction of ‖ · ‖W to W0, as in Section
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1.11. This implies that W0 is a closed set in W , with respect to the metric
associated to ‖ · ‖W , as in Section 1.6. If W0 is the linear span of a subset Ea

of W as in the preceding paragraph, and if Ea has only finitely many elements,
then W0 has finite dimension, and it follows that W0 = W . In particular, this
means that

W has finite dimension(4.6.4)

under these conditions.
A subset A of a metric space X is said to be totally bounded if for every

r > 0, A can be covered by finitely many balls of radius r. It is easy to see
that compact subsets of X are totally bounded. If the closed unit sphere in W
is totally bounded with respect to the metric associated to ‖ · ‖W , then (4.6.4)
holds, as before.

4.7 Pointwise convergence in ℓq spaces

Let X be a nonempty set, and let q be a positive extended real number. Suppose
that {gj}∞j=1 is a bounded sequence in ℓq(X,R) or ℓq(X,C), so that

‖gj‖q ≤ C(4.7.1)

for some nonnegative real number C and each j ≥ 1. Suppose also that {gj}∞j=1

converges pointwise to a real or complex-valued function g on X, as appropriate.
Under these conditions, we have that g ∈ ℓq(X,R) or ℓq(X,C), as appropriate,
with

‖g‖q ≤ C.(4.7.2)

More precisely, if q = +∞, then (4.7.1) says that

|gj(x)| ≤ C(4.7.3)

for each x ∈ X and j ≥ 1. This implies that

|g(x)| ≤ C(4.7.4)

for every x ∈ X, so that (4.7.2) holds. If q < ∞, then (4.7.1) is the same as
saying that ∑

x∈X

|gj(x)|q ≤ Cq(4.7.5)

for each j. It follows that ∑
x∈X

|g(x)|q ≤ Cq,(4.7.6)

as in Section 2.4.
Let {gj}∞j=1 be a bounded sequence in ℓq(X,R) or ℓq(X,C) again. If x ∈ X,

then {gj(x)}∞j=1 is a bounded sequence of real or complex numbers. If A ⊆ X
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has only finitely or countably many elements, then it follows that there is a
subsequence {gjl}∞l=1 of {gj}∞j=1 such that

{gjl(x)}∞l=1 converges in R or C,(4.7.7)

as appropriate, for every x ∈ A. This uses the same type of argument as for
(4.5.2). Of course, if X has only finitely or countably many elements, then one
can simply take A = X.

If q <∞, then the support of gj has only finitely or countably many elements
for each j. This implies that the union of the supports of the gj ’s has only finitely
or countably many elements as well. If we take

A =

∞⋃
j=1

supp gj ,(4.7.8)

then we get a subsequence {gjl}∞l=1 of {gj}∞j=1 such that (4.7.7) holds for every
x ∈ A, as before. In this case, it follows that (4.7.7) holds for every x ∈ X.

The space of all real or complex-valued functions on X is the same as the
Cartesian product of a family of copies of R or C, as appropriate, indexed by
X. Let us consider the corresponding product topology on this space, using
the standard topology on each factor of R or C. Closed balls in ℓ∞(X,R) or
ℓ∞(X,C) are compact sets with respect to the product topology, by Tychonoff’s
theorem. If q <∞, then one can check that closed balls in ℓq(X,R) or ℓq(X,C)
are closed sets with respect to the product topology. This implies that they are
compact sets with respect to the product topology as well, because closed sets
contained in compact sets are compact.

4.8 Weak∗ convergence in ℓq spaces

Let X be a nonempty set, and let 1 ≤ p, q ≤ ∞ be conjugate exponents, so that
1/p+1/q = 1. Also let {gj}∞j=1 be a bounded sequence in ℓq(X,R) or ℓq(X,C),
so that (4.7.1) holds for some C ≥ 0 and all j ≥ 1. Note that

λgj (f) =
∑
x∈X

f(x) gj(x)(4.8.1)

defines a bounded linear functional on ℓp(X,R) or ℓp(X,C), as appropriate, for
each j, with dual norm equal to ‖gj‖q, as in Sections 3.2, 3.3, and 3.4.

Suppose that {gj}∞j=1 converges pointwise to a real or complex-valued func-
tion g on X, as appropriate. Thus g ∈ ℓq(X,R) or ℓq(X,C), as appropriate, as
in the previous section, so that

λg(f) =
∑
x∈X

f(x) g(x)(4.8.2)

defines a bounded linear functional on ℓp(X,R) or ℓp(X,C), as appropriate. If
f has finite support in X, then it is easy to see that

lim
j→∞

λgj (f) = λg(f).(4.8.3)
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The set of f ∈ ℓp(X,R) or ℓp(X,C), as appropriate, such that (4.8.3) holds
is a closed set with respect to the metric associated to the ℓp norm, as in Section
4.4. If q > 1, so that p <∞, then it follows that (4.8.3) holds for all f ∈ ℓp(X,R)
or ℓp(X,C), as appropriate. This uses the fact that c00(X,R), c00(X,C) are
dense in ℓp(X,R), ℓp(X,C), respectively, when p <∞, as in Section 2.6.

If q = 1, then (4.8.1) and (4.8.2) may also be considered as bounded lin-
ear functionals on c0(X,R) or c0(X,C), as appropriate, with respect to the
supremum norm, as in Section 3.3. In this case, (4.8.3) holds for all real or
complex-valued functions f on X, as appropriate, that vanish at infinity. This
is because c00(X,R), c00(X,C) are dense in c0(X,R), c0(X,C), respectively,
with respect to the supremum metric, as in Section 1.13.

4.9 Weak convergence

Let V be a vector space over the real or complex numbers with a norm ‖ · ‖V ,
and let V ′ be the corresponding dual space. A sequence {vj}∞j=1 of elements of
V is said to converge weakly to v ∈ V if

lim
j→∞

λ(vj) = λ(v)(4.9.1)

for every λ ∈ V ′. This is equivalent to the convergence of {vj}∞j=1 to v with
respect to the weak topology on V . This may be described as the weakest
topology on V with respect to which every λ ∈ V ′ is continuous.

If {vj}∞j=1 converges to v with respect to the metric associated to the norm,
then {vj}∞j=1 converges weakly to v. Similarly, the topology determined on V
by the metric associated to the norm is at least as strong as the weak topology
on V , because every λ ∈ V ′ is continuous on V with respect to the metric
associated to the norm.

Remember that V ′ separates points in V , as in Section 3.10. If a sequence
in V has a weak limit, then one can use this to get that the limit is unique.
Similarly, one can use this to get that the weak topology on V is Hausdorff.

Let V ′′ = (V ′)′ be the dual of V ′ with respect to the dual norm ‖ · ‖V ′ , as in
Section 3.14. If v ∈ V , then Lv(λ) = λ(v) defines an element of V ′′, as before.
Using this notation, (4.9.1) is the same as saying that

lim
j→∞

Lvj (λ) = Lv(λ)(4.9.2)

for every λ ∈ V ′. This means that {vj}∞j=1 converges to v weakly in V if and
only if {Lvj}∞j=1 converges to Lv in the weak∗ sense in V ′′, as the dual of V ′.

Let E be a subset of V , and put

EE = {Lv : v ∈ E},(4.9.3)

which is a subset of V ′′. If λ ∈ V ′, then put

EE(λ) = {Lv(λ) : v ∈ E},(4.9.4)
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as in Section 4.3. Equivalently, EE(λ) = λ(E).
Let us say that E is weakly bounded in V if λ(E) is a bounded set in R

or C, as appropriate, for each λ ∈ V ′. This is the same as saying that EE is
pointwise bounded on V ′. Remember that V ′ is complete with respect to the
metric associated to ‖ · ‖V ′ , as in Sections 2.2 and 3.1. Let ‖ · ‖V ′′ be the dual
norm on V ′′ associated to ‖ · ‖V ′ on V ′, as in Section 3.14. If EE is pointwise
bounded on V ′, then it follows that EE is bounded with respect to ‖ · ‖V ′′ ,
because of the Baire category theorem and the Banach–Steinhaus theorem.

Remember that ‖Lv‖V ′′ = ‖v‖V for every v ∈ V , as in Section 3.14. If E
is weakly bounded in V , then we get that E is bounded with respect to ‖ · ‖V ,
using the remarks in the preceding paragraph.

If {vj}∞j=1 is a sequence of elements of V that converges weakly in V , then
it is easy to see that the set of vj ’s, j ≥ 1, is weakly bounded in V . This implies
that {vj}∞j=1 is bounded with respect to ‖ · ‖V , as before.

Suppose that
‖vj‖V ≤ C(4.9.5)

for some nonnegative real number C and each j ≥ 1. This implies that

|λ(vj)| ≤ C ‖λ‖V ′(4.9.6)

for each λ ∈ V ′ and j ≥ 1. If {vj}∞j=1 converges weakly to v ∈ V , then it follows
that

|λ(v)| ≤ C ‖λ‖V ′(4.9.7)

for every λ ∈ V ′. Using this, we get that

‖v‖V ≤ C,(4.9.8)

as in Sections 3.10 and 3.12.

4.10 Some multiplication operators

Let X be a nonempty set, and let p, q, and r be positive extended real numbers.
Suppose that

1/p+ 1/q = 1/r,(4.10.1)

with suitable interpretations when any of p, q, or r is +∞. Let f ∈ ℓp(X,R)
or ℓp(X,C) and g ∈ ℓq(X,R) or ℓq(X,C) be given. Under these conditions,
f g ∈ ℓr(X,R) or ℓr(X,C), as appropriate, with

‖f g‖r ≤ ‖f‖p ‖g‖q.(4.10.2)

This can be verified directly when p or q is +∞.
Suppose that p, q < +∞, which implies that r < +∞. In this case, p, q > r,

so that p/r, q/r > 1, and (4.10.1) is the same as saying that

r/p+ r/q = 1.(4.10.3)
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Observe that |f |r is (p/r)-summable on X, and that |g|r is (q/r)-summable on
X. Hölder’s inequality implies that |f |r |g|r is summable on X, with∑

x∈X

|f(x)|r |g(x)|r ≤ ‖(|f |r)‖p/r ‖(|g|r)‖q/r.(4.10.4)

This is the same as saying that |f | |g| is r-summable on X, and that (4.10.2)
holds.

Let a be a real or complex-valued function on X. If f is another real or
complex-valued function on X, as appropriate, then

Ma(f) = a f(4.10.5)

defines real or complex-valued function on X too. This defines a linear mapping
from the space of real or complex-valued functions on X, as appropriate, into
itself, which is the multiplication operator associated to a. Note that if f has
finite support in X, then Ma(f) has finite support as well. Thus the restriction
of Ma to c00(X,R) or c00(X,C), as appropriate, defines a linear mapping from
that space into itself.

Suppose for the moment that a ∈ ℓq(X,R) or ℓq(X,C) for some q > 0. If
p, r > 0 satisfy (4.10.1), then

Ma maps ℓp(X,R) or ℓp(X,C) into ℓr(X,R) or ℓr(X,C),(4.10.6)

as appropriate, as before. We also have that

‖Ma(f)‖r ≤ ‖a‖q ‖f‖p(4.10.7)

for every f ∈ ℓp(X,R) or ℓp(X,C), as appropriate, by (4.10.2). If q = +∞,
then it is easy to see that

Ma maps c0(X,R) or c0(X,C) into itself(4.10.8)

too, as appropriate.
Suppose now that a is a real or complex-valued function on X such that

(4.10.6) holds, with

‖Ma(f)‖r ≤ C ‖f‖p(4.10.9)

for some C ≥ 0 and all f ∈ ℓp(X,R) or ℓp(X,C), as appropriate. More precisely,
if this holds for all real or complex-valued functions f on X with finite support,
as appropriate, then it is easy to see that this holds for all f ∈ ℓp(X,R) or
ℓp(X,C), as appropriate. We would like to check that a ∈ ℓq(X,R) or ℓq(X,C),
as appropriate, with

‖a‖q ≤ C.(4.10.10)

If p = +∞, then q = r, and this can be verified directly, by taking f ≡ 1 on
X. One can also consider functions f that are equal to 1 on a finite subset of X
and to 0 elsewhere, so that f has finite support in X. If q = +∞, then p = r,
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and this can be verified directly again, by considering functions f equal to 1 at
one point in X, and to 0 elsewhere.

Suppose that p, q < +∞, so that r < +∞ and p, q > r, as before. Let A be
a nonempty finite subset of X, and let fA be a real or complex-valued function
on X, as appropriate, such that

|fA(x)| = |a(x)|(q−r)/r(4.10.11)

for each x ∈ A, and fA(x) = 0 when x ∈ X \A. Thus

|fA(x)|r |a(x)|r = |a(x)|q(4.10.12)

for every x ∈ A. This implies that

‖Ma(fA)‖r = ‖a fA‖r =
(∑

x∈A

|a(x)|q
)1/r

.(4.10.13)

Observe that
r/p = 1− r/q = (q − r)/q,(4.10.14)

so that p/r = q/(q − r). It follows that

|fA(x)|p = |a(x)|((q−r) p)/r = |a(x)|q(4.10.15)

for every x ∈ A. This means that

‖fA‖p =
(∑

x∈A

|a(x)|q
)1/p

.(4.10.16)

Combining this with (4.10.13), we get that(∑
x∈A

|a(x)|q
)1/q

≤ C.(4.10.17)

This implies that a ∈ ℓq(X,R) or ℓq(X,C), as appropriate, and that (4.10.10)
holds.

If r ≥ 1, then p, q ≥ 1, and it follows that Ma defines a bounded linear
mapping from ℓp(X,R) or ℓp(X,C) into ℓr(X,R) or ℓr(X,C), as appropriate,
with operator norm equal to ‖a‖q. There is an analogous statement when r < 1,
using suitable versions of some of our previous definitions, and related facts.

4.11 Convergence of multiplication operators

Let X be a nonempty set, and remember that ℓp(X,R), ℓp(X,C) may be con-
sidered as metric spaces when 0 < p ≤ +∞. This uses the metric associated
to the ℓp norm when p ≥ 1, and the analogous metric mentioned in Section 2.6
when p < 1.
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Let {aj}∞j=1 be a sequence of real or complex-valued functions on X that
converges pointwise to a real or complex-valued function a on X, as appropriate.
If f is any real or complex-valued function on X, as appropriate, then

{Maj
(f)}∞j=1 converges to Ma(f) pointwise on X.(4.11.1)

Let p, q, r be positive extended real numbers satisfying (4.10.1) again. Sup-
pose that aj ∈ ℓq(X,R) or ℓq(X,C) for each j, as appropriate, with

‖aj‖q ≤ C(4.11.2)

for some C ≥ 0 and each j. This implies that a ∈ ℓq(X,R) or ℓq(X,C), as
appropriate, with

‖a‖q ≤ C,(4.11.3)

as in Section 4.7. If f ∈ ℓp(X,R) or ℓp(X,C), as appropriate, then we would
like to have conditions under which

{Maj
(f)}∞j=1 converges to Ma(f) in ℓ

r(X,R) or ℓr(X,C),(4.11.4)

as appropriate. It is easy to see that this holds when

{aj}∞j=1 converges to a in ℓq(X,R) or ℓq(X,C),(4.11.5)

as appropriate, because of (4.10.2).
Of course, the set of f ∈ ℓp(X,R) or ℓp(X,C) such that (4.11.4) holds is a

linear subspace of ℓp(X,R) or ℓp(X,R), as appropriate. This is also a closed
set in ℓp(X,R) or ℓp(X,C), as appropriate, because of (4.11.2) and (4.11.3), as
in Section 4.4.

Note that (4.11.4) holds when f has finite support in X. If p < +∞, then it
follows that (4.11.4) holds for every f ∈ ℓp(X,R) or ℓp(X,C), as appropriate.
This uses the fact that c00(X,R), c00(X,C) are dense in ℓp(X,R), ℓp(X,C),
respectively, when p < +∞, as in Section 2.6.

Suppose that p = +∞, so that q = r. If f is equal to 1 at every point in X,
then (4.11.4) implies (4.11.5).

If f vanishes at infinity on X, then (4.11.4) holds, with q = r. This is because
c00(X,R), c00(X,C) are dense in c0(X,R), c0(X,C), respectively, with respect
to the supremum metric, as in Section 1.13.

4.12 Lp Spaces

Let (X,A, µ) be a (nonempty) measure space, so that X is a nonempty set,
A is a σ-algebra of measurable subsets of X, and µ is a countably additive
(nonnegative) measure on the measurable space (X,A). If p is a positive real
number, then let Lp(X,R) and Lp(X,C) be the corresponding spaces of real and
complex-valued measurable functions f on X, as appropriate, such that |f |p is
integrable with respect to µ. More precisely, these spaces consist of equivalence
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classes of functions that are equal almost everywhere on X with respect to µ.
If f ∈ Lp(X,R) or Lp(X,C), then we put

‖f‖p =
(∫

X

|f(x)|p dµ(x)
)1/p

,(4.12.1)

as usual.

Similarly, let L∞(X,R) and L∞(X,C) be the spaces of equivalence classes
of real and complex-valued measurable functions f on X that are essentially
bounded on X with respect to µ. In this case, ‖f‖∞ is the essential supremum
norm of f with respect to µ.

It is well known that Lp(X,R) and Lp(X,C) are vector spaces over the real
and complex numbers, respectively, for each p > 0. If p ≥ 1, then ‖f‖p defines
a norm on each of Lp(X,R) and Lp(X,C). In this case, the triangle inequality
for ‖ · ‖p is known as Minkowski’s inequality for integrals.

If 0 < p ≤ 1, then ‖f‖p satisfies the usual homogeneity property of a norm,
and

‖f + g‖pp ≤ ‖f‖pp + ‖g‖pp(4.12.2)

for all f, g ∈ Lp(X,R) or Lp(X,C). This means that

‖f − g‖pp(4.12.3)

defines a metric on each of Lp(X,R) and Lp(X,C) when p ≤ 1.

It is well known that Lp(X,R) and Lp(X,C) are complete with respect to
the appropriate metric for each p > 0. In particular, Lp(X,R) and Lp(X,C)
are Banach spaces when p ≥ 1.

Of course, ℓp(X,R) and ℓp(X,C) are the same as Lp(X,R) and Lp(X,C),
respectively, when µ is counting measure on X. In this case, one can take all
subsets of X to be measurable.

If f, g ∈ L2(X,R) or L2(X,C), then it is well known that f g ∈ L1(X,R)
or L1(X,C), as appropriate, with

‖f g‖1 ≤ ‖f‖2 ‖g‖2.(4.12.4)

This is the integral version of the Cauchy–Schwarz inequality. Put

〈f, g〉 =
∫
X

f(x) g(x) dµ(x)(4.12.5)

in the real case, and

〈f, g〉 =
∫
X

f(x) g(x) dµ(x)(4.12.6)

in the complex case. These define inner products on L2(X,R) and L2(X,C),
respectively, for which the corresponding norm is ‖ · ‖2. Thus L2(X,R) and
L2(X,C) are Hilbert spaces over the real and complex numbers, respectively.
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Suppose that 1 ≤ p, q ≤ ∞ are conjugate exponents, so that 1/p+1/q = 1. If
f ∈ Lp(X,R) or Lp(X,C) and g ∈ Lq(X,R) or Lq(X,C), then f g ∈ L1(X,R)
or L1(X,C), as appropriate, with

‖f g‖1 ≤ ‖f‖p ‖g‖q.(4.12.7)

This is the integral version of Hölder’s inequality.
If g ∈ Lq(X,R) or Lq(X,C), then put

λg(f) =

∫
X

f(x) g(x) dµ(x)(4.12.8)

for all f ∈ Lp(X,R) or Lp(X,C), as appropriate. Of course,

|λg(f)| ≤ ‖f‖p ‖g‖q(4.12.9)

for all f ∈ Lp(X,R) or Lp(X,C), as appropriate, by Hölder’s inequality. Thus
λg is a bounded linear functional on Lp(X,R) or Lp(X,C), as appropriate, with
dual norm less than or equal to ‖g‖q. Note that

g 7→ λg(4.12.10)

defines a linear mapping from each of Lq(X,R), Lq(X,C) into the duals of
Lp(X,R), Lp(X,C), respectively.

If g ∈ Lq(X,R) or Lq(X,C) and 1 ≤ q < ∞, then one can check directly
that

the dual norm of λg with respect to the Lp norm is equal to ‖g‖q.(4.12.11)

This also works when q = ∞, under the additional condition that

every measurable subset of X of positive measure(4.12.12)

contain a measurable set of positive finite measure.

Note that this condition holds when X is σ-finite with respect to µ. This
condition also holds when µ is counting measure on X, and all subsets of X are
measurable.

More precisely, suppose that g ∈ L∞(X,R) or L∞(X,C), with ‖g‖∞ > 0,
and let r be a nonnegative real number such that ‖g‖∞ > r. This implies that
the set where |g| > r has positive measure with respect to µ, by the definition of
the essential supremum norm of g. If (4.12.12) holds, then there is a measurable
subset of X with positive finite measure on which |g| > r. One can use this to
get that (4.12.11) holds with q = ∞.

If 1 < p <∞, then it is well known that every bounded linear functional on
Lp(X,R) or Lp(X,C) is of this form. This follows from the analogous statement
for Hilbert spaces when p = 2. If p = 1, then the analogous statement holds
when X is σ-finite with respect to µ.

If µ(X) is finite and 0 < r < p ≤ ∞, then it is well known that Lp(X) is
contained in Lr(X). A more precise version of this will be mentioned in Section
4.15.
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4.13 A measure-theoretic lemma

Let (X,A, µ) be a measure space, and let E be a measurable subset of X.
Suppose that every measurable subset of E of positive measure contains a mea-
surable set of positive finite measure. We would like to check that

µ(E) = sup{µ(A) : A ⊆ E, A measurable, µ(A) <∞}.(4.13.1)

Of course, the supremum on the right is automatically less than or equal to
µ(E). If µ(E) <∞, then (4.13.1) holds trivially.

Let {Aj}∞j=1 be a sequence of measurable subsets of E with finite measure
such that {µ(Aj)}∞j=1 converges to the supremum on the right side of (4.13.1).
Put

Bl =

l⋃
j=1

Aj(4.13.2)

for each l ≥ 1, which is a measurable subset of E with finite measure. Note that
µ(Bl) is less than or equal to the right side of (4.13.1) for each l. We also have
that

µ(Al) ≤ µ(Bl)(4.13.3)

for each l, by construction. It follows that {µ(Bl)}∞l=1 converges to the supre-
mum on the right side of (4.13.1) as well.

Put

B =

∞⋃
l=1

Bl,(4.13.4)

which is a measurable subset of E. Of course, Bl ⊆ Bl+1 for each l, by con-
struction. Thus

µ(Bl) → µ(B) as l → ∞,(4.13.5)

by a standard argument. This means that µ(B) is equal to the right side of
(4.13.1).

If the supremum on the right side of (4.13.1) is +∞, then equality holds
trivially. Thus we may suppose that the supremum is finite, which means that
µ(B) < +∞. In this case, we would like to check that

µ(E \B) = 0.(4.13.6)

This will imply that
µ(E) = µ(B),(4.13.7)

so that (4.13.1) holds.
Suppose for the same of a contradiction that

µ(E \B) > 0.(4.13.8)

This implies that there is a measurable set C ⊆ E \B such that µ(C) is positive
and finite, by hypothesis. It follows that B∪C is a measurable subset of E such
that

µ(B ∪ C) = µ(B) + µ(C) > µ(B).(4.13.9)
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This contradicts the fact that µ(B) is equal to the right side of (4.13.1), because
µ(B ∪ C) <∞.

4.14 Some more multiplication operators

Let (X,A, µ) be a nonempty measure space, and let p, q, and r be positive
extended real numbers such that 1/p+1/q = 1/r. If f ∈ Lp(X,R) or Lp(X,C)
and g ∈ Lq(X,R) or Lq(X,C), then f g ∈ Lr(X,R) or Lr(X,C), as appropri-
ate, with

‖f g‖r ≤ ‖f‖p ‖g‖q.(4.14.1)

This can be obtained from the integral version of Hölder’s inequality, as in
Section 4.10.

Let a be a real or complex-valued measurable function on X. If f is another
real or complex-valued measurable function on X, as appropriate, then

Ma(f) = a f(4.14.2)

defines a real or complex-valued measurable function on X as well. This defines
a linear mapping from the space of real or complex-valued measurable functions
on X, as appropriate, into itself, which is the multiplication operator associated
to a. We shall use the same notation for the induced linear mapping on the
corresponding space of equivalence classes of functions that are equal almost
everywhere on X with respect to µ. Note that this induced linear mapping only
depends on the analogous equivalence class that contains a.

Suppose for the moment then a ∈ Lq(X,R) or Lq(X,C). In this case,

Ma maps Lp(X,R) or Lp(X,C) into Lr(X,R) or Lr(X,C),(4.14.3)

as appropriate, with

‖Ma(f)‖r ≤ ‖a‖q ‖f‖p(4.14.4)

for every f ∈ Lp(X,R) or Lp(X,C), as appropriate, by (4.14.1).
Suppose now that a is a real or complex-valued measurable function on X

such that (4.14.3) holds, with

‖Ma(f)‖r ≤ C ‖f‖p(4.14.5)

for some C ≥ 0 and all f ∈ Lp(X,R) or Lp(X,C), as appropriate. Under
suitable conditions, we would like to show that a ∈ Lq(X,R) or Lq(X,C), as
appropriate, with

‖a‖q ≤ C.(4.14.6)

If p = +∞, then q = r, and this follows by taking f ≡ 1 on X.
Suppose from now on in this section that p < +∞, and that every measurable

subset of

{x ∈ X : a(x) 6= 0}(4.14.7)
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of positive measure contains a measurable set of positive finite measure. If
q = +∞, then p = r, and one can check directly that a is essentially bounded
on X, with L∞ norm less than or equal to C, as in (4.14.6).

Suppose now that q < +∞ too, so that p, q > r. Let ϵ > 0 be given, and let
us show that

µ({x ∈ X : |a(x)| ≥ ϵ}) <∞.(4.14.8)

Note that every measurable subset of

{x ∈ X : |a(x)| ≥ ϵ}(4.14.9)

of positive measure contains a measurable set of positive finite measure, by
hypothesis.

If A ⊆ X, then let 1A be the corresponding indicator function on X, which
is equal to 1 on A and to 0 on X \ A. Suppose that A is measurable, so that
1A is measurable on X. If µ(A) < ∞, then 1A ∈ Lp(X,R), and we get that
Ma(1A) = a1A ∈ Lr(X,R) or Lr(X,C), as appropriate. We also get that∫

A

|a(x)|r dµ(x) ≤ Cr ‖1A‖rp = Cr µ(A)r/p,(4.14.10)

by (4.14.5).
If A is contained in (4.14.9), then it follows that

ϵr µ(A) ≤ Cr µ(A)r/p.(4.14.11)

This implies that
µ(A)(p−r)/p ≤ (C/ϵ)r,(4.14.12)

so that
µ(A) ≤ (C/ϵ)p r/(p−r).(4.14.13)

This means that

µ({x ∈ X : |a(x)| ≥ ϵ}) ≤ (C/ϵ)pr/(p−r),(4.14.14)

as in the previous section. Note that (p − r)/(pr) = 1/r − 1/p = 1/q, so that
pr/(p− r) = q.

Let b be a real or complex-valued measurable function on X such that

|b| ≤ |a|(4.14.15)

almost everywhere on X with respect to µ. This implies that b satisfies the
analogues of (4.14.3) and (4.14.5) in place of a. If b ∈ Lq(X,R) or Lq(X,C), as
appropriate, then one can verify that

‖b‖q ≤ C.(4.14.16)

This can be obtained by considering f such that

|f(x)| = |b(x)|(q−r)/r(4.14.17)
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on X, so that
|f(x)|r |b(x)|r = |b(x)|q(4.14.18)

and
|f(x)|p = |b(x)|q(4.14.19)

on X, as in Section 4.10.
Let us check that |a|q is integrable on (4.14.9) for each ϵ > 0, with(∫

{x∈X:|a(x)|≥ϵ}
|a(x)|q dµ(x)

)1/q

≤ C.(4.14.20)

If b is a bounded real or complex-valued measurable function on X that is equal
to 0 when |a| < ϵ, then b ∈ Lq(X,R) or Lq(X,C), as appropriate, because of
(4.14.8). If b also satisfies (4.14.15), then (4.14.16) holds, as before. One can
approximate a on (4.14.9) by such functions b, to get that |a|q is integrable on
(4.14.9), and that (4.14.20) holds.

Using this, it is easy to see that |a|q is integrable on X, and that (4.14.6)
holds.

If r ≥ 1, then p, q ≥ 1, and we get that Ma is a bounded liinear mapping
from Lp(X,R) or Lp(X,C) into Lr(X,R) or Lr(X,C), as appropriate, with
operator norm equal to ‖a‖q under the conditions mentioned earlier. There
is an analogous statement when r < 1, using suitable versions of some of our
previous definitions, as before.

4.15 Convergence in measure

Let (X,A, µ) be a nonempty measure space, and let p be a positive extended
real number. Remember that Lp(X,R) and Lp(X,C) may be considered as
metric spaces, as in Section 4.12.

Let 0 < r < p be given, and suppose that q > 0 satisfies 1/q = 1/r − 1/p.
If f ∈ Lp(X,R) or Lp(X,C), A ⊆ X is measurable, and µ(A) < ∞, then
f 1A ∈ Lr(X,R) or Lr(X,C), as appropriate, with

‖f 1A‖r ≤ ‖f‖p ‖1A‖q = ‖f‖p µ(A)1/q,(4.15.1)

as in (4.14.1).
Let {fj}∞j=1 be a sequence of real or complex-valued measurable functions

on X, and let f be another real or complex-valued measurable function on X, as
appropriate. This sequence is said to converge to f in measure on a measurable
set A ⊆ X with respect to µ if for every ϵ > 0,

lim
j→∞

µ({x ∈ A : |fj(x)− f(x)| ≥ ϵ}) = 0.(4.15.2)

If µ(A) < ∞, and {fj}∞j=1 converges to f pointwise almost everywhere on A
with respect to µ, then it is well known that

{fj}∞j=1 converges to f in measure on A.(4.15.3)
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If {fj}∞j=1 converges to f in measure on X, then it is well known that

there is a subsequence of {fj}∞j=1 that converges to f(4.15.4)

pointwise almost everywhere on X

with respect to µ.
Suppose for the moment that fj ∈ Lp(X,R) or Lp(X,C) for some p > 0

and each j, and that f ∈ Lp(X,R) or Lp(X,C), as appropriate, too. If

{fj}∞j=1 converges to f with respect to the Lp metric,(4.15.5)

then it is easy to see that

{fj}∞j=1 converges to f in measure on X(4.15.6)

with respect to µ.
Suppose that {fj}∞j=1 converges to f in measure on X, and that

‖fj‖p ≤ C(4.15.7)

for some C ≥ 0 and each j. One can use this to get that

‖f‖p ≤ C,(4.15.8)

by passing to a subsequence that converges to f pointwise almost everywhere
with respect to µ and using Fatou’s lemma when p < ∞. If p = ∞, then
(4.15.7) can also be obtained more directly from convergence in measure and
the definition of the assential supremum norm.

Suppose that 0 < r < p, and that A is a measurable subset of X with finite
measure. Observe that

‖(fj − f)1A‖r ≤ ‖fj − f‖p µ(A)1/q(4.15.9)

for each j, as in (4.15.1). It is easy to see that ‖fj − f‖p is uniformly bounded
in this case, because of (4.15.7) and (4.15.8). If µ(X) < ∞, then one can use
(4.15.9) to get that

{fj}∞j=1 converges to f in Lr(X,R) or Lr(X,C),(4.15.10)

as appropriate.
Let {aj}∞j=1 be a sequence of real or complex-valued measurable functions

on X, and let a, f be real or complex-valued measurable functions on X as well.
If

{aj}∞j=1 converges to a pointwise almost everywhere on X(4.15.11)

with respect to µ, then

{Maj
(f)}∞j=1 converges to Ma(f)(4.15.12)

pointwise almost everywhere on X
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with respect to µ too.
Let A be a measurable subset of X with finite measure again. It is well

known that
lim
n→∞

µ({x ∈ A : |f(x)| > n}) = 0,(4.15.13)

by a standard argument. If

{aj}∞j=1 converges to a on A in measure(4.15.14)

with respect to µ, then one can use this to check that

{Maj (f)}∞j=1 converges to Ma(f) on A in measure(4.15.15)

with respect to µ.
Suppose now that aj ∈ Lq(X,R) or Lq(X,C), as appropriate, for some q > 0

and each j, with
‖aj‖q ≤ C(4.15.16)

for some C ≥ 0 and each j. Similarly, suppose that a ∈ Lq(X,R) or Lq(X,C),
as appropriate. If f ∈ Lp(X,R) or Lp(X,C), as appropriate, for some p > 0,
and if r > 0 satisfies 1/p + 1/q = 1/r, then we would like to have conditions
under which

{Maj
(f)}∞j=1 converges to Ma(f) in L

r(X,R) or Lr(X,C),(4.15.17)

as appropriate. Of course, this holds when

{aj}∞j=1 converges to a in Lq(X,R) or Lq(X,C),(4.15.18)

as appropriate, by (4.14.1).
The set of f ∈ Lp(X,R) or Lp(X,C) such that (4.15.17) holds is a lin-

ear subspace of Lp(X,R) or Lp(X,C), as appropriate. This is a closed set in
Lp(X,R) or Lp(X,C) too, as appropriate, because of (4.15.16), as in Section
4.4.

Suppose for the moment that p = +∞, so that q = r. If f ≡ 1 on X, then
(4.15.17) implies (4.15.18).

Suppose now that p < ∞, so that q > r. Let A be a measurable subset of
X with finite measure. In this case, (4.15.17) holds with f = 1A if and only if

{aj}∞j=1 converges to a on A in measure with respect to µ,(4.15.19)

as before.
If this holds for every such A, then (4.15.17) holds for all simple functions in

Lp(X,R) or Lp(X,C), as appropriate. This implies that (4.15.17) holds for all
f ∈ Lp(X,R) or Lp(X,C), as appropriate, because simple functions are dense
in these spaces.



Chapter 5

Some more spaces and
mappings

5.1 Compact support and local compactness

Let X be a nonempty metric space, or topological space, and let f be a real
or complex-valued function on X. The support of f in X is defined to be the
closure of the set where f 6= 0,

supp f = {x ∈ X : f(x) 6= 0}.(5.1.1)

The support of a function on a set was previously defined to simply be the
set where the function is nonzero. That corresponds to taking the set to be
equipped with the discrete metric or topology here.

We shall often be interested in functions f on X whose support is a compact
set. Note that this happens when supp f is contained in a compact subset of
X, because closed sets that are contained in compact sets are compact as well.
If X is a metric space, or a Hausdorff topological space, then it is well known
that compact sets in X are closed sets. In this case, f has compact support in
X when the set where f 6= 0 is contained in a compact subset of X.

Let Ccom(X,R), Ccom(X,C) be the spaces of continuous real and complex-
valued functions on X with compact support, respectively. One can check that
these are linear subspaces of the spaces C(X,R), C(X,C) of continuous real
and complex-valued functions on X, respectively. This uses the fact that the
union of two compact subsets of X is compact as well. If X is compact, then
Ccom(X,R), Ccom(X,C) are the same as the spaces C(X,R), C(X,C) of all
continuous real or complex-valued functions on X, respectively.

Suppose for the moment that X is equipped with the discrete metric or
topology. It is easy to see that only the finite subsets of X are compact in
this case. This means that Ccom(X,R), Ccom(X,C) are the same as the spaces
c00(X,R), c00(X,C), respectively, defined in Section 1.12.

99
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Let us say that X is locally compact at a point x ∈ X if there are an open
set U ⊆ X and a compact set K ⊆ X such that x ∈ U and U ⊆ K. If X
is a metric space or a Hausdorff topological space, then K is a closed set in
X, so that U ⊆ K. This implies that U is compact, and local compactness is
sometimes defined in this way. If X is locally compact at every x ∈ X, then X
is simply said to be locally compact as a metric or topological space.

Suppose that f is a continuous real or complex-valued function on X with
compact support. If x ∈ X and f(x) 6= 0, then it is easy to see that X is locally
compact at x.

Suppose now that X is a locally compact Hausdorff space. Let K ⊆ X
be a compact set, and let U ⊆ X be an open set, with K ⊆ U . Under these
conditions, it is well known that there is a continuous real-valued function f on
X with compact support contained in U such that f = 1 on K, and 0 ≤ f ≤ 1
on X. This is a version of Urysohn’s lemma, which can be shown using analo-
gous arguments, or obtained from the usual formulation for normal topological
spaces. If X is a locally compact metric space, then this can be verified more
directly.

5.2 Vanishing at infinity and compactness

Let X be a nonempty metric space or topological space again, and let f be a
real or complex-valued function on X. Let us say that f vanishes at infinity on
X if for each ϵ > 0,

{x ∈ X : |f(x)| ≥ ϵ}(5.2.1)

is contained in a compact subset of X. Of course, this holds trivially when X
is compact. If X is equipped with the discrete metric or topology, then this
reduces to the analogous definition in Section 1.13.

If f is continuous on X, then (5.2.1) is a closed set in X for each ϵ > 0. If
(5.2.1) is contained in a compact subset of X for some ϵ > 0, then it follows
that (5.2.1) is compact. Note that f is bounded on X in this case, because f is
bounded on compact subsets of X.

Suppose that f is continuous and vanishes at infinity on X. If x ∈ X and
f(x) 6= 0, then one can check that X is locally compact at x.

Let ϕ be a mapping from R or C into itself, as appropriate, such that
ϕ(0) = 0 and ϕ is continuous at 0. If f vanishes at infinity on X, then it is easy
to see that

ϕ ◦ f vanishes at infinity on X(5.2.2)

as well. If ϕ ≡ 0 on a neighborhood of 0 in R or C, as appropriate, then f ≡ 0
on the complement of a compact subset of X.

Let C0(X,R), C0(X,C) be the spaces of continuous real and complex-valued
functions on X that vanish at infinity. It is easy to see that these are linear
subspaces of the spaces Cb(X,R), Cb(X,C) of bounded continuous real and
complex-valued functions on X, respectively. One can verify that C0(X,R),
C0(X,C) are also closed sets in Cb(X,R), Cb(X,C), respectively, with respect
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to the supremum metric. If X is compact, then C0(X,R), C0(X,C) are the
same as the spaces C(X,R), C(X,C) of all continuous real and complex-valued
functions on X, respectively. If X is equipped with the discrete metric or topol-
ogy, then C0(X,R), C0(X,C) are the same as the spaces c0(X,R), c0(X,C),
respectively, defined in Section 1.13.

Of course, any real or complex-valued function on X with compact support
vanishes at infinity. If f is any continuous real or complex-valued function on X
that vanishes at infinity, then f can be approximated uniformly by continuous
functions with compact support in X. This can be seen using suitable compo-
sitions with continuous functions on R or C, as appropriate, as in (5.2.2). If
X is a locally compact Hausdorff topological space, then one can also use the
version of Urysohn’s lemma mentioned in the previous section. This means that
Ccom(X,R), Ccom(X,C) are dense in C0(X,R), C0(X,C), respectively, with
respect to the supremum metric.

Let X be a locally compact Hausdorff topological space, and let λ be a
bounded linear functional on C0(X,R) or C0(X,C), with respect to the supre-
mum norm. It is well known that λ can be represented in a unique way in
terms of integration with respect to a real or complex Borel measure on X, with
suitable regularity properties. If there is a base for the topology of X with only
finitely or countably many elements, then these additional regularity properties
hold automatically.

5.3 Uniform convergence on compact sets

Let X be a metric or topological space, and let (Y, dY ) be a metric spaces. Also
let {fj}∞j=1 be a sequence of mappings from X into Y , and let f be another
mapping from X into Y . Suppose that

{fj}∞j=1 converges to f uniformly on compact subsets of X,(5.3.1)

so that for each compact set K ⊆ X, {fj}∞j=1 converges to f uniformly on K.
If fj is continuous on X for each j, then it follows that

f is continuous on K for every compact K ⊆ X.(5.3.2)

More precisely, this uses the topology induced on K by the topology on X, or
the restriction of the metric on X to K when X is a metric space.

Of course, the same conclusion holds when fj is only asked to be continuous
on compact subsets of X for each j. Let us now consider conditions under which
(5.3.2) implies that f is continuous on X.

If X is locally compact at a point x ∈ K, then (5.3.2) implies that f is
continuous at x. Thus (5.3.2) implies that f is continuous on X when X is
locally compact.

We say that f is sequentially continuous at a point x ∈ X if for every
sequence {xl}∞l=1 of elements of X that converges to x,

{f(xl)}∞l=1 converges to f(x) in Y.(5.3.3)



102 CHAPTER 5. SOME MORE SPACES AND MAPPINGS

If f is continuous at x, then f is sequentially continuous at x, by a standard
argument. If there is a local base for the topology of X with only finitely or
countably many elements, and if f is sequentially continuous at x, then one can
check that f is continuous at x. In particular, metric spaces have this property.

Let {xl}∞l=1 be a sequence of elements of X that converges to an element x
of X. One can check that

{xl : l ∈ Z+} ∪ {x}(5.3.4)

is a compact subset of X. If the restriction of f to this compact set is continuous
at x, then it follows that (5.3.3) holds.

If f satisfies (5.3.2), then we get that f is sequentially continuous on X,
which is to say that f is sequentially continuous at every point in X.

If for every x ∈ X there is a local base for the topology of X at x with
only finitely or countably many elements, then X is said to satisfy the first
countability condition. Metric spaces have this property, as before. In this case,
(5.3.2) implies that f is continuous on X.

5.4 Some related multiplication operators

Let X be a nonempty metric or topological space, and let a be a continuous real
or complex-valued function on X. If f is another continuous real or complex-
valued function on X, as appropriate, then

Ma(f) = a f(5.4.1)

defines a continuous real or complex-valued function on X as well. This defines
a linear mapping from C(X,R) or C(X,C) into itself, as appropriate, which is
the multiplication operator associated to a.

If f has compact support in X, then Ma(f) has compact support too. This
means that the restriction of Ma to Ccom(X,R) or Ccom(X,C), as appropriate,
defines a linear mapping from that space into itself.

If a is bounded on X, then

Ma maps Cb(X,R) or Cb(X,C) into itself,(5.4.2)

as appropriate. Similarly, one can check that

Ma maps C0(X,R) or C0(X,C) into itself,(5.4.3)

as appropriate, in this case.
Let ‖ · ‖sup be the usual supremum norm on Cb(X,R) or Cb(X,C). This

notation is often preferable, to avoid confusion with L∞ norms. If a is bounded
on X, then

‖Ma(f)‖sup ≤ ‖a‖sup ‖f‖sup(5.4.4)

for every f ∈ Cb(X,R) or Cb(X,C), as appropriate.
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Suppose that (5.4.2) holds, and that

‖Ma(f)‖sup ≤ C ‖f‖sup(5.4.5)

for some C ≥ 0 and all f ∈ Cb(X,R) or Cb(X,C), as appropriate. This implies
that a is bounded on X, with

‖a‖sup ≤ C,(5.4.6)

by taking f ≡ 1 on X. This means that the operator norm of Ma on Cb(X,R)
or Cb(X,C) with respect to the supremum norm is equal to ‖a‖sup, because of
(5.4.4).

Suppose now that (5.4.5) holds for some C ≥ 0 and all f ∈ Ccom(X,R) or
Ccom(X,C), as appropriate. If X is a locally compact Hausdorff topological
space, then one can use the version of Urysohn’s lemma mentioned in Section
5.1 to get that a is bounded on X, and that (5.4.6) holds.

Let {aj}∞j=1 be a sequence of continuous real or complex-valued functions on
X, as appropriate. Suppose that

{aj}∞j=1 converges to a uniformly on compact subsets of X.(5.4.7)

If f is a continuous real or complex-valued function on X, then one can check
that

{Maj (f)}∞j=1 converges to Ma(f) uniformly on compact subsets of X.(5.4.8)

This uses the fact that f is bounded on compact subsets of X.
Note that

suppMa(f) ⊆ supp f,(5.4.9)

and similarly
suppMaj

(f) ⊆ supp f(5.4.10)

for each j. If f has compact support in X, then it follows that

{Maj (f)}∞j=1 converges to Ma(f) uniformly on X.(5.4.11)

Of course, (5.4.11) holds with f ≡ 1 on X if and only if

{aj}∞j=1 converges to a uniformly on X.(5.4.12)

In this case, (5.4.11) holds when f is bounded on X.
Suppose that the aj ’s are uniformly bounded on X, so that

‖aj‖sup ≤ C(5.4.13)

for some C ≥ 0 and each j. If {aj}∞j=1 converges to a pointwise on X, then a
is bounded on X, and (5.4.6) holds. If (5.4.7) holds, then (5.4.11) holds when
f vanishes at infinity on X. This uses the fact that Ccom(X,R), Ccom(X,C)
are dense in C0(X,R), C0(X,C), respectively, with respect to the supremum
metric, as in Section 5.2.
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5.5 Some separation conditions

Let X be a nonempty topological space. If continuous real-valued functions on
X separate points in X, then X is said to be a Urysohn space. More precisely,
this means that if x, y are distinct elements of X, then there is a continuous
real-valued function f on X such that

f(x) 6= f(y).(5.5.1)

In this case, one can choose f so that

f(x) = 0, f(y) = 1, and 0 ≤ f ≤ 1 on X.(5.5.2)

Alterntively, one might choose f so that

f(x) = −1, f(y) = 1, and |f | ≤ 1 on X.(5.5.3)

It is easy to see that Urysohn spaces are Hausdorff. If the topology on X
is determined by a metric, then one can check directly that X is a Urysohn
space. Locally compact Hausdorff topological spaces are Urysohn spaces, by
the version of Urysohn’s lemma mentioned in Section 5.1.

Let us say that X is completely regular in the strict sense if for every x ∈ X
and closed set E ⊆ X with x 6∈ E there is a continuous real-valued function f
on X such that

f ≡ 0 on E and f(x) 6= 0.(5.5.4)

One can choose f so that

f(x) = 1 and 0 ≤ f ≤ 1 on X.(5.5.5)

If X also satisfies the first or even zeroth separation condition, then we say that
X is completely regular in the strong sense. This implies that X is a Urysohn
space, and that X is Hausdorff in particular.

Sometimes one says that X is completely regular when X is completely
regular in the strict sense. Similarly, if X is completely regular in the strong
sense, then one may say that X satisfies separation condition number three and
a half, or equivalently that X is a T3 1

2
-space. However, the opposite convention

is sometimes used too. Sometimes each of these names is used when X is
completely regular in the strong sense, and one may refer to complete regularity
in the strict sense in some other way.

If X is a metric space, then one can check directly that X is completely
regular in the strong sense. If X is a locally compact Hausdorff topological
space, then the version of Urysohn’s lemma mentioned in Section 5.1 implies
that X is completely regular in the strong sense.

Let us say that X is normal in the strict sense if for every pair A, B of
disjoint closed subsets of X there are disjoint open sets U, V ⊆ X such that

A ⊆ U, B ⊆ V.(5.5.6)
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If X satisfies the first separation condition too, then we say that X is normal in
the strong sense. Note that this implies that X is Hausdorff. It is well known
that metric spaces are normal in the strong sense.

Sometimes one says that X is normal when X is normal in the strict sense,
and that X satisfies the fourth separation condition, or equivalently that X is
a T4 space, when X is normal in the strong sense. The opposite convention
is sometimes used as well. Sometimes each of these names is used when X is
normal in the strong sense, and normality in the strict sense may be described
another way.

Suppose that X is normal in the strict sense, and that A, B are disjoint
closed subsets of X. Under these conditions, Urysohn’s lemma states that there
is a continuous real-valued function f on X such that

f ≡ 0 on A, f ≡ 1 on B, and 0 ≤ f ≤ 1 on X.(5.5.7)

If X is normal in the strong sense, then it follows that f is completely regular in
the strong sense. Note that the conclusion of Urysohn’s lemma can be obtained
more directly for metric spaces, using distances to sets, as in Section 2.11.

Let us say that X is regular in the strict sense if for every x ∈ X and closed
set E ⊆ X with x 6∈ E there are disjoint open sets U, V ⊆ X such that

x ∈ U and E ⊆ V.(5.5.8)

If X also satisfies the first or zeroth separation condition, then we say that X
is regular in the strong sense. If X is completely regular in the strict or strong
sense, then X is regular in the strict or strong sense, respectively. If X is regular
in the strong sense, then X is Hausdorff.

As before, one sometimes says that X is regular when X is regular in the
strict sense, and that X satisfies the third separation condition, or equivalently
that X is a T3 space, when X is regular in the strong sense. The opposite
convention is sometimes used too, and sometimes each of these names is used
when X is regular in the strong sense, and regularity in the strict sense may be
described in some other way.

One can check that X is regular in the strict sense if and only if for every
x ∈ X and open set W ⊆ X with x ∈W , there is an open set U ⊆ X such that

x ∈ U and U ⊆W,(5.5.9)

where U is the closure of U in X, as usual. If X is a metric space, or a locally
compact Hausdorff space, then it is somewhat easier to verify directly that X is
regular in the strong sense than complete regularity. Similarly, if X is normal
in the strong sense, then it is easy to see directly that X is regular in the strong
sense.

We say that X is completely Hausdorff if for every x, y ∈ X with x 6= y
there are open sets U, V ⊆ X such that

x ∈ U, y ∈ V, and U ∩ V = ∅.(5.5.10)
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Note that completely Hausdorff spaces are Hausdorff in particular. One can
verify that X is completely Hausdorff when X is a Urysohn space, and when X
is regular in the strong sense.

Suppose that X satisfies the second countability condition. If X is also
normal in the strong sense, then Urysohn’s metrization theorem states that
there is a metric on X that determines the same topology. Tychonoff showed
that normality in the strong sense can be replaced with regularity in the strong
sense.

5.6 Point evaluations

Let X be a nonempty metric or topological space. If x ∈ X, then put

δx(f) = f(x)(5.6.1)

for every continuous real or complex-valued function f on X. This defines a
bounded linear functional on each of Cb(X,R) and Cb(X,C), with respect to
the supremum norm. It is easy to see that the dual norm of this linear functional
is equal to 1.

The restriction of δx to each of C0(X,R) and C0(X,C) is a bounded linear
functional with dual norm less than or equal to 1, with respect to the supremum
norm. If X is a locally compact Hausdorff topological space, then one can use
the version of Urysohn’s lemma mentioned in Section 5.1 to get that the dual
norm of δx on these spaces is also equal to 1.

If x, y ∈ X, then δx − δy defines a bounded linear functional on each of
Cb(X,R) and Cb(X,C), with dual norm with respect to the supremum norm
less than or equal to 2. If X is a Urysohn space, then the dual norm of δx − δy
on each of these spaces if equal to 2, because of (5.5.3). Similarly, if X is a
locally compact Hausdorff topological space, then one can check that the dual
norm of δx − δy on each of C0(X,R) and C0(X,C) is equal to 2, with respect
to the supremum norm.

Suppose that {xj}∞j=1 is a sequence of elements ofX that converges to x ∈ X.
Observe that

{δxj}∞j=1 converges to δx(5.6.2)

with respect to the weak∗ topology on the dual of each of Cb(X,R), Cb(X,C).
Consider the mapping

x 7→ δx(5.6.3)

from X into the dual of Cb(X,R) or Cb(X,C). This mapping is continuous with
respect to the weak∗ topology on the dual space. If X is a Urysohn space, then
this mapping is one-to-one. If X is completely regular in the strong sense, then
this mapping is a homeomorphism onto its image, with respect to the topology
induced on its iimage by the weak∗ topology on the dual space.

Now consider (5.6.3) as a mapping from X into the dual of C0(X,R) or
C0(X,C). This mapping is continuous with respect to the weak∗ topology on
the dual space, as before. If X is a locally compact Hausdorff space, then
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this mapping is a homeomorphism onto its image, with respect to the topology
induced on its image by the weak∗ topology on the dual space.

Suppose that X is a locally compact Hausdorff topological space that is not
compact. Let us say that a sequence {xl}∞l=1 of elements of X tends to infinity
if for every compact set K ⊆ X, we have that

xl ∈ X \K(5.6.4)

for all sufficiently large l. This implies that

{δxl
}∞l=1 converges to 0(5.6.5)

with respect to the weak∗ topology on the dual of each of C0(X,R), C0(X,C).
It is easy to see that the converse holds as well, using the version of Urysohn’s
lemma mentioned in Section 5.1.

5.7 Some remarks about Borel measures

Let X be a nonempty metric or topological space. A subset of X is called
an Fσ set if it can be expressed as the union of a sequence of closed sets in
X. Similarly, a subset of X is said to be a Gδ set if it can be expressed as
the intersection of a sequence of open sets. Thus a Gδ set is the same as the
complement of an Fσ set in X.

Suppose for the moment that the topology on X is determined by a metric
d. If A ⊆ X and r is a positive real number, then put

Ar =
⋃
x∈A

B(x, r),(5.7.1)

where B(x, r) is the open ball in X centered at x ∈ X of radius r. This is an
open set in X that contains A, and one can check that

A =

∞⋂
l=1

A1/l.(5.7.2)

It follows that

every closed set in X is a Gδ set.(5.7.3)

Equivalently, this means that

every open set in X is an Fσ set.(5.7.4)

Let X be any nonempty metric or topological space again. The collection of
Borel sets in X is the smallest σ-algebra of subsets of X that contains the open
sets, or equivalently the closed sets. Thus Fσ sets and Gδ sets in X are Borel
sets.
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Let µ be a nonnegative Borel measure on X, which is to say a nonnegative
countably-additive measure on the σ-algebra of Borel sets in X. Suppose that
(5.7.3) holds, which is the same as saying that (5.7.4) holds. Supose also that

µ(X) < +∞,(5.7.5)

for the moment. If E ⊆ X is a Borel set, then it is well known that there are
closed sets A ⊆ X and open sets U ⊆ X such that

A ⊆ E ⊆ U(5.7.6)

and
µ(U \A) is as small as we like.(5.7.7)

This basically corresponds to parts of Proposition D.1 on p419 of [20], Theorem
2.2.2 on p60 of [62], and Theorem 1.10 on p11 of [142].

To see this, observe that open and closed sets in X have these properties,
because of (5.7.3), (5.7.4). Thus it suffices to check that the collection C of
Borel sets E ⊆ X with these properties is a σ-algebra. It is easy to see that
C is closed under taking complements. It follows that the closure of C under
countable unions and intersections are equivalent to each other. It is not too
difficult to verify either of these conditions.

Equivalently, (5.7.7) means that

µ(U \ E) is as small as we like(5.7.8)

and
µ(E \A) is as small as we like.(5.7.9)

Suppose that
µ(E) < +∞,(5.7.10)

in place of (5.7.5). Note that

µE(B) = µ(B ∩ E)(5.7.11)

is a nonnegative Borel measure on X such that µE(X) = µ(E) < +∞. If (5.7.3)
or equivalently (5.7.4) holds, then the previous argument implies that there are
closed sets A in X such that

A ⊆ E(5.7.12)

and µE(E \A) is as small as we like. Of course, the latter is the same as saying
that (5.7.9) holds.

Suppose now that W1,W2,W3, . . . is a sequence of open subsets of X such
that

µ(Wj) < +∞(5.7.13)

for each j, and

E ⊆
∞⋃
j=1

Wj .(5.7.14)
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As before,
µj(B) = µ(B ∩Wj)(5.7.15)

is a nonnegative Borel measure on X for each j, with µj(X) = µ(Wj) < +∞.
If (5.7.3) or equivalently (5.7.4) holds, then the earlier argument implies that
for each j there is an open set Uj ⊆ X such that

E ∩Wj ⊆ Uj(5.7.16)

and
µj(Uj \ (E ∩Wj)) is as small as we like.(5.7.17)

We may as well take Uj so that

Uj ⊆Wj(5.7.18)

for each j, by replacing Uj with its intersection with Wj , if necessary. In this
case, (5.7.17) is the same as saying that

µ(Uj \ (E ∩Wj)) is as small as we like(5.7.19)

for each j.
If we put

U =

∞⋃
j=1

Uj ,(5.7.20)

then U is an open set in X such that

E ⊆ U.(5.7.21)

We can also use (5.7.14) and (5.7.19) to get that (5.7.8) holds. These two
variants of the earlier argument correspond to parts of Theorem 2.2.2 on p60 of
[62], and Theorem 1.10 on p11 of [142].

5.8 Approximation by continuous functions

Let X be a nonempty metric or topological space, and let µ be a nonnegative
Borel measure on X. Also let A ⊆ X be a closed set and U ⊆ X be an open
set such that

A ⊆ U.(5.8.1)

If X is normal in the strict sense, then there is a continuous real-valued function
ϕ on X such that

ϕ ≡ 1 on A, ϕ ≡ 0 on X \ U, and 0 ≤ ϕ ≤ 1 on X,(5.8.2)

by Urysohn’s lemma. This implies that

µ(A) ≤
∫
X

ϕdµ ≤ µ(U).(5.8.3)
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If E ⊆ X is a Borel set such that

A ⊆ E ⊆ U,(5.8.4)

then
µ(A) ≤ µ(E) ≤ µ(U).(5.8.5)

If µ(U) <∞, then one can use this and (5.8.3) to get that∣∣∣∣µ(E)−
∫
X

ϕdµ

∣∣∣∣ ≤ µ(U)− µ(A) = µ(U \A).(5.8.6)

If µ(X) < +∞, and X satisfies (5.7.3) or equivalently (5.7.4), then we can find
A, U such that µ(U \A) is as small as we like, as in the previous section. Note
that

{x ∈ X : 1E(x) 6= ϕ(x)} ⊆ U \A.(5.8.7)

Let us say that a topological space X is perfectly normal in the strict sense
if X is normal in the strict sense, and (5.7.3) or equivalently (5.7.4) holds. If
X also satisfies the first separation condition, then we say that X is perfectly
normal in the strong sense. As usual, one may say that X is perfectly normal
when X is perfectly normal in the strict sense, and perfectly T4 when X is
perfectly normal in the strict sense, but the opposite convention may be used
as well. Alternatively, both of these terms may be used when X is perfectly
normal in the strong sense, and perfectly normal spaces in the strict sense may
be described in other ways.

Let X be a nonempty topological space, and let µ1, µ2 be nonnegative finite
Borel measures on X. If f is a bounded continuous real-valued function on X,
then put

λj(f) = λµj
(f) =

∫
X

f dµj(5.8.8)

for j = 1, 2. These define bounded linear functionals on Cb(X,R) with respect
to the supremum norm, with dual norms equal to

µj(X),(5.8.9)

j = 1, 2.
Suppose from now on in this section that X is perfectly normal in the strict

sense. If
λ1 = λ2(5.8.10)

on Cb(X,R), then
µ1 = µ2(5.8.11)

on X. Of course, this means that

µ1(E) = µ2(E)(5.8.12)

for all Borel sets E ⊆ X. To see this, one can try to approximate µ1(E) and
µ2(E) by

λ1(ϕ) = λ2(ϕ)(5.8.13)
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for suitable ϕ ∈ Cb(X,R).
More precisely,

µ = µ1 + µ2(5.8.14)

is another nonnegative finite Borel measure on X. Thus there are closed sets
A ⊆ X and open sets U ⊆ X such that (5.8.4) holds and µ(U \ A) is as small
as we like, as in the previous section. If ϕ is as in (5.8.2), then∣∣∣∣µj(E)−

∫
X

ϕdµj

∣∣∣∣ ≤ µj(U \A),(5.8.15)

j = 1, 2, as in (5.8.6).
Alternatively, one can look at µ1 −µ2 as a real-valued or signed measure on

X. Before doing this, we shall review real and complex-valued measures in the
next section.

5.9 Real and complex measures

Let (X,A) be a (nonempty) measurable space, so that X is a nonempty set, and
A is a σ-algebra of measurable subsets of X. A real or complex-valued function
µ on A is said to be a measure on (X,A) if

µ
( ∞⋃

j=1

Aj

)
=

∞∑
j=1

µ(Aj)(5.9.1)

for every sequence A1, A2, A3, . . . of pairwise-disjoint measurable subsets of X.
In the real case, µ may also be called a signed measure on X. More precisely,
the convergence of the series on the right side of (5.9.1) is considered to be
part of the definition of a measure. It follows that the series should converge
absolutely, because any rearrangement of the series converges too.

If A ⊆ X is measurable, then put

|µ|(A) = sup

{ ∞∑
j=1

|µ(Aj)| : A1, A2, A3, . . . is a pairwise-disjoint sequence

of measurable subsets of X such that

∞⋃
j=1

Aj = A

}
.(5.9.2)

It is well known that this defines a nonnegative finite measure on (X,A), which
is the total variation measure associated to µ. Note that

|µ(A)| ≤ |µ|(A)(5.9.3)

for every measurable set A ⊆ X. The total variation measure is the smallest
nonnegative measure on (X,A) with this property.

Let M(X,R), M(X,C) be the spaces of real and complex measures on
(X,A), respectively. It is easy to see that these are vector spaces over the
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real and complex numbers, respectively, with respect to pointwise addition and
scalar multiplication on A. One can check that

‖µ‖ = |µ|(X)(5.9.4)

defines a norm on each of M(X,R) and M(X,C). One can show that M(X,R)
and M(X,C) are Banach spaces over the real and complex numbers, respec-
tively, with respect to this norm.

If µ is a real measure on X, then

µ+ = (1/2) (|µ|+ µ), µ− = (1/2) (|µ| − µ)(5.9.5)

are nonnegative finite measures on (X,A). These are the positive and negative
variation measures associated to µ on X, respectively. Of course,

µ = µ+ − µ−(5.9.6)

and
|µ| = µ+ + µ−,(5.9.7)

by construction. The former is known as the Jordan decomposition of µ.
The Hahn decomposition theorem implies that there is a measurable set

B ⊆ X such that
µ(A ∩B) ≥ 0(5.9.8)

and
µ(A ∩ (X \B)) ≤ 0(5.9.9)

for all measurable sets A ⊆ X. Using this, one can check that

|µ|(A) = µ(A ∩B)− µ(A ∩ (X \B))(5.9.10)

for all measurable sets A ⊆ X. Similarly,

µ+(A) = µ(A ∩B)(5.9.11)

and
µ−(A) = −µ(A ∩ (X \B))(5.9.12)

for all measurable sets A ⊆ X.
If µ is a complex measure on X, then it is well known that there is a mea-

surable complex-valued function h on X such that

|h| = 1 on X(5.9.13)

and

µ(A) =

∫
A

h d|µ|(5.9.14)

for all measurable sets A ⊆ X. This reduces to the Hahn decomposition theorem
in the real case.
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If f is a measurable complex-valued function on X that is integrable with
respect to |µ|, then the integral of f with respect to µ on X can be defined by∫

X

f dµ =

∫
X

f h d|µ|.(5.9.15)

In this case, we get that ∣∣∣∣∫
X

f dµ

∣∣∣∣ ≤ ∫
X

|f | d|µ|.(5.9.16)

Note that f is integrable with respect to |µ| when f is bounded on X, because
|µ|(X) <∞.

5.10 Real and complex Borel measures

LetX be a topological space, so thatX may be considered as a measurable space
too, using the σ-algebra of Borel sets in X. Also let µ be a real or complex Borel
measure on X, which is to say a real or complex measure on X with respect to
the Borel sets. If f is a bounded continuous real or complex-valued function on
X, then put

λµ(f) =

∫
X

f dµ.(5.10.1)

Observe that

|λµ(f)| ≤
∫
X

|f | d|µ| ≤ ‖f‖sup |µ|(X),(5.10.2)

by (5.9.16). Thus λµ defines a bounded linear functional on Cb(X,R) or
Cb(X,C), as appropriate, with respect to the supremum norm, and with dual
norm less than or equal to |µ|(X).

If X is perfectly normal in the strict sense, then

the dual norm of λµ with respect to(5.10.3)

the supremum norm is equal to |µ|(X).

In particular, this implies that λµ = 0 only when µ = 0 on X.
Suppose that µ is a real Borel measure on X, and let B ⊆ X be a Borel set

as in the Hahn decomposition of µ. In this case,

λµ(f) =

∫
B

f d|µ| −
∫
X\B

f d|µ|(5.10.4)

for all f ∈ Cb(X,R). Let C ⊆ X be a closed set and V ⊆ X an open set such
that

C ⊆ B ⊆ V.(5.10.5)

Using Urysohn’s lemma, we can get a continuous real-valued function ψ on X
such that

ψ ≡ 1 on C, ψ ≡ −1 on X \ V, and |ψ| ≤ 1 on X.(5.10.6)
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Observe that

λµ(ψ)− |µ|(X) =

∫
B

(ψ − 1) d|µ| −
∫
X\B

(ψ + 1) d|µ|(5.10.7)

=

∫
B\C

(ψ − 1) d|µ| −
∫
V \B

(ψ + 1) d|µ|.

This implies that

|λµ(ψ)− |µ|(X)| ≤
∫
B\C

|ψ − 1| d|µ|+
∫
V \B

|ψ + 1| d|µ|

≤ 2 |µ|(B \ C) + 2 |µ|(V \B) = 2 |µ|(V \ C).(5.10.8)

The right side can be as small as we want, as in Section 5.7. One can use this
to get (5.10.3) in the real case.

In the complex case, there is a complex-valued Borel measurable function h
on X that satisfies (5.9.13) such that

λµ(f) =

∫
X

f h d|µ|(5.10.9)

for all f ∈ Cb(X,C), as in (5.9.15). Note that

|λµ(f)− |µ|(X)| =
∣∣∣∣∫

X

(f h− 1) d|µ|
∣∣∣∣ ≤ ∫

X

|f h− 1| d|µ|.(5.10.10)

To get (5.10.3), one can find f so that |f | ≤ 1 on X, and∫
X

|f h− 1| d|µ| =
∫
X

|f − h| d|µ|(5.10.11)

is as small as we like. One way to do this is to approximate h by Borel measur-
able simple functions, and to approximate those simple functions by bounded
continuous functions on X. The condition |f | ≤ 1 on X can be obtained by
replacing f with f/|f | on the set where |f | ≥ 1.

5.11 Some remarks about product spaces

If X and Y are any two sets, then their Cartesian product X×Y is the set of all
ordered pairs (x, y), with x ∈ X and y ∈ Y . If X and Y are topological spaces,
then the corresponding product topology on X ×Y can be defined in a standard
way. More precisely, if U ⊆ X and V ⊆ Y are open sets, then U ×V is an open
set in X × Y , and the open subsets of X × Y of this type form a base for the
product topology.

Suppose now that (X, dX), (Y, dY ) are metric spaces. There are various ways
that one might try to define a metric on X × Y , using dX , dY . If 1 ≤ p < ∞,
then put

dp((x, y), (x
′, y′)) = dX×Y,p((x, y), (x

′, y′))(5.11.1)

= (dX(x, x′)p + dY (y, y
′)p)1/p



5.11. SOME REMARKS ABOUT PRODUCT SPACES 115

for all x, x′ ∈ X and y, y′ ∈ Y . One can check that this defines a metric on
X×Y , using Minkowski’s inequality for finite sums, as in Section 1.3. Of course,
this is much easier when p = 1.

Similarly, put

d∞((x, y), (x′, y′)) = dX×Y,∞((x, y), (x′, y′))(5.11.2)

= max(dX(x, x′), dY (y, y
′))

for all x, x′ ∈ X and y, y′ ∈ Y . One can verify that this defines a metric on
X × Y as well. If 1 ≤ p <∞, then

d∞((x, y), (x′, y′)) ≤ dp((x, y), (x
′, y′))(5.11.3)

≤ 21/p d∞((x, y), (x′, y′))

for all x, x′ ∈ X and y, y′ ∈ Y .
If x ∈ X and y ∈ Y , then let BX(x, r), BY (y, r) be the open balls in X, Y

centered at x, y, respectively, with radius r > 0, and let BX(x, r), BY (y, r) be
the corresponding closed balls of radius r ≥ 0. Similarly, if 1 ≤ p ≤ ∞, then let
Bp((x, y), r) be the open ball in X×Y with respect to dp centered at (x, y) with
radius r > 0, and let Bp((x, y), r) be the corresponding closed ball of radius
r ≥ 0. It is easy to see that

B∞((x, y), r) = BX(x, r)×BY (y, r)(5.11.4)

for every r > 0, and that

B∞((x, y), r) = BX(x, r)×BY (y, r)(5.11.5)

for every r ≥ 0.
One can use (5.11.4) to check that the topology determined on X × Y by

d∞ is the same as the product topology associated to the topologies determined
on X, Y by dX , dY , respectively. This is the same as the topology determined
on X × Y by dp for any p ≥ 1, because of (5.11.3).

If 1 ≤ p ≤ ∞, then a sequence {(xj , yj)}∞j=1 of elements of X × Y is a
Cauchy sequence with respect to dp if and only if {xj}∞j=1 and {yj}∞j=1 are
Cauchy sequences in X and Y , respectively. If X, Y are complete with respect
to dX , dY , respectively, then it follows that X × Y is complete with respect to
dp.

We may sometimes be interested in uniform continuity properties of a map-
ping from X × Y into another metric space Z. Uniform continuity with respect
to any of the metrics dp implies uniform continuity with respect to the other
metrics of this type, because of (5.11.3).

Similarly, boundedness of a subset of X × Y with respect to any of the
metrics dp implies boundedness with respect to the other metrics of this type.
We may also be interested in uniform continuity properties of mappings from
X × Y into Z on bounded sets in X × Y , for which the choice of metric dp may
not matter too much.
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5.12 Some remarks about direct sums

Let V , W be vector spaces, both real or both complex. Their Cartesian product
V ×W may be considered as a vector space over the real or complex numbers
too, as appropriate, with respect to coordinatewise addition and scalar multi-
plication. This is the direct sum of V and W , as vector spaces. One may wish
to identify V , W with the linear subspaces V × {0}, {0} ×W of V ×W in the
obvious way.

Let ‖ · ‖V , ‖ · ‖W be norms on V , W , respectively. If 1 ≤ p <∞, then put

‖(v, w)‖V×W,p = (‖v‖pV + ‖w‖pW )1/p(5.12.1)

for every (v, w) ∈ V × W . It is easy to see that this is a norm on V × W
when p = 1. If p > 1, then one can verify that this is a norm on V ×W using
Minkowski’s inequality for finite sums, as in Section 1.3.

Similarly, put

‖(v, w)‖V×W,∞ = max(‖v‖V .‖w‖W )(5.12.2)

for every (v, w) ∈ V ×W . One can check that this defines a norm on V ×W as
well. We also have that

‖(v, w)‖V×W,∞ ≤ ‖(v, w)‖V×W,p ≤ 21/p ‖(v, w)‖V×W,∞(5.12.3)

for every (v, w) ∈ V ×W and 1 ≤ p <∞.
If 1 ≤ p ≤ ∞, then

dV×W,p((v, w), (v
′, w′)) = ‖(v, w)− (v′, w′)‖V×W,p(5.12.4)

= ‖(v − v′, w − w′)‖V×W,p

defines a metric on V ×W , as usual. This is the same as the metric corresponding
to p and the metrics on V ,W associated to their norms as in the previous section.
If V , W are Banach spaces, then V ×W is complete with respect to this metric,
as before. This means that V ×W is a Banach space with respect to ‖ · ‖V×W,p.

Suppose that 〈·, ·〉V , 〈·, ·〉W are inner products on V , W , respectively. It is
easy to see that

〈(v, w), (v′, w′)〉V×W = 〈v, v′〉V + 〈w,w′〉W(5.12.5)

defines an inner product on V × W . If ‖ · ‖V , ‖ · ‖W are the norms on V ,
W associated to their inner products, respectively, then the norm on V ×W
associated to this inner product is the same as (5.12.1) with p = 2. If V , W
are Hilbert spaces, then it follows that V ×W is a Hilbert space with respect
to this inner product, as in the preceding paragraph.

Let Z be another vector space over the real or complex numbers, as appro-
priate. If T1, T2 are linear mappings from V , W into Z, respectively, then

T ((v, w)) = T1(v) + T2(w)(5.12.6)
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defines a linear mapping from V ×W into Z. Note that T is uniquely determined
by the conditions that

T ((v, 0)) = T1(v)(5.12.7)

for every v ∈ V , and
T ((0, w)) = T2(w)(5.12.8)

for every w ∈ W . Conversely, if T is any linear mapping from V × W into
Z, then (5.12.7) and (5.12.8) define linear mappings T1, T2 from V , W into Z,
respectively.

Let 1 ≤ p ≤ ∞ be given, and suppose that T is a bounded linear mapping
from V ×W into Z, with respect to ‖ · ‖V×W,p on V ×W . Let ‖T‖op,p be the
corresponding operator norm of T . It is easy to see that the associated linear
mappings T1, T2 from V , W into Z, respectively, are bounded, with

‖T1‖op,V Z , ‖T2‖op,WZ ≤ ‖T‖op,p.(5.12.9)

Suppose now that T1, T2 are bounded linear mappings from V , W into Z,
respectively. If v ∈ V and w ∈W , then

‖T ((v, w))‖Z ≤ ‖T1(v)‖Z + ‖T2(w)‖Z(5.12.10)

≤ ‖T1‖op,V Z ‖v‖V + ‖T2‖op,WZ ‖w‖W .

This implies that T is bounded as a linear mapping from V ×W into Z, with
respect to ‖ · ‖V×W,p on V ×W . More precisely, if p = 1, then we get that

‖T ((v, w))‖Z ≤ max(‖T1‖op,V Z , ‖T2‖op,WZ) ‖(v, w)‖V×W,1,(5.12.11)

so that
‖T‖op,1 ≤ max(‖T1‖op,V Z , ‖T2‖op,WZ).(5.12.12)

If p > 1, then let 1 ≤ q <∞ be the exponent conjugate to p. In this case,

‖T ((v, w))‖Z ≤ (‖T1‖qop,V Z + ‖T2‖qop,WZ)
1/q ‖(v, w)‖V×W,p(5.12.13)

for every v ∈ V and w ∈W . This follows easily from (5.12.10) when p = ∞, so
that q = 1. If 1 < p <∞, then one can use Hölder’s inequality for functions on
a set with two elements. Thus

‖T‖op,p ≤ (‖T1‖qop,V Z + ‖T2‖qop,WZ)
1/q(5.12.14)

when 1 < p ≤ ∞.

5.13 Bilinear mappings

Let V , W , and Z be vector spaces, all real or all complex. Also let B be a
mapping from V ×W into Z, so that B(v, w) is defined as an element of Z for
each v ∈ V and w ∈W . We say that B is bilinear on V ×W if B(v, w) is linear
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as a function of v ∈ V for each w ∈ W , and linear as a function of w ∈ W for
each v ∈ V . Of course, if B is a bilinear mapping from V ×W into Z, then

B̃(w, v) = B(v, w)(5.13.1)

defines a bilinear mapping from W × V into Z.
If w ∈W , then put

B1,w(v) = B(v, w)(5.13.2)

for every v ∈ V . It is easy to see that B is bilinear on V ×W if and only if B1,w

is a linear mapping from V into Z for each w ∈W , and

w 7→ B1,w(5.13.3)

is a linear mapping from W into the space L(V, Z) of all linear mappings from
V into Z. Similarly, if v ∈ V , then put

B2,v(w) = B(v, w)(5.13.4)

for every w ∈ W . As before, B is bilinear on V ×W if and only if B2,v is a
linear mapping from W into Z for each v ∈ V , and

v 7→ B2,v(5.13.5)

is a linear mapping from V into L(W,Z).
Suppose that B is bilinear, and let ‖ · ‖V , ‖ · ‖W , and ‖ · ‖Z be norms on

V , W , and Z, respectively. We say that B is bounded on V ×W if there is a
nonnegative real number C such that

‖B(v, w)‖Z ≤ C ‖v‖V ‖w‖W(5.13.6)

for every v ∈ V and w ∈W . This is the same as saying that B1,w is a bounded
linear mapping from V into Z for each w ∈W , with

‖B1,w‖op,V Z ≤ C ‖w‖W .(5.13.7)

This means that (5.13.3) is a bounded linear mapping from W into the space
BL(V, Z) of bounded linear mappings from V into Z, with operator norm less
than or equal to C. Similarly, (5.13.6) is the same as saying that B2,v is a
bounded linear mapping from W into Z for each v ∈ V , with

‖B2,v‖op,WZ ≤ C ‖v‖V .(5.13.8)

Equivalently, this means that (5.13.5) is a bounded linear mapping from V into
BL(W,Z), with operator norm less than or equal to C. Of course, (5.13.6) holds
with C = 0 if and only if B ≡ 0 on V ×W .

Remember that V ×W may be considered as a metric space, using a metric
obtained from the metrics associated to the norms on V and W as in Section
5.11. If B is bounded on V ×W , then it is easy to see that B is continuous at
(0, 0), as a mapping from V ×W into Z.
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If v, v′ ∈ V and w,w′ ∈W , then

B(v, w)−B(v′, w′) = B(v − v′, w) +B(v′, w − w′).(5.13.9)

If (5.13.6) holds for some C ≥ 0, then we get that

‖B(v, w)−B(v′, w′)‖Z ≤ ‖B(v − v′, w)‖Z + ‖B(v′, w − w′)‖Z
≤ C ‖v − v′‖V ‖w‖W + ‖v′‖V ‖w − w′‖W .(5.13.10)

It follows from (5.13.10) that B is uniformly continuous on bounded subsets of
V ×W , with respect to the metric on Z associated to the norm. In particular,
this implies that B is continuous on V ×W .

If B is continuous at (0, 0) on V ×W , then one can check that (5.13.6) holds
for some C ≥ 0. More precisely, it suffices to ask that B be bounded on a
product of balls in V , W with positive radii centered at 0.

Let V0, W0 be dense linear subspaces of V , W , respectively, with respect to
the metrics associated to their norms. Suppose that B0 is a bounded bilinear
mapping from V0 ×W0 into Z, using the restriction of the norms on V , W to
V0, W0, respectively. If Z is complete with respect to the metric associated to
its norm, then there is a unique extension of B0 to a bounded bilinear mapping
from V ×W into Z. This can be obtained from the analogous statement for
bounded linear mappings in Section 2.2, one variable at a time. This could also
be obtained from the uniform continuity properties of B0 on bounded subsets of
V0 ×W0, as in the preceding paragraph, and the extension result for uniformly
continuous mappings mentioned in Section 1.15.

5.14 Separate continuity

Let V , W and Z be metric or topological spaces, and let B be a mapping from
V ×W into Z. We say that B is separately continuous on V ×W if B(v, w)
is continuous as a function of v ∈ V for each w ∈ W , and continuous as a
function of w ∈ W for each v ∈ V . If B is continuous with respect to the
product topology on V ×W , then B is sometimes said to be jointly continuous
on V ×W . It is easy to see that this implies that B is separately continuous on
V ×W .

Suppose now that V , W , and Z are vector spaces, all real or all complex,
and equipped with norms ‖ · ‖V , ‖ · ‖W , and ‖ · ‖Z , respectively. Suppose also
that B is a bilinear mapping from V ×W into Z, and let B1,w, B2,v be as in
(5.13.2), (5.13.4), respectively, for each v ∈ V , w ∈ W . In this case, separate
continuity of B on V ×W means that

B1,w is a bounded linear mapping from V into Z(5.14.1)

for every w ∈W , and

B2,v is a bounded linear mapping from W into Z(5.14.2)
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for every v ∈ V .
Suppose that B satisfies these two conditions, and let E be a nonempty

subset of W . Thus
E1,E = {B1,w : w ∈ E}(5.14.3)

is a nonempty collection of bounded linear mappings from V into Z. If v ∈ V ,
then put

E1,E(v) = {B1,w(v) : w ∈ E},(5.14.4)

as in Section 4.3. Equivalently,

E1,E(v) = B2,v(E).(5.14.5)

If E is a bounded subset of W , then we get that (5.14.5) is a bounded subset
of Z, because of (5.14.2).

If V is a Banach space, then the Banach–Steinhaus theorem implies that
the operator norms of B1,w, w ∈ E, are uniformly bounded. If we take E to be
the closed unit ball in W , then we get that B is bounded as a bilinear mapping
from V ×W into Z. This corresponds to a simplification of Theorem 2.17 on
p51 of [162]. Of course, there is an analogous statement when W is a Banach
space.

5.15 Bilinear and sesquilinear forms

Let V , W be vector spaces, both real or both complex. A bilinear mapping b
from V ×W into R or C, as appropriate, may be called a bilinear functional
on V ×W , as on p106, 137 of [105]. The term bilinear form is used for this on
p88 of [167], although this term is often used for the case where V =W .

If w ∈ W , then put b1,w(v) = b(v, w), as in Section 5.13. This is a linear
functional on V , and

w 7→ b1,w(5.15.1)

defines a linear mapping from W into the algebraic dual V alg of V , as before.
Similarly, if v ∈ V , then b2,v(w) = b(v, w) is a linear functional on W , and

v 7→ b2,v(5.15.2)

defines a linear mapping from V into W alg. Conversely, any linear mapping
from W into V alg or from V into W alg corresponds to a bilinear functional on
V ×W in this way.

Now let ‖ · ‖V , ‖ · ‖W be norms on V , W , respectively. If b is bounded as a
bilinear mapping on V ×W , with the standard absolute value function as the
norm on R or C, as appropriate, then b1,w is a bounded linear functional on V
for each w ∈W , and (5.15.1) defines a bounded linear mapping from W into the
dual V ′ of V with respect to ‖ ·‖V . Similarly, b2,v is a bounded linear functional
on W for each v ∈ V , and (5.15.2) defines a bounded linear mapping from V
into W ′. Conversely, any bounded linear mapping from W into V ′ or from V
into W ′ corresponds to a bounded bilinear functional on V ×W in this way.
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Let us take V = W for the rest of the section. Suppose for the moment
that V is a vector space over R. Let 〈·, ·〉V be an inner product on V , with
associated norm ‖ · ‖V . If A is a linear mapping from V into itself, then

bA(v, w) = 〈A(v), w〉V(5.15.3)

defines a bilinear form on V . One can check that this is bounded as a bilinear
mapping from V × V into R if and only if A is a bounded linear mapping from
V into itself.

Conversely, if V is a Hilbert space, then it is well known that any bounded
bilinear form b on V is of this form, for a unique bounded linear mapping A on V .
More precisely, suppose that b is a bilinear form on V such that b2,v(w) = b(v, w)
is a bounded linear functional on V , as a function of w, for each v ∈ V . This
implies that for each v ∈ V there is a unique A(v) ∈ V such that

b2,v(w) = 〈A(v), w〉V(5.15.4)

for every w ∈ V , as in Section 3.1. It is easy to see that A is a linear mapping
from V into itself, because of uniqueness. If b is bounded as a bilinear form on
V , then A is bounded as a linear mapping on V , as in the preceding paragraph.

Suppose that V is a vector space over C for the rest of the section. A
mapping b from V ×V into C is said to be a sesquilinear form on V if b(v, w) is
complex-linear in v for each w ∈ V , and conjugate-linear in w for each v ∈ V .
In this case, if v ∈ V , then

b̃2,v(w) = b(v, w)(5.15.5)

is complex-linear in w. Note that b may be considered as a real-bilinear mapping
from V × V into C, which is to say that b is bilinear over R, or equivalently
that b is bilinear when V and C are considered as vector spaces over R.

Let 〈·, ·〉V be an inner product on V , as a complex vector space, and let ‖·‖V
be the associated norm. In particular, 〈·, ·〉V is sesquilinear on V . A sesquilinear
form b on V is said to be bounded with respect to ‖ · ‖V if there is a nonnegative
real number C such that

|b(v, w)| ≤ C ‖v‖V ‖w‖V(5.15.6)

for every v, w ∈ V . This is the same as saying that b is bounded as a real-
bilinear mapping from V × V into C, where ‖ · ‖V is considered as a norm on
V as a vector space over R, and the standard absolute value function on C is
considered as a norm on C as a vector space over R.

If A is a linear mapping from V into itself, then (5.15.3) defines a sesquilinear
form on V . One can check that this is a bounded sesquilinear form on V with
respect to ‖ · ‖V if and only if A is a bounded linear mapping from V into itself,
as before. If V is a complex Hilbert space, then it is well known that every
bounded sesquilinear form b on V is of this form, for a unique bounded linear
mapping A on V .
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Indeed, suppose that b is a sesquilinear form on V such that (5.15.5) is a
bounded linear functional on V , as a function of w, for each v ∈ V . This implies
that for each v ∈ V there is a unique A(v) ∈ V such that

b̃2,v(w) = 〈w,A(v)〉V(5.15.7)

for every w ∈ V , as in Section 3.1 again. Equivalently, this means that

b(v, w) = 〈w,A(v)〉V = 〈A(v), w〉V(5.15.8)

for every w ∈ V . One can use uniqueness to get that A is a linear mapping from
V into itself, as before. If b is bounded as a sesquilinear form on V , then A is
bounded as a linear mapping on V , as in the previous paragraph.
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Chapter 6

Algebras and norms

6.1 Algebras in the strict sense

Let A be a vector space over the real or complex numbers. If A is also equipped
with a bilinear mapping from A × A into A, then we say that A is an algebra
in the strict sense. This bilinear mapping may be expressed as

(a, b) 7→ a b,(6.1.1)

although one may use other notation, depending on the situation.
If

(a b) c = a (b c)(6.1.2)

for every a, b, c ∈ A, then A is said to be an associative algebra. If

a b = b a(6.1.3)

for every a, b ∈ A, then A is said to be commutative. An element e = eA of A
is said to be the multiplicative identity element in A if

eA a = a eA = a(6.1.4)

for every a ∈ A. It is easy to see that the multiplicative identity element in A
is unique when it exists.

If X is a nonempty set, then the spaces of all real and complex-valued
functions onX are commutative associative algebras over R andC, respectively,
with respect to pointwise multiplication of functions. The function 1X equal
to 1 at every point in X is the multiplicative identity element of each of these
algebras.

Let V be a vector space over the real or complex numbers, and let L(V ) =
L(V, V ) be the space of linear mappings from V into itself. This is an asso-
ciative algebra over the real or complex numbers, as appropriate, with respect
to composition of linear mappings. The identity mapping I = IV on V is the
multiplicative identity element in L(V ).

124
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Let A be an algebra in the strict sense over R or C. Also let A0 be a linear
subspace of A such that

a b ∈ A0(6.1.5)

for every a, b ∈ A0. Under these conditions, A0 is an algebra in the strict sense
over R or C, as appropriate, with respect to the restriction of multiplication on
A to A0. We say that A0 is a subalgebra of A in this case. Of course, if A is
associative or commutative, then A0 has the same property.

Let X be a nonempty metric or topological space. The spaces C(X,R),
C(X,C) of continuous real and complex-valued functions on X are subalgebras
of the algebras of all real or complex-valued functions on X, respectively. If X
is equipped with the discrete metric or topology, then every function on X is
continuous.

If U is a nonempty open subset of the complex plane, then the space H(U)
of holomorphic functions on U is a subalgebra of C(U,C). Similarly, the space
A(U) of continuous complex-valued functions on the closure U of U inC that are
holomorphic on U is a subalgebra of C(U,C). There are analogous statements
for holomorphic functions of several complex variables.

6.2 Norms on algebras

Let A be an algebra in the strict sense over the real or complex numbers, and let
‖·‖A be a norm on A, as a vector space over R or C. To say that multiplication
on A is bounded as a bilinear mapping with respect to ‖ · ‖A means that

‖a b‖A ≤ C ‖a‖A ‖b‖A(6.2.1)

for some nonnegative real number C and all a, b ∈ A, as in Section 5.13. This
happens exactly when multiplication on A is continuous as a mapping from
A×A into A, with respect to the metric on A associated to the norm, and the
corresponding product topology on A×A, as before.

If (6.2.1) holds with C = 1, then ‖ · ‖A is said to be submultiplicative on A.
If A has finite dimension as a vector space over R or C, then it is easy to see
that (6.2.1) holds for some C ≥ 0, using the remarks in Section 1.11.

If A has a multiplicative identity element eA, then (6.2.1)

‖eA‖A = ‖eA eA‖A ≤ C ‖eA‖2A.(6.2.2)

If eA 6= 0, so that ‖eA‖A > 0, then it follows that

1 ≤ C ‖eA‖A.(6.2.3)

Note that A = {0} when eA = 0. Sometimes

‖eA‖A = 1(6.2.4)

is included as a condition on a norm on A.
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If X is a nonempty set, then the spaces ℓ∞(X,R), ℓ∞(X,C) of bounded
real and complex-valued functions on X are subalgebras of the spaces of all real
and complex-valued functions on X, respectively. If f and g are bounded real
or complex-valued functions on X, then it is easy to see that

‖f g‖∞ ≤ ‖f‖∞ ‖g‖∞.(6.2.5)

Note that ‖1X‖∞ = 1.

If X is a nonempty metric or topological space, then the spaces Cb(X,R),
Cb(X,C) of bounded continuous real and complex-valued functions are subal-
gebras of C(X,R), C(X,C) and of ℓ∞(X,R), ℓ∞(X,C), respectively. If U is
a nonempty open subset of C, then the space H∞(U) of bounded holomorphic
functions on U is a subalgebra ofH(U) and Cb(U,C). Similarly, the space Ab(U)
of bounded continuous complex-valued functions on U that are holomorphic on
U is a subalgebra of A(U) and Cb(U,C).

Let V be a vector space over the real or complex numbers with a norm ‖·‖V .
The space BL(V ) = BL(V, V ) of all bounded linear mappings from V into itself
with respect to ‖·‖V is a subalgebra of L(V ). The corresponding operator norm
‖ · ‖op = ‖ · ‖op,V V is submultiplicative on BL(V ), as in Section 2.2. Note that
IV is automatically bounded on V , with

‖IV ‖op = 1(6.2.6)

when V 6= {0}.
Let A be an algebra in the strict sense over R or C with a norm ‖ ·‖A again.

If A is not complete with respect to the metric associated to the norm, then one
can pass to a completion to get a Banach space, as in Section 1.15. If (6.2.1)
holds for some C ≥ 0, then multiplication on A has a unique extension to the
completion that satisfies the analogous conditions, as in Section 5.13.

Suppose that A is an associative algebra over R or C. If a ∈ A and j is
a positive integer, then aj can be defined in A in the usual way. If ‖ · ‖A is a
submultiplicative norm on A, then

‖aj‖A ≤ ‖a‖jA.(6.2.7)

If ‖a‖A < 1, then it follows that

‖aj‖A → 0 as j → ∞.(6.2.8)

6.3 Algebra homomorphisms

Let A, B be algebras in the strict sense, both real or both complex. Also let ϕ
be a linear mapping from A into B, as vector spaces over R or C. If

ϕ(x y) = ϕ(x)ϕ(y)(6.3.1)
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for all x, y ∈ A, then ϕ is said to be an algebra homomorphism from A into B.
If A, B also have multiplicative identity elements eA, eB, respectively, then one
may wish to ask that

ϕ(eA) = eB(6.3.2)

in addition. If A has a multiplicative identity element eA and ϕ maps A onto
B, then (6.3.1) implies that ϕ(eA) is the multiplicative identity element in B.

Let C be another real or complex algebra in the strict sense, as appropriate.
If ϕ is a homomorphism from A into B, and ψ is a homomorphism from B into
C, then their composition ψ ◦ ϕ is a homomorphism from A into C.

A one-to-one homomorphism ϕ from A onto B is called an algebra isomor-
phism, as usual. In this case, ϕ−1 is an isomorphism from B onto A. If ψ is an
isomorphism from B onto C, then it follows that ψ ◦ ϕ is an isomorphism from
A onto C.

Let A be an algebra in the strict sense over R or C again. If a, x ∈ A, then
put

La(x) = a x.(6.3.3)

This defines La as a linear mapping from A into itself, as a vector space over R
or C, which is the left multiplication operator associated to a. Note that

a 7→ La(6.3.4)

is linear as a mapping from A into the space L(A) of linear mappings from A
into itself.

Suppose that eA is a multiplicative identity element in A. Thus

LeA = IA,(6.3.5)

the identity mapping on A. We also have that

La(eA) = a(6.3.6)

for every a ∈ A. In particular, this implies that (6.3.4) is injective.
Suppose that A is an associative algebra. If a, b, x ∈ A, then

La(Lb(x)) = a (b x) = (a b)x = La b(x).(6.3.7)

Equivalently, this means that

La ◦ Lb = La b.(6.3.8)

Thus (6.3.4) is an algebra homomorphism from A into L(A) in this case.
Let ‖ · ‖A be a norm on A, and suppose that (6.2.1) holds for some C ≥ 0.

If a ∈ A, then we get that

‖La(x)‖A ≤ C ‖a‖A ‖x‖A(6.3.9)

for every x ∈ A. This means that La is a bounded linear mapping from A into
itself, with

‖La‖op ≤ C ‖a‖A.(6.3.10)
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It follows that (6.3.4) is a bounded linear mapping from A into the space BL(A)
of bounded linear mappings from A into itself.

If eA is a multiplicative identity element in A, then

‖a‖A ≤ ‖La‖op ‖eA‖A(6.3.11)

for each a ∈ A, by (6.3.6). If C = 1 and (6.2.4) holds, then we get that (6.3.4)
is an isometric linear mapping from A into BL(A).

6.4 Opposite algebra homomorphisms

Let A, B be algebras in the strict sense, both real or both complex, and let ϕ
be a linear mapping from A into B, as vector spaces over R or C. If

ϕ(x y) = ϕ(y)ϕ(x)(6.4.1)

for all x, y ∈ A, then ϕ is said to be an opposite algebra homomorphism from A
into B. If A, B have multiplicative identity elements eA, eB, then one may wish
to ask that ϕ(eA) = eB too. If A has a multiplicative identity element eA and
ϕ maps A onto B, then (6.4.1) implies that ϕ(eA) is the multiplicative identity
element in B, as before.

A one-to-one opposite algebra homomorphism ϕ from A onto B is called
an opposite algebra isomorphism. This implies that ϕ−1 is an opposite algebra
isomorphism from B onto A.

Let ϕ be an opposite algebra isomorphism from A onto itself. If

ϕ ◦ ϕ = IA,(6.4.2)

then ϕ is called an algebra involution on A.
If A is an algebra in the strict sense over C, then A may also be considered

as an algebra in the strict sense over R. In this case, one may be interested in
conjugate-linear algebra involutions on A. These are algebra involutions on A
as an algebra in the strict sense over R that are also conjugate-linear.

Let (V, 〈·, ·〉V ) be a real or complex Hilbert space, with the associated norm
‖ · ‖V . If T is a bounded linear mapping from V into itself, then its adjoint T ∗

is a bounded linear mapping on V as well, as in Section 3.5. In fact, T 7→ T ∗ is
an algebra involution on BL(V ), which is conjugate-linear in the complex case.

Let A be any algebra in the strict sense over the real or complex numbers
again. If a, x ∈ A, then put

Ra(x) = x a.(6.4.3)

This defines a linear mapping from A into itself, which is the right multiplication
operator associated to a. Clearly

a 7→ Ra(6.4.4)

is a linear mapping from A into L(A). If A has a multiplicative identity element
eA, then

ReA = IA(6.4.5)
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and

Ra(eA) = a(6.4.6)

for every a ∈ A.

If A is an associative algebra, then

Rb(Ra(x)) = (x a) b = x (a b) = Ra b(x)(6.4.7)

for every a, b, x ∈ A. This means that

Rb ◦Ra = Ra b,(6.4.8)

so that (6.4.4) is an opposite algebra homomorphism from A into L(A).

Let ‖ · ‖A be a norm on A that satisfies (6.2.1) for some C ≥ 0. If a ∈ A,
then

‖Ra(x)‖A ≤ C ‖a‖A ‖x‖A(6.4.9)

for every x ∈ A, so that Ra is a bounded linear mapping on A, with

‖Ra‖op ≤ C ‖a‖A.(6.4.10)

If eA is a multiplicative identity element in A, then

‖a‖A ≤ ‖Ra‖op ‖eA‖A(6.4.11)

for every a ∈ A. In particular, (6.4.4) is an isometric linear mapping from A
into BL(A) when C = 1 and (6.2.4) holds.

6.5 Banach algebras

Let A be an associative algebra over the real or complex numbers, with a sub-
multiplicative norm ‖·‖A. If A is complete with respect to the metric associated
to ‖ · ‖A, then A is said to be a Banach algebra with respect to ‖ · ‖A. Some-
times one may also ask that A have a multiplicative identity element eA with
‖eA‖A = 1.

Let A be an associative algebra over R or C with a multiplicative identity
element eA. An element x of A is said to be invertible in A if there is an element
x−1 of A such that

xx−1 = x−1 x = eA.(6.5.1)

One can check that x−1 is unique when it exists, in which case it is called the
multiplicative inverse of x in A.

If a ∈ A and n is a nonnegative integer, then

(eA − a)

n∑
j=0

aj =
( n∑

j=0

aj
)
(eA − a) = eA − an+1,(6.5.2)
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by a standard argument. Here aj is interpreted as being equal to eA when j = 0.
More precisely, the left side and middle part of (6.5.2) are equal to

n∑
j=0

aj −
n∑

j=0

aj+1 =

n∑
j=0

aj −
n+1∑
j=1

aj = eA − an+1.(6.5.3)

Suppose now that A is a Banach algebra with respect to a norm ‖ · ‖A,
and that ‖eA‖A = 1. Note that ‖aj‖A ≤ ‖a‖jA for each j ≥ 0, where ‖a‖jA is
interpreted as being equal to 1 when j = 0. If

‖a‖A < 1,(6.5.4)

then
∑∞

j=0 a
j converges absolutely with respect to ‖ · ‖A, with

∞∑
j=0

‖aj‖A ≤
∞∑
j=0

‖a‖jA = (1− ‖a‖A)−1.(6.5.5)

This implies that
∑∞

j=0 a
j converges in A, with∥∥∥∥ ∞∑

j=0

aj
∥∥∥∥
A
≤

∞∑
j=0

‖aj‖A ≤ (1− ‖a‖A)−1,(6.5.6)

as in Section 1.7.
Under these conditions, we have that

(eA − a)

∞∑
j=0

aj =
( ∞∑

j=0

aj
)
(eA − a) = eA,(6.5.7)

because of (6.5.2). This means that eA − a is invertible in A, with

(eA − a)−1 =

∞∑
j=0

aj .(6.5.8)

We also have that
‖(eA − a)−1‖A ≤ (1− ‖a‖A)−1,(6.5.9)

by (6.5.6).

6.6 More on invertible elements

Let A be an associative algebra over the real or complex numbers with a mul-
tiplicative identity element eA. If x, y are invertible elements of A, then it is
easy to see that x y is invertible in A too, with

(x y)−1 = y−1 x−1.(6.6.1)
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Thus the collection G(A) of invertible elements of A is a group.
Suppose that A is a Banach algebra with respect to a norm ‖ · ‖A, with

‖eA‖A = 1. Let x ∈ G(A) and y ∈ A be given, and observe that

y = x− (x− y) = (eA − (x− y)x−1)x.(6.6.2)

If
‖(x− y)x−1‖A < 1,(6.6.3)

then
eA − (x− y)x−1 ∈ G(A),(6.6.4)

as in the previous section. This implies that

y ∈ G(A),(6.6.5)

by (6.6.2).
Note that (6.6.3) holds when

‖x− y‖A ‖x−1‖A < 1.(6.6.6)

Of course, this is the same as saying that

‖x− y‖A < 1/‖x−1‖A.(6.6.7)

In particular,
G(A) is an open set in A,(6.6.8)

with respect to the metric on A associated to the norm.
If (6.6.3) holds, then we also get that

‖(eA − (x− y)x−1)−1‖A ≤ (1− ‖(x− y)x−1‖A)−1,(6.6.9)

as in (6.5.9). It follows that

‖y−1‖A = ‖x−1 (e− (x− y)x−1)−1‖A(6.6.10)

≤ ‖x−1‖A (1− ‖(x− y)x−1‖A)−1,

using (6.6.2) in the first step. If (6.6.7) holds, then we have that

‖y−1‖A ≤ ‖x−1‖A (1− ‖x− y‖A ‖x−1‖A)−1.(6.6.11)

If y ∈ G(A), then

y−1 − x−1 = y−1 (x− y)x−1,(6.6.12)

so that
‖y−1 − x−1‖A ≤ ‖y−1‖A ‖x− y‖A ‖x−1‖A.(6.6.13)

If (6.6.7) holds, then we can combine this with (6.6.11) to get that

‖y−1 − x−1‖A ≤ ‖x−1‖2A (1− ‖x− y‖A ‖x−1‖A)−1 ‖x− y‖A.(6.6.14)
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We may consider G(A) as a metric space, using the restriction to G(A) of
the metric on A associated to the norm. The topology determined on G(A)
by this metric is the same as the topology induced on G(A) by the topology
determined on A by the metric associated to the norm, by standard arguments.
The previous arguments imply that

w 7→ w−1(6.6.15)

is continuous on G(A). More precisely, this mapping is continuous at any x in
G(A), because of (6.6.14).

Let C0 be a nonnegative real number, and suppose that x, y ∈ G(A) satisfy

‖x−1‖A, ‖y−1‖A ≤ C0.(6.6.16)

In this case, we have that

‖y−1 − x−1‖A ≤ C2
0 ‖x− y‖A,(6.6.17)

by (6.6.13).
Note that multiplication on G(A) is continuous, as a mapping

from G(A)×G(A) into G(A),(6.6.18)

with respect to the appropriate product topology on G(A)×G(A), or a suitable
product metric. This follows from the analogous statement for multiplication
on A, as in Section 6.2. This implies that

G(A) is a topological group,(6.6.19)

because of the continuity of (6.6.15) on G(A).

6.7 Some additional properties of G(A)

Let A be an associative algebra over the real or complex numbers with a mul-
tiplicative identity element eA and a submultiplicative norm ‖ · ‖A. In the
previous two sections, we used completeness of A to get the invertibility of el-
ements of A under certain conditions. We can use slightly different arguments
to get analogous properties of invertible elements of A, even if A may not be
complete.

Let x, y ∈ G(A) be given, and note that

‖eA‖A ≤ ‖x‖A ‖x−1‖A.(6.7.1)

We also have that

‖y−1 − x−1‖A ≤ ‖y−1‖A ‖(x− y)x−1‖A,(6.7.2)

because of (6.6.12). It follows that

‖y−1‖A ≤ ‖x−1‖A + ‖y−1 − x−1‖A(6.7.3)

≤ ‖x−1‖A + ‖y−1‖A ‖(x− y)x−1‖A.
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This implies that

(1− ‖(x− y)x−1‖A) ‖y−1‖A ≤ ‖x−1‖A.(6.7.4)

If (6.6.3) holds, then we get that (6.6.10) holds.
If (6.6.7) holds, then (6.6.11) holds, as before. We can combine this with

(6.6.13) to get that (6.6.14) holds in this case. This implies that (6.6.15) is
continuous on G(A), as before. It follows that G(A) is a topological group, as
before.

Let {xj}∞j=1 be a sequence of elements of G(A) that converges to x ∈ A
with respect to the metric associated to the norm. Suppose that there is a
nonnegative real number C1 such that

‖x−1
j ‖A ≤ C1(6.7.5)

for each j. This implies that

‖x−1
j − x−1

l ‖A ≤ C1 ‖xj − xl‖A(6.7.6)

for all j, l, by (6.6.17). Of course, {xj}∞j=1 is a Cauchy sequence with respect
to the metric on A associated to the norm, because it converges, by hypohtesis.
It follows that {x−1

j }∞j=1 is a Cauchy sequence in A too, because of (6.7.6).
If A is complete with respect to the metric associated to the norm, then

{x−1
j }∞j=1 converges to an element z of A. One can check that

x z = z x = eA,(6.7.7)

so that x ∈ G(A), with x−1 = z. Note that

‖x−1‖A = ‖z‖A ≤ C1.(6.7.8)

This shows that
{y ∈ G(A) : ‖y−1‖A ≤ C1}(6.7.9)

is a closed set in A, with respect to the metric associated to the norm. If A
is not necessarily complete, then (6.7.9) is at least relatively closed in G(A),
which is to say that it is a closed set in G(A) with respect to the restriction to
G(A) of the metric on A associated to the norm.

6.8 The spectrum of an element

Let A be an associative algebra over the real or complex numbers with a mul-
tiplicative identity element eA. If x ∈ A, then the spectrum of x with respect
to A is the set σA(x) of λ ∈ R or C, as appropriate, such that

λ eA − x 6∈ G(A).(6.8.1)

The complementary set of λ ∈ R or C, as appropriate, such that

λ eA − x ∈ G(A)(6.8.2)



134 CHAPTER 6. ALGEBRAS AND NORMS

is called the resolvent set of x with respect to A.
Let X be a nonempty set, and suppose for the moment that A is the algebra

of all real or complex-valued functions on X. If a ∈ A, then it is easy to see
that the spectrum of a with respect to A is equal to a(X).

Suppose now that A is the algebra of all bounded real or complex-valued
functions on X. If a ∈ A, then one can check that the spectrum of a with
respect to A is the closure of a(X) in R or C, as appropriate.

Let V be a finite-dimensional vector space over the real or complex numbers,
and let T be a linear mapping from V into itself. It is well known that T is one-
to-one on V if and only if T maps V onto itself, in which case T is invertible on
V . If T is not invertible on V , then it follows that the kernel of T is nontrivial.
This implies that the spectrum of T with respect to L(V ) is the usual set of
eigenvalues of T , corresponding to nonzero eigenvectors in V .

Let (A, ‖ · ‖A) be a real or complex Banach algebra, with a multiplicative
identity element eA with norm 1. If x ∈ A, then the resolvent set of x is an
open set in R or C, because G(A) is an open set in A, as in Section 6.6. This
implies that

σA(x) is a closed set(6.8.3)

in R or C, as appropriate.
If λ is a nonzero real or complex number, as appropriate, then

λ eA − x = λ (eA − λ−1 x).(6.8.4)

If |λ| > ‖x‖A, then
eA − λ−1 x ∈ G(A),(6.8.5)

as in Section 6.5. This means that (6.8.2) holds in this case. It follows that

|λ| ≤ ‖x‖A when λ ∈ σA(x).(6.8.6)

If A is a complex Banach algebra, then it is well known that

σA(x) 6= ∅(6.8.7)

for every x ∈ A. The basic idea is that if σA(x) = ∅, then

(λ eA − x)−1(6.8.8)

is a holomorphic function of λ on the complex plane with values in A. One can
also check that this tends to 0 as |λ| → ∞. This would imply that (6.8.8) is a
constant function of λ, which would have to be equal to 0.

More precisely, if µ is a bounded linear functional on A, then

µ((λ eA − x)−1)(6.8.9)

would be a complex-valued holomorphic function of λ on the complex plane.
The same type of argument mentioned in the preceding paragraph implies that
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(6.8.9) is equal to 0 on C, by standard results from complex analysis. This
implies that (6.8.8) is equal to 0 on C, by the Hahn–Banach theorem.

Suppose that A = C, considered as a Banach algebra over the real numbers,
using the standard absolute value function as the norm. It is easy to see that
any element of A with nonzero imaginary part has empty spectrum with respect
to A.

Let A be the set of rational functions in a single variable with complex
coefficients. This is a field that contains C as a subfield, and in particular Amay
be considered as a commutative associative algebra over C with a multiplicative
identity element. One can check that the spectrum of any element of A that
does not correspond to a constant function is the empty set.

6.9 Homomorphisms into R, C

Let A be an associative algebra over the real or complex numbers with a multi-
plicative identity element eA, and let h be a homomorphism from A into R or
C, as appropriate, as an algebra over itself. Observe that

h(eA)
2 = h(e2A) = h(eA),(6.9.1)

so that h(eA) (h(eA)− 1) = 0. This means that h(eA) = 0 or

h(eA) = 1.(6.9.2)

It is easy to see that h ≡ 0 on A when h(eA) = 0. Let us suppose from now on
in this section that h 6≡ 0 on A, so that (6.9.2) holds.

LetX be a nonempty set, and suppose for the moment that A is an algebra of
real or complex-valued functions on X, with respect to pointwise multiplication
of functions. If x ∈ X, then

hx(a) = a(x)(6.9.3)

defines a homomorphism from A into R or C, as appropriate.
Using (6.9.2), we get that

h(a) 6= 0 when a ∈ G(A).(6.9.4)

If a is any element of A, then

h(h(a) eA − a) = h(a)h(eA)− h(a) = 0,(6.9.5)

so that
h(a) eA − a 6∈ G(A).(6.9.6)

This means that
h(a) ∈ σA(a).(6.9.7)

Suppose now that A is a Banach algebra with respect to a norm ‖ · ‖A, with
‖eA‖A = 1. If a ∈ A, then

|h(a)| ≤ ‖a‖A,(6.9.8)
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because of (6.8.6) and (6.9.7). This implies that h is a bounded linear functional
on A, with dual norm with respect to ‖ · ‖A equal to 1, because of (6.9.2).

Let A′ be the dual space of bounded linear functionals on A, as usual. One
can check that

the set of nonzero algebra homomorphisms h from A into R or C,(6.9.9)

as appropriate, is a closed set in A′, with respect to the weak∗ topology. It
follows that

(6.9.9) is compact with respect to the weak∗ topology,(6.9.10)

by the Banach–Alaoglu theorem.
Suppose that A is a complex Banach algebra, and that every nonzero element

of A is invertible. If x ∈ A, then σA(x) 6= ∅, as in Section 6.8. In this case, we
get that σA(x) contains exactly one element. In fact,

x = λ eA(6.9.11)

for some λ ∈ C. This corresponds to a famous theorem of Gelfand and Mazur.
If A is commutative, then this can be used to get some homomorphisms

from A into C. This will be discussed further in Section 6.12.

6.10 Quotient spaces

Let V be a vector space over the real or complex numbers, and let W be a
linear subspace of V . Under these conditions, the corresponding quotient space
V/W may be defined as a vector space over the real or complex numbers, as
appropriate, in a standard way. There is also a natural quotient mapping q from
V onto V/W , which is a linear mapping with kernel equal to W .

Let NV be a seminorm on V . We can use this to define a nonnegative
real-valued function NV/W on V/W such that

NV/W (q(v)) = inf{NV (v − w) : w ∈W}(6.10.1)

for every v ∈ V . More precisely, if u, v ∈ V satisfy q(u) = q(v), then u − v is
an element of W , and it is easy to see that (6.10.1) is equal to the analogous
definition of NV/W (q(u)). Thus (6.10.1) depends only on q(v) ∈ V/W , and not
on the choice of v ∈ V , so that NV/W is well defined on V/W .

If v ∈ V and t ∈ R or C, as appropriate, then one can check that

NV/W (t q(v)) = NV/W (q(t v)) = |t|NV/W (q(v)).(6.10.2)

If v1, v2 ∈ V and w1, w2 ∈W , then

NV/W (q(v1) + q(v2)) = NV/W (q(v1 + v2))(6.10.3)

≤ NV ((v1 + v2)− (w1 + w2))

≤ NV (v1 − w1) +NV (v2 − w2).
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Using this, one can get that

NV/W (q(v1) + q(v2)) ≤ NV/W (q1(v)) +NV/W (q(v2)).(6.10.4)

This shows that NV/W is a seminorm on V/W .
Suppose now that NV is a norm on V . Observe that v ∈ V satisfies

NV/W (q(v)) = 0(6.10.5)

if and only if v is in the closure of W in V , with respect to the metric on V
associated to NV . Suppose that

W is also a closed set in V,(6.10.6)

so that (6.10.5) holds if and only if v ∈ W . This means that (6.10.5) holds if
and only if q(v) = 0 in V/W , so that

NV/W defines a norm on V/W.(6.10.7)

Of course,

NV/W (q(v)) ≤ NV (v)(6.10.8)

for every v ∈ V , by construction. This implies that q is bounded as a linear
mapping from V onto V/W . More precisely, the operator norm of q is equal to
1 when W is a proper closed linear subspaces of V .

Suppose that V is a Banach space with respect to NV , and let us check that
V/W is a Banach space with respect to NV/W . It suffices to verify that absolute
convergence of a series in V/W implies convergence in V/W , as in Section 1.7.
An infinite series in V/W may be expressed as

∞∑
j=1

q(vj),(6.10.9)

where v1, v2, v3, . . . is a sequence of elements of V . We would like to show that
this series converges in V/W when

∞∑
j=1

NV/W (q(vj))(6.10.10)

converges as an infinite series of nonnegative real numbers.
We can choose wj ∈ W such that NV (vj − wj) is as close as we like to

NV/W (q(vj)) for each j, by the definition (6.10.1) of NV/W . In particular, we
can do this in such a way that

∞∑
j=1

NV (vj − wj)(6.10.11)
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converges. This implies that
∞∑
j=1

(vj − wj)(6.10.12)

converges in V , as in Section 1.7. It follows that

∞∑
j=1

q(vj − wj)(6.10.13)

converges in V/W . This series is the same as (6.10.9), because q(vj−wj) = q(vj)
for each j.

6.11 Two-sided ideals

Let A be an algebra in the strict sense over the real or complex numbers. A
linear subspace I of A is said to be a two-sided ideal in A if for every a ∈ A
and x ∈ I, we have that

a x, x a ∈ I.(6.11.1)

Of course, the quotient A/I may be defined initially as a vector space over the
real or complex numbers, as appropriate, as in the previous section. Let q be
the natural quotient mapping from A onto A/I, as before.

It is well known that one can define multiplication on A/I in such a way
that

q(a) q(b) = q(a b)(6.11.2)

for all a, b ∈ A. One can check that the right side depends only on q(a), q(b),
and not on the particular choices of a, b, because I is a two-sided ideal in A.
Thus A/I may be considered as an algebra in the strict sense over R or C, as
appropriate.

If A is an associative algebra, then it is easy to see that A/I is associative
too. Similarly, if A is commutative, then A/I is commutative.

If A has a multiplicative identity element eA, then

eA/I = q(eA)(6.11.3)

is the multiplicative identity element in A/I. Note that I 6= A exactly when
eA is not contained in I, which means that (6.11.3) is nonzero.

Let I0 be a proper two-sided ideal in A. One can chow that I0 is contained
in a maximal proper two-sided ideal in A, using Zorn’s lemma or Hausdorff’s
maximality principle.

Let ‖ · ‖A be a submultiplicative norm on A. If I1 is a two-sided ideal in A,
then it is easy to see that the closure I1 of I1 in A with respect to the metric
associated to the norm is a two-sided ideal as well.

If I is a closed two-sided ideal in A, then

‖q(a)‖A/I = inf{‖a− x‖A : x ∈ I}(6.11.4)
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defines a norm on A/I, as in the previous section. If a, b ∈ A and x, y ∈ I, then

q(a) q(b) = q(a− x) q(b− y) = q((a− x) (b− y)).(6.11.5)

This implies that

‖q(a) q(b)‖A/I = ‖q((a− x) (b− y))‖A/I(6.11.6)

≤ ‖(a− x) (b− y)‖A ≤ ‖a− x‖A ‖b− y‖A.

One can use this to get that

‖q(a) q(b)‖A/I ≤ ‖q(a)‖A/I ‖q(b)‖A/I .(6.11.7)

Suppose now that A is a Banach algebra with respect to a norm ‖ · ‖A, with
a multiplicative identity element eA with ‖eA‖A = 1. If I1 is a proper two-sided
ideal in A, then I1 does not contain any invertible elements of A. This means
that I1 does not contain any elements of the open ball in A centered at eA with
radius 1, because the elements of that ball are invertible in A, as in Section
6.5. It follows that I1 is a proper two-sided ideal in A too. In particular, a
maximal proper two-sided ideal in A is a closed set in A, with respect to the
metric associated to the norm.

Suppose that I is a proper closed two-sided ideal in A, and let us check that

‖eA/I‖A/I = ‖q(eA)‖A/I = 1.(6.11.8)

Clearly

‖q(eA)‖A/I ≤ ‖eA‖A = 1.(6.11.9)

In order to get

‖q(eA)‖A/I ≥ 1,(6.11.10)

we need to have that

‖eA − x‖A ≥ 1(6.11.11)

for every x ∈ I. This condition holds because I is a proper two-sided ideal in
A, as in the preceding paragraph.

Note that A/I is a Banach space with respect to the quotient norm, as in
the previous section. This means that A/I is a Banach algebra with respect to
the quotient norm.

6.12 Ideals in commutative algebras

Let A be a commutative associative algebra over the real or complex numbers
with a nonzero multiplicative identity element eA. A linear subspace I of A is
said to be an ideal in A if for every a ∈ A and x ∈ I we have that

a x ∈ I,(6.12.1)
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which is the same as saying that I is a two-sided ideal in A in this case. In this
case, A/I is a commutative associative algebra over R or C, as appropriate,
with a multiplicative identity element, as in the previous section.

If y ∈ A, then
{a y : a ∈ A}(6.12.2)

is an ideal in A. This ideal is equal to A if and only if y is invertible in A.
Let I be a proper ideal in A. If every nonzero element of A/I is invertible

in A/I, then one can check that I is maximal with respect to inclusion among
proper ideals in A. Conversely, if I is maximal among proper ideals in A, then
one can verify that every nonzero element of A/I is invertible.

Suppose that A is a complex Banach algebra, and that I is a maximal proper
ideal in A. This implies that I is a closed set in A, and that A/I is a complex
Banach algebra as well, as in the previous section. In fact, A/I is isomorphic
to C, by the theorem of Gelfand and Mazur, because every nonzero element of
A/I is invertible, as before.

If y ∈ A is not invertible, then (6.12.2) is a proper ideal in A, which is
contained in a maximal proper ideal in A, as in the previous section. This leads
to a homomorphism h from A into C such that h(eA) = 1 and

h(y) = 0,(6.12.3)

as in the preceding paragrah.
If x ∈ A and λ ∈ σA(x), then λ eA − x is not invertible, and there is a

homomorphism h from A into C such that h(eA) = 1 and

h(λ eA − x) = 0,(6.12.4)

as in the previous paragraph. This implies that

h(x) = λ.(6.12.5)

Let A be a commutative ring with a multiplicative identity element eA. An
element x of A is said to be nilpotent if

xl = 0(6.12.6)

for some positive integer l. The set N = N (A) of all nilpotent elements of A is
called the nilradical of A, as on p5 of [10]. One can check that N is an ideal in
A, as in Proposition 1.7 in [10]. In fact, it is well known that N is the same as
the intersection of all of the proper prime ideals in A, as in Proposition 1.8 in
[10].

The Jacobson radical R = R(A) of A is defined to be the intersection of
all of the maximal proper ideals in A, as on p5 of [10]. If A is a commutative
Banach algebra over the real or complex numbers, then this may be simply
called the radical of A, and denoted rad(A) or radA, as in Exercise 12 on p401
of [160], and on p268 of [162]. If

rad(A) = {0},(6.12.7)
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then A is said to be semisimple as a commutative Banach algebra, as on p268
of [162]. In the complex case, the radical may be described equivalently as the
intersection of all of the kernels of the homomorphisms from A onto C, or as
the set of x ∈ A such that

σA(x) = {0}.(6.12.8)

The radical is defined a bit differently in the complex case on p27 of [8], using
a result that will be mentioned in Section 6.14.

6.13 More on invertibility

Let A be an associative algebra over the real or complex numbers with a multi-
plicative identity element eA. Suppose that x, y ∈ A commute with each other,
so that

x y = y x.(6.13.1)

If x is invertible in A, then
y x−1 = x−1 y.(6.13.2)

Of course, (6.13.1) implies that x y commutes with x and y. Suppose that
x y is invertible in A, so that (x y)−1 commutes with x and y, as before. It is
easy to see that x and y are both invertible in A in this case, with

x−1 = y (x y)−1, y−1 = x (x y)−1.(6.13.3)

If
eA − xl ∈ G(A)(6.13.4)

for some positive integer l, then

eA − x ∈ G(A).(6.13.5)

This follows from (6.5.2) and the remarks in the preceding paragraph.
If x is nilpotent in A, so that xl = 0 for some l ≥ 1, then (6.13.4) holds, so

that (6.13.5) holds. In fact,

(eA − x)−1 =

l−1∑
j=0

xj ,(6.13.6)

by (6.5.2).
Suppose that A is a Banach algebra with respect to a norm ‖ · ‖A, with

‖eA‖A = 1. If
‖xl‖A < 1(6.13.7)

for some l ≥ 1, then (6.13.4) holds, as in Section 6.5. This implies that (6.13.5)
holds, as before.

Let λ be a real or complex number, as appropriate. Suppose for the moment
that

|λ| > ‖xl‖1/lA(6.13.8)
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for some l ≥ 1. This means that |λl| = |λ|l > ‖xl‖A, so that

‖(λ−1 x)l‖A < 1.(6.13.9)

It follows that
eA − (λ−1 x)l ∈ G(A),(6.13.10)

and thus
eA − λ−1 x ∈ G(A),(6.13.11)

as before. This implies that

λ eA − x = λ (eA − λ−1 x) ∈ G(A).(6.13.12)

This shows that for each l ≥ 1,

|λ| ≤ ‖xl‖1/lA when λ ∈ σA(x).(6.13.13)

Put
rA(x) = inf

l≥1
‖xl‖1/lA .(6.13.14)

It follows that
|λ| ≤ rA(x) when λ ∈ σA(x).(6.13.15)

In the next section, we shall show that

lim
j→∞

‖xj‖1/jA = rA(x).(6.13.16)

6.14 More on rA(x)

Let {aj}∞j=1 be a sequence of nonnegative real numbers that is submultiplicative,
in the sense that

aj+l ≤ aj al(6.14.1)

for all j, l ≥ 1. Put
α = inf

n≥1
a1/nn .(6.14.2)

We would like to check that

a
1/j
j → α as j → ∞.(6.14.3)

If al = 0 for some l ≥ 1, then aj = 0 for all j ≥ l, α = 0, and (6.14.3) is obvious.
Thus we may suppose that aj > 0 for each j.

Let a positive integer m be given, and observe that

alm ≤ alm(6.14.4)

for each l ≥ 1, so that

a
1/(lm)
lm ≤ a1/mm .(6.14.5)
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Similarly,
alm+r ≤ alm ar(6.14.6)

for all l ≥ 0 and r ≥ 1. If
j = l m+ r,(6.14.7)

then we get that

a
1/j
j ≤ al/jm a1/jr = (a1/mm )(lm)/j a1/jr = (am)1/m (am)−r/(j m) a1/jr .(6.14.8)

Note that every j ≥ 1 can be expressed as in (6.14.7) with l, r ≥ 0, r < m, and
at least one of l, r positive.

One can use this to get that

lim sup
j→∞

a
1/j
j ≤ a1/mm .(6.14.9)

This implies that

lim sup
j→∞

a
1/j
j ≤ α,(6.14.10)

by the definition (6.14.2) of α. It is easy to obtain (6.14.3) from this and the
definition of α.

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers, with
a multiplicative identity element eA and ‖eA‖A = 1. If x ∈ A, then

aj = ‖xj‖A(6.14.11)

defines a submultiplicative sequence of nonnegative real numbers. This means
that (6.13.16) follows from (6.14.3).

If A is a complex Banach algebra, then it is well known that

rA(x) = max{|λ| : λ ∈ σA(x)}.(6.14.12)

Remember that σA(x) is a nonempty closed and bounded subset of C in this
case, as in Section 6.8. This implies that σA(x) is compact with respect to
the standard Euclidean metric on C, so that the maximum on the right side of
(6.14.12) is attained.

Let us give an outline of the proof of (6.14.12). Let r be the right side of
(6.14.12), and note that

r ≤ rA(x),(6.14.13)

by (6.13.15). Thus we need only show that

rA(x) ≤ r.(6.14.14)

If λ ∈ C and |λ| > r, then
λ 6∈ σA(x),(6.14.15)

so that λ eA − x ∈ G(A).



144 CHAPTER 6. ALGEBRAS AND NORMS

Let us interpret 1/r as being +∞ when r = 0. If ζ ∈ C and |ζ| < 1/r, then

eA − ζ x ∈ G(A).(6.14.16)

This is trivial when ζ = 0, and otherwise it follows from the fact that ζ−1 is not
an element of σA(x), because |ζ−1| = 1/|ζ| > r. Thus

(eA − ζ x)−1(6.14.17)

is an A-valued function of ζ defined on

{ζ ∈ C : |ζ| < 1/r}.(6.14.18)

In fact, (6.14.17) is holomorphic on (6.14.18). Note that (6.14.17) is equal
to

∞∑
j=0

ζj xj(6.14.19)

when ζ is small enough, as in Section 6.5. If

0 < t < 1/r,(6.14.20)

then one can show that there is a nonnegative real number C(t) such that

tj ‖xj‖A ≤ C(t)(6.14.21)

for each j ≥ 1, using complex analysis. This implies that

‖xj‖1/jA ≤ t−1 C(t)1/j(6.14.22)

for each j ≥ 1. One can use this to get that

rA(x) ≤ 1/t,(6.14.23)

which implies (6.14.14).

6.15 Identity elements and essential ranges

Let A be an algebra in the strict sense over the real or complex numbers.
Let us define A1 initially as a vector space over the real or complex numbers,
as appropriate, by taking the direct sum of A and R or C, as appropriate.
More precisely, A1 may be defined as the Cartesian product A×R or A×C,
as appropriate, using coordinatewise addition and scalar multiplication, as in
Section 5.12. We can define multiplication on A1 by

(a, t) (b, z) = (a b+ z a+ t b, t z)(6.15.1)

for every a, b ∈ A and t, z ∈ R or C, as appropriate. This is a bilinear mapping
from A1 ×A1 into A1, so that A1 is an algebra in the strict sense over R or C,
as appropriate.
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By construction,
a 7→ (a, 0)(6.15.2)

is an injective algebra homomorphism from A into A1. We also have that

eA1
= (0, 1)(6.15.3)

is the multiplicative identity element in A1. If A is associative, then one can
check that A1 is associative. Similarly, if A is commutative, then A1 is commu-
tative.

If ‖ · ‖A is a submultiplicative norm on A, then one can check that

‖(a, t)‖A1
= ‖a‖A + |t|(6.15.4)

defines a submultiplicative norm on A1. Of course, ‖(a, 0)‖A1
= ‖a‖A for every

a ∈ A, and ‖eA1
‖A1

= 1. If A is complete with respect to the metric associated
to ‖ · ‖A, then A1 is complete with respect to the metric associated to ‖ · ‖A1

,
as in Section 5.12. This corresponds to part of Proposition 2.5.4 on p58 of [8],
Theorem C.3 on p470 of [91], Exercise 15 on p402 of [160], and some remarks
on p228 of [162].

Let (X,M, µ) be a nonempty measure space, and note that the correspond-
ing spaces L∞(X,R), L∞(X,C) are commutative associative Banach algebras
over R, C, respectively, with respect to the usual L∞ norms. The function 1X

equal to 1 at every point in X is the multiplicative identity element of these
algebras. Let us suppose that µ(X) > 0, so that ‖1X‖∞ = 1. If f ∈ L∞(X,R)
or L∞(X,C), then f is invertible in L∞(X,R) or L∞(X,C), as appropriate, if
and only if there is a positive real number c such that

|f(x)| ≥ c(6.15.5)

for almost every x ∈ X with respect to µ. In this case, the multiplicative inverse
of f is equal to 1/f almost everywhere on X with respect to µ.

If λ ∈ R or C, as appropriate, then f − λ1X is invertible in L∞(X,R) or
L∞(X,C), as appropriate, if and only if

|f(x)− λ| ≥ c(λ)(6.15.6)

for some c(λ) > 0 and almost every x ∈ X with respect to µ. Thus the spectrum
of f in L∞(X,R) or L∞(X,C), as appropriate, consists of the λ ∈ R or C, as
appropriate, such that

µ({x ∈ X : |f(x)− λ| < r}) > 0(6.15.7)

for every r > 0. This is called the essential range of f .



Chapter 7

Algebras, norms, and linear
mappings

7.1 Quaternions

A quaternion may be expressed as

x = x0 + x1 i+ x2 j + x3 k,(7.1.1)

where x0, x1, x2, x3 are real numbers. The space H of quaternions may be
considered initially as a vector space over the real numbers, which may be
identified with R4. We may also identify x0 ∈ R with the quaternion x as in
(7.1.1), with x1 = x2 = x3 = 0.

Multiplication on R can be extended to a bilinear mapping from H × H
into H, with the following properties. The product of a real number and a
quaternion, in either order, is the same as scalar multiplication. In particular,
1 ∈ R is the multiplicative identity element in H. We put

i2 = j2 = k2 = −1(7.1.2)

and

i j = −j i = k, j k = −k j = i, k i = −i k = j,(7.1.3)

as on p256 of [30]. One can check that this makes H an associative algebra over
R.

If x ∈ H is as in (7.1.1), then put

x∗ = x0 − x1 i− x2 j − x3 k.(7.1.4)

Clearly x 7→ x∗ is a linear mapping from H into itself, as a vector space over R,
and (x∗)∗ = x for every x ∈ H. It is easy to see that (x y)∗ = y∗ x∗ for every
x, y ∈ H, so that x 7→ x∗ is an algebra involution on H.

146
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If x ∈ H is as in (7.1.1), then

xx∗ = x∗ x = x20 + x21 + x22 + x23.(7.1.5)

Put
‖x‖H = (x20 + x21 + x22 + x23)

1/2,(7.1.6)

using the nonnegative square root on the right side. This corresponds exactly
to the standard Euclidean norm on R4, and in particular this defines a norm on
H, as a vector space over R. Using this notation, (7.1.5) is the same as saying
that

xx∗ = x∗ x = ‖x‖2H.(7.1.7)

Note that
‖x∗‖H = ‖x‖H.(7.1.8)

If x ∈ H and x 6= 0, then ‖x‖H > 0, and (7.1.7) implies that x is invertible
in H, with

x−1 = ‖x‖−2
H x∗.(7.1.9)

If x, y ∈ H, then

‖x y‖2H = (x y) (x y)∗ = x y y∗ x∗ = ‖y‖2H xx∗ = ‖x‖2H ‖y‖2H.(7.1.10)

This implies that
‖x y‖H = ‖x‖H ‖y‖H.(7.1.11)

7.2 Some additional properties of rA(x)

Let A be an associative algebra over the real or complex numbers with a submul-
tiplicative norm ‖ · ‖A. If x ∈ A, then we can define rA(x) as in (6.13.14), and
(6.13.16) holds. More precisely, (6.14.11) defines a submultiplicative sequence
of nonnegative real numbers, so that (6.13.16) follows from (6.14.3), as before.

Let B be another associative algebra over the real or complex numbers, as
appropriate, with a submultiplicative norm ‖ · ‖B. Also let ϕ be an algebra
homomorphism from A into B that is bounded as a linear mapping. If x ∈ A,
then

‖ϕ(x)j‖1/jB = ‖ϕ(xj)‖1/jB ≤ ‖ϕ‖1/jop,AB ‖xj‖1/jA(7.2.1)

for each j ≥ 1. This implies that

rB(ϕ(x)) ≤ rA(ϕ(x)),(7.2.2)

where the left side is defined in the same way as before. This uses the fact that
C1/j → 1 as j → ∞ for any positive real number C.

Similarly, if ϕ is an isomorphism from A onto B, and ϕ and its inverse are
bounded as linear mappings, then

rB(ϕ(x)) = rA(x).(7.2.3)
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There are analogous statements for opposite algebra homomorphisms and iso-
morphisms.

If x, y ∈ A commute, then

‖(x y)j‖1/jA = ‖xj yj‖1/jA ≤ ‖xj‖1/jA ‖yj‖1/jA(7.2.4)

for each j ≥ 1. This implies that

rA(x y) ≤ rA(x) rA(y).(7.2.5)

Suppose for the moment that A has a multiplicative identity element eA.
Observe that

rA(eA) = 1,(7.2.6)

even if ‖eA‖A is not asked to be equal to 1. If x is an invertible element of A,
then we get that

1 ≤ rA(x) rA(x
−1),(7.2.7)

by taking y = x−1 in (7.2.5).
As before, x ∈ A is said to be nilpotent if xl = 0 for some l ≥ 1. If

rA(x) = lim
j→∞

‖xj‖1/jA = 0,(7.2.8)

then x is said to be quasinilpotent in A with respect to ‖ · ‖A, as in Definition
1.7.4 on p20 of [8].

Suppose that x is an idempotent element of A, so that

x2 = x.(7.2.9)

This implies that xj = x for each j ≥ 1, so that

rA(x) = 1,(7.2.10)

unless x = 0.

7.3 Invertibility and subalgebras

Let A be an associative algebra over the real or complex numbers with a multi-
plicative identity element e = eA, and let B be a subalgebra of A that contains
e. Observe that any invertible element of B is also invertible as an element of
A, so that

G(B) ⊆ G(A).(7.3.1)

If x ∈ B, then it follows that

σA(x) ⊆ σB(x),(7.3.2)

where σA(x), σB(x) are as in Section 6.8.
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Suppose that ‖ · ‖ = ‖ · ‖A is a submultiplicative norm on A, and that

B is a closed set in A,(7.3.3)

with respect to the associated metric. Let {xj}∞j=1 be a sequence of invertible
elements of B that converges to x ∈ B with respect to the metric associated to
‖ · ‖, and suppose that x is invertible in A. This implies that

{x−1
j }∞j=1 converges to x−1(7.3.4)

in A, as in Section 6.7. It follows that

x−1 ∈ B,(7.3.5)

because of (7.3.3).
Suppose now that A is a Banach algebra with respect to ‖ · ‖. This means

that B is complete with respect to the metric associated to the restriction of
‖ · ‖ to B, because of (7.3.3), as in Section 1.6. Thus B is a Banach algebra too,
with respect to the restriction of ‖ · ‖ to B. If x ∈ B, then

∂σB(x) ⊆ σA(x).(7.3.6)

Here ∂σB(x) is the boundary of σB(x) in R or C, as appropriate, with respect
to the standard Euclidean metric.

To see this, let λ ∈ ∂σB(x) be given. This implies that there is a sequence
{λj}∞j=1 of real or complex numbers, as appropriate, that converges to λ, with

λj e− x ∈ G(B)(7.3.7)

for each j. If
λ e− x ∈ G(A),(7.3.8)

then
λ e− x ∈ G(B),(7.3.9)

as in (7.3.5). Remember that σB(x) is a closed set in R or C, as appropriate,
because B is a Banach algebra, as in Section 6.8. This means that λ ∈ σB(x),
which is a contradiction.

This corresponds to Theorem 1.11.3 on p32 of [8], and to part of part (b)
of Theorem 10.18 on p238 of [162]. This is known as the spectral permanence
theorem, as in [8].

7.4 Some Volterra integral operators

Let k be a continuous real or complex-valued function on the closed triangle

∆ = {(x, y) ∈ R2 : 0 ≤ y ≤ x ≤ 1}(7.4.1)

in the plane. Note that k is uniformly continuous on ∆, with respect to the
restriction of the standard Euclidean metric on R2 to ∆, because ∆ is compact.
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If f is a continuous real or complex-valued function on the closed unit interval
[0, 1], then let Tk(f) be the function defined on [0, 1] by

(Tk(f))(x) =

∫ x

0

k(x, y) f(y) dy,(7.4.2)

as in the left side of (1.3) on p3 of [8]. In particular, let T (f) be the function
defined on [0, 1] by

(T (f))(x) =

∫ x

0

f(y) dy,(7.4.3)

as in Exercise (4) on p5 of [8], which corresponds to taking k ≡ 1 on ∆ in (7.4.2).
One can check that (7.4.2) is continuous on [0, 1], as in Exercise (3) on p5

of [8]. It is easy to see that

‖Tk(f)‖sup ≤ ‖k‖sup,∆ ‖f‖sup,(7.4.4)

where ‖·‖sup is the usual supremum norm of a continuous real or complex-valued
function on [0, 1], and ‖k‖sup,∆ is the supremum norm of k on ∆. This implies
that Tk is a bounded linear mapping from C([0, 1],R) or C([0, 1],C) into itself,
as appropriate, with respect to the supremum norm, as in [8].

More precisely,

|(Tk(f))(x)| ≤ (T|k|(|f |))(x) ≤ ‖k‖sup,∆ (T (|f |))(x)(7.4.5)

for every x ∈ [0, 1]. We can use this repeatedly to get that

|(Tn
k (f))(x)| ≤ ‖k‖nsup,∆ (Tn(|f |))(x) ≤ ‖k‖nsup,∆ ‖f‖sup (Tn(1))(x)(7.4.6)

for every n ≥ 1 and x ∈ [0, 1]. Of course,

(Tn(1))(x) = xn/n!(7.4.7)

for every n ≥ 1 and x ∈ [0, 1], by calculus. It follows that

‖Tn
k (f)‖sup ≤ ‖k‖nsup,∆ ‖f‖sup/n!(7.4.8)

for every n ≥ 1, so that
‖Tn

k ‖op ≤ ‖k‖nsup,∆/n!,(7.4.9)

as in Exercise (3) on p21 of [8]. Note that equality holds in (7.4.9) when k is
constant on ∆.

Alternatively, consider the n-dimensional simplex

∆n = {x ∈ Rn : 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ 1}(7.4.10)

for each positive integer n. The n-dimensional volume of ∆n is the same as
(Tn(1))(1), which is equal to 1/n!, as before. The volume of ∆n can also be
obtained by considering permutations of the coordinates, as in Exercise (2) on
p20 of [8].
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Let V be C([0, 1],R) or C([0, 1],C), as appropriate, with the supremum
norm, and let A be BL(V ), with the corresponding operator norm. One can
use (7.4.9) to get that

rA(Tk) = 0,(7.4.11)

where rA is as in Section 6.13. This means that Tk is quasinilpotent in A, as
in Section 7.2. This is related to Exercise (4) on p21 of [8]. Note that Tk is not
invertible on V , because (Tk(f))(0) = 0 for every f ∈ V .

7.5 Self-adjointness and involutions

Let W be a vector space over the complex numbers, which may also be consid-
ered as a vector space over the real numbers. If W0 ⊆ W is a linear subspace
of W as a vector space over the real numbers, then we may refer to W0 as a
real-linear subspaces of W .

Let A be an algebra in the strict sense over the real or complex numbers,
and let

x 7→ x∗(7.5.1)

be an algebra involution on A, as in Section 6.4. Remember that this means
that (7.5.1) is an opposite algebra isomorphism from A onto itself such that

(x∗)∗ = x(7.5.2)

for every x ∈ A. In the complex case, we may also be interested in conjugate-
linear involutions, as before.

Let us say that x ∈ A is self-adjoint with respect to (7.5.1) if

x∗ = x,(7.5.3)

and anti-self-adjoint if
x∗ = −x.(7.5.4)

If A is complex and (7.5.1) is conjugate-linear, then x ∈ A is anti-self-adjoint
if and only if i x is self-adjoint. In this case, self-adjoint elements of A are also
said to be Hermitian.

The spaces of self-adjoint and anti-self-adjoint elements of A are linear sub-
spaces of A in the real case, and when the involution is complex-linear in the
complex case. If A is complex and the involution is conjugate-linear, then the
spaces of self-adjoint and anti-self-adjoint elements of A are real-linear subspaces
of A.

If x is any element of A, then

(1/2) (x+ x∗)(7.5.5)

is self-adjoint with respect to (7.5.1), and

(1/2) (x− x∗)(7.5.6)
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is anti-self-adjoint. Note that x is equal to the sum of (7.5.5) and (7.5.6). We
also have that

x∗ x(7.5.7)

is self-adjoint.
If

xx∗ = x∗ x,(7.5.8)

then one may say that x is normal with respect to (7.5.1). This terminol-
ogy is perhaps most commonly used when A is complex, and the involution is
conjugate-linear.

Suppose that A has a multiplicative identity element eA. Note that

e∗A = eA,(7.5.9)

as in Section 6.4. Suppose that A is associative as well. If x ∈ A is invertible,
then it is easy to see that x∗ is invertible, with

(x∗)−1 = (x−1)∗.(7.5.10)

Consider

U(A) = {x ∈ A : xx∗ = x∗ x = eA}.(7.5.11)

Equivalently, U(A) consists of the invertible elemets x of A such that

x−1 = x∗.(7.5.12)

One can check that

U(A) is a subgroup of G(A).(7.5.13)

If A = BL(V ) for some Hilbert space V , with the Hilbert space adjoint as the
involution, then U(A) consists of the unitary transformations from V onto itself.
This is related to some remarks in Sections 2.10 and 3.5.

7.6 Some remarks about idempotents

Let A be an algebra in the strict sense over the real or complex numbers. An
element a of A is said to be an idempotent if

a a = a.(7.6.1)

If V is a vector space over the real or complex numbers, then an idempotent
element of the algebra of linear mappings from V into itself is the same as a
projection on V . These will be discussed further in Section 8.2.

Suppose for the moment that ‖ · ‖A is a submultiplicative norm on A. If a
is an idempotent element of A, then

‖a‖A = ‖a a‖A ≤ ‖a‖2A.(7.6.2)
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If a 6= 0, then we get that
‖a‖A ≥ 1.(7.6.3)

Suppose for the moment again that x 7→ x∗ is an algebra involution on
A, which may be conjugate-linear in the complex case. If a is an idempotent
element of A, then

a∗ = (a a)∗ = a∗ a∗,(7.6.4)

so that a∗ is idempotent as well.
Suppose now that A is an associative algebra with a multiplicative identity

element eA. In particular, eA is an idempotent element of A. If an idempotent
element a of A is invertible in A, then

a = eA.(7.6.5)

If a is any idempotent element of A, then

a (eA − a) = (eA − a) a = 0.(7.6.6)

This implies that
(eA − a)2 = eA − a,(7.6.7)

so that eA − a is idempotent in A too. If eA − a is invertible in A, then
eA − a = eA, as in the preceding paragraph, so that a = 0.

Let λ ∈ R or C be given, as appropriate. Observe that

λ eA − a = λ (eA − a) + (λ− 1) a.(7.6.8)

If λ 6= 0, 1, then
λ−1 (eA − a) + (λ− 1)−1 a(7.6.9)

defines an element of A. One can check that this is the multiplicative inverse
of λ eA − a in this case.

This shows that
σA(a) ⊆ {0, 1},(7.6.10)

where σA(a) is as in Section 6.8. We also get that equality holds unless a = 0
or eA.

7.7 The C∗ identity

Let A be an algebra in the strict sense over the real or complex numbers with
an involution x 7→ x∗, which may be conjugate-linear in the complex case. Also
let ‖ · ‖A be a submultiplicative norm on A. Thus

‖x∗ x‖A ≤ ‖x∗‖A ‖x‖A(7.7.1)

for every x ∈ A. If
‖x∗‖A = ‖x‖A,(7.7.2)
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then (7.7.1) is the same as saying that

‖x∗ x‖A ≤ ‖x‖2A.(7.7.3)

Suppose that ‖ · ‖A satisfies the C∗ identity

‖x∗ x‖A = ‖x‖2A(7.7.4)

for every x ∈ A. This implies that

‖x‖2A ≤ ‖x‖A ‖x∗‖A(7.7.5)

for every x ∈ A. It follows that

‖x‖A ≤ ‖x∗‖A(7.7.6)

when x 6= 0, and which is trivial when x = 0. If we replace x with x∗, then we
get that

‖x∗‖A ≤ ‖x‖A.(7.7.7)

This shows that (7.7.2) holds for every x ∈ A under these conditions.
More precisely, if

‖x‖2A ≤ ‖x∗ x‖A(7.7.8)

for every x ∈ A, then (7.7.5) holds for every x ∈ A. In this case, the argument
in the preceding paragraph shows that (7.7.2) holds for every x ∈ A. Using this
and (7.7.1), we get that (7.7.3) holds for every x ∈ A. Combining this with
(7.7.8), we get (7.7.4). This corresponds to Remark 2.9.1 on p75 of [8], and to
part (a) of Exercise 5 on p300 of [167].

As another variant, if (7.7.2) holds, then (7.7.4) is the same as saying that

‖x∗ x‖A = ‖x∗‖A ‖x‖A(7.7.9)

for every x ∈ A. This is mentioned on p276 of [162]. Note that ‖xx∗‖A is
normally considered in [162], rather than ‖x∗ x‖A. Of course, the arguments for
the two versions are very similar, and they are related using the involution.

If x is self-adjoint or anti-self-adjoint in A, then (7.7.4) is the same as saying
that

‖xx‖A = ‖x‖2A.(7.7.10)

Note that
(xx)∗ = x∗ x∗ = xx(7.7.11)

in both cases. If x is a self-adjoint idempotent element of A, then (7.7.10)
implies that

‖x‖A = ‖xx‖A = ‖x‖2A.(7.7.12)

This means that
‖x‖A = 1(7.7.13)

when x 6= 0.
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Suppose for the moment that A has a multiplicative identity element eA.
Remember that eA is self-adjoint, as in Sections 6.4 and 7.5. It follows that

‖eA‖A = 1,(7.7.14)

as in (7.7.13), unless eA = 0, which would mean that A = {0}. This corresponds
to part (b) of Exercise (2) on p49 of [8].

Suppose from now on in this section that A is associative. If x ∈ A is
self-adjoint, then

‖x2
l

‖A = ‖x‖2
l

A(7.7.15)

for every nonnegative integer l, because of (7.7.10) and (7.7.11). This also works
when x is anti-self-adjoint. In both cases, one can use this to get that

‖xj‖A = ‖x‖jA(7.7.16)

for each j ≥ 1.
If x is any element of A, then x∗ x is self-adjoint, so that

‖(x∗ x)j‖A = ‖x∗ x‖jA = ‖x‖2 j
A(7.7.17)

for each j ≥ 1. If x is normal in A, in the sense that x commutes with x∗, then

(x∗ x)j = (x∗)j xj = (xj)∗ xj(7.7.18)

for each j. This means that

‖(x∗ x)j‖A = ‖(xj)∗ xj‖A = ‖xj‖2A(7.7.19)

for each j. It follows that (7.7.16) holds in this case as well.

7.8 Continuous vector-valued functions

Let X, Y be nonempty metric or topological spaces, and let C(X,Y ) be the
space of continuous mappings from X into Y . Of course, if X is equipped with
the discrete metric or topology, then every mapping from X into Y is continuous.

Suppose from now on in this section that (Y, dY ) is a metric space. A
mapping f from X into Y is said to be bounded if f(X) is a bounded set in
Y , which means that it is contained in a ball in Y . Let B(X,Y ) be the set of
all bounded mappings from X into Y . One can define the supremum metric on
B(X,Y ) in a standard way, using dY . If Y is complete as a metric space with
respect to dY , then it is well known that

B(X,Y ) is complete with respect to the supremum metric.(7.8.1)

Let

Cb(X,Y ) = B(X,Y ) ∩ C(X,Y )(7.8.2)
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be the space of all bounded continuous mappings from X into Y . If X is
compact, then every continuous mapping f from X into Y is bounded. More
precisely, f(X) is a compact subset of Y , which is bounded in particular.

One can check that

Cb(X,Y ) is a closed set in B(X,Y ),(7.8.3)

with respect to the supremummetric. This basically corresponds to the fact that
if {fj}∞j=1 is a sequence of continuous mappings from X into Y that converges
uniformly to a mapping f from X into Y , then

f is continuous on X(7.8.4)

too. If Y is complete, then it follows that Cb(X,Y ) is complete with respect to
the supremum metric, as in Section 1.6.

If X is a metric space, then we let UC(X,Y ) be the space of all uniformly
continuous mappings from X into Y . If X is compact, then it is well known
that every continuous mapping from X into Y is uniformly continuous. If X
is equipped with the discrete metric, then every mapping from X into Y is
uniformly continuous.

Let

UCb(X,Y ) = B(X,Y ) ∩ UC(X,Y ) = Cb(X,Y ) ∩ UC(X,Y )(7.8.5)

be the space of bounded uniformly continuous mappings from X into Y . One
can verify that

UCb(X,Y ) is a closed set in B(X,Y ),(7.8.6)

with respect to the supremum metric. As before, this basically corresponds to
the fact that if {fj}∞j=1 is a sequence of uniformly continuous mappings from X
into Y that converges uniformly to a mapping f from X into Y , then

f is uniformly continuous on X(7.8.7)

as well. If Y is complete, then we get that UCb(X,Y ) is complete with respect
to the supremum metric, as before.

Suppose now that Y is a vector space over the real or complex numbers with
a norm ‖ · ‖Y , using the metric on Y associated to ‖ · ‖Y . If X is any nonempty
topological or metric space again, then one can check that C(X,Y ) is a linear
subspace of the space of all Y -valued functions on X, with respect to pointwise
addition and scalar multiplication.

In this case, B(X,Y ) is the same as ℓ∞(X,Y ), as in Section 2.3, on which
the supremum metric is the same as the metric associated to the supremum
norm, as before. The space

Cb(X,Y ) = C(X,Y ) ∩ ℓ∞(X,Y )(7.8.8)

of all bounded continuous mappings from X into Y is a linear subspace of each
of C(X,Y ) and ℓ∞(X,Y ). The restriction of the supremum norm on ℓ∞(X,Y )
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to Cb(X,Y ) defines a norm on Cb(X,Y ), which may be denoted ‖ · ‖∞, ‖ · ‖sup,
or ‖ · ‖Cb(X,Y ). If Y is a Banach space, then we get that

Cb(X,Y ) is a Banach space(7.8.9)

with respect to the supremum norm as well.
If X is a metric space, then one can verify that UC(X,Y ) is a linear sub-

space of C(X,Y ). Similarly, UCb(X,Y ) is a linear subspace of Cb(X,Y ) and
UC(X,Y ). If Y is a Banach space, then UCb(X,Y ) is a Banach space with
respect to the supremum norm too.

7.9 Algebra-valued functions

Let X be a nonempty set, and let A be an algebra over the real or complex
numbers in the strict sense. The space of all A-valued functions on X is an
algebra in the strict sense over R or C, as appropriate, with respect to pointwise
multiplication of functions. If A is associative or commutative, then the algebra
of all A-valued functions on X has the same property. If A has a multiplicative
identity element eA, then the function on X equal to eA at every point is the
multiplicative identity element in the algebra of all A-valued functions on X. If
A is asociative and A has a multiplicative identity element eA, then an A-valued
function f on X is invertible as an A-valued function on X if and only if

f(x) is invertible in A for every x ∈ X.(7.9.1)

Suppose that ‖ · ‖A is a submultiplicative norm on A, and remember that
ℓ∞(X,A) is the space of all bounded A-valued functions on X, as in Section
2.3. If f, g ∈ ℓ∞(X,A), then it is easy to see that their product f(x) g(x) is
bounded on X too, with

‖f g‖∞ ≤ ‖f‖∞ ‖g‖∞.(7.9.2)

Thus ℓ∞(X,A) is a subalgebra of the algebra of all A-valued functions on X. If
A has a multiplicative identity element eA, then the function on X equal to eA
at every point is bounded, with supremum norm equal to ‖eA‖A. If A is also
associative, then f ∈ ℓ∞(X,A) is invertible in ℓ∞(X,A) if and only if (7.9.1)
holds, and

f(x)−1 is bounded on X.(7.9.3)

If f is a bounded real or complex-valued function on X, then one can check
that

‖f l‖∞ = ‖f‖l∞(7.9.4)

for every positive integer l. Of course, this uses the standard absolute value
function on the real or complex numbers.

Suppose now that X is a metric or topological space. If f , g are continuous
A-valued functions on X, then one can check that their product f(x) g(x) is
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continuous on X as well. This implies that the space C(X,A) of all continuous
A-valued functions on X is a subalgebra of the space of all A-valued functions
on X. If A has a multiplicative identity element eA, then the function on X
equal to eA at every point is continuous, and thus is the multiplicative identity
element in C(X,A). If A is associative as well, then f ∈ C(X,A) is invertible
in C(X,A) if and only if (7.9.1) holds, because of continuity of taking inverses
on G(A), as in Section 6.7.

Similarly, the space

Cb(X,A) = C(X,A) ∩ ℓ∞(X,A)(7.9.5)

of all bounded continuous A-valued functions on X is a subalgebra of each of
C(X,A) and ℓ∞(X,A). If A has a multiplicative identity element eA, then the
function on X equal to eA at every point is the multiplicative identity element
in Cb(X,A). If A is also associative, then f ∈ Cb(X,A) is invertible in Cb(X,A)
if and only if (7.9.1) and (7.9.3) hold, because of continuity of taking inverses
on G(A).

Suppose that X is a metric space, and that f , g are bounded uniformly
continuous A-valued functions on X. One can check that

f g is uniformly continuous on X,(7.9.6)

using (7.10.7). This implies that UCb(X,A) is a subalgebra of Cb(X,A).
Suppose that A has a multiplicative identity element eA, so that the func-

tion on X equal to eA at every point is the multiplicative identity element in
UCb(X,A). If A is associative, and f ∈ UCb(X,A) satisfies (7.9.1) and (7.9.3),
then one can verify that

f(x)−1 is uniformly continuous on X,(7.9.7)

using (7.10.12).

7.10 Bounded Lipschitz functions

Let (X, dX), (Y, dY ) be nonempty metric spaces. Also let {fj}∞j=1 be a sequence
of Lipschitz mappings from X into Y that converges pointwise to a mapping f
from X into Y . Suppose that there is a nonnegative real number C such that

LipX,Y (fj) ≤ C(7.10.1)

for each j, where LipX,Y (fj) is the minimal Lipschitz constant of fj , as in
Section 2.1. Under these conditions, one can check that f is Lipschitz, with

LipX,Y (f) ≤ C.(7.10.2)

Let W be a vector space over the real or complex numbers with a norm
‖ · ‖W . Consider the space

Lipb(X,W ) = Lip(X,W ) ∩ Cb(X,W )(7.10.3)
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of all bounded Lipschitz mappings from X into W . This is a linear subspace of
each of Lip(X,W ) and Cb(X,W ).

If f is a Lipschitz mapping from X intoW , then we let Lip(f) be the minimal
Lipschitz constant of f , as in Section 2.1 again. This defines a seminorm on
Lip(X,W ), as before. If t is a nonnegative real number and f ∈ Lipb(X,W ),
then put

‖f‖Lipb,t = ‖f‖Lipb(X,W ),t = ‖f‖sup + t Lip(f).(7.10.4)

It is easy to see that this defines a norm on Lipb(X,W ).
If W is a Banach space and t > 0, then

Lipb(X,W ) is a Banach space with respect to ‖ · ‖Lipb,t
.(7.10.5)

To see this, let {fj}∞j=1 be a sequence of elements of Lipb(X,W ) that is a Cauchy
sequence with respect to the metric associated to ‖·‖Lipb,t. In particular, {fj}∞j=1

is a Cauchy sequence with respect to the supremum metric, so that {fj}∞j=1

converges uniformly to a bounded continuous W -valued function f on X. One
can use the fact that {fj}∞j=1 is bounded with respect to ‖ · ‖Lipb,t to get that
f is Lipschitz on X, as in (7.10.2). One can also use the Cauchy condition for
{fj}∞j=1 with respect to the metric associated to ‖ · ‖Lipb,t to get that {fj}∞j=1

converges to f with respect to this metric.
Let A be an algebra in the strict sense over the real or complex numbers,

with a submultiplicative norm ‖ · ‖A. If f , g are A-valued functions on X, then

f(x) g(x)− f(w) g(w) = (f(x)− f(w)) g(x) + f(w) (g(x)− g(w))(7.10.6)

for every x,w ∈ X, so that

‖f(x) g(x)− f(w) g(w)‖A ≤ ‖f(x)− f(w)‖A ‖g(x)‖A(7.10.7)

+‖f(w)‖A ‖g(x)− g(w)‖A.

If f, g ∈ Lipb(X,A), then it follows that f g is Lipschitz on A too, with

Lip(f g) ≤ Lip(f) ‖g‖sup + ‖f‖sup Lip(g).(7.10.8)

This implies that Lipb(X,A) is a subalgebra of Cb(X,A). One can also check
that

‖f g‖Lipb,t ≤ ‖f‖Lipb,t ‖g‖Lipb,t(7.10.9)

for each t ≥ 0.
Suppose that A has a multiplicative identity element eA, so that the function

1X eA equal to eA at every point in X is the multiplicative identity element in
Lipb(X,A). Note that

‖1X eA‖Lipb,t = ‖eA‖A(7.10.10)

for each t ≥ 0.
Suppose that A is also associative, and that f is an A-valued function on X

such that f(x) is invertible in A for every x ∈ X. Observe that

f(x)−1 − f(w)−1 = f(x)−1 (f(w)− f(x)) f(w)−1(7.10.11)
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for every x,w ∈ X, so that

‖f(x)−1 − f(w)−1‖A ≤ ‖f(x)−1‖A ‖f(w)− f(x)‖A ‖f(w)−1‖A.(7.10.12)

If f(x)−1 is bounded on X, and f is Lipschitz on X, then it follows that f(x)−1

is Lipschitz on X, with

Lip(f(·)−1) ≤ ‖f(·)−1‖2sup Lip(f).(7.10.13)

Suppose now that f is a real or complex-valued function on X that is
bounded and Lipschitz. If l ≥ 2 is an integer, then one can check that

Lip(f l) ≤ l ‖f‖l−1
sup Lip(f),(7.10.14)

using (7.10.8). This implies that

‖f‖lsup = ‖f l‖sup ≤ ‖f l‖Lipb,t ≤ ‖f‖lsup + t l ‖f‖l−1
sup Lip(f)(7.10.15)

for each t ≥ 0. One can use this to get that

lim
l→∞

‖f l‖1/lLipb,t
= ‖f‖sup(7.10.16)

for each t > 0.

7.11 Bilipschitz conditions and invertibility

Let (X, dX) and (Y, dY ) be metric spaces, and let f be a mapping from X into
Y . Suppose that there is a positive real number c such that

c dX(x,w) ≤ dY (f(x), f(w))(7.11.1)

for every x,w ∈ X. This implies in particular that f is one-to-one on X, so
that the inverse mapping f−1 may be defined on the image f(X) of X under f
in Y . More precisely, (7.11.1) is the same as saying that

f−1 is Lipschitz with constant 1/c on f(X),(7.11.2)

with respect to the restriction of dY to f(X).
If f is also Lipschitz on X, then f is said to be a bilipschitz mapping from

X into Y . In this case, if X is complete as a metric space, then it is easy to see
that

f(X) is complete, with respect to the restriction of dY to f(X).(7.11.3)

This implies that
f(X) is a closed set in Y,(7.11.4)

as in Section 1.6. If f(X) is dense in Y , then it follows that

f(X) = Y.(7.11.5)
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Suppose now that Y is a vector space over the real or complex numbers with
a norm ‖ · ‖Y , and that dY is the metric on Y associated to ‖ · ‖Y . Let f be a
mapping from X into Y that satisfies (7.11.1) for some c > 0 again, and let g
be a mapping from X into Y such that

f − g is Lipschitz on X.(7.11.6)

If x,w ∈ X, then

c dX(x,w) ≤ ‖f(x)− f(w)‖Y
≤ ‖(f(x)− g(x))− (f(w)− g(w))‖Y + ‖g(x)− g(w)‖Y(7.11.7)

≤ LipX,Y (f − g) dX(x,w) + ‖g(x)− g(w)‖Y ,

where LipX,Y (f − g) is the minimal Lipschitz constant of f − g on X, as in
Section 2.1. This implies that

(c− LipX,Y (f − g)) dX(x,w) ≤ ‖g(x)− g(w)‖Y .(7.11.8)

If
LipX,Y (f − g) < c,(7.11.9)

then this is the same type of condition as before.
Suppose that X is also a vector space over the real or complex numbers, as

appropriate, with a norm ‖ · ‖X , and that dX is the metric on X associated to
‖ · ‖X . If f is a linear mapping from X into Y , then (7.11.1) implies that

c ‖x‖X ≤ ‖f(x)‖Y(7.11.10)

for every x ∈ X. Conversely, this condition implies that

c ‖x− w‖X ≤ ‖f(x− w)‖Y = ‖f(x)− f(w)‖Y(7.11.11)

for every x,w ∈ X, which is the same as (7.11.1) in this case. Note that f(X)
is a linear subspace of Y , and that (7.11.10) is the same as saying that f−1 is
bounded as a linear mapping from f(X) into X, with respect to the restriction
of ‖ · ‖Y to f(X), and with operator norm less than or equal to 1/c.

Suppose that g is a linear mapping from X into Y such that

f − g ∈ BL(X,Y ).(7.11.12)

If f satisfies (7.11.10) for some c > 0, then

c ‖x‖X ≤ ‖f(x)− g(x)‖Y + ‖g(x)‖Y(7.11.13)

≤ ‖f − g‖op,X,Y ‖x‖X + ‖g(x)‖X

for every x ∈ X. This implies that

(c− ‖f − g‖op,XY ) ‖x‖X ≤ ‖g(x)‖Y(7.11.14)
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for every x ∈ X, which is the same type of condition as before when

‖f − g‖op,XY < c.(7.11.15)

Of course, this could also be obtained from the analogous statements for Lips-
chitz mappings, but the arguments are a bit simpler in this case.

Suppose that f satisfies (7.11.1) for some c > 0, and that (7.11.6) holds. If
x ∈ X, then we get that

‖f(x)− g(x)‖Y ≤ ‖f − g‖op,XY ‖x‖X ≤ c−1 ‖f − g‖op,XY ‖f(x)‖Y .(7.11.16)

Suppose that (7.11.15) holds as well, which is the same as saying that

c−1 ‖f − g‖op,XY < 1.(7.11.17)

If f(X) = Y , then it follows that

g(X) is dense in Y,(7.11.18)

as in Section 4.6. This implies that g(X) = Y when X is complete, as before.
Similarly, if f(X) is dense in Y , then (7.11.18) holds. Indeed, if x ∈ X and

y ∈ Y , then

‖y − g(x)‖Y ≤ ‖y − f(x)‖Y + ‖f(x)− g(x)‖Y(7.11.19)

≤ ‖y − f(x)‖Y + c−1 ‖f − g‖op,XY ‖f(x)‖Y ,

using (7.11.16) in the second step. This implies that

‖y − g(x)‖Y ≤ (1 + c−1 ‖f − g‖op,XY ) ‖y − f(x)‖Y(7.11.20)

+c−1 ‖f − g‖op,XY ‖y‖Y .

One can use this to get that the criterion for density in Section 4.6 holds in this
case too.

7.12 The contraction mapping theorem

Let (X, dX) be a nonempty metric space, and let ϕ be a mapping from X into
itself. Suppose that ϕ is a contraction on X, which means that ϕ is Lipschitz
with

Lip(ϕ) < 1.(7.12.1)

If X is complete, then the contraction mapping theorem states that

ϕ has a unique fixed point in X,(7.12.2)

which is to say that there is a unique x ∈ X such that

ϕ(x) = x.(7.12.3)
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The uniqueness of the fixed point can be verified directly, and does not use
completeness of X.

To get the existence of the fixed point, let x1 ∈ X be given, and let {xj}∞j=1

be the sequence of elements of X defined recursively by

xj+1 = ϕ(xj)(7.12.4)

for each j. One can show that

{xj}∞j=1 is a Cauchy sequence in X,(7.12.5)

using (7.12.1). This implies that {xj}∞j=1 converges inX, becauseX is complete,
and we put

x = lim
j→∞

xj .(7.12.6)

One can check that (7.12.3) holds, using (7.12.4), and the fact that ϕ is contin-
uous on X.

Suppose now that X is a Banach space over the real or complex numbers,
with norm ‖ · ‖X , and with dX equal to the metric associated to the norm. Put

ψ(x) = x− ϕ(x)(7.12.7)

for each x ∈ X, which defines a mapping from X into itself. More precisely, ψ
is Lipschitz on X, with

Lip(ψ) ≤ 1 + Lip(ϕ),(7.12.8)

as in Section 2.1. In fact,

ψ is bilipschitz on X,(7.12.9)

as in the previous section. We would like to show that

ψ(X) = X,(7.12.10)

using the contraction mapping theorem.
Let y ∈ X be given, and put

ϕy(x) = ϕ(x) + y(7.12.11)

for each x ∈ X. Note that ϕy is a Lipschitz mapping from X into itself, with

Lip(ϕy) = Lip(ϕ).(7.12.12)

Thus
ϕy is a contraction on X,(7.12.13)

because ϕ is a contraction, by hypothesis. The contraction mapping theorem
implies that ϕy has a unique fixed point x(y) in X, so that

ϕ(x(y)) + y = ϕy(x(y)) = x(y).(7.12.14)
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This implies that
ψ(x(y)) = y,(7.12.15)

so that (7.12.10) holds.
If ϕ is a bounded linear mapping on X, then (7.12.1) is the same as saying

that
‖ϕ‖op < 1.(7.12.16)

This gives another way to look at the invertibility of ψ as a bounded linear
mapping on X under these conditions.

7.13 The open mapping theorem

Let X, Y be metric spaces, or topological spaces. A mapping f from X into Y
is said to be open at a point x ∈ X if for every open set U ⊆ X with x ∈ U
there is an open set V ⊆ Y such that

f(x) ∈ V ⊆ f(U).(7.13.1)

We simply say that f is an open mapping if for every open set U ⊆ X,

f(U) is an open set in Y.(7.13.2)

If f is an open mapping, then f is clearly open at every x ∈ X. Conversely, if
f is open at every x ∈ X, then it is easy to see that f is an open mapping.

Suppose for the moment that

f is a one-to-one mapping from X onto Y.(7.13.3)

In this case, f is an open mapping at x ∈ X if and only if

f−1 is continuous at f−1(x).(7.13.4)

Similarly, f is an open mapping if and only if f−1 is continuous.
Suppose for the moment again that

X is compact(7.13.5)

and
Y is Hausdorff,(7.13.6)

and note that (7.13.6) holds when Y is a metric space. If E ⊆ X is a closed
set, then it is well known that E is compact, because X is compact. If f is a
continuous mapping from X into Y , then it follows that f(E) is compact in Y .
This implies that

f(E) is a closed set in Y,(7.13.7)

because Y is Hausdorff. If f is also a one-to-one mapping from X onto Y , then
we get that

f−1 is continuous(7.13.8)
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under these conditions.
Now let V ,W be vector spaces, both real or both complex, with norms ‖·‖V ,

‖ · ‖W , respectively. Also let T be a linear mapping from V into W . If

T is an open mapping at 0,(7.13.9)

then it is easy to see that T is an open mapping at every point in V , so that

T is an open mapping from V into W.(7.13.10)

Note that
T (V ) =W(7.13.11)

in this case.
Let us use BV (v, r), BW (w, r) for the open balls in V , W centered at v ∈ V ,

w ∈ W with radius r > 0 with respect to the metrics associated to the norms,
respectively. If T is open at 0, then there is an r1 > 0 such that

BW (0, r1) ⊆ T (BV (0, 1)).(7.13.12)

Conversely, this condition implies that

BW (0, r1 r) ⊆ T (BV (0, r))(7.13.13)

for every r > 0, because of linearity. It follows that T is an open mapping at 0.
Suppose that V , W are Banach spaces, and that T is a bounded linear

mapping from V onto W . Under these conditions, the open mapping theorem
states that

T is an open mapping.(7.13.14)

It suffices to show that (7.13.12) holds for some r1 > 0, as in the preceding
paragraph.

Observe that
∞⋃
j=1

T (BV (0, j)) =W,(7.13.15)

because T maps
⋃∞

j=1BV (0, j) = V onto W , by hypothesis. In particular, this
means that

∞⋃
j=1

T (BV (0, j)) =W.(7.13.16)

Because W is a Banach space, we can use the Baire category theorem to get
that

T (BV (0, j)) has nonempty interior in W(7.13.17)

for some j.
More precisely, this implies that T (BV (0, j)) contains an open set that con-

tains an element of T (BV (0, j)). One can use this to get that

BW (0, r0) ⊆ T (BV (0, 2 j))(7.13.18)
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for some r0 > 0.
Using this and linearity, one can check that there is a positive real number

C such that for each w ∈W there is a v ∈ V such that

‖v‖V ≤ C ‖w‖W(7.13.19)

and ‖w − T (v)‖W is as small as we like.
We can repeat the process and approximate w−T (v) in the same way. Con-

tinuing in this manner, we get an infinite series in V that converges absolutely
and thus converges in V , because V is a Banach space. By construction, T
sends the sum of this series to w. The norm of the sum of the series is less than
or equal to the sum of the norms, which can be estimated by C ‖w‖W plus an
arbitrarily small positive real number.

7.14 Open mappings and quotient spaces

Let V be a vector space over the real or complex numbers with a norm ‖ · ‖V .
Also let V0 be a closed linear subspace of V , and let V/V0 be the corresponding
quotient space, with the quotient norm ‖ · ‖V/V0

defined as in Section 6.10. One
can check that

the natural quotient mapping q0 from V onto V/V0(7.14.1)

is an open mapping,

with respect to the metrics associated to the norms. More precisely, q0 maps
the open ball in V centered at 0 with radius r > 0 onto the open ball in V/V0
centered at 0 with radius r, because of the way that ‖ · ‖V/V0

is defined.
Let W be another vector space over the real or complex numbers, as appro-

priate, and with a norm ‖ · ‖W . If T0 is a linear mapping from V/V0 into W ,
then

T = T0 ◦ q0(7.14.2)

defines a linear mapping from V into W such that

V0 ⊆ kerT.(7.14.3)

If T0 is bounded as a linear mapping from V/V0 into W , then it follows that T
is a bounded linear mapping from V into W , with

‖T‖op,VW ≤ ‖T0‖op,(V/V0)W .(7.14.4)

In fact, one can check that

‖T0‖op,(V/V0)W ≤ ‖T‖op,VW(7.14.5)

too. This means that

‖T0‖op,(V/V0)W = ‖T‖op,V W .(7.14.6)
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Conversely, if T is a linear mapping from V into W that satisfies (7.14.3),
then there is a unique linear mapping T0 from V/V0 into W such that (7.14.2)
holds, by standard arguments. If T is a bounded linear mapping from V into
W , then one can verify that

T0 is bounded on V/V0,(7.14.7)

and that (7.14.5) holds. We also have that (7.14.4) holds, so that (7.14.6) holds,
as before.

If T is any bounded linear mappng from V into W , then the kernel of T is
a closed linear subspace of V . Thus we can take

V0 = kerT(7.14.8)

in the previous paragraphs. This leads to a bounded linear mapping T0 from
V/V0 into W as in (7.14.2). In this case, we also have that

kerT0 = {0},(7.14.9)

by construction.
Of course,

T (V ) = T0(V/V0).(7.14.10)

Suppose that T maps V onto W , so that T0 maps V/V0 onto W . Suppose that
V andW are Banach spaces as well, and remember that V/V0 is a Banach space
too, as in Section 6.10. The open mapping theorem implies that

T−1
0 is bounded as a linear mapping from W onto V/V0.(7.14.11)

7.15 The closed graph theorem

Let X, Y be metric spaces, or topological spaces, and let f be a mapping from
X into Y . The graph of f is the subset

{(x, f(x)) : x ∈ X}(7.15.1)

of the Cartesian product X×Y . If f is continuous, and X, Y are metric spaces,
then one can check that

the graph of f is a closed set in X × Y,(7.15.2)

with respect to a suitable metric on X × Y as in Section 5.11. This also works
when X, Y are topological spaces, using the product topology on X × Y , if Y
is Hausdorff.

Suppose for the moment that

X and Y are compact,(7.15.3)
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so that X ×Y is compact, by Tychonoff’s theorem. If the graph of f is a closed
set in X × Y , then it is compact as well. Let p be the restriction of the obvious
coordinate projection from X × Y onto X to the graph of f , so that

p((x, f(x))) = x(7.15.4)

for every x ∈ X. This is a one-to-one mapping from the graph of f onto X. It
is easy to see that

p is continuous,(7.15.5)

with respect to the restriction of a suitable metric on X × Y to the graph of f
when X and Y are metric spaces, or with respect to the topology induced on
the graph of f by the product topology on X×Y when X and Y are topological
spaces. It follows that

p−1 is continuous(7.15.6)

when X, Y are metric spaces, and when X, Y are topological spaces and X is
Hausdorff, as in Section 7.13. This implies that

f is continuous(7.15.7)

under these conditions.
Now let V , W be vector spaces, both real or both complex, and let T be a

linear mapping from V into W . As before, the graph of T is the subset

{(v, T (v)) : v ∈ V }(7.15.8)

of the Cartesian product V ×W . Remember that V ×W may be considered as
a vector space over the real or complex numbers, as appropriate, with respect
to coordinatewise addition and scalar multiplication. It is easy to see that the
graph of T is a linear subspace of V ×W .

Let ‖ · ‖V , ‖ · ‖W be norms on V , W , respectively, which can be used to get
a suitable norm on V ×W , as in Section 5.12. If T is a bounded linear mapping
from V into W , then

the graph of T is a closed set in V ×W(7.15.9)

with respect to the metric associated to such a norm, as before.
The condition that the graph of T be a closed set in V ×W is equivalent to

saying that if

{(vj , T (vj))}∞j=1 is a sequence of elements of the graph of T(7.15.10)

that converges to (v, w) ∈ V ×W,

then (v, w) is an element of the graph of T , so that

w = T (v).(7.15.11)

Thus the graph of T is a closed set in V ×W if and only if for every sequence
{vj}∞j=1 of elements of V that converges to v ∈ V with respect to the metric
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associated to ‖ · ‖V , and for which {T (vj)}∞j=1 converges to w ∈W with respect
to the metric associated to ‖ · ‖W , we have that (7.15.11) holds. One can also
use linearity of T to reduce to the case where v = 0.

Suppose that V and W are Banach spaces, and that the graph of T is a
closed set in V ×W . Under these econditions, the closed graph theorem states
that

T is a bounded linear mapping from V into W.(7.15.12)

To see this, note that

V ×W is a Banach space with respect to a suitable norm,(7.15.13)

as in Section 5.12. It follows that

the graph of T is a Banach space(7.15.14)

with respect to the restriction of the norm on V ×W to the graph of T , as in
Section 1.6.

Let p be the restriction of the obvious coordinate projection from V ×W
onto V to the graph of T , as before. This is a bounded linear mapping from
the graph of T onto V with respect to the appropriate norms. More precisely,
p is a one-to-one mapping from the graph of T onto V , and the open mapping
theorem implies that

p−1 is a bounded linear mapping from V onto the graph of T.(7.15.15)

This means that T is a bounded linear mapping from V into W .



Chapter 8

Bilinear forms and linear
mappings

8.1 Invertible mappings and product spaces

Let X, Y be metric spaces, or topological spaces, and consider the Cartesian
products X × Y , Y × X. If X, Y are metric spaces, then we can get suitable
metrics on X × Y , Y ×X as in Section 5.11. We may as well use the same way
to get these metrics on X × Y and Y ×X, so that

(x, y) 7→ (y, x)(8.1.1)

is an isometry from X × Y onto Y × X. Otherwise, if X, Y are topological
spaces, then we can use the product topologies on X × Y and Y × X, and
(8.1.1) is a homeomorphism.

If f is a one-to-one mapping from X onto Y , then the graph

{(y, f−1(y)) : y ∈ Y }(8.1.2)

of f−1 in Y ×X is the same as

{(f(x), x) : x ∈ X}.(8.1.3)

This corresponds to the graph (7.15.1) of f under the mapping (8.1.1). In
particular, this means that the graph of f is a closed set in X ×Y if and only if

the graph of f−1 is a closed set in Y ×X.(8.1.4)

Let V , W be vector spaces, both real or both complex, so that V ×W and
W ×V may be considered as real or complex vector spaces, as appropriate, with
respect to coordinatewise addition and scalar multiplication. Of course,

(v, w) 7→ (w, v)(8.1.5)

170
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defines an isomorphism from V ×W onto V ×W , as real or complex vector
spaces, as appropriate. If T is a one-to-one linear mapping from V onto W ,
then the graph

{(w, T−1(w)) : w ∈W}(8.1.6)

of T−1 is a linear subspace of W × V . This is the same as

{(T (v), v) : v ∈ V }.(8.1.7)

This corresponds to the graph (7.15.8) of T under the mapping (8.1.5), as before.
Let ‖ · ‖V . ‖ · ‖W be norms on V , W , respectively, which can be used to get

suitable norms on V ×W and W × V , as in Section 5.12. We may as well use
the same way to get norms on each of V ×W and W × V , so that (8.1.5) is an
isometric linear mapping from V ×W onto W × V . If T is a bounded linear
mapping from V into W , then the graph of T is a closed set in V ×W , as in
Section 7.15.

If T is a one-to-one bounded linear mapping from V onto W , then it follows
that

the graph of T−1 is a closed set in W × V.(8.1.8)

If V , W are Banach spaces, then the conclusion of the closed graph theorem
implies that T−1 is a bounded linear mapping from W onto V . Of course, this
is the same as the version of the open mapping theorem that was used to get
the closed graph theorem.

Let V be a vector space over the real or complex numbers again, and let V1,
V2 be linear subspaces of V . Thus V1 × V2 may be considered as a vector space
over the real or complex numbers, as appropriate, as well, and

(v1, v2) 7→ v1 + v2(8.1.9)

defines a linear mapping from V1×V2 into V . This mapping sends V1×V2 onto

V1 + V2 = {v1 + v2 : v1 ∈ V2, v2 ∈ V2},(8.1.10)

and the kernel of this linear mapping is equal to

{(v1, v2) ∈ V1 × V2 : v1 = −v2}.(8.1.11)

In particular, the kernel of (8.1.9) is equal to {0} if and only if

V1 ∩ V2 = {0}.(8.1.12)

Let ‖ · ‖V be a norm on V again, whose restrictions to V1, V2 define norms
on those spaces. We can use these norms to get a suitable norm on V1 × V2, as
in Section 5.12. It is easy to see that (8.1.9) is a bounded linear mapping from
V1 × V2 with respect to such a norm. Suppose that (8.1.10) is equal to V , and
that (8.1.12) holds, so that (8.1.9) is a one-to-one mapping from V1 × V2 onto
V . We would like to have conditions under which

the inverse of (8.1.9) is bounded as a linear mapping(8.1.13)

from V onto V1 × V2.
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A necessary condition for this to hold is that

V1, V2 be closed sets in V,(8.1.14)

with respect to the metric associated to ‖ · ‖V , because V1 × {0}, {0} × V2
are closed sets in V1 × V2. Suppose that this condition holds, and that V is a
Banach space. This implies that V1, V2 are Banach spaces with respect to the
restrictions of ‖ · ‖V to those spaces, as in Section 1.6. It follows that V1 × V2
is a Banach space as well, as in Section 5.12. In this case, we get (8.1.13) from
the open mapping theorem.

8.2 Projections on vector spaces

Let V be a vector space over the real or complex numbers. A linear mapping P
from V into itself is said to be a projection if

P ◦ P = P(8.2.1)

on V , so that
P (P (v)) = P (v)(8.2.2)

for every v ∈ V . This implies that

(I − P ) ◦ P = P ◦ (I − P ) = 0.(8.2.3)

where I = IV is the identity map on V . It follows that

(I − P ) ◦ (I − P ) = I − P,(8.2.4)

so that I − P is a projection on V as well.
Observe that

P (V ) ⊆ ker(I − P )(8.2.5)

and
(I − P )(V ) ⊆ kerP,(8.2.6)

by (8.2.3). The opposite inclusions can be verfiied directly. This means that

P (V ) = ker(I − P )(8.2.7)

and
(I − P )(V ) = kerP.(8.2.8)

One can use (8.2.7) and (8.2.8) to get that

(kerP ) + P (V ) = V(8.2.9)

and
(kerP ) ∩ P (V ) = {0}.(8.2.10)
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We may consider
(kerP )× P (V )(8.2.11)

as a vector space over the real or complex numbers, as appropriate, with respect
to coordinatewise addition and scalar multiplication, as usual. Using (8.2.9) and
(8.2.10), we get that

(v, w) 7→ v + w(8.2.12)

defines a one-to-one linear mapping from (8.2.11) onto V , as in the previous
section. The inverse mapping is given by

u 7→ ((I − P )(u), P (u)).(8.2.13)

Let ‖·‖V be a norm on V , whose restrictions to kerP , P (V ) define norms on
those spaces. This can be used to get a suitable norm on (8.2.11), as in Section
5.12. Note that (8.2.12) is bounded as a linear mapping from (8.2.11) into V ,
as in the previous section. The inverse mapping is bounded if and only if

P is bounded on V,(8.2.14)

because it can be given as in (8.2.13). Of course, if P is bounded on V , then
I − P is bounded on V , and (8.2.7), (8.2.8) are closed sets in V .

If V1, V2 are linear subspaces of V such that V1+V2 = V and V1 ∩V2 = {0},
then (8.2.12) defines a one-to-one linear mapping from V1×V2 onto V , as in the
previous section. In this case, it is easy to see that there is a unique projection
P on V with

kerP = V1(8.2.15)

and
P (V ) = V2.(8.2.16)

If V is a Banach space, and V1, V2 are closed sets in V , then the inverse of
(8.2.12) as a linear mapping from V1 × V2 onto V is bounded, with respect to
a suitable norm on V1 × V2, as before. This means that (8.2.14) holds, which
corresponds to a simplification of part (b) of Theorem 5.16 on p126 of [162].
More precisely, the proof in [162] uses the closed graph theorem a bit more
directly.

8.3 Orthogonal projections

Let (V, 〈·, ·〉V ) be an inner product space over the real or complex numbers, with
corresponding norm ‖ · ‖V . Also let W be a linear subspace of V , and suppose
that for each v ∈ V there is an element PW (v) of W such that

〈v − PW (v), w〉V = 0(8.3.1)

for every w ∈W . Remember that PW (v) is uniquely determined by these prop-
erties, as in Section 2.12. It is easy to see that PW is linear, using uniqueness.
If v ∈W , then we have that

PW (v) = v,(8.3.2)
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by uniqueness.
It follows that PW is a projection on V , as in the previous section. This

is the orthogonal projection of V onto W . If W has finite dimension, then one
can use an orthonormal basis for W to get PW , as in Section 2.12. If V is a
Hilbert space, and W is a closed linear subspace of V , then one can get PW as
in Sections 2.14 or 2.15.

Note that PW is a bounded linear mapping from V into itself with respect
to ‖ · ‖V , with operator norm less than or equal to 1, as in Section 2.12. More
precisely,

‖PW ‖op = 1(8.3.3)

when W 6= {0}, and otherwise PW = 0. We also have that

W = PW (V ) = ker(I − PW ),(8.3.4)

as in the previous section. This implies that

W is a closed set in V,(8.3.5)

with respect to the metric associated to ‖ · ‖V , because I − PW is a bounded
linear mapping from V into itself, as before.

Remember that the orthogonal complement of W in V is the closed linear
subspace of V defined by

W⊥ = {u ∈ V : 〈u,w〉V = 0 for every w ∈W},(8.3.6)

as in Section 2.15. Note that

W⊥ = kerPW ,(8.3.7)

as before. This implies that

(I − PW )(V ) =W⊥,(8.3.8)

as in the previous section. Of course, (8.3.1) is the same as saying that

(I − PW )(V ) ⊆W⊥,(8.3.9)

and the opposite inclusion can be obtained from (8.3.7).
Put

PW⊥ = I − PW .(8.3.10)

If v ∈ V , then PW⊥(v) ∈W⊥, and

〈v − PW⊥(v), u〉V = 〈PW (v), u〉V = 0(8.3.11)

for every u ∈ W⊥, because PW (v) ∈ W . These properties determine PW⊥(v)
uniquely, as in Section 2.12 again. This means that PW⊥ is the orthogonal
projection of V onto W⊥, as before.



8.4. PROJECTIONS AND DISTANCES 175

Let V1, V2 be linear subspaces of V that are orthogonal to each other with
respect to 〈·, ·〉V on V , which is to say that

〈v1, v2〉V = 0(8.3.12)

for every v1 ∈ V1 and v2 ∈ V2. Equivalently, this means that

V1 ⊆ V ⊥
2 , V2 ⊆ V ⊥

1 .(8.3.13)

In particular, this implies that V1 ∩ V2 = {0}. Suppose that V1 + V2 = V , so
that every element of V can be expressed in a unique way as a sum of elements
of V1 and V2. This leads to a unique linear mapping P from V into itself such
that

P (v1 + v2) = v2(8.3.14)

for every v1 ∈ V1 and V2 ∈ V2.
It is easy to see that P is the same as the orthogonal projection PV2

of V
onto V2 under these conditions. Similarly,

(I − P )(v1 + v2) = v1(8.3.15)

for every v1 ∈ V1 and v2 ∈ V2, and I − P is the orthogonal projection PV1 of V
onto V1. We also have that

V1 = V ⊥
2 , V2 = V ⊥

1(8.3.16)

in this case, as in Section 2.15. In particular, this implies that V1, V2 are closed
sets in V , as before. Remember that P is bounded as a linear mapping from V
into itself, as mentioned earlier.

8.4 Projections and distances

Let V be a vector space over the real or complex numbers, and let V1, V2 be
linear subspaces of V such that V1 ∩ V2 = {0} and V1 + V2 = V . This means
that every element of V can be expressed in a unique way as v1 + v2 for some
v1 ∈ V1 and v2 ∈ V2, which leads to a unique linear mapping P from V into
itself that sends v1+v2 to v2. This is the unique projection on V with kernel V1
that maps V onto V2, as in Section 8.2. Similarly, I−P is the unique projection
on V with kernel V2 that maps V onto V1, and which sends v1 + v2 to v1 for
every v1 ∈ V1, v2 ∈ V2. Any projection on V may be considered in this way, as
before.

Let ‖ · ‖V be a norm on V . Observe that P is a bounded linear mapping
from V into itself with respect to ‖ · ‖V if and only if there is a nonnegative real
number C2 such that

‖v2‖V ≤ C2 ‖v1 + v2‖V(8.4.1)

for all v1 ∈ V1 and v2 ∈ V2. Similarly, I − P is bounded on V if and only if
there is a C1 ≥ 0 such that

‖v1‖V ≤ C1 ‖v1 + v2‖V(8.4.2)
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for all v1 ∈ V1 and v2 ∈ V2. Of course, P is bounded on V if and only if I − P
is bounded on V .

Note that (8.4.1) is the same as saying that

‖v2‖V ≤ C2 ‖v2 − v1‖V(8.4.3)

for all v1 ∈ V1 and v2 ∈ V2. Equivalently, this means that

‖v2‖V ≤ C2 dist(v2, V1)(8.4.4)

for all v2 ∈ V2, where dist(v2, V1) is as in Section 2.11, using the metric on V
associated to ‖ · ‖V . Similarly, (8.4.2) is the same as saying that

‖v1‖V ≤ C1 ‖v1 − v2‖V(8.4.5)

for all v1 ∈ V1 and v2 ∈ V2. This means that

‖v1‖V ≤ C1 dist(v1, V2)(8.4.6)

for all v1 ∈ V1.
Of course,

dist(v, V1) ≤ ‖v‖V(8.4.7)

for every v ∈ V , because 0 ∈ V2. If (8.4.4) holds with C2 = 1, then we get that

‖v2‖V = dist(v2, V1)(8.4.8)

for all v2 ∈ V2. Similarly,
dist(v, V2) ≤ ‖v‖V(8.4.9)

for every v ∈ V . If (8.4.6) holds with C1 = 1, then

‖v1‖V = dist(v1, V2)(8.4.10)

for all v1 ∈ V1.
If v ∈ V , then

dist(v, V1) = dist(P (v), V1),(8.4.11)

because v − P (v) ∈ V1, by construction. Thus (8.4.4) implies that

‖P (v)‖V ≤ C2 dist(v, V1)(8.4.12)

for every v ∈ V , because P (v) ∈ V2. Conversely, this implies (8.4.4), because
P (v2) = v2 for every v2 ∈ V2. Similarly,

dist(v, V2) = dist(v − P (v), V2)(8.4.13)

for every v ∈ V , because P (v) ∈ V2. It follows that (8.4.6) holds if and only if

‖v − P (v)‖V ≤ C1 dist(v, V2)(8.4.14)
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for every v ∈ V , because v − P (v) ∈ V1.
Observe that

dist(v, V1) = dist(P (v), V1) ≤ ‖P (v)‖V(8.4.15)

for every v ∈ V , using (8.4.11) in the first step, and the analogue of (8.4.7) with
P (v) in place of v in the second step. If (8.4.12) holds with C2 = 1, then we
have that

‖P (v)‖V = dist(v, V1)(8.4.16)

for every v ∈ V . Similarly,

dist(v, V2) = dist(v − P (v), V2) ≤ ‖v − P (v)‖V(8.4.17)

for every v ∈ V . If (8.4.14) holds with C1 = 1, then

‖v − P (v)‖V = dist(v, V2)(8.4.18)

for every v ∈ V .
Suppose for the moment that 〈·, ·〉V is an inner product on V , and that ‖·‖V

is the corresponding norm on V . If V1, V2 are orthogonal to each other with
respect to 〈·, ·〉V , then (8.4.1) and (8.4.2) hold with C1 = C2 = 1. Conversely, if
(8.4.1) holds with C2 = 1, or (8.4.2) holds with C1 = 1, then one can check that
V1 and V2 are orthogonal to each other with respect to 〈·, ·〉V . This is similar
to an argument mentioned in Section 2.15.

Let v0 be any nonzero element of V , and let λ0 be a linear functional on V
such that

λ0(v0) = 1.(8.4.19)

Put

P0(v) = λ0(v) v0(8.4.20)

for each v ∈ V , which defines a linear mapping from V into itself. Note that

P0(v0) = v0,(8.4.21)

so that P0 is a projection from V onto the linear subspace spanned by v0. We
also have that

kerP0 = kerλ0,(8.4.22)

by construction.
Let ‖ · ‖V be a norm on V again. If λ0 is a bounded linear functional on

V with respect to ‖ · ‖V , then P0 is bounded as a linear mapping from V into
itself, with

‖P0‖op = ‖λ0‖V ′ ‖v0‖V .(8.4.23)

The Hahn–Banach theorem implies that there is such a λ0 for which the right
side of (8.4.23) is equal to 1, as in Section 3.10.
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8.5 Symmetric bilinear forms

Let V be a vector space over the real or complex numbers, and let b be a
bilinear form on V , which is to say a bilinear mapping from V × V into R or
C, as appropriate. We say that b is symmetric on V if

b(v, w) = b(w, v)(8.5.1)

for all v, w ∈ V , and that b is antisymmetric on V if

b(v, w) = −b(w, v)(8.5.2)

for all v, w ∈ V . If b is any bilinear form on V , then

(1/2) (b(v, w) + b(w, v))(8.5.3)

is a symmetric bilinear form on V , and

(1/2) (b(v, w)− b(w, v))(8.5.4)

is an antisymmetric bilinear form on V . Of course, b(v, w) is the same as the
sum of (8.5.3) and (8.5.4).

If b is a bilinear form on V , then

b(v + w, v + w) = b(v, v) + b(v, w) + b(w, v) + b(w,w)(8.5.5)

for all v, w ∈ V . Equivalently,

(1/2) (b(v, w) + b(w, v)) = (1/2) (b(v + w, v + w)− b(v, v)− b(w,w)),(8.5.6)

which is a polarization identity. If b is antisymmetric on V , then

b(v, v) = 0(8.5.7)

for every v ∈ V . Conversely, this condition implies that b is antisymmetric
on V , because of (8.5.5). If b is symmetric on V , then (8.5.6) shows that b is
determined by the values of b(u, u), u ∈ V .

Suppose now that V is a complex vector space, and that b is a sesquilinear
form on V , which is to say a sesquilinear mapping from V × V into C. Note
that

b(w, v)(8.5.8)

is a sesquilinear form on V as well. If

b(v, w) = b(w, v)(8.5.9)

for every v, w ∈ V , then b is said to be Hermitian symmetric, or a Hermitian
form on V . If

b(v, w) = −b(w, v)(8.5.10)
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for every v, w ∈ V , then one might say that b is Hermitian antisymmetric on
V , which is equivalent to i b being Hermitian symmetric on V . If b is any
sesquilinear form on V , then

(1/2) (b(v, w) + b(w, v))(8.5.11)

is Hermitian symmetric on V ,

(1/2) (b(v, w)− b(w, v))(8.5.12)

is Hermitian antisymmetric on V , and b(v, w) is the same as the sum of (8.5.11)
and (8.5.12).

If b is a sesquilinear form on V , then (8.5.5) holds, as before. We also have
that

b(v + i w, v + i w) = b(v, v)− i b(v, w) + i b(w, v) + b(w,w)(8.5.13)

for all v, w ∈ V , which is another polarization identity. Using (8.5.5) and
(8.5.13), we get that b can be obtained from the values of b(u, u), u ∈ V .

If b is Hermitian symmetric on V , then

b(v, v) ∈ R(8.5.14)

for every v ∈ V . Conversely, one can check that this condition implies that b
is Hermitian symmetric on V , using (8.5.5) and (8.5.13). Alternatively, observe
that if v = w, then (8.5.11) and (8.5.12) are equal to the real and imaginary
parts of b(v, v), respectively. If (8.5.12) holds for each v ∈ V , then it follows
that (8.5.12) is equal to 0, as in the preceding paragraph. As another approach,
(8.5.14) implies that b(v, w) and b(v, w) are the same when v = w. It follows that
b(v, w) and b(w, v) are equal to each other, because they are both sesquilinear
forms on V , as before. This is the argument used in the proof of Theorem 3 on
p13 of [88].

8.6 Self-adjoint linear operators

Let (V, 〈·, ·〉) be an inner product space over the real or complex numbers, with
the corresponding norm ‖ · ‖. A linear mapping T from V into itself is said to
be symmetric with respect to 〈·, ·〉 if

〈T (v), w〉 = 〈v, T (w)〉(8.6.1)

for every v, w ∈ V . If

〈T (v), w〉 = −〈v, T (w)〉(8.6.2)

for every v, w ∈ V , then T is said to be antisymmetric on V with respect to
〈·, ·〉. In the complex case, this is the same as saying that i T is symmetric on
V .
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Suppose for the moment that V is a Hilbert space, and that T is a bounded
linear mapping from V into itself. If w ∈ V , then there is a unique element
T ∗(w) of V such that

〈T (v), w〉 = 〈v, T ∗(w)〉(8.6.3)

for every v ∈ V , as in Section 3.5. This defines a bounded linear mapping from
V into itself, as before. Under these conditions, (8.6.1) is the same as saying
that

T ∗ = T.(8.6.4)

This means that T is self-adjoint on V , or equivalently that T is Hermitian
when V is complex. Similarly, (8.6.2) is the same as saying that

T ∗ = −T,(8.6.5)

so that T is anti-self-adjoint on V . In the complex case, this happens exactly
when i T is self-adjoint on V . Of course, the Hilbert space adjoint defines an
algebra involution on BL(V ), so that this terminology corresponds to that in
Section 7.5.

If V is any inner product space, and T is any linear mapping from V into
itself, then

bT (v, w) = 〈T (v), w〉(8.6.6)

defines a bilinear form on V in the real case, and a sesquilinear form on V in
the complex case. Remember that T is bounded as a linear mapping from V
into itself if and only if bT is bounded as a bilinear or sesquilinear form on V ,
as appropriate, as in Section 5.15.

If V is a Hilbert space, and T is symmetric or antisymmetric on V , then T is
bounded on V . This corresponds to a theorem of Hellinger and Toeplitz on p110
of [162]. More precisely, if V is any inner product space, and T is symmetric or
antisymmetric on V , then one can check that

the graph of T is a closed set in V × V.(8.6.7)

If V is a Hilbert space, then the closed graph theorem implies that T is bounded,
as in Section 7.15.

Alternatively, if V is any inner product space again, and T is symmetric or
antisymmetric on V , then one can verify that

bT (v, w) is separately continuous in each of v and w.(8.6.8)

If V is a Hilbert space, then it follows that bT is bounded as a bilinear or
sesquilinear form on V , as in Section 5.14. In the complex case, we may consider
bT as a real-bilinear mapping from V × V into C, as in Section 5.15.

Another approach to the boundedness of T under these conditions will be
mentioned in the next section.

If V is a real inner product space, then

bT (w, v) = 〈T (w), v〉 = 〈v, T (w)〉(8.6.9)
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for every v, w ∈ V . This implies that T is symmetric or antisymmetric on
V if and only if bT is symmetric or antisymmetric as a bilinear form on V ,
respectively. In particular, T is antisymmetric on V if and only if

〈T (v), v〉 = bT (v, v) = 0(8.6.10)

for every v ∈ V , as in the previous section.
Similarly, if V is a complex inner product space, then

bT (w, v) = 〈T (w), v〉 = 〈v, T (w)〉(8.6.11)

for every v, w ∈ V . It follows that T is symmetric or antisymmetric on V if and
only if bT is Hermitian symmetric or antisymmetric as a sesquilinear form on
V , respectively. This means that T is symmetric on V if and only if

〈T (v), v〉 = bT (v, v) ∈ R(8.6.12)

for every v ∈ V , as in the previous section. This corresponds to part (a) of
Exercise (2) on p45 of [8], and to the first part of Theorem 2 on p41 of [88].

Suppose that PW is the orthogonal projection of V onto a linear subspace
W , as in Section 8.3. If v1, v2 ∈ V , then

〈PW (v1), v2〉 = 〈PW (v1), PW (v2)〉 = 〈v1, PW (v2)〉,(8.6.13)

using (8.3.1) in both steps. This implies that PW is symmetric with respect to
〈·, ·〉V on V . If V is a Hilbert space, then this means that PW is self-adjoint on
V .

Conversely, let P be a projection on V , as in Section 8.2. Suppose that P is
symmetric with respect to 〈·, ·〉 on V , so that

〈P (v), w〉 = 〈v, P (w)〉(8.6.14)

for every v, w ∈ V . This implies that

〈v, P (w)〉 = 0(8.6.15)

when P (v) = 0, so that kerP and P (V ) are orthogonal to each other in V . It
follows that P is the orthogonal projection of V onto P (V ), as in Section 8.3.

8.7 Some related continuity arguments

Let V , W be vector spaces, both real or both complex, and with norms ‖ · ‖V ,
‖·‖W , respectively. Also let T be a linear mapping from V intoW , and remember
that T is bounded if and only if it is continuous at 0, as in Section 2.2. It is well
known that this happens if and only if for every sequence {vj}∞j=1 of elements
of V that converges to 0 with respect to the metric associated to ‖ · ‖V , we have
that

lim
j→∞

T (vj) = 0(8.7.1)
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with respect to the metric on W associated to ‖ · ‖W .
Of course, (8.7.1) implies that

{T (vj)}∞j=1 is bounded in W,(8.7.2)

with respect to the metric associated to ‖ · ‖W . In fact, it is well known that
T is continuous at 0 when (8.7.2) holds for all sequences {vj}∞j=1 of elements of
V that converges to 0. This corresponds to a simplification of part of Theorem
1.32 on p23 of [162].

Remember that T is bounded as a linear mapping from V into W when

‖T (v)‖W(8.7.3)

is bounded on a ball in V of positive radius centered at 0, as in Section 2.2.
If this does not happen, then one can get a sequence {vj}∞j=1 of elements of V
that converges to 0 such that (8.7.2) does not hold.

Alternatively, let {uj}∞j=1 be a sequence of elements of V that converges to
0. One can find a sequence {rj}∞j=1 of positive real numbers such that rj → ∞
as j → ∞ and

lim
j→∞

rj uj = 0(8.7.4)

in V . This is a simplification of part (b) of Theorem 1.28 on p21 of [162]. Here
we can take

rj = ‖uj‖−1/2
V(8.7.5)

when uj 6= 0, and rj = j otherwise. If (8.7.2) holds with vj = rj uj , then it
follows that

T (uj) = r−1
j T (rj uj) → 0 as j → ∞(8.7.6)

in W .
Note that (8.7.2) holds when

{T (vj)}∞j=1 converges to 0 weakly in W,(8.7.7)

as in Section 4.9. If (8.7.7) holds for every sequence {vj}∞j=1 of elements of V
that converges to 0, then it follows that T is continuous at 0.

Let Z be a subset of the dual space W ′ of bounded linear functionals on W ,
and suppose that

Z separates points in W.(8.7.8)

This means that for each nonzero w ∈W there is a µ ∈ Z such that

µ(w) 6= 0.(8.7.9)

Suppose also that for every µ ∈ Z,

µ ◦ T is a bounded linear functional on V,(8.7.10)

so that µ ◦ T is continuous on V . Under these conditions, one can check that

the graph of T is a closed set in V ×W.(8.7.11)
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If V and W are Banach spaces, then it follows that T is continuous, by the
closed graph theorem, as in Section 7.15.

This basically corresponds to a simplification of Theorem 5.1 on p110 of
[162], and its proof. That result considers other types of topological vector
spaces, and all continuous linear functionals on W . However, the proof works
as well for sets of continuous linear functionals on W that separate points.

More precisely, (8.7.10) is the same as saying that for every sequence {vj}∞j=1

of elements of V that converges to 0,

lim
j→∞

µ(T (vj)) = 0.(8.7.12)

If we take Z = W ′ here, then (8.7.12) reduces to (8.7.7), and we can use the
earlier argument, without asking V or W to be complete.

Let (V, 〈·, ·〉) be an inner product space over the real or complex numbers,
and let T be a linear mapping from V itself. Suppose that T is symmetric or
antisymmetric with respect to 〈·, ·〉. If {vj}∞j=1 is a sequence of elements of V
that converges to 0 with respect to the metric associated to the corresponding
norm on V , then

〈T (vj), w〉 = ±〈vj , T (w)〉 → 0 as j → ∞.(8.7.13)

This corresponds to (8.7.12), where W = V , and Z is the linear subspace of
V ′ = W ′ consisting of linear functionals of the form µw(v) = 〈v, w〉, w ∈ V .
Note that Z separates points in V .

If V is a Hilbert space, then it follows that T is continuous, as before. More
precisely, every continuous linear functional on V is in Z in this case, so that
(8.7.13) implies (8.7.7). Otherwise, one can use the closed graph theorem, as
before.

8.8 Bounded symmetric bilinear forms

Let V be a vector space over the real or complex numbers, and let b be a
symmetric bilinear form on V . Observe that

b(v, w) = (1/4) (b(v + w, v + w)− b(v − w, v − w))(8.8.1)

for every v, w ∈ V . This is another type of polarization identity, which can also
be used to show that b is determined by the values of b(u, u), u ∈ V .

Let 〈·, ·〉V be an inner product on V , and let ‖ · ‖V be the corresponding
norm on V . Suppose that

|b(u, u)| ≤ C ‖u‖2V(8.8.2)

for some C ≥ 0 and every u ∈ V . If v, w ∈ V , then we get that

|b(v, w)| ≤ (C/4) (‖v + w‖2V + ‖v − w‖2V ) = (C/2) (‖v‖2V + ‖w‖2V ),(8.8.3)

using (8.8.1) in the first step, and the parallelogram law in the second step.
This implies that

|b(v, w)| ≤ C(8.8.4)
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when ‖v‖V , ‖w‖V ≤ 1. It follows that

|b(v, w)| ≤ C ‖v‖V ‖w‖V(8.8.5)

for every v, w ∈ V , by standard arguments. Of course, (8.8.5) implies (8.8.2).
This corresponds to the analogue of Theorem 3 on p33 of [88] in the real case.

Suppose now that V is a complex vector space, and that b is a sesquilinear
form on V . One can check that

b(v, w) = (1/4)

3∑
l=0

il b(v + il w, v + il w)(8.8.6)

for every v, w ∈ V . This is another polarization identity, which corresponds to
Exercise (1) on p45 of [8], and to Theorem 1 on p12 of [88]. This can be used
to show that b is determined by the values b(u, u), u ∈ V , as in Theorem 2 on
p13 of [88].

If b is Hermitian symmetric on V , then

b(u, u) ∈ R(8.8.7)

for every u ∈ V , as in Section 8.5. If (8.8.7) holds for every u ∈ V , then (8.8.6)
implies that

Re b(v, w) = (1/4) (b(v + w, v + w)− b(v − w, v − w))(8.8.8)

and
Im b(v, w) = (1/4) (b(v + i w, v + i w)− b(v − i w, v − i w))(8.8.9)

for every v, w ∈ V . This can be used to get that b is Hermitian symmetric on
V . Alternatively, if (8.8.7) holds, then b(v, w) and b(w, v) are sesquilinear forms
on V that agree when v = w, which implies that they agree for all v, w ∈ V ,
as in the preceding paragraph. This corresponds to the proof of Theorem 3 on
p13 of [88].

Let 〈·, 〉V be an inner product on V again, with corresponding norm ‖ · ‖V ,
and suppose that (8.8.2) holds for some C ≥ 0 and every u ∈ V . If b is Hermitian
symmetric on V , then we can use (8.8.8) to get that

|Re b(v, w)| ≤ (C/4) (‖v + w‖2V + ‖v − w‖2V )(8.8.10)

= (C/2) (‖v‖2V + ‖w‖2V )

for every v, w ∈ V . If ‖v‖V , ‖w‖V ≤ 1, then it follows that

|Re b(v, w)| ≤ C.(8.8.11)

If a is a complex number with |a| ≤ 1, then we get that

|Re(a b(v, w))| = |Re b(a v, w)| ≤ C(8.8.12)

when ‖v‖V , ‖w‖V ≤ 1. This implies that (8.8.4) holds. One can use this to get
(8.8.5), as before. This corresponds to Theorem 3 on p33 of [88].
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If b is not necessarily Hermitian symmetric on V , then we can still use (8.8.6)
to get that

|b(v, w)| ≤ (1/4)

3∑
l=0

|b(v + il w, v + il w)|(8.8.13)

for every v, w ∈ V . Thus (8.8.2) implies that

|b(v, w)| ≤ (C/4)

3∑
l=0

‖v + il w‖2V(8.8.14)

for every v, w ∈ V . The sum on the right is the same as

(‖v + w‖2V + ‖v − w‖2V ) + (‖v + i w‖2V + ‖v − i w‖2V ),(8.8.15)

which is equal to
4 ‖v‖2V + 4 ‖w‖2V ,(8.8.16)

by the parallelogram law. Combining this with (8.8.14), we get that

|b(v, w)| ≤ C (‖v‖2V + ‖w‖2V )(8.8.17)

for every v, w ∈ V .
It follows that

|b(v, w)| ≤ 2C(8.8.18)

when ‖v‖V , ‖w‖V ≤ 1. As before, one can use this and standard arguments to
get that

|b(v, w)| ≤ 2C ‖v‖V ‖w‖V(8.8.19)

for every v, w ∈ V . This corresponds to Theorem 2 on p33 of [88].

8.9 Bounded symmetric linear mappings

Let (V, 〈·, ·〉V ) be an inner product space over the real or complex numbers, with
the corresponding norm ‖ · ‖V . Also let T be a bounded linear mapping from V
into itself with respect to ‖ · ‖V that is symmetric with respect to 〈·, ·〉V , as in
Section 8.6. Thus

bT (v, w) = 〈T (v), w〉V(8.9.1)

is a bounded symmetric bilinear form on V in the real case, and a bounded
Hermitian symmetric sesquilinear form on V in the complex case.

Suppose that V 6= {0}, and consider

sup{|bT (u, u)| : u ∈ V, ‖u‖V = 1}.(8.9.2)

This is the same as the smallest nonnegative real number C such that (8.8.2)
holds, with b = bT . Similarly,

sup{|bT (v, w)| : v, w ∈ V, ‖v‖V = ‖w‖V = 1}(8.9.3)
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is the same as the smallest nonnegative real number C such that (8.8.5) holds,
with b = bT . Clearly (8.9.2) is less than or equal to (8.9.3), and in fact they are
equal to each other, as in the previous section.

We also have that (8.9.3) is equal to the operator norm of T on V . This is
very similar to a remark at the beginning of Section 3.5. It follows that (8.9.2)
is equal to ‖T‖op too. This corresponds to the second part of Theorem 2 on p41
of [88].

Put
α(T ) = inf{〈T (v), v〉V : v ∈ V, ‖v‖V = 1}(8.9.4)

and
β(T ) = sup{〈T (v), v〉V : v ∈ V, ‖v‖V = 1}.(8.9.5)

These are real numbers with α(T ) ≤ β(T ) and

max(−α(T ), β(T )) = sup{|〈T (v), v〉V | : v ∈ V, ‖v‖V = 1}.(8.9.6)

This means that
max(−α(T ), β(T )) = ‖T‖op,(8.9.7)

as in the previous paragraph.
Note that

α(−T ) = −β(T ), β(−T ) = −α(T ).(8.9.8)

If a ∈ R, then
α(a I + T ) = a+ α(T )(8.9.9)

and
β(a I + T ) = a+ β(T ),(8.9.10)

where I = IV is the identity mapping on V .

8.10 Nonnegative bilinear forms and operators

Let V be a vector space over the real numbers, and let b be a symmetric bilinear
form on V . If

b(v, v) ≥ 0(8.10.1)

for every v ∈ V , then b is said to be nonnegative on V . Under these conditions,
it is well known that

|b(v, w)| ≤ b(v, v)1/2 b(w,w)1/2(8.10.2)

for all v, w ∈ V , which is the analogue of the Cauchy–Schwarz inequality in this
case.

Similarly, let V be a vector space over the complex numbers, and let b be
a Hermitian symmetric sesquilinear form on V . Thus b(v, v) ∈ R for every
v ∈ V , as in Section 8.5. If (8.10.1) holds for every v ∈ V , then b is said to
be nonnegative on V . It is well known that (8.10.2) holds in this case too,
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which is another version of the Cauchy–Schwarz inequality. This corresponds
to Proposition 12.1 on p114 of [191].

To get (8.10.2) in the complex case, we start by observing that

0 ≤ b(v + aw, v + aw) = b(v, v) + 2 Re(a b(v, w)) + |a|2 b(w,w)(8.10.3)

for every v, w ∈ V and a ∈ C. This implies that

2 t |b(v, w)| ≤ b(v, v) + t2 b(w,w)(8.10.4)

for all nonnegative real numbers t, using a suitable choice of a with |a| = t.
This also works in the real case, with some simplifications. One can get (8.10.2)
from (8.10.4) in much the same way as when b is an inner product, except that
one should be a bit more careful about b(v, v) or b(w,w) being 0 even if v or w
is not zero, as appropriate.

Now let (V, 〈·, ·〉V ) be a real or complex inner product space, with the cor-
responding norm ‖ · ‖V . Also let T be a linear mapping from V into itself that
is symmetric with respect to 〈·, ·〉V , as in Section 8.6. If

〈T (v), v〉V ≥ 0(8.10.5)

for every v ∈ V , then T is said to be nonnegative with respect to 〈·, ·〉V on V .
Of course, this is the same as saying that

bT (v, w) = 〈T (v), w〉V(8.10.6)

is nonnegative as a symmetric bilinear form on V in the real case, or as a
Hermitian symmetric sesquilinear form on V in the complex case. In both
cases, we get that

|〈T (v), w〉V | ≤ 〈T (v), v〉1/2V 〈T (w), w〉1/2V(8.10.7)

for every v, w ∈ V , as in (8.10.2).
If T is any bounded linear mapping from V into itself with respect to ‖ · ‖V ,

then
|〈T (w), w〉V | ≤ ‖T (w)‖V ‖w‖V ≤ ‖T‖op ‖w‖2V(8.10.8)

for every w ∈ V . If T is symmetric and nonnegative on V as well, then

|〈T (v), w〉V | ≤ ‖T‖1/2op 〈T (v), v〉1/2 ‖w‖V(8.10.9)

for every v, w ∈ V , by (8.10.7). This implies that

‖T (v)‖V ≤ ‖T‖1/2op 〈T (v), v〉1/2V(8.10.10)

for every v ∈ V .
Suppose that

c0 ‖v‖V ≤ ‖T (v)‖V(8.10.11)
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for some c0 > 0 and every v ∈ V . If T is invertible on V , with bounded
inverse, then this holds with c0 = 1/‖T−1‖op. If T is bounded, symmetric, and
nonnegative on V too, then we can combine (8.10.10) and (8.10.11) to get that

c20 ‖v‖2V ≤ ‖T‖op 〈T (v), v〉V(8.10.12)

for every v ∈ V .
Suppose that V 6= {0}, and note that T is nonnegative on V exactly when

α(T ) ≥ 0,(8.10.13)

where the left side is as in (8.9.4). If T is invertible on V , with bounded inverse,
then

α(T ) > 0,(8.10.14)

by (8.10.12). This means that T does not have a bounded inverse on V when

α(T ) = 0.(8.10.15)

Suppose that V is a Hilbert space, and let (W, 〈·, ·〉W ) be another real or
complex Hilbert space, as appropriate, with associated norm ‖ · ‖W . Also let R
be a bounded linear mapping from V into W , so that the adjoint R∗ of R is a
bounded linear mapping from W into V , as in Section 3.5. Thus R∗ ◦ R is a
bounded linear mapping from V into itself, which is self-adjoint. If v ∈ V , then

〈(R∗ ◦R)(v), v〉V = 〈R(v), R(v)〉W = ‖R(v)‖2W ,(8.10.16)

so that R∗ ◦ R is nonnegative on V . Similarly, if V = W is an inner product
space, and R is a linear mapping from V into itself that is symmetric with
respect to 〈·, ·〉V , then R◦R is symmetric and nonnegative with respect to 〈·, ·〉.

8.11 Some remarks about normal operators

Let (V, 〈·, ·〉V ) be a Hilbert space over the real or complex numbers, with cor-
responding norm ‖ · ‖V . If a bounded linear mapping T from V into itself
commutes with its adjoint, then one may say that T is normal, as in Section
7.5. This terminology is perhaps most commonly used in the complex case, as
before.

If T is a bounded linear mapping from V into itself and v ∈ V , then

‖T (v)‖2V = 〈T (v), T (v)〉V = 〈T ∗(T (v)), v〉V(8.11.1)

and
‖T ∗(v)‖2V = 〈T ∗(v), T ∗(v)〉V = 〈T (T ∗(v)), v〉V .(8.11.2)

If T is normal, then it follows that

‖T (v)‖V = ‖T ∗(v)‖V .(8.11.3)
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In particular, this means that

kerT = kerT ∗,(8.11.4)

as in part (b) of Theorem 12.12 on p298 of [162]. Thus T is injective if and only
if T ∗ is injective under these conditions.

Conversely, if (8.11.3) holds for every v ∈ V , then

〈T ∗(T (v)), v〉V = 〈T (T ∗(v)), v〉V(8.11.5)

for every v ∈ V . This implies that

〈T ∗(T (v)), w〉V = 〈T (T ∗(v)), w〉V(8.11.6)

for every v, w ∈ V , using polarization identities, as in Sections 8.5 or 8.8. More
precisely, in the real case, this also uses the fact that T ∗ ◦ T and T ◦ T ∗ are
self-adjoint on V , to get that both sides of (8.11.6) are symmetric bilinear forms
on V . It is easy to see that T and T ∗ commute on V , using (8.11.6). This
corresponds to Theorem 1 on p42 of [88], and to part (a) of Theorem 12.12 on
p298 of [162].

If T is any bounded linear mapping from V into itself, then one can check
that

kerT ∗ = T (V )⊥(8.11.7)

as in Theorem 12.10 on p298 of [162]. If T is normal, then we get that

kerT = T (V )⊥,(8.11.8)

because of (8.11.4).
Suppose that T is a bounded linear mapping from V into itself such that

c ‖v‖V ≤ ‖T (v)‖V(8.11.9)

for some c > 0 and all v ∈ V . This implies that T (V ) is a closed set in V ,
because V is complete with respect to the metric associated to ‖ · ‖V , as in
Section 7.11. If T is normal, then we also have that T (V ) is dense in V , because
of (8.11.8). This means that T is a one-to-one linear mapping from V onto itself
wtih bounded inverse in this case.

Suppose now that V is complex, and that T is a bounded self-adjoint linear
mapping from V into itself. Also let λ ∈ C be given, and observe that

(λ I − T )∗ = λ I − T ∗ = λ I − T,(8.11.10)

where I = IV is the identity mapping on V , as usual. In particular, λ I − T is
normal on V .

If v ∈ V , then

〈(λ I − T )(v), v〉V = λ 〈v, v〉V − 〈T (v), v〉V = λ ‖v‖2V − 〈T (v), v〉V .(8.11.11)
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Note that
〈T (v), v〉V ∈ R,(8.11.12)

because T is self-adjoint on V . This implies that

Im〈(λ I − T )(v), v〉V = (Imλ) ‖v‖2V .(8.11.13)

It follows that
| Imλ| ‖v‖2V ≤ ‖(λ I − T )(v)‖V ‖v‖V ,(8.11.14)

by the Cauchy–Schwarz inequality. This means that

| Imλ| ‖v‖V ≤ ‖(λ I − T )(v)‖V ,(8.11.15)

which is trivial when v = 0.
If Imλ 6= 0, then we get that λ I − T is a one-to-one linear mapping from

V onto itself with bounded inverse, as before. This shows that the spectrum
of T is contained in the real line, with respect to the algebra of bounded linear
mappings from V into itself. This corresponds to Theorem 1 on p54 of [88].

8.12 Positivity and invertibility

Let (V, 〈·, ·〉V ) be a Hilbert space over the real or complex numbers, with corre-
sponding norm ‖ · ‖V , and let T be a bounded self-adjoint linear mapping from
V into itself. Suppose for the moment that there is a positive real number c
such that

c ‖v‖2V ≤ 〈T (v), v〉V(8.12.1)

for every v ∈ V . This implies that

c ‖v‖2V ≤ ‖T (v)‖V ‖v‖V(8.12.2)

for every v ∈ V , by the Cauchy–Schwarz inequality. It follows that T is a one-
to-one mapping from V onto itself, with bounded inverse, as in the previous
section.

Suppose from now on in this section that V 6= {0}, and let α(T ) be as in
Section 8.9. If

α(T ) > 0,(8.12.3)

then T has a bounded inverse on V , as in the preceding paragraph.
Suppose for the moment again that T is nonnegative on V , and let a be a

positive real number. Thus a I + T is self-adjoint on V , and

α(a I + T ) = a+ α(T ) ≥ a > 0.(8.12.4)

This implies that a I +T is a one-to-one linear mapping from V onto itself with
bounded inverse, as before. It follows that the spectrum of T is contained in
the set of nonnegative real numbers. This uses the fact that the spectrum of T
is contained in the real line in the complex case, as in the previous section.
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Let T be any bounded self-adjoint linear mapping from V into itself again.
If λ is a real number such that

λ < α(T ),(8.12.5)

then

α(T − λ I) = α(T )− λ > 0,(8.12.6)

so that T − λ I has a bounded inverse on V . Of course, this is the same as
saying that λ I − T has a bounded inverse on V .

Similarly, suppose that λ ∈ R satisfies

λ > β(T ),(8.12.7)

where β(T ) is as in Section 8.9. This implies that

α(λ I − T ) = λ− β(T ) > 0,(8.12.8)

so that λ I − T has a bounded inverse on V .
Let σ(T ) = σBL(V )(T ) be the spectrum of T with respect to the algebra

of bounded linear mappings from V into itself, as in Section 6.8. Using the
remarks in the previous two paragraphs, we get that

σ(T ) ⊆ [α(T ), β(T )].(8.12.9)

This also uses the fact that σ(T ) ⊆ R in the complex case, as before.
Observe that

α(T − α(T ) I) = α(T )− α(T ) = 0,(8.12.10)

so that T − α(T ) I does not have a bounded inverse on V , as in Section 8.10.
Equivalently, this means that α(T ) I − T does not have a bounded inverse on
V , so that

α(T ) ∈ σ(T ).(8.12.11)

Similarly,

α(β(T ) I − T ) = β(T )− β(T ) = 0,(8.12.12)

so that β(T ) I − T does not have a bounded inverse on V , and thus

β(T ) ∈ σ(T ).(8.12.13)

In particular, we get that

max{|λ| : λ ∈ σ(T )} = max(−α(T ), β(T )).(8.12.14)

This implies that

max{|λ| : λ ∈ σ(T )} = ‖T‖op,(8.12.15)

as in Section 8.9. This corresponds to Theorem 2 on p55 of [88].
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8.13 Polynomials and associative algebras

Let A be an associative algebra over the real or complex numbers with a nonzero
multiplicative identity element eA. Suppose that

p(t) =

n∑
j=0

cj t
j(8.13.1)

is a polynomial in a single variable with real or complex coefficients, as appro-
priate. If x ∈ A, then

p̃(x) =

n∑
j=0

cj x
j(8.13.2)

defines an element of A, where x0 is interpreted as being equal to eA, as usual.
This element is often simply denoted p(x), but it is sometimes helpful to use
different notation, as on p243 of [162].

The space of all such polynomials p is a commutative associative algebra
over the real or complex numbers, as appropriate, with respect to the usual
definition of multiplication. It is easy to see that

p 7→ p̃(x)(8.13.3)

defines a homomorphism from this algebra into A.
Let us check that

p(σA(x)) ⊆ σA(p̃(x)),(8.13.4)

where σA(y) is the spectrum of y ∈ A, as in Section 6.8. This is at least part of
a version of the spectral mapping theorem. Let λ ∈ σA(x) be given, and let us
verify that

p(λ) ∈ σA(p̃(x)).(8.13.5)

It is well known and not difficult to show that

p(t)− p(λ) = (t− λ) q(t)(8.13.6)

for some polynomial q(t) with real or complex coefficients, as appropriate. This
implies that

p̃(x)− p(λ) eA = (x− λ eA) q̃(x).(8.13.7)

Note that x−λ eA and q̃(x) commute with each other. If the left side of (8.13.7)
is invertible in A, then each of the factors on the right side is invertible as well,
as in Section 6.13. In particular, if x−λ eA is not invertible, then p̃(x)−p(λ) eA
is not invertible.

We would like to have that

σA(p̃(x)) ⊆ p(σA(x))(8.13.8)

under suitable conditions, which would imply that

p(σA(x)) = σA(p̃(x)).(8.13.9)
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If p is a constant, then (8.13.8) holds when σA(x) 6= ∅. In particular, this works
when A is a complex Banach algebra, as in Section 6.8.

Suppose now that p is not a constant. Let µ ∈ C be given, and observe that

p(t)− µ = c

n∏
j=1

(t− λj)(8.13.10)

for some complex numbers c and λ1, . . . , λn, with c 6= 0, by the fundamental
theorem of algebra. Suppose that A is complex, so that

p̃(x)− µ eA = c

n∏
j=1

(x− λj eA).(8.13.11)

If µ ∈ σA(p̃(x)), then it follows that λj ∈ σA(x) for some j. This means that
µ = p(λj) is an element of p(σA(x)).

Suppose that A is real, so that p(t) has real coefficients, and let µ ∈ R be
given. In this case,

p(t)− µ = c

r∏
j=1

(t− λj)

m∏
l=1

((t− al)
2 + b2l )(8.13.12)

for some real numbers c, λ1, . . . , λl, a1, . . . , am, and b1, . . . , bm, with b1, . . . , bm
and c not equal to 0. This is the same as (8.13.10), with n = r+ 2m, arranged
so that the previous λj ’s in R are listed first, and the remaining λj ’s are of the
form al ± bl i. Thus

p̃(x)− µ eA = c

r∏
j=1

(x− λj eA)

m∏
l=1

((x− al eA)
2 + b2l eA).(8.13.13)

Suppose that

(x− a eA)
2 + b2 eA(8.13.14)

is invertible in A for all a, b ∈ R with b 6= 0. If µ ∈ σA(p̃(x)), then we get that
λj ∈ σA(x) for some j. This implies that µ = p(λj) ∈ p(σA(x)), as before.

Let (V, 〈·, ·〉V ) be a real Hilbert space, with associated norm ‖ · ‖V , and with
V 6= {0}. If A = B(V ) and x ∈ BL(V ) is self-adjoint, then σA(x) 6= ∅, and
(8.13.14) is invertible in A for all a, b ∈ R with b 6= 0, as in the previous section.
This means that (8.13.9) holds for all polynomials p with real coefficients, as
before.

IfA is a complex Banach algebra and x ∈ A, then one can define f̃(x) ∈ A for
complex-valued holomorphic functions f defined on open subsets of the complex
plane that contain σA(x). This is discussed in Section 1.12 of [8], and beginning
on p240 of [162]. Part (b) of Theorem 10.28 on p244 of [162] is the spectral
mapping theorem for functions of this type.
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8.14 Polynomials of self-adjoint operators

Let (V, 〈·, ·〉V ) be a real or complex Hilbert space, with associated norm ‖ · ‖V ,
and with V 6= {0}. Also let T be a bounded self-adjoint linear mapping from V
into itself, and let p be a polynomial in a single variable with real coefficients.
Thus p̃(T ) may be defined as a bounded linear mapping from V into itself as in
the previous section, and it is easy to see that p̃(T ) is self-adjoint as well. As in
(8.13.9), we have that

σ(p̃(T )) = p(σ(T )),(8.14.1)

where σ(·) = σBL(V )(·) is the spectrum with respect to the algebra of bounded
linear mappings from V into itself.

Remember that

‖p̃(T )‖op = max{|µ| : µ ∈ σ(p̃(T ))},(8.14.2)

as in (8.12.15). This means that

‖p̃(T )‖op = max{|µ| : µ ∈ p(σ(T ))},(8.14.3)

because of (8.14.1). Of course, this is the same as saying that

‖p̃(T )‖op = max{|p(λ)| : λ ∈ σ(T )}.(8.14.4)

This corresponds to Theorem 3 on p55 of [88].
Let C(σ(T ),R) be the space of continuous real-valued functions on σ(T ),

with respect to the restriction of the standard Euclidean metric on R to σ(T ).
If f ∈ C(σ(T ),R), then the supremum norm of f may be denoted ‖f‖sup, as
usual, or ‖f‖sup,σ(T ), to indicate the role of σ(T ). We would like to define a
mapping

f 7→ f̃(T )(8.14.5)

from C(σ(T ),R) into BL(V ) that agrees with the previous definition of f̃(T )
when f is the restriction to σ(T ) of a polynomial with real coefficients, and with
other nice properties.

Remember that BL(V ) is an associative algebra over the real or complex
numbers, depending on whether V is real or complex. We may consider BL(V )
as an associative algebra over the real numbers in both cases. The mapping
(8.14.5) is a homomorphism from C(σ(T ),R) into BL(V ), as associative alge-
bras overR, and an isometry with respect to the supremum norm on C(σ(T ),R)
and the operator norm on BL(V ).

The continuous real-valued functions on σ(T ) obtained from restrictions of
polynomials with real coefficients to σ(T ) form a subalgebra of C(σ(T ),R). This
subalgebra is dense in C(σ(T ),R) with respect to the supremum metric, by the
Stone–Weierstrass theorem. More precisely, it is well known that a continuous
real-valued function on a closed set in R can be extended to a continuous func-
tion on R. One could use this to reduce to Weierstrass’ approximation theorem
for continuous functions on a closed interval in R.
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This leads to a unique bounded linear mapping from C(σ(T ),R) into BL(V ),
as a Banach space over the real numbers, as in Section 2.2. This extension will
be expressed as in (8.14.5), to be compatible with the previous notation for
polynomials. One can check that this extension is an algebra homomorphism,
because of the analogous property for polynomials. Similarly, this extension is
an isometry, because of (8.14.4).

Note that
f̃(T ) is self-adjoint(8.14.6)

for every f ∈ C(σ(T ),R), because of the analogous property of polynomials. If

f(λ) 6= 0(8.14.7)

for each λ ∈ σ(T ), then g = 1/f is a continuous real-valued function on σ(T )
too. This implies that

f̃(T ) is invertible in BL(V ),(8.14.8)

with inverse equal to g̃(T ).

8.15 Some functions on associative algebras

Let A be an associative algebra over the real or complex numbers with a nonzero
multiplicative identity element eA. If a ∈ A and p is a polynomial in a single
variable with real or complex coefficients, as appropriate, then p̃(a) may be
defined as an element of A as in Section 8.13. We have also seen some other
situations in which it may be reasonable to define p̃(a) for other real or complex-
valued functions p defined on or around σA(a). We would like to consider some
other aspects of this in this section.

If p̃(a) ∈ A can be defined for some suitable functions p, then a related
question is whether p̃(a) depends only on the restriction of p to σA(a). To put
it another way, if

p = 0 on σA(a),(8.15.1)

then do we have that
p̃(a) = 0?(8.15.2)

If a is a nilpotent element of A, for instance, then it is easy to see that

σA(a) = {0},(8.15.3)

using a remark in Section 6.13. If p is a polynomial with real or complex
coefficients, then (8.15.1) is the same as saying that p(0) = 0 in this case. If
p(t) = t, then p̃(a) = a, so that (8.15.2) would mean that a = 0.

Let X be a nonempty set, and suppose for the moment that A is the algebra
of all real or complex-valued functions on X. If a ∈ A, then

σA(a) = a(X),(8.15.4)
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as mentioned in Section 6.8. If p is a real or complex-valued function on a(X),
as appropriate, then

p̃(a) = p ◦ a(8.15.5)

defines another real or complex-valued function on X. Note that this agrees
with the definition of p̃(a) in Section 8.13 when p is a polynomial.

If A is the algebra of bounded real or complex-valued functions on X and
a ∈ A, then σA(a) is the closure a(X) of a(X) in R or C, as appropriate, as
in Section 6.8. If p is a bounded real or complex-valued function on a(X), then
(8.15.5) defines a bounded real or complex-valued function on X, as appropriate.

If X is a metric space or a topological space, A is the algebra of continuous
real or complex-valued functions on X, and a ∈ A, then (8.15.4) holds again. If
p is a continuous real or complex-valued function on a(X), with respect to the
restriction of the standard Euclidean metric on R or C, then (8.15.5) defines a
continuous real or complex-valued function on X, as appropriate.

Similarly, if A is an algebra of functions on some space with some additional
properties, then one may need additional properties of p to get that (8.15.5) is
an element of A.

Let V be a vector space over the real or complex numbers, and let T be a
linear mapping from V into itself. In some cases, we may be able to define p̃(T )
for suitable functions p on or around the spectrum of T . Some basic examples
of this are given by multiplication operators on various spaces of functions.

If A is a Banach algebra and p is defined by a power series, then p̃(a) can
be defined for suitable a ∈ A, as in Section 9.14.



Chapter 9

Algebras, operators, and
power series

9.1 Eigenvalues and eigenvectors

Let V be a vector space over the real or complex numbers, and let T be a linear
mapping from V into itself. As usual, v ∈ V is said to be an eigenvector of T
with eigenvalue λ ∈ R or C, as appropriate, when

T (v) = λ v.(9.1.1)

However, λ ∈ R orC, as appropriate, is normally considered to be an eigenvalue
of T only when it is the eigenvalue associated to a nonzero eigenvector of T .

The set σp(T ) of all eigenvalues of T in this sense is called the point spectrum
of T . Equivalently, this is the set of λ ∈ R or C, as appropriate, such that

ker(λ I − T ) 6= {0}.(9.1.2)

Note that
σp(T ) ⊆ σL(V )(T ),(9.1.3)

where σL(V )(T ) is the spectrum of T with respect to the algebra L(V ) of all
linear mappings from V into itself. If V has finite dimension, then

σp(T ) = σL(V )(T ).(9.1.4)

Let q be a polynomial in a single variable with real or complex coefficients,
as appropriate. If v ∈ V is an eigenvector of T with eigenvalue λ, then

(q̃(T ))(v) = q(λ) v.(9.1.5)

This implies that
q(λ) ∈ σp(q̃(T ))(9.1.6)

197
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when v 6= 0, so that

q(σp(T )) ⊆ σp(q̃(T )).(9.1.7)

If q is not a constant, then we would like to have that

σp(q̃(T )) ⊆ q(σp(T ))(9.1.8)

under suitable conditions. In the complex case, this can be obtained from the
same type of argument as in Section 8.13.

More precisely, if µ ∈ C, then one can use the fundamental theorem of
algebra to express q(t) − µ as the product of a nonzero complex number and
finitely many linear factors t− λj . If

µ ∈ σp(q̃(T )),(9.1.9)

then q̃(T ) − µ I is not injective on V . This would imply that one of the corre-
sponding factors T − λj I of q̃(T ) − µ I is not injective. This means that λj is
an eigenvalue of T for some j. It follows that

µ ∈ q(σp(T )),(9.1.10)

because q(λj) = µ for each j, by construction.
In the real case, one can use the same type of argument as before as well.

This works when

(T − a I)2 + b2 I(9.1.11)

is injective on V for all a, b ∈ R with b 6= 0. This condition holds when (V, 〈·, ·〉V )
is a real inner product space, and T is symmetric with respect to 〈·, ·〉V .

Let (V, 〈·, ·〉V ) be a complex inner product space with corresponding norm
‖ · ‖V , and suppose that T is symmetric with respect to 〈·, ·〉V . If v ∈ V is an
eigenvector of T with eigenvalue λ ∈ C, then

λ ‖v‖2V = 〈T (v), v〉V = 〈v, T (v)〉V = λ ‖v‖2V .(9.1.12)

This implies that λ ∈ R when v 6= 0.

9.2 Eigenvalues of bounded linear mappings

Let V be a real or complex vector space with a norm ‖ · ‖V , let T be a bounded
linear mapping from V into itself, and let σBL(V )(T ) be the spectrum of T with
respect to the algebra BL(V ) of all bounded linear mappings from V into itself.
Note that

σL(V )(T ) ⊆ σBL(V )(T ),(9.2.1)

because BL(V ) ⊆ L(V ), as in Section 7.3. In particular,

σp(T ) ⊆ σBL(V )(T ).(9.2.2)
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It is easy to see that

|λ| ≤ ‖T‖op when λ ∈ σp(T ).(9.2.3)

More precisely, if λ ∈ σp(T ), then λl ∈ σp(T
l) for every positive integer l, so

that
|λ|l = |λl| ≤ ‖T l‖op.(9.2.4)

Equivalently, |λ| ≤ ‖T l‖1/lop , so that

|λ| ≤ rBL(V )(T ),(9.2.5)

where rBL(V )(T ) is as in Section 6.13.
If V is a Banach space, then

σBL(V )(T ) = σL(V )(T ),(9.2.6)

by the open mapping theorem. In this case, BL(V ) is a Banach algebra with
respect to the operator norm, and |λ| ≤ rBL(V )(T ) for every λ ∈ σBL(V )(T ), as
in Section 6.13.

Suppose for the moment that V is a complex Banach space, and that T is
bounded on V . If q is a complex-valued holomorphic function defined on an
open subset U of C such that

σBL(V )(T ) ⊆ U,(9.2.7)

then q̃(T ) may be defined as a bounded linear mapping from V into itself, as
mentioned in Section 8.13. The analogues of (9.1.5) and (9.1.7) in this case are
given in parts (a) and (b) of Theorem 10.33 on p247 of [162].

Part (d) of that theorem says that (9.1.8) holds when q is not constant on any
connected component of U . More precisely, part (c) of that theorem says that
if (9.1.9) holds and q is not identically equal to µ on any connected component
of U , then (9.1.10) holds.

Let (V, 〈·, ·〉V ) be a real or complex Hilbert space, and let T be a bounded
linear mapping from V into itself which is normal, in the sense that T commutes
with T ∗. In the real case, we have that

ker(T − λ I) = ker(T ∗ − λ I)(9.2.8)

for every λ ∈ R, as in Section 8.11. This means that T and T ∗ have the same
eigenvalues, and with the same eigenvectors. Similarly, in the complex case, if
λ ∈ C, then

ker(T − λ I) = ker(T ∗ − λ I).(9.2.9)

It follows that λ is an eigenvalue of T if and only if λ is an eigenvaue of T ∗,
with the same eigenvectors.

Suppose now that T is self-adjoint, and let f be a continuous real-valued
function on the spectrum σBL(V )(T ) of T with respect to BL(V ). If v ∈ V is an
eigenvector of T with eigenvalue λ, then

(f̃(T ))(v) = f(λ) v.(9.2.10)
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This can be obtained from the analogous statement for polynomials, by approx-
imating f by polynomials uniformly on σBL(V )(T ). This implies that

f(σp(T )) ⊆ σp(f̃(T )),(9.2.11)

as before.

9.3 Approximate eigenvalues

Let V , W , and Z be vector spaces, all real or all complex, and with norms ‖·‖V ,
‖ · ‖W , and ‖ · ‖Z , respectively. Also let T1 be a linear mapping from V into W ,
and let T2 be a linear mapping from W into Z. Suppose that there are positive
real numbers c1, c2 such that

‖T1(v)‖W ≥ c1 ‖v‖V(9.3.1)

for every v ∈ V , and
‖T2(w)‖Z ≥ c2 ‖w‖W(9.3.2)

for every w ∈W . Under these conditions, we get that

‖(T2 ◦ T1)(v)‖Z = ‖T2(T1(v))‖Z ≥ c2 ‖T1(v)‖W ≥ c1 c2 ‖v‖V(9.3.3)

for every v ∈ V .
Suppose that V 6= {0}, and let T be a bounded linear mapping from V into

itself. Also let λ be a real or complex number, as appropriate. If T − λ I has a
bounded inverse on V , then

‖(T − λ I)(v)‖V ≥ c ‖v‖V(9.3.4)

for some c > 0 and all v ∈ V , as in Section 7.11.
If there is no c > 0 such that (9.3.4) holds, then λ is said to be an approximate

eigenvalue of T on V , as on p51 of [88]. Equivalently, this means that there is
a sequence {vj}∞j=1 of elements of V such that

‖vj‖V = 1 for each j(9.3.5)

and
‖(T − λ I)(vj)‖V = ‖T (vj)− λ vj‖V → 0 as j → ∞.(9.3.6)

Of course, if λ is an eigenvalue of T , then λ is an approximate eigenvalue of T .
The set of approximate eigenvalues of T is known as the approximate point

spectrum of T , and may be denoted σap(T ). Thus

σp(T ) ⊆ σap(T ) ⊆ σBL(V )(T ).(9.3.7)

One can check that

|λ| ≤ ‖T‖op when λ ∈ σap(T ).(9.3.8)
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Alternatively, if |λ| > ‖T‖op, then (9.3.4) holds with

c = |λ| − ‖T‖op,(9.3.9)

as in Section 7.11.
The set of λ ∈ R or C, as appropriate, such that (9.3.4) holds for some c > 0

is an open set, as in Section 7.11. Equivalently,

σap(T ) is a closed set(9.3.10)

in R or C, as appropriate, with respect to the standard Euclidean metric.
Suppose that λ ∈ σap(T ), and let {vj}∞j=1 be a sequence of elements of V

that satisfies (9.3.5) and (9.3.6). If l is a positive integer, then one can verify
that

‖T l(vj)− λl vj‖V → 0 as j → ∞.(9.3.11)

This means that
λl ∈ σap(T

l).(9.3.12)

It follows that |λ|l = |λl| ≤ ‖T l‖op, as in (9.3.8). This implies that

|λ| ≤ rBL(V )(T ),(9.3.13)

where rBL(V )(T ) is as in Section 6.13.

9.4 More on approximate eigenvalues

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If q is a polynomial in a single variable with real or complex coefficients,
as appropriate, then we get that

‖(q̃(T ))(vj)− q(λ) vj‖V → 0 as j → ∞.(9.4.1)

This implies that
q(λ) ∈ σap(q̃(T )),(9.4.2)

so that
q(σap(T )) ⊆ σap(q̃(T )).(9.4.3)

If q is not constant, then we would like to get that

σap(q̃(T )) ⊆ q(σap(T ))(9.4.4)

under suitable conditions. In the complex case, we can use the same type of
argument as in Sections 8.13 and 9.1, as follows.

Let µ ∈ C be given, and remember that q(t) − µ can be factored into the
product of a nonzero complex number and finitely many linear factors t − λj ,
by the fundametal theorem of algebra. If each of the factors T − λj I satisfies a
condition like (9.3.4), then q̃(T )− µ I satisfies the same type of condition. This
uses the remark about compositions at the beginning of the previous section.
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If

µ ∈ σap(q̃(T )),(9.4.5)

then at least one of the factors T −λj I does not satisfy a condition like (9.3.4).
This implies that λj is an approximate eigenvalue of T for some j. This means
that

µ ∈ q(σap(T )),(9.4.6)

because q(λj) = µ for each j.
In the real case, suppose that for every a, b ∈ R with b 6= 0 there is a positive

real number ca,b such that

‖((T − a I)2 + b2 I)(v)‖V ≥ ca,b ‖v‖V(9.4.7)

for all v ∈ V . This permits one to use the same type of argument as in Sections
8.13 and 9.1 again. If (V, 〈·, ·〉V ) is a real inner product space, and T is symmetric
with respect to 〈·, ·〉V , then (9.4.7) holds with ca,b = b2.

Suppose for the moment that V is a complex Banach space, and that q is a
holomorphic function defined on an open subset U of C with

σBL(V )(T ) ⊆ U.(9.4.8)

Thus q̃(T ) may be defined as a bounded linear mapping from V into itself, as
mentioned in Sections 8.13 and 9.2. One can check that (9.4.1) and (9.4.3) hold
in this case, using essentially the same argument as in the proofs of parts (a)
and (b) of Theorem 10.33 on p247 of [162].

Similarly, if (9.4.5) holds and q is not identically equal to µ on any connected
component of U , then one can verify that (9.4.6) holds, using essentially the
same argument as in the proof of part (c) of that theorem. If q is not constant
on any connected component of U , then it follows that (9.4.4) holds, as in part
(d) of that theorem.

9.5 Inner products and σap(T )

Let us continue with the same notation and hypotheses as in the previous two
sections. Suppose now that (V, 〈·, ·〉V ) is a real or complex inner product space
with corresponding norm ‖ · ‖V . If λ ∈ σap(T ), and {vj}∞j=1 is a sequence of
elements of V that satisfies (9.3.5) and (9.3.4), then

lim
j→∞

〈T (vj), vj〉V = λ.(9.5.1)

In the complex case, we also have that

lim
j→∞

〈vj , T (vj)〉V = λ.(9.5.2)

If T is symmetric with respect to 〈·, ·〉V , then it follows that λ ∈ R.
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Alternatively, in the complex case, if T is symmetric with respect to 〈·, ·〉V ,
then

‖(T − λ I)(v)‖V ≥ | Imλ| ‖v‖V(9.5.3)

for every λ ∈ C and v ∈ V , as in Section 8.11. If Im λ 6= 0, then it follows that
λ 6∈ σap(T ).

Suppose that V is a real or complex Hilbert space, and that T is normal,
in the sense that T commutes with T ∗. Of course, this implies that T − λ I is
normal too. This implies that

‖(T − λ I)(v)‖V = ‖(T − λ I)∗(v)‖V(9.5.4)

for every v ∈ V , as in Section 8.11. Thus (9.3.4) holds for some c > 0 if and
only if (T − λ I)∗ has the analogous property. Similarly, (9.3.6) holds for some
sequence {vj}∞j=1 of elements of V if and only if

‖(T − λ I)∗(vj)‖V → 0 as j → ∞.(9.5.5)

In particular, this means that λ is an approximate eigenvalue of T if and
only if λ is an approximate eigenvalue of T ∗ in the real case, and if and only if
λ is an approximate eigenvalue of T ∗ in the complex case. In both cases, one
can use the same sequence {vj}∞j=1 for T and T ∗.

If T is normal, so that T − λ I is normal as well, then (9.3.4) implies that
T − λ I has a bounded inverse on V , as in Section 8.11. This means that

σap(T ) = σBL(V )(T )(9.5.6)

in this case, as in Theorem 2 on p51 of [88].
Suppose that T is self-adjoint on V , and let f be a continuous real-valued

function on σB(V )(T ). Suppose also that λ ∈ σap(T ), and let {vj}∞j=1 be a se-
quence of elements of V that satisfies (9.3.5) and (9.3.6). Under these conditions,
one can verify that

‖(f̃(T ))(vj)− f(λ) vj‖V → 0 as j → ∞,(9.5.7)

by approximating f uniformly on σBL(V )(T ) by polynomials with real coeffi-
cients, and using the analogous statement (9.4.1) for such polynomials. This

means that f(λ) is an approximate eigenvalue of f̃(T ). It follows that

f(σBL(V )(T )) ⊆ σBL(V )(f̃(T )),(9.5.8)

because of (9.5.6).

Remember that f̃(T ) is invertible in BL(V ) when f 6= 0 at every point in

σBL(V )(T ), as in Section 8.14. Similarly, f̃(T )−λ I is invertible in BL(V ) when
f 6= λ at every point in σBL(V )(T ). This implies that

σBL(V )(f̃(T )) ⊆ f(σBL(V )(T )).(9.5.9)

This means that
f(σBL(V )(T )) = σBL(V )(f̃(T )),(9.5.10)

because of (9.5.8).
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9.6 Invertibility and dual linear mappings

Let V ,W be vector spaces, both real or both complex, and remember that V alg,
W alg are the algebraic dual spaces of V , W , respectively, as in Section 3.1. If T
is a linear mapping from V into W , then T alg is the corresponding dual linear
mapping from W alg into V alg, as in Section 3.13. If T is a one-to-one linear
mapping from V onto W , then it is easy to see that T alg is a one-to-one linear
mapping from W alg onto V alg, with

(T alg)−1 = (T−1)alg.(9.6.1)

More precisely, T−1 is a linear mapping from W onto V , and the corresponding
dual linear mapping (T−1)alg maps V alg onto W alg.

If T is any linear mapping from V into W , then

kerT alg = {λ ∈W alg : T (V ) ⊆ kerλ}.(9.6.2)

This implies that ker T alg = {0} if and only if T (V ) =W . If T alg is a one-to-one
mapping from V alg onto W alg, then we would like to check that T is a one-to-
one mapping from V onto W . It suffices to verify that T is injective, because
the previous statement implies that T is surjective.

Let (T alg)alg be the dual linear mapping from (V alg)alg into (W alg)alg asso-
ciated to T alg, as in Section 3.15. Remember that there are natural one-to-one
linear mappings from V , W into (V alg)alg, (W alg)alg, respectively, as in Sec-
tion 3.14. We have also seen that (T alg)alg corresponds to T , using these linear
mappings. If (T alg)alg is injective, then it follows that T is injective. If T alg is
invertible, then (T alg)alg is invertible, as before, which implies in particular that
(T alg)alg is injective.

Suppose now that ‖·‖V , ‖·‖W are norms on V , W , respectively, and remem-
ber that V ′, W ′ are the corresponding dual spaces of bounded linear functionals
on V , W , respectively, with their associated dual norms, as in Section 3.1. If
T is a bounded linear mapping from V into W , then T ′ is the corresponding
dual linear mapping from W ′ into V ′, which is a bounded linear mapping with
the same operator norm as T , as in Section 3.13. If T is a one-to-one bounded
linear mapping from V onto W with bounded inverse, then T ′ is a one-to-one
bounded linear mapping from W ′ onto V ′ with bounded inverse, and

(T ′)−1 = (T−1)′.(9.6.3)

As before, T−1 is a bounded linear mapping from W onto V , and (T−1)′ maps
V ′ onto W ′.

If T is any bounded linear mapping from V into W , then

kerT ′ = {λ ∈W ′ : T (V ) ⊆ kerλ}.(9.6.4)

Thus

kerT ′ = {0}(9.6.5)
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when
T (V ) is dense in W,(9.6.6)

with respect to the metric associated to ‖ · ‖W . Conversely, one can check
that (9.6.5) implies (9.6.6), using the Hahn–Banach theorem. More precisely, if
T (V ) is not dense in W , then the closure T (V ) of T (V ) in W is a closed linear
subspace ofW . Under these conditions, the Hahn–Banach theorem implies that
there is a nonzero element λ of W ′ that is in the kernel of T ′.

Remember that V ′, W ′ are Banach spaces with respect to the appropriate
dual norms, as in Sections 2.2 and 3.1. If T ′ is a one-to-one linear mapping from
W ′ onto V ′, then the inverse of T ′ is a bounded linear mapping from V ′ onto
W ′, by the open mapping theorem, as in Section 7.13. In this case, we would
like to check that

c ‖v‖V ≤ ‖T (v)‖W(9.6.7)

for some c > 0 and all v ∈ V .
Let T ′′ be the dual linear mapping from V ′′ into W ′′ associated to T ′, as

in Section 3.15 again. This is a one-to-one bounded linear mapping from V ′′

onto W ′′ with bounded inverse, because of the corresponding properties of T ′,
as before. In particular, there is a positive real number c such that

c ‖L‖V ′′ ≤ ‖T ′′(L)‖W ′′(9.6.8)

for every L ∈ V ′′, as in Section 7.11. Remember that the natural mappings
from V , W into V ′′, W ′′ are isometries, as in Section 3.14. One can use this
to get (9.6.7) from (9.6.8), because T ′′ corresponds to T with respect to these
embeddings, as in Section 3.15.

If V is a Banach space, then (9.6.7) implies that T (V ) is a closed set inW , as
in Section 7.11. If T ′ is one-to-one on W ′, then T (V ) is dense in W , as before,
and we get that T (V ) = W . If T ′ is a one-to-one bounded linear mapping
from W ′ onto V ′ with bounded inverse, then it follows that T is a one-to-one
bounded linear mapping from V onto W with bounded inverse, when V is a
Banach space.

9.7 Subadditivity of rA(x)

Let A be an associative algebra over the real or complex numbers with a sub-
multiplicative norm ‖ · ‖A. If x ∈ A, then

rA(x) = inf
l≥1

‖xl‖1/lA = lim
j→∞

‖xj‖1/jA ,(9.7.1)

as in Sections 6.13, 6.14, and 7.2. If x, y ∈ A commute with each other, then
we would like to show that

rA(x+ y) ≤ rA(x) + rA(y).(9.7.2)

This corresponds to part of Exercise 12 on p289 of [162] when A is a com-
plex Banach algebra. One can reduce to the case where A is commutative, by
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considering the closed subalgebra generated by x, y. This permits one to use a
characterization of rA(x) in terms of complex homomorphisms on A.

Let us consider a more direct approach here. Let Rx, Ry be positive real
numbers such that

rA(x) < Rx, rA(y) < Ry.(9.7.3)

It suffices to show that
rA(x+ y) ≤ Rx +Ry.(9.7.4)

Let n be a positive integer, and observe that

(x+ y)n =

n∑
j=0

(
n

j

)
xj yn−j ,(9.7.5)

by the binomial theorem. Using (9.7.3), we get that there are positive integers
Lx, Ly such that

‖xl‖A < Rl
x(9.7.6)

when l ≥ Lx, and
‖yl‖A < Rl

y(9.7.7)

when l ≥ Ly. We shall only be concerned with large n, and in particular we
may as well take n to be larger than Lx + Ly. Put

Σ1(n) =

Lx−1∑
j=0

(
n

j

)
xj yn−j ,(9.7.8)

Σ2(n) =

n−Ly∑
j=Lx

(
n

j

)
xj yn−j ,(9.7.9)

Σ3(n) =

n∑
j=n−Ly+1

(
n

j

)
xj yn−j ,(9.7.10)

so that
(x+ y)n = Σ1(n) + Σ2(n) + Σ3(n).(9.7.11)

Observe that

‖(x+ y)n‖A ≤ ‖Σ1(n)‖A + ‖Σ2(n)‖A + ‖Σ3(n)‖A(9.7.12)

≤ 3 max(‖Σ1(n)‖A, ‖Σ2(n)‖A, ‖Σ3(n)‖A).

Thus

‖(x+ y)n‖1/nA ≤ 31/n max(‖Σ1(n)‖1/nA , ‖Σ2(n)‖1/nA , ‖Σ3(n)‖1/nA ).(9.7.13)

We also have that

‖Σ2(n)‖A ≤
n−Ly∑
j=Lx

(
n

j

)
‖xj‖A ‖yn−j‖A ≤

n−Ly∑
j=Lx

(
n

j

)
Rj

xR
n−j
y

≤
n∑

j=0

(
n

j

)
Rj

xR
n−j
y = (Rx +Ry)

n,(9.7.14)
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using (9.7.6) and (9.7.7) in the second step. This implies that

‖Σ2(n)‖1/nA ≤ Rx +Ry.(9.7.15)

If n ≥ Lx +Ly and j ≤ Lx − 1, then n− j ≥ Ly + 1, and we can use (9.7.7)
to get that

‖Σ1(n)‖A ≤
Lx−1∑
j=0

(
n

j

)
‖xj‖ARn−j

y .(9.7.16)

This implies that

‖Σ1(n)‖1/nA ≤
( Lx−1∑

j=0

(
n

j

)
‖xj‖AR−j

y

)1/n

Ry.(9.7.17)

Let us reexpress Σ3(n) as

Σ3(n) =

Ly−1∑
l=0

(
n

l

)
xn−l yl.(9.7.18)

If n ≥ Lx + Ly and l ≤ Ly − 1, then n− l ≥ Lx + 1, and we can use (9.7.6) to
get that

‖Σ3(n)‖A ≤
Ly−1∑
l=0

(
n

l

)
Rn−l

x ‖yl‖A.(9.7.19)

This implies that

‖Σ3(n)‖1/nA ≤
( Ly−1∑

l=0

(
n

l

)
R−l

x ‖yl‖A
)1/n

Rx.(9.7.20)

One can use (9.7.13), (9.7.15), (9.7.17) and (9.7.20) to get that

rA(x+ y) = lim
n→∞

‖(x+ y)n‖1/nA ≤ Rx +Ry.(9.7.21)

9.8 Sums of nonnegative sums

Let X be a nonempty set, and let f be a nonnegative real-valued function on
X. If E ⊆ X, then

∑
x∈E f(x) may be defined as a nonnegative extended real

number as in Section 2.4, and we have that∑
x∈E

f(x) ≤
∑
x∈X

f(x).(9.8.1)

In particular, if f is summable on X, then f is summable on E.
In some cases, it may be convenient to allow sums to be taken of nonnegative

extended real numbers. A sum of this type is considered to be +∞ whenever
any of the terms is equal to +∞.
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Let I be a nonempty set, and let Ej be a subset of X for each j ∈ I. Put

E =
⋃
j∈I

Ej ,(9.8.2)

and let us check that ∑
x∈E

f(x) ≤
∑
j∈I

( ∑
x∈Ej

f(x)
)
.(9.8.3)

More precisely, the sum on the right may be considered as the sum of a non-
negative extended real-valued function on I. It suffices to verify that if A is a
finite subset of E, then ∑

x∈A

f(x) ≤
∑
j∈I

( ∑
x∈Ej

f(x)
)
.(9.8.4)

In fact, if B is a finite subset of I such that

A ⊆
⋃
j∈B

Ej ,(9.8.5)

then ∑
x∈A

f(x) ≤
∑
j∈B

( ∑
x∈A∩Ej

f(x)
)
≤

∑
j∈B

( ∑
x∈Ej

f(x)
)
.(9.8.6)

Suppose now that the Ej ’s are pairwise-disjoint, so that

Ej ∩ El = ∅(9.8.7)

when j 6= l. In order to show that∑
x∈E

f(x) =
∑
j∈I

( ∑
x∈Ej

f(x)
)
,(9.8.8)

it is enough to check that∑
j∈I

( ∑
x∈Ej

f(x)
)
≤

∑
x∈E

f(x).(9.8.9)

To get this, it suffices to have that∑
j∈B

( ∑
j∈Ej

f(x)
)
≤

∑
x∈E

f(x).(9.8.10)

This can be obtained from an analogous statement about sums over unions of
two disjoint sets mentioned in Section 2.4. Alternatively, one can observe that
if Aj is a finite subset of Ej for each j ∈ B, then∑

j∈B

( ∑
x∈Aj

f(x)
)
=

∑
x∈
⋃

j∈B
Aj

f(x) ≤
∑
x∈E

f(x).(9.8.11)
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Let Y , Z be nonempty sets, and suppose that

X = Y × Z.(9.8.12)

Consider the iterated sums ∑
y∈Y

(∑
z∈Z

f(y, z)
)

(9.8.13)

and ∑
z∈Z

( ∑
y∈Y

f(y, z)
)
.(9.8.14)

Each of these iterated sums is equal to
∑

x∈X f(x), as in (9.8.8). This cor-
responds to considering X as the union of the pairwise-disjoint sets {y} × Z,
y ∈ Y , or Y × {z}, z ∈ Z. In particular, (9.8.13) and (9.8.14) are equal to each
other.

9.9 Sums of generalized sums

Let X be a nonempty set, let W be a vector space over the real or complex
numbers with a norm ‖ · ‖W , and let f be a W -valued function on X. Suppose
that

∑
x∈X f(x) satisfies the generalized Cauchy condition, as in Section 2.7. If

E is a nonempty subset of X, then it is easy to see that∑
x∈E

f(x)(9.9.1)

satisfies the generalized Cauchy condition as well. If W is a Banach space,
then it follows that (9.9.1) converges in the generalized sense, as in Section 2.7
again. Similarly, if f has bounded finite sums on X, as in Section 2.9, then the
restriction of f to E has bounded finite sums too, with BFS norm less than or
equal to the BFS norm of f on X.

Let us suppose from now on in this section that W is a Banach space. Let I
be a nonempty set, and let {Ej}j∈I be a pairwise-disjoint family of nonempty
subsets of X. Thus ∑

x∈Ej

f(x)(9.9.2)

converges in the generalized sense for each j ∈ I, as in the preceding paragraph.
Put E =

⋃
j∈I Ej . If I has only finitely many elements, then one can check that∑

j∈I

( ∑
x∈Ej

f(x)
)
=

∑
x∈E

f(x).(9.9.3)

If I has infinitely many elements, then we would like to check that the sum
over I in the left side of (9.9.3) converges in the generalized sense, and is equal
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to the right side of (9.9.3). Of course, if B ⊆ I has only finitely many elements,
then ∑

j∈B

( ∑
x∈Ej

f(x)
)
=

∑
x∈
⋃

j∈B
Ej

f(x),(9.9.4)

as in the preceding paragraph. Let ϵ > 0 be given, and remember that there is
a finite set A1(ϵ) ⊆ X such that∥∥∥∥∑

x∈C

f(x)

∥∥∥∥
W

< ϵ(9.9.5)

for every finite set C ⊆ X \A1(ϵ), as in Section 2.7. Put

B1(ϵ) = {j ∈ I : A1(ϵ) ∩ Ej 6= ∅},(9.9.6)

which is a finite subset of I. If B0 ⊆ I \B1(ϵ) is a finite set, then one can verify
that ∥∥∥∥∑

j∈B0

( ∑
x∈Ej

f(x)
)∥∥∥∥

W

=

∥∥∥∥ ∑
x∈
⋃

j∈B0
Ej

f(x)

∥∥∥∥
W

≤ ϵ,(9.9.7)

using (9.9.5).
This shows that the sum over I in the left side of (9.9.3) satisfies the gener-

alized Cauchy condition. Similarly, one can show that for suitable finite subsets
B of I, the right side of (9.9.4) can be approximated by finite sums that also
approximate the right side of (9.9.3). This is a bit simpler when Ej has only
finitely many elements for each j, so that

⋃
j∈B Ej is finite when B is finite.

Suppose for the moment that ‖f(x)‖W is summable as a nonnegative real-
valued on X. In this case,∥∥∥∥ ∑

x∈Ej

f(x)

∥∥∥∥
W

≤
∑
x∈Ej

‖f(x)‖W(9.9.8)

for each j ∈ I. We also have that∑
j∈I

( ∑
x∈Ej

‖f(x)‖W
)
=

∑
x∈E

‖f(x)‖W ,(9.9.9)

as in the previous section. It follows that the left side of (9.9.8) is summable
as a nonnegative real-valued function on I. If W = R or C, with the standard
absolute value function as the norm, then (9.9.3) can be obtained from the anal-
ogous statement in the previous section, by expressing f as a linear combination
of nonnegative real-valued summable functions on X.

9.10 Cauchy products

Let
∑∞

j=0 aj ,
∑∞

l=0 bl be infinite series of real or complex numbers, and put

cn =

n∑
j=0

aj bn−j(9.10.1)
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for each nonnegative integer n. The series
∑∞

n=0 cn is called the Cauchy product
of

∑∞
j=0 aj and

∑∞
l=0 bl, and it is easy to see that

∞∑
n=0

cn =
( ∞∑

j=0

aj

)( ∞∑
l=0

bl

)
,(9.10.2)

at least formally. More precisely, both sides of (9.10.2) are formally equal to∑
(j,l)∈(Z+∪{0})2

aj bl,(9.10.3)

where (Z+∪{0})2 = (Z+∪{0})× (Z+∪{0}). If aj = 0 for all but finitely many
j, and bl = 0 for all but finitely many l, then one can check cn = 0 for all but
finitely many n. In this case, each of these infinite sums reduces to a finite sum,
and both sides of (9.10.2) are equal to (9.10.3).

Suppose for the moment that aj , bl are nonnegative real numbers for each
j, l, respectively, so that cn is a nonnegative real number for each n. Under
these conditions, the infinite sums mentioned in the preceding paragraph may
be defined as nonnegative extended real numbers as in Section 2.4. It is easy to
see that the left side of (9.10.2) is equal to (9.10.3) in this sense, as in Section
9.8. One can also check that (9.10.2) holds, or equivalently that the right side
of (9.10.2) is equal to (9.10.3), where the right side of (9.10.2) is interpreted as
being equal to 0 when either of the factors is equal to 0. In particular, if

∑∞
j=0 aj

and
∑∞

l=0 bl converge, then
∑∞

n=0 cn converges, (9.10.2) holds, and (9.10.3) is
finite and equal to both sides of (9.10.2).

If the aj ’s and bl’s are any real or complex numbers, then

|cn| ≤
n∑

j=0

|aj | |bn−j |(9.10.4)

for each n ≥ 0. Note that the right side is the same as the nth term of the
Cauchy product of

∑∞
j=0 |aj | and

∑∞
l=0 |bl|. If

∑∞
j=0 aj and

∑∞
l=0 bl converge

absolutely, then it follows that
∑∞

n=0 cn converges absolutely, with

∞∑
n=0

|cn| ≤
( ∞∑

j=0

|aj |
)( ∞∑

l=0

|bl|
)
.(9.10.5)

We also have that ∑
(j,l)∈(Z+∪{0})2

|aj | |bl| =
( ∞∑

j=0

|aj |
)( ∞∑

l=0

|bl|
)
,(9.10.6)

as before. It follows that
f(j, l) = aj bl(9.10.7)

is summable as a real or complex-valued function on (Z+∪{0})2, which is to say
that it is an element of ℓ1((Z+∪{0})2,R) or ℓ1((Z+∪{0})2,C), as appropriate.
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This means that the sum (9.10.3) converges in the generalized sense, as in
Section 2.8. Using this, it is easy to see that the sum is equal to the left side
of (9.10.2), as in the previous section. One can also check that (9.10.3) is equal
to the right side of (9.10.2), by considering the sum over (Z+ ∪ {0})2 as an
iterated sum over each variable. Of course, this implies that (9.10.2) holds.
Alternatively, one can verify (9.10.2) by approximating

∑∞
j=0 aj and

∑∞
l=0 bl by

finite subsums, using (9.10.5).
If the aj ’s and bl’s are real numbers, then the absolute convergence of∑∞

j=0 aj and
∑∞

l=0 bl implies that these series may be expressed as differences
of convergent series of nonnegative real numbers. This permits one to reduce
(9.10.2) to the analogous statement in that case. Similarly, if the aj ’s and bl’s
are complex numbers, then one can reduce to the real case by considering their
real and imaginary parts.

9.11 Cauchy products and bilinear mappings

Let V , W , and Z be vector spaces all real or all complex, and let B be a bilinear
mapping from V ×W into Z. Also let

∑∞
j=0 vj and

∑∞
l=0 wl be infinite series

of elements of V and W , respectively. Put

zn =

n∑
j=0

B(vj , wn−j)(9.11.1)

for each nonnegative integer n. The series
∑∞

n=0 zn may be described as the
Cauchy product of

∑∞
j=0 vj and

∑∞
l=0 wl with respect to B. It is easy to see

that
∞∑

n=0

zn = B
( ∞∑

j=0

vj ,

∞∑
l=0

wl

)
,(9.11.2)

at least formally.
In fact, both sides of (9.11.2) correspond to formally expressing∑

(j,l)∈(Z+∪{0})2
B(vj , wl)(9.11.3)

as an iterated sum. If vj = 0 for all but finitely many j, and wl = 0 for all but
finitely many l, then zn = 0 for all but finitely many n, each of these infinite
sums reduces to a finite sum, and both sides of (9.11.2) are equal to (9.11.3).

Let ‖ · ‖V , ‖ · ‖W , and ‖ · ‖Z be norms on V , W , and Z, respectively, and
suppose that B is bounded with respect to these norms, so that

‖B(v, w)‖Z ≤ C ‖v‖V ‖w‖W(9.11.4)

for some nonnegative real number C and all v ∈ V , w ∈W . This implies that

‖zn‖Z ≤ C

n∑
j=0

‖vj‖V ‖wn−j‖W(9.11.5)
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for every n ≥ 0. The sum on the right is the same as the nth term of the Cauchy
product of the series

∑∞
j=0 ‖vj‖V and

∑∞
l=0 ‖wl‖W . Suppose from now on in

this section that
∑∞

j=0 vj and
∑∞

l=0 wl converge absolutely with respect to ‖·‖V
and ‖ · ‖W , respectively. This means that

∑∞
n=0 zn converges absolutely with

respect to ‖ · ‖Z , with

∞∑
n=0

‖zn‖Z ≤ C
( ∞∑

j=0

‖vj‖V
)( ∞∑

l=0

‖wl‖W
)
,(9.11.6)

as in the previous section.
Similarly,∑

(j,l)∈(Z+∪{0})2
‖B(vj , wl)‖Z ≤ C

∑
(j,l)∈(Z+∪{0})2

‖vj‖V ‖wl‖W(9.11.7)

= C
( ∞∑

j=0

‖vj‖V
)( ∞∑

l=0

‖wl‖W
)
.

Using the absolute convergence of
∑∞

j=0 vj and
∑∞

l=0 wl with respect to ‖ · ‖V
and ‖ · ‖W , respectively, we get that

g(j, l) = B(vj , wl)(9.11.8)

is summable as a Z-valued function on (Z+∪{0})2 with respect to ‖·‖Z , which is
to say that it is an element of ℓ1((Z+∪{0})2, Z), as in Section 2.6. Suppose that
V ,W , and Z are complete with respect to the metrics associated to their norms,
so that absolutely convergent series in these spaces converge, as in Section 1.7.
We also get that (9.11.3) converges in the generalized sense, as in Section 2.8.
The sum is equal to the left side of (9.11.2), as in Section 9.9.

Similarly, (9.11.3) is equal to the right side of (9.11.2), because the sum over
(Z+∪{0})2 can be expressed as an iterated sum. As before, one can get (9.11.2)
more directly by approximating

∑∞
j=0 vj and

∑∞
l=0 wl by finite subsums, using

(9.11.6). Note that the completeness of Z is only a convenience here, because the
convergence of the sums in Z can be obtained from the convergence of

∑∞
j=0 vj

and
∑∞

l=0 wl in V and W , respectively.

9.12 Radius of convergence

Let
∞∑
j=0

aj z
j(9.12.1)

be a power series with real or complex coefficients. Also let E0 be the set of
nonnegative real numbers r such that

{|aj | rj}∞j=0 is a bounded sequence,(9.12.2)
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and let E1 be the set of r ≥ 0 such that

∞∑
j=0

|aj | rj(9.12.3)

converges. Note that 0 ∈ E1, and that E1 ⊆ E0. If 0 ≤ r1 < r0 and r0 ∈ E0,
then one can check that r1 ∈ E1. It follows that

supE0 = supE1,(9.12.4)

where the suprema are interpreted as being +∞ when E0, E1 are unbounded.
Let ρ be the common value in (9.12.4), which is the radius of convergence

of the power series (9.12.1). If z ∈ C and |z| < ρ, then

|z| ∈ E1,(9.12.5)

and (9.12.1) converges absolutely, by the comparison test. If |z| > ρ, then

|z| 6∈ E0,(9.12.6)

and (9.12.1) does not converge. It is easy to see that ρ is uniquely determined
by these two properties.

If r ∈ E1, then (9.12.1) converges absolutely when |z| ≤ r, by the comparison
test. This implies that

f(z) =

∞∑
j=0

aj z
j(9.12.7)

defines a complex-valued function on the closed disk

{z ∈ C : |z| ≤ r}.(9.12.8)

We also get that the sequence of partial sums

n∑
j=0

aj z
j(9.12.9)

converges to f uniformly on (9.12.8), by a well-known criterion for uniform
convergence due to Weierstrass. It follows that f is continuous on (9.12.8), with
respect to the standard Euclidean metric on C and its restriction to (9.12.8),
because polynomials define continuous functions on C. More precisely, one can
use the same argument to get that f is uniformly continuous on (9.12.8), because
polynomials are uniformly continuous on bounded subsets of C.

Suppose that ρ > 0, so that (9.12.7) defines a complex-valued function on

{z ∈ C : |z| < ρ}.(9.12.10)

It is easy to see that f is continuous on (9.12.10), because the restriction of f
to (9.12.8) is continuous when 0 ≤ r < ρ, as in the preceding paragraph. Of
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course, it is well known that f is holomorphic on (9.12.10). Conversely, it is
well known that any holomorphic function on an open disk in C centered at 0 of
positive radius can be represented by a unique power series in this way, where
the radius of convergence of the power series is at least the radius of the disk.

Let
∞∑
l=0

bl z
l(9.12.11)

be another power series with resl or complex coefficients. Put cn =
∑n

j=0 aj bn−j

for each nonnegative integer n, as in Section 9.10, and observe that

cn z
n =

n∑
j=0

(aj z
j) (bn−j z

n−j)(9.12.12)

for each n ≥ 0. Thus
∞∑

n=0

cn z
n(9.12.13)

is the Cauchy product of (9.12.1) and (9.12.11). If (9.12.1) and (9.12.11) con-
verge absolutely for some z ∈ C, then it follows that (9.12.13) converges abso-
lutely too, and that

∞∑
n=0

cn z
n =

( ∞∑
j=0

aj z
j
)( ∞∑

l=0

bl z
l
)
,(9.12.14)

as before.

9.13 Cauchy products and Banach algebras

Let A be an algebra in the strict sense over the real or complex numbers, and
let

∑∞
j=0 vj ,

∑∞
l=0 wl be infinite series of elements of A. Put

zn =

n∑
j=0

vj wn−j(9.13.1)

for each nonnegative integer n, so that
∑∞

n=0 zn is the Cauchy product of∑∞
j=0 vj and

∑∞
l=0 wl with respect to multiplication on A, as in Section 9.11.

As before,
∞∑

n=0

zn =
( ∞∑

j=0

vj

)( ∞∑
l=0

wl

)
,(9.13.2)

at least formally. In particular, if vj = 0 for all but finitely many j, and wl = 0
for all but finitely many l, then zn = 0 for all but finitely many n. In this case,
the infinite series reduce to finite sums that satisfy (9.13.2).
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Let ‖ · ‖ be a submultiplicative norm on A, and note that

‖zn‖A ≤
n∑

j=0

‖vj‖A ‖wn−j‖A(9.13.3)

for each n ≥ 0. If
∑∞

j=0 vj ,
∑∞

l=0 wl converge absolutely with respect to ‖ · ‖A,
then

∑∞
n=0 zn converges absolutely with respect to ‖ · ‖A, with

∞∑
n=0

‖zn‖A ≤
( ∞∑

j=0

‖vj‖A
)( ∞∑

l=0

‖wl‖A
)
.(9.13.4)

If A is complete with respect to metric associated to ‖ · ‖A, then we have seen
that (9.13.2) holds under these conditions.

Suppose now that (A, ‖·‖A) is a Banach algebra with a multiplicative identity
element eA. Let

∑∞
j=0 aj z

j be a power series with real or complex coefficients,
as appropriate. If x ∈ A and

∞∑
j=0

|aj | ‖xj‖A(9.13.5)

converges as an infinite series of nonnegative real numbers, then

∞∑
j=0

aj x
j(9.13.6)

converges absolutely with respect to ‖·‖A, and thus converges in A, as in Section
1.7. In particular, if

∞∑
j=0

|aj | ‖x‖jA(9.13.7)

converges, then (9.13.5) converges, by the comparison test.
Let

∑∞
l=0 bl z

l be another power series with real or complex coefficients,
as appropriate, and let

∑∞
n=0 cn z

n be the Cauchy product of
∑∞

j=0 aj z
j and∑∞

l=0 bl z
l. Suppose that

∞∑
l=0

|bl| ‖xl‖A(9.13.8)

converges as an infinite series of nonnegative real numbers too, so that

∞∑
l=0

bl x
l(9.13.9)

converges absolutely with respect to ‖ · ‖A. Note that

cn x
n =

n∑
j=0

(aj x
j) (bn−j x

n−j)(9.13.10)
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for each n ≥ 0, so that
∞∑

n=0

cn x
n(9.13.11)

is the Cauchy product of (9.13.6) and (9.13.9) with respect to multiplication on
A. Using (9.13.10), we get that

|cn| ‖xn‖A ≤
n∑

j=0

(|aj | ‖xj‖A) (|bn−j | ‖xn−j‖A)(9.13.12)

for each n ≥ 0.
The absolute convergence of (9.13.6) and (9.13.9) with respect to ‖ · ‖A

implies that (9.13.11) converges absolutely with respect to ‖ · ‖A too, with

∞∑
n=0

|cn| ‖xn‖A ≤
( ∞∑

j=0

|aj | ‖xj‖A
)( ∞∑

l=0

|bl| ‖xl‖A
)
.(9.13.13)

We also have that

∞∑
n=0

cn x
n =

( ∞∑
j=0

aj x
j
)( ∞∑

l=0

bl x
l
)

(9.13.14)

under these conditions. Of course, if x is nilpotent in A, then (9.13.6), (9.13.9),
and (9.13.11) reduce to finite sums, and (9.13.14) holds automatically. More
precisely, one does not need a norm on A in this case.

9.14 Power series and Banach algebras

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers, with a
multiplicative identity element eA, and let

∑∞
j=0 aj z

j be a power series with
real or complex coefficients, as appropriate. Also let r be a nonnegative real
number in the set E1 defined in Section 9.12, so that

∑∞
j=0 |aj | rj converges. If

x ∈ A and ‖x‖A ≤ r, then (9.13.7) converges, by the comparison test. This
implies that (9.13.6) converges absolutely with respect to ‖ · ‖A, so that

f̃(x) =

∞∑
j=0

aj x
j(9.14.1)

defines an A-valued function on

{x ∈ A : ‖x‖A ≤ r}.(9.14.2)

Note that (9.14.1) is bounded on (9.14.2), with

‖f̃(x)‖A ≤
∞∑
j=0

|aj | rj(9.14.3)
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when ‖x‖A ≤ r and ‖eA‖A = 1.
As in Section 9.12, the sequence of partial sums

n∑
j=0

aj x
j(9.14.4)

converges uniformly to (9.14.1) on (9.14.2), essentially as in Weierstrass’ crite-
rion for uniform convergence. These partial sums are continuous as A-valued
functions of x on A, with respect to the metric associated to ‖·‖A. In fact, these
partial sums are uniformly continuous on bounded subsets of A, and on (9.14.2)
in particular. It follows that (9.14.1) is uniformly continuous on (9.14.2).

Let ρ be the radius of convergence of
∑∞

j=0 aj z
j , as in Section 9.12, and

suppose that ρ > 0. If x ∈ A and

‖x‖A < ρ,(9.14.5)

then ‖x‖A ∈ E1, which is to say that (9.13.7) converges. This implies that
(9.13.6) converges absolutely with respect to ‖ · ‖A, as before, so that (9.14.1)
defines an A-valued function on

{x ∈ A : ‖x‖A < ρ}.(9.14.6)

We also have that (9.14.1) is continuous on (9.14.6), with respect to the metric
associated to ‖ · ‖A, and its restriction to (9.14.6). This follows from the fact
that the restriction of (9.14.1) to (9.14.2) is continuous when 0 ≤ r < ρ, as in
the preceding paragraph.

Suppose now that x ∈ A satisfies

rA(x) = lim
j→∞

‖xj‖1/jA < ρ.(9.14.7)

This implies that there is an r ∈ R such that

lim
j→∞

‖xj‖1/jA < r < ρ.(9.14.8)

It follows that
‖xj‖1/jA < r(9.14.9)

for all but finitely many j, so that

‖xj‖A < rj(9.14.10)

for all but finitely many j. Note that
∑∞

j=0 |aj | rj converges, because r < ρ, as
in Section 9.12. This implies that (9.13.5) converges, by the comparison test,
so that (9.13.6) converges absolutely with respect to ‖ · ‖A, and we can define

f̃(x) ∈ A as in (9.14.1).
In the complex case, if f is a holomorphic function on an open subset U of

C that contains the spectrum of x ∈ A. then f̃(x) ∈ A can be defined in a
natural way, as mentioned in Section 8.13. If U is an open disk centered at 0
and rA(x) is less than the radius of U , then this corresponds to the remarks in
the preceding paragraph.
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9.15 More on f̃(x)

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with a
multiplicative identity element eA, and let

∑∞
j=0 ajz

j be a power series with

real or complex coefficients, as appropriate, again. Suppose that
∑∞

j=0 |aj | rj

converges for some r ≥ 0, and put f(z) =
∑∞

j=0 aj z
j when z ∈ R or C, as

appropriate, and |z| ≤ r. Similarly, if x ∈ A and ‖x‖A ≤ r, then f̃(x) ∈ A may
be defined as in (9.14.1).

Put

pn(z) =

n∑
j=0

aj z
n(9.15.1)

for each nonnegative integer n, so that pn(z) → f(z) as n → ∞ uniformly for
z ∈ R or C, as appropriate, with |z| ≤ r, as in Section 9.12. If x ∈ A, then

p̃n(x) =

n∑
j=0

aj x
j(9.15.2)

defines an element of A for each n, as in Section 8.13. If ‖x‖A ≤ r, then

p̃n(x) → f̃(x) as n→ ∞,(9.15.3)

with respect to the metric on A associated to ‖ · ‖A. Similarly, if w ∈ R or C,
as appropriate, and |w| ≤ r, then

p̃n(x)− pn(w) eA → f̃(x)− f(w) eA as n→ ∞.(9.15.4)

If w ∈ σA(x), then p̃n(x) − pn(w) eA is not invertible in A for any n, as

in Section 8.13. This implies that f̃(x) − f(w) eA is not invertible, because of
(9.15.4), and the fact that the invertible elements of A form an open set. This
means that

f(w) ∈ σA(f̃(x)).(9.15.5)

It follows that
f(σA(x)) ⊆ σA(f̃(x)).(9.15.6)

More precisely, if w ∈ σA(x), then |w| ≤ r, as in Section 6.8, so that (9.15.5)
holds.

Similarly, if
∑∞

j=0 aj z
j has radius of convergence ρ > 0, and x ∈ A satisfies

(9.14.7), then f̃(x) ∈ A may be defined as in (9.14.1), and satisfies (9.15.3). If
w ∈ R or C and |w| < ρ, then f(w) can be defined in the usual way, and

pn(w) → f(w) as n→ ∞,(9.15.7)

so that (9.15.4) holds. If w ∈ σA(x), then

|w| ≤ rA(x) < ρ,(9.15.8)
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where the first step is as in Section 6.13. In this case, (9.15.5) holds, for the
same reasons as before. This implies that (9.15.6) holds, as before.

Suppose now that (V, ‖ · ‖V ) is a Banach space over the real or complex
numbers with V 6= {0}, and that A = BL(V ), with the corresponding operator

norm ‖ · ‖op. Suppose again that
∑∞

j=0 |aj | rj converges, so that f̃(T ) ∈ BL(V )
may be defined as before when T ∈ BL(V ) and

‖T‖op ≤ r.(9.15.9)

Let λ ∈ R or C, as appropriate, be an eigenvalue of T with eigenvector v, and
remember that |λ| ≤ ‖T‖op, as in Section 9.2. Observe that

(f̃(T ))(v) = f(λ) v,(9.15.10)

because of the analogous statement for polynomials. This means that

f(λ) ∈ σp(f̃(T )),(9.15.11)

so that
f(σp(T )) ⊆ σp(f̃(T )).(9.15.12)

Now let λ ∈ R or C, as appropriate, be an approximate eigenvalue of T ,
and let {vj}∞j=1 be a corresponding sequence of unit vectors in V , as in Section
9.3. Thus |λ| ≤ ‖T‖op, as before. One can check that

‖(f̃(T ))(vj)− f(λ) vj‖V → 0 as j → ∞,(9.15.13)

using the analogous statement for T l for each l ≥ 1. This means that f(λ) is

an approximate eigenvalue of f̃(T ), so that

f(λ) ∈ σap(f̃(T )).(9.15.14)

It follows that
f(σap(T )) ⊆ σap(f̃(T )).(9.15.15)

If
∑∞

j=0 aj z
j has radius of convergence ρ > 0 and T ∈ BL(V ) satisfies

rBL(V )(T ) < ρ,(9.15.16)

then f̃(T ) ∈ BL(V ) may be defined as before. Suppose that λ ∈ R or C is an
eigenvalue of T with eigenvector v, so that

|λ| ≤ rBL(V )(T ) < ρ,(9.15.17)

where the first step is as in Section 9.2. In this case, (9.15.10), (9.15.11), and
(9.15.12) hold, for essentially the same reasons as before. Similarly, if λ is an
approximate eigenvalue of T , then the first inequality in (9.15.17) holds, as
in Section 9.3. If {vj}∞j=1 is a corresponding sequence of unit vectors in V ,
then (9.15.13), (9.15.14), and (9.15.15) hold, for essentially the same reasons as
before.



Chapter 10

Some more algebras, power
series

10.1 Power series and Lipschitz conditions

Let A be an associative algebra over the real or complex numbers. If x, y ∈ A
and n is a positive integer, then

xn − yn =

n∑
j=1

(xj yn−j − xj−1 yn−j+1) =

n∑
j=1

xj−1 (x− y) yn−j .(10.1.1)

More precisely, one can simply drop the factors of xj−1 when j = 1, as well as
the factors of yn−j when j = n. If ‖ · ‖A is a submultiplicative norm on A, then
we get that

‖xn − yn‖A ≤
n∑

j=1

‖xj−1‖A ‖x− y‖A ‖yn−j‖A(10.1.2)

≤ n max(‖x‖A, ‖y‖A)n−1 ‖x− y‖A.

If r is a nonnegative real number and ‖x‖A, ‖y‖A ≤ r, then we get that

‖xn − yn‖A ≤ n rn−1 ‖x− y‖A.(10.1.3)

This means that
x 7→ xn(10.1.4)

is Lipschitz with constant n rn−1, as an A-valued function on

{x ∈ A : ‖x‖A ≤ r}.(10.1.5)

Of course, this uses the metric on A associated to ‖ · ‖A, and its restriction
to (10.1.5). This Lipschitz condition could also be obtained from some of the
remarks in Section 7.10.

221
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Suppose now that A is a Banach algebra with a multiplicative identity ele-
ment eA, and let

∑∞
j=0 aj z

j be a power series with real or complex coefficients,
as appropriate. Suppose also that

∞∑
j=1

j |aj | rj−1(10.1.6)

converges, which implies in particular that
∑∞

j=0 |aj | rj converges. Thus

f̃(x) =

∞∑
j=0

aj x
j(10.1.7)

defines an A-valued function on (10.1.5), as in Section 9.14. If x, y ∈ A and
‖x‖A, ‖y‖A ≤ r, then

f̃(x)− f̃(y) =

∞∑
j=1

aj (x
j − yj),(10.1.8)

because the j = 0 terms cancel. This implies that

‖f̃(x)− f̃(y)‖A ≤
∞∑
j=1

|aj | ‖xj − yj‖A.(10.1.9)

It follows that

‖f̃(x)− f̃(y)‖A ≤
∞∑
j=1

j |aj | rj−1 ‖x− y‖A,(10.1.10)

because of (10.1.3). This means that (10.1.7) is Lipschitz on (10.1.5), with
constant (10.1.6). Of course, if aj = 0 for all but finitely many j, then the
completeness of A is not needed here. If

∑∞
j=0 aj z

j has radius of convergence
ρ, as in Section 9.12, and if 0 ≤ r < ρ, then it is well known that (10.1.6)
converges.

Note that
∞∑
j=1

j aj z
j−1 =

∞∑
j=0

(j + 1) aj+1 z
j(10.1.11)

is the power series obtained by differentiating
∑∞

j=0 aj z
j formally term-by-term.

If (10.1.6) converges, then (10.1.11) converges absolutely for every z ∈ R orC, as
appropriate, with |z| ≤ r, by the comparison test. If r > 0, then it is well known
that (10.1.11) is in fact the derivative of

∑∞
j=0 aj z

j when |z| ≤ r, considered as
a one-sided derivative in the real case when |z| = r. In the complex case, one
should use an appropriate complex derivative here, and a suitable interpretation
for |z| = r. In both cases, one can use the same type of Lipschitz conditions
as before to show that the derivative of the sum is equal to the sum of the
derivatives.
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10.2 Another property of power series

Let
∑∞

j=0 aj z
j be a power series with real or complex coefficients, and suppose

that (10.1.6) converges for some r > 0, so that
∑∞

j=0 |aj | rj converges, as be-

fore. If w, z ∈ R or C, as appropriate, and |z|, |w| ≤ r, then
∑∞

j=0 aj z
j and∑∞

j=0 aj w
j converge absolutely, and

∞∑
j=0

aj z
j −

∞∑
j=0

aj w
j =

∞∑
j=1

aj (z
j − wj)(10.2.1)

=

∞∑
j=1

aj

( j−1∑
l=0

zl (z − w)wj−l−1
)
,

where the second step is as in (10.1.1). We would like to reexpress this as

∞∑
j=0

aj z
j −

∞∑
j=0

aj w
j = (z − w)

∞∑
j=1

aj

( j−1∑
l=0

zl wj−l−1
)
.(10.2.2)

If z 6= w, then this follows from (10.2.1), including the convergence of the series
on the right. If z = w, then the convergence of the series on the right follows
from the convergence of (10.1.6).

Put

bl(w) =

∞∑
j=l+1

aj w
j−l−1(10.2.3)

for each l ≥ 0, and note that the series on the right converges absolutely. It is
easy to see that

∞∑
l=0

bl(w) z
l =

∞∑
j=1

aj

( j−1∑
l=0

zl wj−l−1
)
,(10.2.4)

at least formally, by interchanging the order of summation. This means that

∞∑
j=0

aj z
j −

∞∑
j=0

aj w
j = (z − w)

∞∑
l=0

bl(w) z
l,(10.2.5)

at least formally, by (10.2.2).
Let cj,l be defined for j, l ≥ 0 by

cj,l = aj when 0 ≤ l ≤ j − 1(10.2.6)

= 0 otherwise.

Observe that

∞∑
j=0

( ∞∑
l=0

|cj,l| rj−1
)
=

∞∑
j=1

( j−1∑
l=0

|aj | rj−1
)
=

∞∑
j=1

j |aj | rj−1.(10.2.7)
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This means that ∑
(j,l)∈(Z+∪{0})2

|cj,l| rj−1 =

∞∑
j=1

j |aj | rj−1.(10.2.8)

More precisely, the left side of (10.2.8), as defined in Section 2.4, is equal to the
left side of (10.2.7), as in Section 9.8.

Similarly,∑
(j,l)∈(Z+∪{0})2

|cj,l| rj−1 =

∞∑
l=0

( ∞∑
j=0

|cj,l| rj−1
)
=

∞∑
l=0

( ∞∑
j=l+1

|aj | rj−1
)
.(10.2.9)

Thus
∞∑
l=0

( ∞∑
j=l+1

|aj | rj−1
)
=

∞∑
j=1

j |aj | rj−1,(10.2.10)

by (10.2.8). Note that

|bl(w)| ≤
∞∑

j=l+1

|aj | rj−l−1(10.2.11)

for each l ≥ 0, so that

∞∑
l=0

|bl(w)| rl ≤
∞∑
j=1

j |aj | rj−1.(10.2.12)

Clearly ∑
(j,l)∈(Z+∪{0})2

|cj,l| |z|l |w|j−l−1 ≤
∑

(j,l)∈(Z+∪{0})2
|cj,l| rj−1,(10.2.13)

where the summand on the left is interpreted as being equal to 0 unless l ≤ j−1,
even when w = 0. Of course, the right side is finite, by (10.2.8). It follows that∑

(j,l)∈(Z+∪{0})2
cj,l z

l wj−l−1(10.2.14)

converges in the generalized sense, as in Section 2.8, where again the summand
is interpreted as being equal to 0 unless l ≤ j − 1. Both sides of (10.2.4) are
equal to (10.2.14), by summing in one index at a time, as in Section 9.9. Thus
(10.2.4) holds, which implies that (10.2.5) holds.

10.3 Taking w to be fixed

Let us continue with the same notation and hypotheses as in the previous sec-
tion, and let us now take w to be fixed. Put f(z) =

∑∞
j=0 aj z

j and

g(z) =

∞∑
l=0

bl(w) z
l,(10.3.1)
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so that
f(z)− f(w) = (z − w) g(z),(10.3.2)

by (10.2.5).
If

∑∞
j=0 aj z

j has radius of convergence ρ > 0, then it is well known that

(10.1.6) converges when 0 < r < ρ. This implies that
∑∞

l=0 bl(w) z
l has radius

of convergence at least ρ, because of (10.2.12). More precisely, this works for
any w ∈ R or C, as appropriate, such that |w| < ρ.

Note that the radius of convergence of
∑∞

j=0 aj z
j is less than or equal to

the radius of convergence of
∑∞

l=0 bl(w) z
l, because of (10.2.5). Thus the radius

of convergence of
∑∞

l=0 bl(w) z
l is equal to ρ too,

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers, as
appropriate, with a multiplicative identity element eA. If x ∈ A and ‖x‖A ≤ r,

then f̃(x) =
∑∞

j=0 aj x
j defines an element of A, as in Section 9.14. Similarly,

g̃(x) =

∞∑
l=0

bl(w)x
l(10.3.3)

defines an element of A under these conditions. We also have that

f̃(x)− f(w) eA = (x− w eA) g̃(x).(10.3.4)

This could be shown in the same way as before, or obtained from (10.3.2).

If
∑∞

j=0 aj z
j has radius of convergence ρ, then f̃(x) and g̃(x) can be defined

in the same way when ‖x‖A < ρ, and (10.3.4) holds. Similarly, if rA(x) < ρ,

then f̃(x) and g̃(x) can be defined in the same way, as in Section 9.14. We also
have that (10.3.4) holds in this case. As before, we can take w to be any real
or complex number with |w| < ρ here.

Of course, g̃(x) and x − w eA commute with each other. If f̃(x) − f(w) eA
is invertible in A, then it follows that x− w eA is invertible in A, as in Section
6.13. This implies that

f(w) ∈ σA(f̃(x))(10.3.5)

when w ∈ σA(x).
It follows that

f(σA(x)) ⊆ σA(f̃(x)).(10.3.6)

More precisely, if ‖x‖A ≤ r and w ∈ σA(x), then |w| ≤ r, so that (10.3.5) holds.
Remember that the same conclusions were obtained in Section 9.15, under the
hypothesis that

∑∞
j=0 |aj | rj converges, without asking that (10.1.6) converge.

Similarly, if
∑∞

j=0 aj z
j has radius of convergence ρ, rA(x) < ρ, and w is an

element of σA(x), then
|w| ≤ rA(x) < ρ,(10.3.7)

as in Section 6.13. In this case, (10.3.5) holds, for essentially the same reasons
as before. This implies that (10.3.6) holds, as before. This is another approach
to the analogous statements in Section 9.15.
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Let (V, ‖ · ‖V ) be a Banach space over the real or complex numbers, as
appropriate, with V 6= {0}, and suppose now that A = BL(V ), with the cor-
responding operator norm. If T ∈ BL(V ) and ‖T‖op ≤ r, and λ ∈ R or C
is an eigenvalue or approximate eigenvalue of T , then we saw in Section 9.15
that f(λ) is an eigenvalue or approximate eigenvector of f̃(T ), as appropriate.
These statements could also be obtained from (10.3.2) when (10.1.6) converges.
Similarly, if

∑∞
j=0 aj z

j has radius of convergence ρ > 0 and rBL(V )(T ) < ρ,
then the analogous statements could be obtained from (10.3.4).

10.4 The exponential function

Let (A, ‖·‖A) be a Banach algebra over the real or complex numbers with a mul-
tiplicative identity element eA and ‖eA‖A = 1. If x ∈ A, then the exponential
of x in A may be defined by the usual power series,

expx = expA x =

∞∑
j=0

(1/j!)xj .(10.4.1)

More precisely, the series on the right converges absolutely with respect to ‖·‖A,
because

∞∑
j=0

(1/j!) ‖xj‖A ≤
∞∑
j=0

(1/j!)‖x‖jA = exp ‖x‖A,(10.4.2)

using the ordinary exponential function on the right side. This also shows that

‖ expx‖A ≤ exp ‖x‖A.(10.4.3)

Note that expA 0 = eA.
If x, y ∈ A commute with each other, then

(x+ y)n =

n∑
j=0

(
n

j

)
xj yn−j(10.4.4)

for each nonnegative integer n, with suitable interpretations when n = 0, by the
binomial theorem. This implies that

exp(x+ y) =

∞∑
n=0

(1/n!) (x+ y)n(10.4.5)

=

∞∑
n=0

( n∑
j=0

(1/j!) (1/(n− j)!)xj yn−j
)
.

The right side corresponds to the Cauchy product of the series defining exp x
and exp y, as in Section 9.13. It follows that

exp(x+ y) = (exp x) (exp y)(10.4.6)
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under these conditions, because these series converge absolutely, as before.
In particular,

(expx) (exp(−x)) = (exp(−x)) (exp x) = eA(10.4.7)

for every x ∈ A. This means that exp x is invertible in A, with

(expx)−1 = exp(−x).(10.4.8)

Let (B, ‖ · ‖B) be another Banach algebra over the real or complex numbers,
as appropriate, with a multiplicative identity element eB. Also let ϕ be an
algebra homomorphism from A into B that is bounded as a linear mapping and
satisfies ϕ(eA) = eB. If x ∈ A, then it is easy to see that

ϕ(expA x) = expB ϕ(x).(10.4.9)

This works as well when ϕ is an opposite algebra homomorphism, as in Section
6.4. In the complex case, one may wish to consider conjugate-linear mappings
too, which may be considered as real-linear in particular.

Let x 7→ x∗ be an algebra involution on A, as in Section 6.4, which may be
conjugate-linear in the complex case. Suppose that this involution is bounded
as a linear or conjugate-linear mapping from A into itself, as appropriate, so
that

‖x∗‖A ≤ C ‖x‖A(10.4.10)

for some nonnegative real number C and every x ∈ A. Thus

(expx)∗ = exp(x∗)(10.4.11)

for every x ∈ A, as in (10.4.9). If x is anti-self-adjoint with respect to this
involution, in the sense that x∗ = −x, then

(expx)∗ = exp(x∗) = exp(−x) = (exp x)−1.(10.4.12)

This means that exp x is an element of the subgroup U(A) of the group G(A)
of invertible elements of A defined in Section 7.5, using this involution.

10.5 Algebra derivations

Let A be an algebra in the strict sense over R or C. A linear mapping δ from
A into itself is said to be a derivation if

δ(x y) = δ(x) y + x δ(y)(10.5.1)

for every x, y ∈ A, as on p4 of [97], p7 of [172], and p2 of [173]. The derivations
of A form a linear subspace of the space L(A) of all linear mappings from A
into itself. If δ1, δ2 are derivations on A, then one can check that

δ1 ◦ δ2 − δ2 ◦ δ1(10.5.2)
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is a derivation on A as well, as in [97, 172, 173].
Let δ be a derivation on A, and let n be a nonnegative integer. If x, y ∈ A,

then it is well known that

δn(x y) =

n∑
j=0

(
n

j

)
δj(x) δn−j(y).(10.5.3)

This is a version of the Leibniz rule.
Let ‖ · ‖A be a norm on A, and suppose that multiplication on A is bounded

as a bilinear mapping from A×A into A with respect to ‖ · ‖A, so that

‖x y‖A ≤ C ‖x‖A ‖y‖A(10.5.4)

for some nonnegative real number C and all x, y ∈ A. Suppose also that A is
complete with respect to the metric associated to ‖·‖A, so that the space BL(A)
of bounded linear mappings from A into itself is a Banach algebra with respect
to the corresponding operator norm ‖ · ‖op. If δ is bounded as a linear mapping
from A into itself, then exp δ may be defined as a bounded linear mapping from
A into itself too, as in the previous section.

If x, y ∈ A, then

(exp δ)(x y) =

∞∑
n=0

(1/n!) δn(x y)(10.5.5)

=

∞∑
n=0

( n∑
j=0

(1/j!) (1/(n− j)!) δj(x) δn−j(y)
)
,

using (10.5.3) in the second step. The right side corresponds to the Cauchy
product of

(exp δ)(x) =

∞∑
j=0

(1/j!) δj(x) and (exp δ)(y) =

∞∑
l=0

(1/l!) δl(y),(10.5.6)

as in Section 9.11. Note that these series converge absolutely with respect to
‖ · ‖A, because δ is bounded on A. It follows that

(exp δ)(x y) = ((exp δ)(x)) ((exp δ)(y)),(10.5.7)

as before. This shows that exp δ is an automorphism of A, as an algebra in the
strict sense.

10.6 Commutators and conjugations

Let A be an associative algebra over the real or complex numbers. If a ∈ A,
then put

δa(x) = a x− x a(10.6.1)
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for every x ∈ A. This defines a linear mapping from A into itself. One can
check that

δa is a derivation on A.(10.6.2)

This type of derivation in this case is called an inner derivation of A.

Remember that La, Ra are the left and right multiplication operators on A
associated to a as in Sections 6.3 and 6.4. Note that

δa = La −Ra.(10.6.3)

We also have that

La ◦Ra = Ra ◦ La,(10.6.4)

because A is associative.

Suppose that (A, ‖ · ‖A) is a Banach algebra with a multiplicative identity
element eA and ‖eA‖A = 1. Remember that La and Ra are bounded linear
mappings on A, with

‖La‖op = ‖Ra‖op = ‖a‖A,(10.6.5)

as before. This implies that δa is bounded as a linear mapping from A into
itself, with

‖δa‖op ≤ 2 ‖a‖A.(10.6.6)

Of course, the space BL(A) of bounded linear mappings from A into itself is
a Banach algebra with respect to the operator norm, because A is complete, by
hypothesis. Thus the exponentials of La, Ra, and δa may be defined as elements
of BL(A) as in Section 10.4. In fact, we have that

exp δa = exp(La −Ra) = (expLa) ◦ (exp(−Ra))(10.6.7)

= (expLa) ◦ (expRa)
−1,

because of (10.6.4).

Remember that a 7→ La is an algebra homomorphism from A into BL(A),
with LeA equal to the identity mapping IA on A, as in Section 6.3. Similarly,
a 7→ Ra is an opposite algebra homomorphism from A into BL(A), with ReA =
IA, as in Section 6.4. This implies that

expLa = expBL(A) La = LexpA a(10.6.8)

and

expRa = expBL(A)Ra = RexpA a,(10.6.9)

as in Section 10.4. If x ∈ A, then we get that

(exp δa)(x) = (expBL(A) δa)(x) = (expA a)x (expA a)
−1,(10.6.10)

by (10.6.7). This corresponds to Exercise 15 on p260 of [162].
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10.7 A criterion for local invertibility

Let (V, ‖ · ‖V ) be a Banach space over the real or complex numbers, let v0 ∈ V
and r0 > 0 be given, and remember that B(v0, r0) is the closed ball in V centered
at v0 with radius r0 with respect to the metric associated to ‖ ·‖V , as in Section
1.2. Also let g be a mapping from B(v0, r0) into V , and put

ϕ(v) = v − g(v)(10.7.1)

on B(v0, r0). Suppose that

ϕ is Lipschitz with constant c0 ≥ 0 on B(v0, r0),(10.7.2)

with respect to the metric on V associated to ‖ · ‖V and its restriction to
B(v0, r0). This implies that

g is Lipschitz with constant 1 + c0 on B(v0, r0),(10.7.3)

as in Section 2.1. Suppose too that c0 < 1, and note that

(1− c0) ‖v − w‖V ≤ ‖g(v)− g(w)‖V(10.7.4)

for every v, w ∈ B(v0, r0), as in Section 7.11.
If y ∈ V , then put

ϕy(v) = ϕ(v) + y = v − g(v) + y(10.7.5)

on B(v0, r0). Clearly

ϕy is Lipschitz with constant c0 on B(v0, r0),(10.7.6)

because of (10.7.2). Observe that

ϕy(v)− v0 = ϕ(v) + y − v0 = ϕ(v)− ϕ(v0) + ϕ(v0) + y − v0(10.7.7)

= ϕ(v)− ϕ(v0) + y − g(v0)

on B(v0, r0). This implies that

‖ϕy(v)− v0‖V ≤ ‖ϕ(v)− ϕ(v0)‖V + ‖y − g(v0)‖V
≤ c0 ‖v − v0‖V + ‖y − g(v0)‖V ≤ c0 r0 + ‖y − g(v0)‖V(10.7.8)

on B(v0, r0).
Suppose that

‖y − g(v0)‖V ≤ (1− c0) r0,(10.7.9)

so that
‖ϕy(v)− v0‖V ≤ r0(10.7.10)

on B(v0, r0), by (10.7.8). Equivalently, this means that

ϕy(B(v0, r0)) ⊆ B(v0, r0).(10.7.11)
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Note that B(v0, r0) is complete as a metric space with respect to the restriction
of the metric on V associated to ‖·‖V , because V is complete, by hypothesis, and
B(v0, r0) is a closed set in V , as in Section 1.6. Thus the contraction mapping
theorem implies that there is a unique point vy ∈ B(v0, r0) such that

ϕy(vy) = vy,(10.7.12)

as in Section 7.12.

Of course, (10.7.12) is the same as saying that

g(vy) = y,(10.7.13)

by the definition (10.7.5) of ϕy. This shows that

B(v0, (1− c0) r0) ⊆ g(B(v0, r0))(10.7.14)

under these conditions. We also have that

(1− c0) ‖vy − v0‖V ≤ ‖g(vy)− g(v0)‖V = ‖y − g(v0)‖V ,(10.7.15)

by (10.7.4). This implies that

B(v0, (1− c0) r) ⊆ g(B(v0, r))(10.7.16)

when 0 < r ≤ r0, which could be obtained from the same argument as before
too. Similarly,

B(v0, (1− c0) r) ⊆ g(B(v0, r))(10.7.17)

when 0 < r ≤ r0, where B(v0, r) is the open ball in V centered at v0 with radius
r with respect to the metric associated to ‖ · ‖V .

This basically corresponds to part of the inverse function theorem for func-
tions defined on subsets of Banach spaces, as in Theorem 10.39 on p252 of
[162]. More precisely, let T be a bounded linear mapping from V into itself with
bounded inverse. Suppose that f is a mapping from B(v0, r0) into V such that

T − f is Lipschitz with constant c1 on B(v0, r0),(10.7.18)

for some c1 ≥ 0. This implies that

I − T−1 ◦ f = T−1 ◦ (T − f)(10.7.19)

is Lipschitz with constant c1 ‖T−1‖op on B(v0, r0). If

c1 ‖T−1‖op < 1,(10.7.20)

then one can apply the previous remarks to T−1 ◦f , to get analogous properties
of f .
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10.8 More on local invertibility

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with a
multiplicative identity element eA, and let r0 > 0 be given. We would like to
consider some of the remarks in the previous section with V = A, v0 = 0, and
where g is given by a power series

g(x) =

∞∑
j=0

aj x
j ,(10.8.1)

with real or complex coefficients, as appropriate. Suppose that

∞∑
j=0

|aj | rj0(10.8.2)

converges as an infinite series of nonnegative real numbers, so that the right
side of (10.8.1) converges absolutely with respect to ‖ · ‖A when x ∈ A satisfies
‖x‖A ≤ r0, as in Section 9.14. More precisely, this defines g as an A-valued
function on the closed ball B(0, r0) in A centered at 0 with radius r0 with
respect to the metric associated to ‖ · ‖A. We have also seen that g is bounded
and uniformly continuous on B(0, r0), with respect to the metric on A associated
to ‖ · ‖A and its restriction to B(0, r0).

In fact, we shall ask that

∞∑
j=1

j |aj | rj−1
0(10.8.3)

converges, which implies that (10.8.1) converges. In this case, g is Lipschitz on
B(0, r0), with constant (10.8.3), as in Section 10.1. Put

ϕ(x) = x− g(x) = −a0 eA + (1− a1)x−
∞∑
j=2

aj x
j(10.8.4)

on B(0, r0), as in (10.7.1). Observe that ϕ is Lipschitz with constant

|a1 − 1|+
∞∑
j=2

j |aj | rj−1
0(10.8.5)

on B(0, r0), as in Section 10.1. Thus we would like to have that

|a1 − 1|+
∞∑
j=2

j |aj | rj−1
0 < 1,(10.8.6)

as before.
If y ∈ A, then we put

ϕy(x) = ϕ(x) + y = x− g(x) + y(10.8.7)
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on B(0, r0), as in (10.7.5). Note that ϕy is Lipschitz with constant (10.8.5) on
B(0, r0) too, as before. Equivalently,

ϕy(x) = y − a0 eA + (1− a1)x−
∞∑
j=2

aj x
j(10.8.8)

on B(0, r0), so that

‖ϕy(x)‖A ≤ ‖y − a0 eA‖A + |1− a1| r0 +
∞∑
j=2

|aj | rj0(10.8.9)

on B(0, r0). If

‖y − a0 eA‖A + |1− a1| r0 +
∞∑
j=2

|aj | rj0 ≤ r0,(10.8.10)

then we get that
ϕy(B(0, r0)) ⊆ B(0, r0).(10.8.11)

If (10.8.6) holds as well, then the contraction mapping theorem implies that ϕy
has a unique fixed point in B(0, r0), as in Section 7.12.

We may often be interested in having

a1 = 1,(10.8.12)

so that (10.8.6) reduces to

∞∑
j=2

j |aj | rj−1
0 < 1.(10.8.13)

Similarly, (10.8.10) reduces to

‖y − a0 eA‖A +

∞∑
j=2

|aj | rj0 ≤ r0(10.8.14)

in this case. If
∞∑
j=2

|aj | rj−1
0 < 1,(10.8.15)

then (10.8.14) holds when

‖y − a0 eA‖R ≤
(
1−

∞∑
j=2

|aj | rj−1
0

)
r0.(10.8.16)

Note that (10.8.15) holds when (10.8.13) holds. Under these conditions, we can
get (10.8.13) by using a smaller positive real number in place of r0, if necessary.
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10.9 More on the exponential function

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with a
multiplicative identity element eA and ‖eA‖A = 1, and let r be a positive real
number. The restriction of the exponential function to the closed ball B(0, r)
in A centered at 0 with radius r is Lipschitz with constant

∞∑
j=1

j (1/j!) rj−1,(10.9.1)

as in Section 10.1. Note that (10.9.1) is equal to

∞∑
j=1

(1/(j − 1)!) rj−1 =

∞∑
j=0

(1/j!) rj = exp r.(10.9.2)

Similarly, the restriction of

(expx)− x(10.9.3)

to B(0, r) is Lipschitz with constant

∞∑
j=2

j (1/j!) rj−1 =

∞∑
j=2

(1/(j − 1)!) rj−1 =

∞∑
j=1

(1/j!) rj = (exp r)− 1.(10.9.4)

Of course, this tends to 0 as r → 0. It follows that

expx is open at 0,(10.9.5)

as a mapping from A into itself, as in Section 10.7.
Remember that G(A) is the group of invertible elements of A, as in Section

6.6. Thus
expA = {expx : x ∈ A}(10.9.6)

is a subset of G(A). Using (10.9.5), we get that

eA is an element of the interior of expA.(10.9.7)

Let Γ(A) be the subgroup of G(A) generated by expA, as in the proof of
Theorem 10.44 on p258 of [162]. Clearly eA is an element of the interior of
Γ(A), because expA ⊆ Γ(A). This implies that

Γ(A) is an open set in A,(10.9.8)

as in [162].
If A is commutative, then it is easy to see that

expx is open at every point in A,(10.9.9)

using (10.9.5). This means that

expx is an open mapping on A,(10.9.10)

as in Section 7.13. This is related to a remark on p257 of [162]. In this case,
expA is a subgroup of G(A), so that

Γ(A) = expA.(10.9.11)
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10.10 The subgroup G1(A) of G(A)

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with a
multiplicative identity element eA and ‖eA‖A = 1. Remember that the group
G(A) of invertible elements of A is an open set in A, as in Section 6.6. Let
G1(A) be the connected component of G(A) that contains eA, as on p257 of
[162]. Equivalently, G1(A) is the union of all of the connected subsets of G(A)
that contain eA.

Remember that open balls in A are convex, as in Section 1.2. This means
that open balls in A are path connected. It follows that G(A) is locally path
connected, because G(A) is an open set in A. This implies that the connected
components of G(A) are the same as the path-connected components of G(A),
by standard arguments. We also get that the connected components of G(A)
are open sets.

Thus G1(A) is the same as the path-connected component of G(A) that
contains eA. This is the set of invertible elements of A that can be connected
to eA by a continuous path in G(A). Note that

G1(A) is an open set in A,(10.10.1)

as in part (a) of Theorem 10.44 on p258 of [162].
One can check that

G1(A) is a subgroup of G(A),(10.10.2)

using the characterization of G1(A) in terms of continuous paths in G(A) start-
ing at eA. This is another part of part (a) of Theorem 10.44 on p258 of [162].

In fact,
G1(A) is a normal subgroup of G(A),(10.10.3)

which is the third part of part (a) of Theorem 10.44 on p258 of [162]. This
can also be obtained from the characterization of G1(A) in terms of continuous
paths in G(A) starting at eA.

If x ∈ A, then
exp(t x), 0 ≤ t ≤ 1,(10.10.4)

defines a continuous path from eA to expx in G(A). This implies that exp x is
an element of G1(A), so that

expA ⊆ G1(A),(10.10.5)

as in part (b) of Theorem 10.44 on p258 of [162].
Let Γ(A) be the subgroup of G(A) generated by expA, as in the previous

section. Observe that
Γ(A) ⊆ G1(A),(10.10.6)

because of (10.10.2) and (10.10.5). Part (b) of Theorem 10.44 on p258 of [162]
states that

Γ(A) = G1(A).(10.10.7)
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Remember that Γ(A) is an open set in A, as in (10.9.8). This implies that all
of the cosets of Γ(A) in G(A) are open sets. It follows that G(A) \ Γ(A) is an
open set, because it is the union of all of the cosets of Γ(A) in G(A) other than
Γ(A). One can use this to get that

G1(A) ⊆ Γ(A),(10.10.8)

because G1(A) is a connected subset of G(A) that contains eA.
If A is commutative, then

expA = G1(A),(10.10.9)

by (10.9.11) and (10.10.7). This is part (c) of Theorem 10.44 on p258 of [162].

10.11 Some induced homomorphisms

Let A, B be associative algebras, both real or both complex, with multiplicative
identity elements eA, eB, respectively. Also let ϕ be an algebra homomrohism
from A into B such that ϕ(eA) = eB. If x ∈ A is invertible, then ϕ(x) is
invertible in B, with

ϕ(x−1) = ϕ(x)−1.(10.11.1)

Thus

ϕ(G(A)) ⊆ G(B),(10.11.2)

and the restriction of ϕ to G(A) defines a group homomorphism into G(B).
Suppose now that (A, ‖ · ‖A), (B, ‖ · ‖B) are Banach algebras, and that ϕ is

bounded as a linear mapping from A into B. This means that ϕ is continuous,
and one can use that to get that

ϕ(G1(A)) ⊆ G1(B).(10.11.3)

Remember that G1(A), G1(B) are normal subgroups of G(A), G(B), as in
the previous section. Thus the corresponding quotient groups G(A)/G1(A) and
G(B)/G1(B) may be defined in the usual way. It follows from (10.11.3) that

ϕ induces a group homomormphism(10.11.4)

from G(A)/G1(A) into G(B)/G1(B).

Let V be a vector space over the real or complex numbers, and let X, Y be
nonempty sets. If ψ is a mapping from X into Y , then

Ψ(f) = f ◦ ψ(10.11.5)

defines a mapping from the space of all V -valued functions on Y into the space
of all V -valued functions on X. More precisely, the spaces of V -valued functions
on X and Y are vector spaces over the real or complex numbers, as appropriate,
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with respect to pointwise addition and scalar multiplication, and Ψ is a linear
mapping. It is easy to see that

Ψ is one-to-one when ψ(X) = Y.(10.11.6)

Let ‖ · ‖V be a norm on V . If f is a bounded V -valued function on Y , then
(10.11.5) is a bounded V -valued function on X, so that the restriction of Ψ to
ℓ∞(Y, V ) defines a linear mapping into ℓ∞(X,V ). Observe that

‖Ψ(f)‖ℓ∞(X,V ) ≤ ‖f‖ℓ∞(Y,V )(10.11.7)

for every f ∈ ℓ∞(Y, V ). More precisely, the operator norm of the restriction
of Ψ to ℓ∞(Y, V ) is equal to 1, with respect to the corresponding supremum
norms. If ψ(X) = Y , then

‖Ψ(f)‖ℓ∞(X,V ) = ‖Ψ(f)‖ℓ∞(Y,V )(10.11.8)

for every f ∈ ℓ∞(Y, V ).
Suppose now that X, Y are metric or topological spaces, and that ψ is

continuous. If f is a continuous mapping from Y into V , then (10.11.5) is a
continuous mapping from X into V . Thus the restriction of Ψ to C(Y, V ) defines
a linear mapping into C(X,V ). Note that

Ψ is one-to-one on C(Y, V ) when ψ(X) is dense in Y.(10.11.9)

Similarly, if f is bounded and continuous on Y , then (10.11.5) is bounded
and continuous on X, so that the restriction of Ψ to Cb(Y, V ) is a bounded
linear mapping into Cb(X,V ) with respect to the supremum norm. If ψ(X) is
dense in Y , then (10.11.8) holds for every f ∈ Cb(Y, V ).

Let A0 be an algebra in the strict sense over the real or complex numbers,
so that the spaces of A0-valued functions on X and Y are algebras in the strict
sense over R or C, as appropriate, with respect to pointwise multiplication of
functions, as in Section 7.9. In this case, (10.11.5) defines an algebra homomor-
phism from the space of A0-valued functions on Y into the space of A0-valued
functions on X. Suppose that A0 has a multiplicative identity element eA0 , so
that the functions on X and Y equal to eA0

at every point are the multiplicative
identity elements in the algebras of A0-valued functions on X and Y , respec-
tively, as before. Of course, Ψ sends the function on Y equal to eA0

at every
point to the function on X equal to eA0

at every point.

10.12 Some continuity conditions

Let X, Y be nonempty metric or topological spaces, and let (Z, dZ) be a metric
space. Also let F be a mapping from X × Y into Z. If y ∈ Y , then

Fy(x) = F (x, y)(10.12.1)
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defines a mapping from X into Z. Thus

y 7→ Fy(10.12.2)

defines a mapping from Y into the space of mappings fromX into Z. Conversely,
every mapping from Y into the space of mappings from X into Z corresponds
to a mapping from X × Y into Z in this way.

Similarly, if x ∈ X, then F (x, y) may be considered as a mapping from Y
into Z. Consider the collection

E = {F (x, ·) : x ∈ X}(10.12.3)

of all of the mappings from Y into Z that correspond to some x ∈ X in this
way. This collection is said to be equicontinuous at a point y0 ∈ Y if for every
ϵ > 0 there is an open set V ⊆ Y such that y0 ∈ V and

dZ(F (x, y), F (x, y0)) < ϵ(10.12.4)

for every x ∈ X and y ∈ V . This condition clearly implies that F (x, y) is
continuous as a function of y on Y at y0 for every x ∈ X. If X has only finitely
many elements, and if F (x, y) is continuous in y at y0 for every x ∈ X, then E
is equicontinuous at y0.

Suppose for the moment that

Fy is bounded as a mapping from X into Z(10.12.5)

for each y ∈ Y . Remember that the space B(X,Z) of all mappings from X into
Z is a metric space with respect to the supremum metric associated to dZ . One
can check that

E is equicontinuous at y0(10.12.6)

if and only if (10.12.2) is continuous at y0 as a mapping from Y into B(X,Z),
with respect to the supremum metric on B(X,Z).

Suppose for the moment again that (10.12.6) holds. Let x0 ∈ X be given,
and suppose also that

Fy0
(x) = F (x, y0) is continuous in x at x0,(10.12.7)

as a mapping from X into Z. Under these conditions, one can verify that

F (x, y) is continuous at (x0, y0),(10.12.8)

as a mapping from X × Y into Z, with respect to the product topology on
X×Y . If X and Y are both metric spaces, then one can use a suitable product
metric on X × Y , as in Section 5.11.

Let ϵ > 0 be given. If (10.12.8) holds, then there are open sets U(x0) ⊆ X
and V (x0) ∈ Y such that x0 ∈ U(x0), y0 ∈ V (x0), and

dZ(F (x, y), F (x0, y0)) < ϵ/2(10.12.9)
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for every x ∈ U(x0) and y ∈ V (x0). This implies that

dZ(F (x, y), F (x, y0)) ≤ dZ(F (x, y), F (x0, y0)) + dZ(F (x0, y0), F (x, y0))

< ϵ/2 + ϵ/2 = ϵ(10.12.10)

for every x ∈ U(x0) and y ∈ V (x0).
Suppose that (10.12.8) holds for every x0 ∈ X. If X is compact, then X can

be covered by finitely many open sets U(x0) as in the preceding paragraph. If
we take V to be the intersection of the finitely many corresponding open sets
V (x0) in Y , then we get that (10.12.6) holds.

If X and Y are both metric spaces, then one can use a suitable product
metric on X × Y , as before. If X and Y are both compact, then X × Y is
compact, by Tychonoff’s theorem. Under these conditions, the continuity of F
on X × Y implies that F is uniformly continuous. In particular, this implies
that E is equicontinuous at every y0 ∈ Y .

10.13 Some remarks about homotopies

Let X and Z be nonempty metric or topological spaces, and let f , g be contin-
uous mappings from X into Z. A homotopy between f and g is a continuous
mapping from X × [0, 1] into Z that corresponds to f on X × {0} and to g
on X × {1}. This uses the product topology on X × [0, 1] associated to the
topology induced on [0, 1] by the standard topology on the real line. If X is a
metric space, then one can use a suitable product metric on X × [0, 1], as in
Section 5.11.

In particular, a homotopy between f and g can be used to define a mapping
from [0, 1] into the space C(X,Z) of continuous mappings from X into Z that is
equal to f at 0 and to g at 1. The continuity of the homotopy as a mapping from
X × [0, 1] into Z may be considered as a continuity condition on this mapping
from [0, 1] into C(X,Z).

Suppose that (Z, dZ) is a metric space, so that the space Cb(X,Z) of bounded
continuous mappings from X into Z is a metric space with respect to the supre-
mum metric. A mapping from [0, 1] into Cb(X,Z) determines a mapping from
X × [0, 1] into Z, as before. The continuity of this mapping from [0, 1] into
Cb(X,Y ) with respect to the supremum metric on Cb(X,Z) is equivalent to the
equicontinuity condition for the corresponding mapping from X × [0, 1] into Z
at every point in Y = [0, 1] discussed in the previous section. It follows that a
continuous mapping from [0, 1] into Cb(X,Y ) determines a continuous mapping
from X × [0, 1] into Z, with respect to the usual product topology on X × [0, 1],
as before.

Suppose that X is compact, so that every continuous mapping from X into Z
is bounded. In this case, a continuous mapping fromX×[0, 1] into Z corresponds
to a continuous mapping from [0, 1] into Cb(X,Z). More precisely, continuous
mappings from X × [0, 1] into Z satisfy the equicontinuity condition discussed
in the previous section at every point in [0, 1], because X is compact. This
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implies that the corresponding mapping from [0, 1] into Cb(X,Z) is continuous,
as before.

Let (A0, ‖ · ‖A0) be a Banach algebra over the real or complex numbers with
a multiplicative identity element eA0

. If X is any metric or topological space,
then C(X,A0) is an associative algebra over the real or complex numbers, as
appropriate, as in Section 7.9. Remember that f ∈ C(X,A0) is invertible if and
only if f(x) is invertible in A0 for every x ∈ X. Thus

G(C(X,A0)) = C(X,G(A0)),(10.13.1)

where G(A0) is considered as a metric space, using the resptriction of the metric
on A0 associated to ‖ · ‖A0 to G(A0).

The space Cb(X,A0) of all continuous A0-valued functions on X is a Banach
algebra with respect to the supremum norm, as in Sections 7.8 and 7.9. Suppose
that X is compact again, so that this is the same as C(X,A0). In this case,
a continuous path in (10.13.1) corresponds to a homotopy between continuous
mappings from X into G(A0), as before.

Thus the path connected components of (10.13.1) are the same as the ho-
motopy classes of continuous mappings from X into G(A0). In particular,

G1(C(X,A0))(10.13.2)

consists of continuous mappings from X into G(A0) that are homotopic to the
constant function on X equal to eA0

at every point, as continuous mappings
from X into G(A0). The quotient group

G(C(X,A0))/G1(C(X,A0))(10.13.3)

corresponds to the set of homotopy classes of continuous mappings from X into
A0. This is related to Exercise 16 on p261 of [162].

10.14 More on G1(A)

Let A be an associative algebra over the real or complex numbers with a sub-
multiplicative norm ‖ · ‖A. If x ∈ A, then rA(x) can be defined in the usual
way, as in Sections 6.13 and 7.2. If t ∈ R or C, as appropriate, then one can
check that

rA(t x) = |t| rA(x).(10.14.1)

Suppose now that (A, ‖·‖A) is a Banach algebra with a multiplicative identity
element eA and ‖eA‖A = 1. Suppose also that x ∈ A is quasinilpotent, so that
rA(x) = 0, as in Section 7.2. This implies that eA − x is invertible in A, as in
Section 6.13.

If t ∈ R or C, as appropriate, then rA(t x) = 0, by (10.14.1), so that t x is
quasinilpotent as well. This implies that

eA − t x ∈ G(A),(10.14.2)
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as in the preceding paragraph. It follows that

eA − t x ∈ G1(A),(10.14.3)

by the definition of G1(A), as in Section 10.10.
Now let x ∈ G(A) be given, and put

f(λ) = λx− (λ− 1) eA = λx+ (1− λ) eA.(10.14.4)

for every real or complex number λ, as appropriate. Note that

f(0) = eA, f(1) = x.(10.14.5)

Let E be the set of λ ∈ R or C, as appropriate, such that

f(λ) ∈ G(A).(10.14.6)

Thus 0, 1 ∈ E, by (10.14.5). We also have that E is an open set in R or C, as
appropriate, with respect to the standard Euclidean metric, because G(A) is an
open set in A with respect to the metric associated to ‖ · ‖A, as in Section 6.6.

If λ 6= 0, then (10.14.6) is the same as saying that

x− λ−1 (λ− 1) eA ∈ G(A).(10.14.7)

Equivalently, this means that

λ−1 (λ− 1) = 1− λ−1(10.14.8)

is not in the spectrum σA(x) of x with respect to A. If

0, 1 are in the same connected component of E,(10.14.9)

then it follows that
x ∈ G1(A).(10.14.10)

This corresponds to part of the proof of part (d) of Theorem 10.44 on p258 of
[162]. This is also related to Exercise 26 on p262 of [162].

Of course, (10.14.9) holds when

{λ ∈ R : 0 ≤ λ ≤ 1} ⊆ E.(10.14.11)

One can verify that this happens exactly when

σA(x) ∩ {λ ∈ R : λ ≤ 0} = ∅,(10.14.12)

because 0 ∈ E automatically. In the real case, (10.14.9) is equivalent to
(10.14.11), and (10.14.12) is the same as saying that

σA(x) ⊆ (0,+∞).(10.14.13)

In the complex case, there is exactly one unbounded connected component
of C \σA(x), because σA(x) is bounded, as in Section 6.8. In this case, one can
check that (10.14.9) holds if and only if

0 is in the unbounded connected component of C \ σA(x).(10.14.14)
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10.15 Some additional properties of G1(A)

Let A be an associative algebra over the real or complex numbers with a nonzero
multiplicative identity element eA. Suppose that x ∈ A satisifes

xn = eA(10.15.1)

for some positive integer n. Consider the polynomial p(t) = tn. Under these
conditions, we have that

p(σA(x)) ⊆ σA(p̃(x)) = {1},(10.15.2)

where the first step is as in Section 8.13.
In the real case, (10.15.2) implies that

σA(x) ⊆ {1}(10.15.3)

when n is odd. In the complex case, (10.15.2) implies that

C \ σA(x) is connected(10.15.4)

for all n ≥ 1, because σA(x) has only finitely many elements.
Suppose now that (A, ‖ · ‖A) is a Banach algebra, with ‖eA‖A = 1. In the

real case, we get that (10.14.10) holds when n is odd, because (10.15.3) implies
(10.14.13). In the complex case, (10.14.10) holds for every n ≥ 1, because
(10.15.4) implies (10.14.14). This corresponds to part of the proof of part (d)
of Theorem 10.44 on p258 of [162], and to Exercise 26 on p262 of [162].

Suppose from now on in this section that A is commutative. Suppose also
that w ∈ G(A) satisfies

wn ∈ G1(A)(10.15.5)

for some positive integer n. Remember that G1(A) = expA when A is commu-
tative, as in Section 10.10. Thus

wn = exp a(10.15.6)

for some a ∈ A.
Put

y = exp(n−1 a)(10.15.7)

and

z = w y−1.(10.15.8)

Observe that

zn = wn y−n = (exp a) (exp(−a)) = eA.(10.15.9)

In the real case, this implies that

z ∈ G1(A)(10.15.10)
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when n is odd, as before. In the complex case, we get that (10.15.10) holds for
any n ≥ 1.

Remember that y ∈ G1(A), as in Section 10.10. If (10.15.10) holds, then it
follows that

w = z y ∈ G1(A),(10.15.11)

because G1(A) is a subgroup of G(A).
Let [w] be the image of w under the natural quotient homomorphism from

G(A) onto the quotient group G(A)/G1(A). Thus (10.15.5) is the same as
saying that

[w]n = [wn] is the identity element in G(A)/G1(A).(10.15.12)

Similarly, (10.15.11) is the same as saying that

[w] is the identity element in G(A)/G1(A).(10.15.13)

This corresponds to part (d) of Theorem 10.44 on p258 of [162].



Part III

Algebras, norms, and
operators, 2

244



Chapter 11

Algebras, norms, and
square roots

11.1 Exponentials of nilpotent elements

Let A be an associative algebra over the real or complex numbers with a mul-
tiplicative identity element eA. Suppose that x ∈ A is nilpotent, so that xl = 0
for some positive integer l. Under these conditions, the exponential of x in A
may be defined by

expx = expA x =

∞∑
j=0

(1/j!)xj =

l−1∑
j=0

(1/j!)xj .(11.1.1)

Similarly, if t ∈ R or C, as appropriate, then (t x)l = tl xl = 0, and

exp(t x) =

l−1∑
j=0

(1/j!) tj xj .(11.1.2)

Let y be another nilpotent element of A, so that ym = 0 for some m ≥ 1.
Suppose that x and y commute, and let us check that x+ y is nilpotent as well.
More precisely,

(x+ y)l+m−1 = 0.(11.1.3)

Indeed, (x + y)l+m−1 can be expanded into a sum of products of powers of x
and y, where the sum of the powers of x and y is equal to l+m−1. This implies
that in each term, the power of x is at least l, or the power of y is at least m.

This implies that the exponential of x+y may be defined as before. We also
have that

exp(x+ y) = (exp x) (exp y),(11.1.4)

as in Section 10.4. In particular, we can take y = −x, to get that exp x is
invertible in A, with

(expx)−1 = exp(−x).(11.1.5)

245
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Let B be another associative algebra over the real or complex numbers, as
appropriate, with a multiplicative identity element eB, and let ϕ be an algebra
homomorphism from A into B with ϕ(eA) = eB. If x ∈ A is nilpotent, then
ϕ(x) is nilpotent in B, and

ϕ(expA x) = expB ϕ(x).(11.1.6)

This also works when ϕ is an oppositve algebra homomorphism, which may by
conjugate-linear in the complex case.

Suppose for the moment that A is an algebra in the strict sense over R or
C, and let δ be a derivation on A, as in Section 10.5. If δ is nilpotent as a linear
mapping from A into itself, then exp δ may be defined as a linear mapping from
A into itself, as before. In fact,

exp δ is an automorphism of A,(11.1.7)

as an algebra in the strict sense, as in Section 10.5. This corresponds to some
remarks on p8f of [97] when A is a Lie algebra.

Let A be an associative algebra over R or C with a multiplicative identity
element eA again, and let La, Ra be the left and right multiplication operators
on A associated to a ∈ A. If a is nilpotent, then it is easy to see that La and Ra

are nilpotent as elements of the algebra L(A) of linear mappings from A into
itself, so that their exponentials are defined as elements of L(V ) too. In this
case, we have that

expLa = expL(A) La = LexpA a(11.1.8)

and
expRa = expL(A)Ra = RexpA a,(11.1.9)

as in (11.1.6).
Remember that δa = La − Ra is a derivation on A, and that La and Ra

commute on A, as in Section 10.6. If a is nilpotent, then it follows that δa is
nilpotent in L(A), as in (11.1.3). We also get that

exp δa = (expLa) ◦ (expRa)
−1,(11.1.10)

as in (11.1.4). This means that

(exp δa)(x) = (expL(A) δa)(x) = (expA a)x (expA a)
−1(11.1.11)

for every x ∈ A, because of (11.1.8) and (11.1.9). This is related to some
remarks on p9 of [97].

11.2 One-sided inverses

Let A be an associative algebra over the real or complex numbers with a multi-
plicative identity element eA, and let x be an element of A. We say that w ∈ A
is a left inverse of x if

w x = eA.(11.2.1)
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Similarly, z ∈ A is a right inverse of x if

x z = eA.(11.2.2)

If w and z are left and right inverses of x in A, respectively, then

w = w (x z) = (w x) z = z.(11.2.3)

This means that x is invertible in A, with

x−1 = w = z.(11.2.4)

Let V , W be vector spaces, both real or both complex, and let T be a linear
mapping from V into W . A linear mapping L from W into V is said to be a
left inverse of T if

L ◦ T = IV ,(11.2.5)

the identity mapping on V . This means that

L(T (v)) = v(11.2.6)

for every v ∈ V , which implies that T is one-to-one on V . If V = W , then this
is the same as a left inverse of T in the algebra L(V ) of linear mappings from
V into itself.

Similarly, a linear mapping R from W into V is said to be a right inverse of
T if

T ◦R = IW .(11.2.7)

This is the same as saying that

T (R(w)) = w(11.2.8)

for every w ∈ W , which implies that T maps V onto W . If V = W , then this
is the same as a right inverse of T in L(V ).

If V and W have the same finite dimension, then it is well known that T
is one-to-one on V if and only if T (V ) = W . In this case, we get that T is
invertbile as a linear mapping from V into W when T has a left or right inverse.

Let ‖ · ‖V , ‖ · ‖W be norms on V , W , respectively, and suppose that T is
a bounded linear mapping from V into W , with respect to these norms. A
bounded linear mapping L from W into V is a left inverse of T as a bounded
linear mapping from V into W if (11.2.5) holds. This implies that

‖v‖V ≤ ‖L‖op,WV ‖T (v)‖W(11.2.9)

for every v ∈ V . If V =W , and the two norms are the same, then L is the same
as a left inverse of T in the algebra BL(V ) of bounded linear mappings from V
into itself.

Similarly, a bounded linear mapping R from W into V is said to be a right
inverse of T as a bounded linear mapping from V into W if (11.2.7) holds. One
can check that this implies that

T is an open mapping from V onto W.(11.2.10)
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If V =W , and the two norms are the same, then R is the same as a right inverse
of T in BL(V ).

Let A be any associative algebra over R or C with a multiplicative identity
element eA again, and let x, y ∈ A be given. If x y is invertible in A, then

x (y (x y)−1) = (x y) (x y)−1 = eA(11.2.11)

and
((x y)−1 x) y = (x y)−1 (x y) = eA,(11.2.12)

so that y (x y)−1 is a right inverse of x in A, and (x y)−1 x is a left inverse of y.
Similarly, if y x is invertible in A, then

y (x (y x)−1) = (y x) (y x)−1 = eA(11.2.13)

and
((y x)−1 y)x = (y x)−1 (y x) = eA,(11.2.14)

so that x (y x)−1 is a right inverse of y in A, and (y x)−1 y is a left inverse of
x in A. If x y and y x are both invertible in A, then it follows that x and y
are invertible in A, as in part (b) of Exercise 1 on p259 of [162]. If x and y
commute, then this corresponds to a remark in Section 6.13.

11.3 Topological divisors of zero

Let A be an associative algebra over the real or complex numbers with a sub-
multiplicative norm ‖ · ‖A, and let x be an element of A. Let us say that x is a
left topological divisor of zero in A if there is a sequence {zj}∞j=1 of elements of
A such that

‖zj‖A = 1(11.3.1)

for each j and
lim
j→∞

x zj = 0,(11.3.2)

as in Exercise 4 on p300 of [167]. Similarly, let us say that x is a right topological
divisor of zero in A if there is a sequence {wj}∞j=1 of elements of A such that

‖wj‖A = 1(11.3.3)

for each j and
lim
j→∞

wj x = 0,(11.3.4)

as in [167]. If there is a sequence {yj}∞j=1 of elements of A such that

‖yj‖A = 1(11.3.5)

for each j and
lim
j→∞

x yj = lim
j→∞

yj x = 0,(11.3.6)
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then we may say that x is a topological divisor of zero in A, as in Exercise 5 on
p259 of [162]. In this case, x is both a left and right topological divisor of zero,
with

wj = zj = yj(11.3.7)

for each j.
Suppose that A has a multiplicative identity element eA. If x is a left

topological divisor of zero in A, then it is easy to see that

x does not have a left inverse in A.(11.3.8)

Similarly, if x is a right topological divisor of zero in A, then

x does not have a right inverse in A.(11.3.9)

Let B be another associative algebra over the real or complex numbers, as
appropriate, with a submultiplicative norm ‖ · ‖B. Suppose that ϕ is an algebra
homomorphism from A into B that is bounded as a linear mapping. If x ∈ A
is a left or right topological divisor of zero in A, or simply a topological divisor
of zero in A, then ϕ(x) has the analogous property in B.

Suppose now that A is a Banach algebra, with a multiplicative identity
element eA. Let x ∈ A be an element of the boundary of the set G(A) of
invertible elements of A. This implies that x is not invertible in A, because
G(A) is an open set in A, as in Section 6.6, and that there is a sequence
{uj}∞j=1 of elements of G(A) that converges to x with respect to the metric
on A associated to ‖ · ‖A.

We also have that

‖u−1
j ‖A → ∞ as j → ∞(11.3.10)

under these conditions. More precisely, the norms of the u−1
j ’s are not bounded,

because x is not invertible, as in Section 6.7. This means that (11.3.10) holds
after passing to a subsequence, which would suffice for the remarks in the next
paragraph. The same argument shows that the norms of the u−1

j ’s are not
bounded along any subsequence, which implies (11.3.10). This corresponds to
Lemma 10.17 on p238 of [162].

Put

yj = u−1
j /‖u−1

j ‖A(11.3.11)

for each j, which automatically satisfies (11.3.5). One can check that (11.3.6)
holds under these conditions, so that

x is a topological divisor of zero in A.(11.3.12)

This corresponds to part (a) of Exercise 5 on p259 of [162].
Let a ∈ A be given, and remember that σA(a) is the spectrum of a with

respect to A, as in Section 6.8. Suppose that λ ∈ R or C, as appropriate, is
an element of the boundary of σA(a), with respect to the standard Euclidean
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metric on R or C, as appropriate. This implies that λ eA − a is an element of
the boundary of G(A), so that

λ eA − a is a topological divisor of zero in A,(11.3.13)

as in the preceding paragraph. This corresponds to part (a) of Exercise 4 on
p300 of [167]. Note that this could be used as another way to obtain some of
the remarks in Section 7.3.

11.4 Another condition on a norm

Let A be an associative algebra over the real or complex numbers with a sub-
multiplicative norm ‖ · ‖A. Consider the condition that there be a nonnegative
real number C such that

‖x‖A ‖y‖A ≤ C ‖x y‖A(11.4.1)

for every x, y ∈ A. It is easy to see that this implies that

0 is the only left or right topological divisor of zero in A.(11.4.2)

Of course, (11.4.2) implies that

0 is the only topological divisor of zero in A.(11.4.3)

Suppose that A is a Banach algebra, with a multiplicative identity element
eA and ‖eA‖A = 1. Note that (11.4.2) holds when every nonzero element of A
is invertible in A, because of (11.3.8) and (11.3.9). Let a ∈ A be given, and
suppose that λ ∈ R or C, as appropriate, is an element of the boundary of the
spectrum σA(a) of a with respect to A. If (11.4.3) holds, then we get that

a = λ eA,(11.4.4)

because of (11.3.13).
Remember that σA(a) is a bounded subset of R or C, as appropriate, as in

Section 6.8. If
σA(a) 6= ∅,(11.4.5)

then it follows that
∂σA(a) 6= ∅,(11.4.6)

where ∂σA(a) is the boundary of σA in R or C, as appropriate. This uses
the well-known fact that R, C are connected with respect to their standard
Euclidean metrics. If (11.4.3) holds, then we get that (11.4.4) holds for some
λ ∈ R or C, as appropriate, as in the preceding paragraph.

In the complex case, (11.4.5) holds for every a ∈ A, as in Section 6.8. This
means that

A = {λ eA : λ ∈ C}(11.4.7)

when (11.4.3) holds. This corresponds to Theorem 10.19 on p239 of [162] when
(11.4.1) holds. The analogous statement when (11.4.3) holds corresponds to
part (b) of Exercise 5 on p259 of [162].
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11.5 Some properties of the spectrum

Let A be an associative algebra over the real or complex numbers with a nonzero
multiplicative identity element eA. Also let ϕ be an algebra automorphism of A,
which is to say an algebra isomorphism of A onto itself, or an opposite algebra
isomorphism from A onto itself. As usual, we allow ϕ to be conjugate-linear in
the complex case. Remember that

ϕ(eA) = eA,(11.5.1)

as in Sections 6.3 and 6.4.
If a ∈ A and λ ∈ R or C, as appropriate, then

ϕ(λ eA − a) = λ eA − ϕ(a),(11.5.2)

except in the complex case when ϕ is conjugate-linear, for which we have

ϕ(λ eA − a) = λ eA − ϕ(a).(11.5.3)

It follows that
σA(ϕ(a)) = σA(a)(11.5.4)

in the first case, and
σA(ϕ(a)) = {λ : λ ∈ σA(a)}(11.5.5)

in the second case. The right side may also be denoted σA(a) sometimes, al-
though this notation may be used for the closure of σA(a) in R or C, as appro-
priate, as well.

In particular, if x is an invertible element of A, then conjugation by x defines
an algebra automorphism of A, and we get that

σA(x ax
−1) = σA(a),(11.5.6)

as in (11.5.4). If y ∈ A, then we can take a = y x to get that

σA(x y) = σA(y x).(11.5.7)

This corresponds to part (c) of Exercise 2 on p259 of [162].
Let x, y ∈ A be given, and suppose that

eA − x y ∈ G(A).(11.5.8)

Under these conditions, it is well known that

eA − y x ∈ G(A).(11.5.9)

This corresponds to part (a) of Exercise 2 on p259 of [162], and to the hint in
part (b) of Exercise 1 on p299 of [167]. This also corresponds to Exercise (3)
on p7 of [8] in the case of linear mappings. More precisely, one can check that

(eA − y x)−1 = e+ y (eA − x y)−1 x,(11.5.10)
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as in [162, 167]. In [8], the hint is given to look at how the formal Neumann
series for (eA − x y)−1 and (eA − y x)−1 are related, and to use that to give a
rigorous proof of (11.5.9). Indeed, these formal Neumann series are related as
in (11.5.10).

One can use this to get that

σA(x y) \ {0} = σA(y x) \ {0}.(11.5.11)

This corresponds to Exercise (4) on p7 of [8] in the case of linear operators, the
first part of part (b) of Exercise 2 on p259 of [162], and part (b) of Exercise 1
on p299 of [167].

Now let A be an associative algebra over the real or complex numbers with
a submultiplicative norm ‖ · ‖A. Thus rA(x) may be defined for x ∈ A as in
Sections 6.13 and 7.2. If x, y ∈ A, then

rA(x y) = rA(y x),(11.5.12)

as in Exercise 24 on p262 of [162]. If A is a complex Banach algebra with a
multiplicative identity element, then this can be obtained from (11.5.11), using
the relationship between rA(·) and the spectrum mentioned in Section 6.14.
This can also be shown more directly using the hint mentioned in [162], as
follows.

Observe that
(x y)j = x (y x)j−1 y(11.5.13)

for every positive integer j. This implies that

‖(x y)j‖A ≤ ‖x‖A ‖(y x)j−1‖A ‖y‖A(11.5.14)

for each j. Let r be a real number such that

rA(y x) < r,(11.5.15)

so that
‖(y x)j‖A < rj(11.5.16)

when j is sufficiently large. It follows that

‖(x y)j‖A ≤ ‖x‖A ‖y‖A rj−1(11.5.17)

when j is sufficiently large, and thus

‖(x y)j‖1/jA ≤ ‖x‖1/jA ‖y‖1/jA r1−(1/j).(11.5.18)

Using this, we get that
rA(x y) ≤ r.(11.5.19)

This implies that
rA(x y) ≤ rA(y x).(11.5.20)

Of course, the opposite inequality can be obtained in the same way, to get
(11.5.12).
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11.6 Commutativity and norms

Let (A, ‖·‖A) be a Banach algebra over the complex numbers with a multiplica-
tive identity element eA and ‖eA‖A = 1. Suppose that there is a nonnegative
real number C such that

‖x y‖A ≤ C ‖y x‖A(11.6.1)

for all x, y ∈ A. We would like to show that A is commutative, as in part (a) of
Exercise 25 on p262 of [162].

If z ∈ A is invertible, then one can check that

‖z y z−1‖A ≤ C‖y‖A(11.6.2)

for every y ∈ A, using (11.6.1). This implies that

‖(exp(λx)) y (exp(−λx))‖A ≤ C‖y‖A(11.6.3)

for all x, y ∈ A and λ ∈ C.

Let x, y ∈ A, and consider

f(λ) = fx,y(λ) = (exp(λx)) y (exp(−λx))(11.6.4)

as a function of λ ∈ C with values in A. More precisely, we would like to
consider this as a holomorphic function of λ ∈ C with values in A. The right
side may be expressed as a power series in λ with coefficients in A that converges
absolutely with respect to ‖ · ‖A for every λ ∈ C, using Cauchy products, for
instance.

In particular, if µ is a bounded linear functional on A, then

µ(f(λ)) = µ((exp(λx)) y (exp(−λx)))(11.6.5)

may be expressed as a power series in λ with complex coefficients that converges
absolutely for every λ ∈ C. Thus (11.6.5) is holomorphic as a complex-valued
function of λ ∈ C in the usual sense. This function is also bounded on C,
because of (11.6.3). Liouville’s theorem implies that this function is constant
on C, so that

µ(f(λ)) = µ(f(0))(11.6.6)

for every λ ∈ C. One can use this and the Hahn–Banach theorem to get that

f(λ) = f(0)(11.6.7)

for every λ ∈ C.

It follows that

(exp(λx)) y = y (exp(λx))(11.6.8)

for all x, y ∈ A and λ ∈ C. One can use this to get that A is commutative.
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11.7 More on commutativity and norms

Let A be an associative algebra over the real or complex numbers with a sub-
multiplicative norm ‖ · ‖A. Of course,

‖x2‖A ≤ ‖x‖2A(11.7.1)

for every x ∈ A. Suppose that there is a nonnegative real number C such that

‖x‖2A ≤ C ‖x2‖A(11.7.2)

for every x ∈ A. If x ∈ A, then one can check that

‖x‖2
l

A ≤ C2l−1 ‖x2
l

‖A(11.7.3)

for every positive integer l. This corresponds to (3) in the proof of Lemma 11.11
on p270 of [162].

Thus
‖x‖A ≤ C1−2−l

‖x2
l

‖2
−1

A(11.7.4)

for every l ≥ 1. This implies that

‖x‖A ≤ C rA(x),(11.7.5)

where rA(x) is as in Sections 6.13 and 7.2, as in (4) on p270 of [162]. If x, y ∈ A,
then it follows that

‖x y‖A ≤ C rA(x y) = C rA(y x) ≤ C ‖y x‖A,(11.7.6)

using (11.5.12) in the second step.
Suppose for the moment that A is a complex Banach algebra with a multi-

plicative identity element eA and ‖eA‖A = 1. In this case, (11.7.6) implies that
A is commutative, as in the previous section. This shows that A is commutative
when (11.7.2) holds. This corresponds to part (b) of Exercise 25 on p262 of [162]
when C = 1.

Let A be any associative algebra over R or C with a submultiplicative norm
again. Also let m ≥ 2 be an integer, and suppose that there is a nonnegative
real number C(m) such that

‖x‖mA ≤ C(m) ‖xm‖A(11.7.7)

for every x ∈ A. If n ≥ 2 is an integer, then there is a nonnegative real number
Cn(m) such that

‖x‖nA ≤ Cn(m) ‖xn‖A(11.7.8)

for every x ∈ A. This corresponds to Exercise 16 on p291 of [162]. In particular,
we can take n = 2, to get a condition like (11.7.2). One could use the same type
of arguments as before in this case as well. If A is a complex Banach algebra
with a multiplicative identity element, then it follows that A is commutative,
as in the preceding paragraph.
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If x ∈ A, then

rA(x) = lim
j→∞

‖xj‖1/jA = lim
l→∞

‖xlm‖1/(lm)
A = rA(x

m)1/m.(11.7.9)

If (11.7.5) holds for some C ≥ 0 and all x ∈ A, then

‖x‖mA ≤ Cm rA(x)
m = Cm rA(x

m) ≤ Cm ‖xm‖A(11.7.10)

for every x ∈ A. This corresponds to another part of Lemma 11.11 on p270 of
[162] when m = 2.

11.8 A continuity property

Let (V, 〈·, ·〉V ) be a real or complex Hilbert space, with associated norm ‖ · ‖V ,
and V 6= {0}. Also let f be a continuous real-valued function on the real line. If

T is a bounded self-adjoint linear mapping from V into itself, then f̃(T ) may be
defined as a bounded self-adjoint linear mapping from V into itself as in Section
8.14. More precisely, f̃(T ) only depends on the restriction of f to the spectrum
σ(T ) = σBL(V )(T ) of T with respect to the algebra BL(V ) of bounded linear
mappings from V into itself. In fact,

‖f̃(T )‖op = max{|f(λ)| : λ ∈ σ(T )},(11.8.1)

as before.
The space of bounded self-adjoint linear mappings from V into itself is a

real-linear subspace of BL(V ). Let us check that

T 7→ f̃(T )(11.8.2)

is continuous on this space, with respect to the metric associated to the operator
norm. This is a version of Exercise (3) on p51 of [8]. More precisely, if r is a
positive real number, then (11.8.2) is uniformly continuous on

{T ∈ BL(V ) : T is self-adjoint, and ‖T‖op ≤ r}.(11.8.3)

If p is a polynomial with real coefficients, then

T 7→ p̃(T )(11.8.4)

is uniformly continuous on

{T ∈ BL(V ) : ‖T‖op ≤ r}(11.8.5)

with respect to the metric associated to the operator norm. This corresponds
to a remark in Section 9.14. We also have that (11.8.4) is Lipschitz on (11.8.5)
with respect to the metric associated to the operator norm, where the constant
can be estimated as in Section 10.1. In particular, (11.8.4) has these properties
on (11.8.3).
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Otherwise, one can approximate f by polynomials uniformly on [−r, r], by
Weierstrass’ approximation theorem. Of course, if T is a bounded self-adjoint
linear mapping from V into itself with ‖T‖op ≤ r, then

σ(T ) ⊆ [−r, r].(11.8.6)

Indeed, if λ ∈ σ(T ), then
|λ| ≤ ‖T‖op ≤ r,(11.8.7)

where the first step is as in Section 6.8. In the complex case, we are also using the
fact that the spectrum of T is contained in the real line when T is self-adjoint,
as in Section 8.11.

If T is a bounded self-adjoint linear mapping from V into itself and p is a
polynomial with real coefficients, then

‖f̃(T )− p̃(T )‖op = max{|f(λ)− p(λ)) : λ ∈ σ(T )},(11.8.8)

as in (11.8.1). This implies that

‖f̃(T )− p̃(T )‖op ≤ max{|f(λ)− p(λ)| : λ ∈ [−r, r]}(11.8.9)

when ‖T‖op ≤ r, by (11.8.6). Weierstrass’ theorem implies that for each ϵ > 0
there is a polynomial p with real coefficients such that

max{|f(λ)− p(λ)| : λ ∈ [−r, r]} < ϵ.(11.8.10)

In this case, we get that
‖f̃(T )− p̃(T )‖op < ϵ(11.8.11)

when ‖T‖op ≤ r, as in (11.8.9). One can use this to get the uniform continuity
of (11.8.2) on (11.8.3), because of the analogous statement for polynomials.

11.9 More on self-adjoint operators

Let (V, 〈·, ·〉V ) be a real or complex Hilbert space again, with associated norm
‖ · ‖V , and V 6= {0}. Also let T be a bounded self-adjoint linear mapping from
V into itself, with spectrum σ(T ) = σBL(V ) with respect to BL(V ). Remember
that T is said to be nonnegative on V with respect to 〈·, ·〉V when 〈T (v), v〉V ≥ 0
for every v ∈ V , as in Section 8.10. This may be expressed by saying that

T ≥ 0(11.9.1)

on V . This is equivalent to the condition that α(T ) ≥ 0, in the notation of
Section 8.9.

Remember that σ(T ) ⊆ R in the complex case, because T is self-adjoint, as
in Section 8.11. It is well known that (11.9.1) holds if and only if

σ(T ) ⊆ {λ ∈ R : λ ≥ 0}.(11.9.2)
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This follows from the characterization of α(T ) in Section 8.12.

Let f be a continuous real-valued function on σ(T ), and let f̃(T ) be the
corresponding bounded self-adjoint linear mapping from V into itself, as in
Section 8.14. Remember that

f(σ(T )) = σ(f̃(T )),(11.9.3)

as in Section 9.5. It follows that

f̃(T ) ≥ 0(11.9.4)

on V if and only if
f ≥ 0(11.9.5)

on σ(T ), as in the preceding paragraph.
Remember that we may consider BL(V ) as an associative algebra over the

real numbers, even when V is complex, as in Section 8.14. Let A0(T ) be the
subalgebra of BL(V ), as an algebra over the real numbers, generated by T and
the identity mapping I = IV on V . Equivalently,

A0(T ) = {p̃(T ) : p is a polynomial with real coefficients}.(11.9.6)

Note that A0(T ) is commutative, and that the elements of A0(T ) are self-
adjoint.

Consider the closure
A(T ) = A0(T )(11.9.7)

of A0(T ) in BL(V ) with respect to the metric associated to the operator norm.
This is also a commutative subalgebra of BL(V ), as an algebra over the real
numbers. The elements of A(T ) are self-adjoint, as before.

Remember that
f 7→ f̃(T )(11.9.8)

is a homomorphism from C(σ(T ),R) into BL(V ), as algebras over the real
numbers, as in Section 8.14. This mapping is also an isometry with respect to
the supremum norm on C(σ(T ),R) and the operator norm on BL(V ), as in
(11.8.1). It is easy to see that (11.9.8) maps C(σ(T ),R) into A(T ), because
the continuous functions on σ(T ) defined by polynomials with real coefficients
are dense in C(σ(T ),R) with respect to the supremum metric, by the Stone–
Weierstrass theorem.

Of course, C(σ(T ),R) is complete as a metric space, with respect to the
supremum metric. This implies that the image

{f̃(T ) : f ∈ C(σ(T ),R)}(11.9.9)

of C(σ(T ),R) under (11.9.8) is complete with respect to the metric associated
to the operator norm, because (11.9.8) is an isometry, as before. It follows that
(11.9.9) is a closed set in BL(V ), with respect to the metric associated to the
operator norm, as in Section 1.6. Clearly (11.9.9) contains A0(T ), and (11.9.9)
is contained in A(T ), as in the preceding paragraph. This means that (11.9.9)
is equal to A(T ).
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11.10 Nonnegative square roots

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If f is a continuous nonnegative real-valued function on σ(T ), then f
has a unique nonnegative square root in C(σ(T ),R). This implies that every
nonnegative element of A(T ) has a unique nonnegative square root in A(T ).

Suppose now that T is nonnegative on V . It follows that there is a unique
R ∈ A(T ) such that R ≥ 0 on V and

R ◦R = T.(11.10.1)

We would like to show that R is the unique square root of T among all non-
negative self-adjoint bounded linear mappings from V into itself, as in Theorem
12.33 on p3.14 of [162]. Let B be a nonnegative self-adjoint bounded linear
mapping from V into itself such that

B ◦B = T.(11.10.2)

The same remarks as in the previous section and at the beginning of this section
can be used for B in place of T . Thus we let A0(B) be the subalgebra of BL(V ),
as an algebra over the real numbers, generated by B and I, and we let A(B) be
its closure in BL(V ).

Of course, T ∈ A0(B), by (11.10.2). Note that B is the unique nonnegative
square root of T in A(B), by the remarks at the beginning of the section. We
also have that

A0(T ) ⊆ A0(B),(11.10.3)

by (11.10.2). This implies that

A(T ) ⊆ A(B).(11.10.4)

In particular, R ∈ A(B), so that B = R.
Let A be an associative algebra over the real or complex numbers with a

multiplicative identity element eA. If x, y ∈ A satisfy

x = y2,(11.10.5)

and if x is invertible in A, then y is invertible in A too, as in Section 6.13.

11.11 Polar decompositions

Let (V, 〈·, ·〉V ) be a real or complex Hilbert space, with associated norm ‖ · ‖V ,
and V 6= {0}. If T is any bounded linear mapping from V into itself, then
T ∗ ◦ T is a bounded self-ajoint linear mapping from V into itself that is also
nonnegative, as in Section 8.10. This implies that there is a unique bounded
self-adjoint linear mapping P from V into itself that is nonnegative on V and
satisfies

P ◦ P = T ∗ ◦ T,(11.11.1)
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as in the previous section.
Of course, (11.11.1) is equivalent to saying that

〈(P ◦ P )(v), w〉V = 〈(T ∗ ◦ T )(v), w〉V(11.11.2)

for all v, w ∈ V . This implies that

〈(P ◦ P )(v), v〉V = 〈(T ∗ ◦ T )(v), v〉V(11.11.3)

for every v ∈ V . Conversely, (11.11.3) implies (11.11.2), using suitable polariza-
tion identities, as in Section 8.5. This also uses the fact that P ◦ P and T ∗ ◦ T
are self-adjoint in the real case, to get that both sides of (11.11.2) are symmetric
bilinear forms on V .

Observe that (11.11.3) is the same as saying that

〈P (v), P (v)〉V = 〈T (v), T (v)〉V(11.11.4)

for every v ∈ V . Equivalently, this means that

‖P (v)‖V = ‖T (v)‖V(11.11.5)

for every v ∈ V . It follows that P is the unique bounded self-adjoint linear
mapping from V into itself that is nonnegative and satisfies (11.11.5). This
corresponds to Theorem 12.34 on p314 of [162].

Suppose now that T is invertible on V , so that T ∗ is invertible, and thus
T ∗ ◦T is invertible too. This implies that P is invertible on V as well, as in the
previous section. Put

U = T ◦ P−1,(11.11.6)

so that
T = U ◦ P.(11.11.7)

Note that U is invertible on V .
Observe that U∗ = P−1 ◦ T ∗, so that

U∗ ◦ U = P−1 ◦ T ∗ ◦ T ◦ P−1 = I.(11.11.8)

This means that
U−1 = U∗,(11.11.9)

because U is invertible. Thus U is a unitary mapping from V onto itself, or
equivalently an orthogonal transformation on V in the real case. One could also
use (11.11.4) to get that 〈·, ·〉V is invariant under U .

Conversely, suppose that (11.11.7) holds for some unitary mapping U on V
and bounded self-adjoint linear mapping P from V into itself that is nonnegative
on V . One can check directly that (11.11.1) holds, or equivalently that (11.11.5)
holds. This implies that P is uniquely determined by T , as before. It follows
that U is uniquely determined by T as well, because P is invertible. This
corresponds to part (a) of Theorem 12.35 on p315 of [162].

The expression (11.11.7) for T is called the polar decomposition of T .
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Suppose that T is normal on V , in the sense that T commutes with T ∗,
so that T ∗ ◦ T commutes with T and T ∗. If P is the nonnegative self-adjoint
square root of T ∗ ◦ T , as before, then P is in the closure of the subalgebra of
BL(V ), as an algebra over the real numbers, generated by T ∗ ◦ T and I, as
in the previous section. This means that P commutes with T and T ∗ too, so
that the corresponding unitary operator U commutes with T and T ∗ as well. In
particular, U commutes with T ∗ ◦ T , and thus also with P . This corresponds
to part of part (b) of Theorem 12.35 on p315 of [162], which will be discussed
further in the next section.

11.12 More on polar decompositions

Let (V, 〈·, ·〉V ) be a real or complex Hilbert space again, with associated norm
‖ · ‖V , and V 6= {0}, and let T be a bounded linear mapping from V into itself.
An expression for T as in (11.11.7), where P is a bounded nonnegative self-
adjoint linear mapping from V into itself, and U is a unitary mapping from V
onto itself, is called a polar decomposition of T , as on p315 of [162]. Of course,
(11.11.7) is the same as saying that

T (v) = U(P (v))(11.12.1)

for every v ∈ V .
In this case, P satisfies (11.11.5), or equivalently

〈P (v), P (w)〉V = 〈T (v), T (w)〉V(11.12.2)

for every v, w ∈ V , because U is unitary. This means that (11.11.2) holds, so
that (11.11.1) holds. It follows that P is uniquely determined by T , as in Section
11.10, and as mentioned in [162].

This implies that the restriction of U to P (V ) is uniquely determined by T
as well. More precisely, the restriction of U to the closure P (V ) of P (V ) in V
is uniquely determined by T .

Note that
kerP = kerT,(11.12.3)

by (11.11.5). We also have that

kerP = P (V )⊥,(11.12.4)

as in Section 8.11, because P is self-adjoint, and thus normal. Thus P (V ) is
dense in V exactly when kerP = {0}, which is the same as saying that

kerT = {0},(11.12.5)

because of (11.12.3). In this case, it follows that U is uniquely determined by
P . This was mentioned in the previous section when T is invertible on V .

In order to try to get a polar decomposition for T , we can start with the
unique bounded nonnegative self-adjoint linear mapping P from V into itself
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that satisfies (11.11.1). We would like to define U initially as a mapping from
P (V ) onto T (V ) by (11.12.1). More precisely, U is well-defined on P (V ) in this
way because of (11.12.3). Remember that (11.11.1) is equivalent to (11.11.2),
which is equivalent to (11.12.2). This implies that U is unitary as a linear
mapping from P (V ) onto T (V ), with respect to the restrictions of the inner
product to these linear subspaces.

Equivalently, U is an isometric linear mapping from P (V ) onto T (V ) with
respect to the restriction of the norm to these linear subspaces. This implies
that U has a unique extension to an isometric linear mapping from P (V ) onto
T (V ), as in Section 2.2. This uses the fact that V is complete with respect
to the metric associated to ‖ · ‖V , so that P (V ) and T (V ) are complete with
respect to the restrictions of the metric to these linear subspaces, as in Section
1.6. Let us also use U to denote this extension, which is unitary with respect
to the restrictions of the inner product on V to P (V ) and T (V ).

Thus a unitary mapping corresponds exactly to an extension of U to a uni-
tary mapping from V onto itself. Such an extension of U should map P (V )⊥

onto T (V )⊥, and is uniquely determined by this mapping. Remember that

kerT ∗ = T (V )⊥,(11.12.6)

as in Section 8.11. This means that extensions of U to unitary mappings from
V onto itself correspond exactly to unitary mappings from ker T onto kerT ∗, if
there are any, because of (11.12.3) and (11.12.4).

Suppose for the moment that T is normal, so that

kerT = kerT ∗,(11.12.7)

as in Section 8.11. In this case, extensions of U to unitary mappings from V
onto itself correspond exactly to unitary mappings from ker T onto itself, as in
the preceding paragraph. Let us simply take the extension corresponding to the
identity mapping on ker T , which we shall denote U as well. This corresponds
to part (b) of Theorem 12.35 on p315 of [162].

Remember that P commutes with T and T ∗ when T is normal, as mentioend
at the end of the previous section. One can check directly that U commutes with
P and T under these conditions, which is another part of part (b) of Theorem
12.35 on p315 of [162]. This implies that U commutes with T ∗ too, because
U∗ = U−1.

If V has finite dimension, then P (V ) and T (V ) have the same codimension in
V , because they have the same dimension. This implies that U can be extended
to a unitary mapping from V onto itself, as mentioned on p316 of [162].

Of course, any extension of U to a bounded linear mapping from V into itself
satisfies (11.11.7), because that only involves the restriction of U to P (V ). Such
an extension corresponds exactly to a bounded linear mapping from P (V )⊥ into
V . The extension defined by taking U = 0 on P (V )⊥ is called a partial isometry
on V , as on p316 of [162].
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11.13 Commuting with adjoints

Let A be an associative algebra over the real or complex numbers with an
involution x 7→ x∗ that may be conjugate-linear in the complex case. If x, y ∈ A
commute, then

x∗ y∗ = y∗ x∗.(11.13.1)

In some case one might also like to have that

x y∗ = y∗ x,(11.13.2)

which is the same as saying that

x∗ y = y x∗.(11.13.3)

Of course, x automatically commutes with itself, but it may not commute with
x∗.

Suppose that x commutes with y again. If x is self-adjoint or anti-self-
adjoint, then (11.13.3) holds, so that (11.13.2) holds. If A has a multiplicative
identity element eA and x is invertible in A, then x−1 commutes with y. If
x∗ = x−1, then it follows that (11.13.3) holds, so that (11.13.2) holds again.

Let (V, 〈·, ·〉V ) be a complex Hilbert space with associated norm ‖ · ‖V and
V 6= {0}, and let A, B, and T be bounded linear mappings from V into itself.
Suppose that A, B are normal, and that

A ◦ T = T ◦B.(11.13.4)

Under these conditions,

A∗ ◦ T = T ◦B∗,(11.13.5)

as in Theorem 12.16 on p300 of [162]. This was initially shown by Fuglede when
A = B, and extended to this formulation by Putnam. The proof that follows
was found by Rosenblum, as in [162].

Using (11.13.4), we get that

Al ◦ T = T ◦Bl(11.13.6)

for all positive integer l. This implies that

(exp(λA)) ◦ T = T ◦ (exp(λB))(11.13.7)

for all λ ∈ C. Equivalently, this means that

T = (exp(−λA)) ◦ T ◦ (exp(λB))(11.13.8)

for every λ ∈ C.
Put

f(λ) = (exp(λA∗)) ◦ T ◦ (exp(−λB∗))(11.13.9)
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for every λ ∈ C. Observe that

f(λ) = (exp(λA∗ − λA)) ◦ T ◦ (exp(−λB∗ + λB))(11.13.10)

for every λ ∈ C, because of (11.13.8), and the normality of A, B. We also have
that

exp(λA∗ − λA), exp(−λB∗ + λB)(11.13.11)

are unitary operators on V for every λ ∈ C, because

λA∗ − λA, −λB∗ + λB(11.13.12)

are anti-self-adjoint on V . This implies that

‖f(λ)‖op = ‖T‖op(11.13.13)

for every λ ∈ C.
We may consider f(λ) as a holomorphic function of λ ∈ C with values in

the algebra BL(V ) of bounded linear mappings from V into itself. In fact, f(λ)
may be expressed as an absolutely convergent power series in λ with coefficients
in BL(V ), using Cauchy products. In particular, if v, w ∈ V , then

fv,w(λ) = 〈(f(λ))(v), w〉V(11.13.14)

is a holomorphic complex-valued function of λ ∈ C. Note that

|fv,w(λ)| ≤ ‖T‖op ‖v‖V ‖w‖V(11.13.15)

for every λ ∈ C, because of (11.13.13).
Thus Liouville’s theorem implies that fv,w(λ) is constant as a function of

λ ∈ C, so that
fv,w(λ) = fv,w(0)(11.13.16)

for every λ ∈ V . This means that

(exp(λA∗)) ◦ T = T ◦ (exp(λB∗))(11.13.17)

for every λ ∈ C. One can get (11.13.5) by considering the derivative of both
sides of (11.13.17) in λ at 0.

The analogous statement for real Hilbert spaces can be reduced to the com-
plex case using complexification. This will be discussed further in the next
chapter.

11.14 Similar normal operators

Let (V, 〈·, ·〉V ) be a complex Hilbert space with associated norm ‖ · ‖V and
V 6= {0} again. Also let A, B, and T be bounded linear mappings from V into
itself such that A and B are normal, T is invertible, and

A = T ◦B ◦ T−1.(11.14.1)
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If T = U ◦ P is the polar decomposition of T , as in Section 11.11, then

A = U ◦B ◦ U−1.(11.14.2)

This is Theorem 12.36 on p316 of [162], which is due to Putnam.
Of course, (11.14.1) is the same as saying that A ◦ T = T ◦B. This implies

that A∗ ◦ T = T ◦B∗, as in the previous section. It follows that

T ∗ ◦A = (A∗ ◦ T )∗ = (T ◦B∗)∗ = B ◦ T ∗.(11.14.3)

Remember that P ◦ P = T ∗ ◦ T , so that

B ◦ P ◦ P = B ◦ T ∗ ◦ T = T ∗ ◦A ◦ T = T ∗ ◦ T ◦B = P ◦ P ◦B.(11.14.4)

We also have that P is in the closure of the subalgebra of BL(V ), as an
algebra over the real numbers, generated by T ∗ ◦ T and I, as in Section 11.11.
This means that P is in the closure of the subalgebra of BL(V ), as an algebra
over the real numbers, generated by P ◦ P and I. It follows that

B ◦ P = P ◦B,(11.14.5)

because of (11.14.4). It is easy to obtain (11.14.2) from (11.14.1) and (11.14.5).
The arguments in this section also work for real Hilbert spaces, as long as

we have (11.13.5). That will be discussed in the next chapter, as mentioned in
the previous section.

11.15 More on square roots

Let A be an associative algebra over the real or complex numbers with a mul-
tiplicative identity element eA and a submultiplicative norm ‖ · ‖A. Put

f(x) = (eA + x)2 = eA + 2x+ x2(11.15.1)

for each x ∈ A. Thus

f(x)− f(y) = 2 (x− y) + x2 − y2(11.15.2)

= 2 (x− y) + x (x− y) + (x− y) y

for every x, y ∈ A.
It follows that

2 ‖x− y‖A ≤ ‖f(x)− f(y)‖A + (‖x‖A + ‖y‖A) ‖x− y‖A(11.15.3)

for every x, y ∈ A. Equivalently, this means that

(2− ‖x‖A − ‖y‖A) ‖x− y‖A ≤ ‖f(x)− f(y)‖A(11.15.4)

for every x, y ∈ A. In particular, if

‖x‖A + ‖y‖A < 2(11.15.5)
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and
f(x) = f(y),(11.15.6)

then we get that
x = y.(11.15.7)

If x ∈ A, then
2 ‖x‖A ≤ ‖f(x)− eA‖A + ‖x‖2A,(11.15.8)

by (11.15.3), with y = 0. In particular,

‖x‖A ≤ ‖f(x)− eA‖A(11.15.9)

when ‖x‖A ≤ 1. More precisely, (11.15.8) implies that

1− ‖f(x)− eA‖A ≤ 1− 2 ‖x‖A + ‖x‖2A = (1− ‖x‖A)2.(11.15.10)

If ‖x‖A, ‖f(x)− eA‖A ≤ 1, then it follows that

(1− ‖f(x)− eA‖A)1/2 ≤ 1− ‖x‖A.(11.15.11)

This means that
‖x‖A ≤ 1− (1− ‖f(x)− eA‖A)1/2.(11.15.12)

Let a ∈ A be given, and suppose that we want to find x ∈ A such that

f(x) = eA + a.(11.15.13)

Put
g(x) = x+ (1/2)x2(11.15.14)

for each x ∈ A, so that (11.15.13) is the same as saying that

g(x) = (1/2) a.(11.15.15)

Similarly, put
ϕa(x) = (1/2) a− (1/2)x2(11.15.16)

for each x ∈ A, so that (11.15.15) is equivalent to

ϕa(x) = x.(11.15.17)

If x, y ∈ A, then

ϕa(x)− ϕa(y) = (1/2) (y2 − x2)(11.15.18)

= (1/2) (y − x) y + (1/2)x (y − x).

This implies that

‖ϕa(x)− ϕa(y)‖A ≤ (1/2) (‖x‖A + ‖y‖A) ‖x− y‖A.(11.15.19)

Note that
‖ϕa(x)‖A ≤ (1/2) ‖a‖A + (1/2) ‖x‖2A(11.15.20)
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for every x ∈ A.
Let B(0, r) be the closed ball in A centered at 0 with radius r ≥ 0 with

respect to the metric associated to ‖ · ‖A. If x, y ∈ B(0, r), then

‖ϕa(x)− ϕa(y)‖A ≤ r ‖x− y‖A,(11.15.21)

by (11.15.19). Similarly, if a, x ∈ B(0, r), then

‖ϕa(x)‖A ≤ (1/2) r + (1/2) r2,(11.15.22)

by (11.15.20). If r ≤ 1, then (11.15.22) implies that

‖ϕa(x)‖ ≤ r.(11.15.23)

This means that
ϕa(B(0, r)) ⊆ B(0, r)(11.15.24)

when ‖a‖A ≤ r and r ≤ 1.
Suppose that A is complete with respect to the metric associated to ‖·‖A, so

that B(0, r) with respect to the restriction of this metric to B(0, r), as in Section
1.6. If ‖a‖A < 1, then we take take r = ‖a‖A in (11.15.21) and (11.15.24) to get
that ϕa has a unique fixed point xa in B(0, ‖a‖A), by the contraction mapping
theorem. This means that xa is the unique element of B(0, ‖a‖A) that satisfies
(11.15.15), or equivalently (11.15.13).



Chapter 12

Complexifications, nets,
and C∗ algebras

12.1 Complexifying real vector spaces

Let V be a vector space over the real numbers. We would like to define the
complexification of V , which is a vector space VC over the complex numbers.
We start by defining VC as a vector space over the real numbers to be the
Cartesian product V × V with itself, with respect to coordinatewise addition
and scalar multiplication. This is the same as the direct sum of V with itself,
as a vector space over R, as in Section 5.12.

Let us define multiplication by i on VC by putting

i (v1, v2) = (−v2, v1)(12.1.1)

for every v1, v2 ∈ V . Note that

i (i (v1, v2)) = i (−v2, v1)) = (−v1,−v2)(12.1.2)

for every v1, v2 ∈ V . One can use (12.1.1) to define multiplication by any
complex number on VC in an obvious way, using also scalar multiplication by
real numbers. One can check that this makes VC into a vector space over the
complex numbers.

We may identify v ∈ V with (v, 0) ∈ VC, so that V corresponds to V × {0},
as a real-linear subspace of VC. Thus (v1, v2) ∈ VC may be expressed as v1+i v2.
Observe that

CV (v1 + i v2) = v1 − i v2(12.1.3)

defines a one-to-one conjugate-linear mapping from VC onto itself.
Suppose for the moment that V is a linear subspace of the space of real-

valued functions on a nonempty set X. In this case, VC may be identified with
the linear subspace of the space of all complex-valued functions on X whose
real and imaginary parts are elements of V . Using this identification, (12.1.3)

267
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corresponds to taking the complex conjugate of a complex-valued function on
X.

Let W be a vector space over the complex numbers, which may also be
considered as a vector space over the real numbers. If T is a real-linear mapping
from V into W , then

TC(v1 + i v2) = T (v1) + i T (v2)(12.1.4)

define s complex-linear mapping from VC into W . This is the unique complex-
linear mapping from VC into W that agrees with T on V .

Let Y be another vector space over the real numbers, and let YC be its
complexification, as before. Suppose that R is a linear mapping from V into Y ,
which may be considered as a real-linear maping from V into YC, by identifying
Y with a real-linear subspace of YC, as before. This leads to a complex-linear
mapping RC from VC into YC, as in the preceding paragraph. This may be
called the complexification of R. Observe that

RC ◦ CV = CY ◦RC,(12.1.5)

where CY is defined on YC as in (12.1.3).
Conversely, let A be a complex-linear mapping from VC into YC such that

A ◦ CV = CY ◦A.(12.1.6)

This implies that A maps V into Y , as real-linear subspaces of VC and YC,
respectively. Let A0 be the restriction of A to V , considered as a real-linear
mapping into Y . It is easy to see that

A = (A0)C.(12.1.7)

Let Z be another vector space over the real numbers, with complexification
ZC, and let B be a linear mapping from Y into Z. This leads to a complex-linear
mapping BC from YC into ZC, as before. Similarly, B ◦ R is a linear mapping
from V into Z, which leads to a complex-linear mapping (B ◦R)C from VC into
ZC. One can check that

(B ◦R)C = BC ◦RC.(12.1.8)

12.2 Complexifying inner products

Let V be a vector space over the real numbers with an inner product 〈·, ·〉V ,
and let VC be the complexification of V , as in the previous sections. The
complexification of 〈·, ·〉V may be defined on VC by

〈v1 + i v2, w1 + i w2〉VC
= 〈v1, v2〉V + i 〈v2, w1〉V(12.2.1)

−i 〈v1, w2〉V + 〈v2, w2〉V .
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It is easy to see that this defines a sesquilinear form on VC. In fact, it is an
inner product on VC, because

〈v1 + i v2, v1 + i v2〉VC
= 〈v1, v1〉V + 〈v2, v2〉V(12.2.2)

for every v1, v2 ∈ V .

Note that

Re〈v1 + i v2, w1 + i w2〉VC
= 〈v1, w1〉V + 〈v2, w2〉V(12.2.3)

for all v1, v2, w1, w2 ∈ V . This is the same as the inner product on C, as a vector
space over the real numbers, and considered as the direct sum of two copies of
V , obtained from 〈·, ·〉V on both copies of V as in Section 5.12. If ‖ · ‖V , ‖ · ‖VC

are the norms on V , VC, respectively, associated to their inner products, then

‖v1 + i v2‖2VC
= ‖v1‖2V + ‖v2‖2V(12.2.4)

for all v1, v2 ∈ V . If V is complete with respect to the metric associated to
‖ · ‖V , then VC is complete with respect to the metric associated to ‖ · ‖VC

, as
before.

Let (W, 〈·, ·〉W ) be another real inner product space, with complexification
(WC, 〈·, ·〉WC

), and associated norms ‖·‖W , ‖·‖WC
, respectively. Also let T be a

linear mapping from V into W , and let TC be the corresponding complex-linear
mapping from VC into WC, as in the previous section. If v1, v2 ∈ V , then

‖T (v1 + i v2)‖2WC
= ‖T (v1) + i T (v2)‖2WC

= ‖T (v1)‖2W + ‖T (v2)‖2W ,(12.2.5)

where the second step is as in (12.2.4). If T is a bounded linear mapping from V
into W , then one can use this to check that TC is bounded as a linear mapping
from VC into WC, with

‖TC‖op,VCWC
= ‖T‖op,V W .(12.2.6)

Suppose that V , W are real Hilbert spaces, so that VC, WC are complex
Hilbert spaces, as before. If T is a bounded linear mapping from V into W ,
then the adjoint T ∗ of T is a bounded linear mapping from W into V , as in
Section 3.5. This leads to a bounded linear mapping (T ∗)C from WC into VC,
as in the preceding paragraph. One can verify that

(T ∗)C = (TC)
∗,(12.2.7)

the adjoint of TC. Thus one may denote this operator simply as T ∗
C.

One can use this to get the analogue of the statement in Section 11.13 for
real Hilbert spaces from the previous version for complex Hilbert spaces, as
mentioned earlier. This permits one to use the same arguments as in Section
11.14 for real Hilbert spaces, as before.
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12.3 Convergence of nets

A binary relation � on a set A is said to be a partial ordering if it is reflexive,
transitive, and satisfies

a = b when a � b and b � a(12.3.1)

for all a, b ∈ A. Sometimes (12.3.1) is not included in the definition of a partial
ordering, which may not lead to any additional complications for the present
purposes. The term pre-order may also be used for binary relations that are
reflexive and transitive, but may not satisfy (12.3.1). If a partial ordering � on
A has the additional property that for every a, b ∈ A,

a � b or b � a,(12.3.2)

then � is said to be a linear ordering or total ordering on A.
A partially-ordered set (A,�) is said to be a directed system if

for every a, b ∈ A there is a c ∈ A such that a, b � c.(12.3.3)

Note that linearly-ordered sets are directed systems. Similarly, let us say that a
pre-ordered set (A,�) is a pre-directed system if it satisfies (12.3.3). As before,
the term directed system is sometimes used for this, which may not lead to
additional complications for the present purposes.

Let (A,�) be a nonempty directed system or pre-directed system, and let
Z be a set. A net of elements of Z indexed by A is a family {za}a∈A that
associates to each a ∈ A an element za of Z. This is the same as a function on
A with values in Z, but we shall normally use this notation and terminology in
this situation. If A is the set of positive integers with the standard ordering,
then a net of elements of Z indexed by A is the same as a sequence of elements
of Z.

Suppose now that Z is a metric or topological space. A net {za}a∈A of
elements of Z indexed by A is said to converge to a point z ∈ Z if for every
open set V ⊆ Z with z ∈ V there is an a ∈ A such that

zb ∈ V(12.3.4)

for every b ∈ A with a � b. If (Z, dZ) is a metric space, then this is equivalent
to asking that for each ϵ > 0 there be an a ∈ A such that

dZ(z, zb) < ϵ(12.3.5)

for every b ∈ A with a � b. If A is the set of positive integers with the standard
ordering, then convergence of a net of elements of Z indexed by A is the same
as convergence of a sequence of elements of Z.

Let Y be a topological space, and let B(y) be a local base for the topology
of Y at a point y ∈ Y . If U, V ∈ B(y), then put

U � V when V ⊆ U.(12.3.6)
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One can check that B(y) is a directed system with respect to �. Let {yU}U∈B(y)

be a net of elements of Y indexed by B(y). If

yU ∈ U(12.3.7)

for every U ∈ B(y), then it is easy to see that

{yU}U∈B(y) converges to y(12.3.8)

as a net of elements of Y .
One can check that the limit of a convergent net in a metric space is unique.

Similarly, the limit of a convergent net in a Hausdorff topological space is unique.
Let (A,�) be a nonempty directed system or pre-directed system again, and

let (Z, dZ) be a metric space. A net {za}a∈A of elements of Z is said to be a
Cauchy net if for every ϵ > 0 there is an a ∈ A such that

dZ(zb, zc) < ϵ(12.3.9)

for every b, c ∈ A with a � b, c. If A is the set of positive integrs with the
standard ordering, then a Cauchy net of elements of Z indexed by A is the
same as a Cauchy sequence in Z. It is easy to see that a convergence net of
elements of Z is a Cauchy net.

If Z is complete with respect to dZ , and {za}a∈A is a Cauchy net of elements
of Z indexed by A, then it is well known that {za}a∈A converges to an element
z of Z. Indeed, for each positive integer j there is an aj ∈ A such that

dZ(zb, zc) < 1/j(12.3.10)

for every b, c ∈ A with aj � bj , cj . We can also choose αj ∈ A recursively for
each j ≥ 1 in such a way that

aj � αj(12.3.11)

and
αj−1 � αj(12.3.12)

when j ≥ 2, because A is a (pre-)directed system. It is easy to see that {zαj
}∞j=1

is a Cauchy sequence in Z under these conditions. If Z is complete, then
{zαj

}∞j=1 converges to an element z of Z, and one can verify that {za}a∈A

converges to z as well.

12.4 More on convergence of nets

Let (A,�) be a nonempty directed or pre-directed system again, and let Y , Z
be metric or topological spaces. Suppose that {ya}a∈A is a net of elements of
Y indexed by A that converges to y ∈ Y . If a mapping ϕ from Y into Z is
continuous at y, then it is easy to see that

{ϕ(ya)}a∈A converges to ϕ(y),(12.4.1)
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as a net of elements of Z.
Conversely, suppose that ϕ is not continuous at y. This means that there is

an open set W ⊆ Z such that ϕ(y) ∈W and

ϕ(U) 6⊆W(12.4.2)

for any open set U ⊆ Y with y ∈ U . Let B(y) be a local base for the topology
of Y at y, which may be considered as a directed system with as in the previous
section. If U ∈ B(y), then let yU be an element of U such that

ϕ(yU ) 6∈W.(12.4.3)

Under these conditions, {yU}U∈B(x) converges to y in Y , as in (12.3.8), but
{ϕ(yU )}U∈B(x) does not converge to ϕ(y) in Z, because of (12.4.3).

Now le Y be a nonempty set, let {fa}a∈A be a net of functions on Y with
values in Z indexed by A, and let f be another Z-valued function on Y . We
say that {fa}a∈A converges pointwise to f on Y if

{fa(y)}a∈A converges to f(y)(12.4.4)

in Z for every y ∈ Y . Similarly, if (Z, dZ) is a metric space, then {fa}a∈A

converges to f uniformly on Y if for every ϵ > 0 there is an a ∈ A such that

dZ(f(y), fb(y)) < ϵ(12.4.5)

for every b ∈ A with a � b and y ∈ Y . These definitions reduce to the usual ones
for sequences when A is the set of positive integers with the standard ordering.
Of course, uniform convergence automatically implies pointwise convergence.

Suppose that (Z, dZ) is a metric space, and let B(Y, Z) be the space of
all bounded mappings from Y into Z, as in Section 7.8. As in the case of
sequences, convergence of a net in B(Y, Z) with respect to the supremum metric
is equivalent to uniform convergence. Let {fa}a∈A be any net of Z-valued
function on Y indexed by A again, and let f be another Z-valued function on
Y . If Y is a metric or topological space, y ∈ Y , fa is continuous at y for each
a ∈ A, and {fa}a∈A converges to f uniformly on Y , then

f is continuous at y(12.4.6)

as well. If Y is a metric space, fa is uniformly continuous on Y for each a ∈ A,
and {fa}a∈A converges to f uniformly on Y , then

f is uniformly continuous on Y(12.4.7)

too.
Suppose now that Z is a vector space over the real or complex numbers with

a norm ‖ · ‖Z , let {za}a∈A be a net of elements of Z indexed by A, and let
z be another element of Z. Suppose for the moment that {za}a∈A converges
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to z with respect to the metric on Z associated to ‖ · ‖Z . If t ∈ R or C, as
appropriate, then one can check that

{t za}a∈A converges to t z in Z.(12.4.8)

Similarly, if {wa}a∈A is a net of elements of Z that converges to w ∈ Z, then

{wa + za}a∈A converges to w + z in Z.(12.4.9)

We say that {za}a∈A converges weakly to z ∈ Z if for every bounded linear
functional λ on Z,

{λ(za)}a∈A converges to λ(z)(12.4.10)

in R or C, as appropriate. If A is the set of positive integers with the standard
ordering, then this is the same weak convergence of sequences, as in Section
4.9. Otherwise, this is the same as the convergence of the net with respect
to the weak topology on Z. Weak convergence is implied by convergence with
respect to the metric associated to the norm, as before. The weak limit of a
net in Z is unique when it exists, because the dual space Z ′ of bounded linear
functionals on Z separates points in Z, by the Hahn–Banach theorem. Note
that weak convergence of nets satisfies the same type of properties for sums and
scalar multiples of convergent nets as in the preceding paragraph. This follows
from the analogous statements for convergent nets in R and C, which may be
considered as particular cases of the previous statements.

Suppose that Y is another vector space over the real or complex numbers,
as appropriate, with a norm ‖ · ‖Y . Also let {Ta}a∈A be a net of bounded linear
mappings from Y into Z indexed by A, and let T be another bounded linear
mapping from Y into Z. Under these conditions, {Ta}a∈A converges to T with
respect to the strong operator topology on the space BL(Y, Z) of bounded linear
mappings from Y into Z if and only if {Ta}a∈A converges to T pointwise on Y . If
A is the set of positive integers with the standard ordering, then this corresponds
to the type of convergence discussed in Section 4.4. If {Ta}a∈A converges to T
with respect to the metric on BL(Y, Z) associated to the operator norm, then
it is easy to see that {Ta}a∈A converges to T pointwise on Y .

In particular, we can take Z = R or C, with the standard absolute value
function as the norm. Let {µa}a∈A be a net of bounded linear functionals on Y
indexed by A, and let µ be another bounded linear functional on Y . Pointwise
convergence of {µa}a∈A to µ on Y is equivalent to the convergence of {µa}a∈A

to µ with respect to the weak∗ topology on the dual space Y ′ of bounded linear
functionals on Y with respect to ‖ · ‖Y . If A is the set of positive integers
with the standard ordering, then this corresponds to the type of convergence
mentioned in Section 4.5.

12.5 Nets and approximate eigenvalues

Let V be a vector space over the real or complex numbers, and let v be a nonzero
element of V . Consider the collection Av of linear mappings T from V into itself
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such that v is an eigenvector of T with eigenvalue λv(T ). Note that λv(T ) is
unique in this case, because v 6= 0. It is easy to see that Av is a subalgebra
of the algebra L(V ) of all linear mappings from V into itself, and of course Av

contains the identity mapping I = IV on V . We also have that λv is an algebra
homomorphism from Av into R or C, as appropriate, with λv(I) = 1.

Suppose now that ‖ · ‖V is a norm on V , and that (A,�) is a nonempty
directed or pre-directed system. Let {va}a∈A be a net of elements of V such
that

‖va‖V = 1(12.5.1)

for each a ∈ A. Consider the collection A of bounded linear mappings T from
V into itself for which there is a real or complex number λ(T ), as appropriate,
such that

{‖T (va)− λ(T ) va‖V }a∈A converges to 0,(12.5.2)

as a net of real numbers. One can check that λ(T ) is uniquely determined by
(12.5.2), and satisfies

|λ(T )| ≤ ‖T‖op.(12.5.3)

We also have that λ(T ) is an approximate eigenvalue of T , as in Section 9.3.
It is easy to see that A is a linear subspace of the space BL(V ) of all bounded

linear mappings from V into itself, and that λ defines a linear functional on A.
In fact, one can verify that A is a subalgebra of BL(V ), and that λ is an algebra
homomorphism from A into R or C, as appropriate. Clearly I ∈ A, with
λ(I) = 1.

Let us check that A is a closed set in BL(V ), with respect to the metric
associated to the operator norm. Let A be the closure of A in BL(V ) with
respect to this metric. There is a unique extension of λ to a bounded linear
functional on A with respect to the operator norm, as in Section 2.2, and we
shall also use λ to denote this extension. If T ∈ A, then one can verify that
(12.5.2) holds, by approximating T by elements of A. This implies that T ∈ A,
so that A = A.

Now let (V, 〈·, ·〉V ) be a real or complex Hilbert space, and let T0 be a
bounded linear mapping from V into itself that is normal, in the sense that
it commutes with its adjoint. Also let µ0 be a real or complex number, as
appropriate, in the spectrum of T0. This implies that µ0 is an approximate
eigenvalue of T0, as in Section 9.5.

It follows that there is a sequence {vj}∞j=1 of unit vectors in V such that

lim
j→∞

‖T0(vj)− µ0 vj‖V = 0,(12.5.4)

as in Section 9.3. We also get that

lim
j→∞

‖T ∗
0 (vj)− µ0 vj‖V = 0(12.5.5)

in the real case, and
lim
j→∞

‖T ∗
0 (vj)− µ0 vj‖V = 0(12.5.6)
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in the complex case, as in Section 9.5.
Consider the collection A0 of bounded linear mappings T from V into itself

for which there is a real or complex number λ0(T ), as appropriate, such that

lim
j→∞

‖T (vj)− λ0(T ) vj‖V = 0.(12.5.7)

This is a closed subalgebra of BL(V ) that contains I, as before, and which
contains T0, T

∗
0 in this case.

12.6 C∗ Algebras

Let (A, ‖ ·‖A) be a Banach algebra over the complex numbers with a conjugate-
linear algebra involution x 7→ x∗. Suppose that ‖ · ‖A satisfies the C∗ identity

‖x∗ x‖A = ‖x‖2A(12.6.1)

for every x ∈ A, as in Section 7.7. Under these conditions, A is called a
C∗ algebra with respect to the norm and involution. Remember that (12.6.1)
implies that

‖x∗‖A = ‖x‖A(12.6.2)

for every x ∈ A, as in Section 7.7.
This corresponds to Definition 2.2.1 on p46 of [8], and is mentioned on p260

of [167]. If A has a nonzero multiplicative identity element eA, then we have
that ‖eA‖A = 1, as in Section 7.7. This may sometimes be included in the
definition of a C∗ algebra.

Sometimes the term B∗ algebra is used for what is called a C∗ algebra here,
as in Definition 11.17 on p276 of [162]. However, this term is also sometimes
used for a complex Banach algebra with a norm-preserving conjugate-linear
involution, as on p260 of [167]. The latter may be called a Banach ∗-algebra as
well, as in Definition 2.5.1 on p57 of [8]. A conjugate-linear algebra involution
on a complex associative algebra may be denoted x 7→ x ,̃ as in Definition 21.6
on p313 of [91]. Similarly, a complex Banach algebra with a conjugate-linear
involution that preserves the norm may be caller a Banach -̃algebra, as in [91].

If X is a nonempty set, then the space ℓ∞(X,C) of bounded complex-valued
functions on X is a commutative complex Banach algebra with respect to the
supreum norm. It is easy to see that

f 7→ f(12.6.3)

is a conjugate-linear algebra involution on ℓ∞(X,C). If f ∈ ℓ∞(X,C), then

‖f f‖∞ = ‖|f |2‖∞ = ‖f‖2∞,(12.6.4)

so that ℓ∞(X,C) is a C∗ algebra with respect to this involution.
Let (V, 〈·, ·〉V ) be a complex Hilbert space, with the associated norm ‖ · ‖V ,

and remember that the algebra BL(V ) of bounded linear mappings from V into
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itself is a complex Banach algebra with respect to the corresponding operator
norm. We have seen that the Hilbert space adjoint defines a conjugate-linear
involution on BL(V ) that satisfies the C∗ identity, as in Section 3.5, so that
BL(V ) is a C∗ algebra.

Let (A, ‖ · ‖A) be a complex Banach algebra again. If A1 is a subalgebra
of A that is also a closed set with respect to the metric associated to ‖ · ‖A,
then A1 may be considered as a complex Banach algebra with respect to the
restriction of ‖ · ‖A to A1. If x 7→ x∗ is a conjugate-linear involution on A, and
if x∗ ∈ A1 for each x ∈ A1, then the restriction of x 7→ x∗ to x ∈ A1 defines
an involution on A1. If A is a C∗ algebra, and A1 has all of the properties just
mentioned, then A1 is a C∗ algebra with respect to the restrictions of the norm
and involution to A1.

Let V be a complex Hilbert space again, and let A1 be a closed subalgebra
of BL(V ) that contains the adjoints of all of its elements. Thus A1 is a C∗

algebra with respect to the restrictions of the operator norm and the involution
defined by taking the adjoint to A1, as in the preceding paragraph. In this case,
A1 may be called a C∗ algebra of operators, as in Definition 2.1.2 on p42 of [8].

Let X be a nonempty metric or topological space. The algebra Cb(X,C) of
bounded continuous complex-valued functions on X is a closed subalgebra of
ℓ∞(X,C) that is invariant under complex conjugation, and thus a C∗ algebra
with respect to the supremum norm and (12.6.3).

12.7 Some remarks about involutions

Let A1, A2, and A3 be algebras in the strict sense, all real or all complex.
Also let ϕ be a mapping from A1 into A2, and let ψ be a mapping from A2

into A3. Of course, if ϕ and ψ are linear mappings, then their composition
ψ ◦ ϕ is a linear mapping from A1 into A3. In the complex case, we may be
concerned with situations where one of ϕ and ψ is complex-linear and the other
is conjugate-linear, which implies that

ψ ◦ ϕ is conjugate-linear(12.7.1)

as well. If ϕ and ψ are both conjugate-linear, then

ψ ◦ ϕ is complex-linear.(12.7.2)

If ϕ and ψ are both algebra homomorphisms, then ψ ◦ϕ is an algebra homo-
morphism too, as in Section 6.3. If one of ϕ and ψ is an algebra homomorphism
and the other is an opposite algebra homomorphism, then

ψ ◦ ϕ is an opposite algebra homomorphism.(12.7.3)

If ϕ and ψ are both opposite algebra homomorphisms, then

ψ ◦ ϕ is an algebra homomorphism.(12.7.4)
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Let a1 7→ a∗1
1 and a2 7→ a∗2

2 be involutions on A1 and A2, respectively.
In the complex case, these involutions should be both complex-linear or both
conjugate-linear. An algebra homomorphism ϕ from A1 into A2 is said to be a
∗-homomorphism if

ϕ(a∗1
1 ) = ϕ(a1)

∗2(12.7.5)

for every a1 ∈ A1. One may also consider ϕ to be a homomorphism from A1 into
A2 as algebras in the strict sense with involutions in this case. Similarly, we
may refer to ∗-isomorphisms and ∗-automorphisms for algebra isomorphisms
and automorphisms that are ∗-homomorphisms, which may be considered as
isomorphisms or automorphisms of algebras in the strict sense with involutions,
as appropriate, as well.

Now let A be an associative algebra over the real or complex numbers with
a nonzero multiplicative identity element eA, and let x 7→ x∗ be an algebra
involution on A, which may be conjugate-linear in the complex case. Suppose
that a is an invertible element of A, so that

ϕa(x) = a x a−1(12.7.6)

defines an algebra automorphism of A. Thus

x# = a x∗ a−1(12.7.7)

defines an opposite algebra isomorphism from A onto itself, as before. In the
complex case, if x 7→ x∗ is conjugate-linear, then (12.7.7) is conjugate-linear in
x too.

If x ∈ A, then

(x#)# = a (x#)∗ a−1 = a (a x∗ a−1)∗ a−1 = a (a−1)∗ x a∗ a−1.(12.7.8)

Suppose for the moment that
a∗ = t a(12.7.9)

for some nonzero real or complex number t, as appropriate. This implies that

(a−1)∗ = (a∗)−1 = t−1 a−1.(12.7.10)

It follows that
(x#)# = x.(12.7.11)

This means that x 7→ x# defines another algebra involution on A when (12.7.9)
holds, as in Exercise 27 on p326 of [162].

Note that
ϕa(x)

∗ = (a−1)∗ x∗ a∗(12.7.12)

for every x ∈ A. Suppose for the moment again that

a∗ = τa−1(12.7.13)

for some nonzero real or complex number τ , as appropriate. This means that

(a−1)∗ = (a∗)−1 = τ−1 a.(12.7.14)
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Using this, we get that
ϕa(x)

∗ = ϕa(x
∗)(12.7.15)

for every x ∈ A, so that ϕa is a ∗-automorphism of A. This is related to
Exercises (7) and (8) on p50 of [8].

Let ‖ · ‖A be a submultiplicative norm on A with ‖eA‖A = 1, and note that
1 ≤ ‖a‖A ‖a−1‖A. Suppose that

‖a‖A ‖a−1‖A = 1.(12.7.16)

If y ∈ A, then
‖y‖A ≤ ‖a−1‖A ‖a y‖A = ‖a‖−1

A ‖a y‖A.(12.7.17)

This implies that
‖a y‖A = ‖a‖A ‖y‖A,(12.7.18)

because of submultiplicativity of ‖ · ‖A. Similarly,

‖y a‖A = ‖a‖A ‖y‖A(12.7.19)

and
‖a−1 y‖A = ‖y a−1‖A = ‖a‖−1

A ‖y‖A.(12.7.20)

It follows that
‖ϕa(y)‖A = ‖a y a−1‖A = ‖y‖A(12.7.21)

under these conditions. This implies that

‖x#‖A = ‖x∗‖A(12.7.22)

for every x ∈ A. In particular, if x 7→ x∗ preserves the norm, then x 7→ x# has
the same property.

12.8 Self-adjoint elements

Let A be an associative algebra over the complex numbers with a nonzero multi-
plicative identity element eA and a conjugate-linear algebra involution x 7→ x∗.
Suppose that a ∈ A is self-adjoint with respect to this involution, so that a∗ = a.
It would be nice if

σA(a) ⊆ R.(12.8.1)

Remember that this holds when A is the algebra of bounded linear mappings
from a complex Hilbert space into itself, with the involution defined by the
adjoint, as in Section 8.11.

Similarly, let h be a nonzero algebra homomorphism from A into C, so that
h(eA) = 1. It would be nice if

h(a) ∈ R.(12.8.2)

Remember that h(a) ∈ σA(a), as in Section 6.9, so that (12.8.1) implies (12.8.2).
If A is a commutative Banach algebra, then every element of σA(a) is of the
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form h(a) for some nonzero homomorphism h from A into C, as in Section 6.12.
This means that (12.8.1) would follow from (12.8.2) in this case.

Let ‖ · ‖A be a submultiplicative norm on A that satisfies the C∗ identity
‖x∗ x‖A = ‖x‖2A for every x ∈ A. Let us show that (12.8.2) holds in this case,
using the argument on p277 of [162]. Let α, β be the real and imaginary parts
of h(a), so that we would like to get that β = 0. Also let t ∈ R be given, and
put

z = a+ i t eA.(12.8.3)

Thus
h(z) = h(a) + i t = α+ i (β + t)(12.8.4)

and
z∗ z = a∗ a+ t2 eA = a2 + t2 eA.(12.8.5)

Observe that
α2 + (β + t)2 = |h(z)|2 ≤ ‖z‖2A,(12.8.6)

where the second step is as in Section 6.9. Using the C∗ identity, we get that

‖z‖2A = ‖z∗ z‖A ≤ ‖a∗ a‖A + t2 = ‖a‖2A + t2.(12.8.7)

Combining (12.8.6) and (12.8.7), we obtain that

α2 + β2 + 2β t+ t2 ≤ ‖a‖2A + t2,(12.8.8)

so that
α2 + 2β t ≤ ‖a‖2A.(12.8.9)

This implies that β = 0, because t ∈ R is arbitrary.
Alternatively, suppose that A is a C∗ algebra, and let t ∈ R be given again.

Remember that expA(i t a) may be defined as in Section 10.4, and satisfies

(expA(i t a))
∗ = expA(−i t a∗) = expA(−i t a) = (expA(i t a))

−1.(12.8.10)

This implies that
‖ expA(i t a)‖A = 1,(12.8.11)

by the C∗ identity. We also have that

h(expA(i t a)) = exp(i t h(a)),(12.8.12)

where the right side uses the usual complex exponential function. This is because
h is a bounded linear functional on A, as well as an algebra homomorphism, as
in Section 6.9.

Using the boundedness of h as a linear functional on A again, we get that

| exp(i t h(a))| = |h(expA(i t a))| ≤ 1.(12.8.13)

This implies (12.8.2), because t ∈ R is arbitrary. This is the argument used on
p48 of [8].
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If A is a commutative C∗ algebra, then it follows that (12.8.1) holds. If
A is a C∗ algebra that is not necessarily commutative, then observe that the
subalgebra A0 of A generated by a and eA is commutative and invariant under
the involution. This means that the closure A0 of A0 in A with respect to the
metric associated to ‖ · ‖A is a commutative C∗ algebra. It follows that

σA0
(a) ⊆ R,(12.8.14)

as before. Remember that σA(a) is contained in σA0
(a), because A0 is a sub-

algebra of A, as in Section 7.3. Thus (12.8.1) follows from (12.8.14). This
corresponds to Corollary 1 on p48 of [8], and to part (a) of Theorem 11.28 on
p282 of [162].

As another approach, let t ∈ R be given again, and put ft(z) = exp(i t z) on
C, which can be defined by a convergent power series using the power series for
the exponential function on C. Note that

ft(σA(a)) ⊆ σA(expA(i t a)),(12.8.15)

as in Section 10.3. The right side is contained in the closed unit disk in C,
because of (12.8.11), as in Section 6.8. This implies (12.8.1), because t ∈ R is
arbitrary. This is a variant of the proof of the first part of part (iv) of 2.1 on
p262 of [167]. In [167], one takes t = 1, and observes more precisely that the
spectrum of expA(i a) is contained in the unit circle. This permits one to obtain
(12.8.1) from (12.8.15) with t = 1.

12.9 Some maximal ideals

Let X be a nonempty metric or topological space, and note that the spaces
Cb(X,R), Cb(X,C) of bounded continuous real and complex-valued functions
on X, respectively, are Banach algebras with respect to the supremum norm. If
x ∈ X, then

hx(f) = f(x)(12.9.1)

defines an algebra homomorphism from Cb(X,R), Cb(X,C) onto R, C, respec-
tively, as in Section 6.9. Thus the kernel of hx is a maximal proper ideal in each
of Cb(X,R) and Cb(X,C), as in Section 6.12.

Remember that X is said to be a Urysohn space if continuous real-valued
functions on X separate points in X, as in Section 5.5. More precisely, this
implies that bounded continuous real-valued functions on X separate points in
X, as before. This means that if x, y ∈ X and x 6= y, then

hx(f) 6= hy(f)(12.9.2)

for some f ∈ Cb(X,R). Of course, metric spaces are Urysohn spaces, as before.
Suppose that X is compact, so that Cb(X,R), Cb(X,C) are the same as the

algebras C(X,R), C(X,C) of continuous real and complex-valued functions on
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X, respectively. If I is a maximal proper ideal in C(X,R) or C(X,C), then it
is well known that

I = kerhx(12.9.3)

for some x ∈ X. To see this, it suffices to show that

I ⊆ kerhx(12.9.4)

for some x ∈ X, because I is supposed to be a maximal proper ideal.
Suppose for the sake of a contradiction that for each x ∈ X, (12.9.4) does

not hold. This means that for every x ∈ X there is an fx ∈ I such that

fx(x) 6= 0.(12.9.5)

We may as well suppose that fx is a nonnegative real-valued continuous function
on X for each x ∈ X, by replacing fx with f2x in the real case, and with
|fx|2 = fx fx in the complex case, if necessary.

If x ∈ X, then f−1
x ((0,+∞)) is an open subset of X that contains x. If X

is compact, then there are finitely many elements x1, . . . , xn of X such that

X ⊆
n⋃

j=1

f−1
xj

((0,+∞)).(12.9.6)

This means that

f =

n∑
j=1

fxj
(12.9.7)

is strictly positive at every point in X. Note that f ∈ I, because fxj
∈ I for

each j. This is a contradiction, because I is supposed to be a proper ideal in
C(X,R) or C(X,C), and 1/f is continuous on X.

If h is any nonzero algebra homomorphism from C(X,R) or C(X,C) into R
or C, as appropriate, then the kernel of h is a maximal proper ideal in Cb(X,R)
or C(X,C), as appropriate, as in Section 6.12. This implies that

kerh = kerhx(12.9.8)

for some x ∈ X, as before. One can use this to get that

h = hx,(12.9.9)

because h(1X) = 1, as in Section 6.9.
This is essentially the same argument as used in Example 11.13 (a) on p271

of [162]. Another argument is used in the proof of Theorem 1.10.4 on p28 of [8].
If X is a compact Hausdorff topological space, then it is well known that X

is normal. In particular, this means that X is a Urysohn space, by Urysohn’s
lemma. This implies that there is only one x ∈ X such that (12.9.9) holds in
this case.
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12.10 Commutative Banach algebras

Let (A, ‖ · ‖A) be a commutative Banach algebra over the real or complex num-
bers with a multiplicative identity element eA and ‖eA‖A = 1. The set of all
nonzero algebra homomorphisms from A into R or C, as appropriate, may be
denoted Sp(A), or SpR(A) or SpC(A), to indicate whether A is considered as
an algebra over R or C. This may be called the Gelfand spectrum of A, at least
in the complex case, as on p25 of [8]. This is also known as the maximal ideal
space of A in the complex case, because of the correspondence with maximal
proper ideals in A, as in Section 6.12.

If h ∈ Sp(A), then h is a bounded linear functional on A, with dual norm
less than or equal to 1, as in Section 6.9. More precisely,

‖h‖A′ = 1,(12.10.1)

because h(eA) = 1, as before.
If a ∈ A, then let â be the real or complex-valued function, as appropriate,

defined on Sp(A) by
â(h) = h(a)(12.10.2)

for every h ∈ Sp(A). This is called the Gelfand transform of a, at least in the
complex case, as on p26 of [8], and p268 of [162]. Remember that

â(Sp(A)) ⊆ σA(a),(12.10.3)

as in Section 6.9. In the complex case, we have that

â(Sp(A)) = σA(a),(12.10.4)

as in Section 6.12. This corresponds to Theorem 1.9.5 on p26 of [8], and to the
first part of part (c) of Theorem 11.9 on p268 of [162].

As mentioned in Section 6.9,

Sp(A) is compact(12.10.5)

as a subset of the dual space A′ of bounded linear functionals on A with respect
to the weak∗ topology. More precisely, Sp(A) is contained in the closed unit ball
BA′(0, 1) in A′, and BA′(0, 1) is compact with respect to the weak∗ topology
on A′, by the Banach–Alaoglu theorem. To get (12.10.5), it suffices to check
that Sp(A) is a closed set in A′ with respect to the weak∗ topology, as before.

Let us consider Sp(A) as a topological space, using the topology induced by
the weak∗ topology on the dual space A′ of bounded linear functionals on A.
Equivalently, this is the weakest topology on Sp(A) such that â is continuous
for every a ∈ A. It is easy to see that Sp(A) is Hausdorff with respect to this
topology, and it is also compact, by (12.10.5). This corresponds to Proposition
1.9.3 on p25 of [8], and to part (a) of Theorem 11.9 on p268 of [162].

Note that
Sp(A) 6= ∅(12.10.6)
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in the complex case, because of (12.10.4). This corresponds to Exercise (1) on
p27 of [8]. If A is a Banach algebra over the real numbers, then let us suppose
that (12.10.6) holds for the rest of the section. In both cases,

a 7→ â(12.10.7)

defines an algebra homomorphism from A into C(Sp(A),R) or C(Sp(A),C), as
appropriate. This may be called the Gelfand map, at least in the complex case,
as on p26 of [8], although the term “Gelfand transform” may also be used for
this mapping, as on p268 of [162].

The kernel of the Gelfand map (12.10.7) is equal to⋂
h∈Sp(A)

kerh.(12.10.8)

In the complex case, this is the same as the intersection of all of the maximal
proper ideals in A, which is the Jacobson radical rad(A) of A, as in Section
6.12. This corresponds to part of part (b) of Theorem 11.9 on p268 of [162].
Thus, in the complex case, the Gelfand map is one-to-one if and only if A is
semisimple in the sense that rad(A) = {0}.

Observe that
‖â‖sup = ‖â‖sup,Sp(A) ≤ ‖a‖A(12.10.9)

for every a ∈ A, where the left side is the supremum norm of â on Sp(A).
This means that the Gelfand map is bounded as a linear mapping from A into
C(Sp(A),R) or C(Sp(A),C), as appropriate, with respect to the supremum
norm. More precisely, the corresponding operator norm of the Gelfand map is
equal to 1, because it sends eA to the constant function equal to 1 on Sp(A).
This corresponds to part of Remark 1.9.4 on p26 of [8].

In fact, we have that
‖â‖sup ≤ rA(a)(12.10.10)

for every a ∈ A, where the right side is as in Section 6.13. This follows from
(12.10.3), because

|λ| ≤ rA(a)(12.10.11)

for every λ ∈ σA(a), as before. In the complex case, we have that

‖â‖sup = rA(a)(12.10.12)

for every a ∈ A, as in Section 6.14. This corresponds to part of part (c) of
Theorem 11.9 on p268 of [162].

12.11 More on the Gelfand map

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Note that the image

Â = {â : a ∈ A}(12.11.1)
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of A under the Gelfand map is a subalgebra of C(Sp(A),R) or C(Sp(A),C), as
appropriate, as in Remark 1.9.4 on p26 of [8], and part (b) of Theorem 11.9 on

p268 of [162]. We also have that Â separates points in Sp(A), by construction,

and that Â contains the constant functions on Sp(A).
Consider the condition that there be a positive real number c0 such that

c0 ‖a‖A ≤ ‖â‖sup(12.11.2)

for every a ∈ A. Of course, this condition implies that the Gelfand map is
injective. This condition also implies that Â is a closed set in C(Sp(A),R) or
C(Sp(A),C), as appropriate, with respect to the supremum metric, because A
is complete, as in Section 7.11. Conversely, if Â is a closed set in C(Sp(A),R) of

C(Sp(A),C), as appropriate, then Â is complete with respect to the supremum
metric, as in Section 1.6. If the Gelfand map is injective as well, then the open
mapping theorem implies that (12.11.2) holds for some c0 > 0.

If a ∈ A, then

‖(̂a2)‖sup = ‖(â)2‖sup = ‖â‖2sup.(12.11.3)

If (12.11.2) holds for some c0 > 0, then we get that

c20 ‖a‖2A ≤ ‖â‖2sup = ‖(̂a2)‖sup ≤ ‖a2‖A,(12.11.4)

using (12.10.9) in the third step. This corresponds to part of Lemma 11.11 on
p270 of [162]. This is also related to part of part (b) of Theorem 11.12 on p270
of [162].

If (12.11.2) holds with c0 = 1, then

‖a‖A = ‖â‖sup(12.11.5)

for every a ∈ A, because of (12.10.9). This implies that

‖a2‖A = ‖a‖2A(12.11.6)

for every a ∈ A. This corresponds to part of Exercise (3) on p27 of [8], and to
part of part (a) of Theorem 11.12 on p270 of [162].

Suppose for the moment that

‖a‖2A ≤ C ‖a2‖A(12.11.7)

for some positive real number C and every a ∈ A. This implies that

‖a‖A ≤ C rA(a)(12.11.8)

for every a ∈ A, as in Section 11.7. This means that

‖a‖A ≤ C ‖â‖sup(12.11.9)

in the complex case, by (12.10.12). Of course, this is the same as saying that
(12.11.2) holds with c0 = C−1. This corresponds to parts of Lemma 11.11 and
part (b) of Theorem 11.12 on p270 of [162].
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In particular, (12.11.6) implies (12.11.5) in the complex case. This corre-
sponds to parts of Exercise (3) on p27 of [8] and part (a) of Theorem 11.12 on
p270 of [162].

Suppose from now on in this section that A is a commutative C∗ algebra.
This implies that

rA(a) = ‖a‖A(12.11.10)

for every a ∈ A, as in Section 7.7. It follows that (12.11.5) holds for every
a ∈ A, because of (12.10.12). This corresponds to parts of Theorem 2.2.4 on
p47 of [8], and Theorem 11.18 on p276 of [162].

If a ∈ A is self-adjoint, then σA(a) ⊆ R, as in Section 12.8. This means that
â is a real-valued function on Sp(A), because of (12.10.4). One can use this to
get that

(̂a∗) = (â)(12.11.11)

for every a ∈ A, by expressing a as a1 + ia2, where a1, a2 ∈ A are self-adjoint.
We also obtain that

Â = C(Sp(A),C)(12.11.12)

under these conditions, by the Stone–Weierstrass theorem. These statements
correspond to additional parts of Theorem 2.2.4 on p47 of [8], and Theorem
11.18 on p276 of [162].

12.12 Bounded continuous functions

Let X be a nonempty metric or topological space, and let us take A = Cb(X,R)
or Cb(X,C), equipped with the supremum norm. Thus A is a commutative
Banach algebra over the real or complex numbers with a multiplicative identity
element, so that Sp(A) may be defined as in Section 12.10. If x ∈ X, then
hx(f) = f(x) defines an element of Sp(A), as in Section 12.9. This means that

x 7→ hx(12.12.1)

defines a mapping from X into Sp(A). This mapping is injective exactly when
X is a Urysohn space, as before.

If f ∈ A, then f̂(h) = h(f) defines a continuous real or complex-valued
function on Sp(A), as appropriate, as in Section 12.10. Note that

f̂(hx) = hx(f) = f(x)(12.12.2)

is continuous as a real or complex-valued function of x ∈ X. One can use this
to check that (12.12.1) is continuous as a mapping from X into Sp(A), with
respect to the topology defined on Sp(A) previously.

If X is completely regular in the strict sense, then one can check that the
topology on X is the weakest topology with respect to which the elements of A
are all continuous. This means that the topology on X is the weakest topology
with respect to which (12.12.1) is continuous as a mapping into Sp(A). If X is
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completely regular in the strong sense, then (12.12.1) is a homeomorphism from
X onto its image in Sp(A), with respect to the topology induced on the image
by the topology defined on Sp(A) in Section 12.10.

If f ∈ A, then
σA(f) = f(X),(12.12.3)

where the right side is the closure of f(X) in R or C, as appropriate. This is
analogous to the corresponding statement for arbitrary bounded functions on
X, mentioned in Section 6.8. If h ∈ Sp(A), then it follows that

h(f) ∈ f(X),(12.12.4)

because h(f) ∈ σA(f), as in Section 6.9.
Suppose for the moment that A = Cb(X,C). If f ∈ Cb(X,R), then

σA(f) ⊆ R,(12.12.5)

by (12.12.3). In particular, if h ∈ Sp(A), then

h(f) ∈ R,(12.12.6)

by (12.12.4). This implies that

h(a) = h(a)(12.12.7)

for every a ∈ Cb(X,C).
In both the real and complex cases, we would like to check that the image

{hx : x ∈ X}(12.12.8)

of X in Sp(A) under the mapping (12.12.1) is dense in Sp(A). Suppose for the
sake of a contradiction that there is an element h of Sp(A) that is not in the
closure of (12.12.8) in Sp(A). This means that there is an open set U ⊆ Sp(A)
such that h ∈ U and

hx 6∈ U(12.12.9)

for every x ∈ X.
Because of the way that the topology on Sp(A) is defined, there are finitely

many elements f1, . . . , fn of A and positive real numbers r1, . . . , rn such that

{ϕ ∈ Sp(A) : |ϕ(fj)− h(fj)| < rj for each j = 1, . . . , n} ⊆ U.(12.12.10)

We can reduce to the case where

h(fj) = 0(12.12.11)

for each j = 1, . . . , n, by subtracting the constant function on X equal to h(fj)
from fj if necessary. Using this, (12.12.10) reduces to

{ϕ ∈ Sp(A) : |ϕ(fj)| < rj for each j = 1, . . . , n} ⊆ U.(12.12.12)
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If x ∈ X, then (12.12.9) implies that

|fj(x)| = |hx(fj)| ≥ rj(12.12.13)

for some j.
Put

g =

n∑
j=1

f2j(12.12.14)

in the real case, and

g =

n∑
j=1

|fj |2 =

n∑
j=1

fj fj(12.12.15)

in the complex case. In both cases, we have that

h(g) = 0,(12.12.16)

because of (12.12.11). We also have that

g(x) =

n∑
j=1

|fj(x)|2 ≥ min(r21, . . . , r
2
n)(12.12.17)

for every x ∈ X, because of (12.12.13). This implies that g is invertible in A,
contradicting (12.12.16).

12.13 Some remarks about weak topologies

Let X, I be nonempty sets, and suppose that fj is a mapping from X into a
metric or topological space Yj for each j ∈ I. Under these conditions, it is well
known there is a weakest topology on X such that

fj is continuous for each j ∈ I.(12.13.1)

This is known as the weak topology on X associated to the family of fj ’s, j ∈ I.
Let

Y =
∏
j∈I

Yj(12.13.2)

be the Cartesian product of the Yj ’s, j ∈ I, equipped with the corresponding
product topology. Using the fj ’s, we get a mapping F from X into Y , whose
jth coordinate is equal to fj for each j ∈ I. The weak topology on X associated
to the fj ’s as in the preceding paragraph is the same as the weakest topology
on X such that

F is continuous.(12.13.3)

Suppose for the moment that the family of fj ’s, j ∈ I, separates points in
X, so that

F is one-to-one.(12.13.4)
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In this case,

F is a homeomorphism from X onto its image in Y,(12.13.5)

with respect to the corresponding weak topology onX, and the topology induced
on F (X) by the product topology on Y .

Suppose for the moment again that

I has only finitely or countably many elements,(12.13.6)

and that

the topology on Yj is determined by a metric for each j ∈ I.(12.13.7)

It is well known that

the product topology on Y is determined by a metric(12.13.8)

as well under these conditions. If the family of fj ’s, j ∈ I, separates points in
X, then it follows that

the corresponding weak topology on X is determined by a metric(12.13.9)

too.
Suppose for the moment that for each j ∈ I, there is a base Bj for the

topology of Yj with only finitely or countably many elements. If (12.13.6) holds,
then it is well known that there is a base BY for the product topology on Y
with only finitely or countably many elements. Similarly, there is a base BX for
the weak topology on X associated the family of mappings fj , j ∈ I with only
finitely or countably many elements under these conditions.

Let X0 be a subset of X. One can check that the topology induced on X0

by the weak topology on X associated to the family of mappings fj , j ∈ I, is
the same as the weak topology on X0 associated to the restrictions of the fj ’s
to X0, j ∈ I.

Sometimes we may be concerned with the weak topology on X determined by
a vector space Z of real or complex-valued functions on X. The same topology
is determined by any subset of Z whose linear span is Z. Similarly, if Z is
an algebra with respect to pointwise multiplication of functions, then the same
topology on X is determined by any subset of Z that generates Z as an algebra
over the real or complex numbers, as appropriate.

Let V be a vector space over the real or complex numbers, with a norm
‖ · ‖V . Remember that the dual space V ′ of bounded linear functionals on V
with respect to ‖ · ‖V is a vector space over R or C, as appropriate, with a
corresponding dual norm ‖ · ‖V ′ , as in Section 3.1. The weak∗ topology on V ′

is the weak topology corresponding to the linear functions

λ 7→ λ(v),(12.13.10)
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v ∈ V , as in Section 4.5. One can get the same topology on V ′ using the linear
functions (12.13.10) associated to a subset of V whose linear span is equal to
V , as in the preceding paragraph.

Let E be a subset of V ′. The topology induced on E by the weak∗ topology
on V ′ is the same as the weak topology on E associated to the restrictions of
the functions (12.13.10) to E, as before. If E is bounded with respect to ‖ · ‖V ′ ,
then one can check that this is the same as the weak topology associated to
the restrictions of the functions (12.13.10) to E, with v in a dense subset of V .
More precisely, it suffices to use a set of v’s whose linear span is dense in V .

Suppose that V is separable with respect to the metric associated to ‖ · ‖V .
If E is bounded with respect to ‖ ·‖V ′ , then it follows that the topology induced
on E by the weak∗ topology on V ′ is the same as the weak topology associated
to the restrictions of the functions (12.13.10) to E corresponding to finitely or
countably many v ∈ V . This implies that there is a metric on E that determines
the same topology, as before.

12.14 Some remarks about Sp(A)

Let A be a commutative associative algebra over the real or complex numbers
with a nonzero multiplicative identity element eA. As in Section 12.10, we let
Sp(A) be the set of all nonzero algebra homomorphisms α from A into R or C,
as appropriate, and we may use SpR(A) or SpC(A) to indicate whether A is
considered as an elgebra over R or C. Remember that

α(eA) = 1,(12.14.1)

because α 6= 0, as in Section 6.9.

If a ∈ A, then we let â be the real or complex-valued function defined on
Sp(A) by

â(α) = α(a),(12.14.2)

as in Section 12.10. Remember that â maps Sp(A) into σA(a), as in Section
6.9.

We may consider Sp(A) as a topological space, using the weakest topology
with respect to which â is continuous for each a ∈ A, as before. Note that the
collection Â of the functions â, a ∈ A, on Sp(A) separates points in Sp(A), by
construction. This implies that Sp(A) is Hausdorff with respect to this weak
topology. If Sp(A) 6= ∅, then a 7→ â defines an algebra homomorphism from A
into C(Sp(A),R) or C(Sp(A),C), as before.

Let B be another commutative associative algebra over the real or complex
numbers, as appropriate, with a nonzero multiplicative identity element eB.
Also let ϕ be an algebra homomorphism from A into B with ϕ(eA) = eB. If
β ∈ Sp(B), then it is easy to see that

ϕ̂(β) = β ◦ ϕ(12.14.3)
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is an element of Sp(A). In particular, note that

(ϕ̂(β))(eA) = β(ϕ(eA)) = β(eB) = 1.(12.14.4)

Let a ∈ A be given, so that ϕ(a) ∈ B, and ̂(ϕ(a)) is a real or complex-valued
function on Sp(B), as appropriate. If β ∈ Sp(B), then

̂(ϕ(a))(β) = β(ϕ(a)) = (ϕ̂(β))(a) = â(ϕ̂(β)).(12.14.5)

This means that ̂(ϕ(a)) = â ◦ ϕ̂.(12.14.6)

One can use this to get that

ϕ̂ is continuous as a mapping from Sp(B) into Sp(A).(12.14.7)

This uses the fact that ̂(ϕ(a)) is continuous on Sp(B), by construction.
Let C be a third commutative associative algebra over the real or complex

numbers, as appropriate, with a nonzero multiplicative identity element eC , and
let ψ be an algebra homomorphism from B into C with ψ(eB) = eC . Thus ψ ◦ ϕ
is an algebra homomorphism from A into C that sends eA to eC . It is easy to
see that ̂(ψ ◦ ϕ) = ϕ̂ ◦ ψ̂,(12.14.8)

as mappings from Sp(C) into Sp(A).
Of course, the identity mapping on A is an algebra homomorphism, for

which the induced mapping on Sp(A) is the identity mapping. If ϕ is an algebra
isomorphism from A onto B, then ϕ−1 is an algebra homomorphism from B
into A, which induces a continuous mapping from Sp(A) into Sp(B), as before.
Under these conditions,

ϕ̂ is a homeomorphism from Sp(B) onto Sp(A),(12.14.9)

with

ϕ̂−1 = ̂(ϕ−1).(12.14.10)

This uses the remarks in the preceding paragraph.

12.15 Some more remarks about Sp(A)

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Note that

kerϕ ⊆ kerβ ◦ ϕ = ker ϕ̂(β)(12.15.1)

for every β ∈ Sp(B).
If

ϕ(A) = B,(12.15.2)
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then
ϕ̂ is one-to-one as a mapping from Sp(B) into Sp(A).(12.15.3)

More precisely, if β1, β2 ∈ Sp(B) and

ϕ̂(β1) = ϕ̂(β2),(12.15.4)

then β1 = β2 on ϕ(A), and thus on B. In this case,

ϕ̂(Sp(B)) = {α ∈ Sp(A) : kerϕ ⊆ kerα}.(12.15.5)

In fact,

ϕ̂ is a homeomorphism from Sp(B) onto its image in Sp(A),(12.15.6)

with respect to the induced topology on ϕ̂(Sp(B)) when (12.15.2) holds. This

is because the induced topology on ϕ̂(Sp(B)) is the same as the weak topology

associated to the restrictions of the functions â, a ∈ A, to ϕ̂(Sp(B)), as in Section

12.13. The restrictions of these functions to ϕ̂(Sp(B)) correspond exactly to the
functions on Sp(B) of the form (12.14.6), with a ∈ A. These are the same as the

functions b̂, b ∈ B, used to define the usual topology on Sp(B) when (12.15.2)
holds.

Suppose now that (B, ‖ · ‖B) is a Banach algebra, so that every h ∈ Sp(B) is
a bounded linear functional on B, as in Section 6.9. Suppose also that

ϕ(A) is dense in B,(12.15.7)

with respect to the metric associated to ‖ · ‖B. One can verify that (12.15.3)
holds in this case too. Indeed, if β1, β2 ∈ Sp(B) satisfy (12.15.4), then β1 = β2
on ϕ(A), which implies that they are equal to B, because h1, h2 are continuous
on B.

One can check that (12.15.7) implies (12.15.6) in this case as well. One

can start in the same way as before, to get that ϕ̂ is a homeomorphism from
Sp(B) onto its image in Sp(A), when Sp(B) is equipped with the weak topology

associated to the family of functions of the form ̂(ϕ(a)), a ∈ A. Thus one would
like to verify that this is the same as the usual topology on Sp(B) under these
conditions. This corresponds to a remark in Section 12.13, because Sp(B) is
bounded with respect to the dual norm on B′, as in Section 6.9.

If α = ϕ̂(β) = β ◦ ϕ for some β ∈ Sp(B), then

|α(a)| ≤ ‖ϕ(a)‖B(12.15.8)

for every a ∈ A, because the dual norm of β on B is less than or equal to 1, as
in Section 6.9. Note that this includes the condition that

kerϕ ⊆ kerα,(12.15.9)

as in (12.15.1). Of course, (12.15.8) does not use (12.15.7).
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If (12.15.7) holds, then

ϕ̂(Sp(B)) = {α ∈ Sp(A) : (12.15.8) holds}.(12.15.10)

To see this, suppose that α ∈ Sp(A) satisfies (12.15.8), and let us define β
initially on ϕ(A) by

β(ϕ(a)) = α(a)(12.15.11)

for each a ∈ A. Clearly β is well defined on ϕ(A), because of (12.15.9). There is
a unique extension of β to a bounded linear functional on B, because of (12.15.7)
and (12.15.8), as in Section 2.2. One can check that this extension defines an
element of Sp(B) under these conditions.



Chapter 13

Algebras, polynomials, and
Sp(A)

13.1 Some remarks about continuous functions

Let X be a nonempty metric or topological space, so that C(X,R), C(X,C)
are commutative associative algebras over the real and complex numbers, re-
spectively, with a nonzero multiplicative identity element. If x ∈ X, then
hx(f) = f(x) defines an algebra homomorphism from each of C(X,R), C(X,C)
onto R, C, respectively, as before. Thus

x 7→ hx(13.1.1)

defines a mapping from X into each of Sp(C(X,R)), Sp(C(X,C)). This map-
ping is injective exactly when X is a Urysohn space, as in Sections 12.9 and
12.12.

If f ∈ C(X,R) or C(X,C), then f̂(h) = h(f) defines a continuous real or
complex-valued function on Sp(C(X,R)) or Sp(C(X,C)), as appropriate, with
respect to the topology mentioned in Section 12.14. Of course,

f̂(hx) = hx(f) = f(x)(13.1.2)

is continuous as a real or complex-valued function of x ∈ X, as appropriate.
One can use this to get that (13.1.1) is continuous as a mapping from X into
each of Sp(C(X,R)), Sp(C(X,C)), as in Section 12.12.

If X is completely regular in the strict sense, then the topology on X is the
weakest topology with respect to which the elements of C(X,R) or C(X,C)
are continuous, as in Section 12.12. This implies that the topology on X is the
weakest with respect to which (13.1.1) is continuous as a mapping from X into
Sp(C(X,R)) or Sp(C(X,C)), as before. If X is regular in the strong sense, then
(13.1.1) is a homeomorphism from X onto its image in each of Sp(C(X,R)),
Sp(C(X,C)), with respect to the induced topology on the image, as before.

293
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If A = C(X,R) or C(X,C) and f ∈ A, then

σA(f) = f(X),(13.1.3)

as in Section 8.15. If h ∈ Sp(A), then we get that

h(f) ∈ f(X),(13.1.4)

because h(f) ∈ σA(f), as in Section 6.9. If A = C(X,C) and f ∈ C(X,R),
then it follows that

h(f) ∈ R.(13.1.5)

One can use this to get that
h(a) = h(a)(13.1.6)

for every a ∈ C(X,C).
Suppose that h, h′ are both elements of Sp(C(X,R)) or of Sp(C(X,C)),

and that
h(f) = h′(f)(13.1.7)

for every f ∈ Cb(X,R) or Cb(X,C), as appropriate. Let f ∈ C(X,R) or
C(X,C) be given, as appropriate, and let us check that (13.1.7) also holds in
this case. If ϵ is any positive real number, then

fϵ =
f

1 + ϵ |f |2
(13.1.8)

is bounded and continuous on X, so that

h(fϵ) = h′(fϵ),(13.1.9)

by hypothesis. It is easy to see that

h(fϵ) =
h(f)

1 + ϵ |h(f)|2
,(13.1.10)

and similarly for h′, using (13.1.6) in the complex case. One can get (13.1.7) by
taking the limit as ϵ→ 0 of both sides of (13.1.9).

Let ϕ be the obvious inclusion mapping from Cb(X,R) or Cb(X,C) into
C(X,R) or C(X,C), as appropriate. In both cases, ϕ is an algebra homomor-
phism which is compatible with the multiplicative identity elements. This leads
to a continuous mapping ϕ̂ from Sp(C(X,R)) or Sp(C(X,C)) into Sp(Cb(X,R))

or Sp(Cb(X,C)), as appropriate, as in Section 12.14. Equivalently, ϕ̂ sends an
element h of Sp(C(X,R)) or Sp(C(X,C)) to its restriction to Cb(X,R) or

Cb(X,C), as appropriate. Note that ϕ̂ is one-to-one in both cases, as in the
preceding paragraph.

Let Y be another nonempty metric or topological space, and let θ be a
continuous mapping from X into Y . Observe that

Θ(f) = f ◦ θ(13.1.11)
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defines an algebra homomorphism from each of C(Y,R), C(Y,C) into C(X,R),
C(X,C), respectively. Of course, Θ sends constant functions on Y to constant
functions on X, with the same constant value. Using Θ, we get a contin-
uous mapping Θ̂ from each of Sp(C(X,R)), Sp(C(X,C)) into Sp(C(Y,R)),

Sp(C(Y,C)), respectively, as in Section 12.14. If x ∈ X, then Θ̂ sends the
homomorphism associated to evaluation at x to the analogous homomorphism
associated to evaluation to θ(x) ∈ Y .

If f ∈ Cb(Y,R) or Cb(Y,C), then Θ(f) ∈ Cb(X,R) or Cb(X,C), as appro-
priate, with

‖Θ(f)‖sup,X ≤ ‖f‖sup,Y .(13.1.12)

If θ(X) is dense in Y , then

‖Θ(f)‖sup,X = ‖f‖sup,Y .(13.1.13)

Let Θb be the restriction of Θ to Cb(Y,R) or Cb(Y,C), considered as an algebra
homomorphism into Cb(X,R) or Cb(X,C), as appropriate. This leads to a

continuous mapping Θ̂b from Sp(Cb(X,R)) or Sp(Cb(X,C)) into Sp(Cb(Y,R))
or Sp(Cb(Y,C)), as appropriate.

Let ψ be the obvious inclusion mapping from Cb(Y,R) or Cb(Y,C) into
C(Y,R) or C(Y,C), as appropriate, and let ϕ be the analogous inclusion map-
ping for X, as before. Thus

Θ ◦ ϕ = ψ ◦Θb,(13.1.14)

by construction. This implies that

ϕ̂ ◦ Θ̂ = Θ̂b ◦ ψ̂,(13.1.15)

as in Section 12.14. Here ϕ̂ is as before, and ψ̂ is the analogue for ψ.

13.2 Some conditions related to compactness

Let X be a topological space. A point p ∈ X is said to be a limit point of a
set E ⊆ X if for every open set U ⊆ X with p ∈ U , there is a q ∈ E ∩ U such
that q 6= p. Let us say that p is a strong limit point of E in X if for every open
set U ⊆ X with p ∈ U , we have that E ∩U has infinitely many elements. Thus
strong limit points of E in X are automatically limit points of E in X. If X
satisfies the first separation condition, then one can check that limit points of
E in X are strong limit points of E in X.

We say that E has the limit point property if every infinite subset of E has a
limit point in E. Let us say that E has the strong limit point property if every
infinite subset of E has a strong limit point in E. This implies that E has the
limit point property, and the converse holds when X satisfies the first separation
condition. If E is compact, then one can show that E has the strong limit point
property, using a standard argument. If E has the limit point property, and
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the topology on X is determined by a metric, then it is well known that E is
compact.

We say that E is countably compact if every covering of E by countably
many open subsets of X can be reduced to a finite subcovering. Similarly, we
say that E has the Lindelöf propery if every open covering of E in X can be
reduced to a subcovering with only finitely or countably many elements. Thus
E is compact if and only if E is countably compact and E has the Lindelöf
property. It is well known that E is countably compact if and only if E has the
strong limit point property.

A collection B of open subsets of X is said to be a base for the topology of X
if every open set in X can be expressed as a union of elements of B. If there is a
base B for the topology of X with only finitely or countably many elements, then
Lindelöf ’s theorem implies that every subset of X has the Lindelöf property.

We say that X is separable if there is a dense set in X with only finitely or
countably many elements. If there is a base for the topology of X with only
finitely or countably many elements, then one can check that X is separable. It
is well known that the converse holds when the topology on X is determined by
a metric.

Let f be a continuous mapping from X into another topological space Y .
If K ⊆ X is compact, then it is well known that f(K) is compact in Y . One
can verify that the analogous statements for countable compactness and the
Lindelöf property hold as well, using essentially the same argument.

We say that X is pseudocompact if every continuous real-valued function on
X is bounded on X. Of course, if X is compact, then X is pseudocompact.
More precisely, one can check that X is pseudocompact when X is countably
compact. The converse holds when X is normal in the strong sense, as on p20
of [178].

13.3 Polynomials in n variables

Let n be a positive integer. A multi-index is an n-tuple α = (α1, . . . , αn) of
nonnegative integers. In this case, it is convenient to put

|α| =
n∑

j=1

αj .(13.3.1)

Note that the set of all multi-indices is the same as the set (Z+ ∪ {0})n of all
n-tuples of elements of Z+ ∪ {0}.

Let T1, . . . , Tn be commuting indeterminates. We shall normally try to use
upper-case letters for indeterminates, and lower-case letters for elements of R,
C, or other associative algebras, as in [44, 80]. A formal polynomial in T1, . . . , Tn
with real or complex coefficients may be expressed as

p(T ) = p(T1, . . . , Tn) =
∑

|α|≤N

cα T
α,(13.3.2)
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where N is a nonnegative integer, and the sum is taken over all multi-indices α
with |α| ≤ N . Of course, cα should be an element of R or C, as appropriate,
for each such α. If α is any multi-index, then

Tα = Tα1
1 · · ·Tαn

n(13.3.3)

is the corresponding formal monomial in T1, . . . , Tn.

The spaces of all formal polynomials in T1, . . . , Tn with real or complex
coefficients may be denoted

R[T1, . . . , Tn], C[T1, . . . , Tn],(13.3.4)

respectively. The coefficients cα of a formal polynomial as in (13.3.2) should
be considered as being defined for all multi-indices α, with cα = 0 when |α| is
strictly larger then N . This means that

α 7→ cα(13.3.5)

defines a real or complex-valued function, as appropriate, on (Z+ ∪ {0})n, with
finite support. Thus the spaces (13.3.4) of formal polynomials may be defined
more precisely as the spaces

c00((Z+ ∪ {0})n,R), c00((Z+ ∪ {0})n,C)(13.3.6)

of all real or complex-valued functions on (Z+∪{0})n, as appropriate, with finite
support. These are vector spaces over the real and complex numbers, respec-
tively, with respect to pointwise addition and scalar multiplication of functions
on (Z+ ∪ {0})n, which corresponds to termwise addition and scalar multiplica-
tion of formal polynomials as in (13.3.2).

If α, β are multi-indices, then α+β is the multi-index defined by coordinate-
wise addition, as usual. Similarly, multiplication of the corresponding formal
monomials is defined by

Tα T β = Tα+β .(13.3.7)

This can be extended to a bilinear operation of multiplication of formal poly-
nomials, which is commutative and associative. This means that the spaces
(13.3.4) of formal polynomials are commutative associative algebras over the
real and complex numbers, as appropriate, with respect to this definition of
multiplication. The “constant” polynomial for which the coefficient of Tα is
equal to 1 when α = 0 and to 0 otherwise is the multiplicative identity element
in each of these algebras.

Of course, formal polynomials like these determine polynomial functions on
Rn or Cn, as appropriate, in the usual way, and an extension of this will be
discussed in the next section. Note that the coefficients of such a polynomial
are determined by the derivatives of the corresponding polynomial function at
0.
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13.4 Polynomials and homomorphisms

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let A be an associative algebra over the real or complex numbers with a
multiplicative identity element eA. Also let a = (a1, . . . , an) be an n-tuple of
commuting elements of A, so that

aj al = al aj(13.4.1)

for all j, l = 1, . . . , n. If α is a multi-index, then put

aα = aα1
1 · · · aαn

n ,(13.4.2)

where a
αj

j is interpreted as being equal to eA when αj = 0, as usual. Note that

aα+β = aα aβ(13.4.3)

for all multi-indices α, β.
Let p(T ) be a formal polynomial in T1, . . . , Tn with real or complex coeffi-

cients, as appropriate, as in (13.3.2). Put

p(a) = p(a1, . . . , an) =
∑

|α|≤N

cα a
α,(13.4.4)

where the sum is taken over all multi-indices α with |α| ≤ N , as before. This
defines p(a) as an element of A. This is essentially the same as in Section 8.13
when n = 1. We may also use pA(a) = pA(a1, . . . , an) for (13.4.4), to indicate
the role of A.

It is easy to see that
p(T ) 7→ p(a)(13.4.5)

defines an algebra homomorphism from R[T1, . . . , Tn] or C[T1, . . . , Tn], as ap-
propriate, into A. Note that (13.4.5) sends the multiplicative identity element in
R[T1, . . . , Tn] or C[T1, . . . , Tn], as appropriate, to eA. Similarly, (13.4.5) sends
Tj to aj for each j = 1, . . . , n. We also have that (13.4.5) is uniquely determined
by these properties.

Let B be another associative algebra over the real or complex numbers, as
appropriate, and with a multiplicative identity element eB, and let ϕ be an
algebra homomorphism from A into B with ϕ(eA) = eB. Put bj = ϕ(aj) for
each j = 1, . . . , n, so that b = (b1, . . . , bn) is a commuting n-tuple of elements
of B. Observe that

ϕ(aα) = bα(13.4.6)

for every multi-index α. This implies that

ϕ(pA(a1, . . . , an)) = pB(ϕ(a1), . . . , ϕ(an)).(13.4.7)

Let X be a nonempty set, and suppose that A is a subalgebra of the algebra
of all real or complex-valued functions on X, as appropriate. It is easy to see
that

(pA(a1, . . . , an))(x) = p(a1(x), . . . , an(x))(13.4.8)

for every x ∈ X.
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13.5 More on polynomials, homomorphisms

Let n be a positive integer, and let T1, . . . .Tn be n commuting indeterminates
again. If w ∈ Rn or Cn, then put

hw(p(T )) = p(w)(13.5.1)

for every p(T ) ∈ R[T1, . . . , Tn] or C[T1, . . . , Tn], as appropriate. This defines
an algebra homomorphism from R[T1, . . . , Tn] or C[T1, . . . , Tn] into R or C, as
appropriate, as in the previous section. Note that

hw(Tj) = wj(13.5.2)

for each j = 1, . . . , n, as before.
Using this, we get a mapping

w 7→ hw(13.5.3)

from each of Rn, Cn into Sp(R[T1, . . . , Tn]), Sp(C[T1, . . . , Tn]), respectively. It
is easy to see that

(13.5.3) is one-to-one,(13.5.4)

because of (13.5.2). We also have that

(13.5.3) maps Rn, Cn onto Sp(R[T1, . . . , Tn]), Sp(C[T1, . . . , Tn]),(13.5.5)

respectively, because any element of Sp(R[T1, . . . , Tn]) or Sp(C[T1, . . . , Tn]) is
uniquely determined by its values at T1, . . . , Tn. More precisely, the inverse
mapping is given by

h 7→ (h(T1), . . . , h(Tn)).(13.5.6)

If p(T ) ∈ R[T1, . . . , Tn] or C[T1, . . . , Tn], then we get a real or complex-

valued function ̂(p(T )) on Sp(R[T1, . . . , Tn]) or Sp(C[T1, . . . , Tn]), as appropri-
ate, defined by ̂(p(T ))(h) = h(p(T )),(13.5.7)

as in Section 12.14. We take Sp(R[T1, . . . , Tn]) and Sp(C[T1, . . . , Tn]) to be
equipped with the weakest topologies with respect to which these functions are
continuous, as before. Of course,

̂(p(T ))(hw) = hw(p(T )) = p(w)(13.5.8)

for every w ∈ Rn or Cn, as appropriate. Note that the standard topologies
on Rn, Cn are the weakest topologies with respect to which all polynomial
functions are continuous. One can use this to get that

(13.5.3) is a homeomorphism(13.5.9)

from each of Rn, Cn onto Sp(R[T1, . . . , Tn]), Sp(C[T1, . . . , Tn]), respectively.
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13.6 Polynomials, homomorphisms, and Sp(A)

Let n be a positive integer, and let T1, . . . , Tn be n commuting indetermiinates.
Also let A be a commutative associative algebra over the real or complex num-
bers with a nonzero multiplicative identity element eA, and let a = (a1, . . . , an)
be an n-tuple of elements of A. Thus

ψ(p(T )) = pA(a)(13.6.1)

defines an algebra homomorphism from R[T1, . . . , Tn] or C[T1, . . . , Tn] into A,
as appropriate, as in Section 13.4. This leads to an induced mapping

ψ̂(α) = α ◦ ψ(13.6.2)

from Sp(A) into Sp(R[T1, . . . , Tn]) or Sp(C[T1, . . . , Tn]), as appropriate, as in
Section 12.14. Remember that

ψ̂ is continuous(13.6.3)

with respect to the usual topology on Sp(A), as before.
Put

ϕ(α) = (α(ψ(T1)), . . . α(ψ(Tn))) = (α(a1), . . . , α(an))(13.6.4)

for each α ∈ Sp(A), where the right side is an element of Rn or Cn, as appro-

priate. This is the same as the composition of ψ̂ with (13.5.6). Equivalently,

ψ̂(α) = hϕ(α)(13.6.5)

for every α ∈ Sp(A), This means that

(ψ̂(α))(p(T )) = α(ψ(p(T ))) = α(pA(a)) = p(ϕ(α))(13.6.6)

for every α ∈ Sp(A) and p(T ) ∈ R[T1, . . . , Tn] or C[T1, . . . , Tn], as appropriate.
We may also express (13.6.4) as

ϕ(α) = (â1(α), . . . , ân(α)),(13.6.7)

where â(α) = α(a) for each a ∈ A, as in Section 12.14. This implies that

ϕ is continuous as a mapping from Sp(A) into Rn or Cn,(13.6.8)

as appropriate, sith respect to the usual topology on Sp(A). This could be
obtained from (13.5.9) and (13.6.3) as well.

Clearly
kerψ ⊆ kerα ◦ ψ = ker ψ̂(α)(13.6.9)

for every α ∈ Sp(A). The kernel of ψ consists of the p(T ) ∈ R[T1, . . . , Tn] or
C[T1, . . . , Tn], as appropriate, such that

pA(a) = 0.(13.6.10)
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In this case, we have that
p(ϕ(a)) = 0,(13.6.11)

as in (13.6.6).
Suppose now that

ψ maps R[T1, . . . , Tn] or C[T1, . . . , Tn] onto A,(13.6.12)

as appropriate. This implies that

ψ̂ is one-to-one on Sp(A),(13.6.13)

as in Section 12.15. Under these conditions, ψ̂(Sp(A)) consists exactly of the
h ∈ Sp(R[T1, . . . , Tn]) or Sp(C[T1, . . . , Tn]), as appropriate, such that

kerψ ⊆ kerh,(13.6.14)

as before. This means that ϕ(Sp(A)) consists exactly of the w ∈ Rn or Cn, as
appropriate, such that

kerψ ⊆ kerhw.(13.6.15)

This is the same as saying that ϕ(Sp(A)) consists exactly of the w ∈ Rn or Cn,
as appropriate, such that

p(w) = 0(13.6.16)

for every p(T ) ∈ R[T1, . . . , Tn] or C[T1, . . . , Tn], as appropriate, that satisfies
(13.6.10).

13.7 A class of Banach algebras

Let (A, ‖ · ‖A) be a commutative Banach algebra over the real or complex
numbers with a multiplicative identity element eA and ‖eA‖A = 1. Also let
a1, . . . , an be finitely many elements of A, and let A0 be the subalgebra of A
generated by eA and a1, . . . , an. Suppose that

A0 is dense in A,(13.7.1)

with respect to the metric associated to the norm. This corresponds to Example
11.13 (d) on p271 of [162], at least in the complex case.

Let ψ be the algebra homomorphism from R[T1, . . . , Tn] or C[T1, . . . , Tn], as
appropriate, into A as in (13.6.1), with a = (a1, . . . , an). Observe that A0 is
the same as the image of R[T1, . . . , Tn] or C[T1, . . . , Tn], as appropriate, under
ψ.

If α ∈ Sp(A), then put

ϕ(α) = (â1(α), . . . , ân(α)) = (α(a1), . . . , α(an)),(13.7.2)

as in (13.6.4) and (13.6.7). This defines a mapping from Sp(A) into Rn or
Cn, as appropriate. This mapping is continuous with respect to the topology
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defined on Sp(A) as in Section 12.10 and the standard metric on Rn or Cn, as
appropriate, because â is continuous on Sp(A) for every a ∈ A, as before. Thus

K = ϕ(Sp(A))(13.7.3)

is a compact subset of Rn or Cn, as appropriate, because Sp(A) is compact, as
in Section 12.10.

If α ∈ Sp(A), then α is uniquely determined by its restriction to A0, because
of (13.7.1), and the fact that α is a bounded linear functional on A, as in Section
6.9. It is easy to see that the restriction of α to A1 is uniquely determined by
α(a1), . . . , α(an). This means that

ϕ is one-to-one on Sp(A).(13.7.4)

Alternatively, ψ̂ is one-to-one on Sp(A) under these conditions, as in Section
12.15. One can use this to get (13.7.4) from (13.6.5).

It follows that

ϕ is a homeomorphism from Sp(A) onto K,(13.7.5)

with respect to the restriction to K of the standard metric on Rn or Cn, as
appropriate. This uses the compactness of Sp(A) and a well-known result in
topology. This could also be obtained more directly here, because of the way
that the topology on Sp(A) is defined, and because the dual norm of every
h ∈ Sp(A) is equal to 1. This corresponds to some remarks in Section 12.15,
using (13.5.9) and (13.6.5).

Remember that Sp(A) 6= ∅ in the complex case. If A is a Banach algebra
over the real numbers, then let us suppose that Sp(A) 6= ∅ for the rest of the
section. Of course, this means that

K 6= ∅.(13.7.6)

Note that ϕ−1 is a homeomorphism from K onto Sp(A). If b ∈ A, then b̂ is
a continuous function on Sp(A), so that

η(b) = b̂ ◦ ϕ−1(13.7.7)

is a continuous real or complex-valued function on K, as appropriate. This
defines an algebra homomorphism from A into C(K,R) or C(K,C), as appro-
priate.

Remember that âj(α) is the jth coordinate of ϕ(α) for α ∈ Sp(A) and
j = 1, . . . , n, as in (13.7.2). This implies that η(aj) is the same as the restriction
to K of the projection onto the jth coordinate for each j = 1, . . . , n. It follows
that

η(A0)(13.7.8)

is the subalgebra of C(K,R) or C(K,C), as appropriate, consisting of the re-
strictions to K of polynomials on Rn or Cn with real or complex coefficients,
as appropriate. In fact,

η ◦ ψ(13.7.9)
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is the homomorphism from R[T1, . . . , Tn] or C[T1, . . . , Tn] into C(K,R) or
C(K,C), as appropriate, that sends a formal polynomial to the restriction of
the corresponding polynomial function to K.

If b ∈ A, then
‖η(b)‖sup,K = ‖b̂‖sup,Sp(A) ≤ ‖b‖A,(13.7.10)

where ‖η(b)‖sup,K is the supremum norm of η(b) on K, and the second step is
as in Section 12.10. It follows that

η(A)(13.7.11)

is contained in the closure of the subalgebra of C(K,R) or C(K,C), as ap-
propriate, consisting of restrictions to K of polynomials with real or complex
coefficients, as appropriate, with respect to the supremum metric. In the real
case, the restrictions to K of polynomials are dense in C(K,R) with respect to
the supremum metric, by the Stone–Weierstrass theorem.

13.8 Polynomial convexity

Let us continue with the same notation and hypotheses as in the previous sec-
tion, except that now we suppose that A is a complex Banach algebra. Let
w ∈ Cn be given, and suppose that

|p(w)| ≤ sup
z∈K

|p(z)|(13.8.1)

for every polynomial p on Cn with complex coefficients. We would like to show
that

w ∈ K(13.8.2)

under these conditions. This means that K is polynomially convex in Cn, as on
p272 of [162].

If p is a polynomial on Cn with complex coefficients, then p corresponds to
a formal polynomial in n commuting indeterminates with complex coefficients,
as in Section 13.3. Thus we can define pA(a1, . . . , an) as an element of A as
before. We would like to put

αw(pA(a1, . . . , an)) = p(w).(13.8.3)

This basically corresponds to an argument mentioned in Section 12.15.
Observe that

η(pA(a1, . . . , an))(13.8.4)

is the same as the restriction of p to K, as an element of C(K,C). It follows
that

sup
z∈K

|p(z)| ≤ ‖pA(a1, . . . , an)‖A,(13.8.5)

because of (13.7.10). This means that

|p(w)| ≤ ‖pA(a1, . . . , an)‖A,(13.8.6)
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by (13.8.1). This corresponds to the condition that was used in Section 12.15.
Every element of A0 is of the form pA(a1, . . . , an) for some polynomial p,

by definition of A0. Using (13.8.6), we get that αw is well-defined as a linear
functional on A0. In fact, αw is a bounded linear functional on A0, with respect
to the restriction of ‖ · ‖A to A0. This implies that αw has a unique extension
to a bounded linear functional on A, because of (13.7.1), as in Section 2.2.

It is easy to see that αw is an algebra homomorphism from A0 into C. It
follows that the extension of αw to A mentioned in the preceding paragraph is
an algebra homomorphism into C as well. Clearly

αw(eA) = 1,(13.8.7)

by (13.8.3). Let us also use αw to denote this extension to A, which is an
element of Sp(A).

Similarly,
αw(aj) = wj(13.8.8)

for each j = 1, . . . , n. This means that

ϕ(αw) = (αw(a1), . . . , αw(an)) = w.(13.8.9)

Thus (13.8.2) holds, by the definition (13.7.3) of K.
Suppose now that n = 1, so that

ϕ(α) = â1(α) = α(a1)(13.8.10)

for every α ∈ Sp(A), as in (13.7.2). We also have that

K = ϕ(Sp(A)) = σA(a1),(13.8.11)

where the second step is as in Sections 6.9 and 6.12. We would like to show that

C \ σA(a1) is connected,(13.8.12)

as mentioned on p272 of [162]. This corresponds to Exercise (2) on p33 of [8]
and Exercise 7 on p401 of [160] as well.

Remember that σA(a1) is a closed and bounded set in C, as in Section
6.8. This implies that C \ σA(a1) is an open set with exactly one unbounded
connected component. If U is a bounded component of C \ σA(a1), then the
boundary of U is contained in σA(a1). This means every w ∈ U satisfies (13.8.1),
by the maximum principle. Thus (13.8.2) implies that U is contained in σA(a1),
which is a contradiction.

13.9 A class of C∗ algebras

Let (A, ‖ · ‖A) be a C∗ algebra with nonzero multiplicative identity element eA
and involution b 7→ b∗. Suppose that a1 is a normal element of A, so that a1
commutes with a∗1, and let A1 be the subalgebra of A generated by eA, a1, and
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a∗1. Note that A1 is a commutative algebra, and that if b ∈ A1, then b
∗ ∈ A1

too. Suppose also that
A1 is dense in A,(13.9.1)

with respect to the metric associated to the norm. Of course, this implies that
A is commutative as well.

Let Sp(A) be the space of nonzero algebra homomorphisms from A into

C, with its usual topology, as in Section 12.10. If b ∈ A, then b̂(α) = α(b)
defines a continuous mapping from Sp(A) onto σA(a), as before. Remember
that α(b) ∈ R for every α ∈ Sp(A) when b ∈ A is self-adjoint, as in Section
12.8. One can use this to get that

α(b∗) = α(b)(13.9.2)

for every b ∈ A, which was mentioned in slightly different notation in Section
12.11. In particular,

α(a∗1) = α(a1).(13.9.3)

If α ∈ Sp(A), then the restriction of α to A1 is uniquely determined by
α(a1), because of (13.9.3). This implies that α is uniquely determined on A by
α(a1), because of (13.9.1), and because α is a bounded linear functional on A,
as in Section 6.9. It follows that

â1 is one-to-one on Sp(A).(13.9.4)

In fact,
â1 is a homeomorphism from Sp(A) onto σA(a1),(13.9.5)

with respect to the restriction of the standard metric on C to σA(a1). This can
be obtained from the compactness of Sp(A) and a well-known result in topology,
or using more direct arguments in this case.

Remember that the Gelfand map b 7→ b̂ is an isometric algebra isomorphism
from A onto C(Sp(A),C), as in Section 12.11. We also have that the involution
on A corresponds to complex-conjugation on C(Sp(A),C), as before. It follows
that

b 7→ b̂ ◦ â1−1(13.9.6)

is an isometric algebra isomorphism from A onto C(σA(a1),C), with respect to
which the involution on A corresponds to complex-conjugation on C(σA(a1),C).

If f ∈ C(σA(a1),C), then let f(a1) = fA(a1) be the unique element of A
such that ̂(fA(a1)) ◦ â1−1 = f.(13.9.7)

Of course, this is the same as saying that

̂(fA(a1)) = f ◦ â1(13.9.8)

on Sp(A). Thus
f 7→ fA(a1)(13.9.9)
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defines an isometric algebra isomorphism from C(σA(a1),C) onto A, which is
the inverse of (13.9.6). Note that

(f)A(a1) = fA(a1)
∗,(13.9.10)

as before.
If f ≡ 1 on σA(a1), then fA(a1) = eA. If f(z) = z on σA(a1), then fA(a1) =

a1. If f(z) = z on σA(a1), then it follows that fA(a1) = a∗1. If f is given by a
polynomial in z and z on σA(a1), with complex coefficients, then we get that
fA(a1) is given by the same polynomial in a1 and a∗1. It is well known that every
continuous complex-valued function on σA(a1) can be uniformly approxiimated
by polynomials in z and z with complex coefficients, by the Stone–Weierstrass
theorem.

These remarks basically correspond to Theorem 11.19 on p277 of [162]. This
basically corresponds to Theorem 2.3.1 on p51 of [8], which is stated for bounded
normal operators on complex Hilbert spaces, and uses an additional fact that
will be discussed in the next section. This is also related to Corollary 1 on p263
of [167].

13.10 Spectral permanence and C∗ algebras

Let (A, ‖ · ‖A) be a C∗ algebra with a nonzero multiplicative identity element
eA and involution a 7→ a∗. Also let B be a subalgebra of A that is a closed set
with respect to the metric associated to ‖ · ‖A, that contains eA, and for which
b∗ ∈ B for every b ∈ B. If b ∈ B, then we would like to show that

σA(b) = σB(b).(13.10.1)

This corresponds to Corollary 2 on p49 of [8], and Theorem 11.29 on p283 of
[162]. A version of this is also mentioned in the proof of Corollary 1 on p263 of
[167].

Of course, any invertible element of B is invertible as an element of A. It
suffices to show that if x ∈ B and x has an inverse x−1 in A, then

x−1 ∈ B.(13.10.2)

Note that x∗ x is a self-adjoint element of B. This implies that

σB(x
∗ x) ⊆ R,(13.10.3)

because B is a C∗ algebra, as in Section 12.8. This means that

∂σB(x
∗ x) = σB(x),(13.10.4)

where the left side is the boundary of σB(x
∗ x) in the complex plane. Remember

that
∂σB(x

∗ x) ⊆ σA(x
∗ x),(13.10.5)
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as in Section 7.3. It follows that

σB(x
∗ x) ⊆ σA(x

∗ x).(13.10.6)

If x is invertible in A, then x∗ is invertible in A too. This implies that x∗ x
is invertible in A, so that 0 6∈ σA(x

∗ x). Thus 0 6∈ σB(x
∗ x), by (13.10.6), which

means that
(x∗ x)−1 ∈ B.(13.10.7)

We also have that (x∗ x)−1 x∗ x = eA, so that

x−1 = (x∗ x)−1 x∗.(13.10.8)

The right side is an element of B, because of (13.10.7), and the fact that x∗ ∈ B.
Let a1 ∈ A be given, and let A1(a1) be the subalgebra of A generated by

eA, a1, and a
∗
1. It is easy to see that A1(a1) is invariant under the involution

on A, and that the closure B(a1) of A1(a1) in A is a subalgebra over A that is
invariant under the involution as well. This means that

σA(a1) = σB(a1)(a1),(13.10.9)

as in (13.10.1). If a1 is a normal element of A, then A1(a1) and thus B(a1) are
commutative subalgebras of A. In this case, the remarks in the previous section
can be used for B(a1), and with the spectrum of a1 with respect to A.

13.11 Another continuity property

Let (A, ‖ · ‖A) be a C∗ algebra with a nonzero multiplicative identity element
eA and involution a 7→ a∗. If a1 ∈ A, then let B(a1) be the closure of the
subalgebra A1(a1) of A generated by eA, a1, and a

∗
1, as in the previous section.

Thus A(a1) and B(a1) are invariant under the involution, as before, so that
B(a1) is a C∗ algebra with respect to the restriction of ‖ · ‖A to B.

Suppose that a1 is a normal element of A, so that A1(a1) and B(a1) are
commutative subalgebras of A, as before. If f is a continuous complex-valued
function on σA(a1), then f(a1) = fB(a1)(a1) ∈ B(a1) may be defined as in
Section 13.9, because of (13.10.9). We may also use fA(a1) to denote f(a1),
because B(a1) is determined by a1 and A. Remember that f 7→ fA(a1) defines
an isometric algebra isomorphism from C(σA(a1),C) onto B(a1). Thus

‖fA(a1)‖A = ‖f‖sup,σA(a1)(13.11.1)

for every f ∈ C(σA(a1),C), where the right side is the supremum norm of f on
σA(a1).

Now let f be any continuous complex-valued function on the complex plane.
We can define f(a1) = fA(a1) ∈ B(a1) using the restriction of f to σA(a1). If
K is a compact subset of C and

σA(a1) ⊆ K,(13.11.2)
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then it follows that
‖fA(a1)‖A ≤ ‖f‖sup,K(13.11.3)

where the right side is the supremum norm of f on K. Let us check that

a1 7→ fA(a1)(13.11.4)

is a continuous mapping from

{a1 ∈ A : a1 is normal}(13.11.5)

into A, with respect to the metric associated to ‖ · ‖A and its restriction to
(13.11.5). This corresponds to Exercise (3) on p51 of [8].

More precisely, if r is a positive real number, then (13.11.4) is uniformly
continuous on

{a1 ∈ A : a1 is normal, and ‖a1‖A ≤ r}.(13.11.6)

To see this, one can start with the case where f is given by a polynomial in z, z
with coefficients complex coefficients. In this case, one can check directly that
(13.11.4) is Lipschitz on (13.11.6).

Of course, if ‖a1‖A ≤ r, then σA(a1) is contained in the closed disk

{λ ∈ C : |λ| ≤ r},(13.11.7)

as in Section 6.8. If f is any continuous complex-valued function on C, then f
can be uniformly approximated on (13.11.7) by polynomials in z and z with com-
plex coefficients, by the Stone–Weierstrass theorem. This implies that (13.11.4)
can be uniformly approximated on (13.11.6) by analogous functions associated
to polynomials in z and z with complex coefficients, because of (13.11.3). It
follows that (13.11.4) is uniformly continuous on (13.11.6), as desired.

13.12 Holomorphic functions in the plane

Let U be a nonempty open subset of the complex plane. It is well known
that the space H(U) of holomorphic functions on U is a subalgebra of the
space C(U,C) of all continuous complex-valued functions on U , as an algebra
over the complex numbers. Consider the space Sp(H(U)) of nonzero algebra
homomorphisms from H(U) into C, as in Section 12.14. If w ∈ U , then

hw(f) = f(w)(13.12.1)

defines an element of Sp(H(U)). Thus

w 7→ hw(13.12.2)

defines a mapping from U into Sp(H(U)).
If w ∈ C, then put

aw(z) = z − w,(13.12.3)
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considered as an element of H(U), as a function of z. Note that

hw(a0) = w(13.12.4)

for every w ∈ U , so that (13.5.3) is one-to-one. If w 6∈ U , then aw is invertible
as an element of H(U). This implies that

h(aw) 6= 0(13.12.5)

for every h ∈ Sp(H(U)). This means that

h(a0) 6= w(13.12.6)

when w 6∈ U , so that

h(a0) ∈ U(13.12.7)

for every h ∈ H(U).

If h ∈ Sp(H(U)) satisfies

h(a0) = w(13.12.8)

for some w ∈ U , then we would like to check that

h = hw.(13.12.9)

If f ∈ H(U), then it is well known that there is a gw ∈ H(U) such that

f(z) = f(w) + (z − w) gw(z)(13.12.10)

on U . Note that

h(aw) = 0,(13.12.11)

by (13.12.8). This implies that

h(f) = f(w) + h(aw gw) = f(w).(13.12.12)

It follows that (13.12.2) is a one-to-one mapping from U onto H(U), with
inverse given by

h 7→ h(a0).(13.12.13)

Let us take Sp(H(U)) to be equipped with the weak topology associated to

the functions f̂(h) = h(f), f ∈ H(U), as usual. Observe that (13.12.2) is
continuous as a mapping from U into Sp(H(U)) with respect to this topology,
because holomorphic functions are continuous. We also have that (13.12.13) is
continuous, because of the way that this topology n Sp(H(U)) is defined. This
means that (13.12.2) is a homeomorphism from U onto Sp(H(U)).
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13.13 Disk algebras

Let r be a positive real number, and let

Ur = {z ∈ C : |z| < r}(13.13.1)

be the open disk in the complex plane centered at 0 with radius r. Of course,
the closure of Ur with respect to the standard Euclidean metric on C is the
corresponding closed disk

Ur = {z ∈ C : |z| ≤ r}.(13.13.2)

Consider the space A(Ur) of continuous complex-valued functions on Ur that
are holomorphic on Ur, as in Section 1.8. This is a closed linear subspace of the
space C(Ur,C) of continuous complex-valued functions on Ur, with respect to
the supremum metric, as before. Note that A(Ur) is a subalgebra of C(Ur,C),
and thus a commutative Banach algebra with respect to the supremum norm.

One can use dilations on C to get that the A(Ur)’s are all isometrically
isomorphic to each other, as Banach algebras. Often A(U1) is mostly considered,
which is known as the disk algebra, as in Example 1.3.6 on p8 of [8], and Example
10.3 (c) on p230 of [162].

Suppose that f ∈ A(Ur), and remember that f is uniformly continuous on
Ur, because Ur is compact with respect to the standard Euclidean metric on C.
If 0 < t < 1, then

ft(z) = f(t z)(13.13.3)

defines an element of A(Ur/t), whose restriction to Ur is an element of A(Ur).
We also have that

ft → f uniformly on Ur as t→ 1−,(13.13.4)

because f is uniformly continuous on Ur.
It is well known that any holomorphic function on Ur can be expressed as

an absolutely convergent power series. The partial sums of this power series
converge uniformly on any closed disk in C centered at 0 with radius less than
r. If 0 < t < 1, then it follows that ft can be expressed as a power series whose
partial sums converge uniformly on Ur.

In particular, ft can be approximated uniformly by polynomials in z with
compelx coefficients on Ur. This implies that

f can be approximated uniformly by polynomials on Ur,(13.13.5)

because of (13.13.4).
Let us now consider the space Sp(A(Ur)) of nonzero algebra homomorphisms

from A(Ur) into C, as in Sections 12.10 and 12.14. If w ∈ Ur, then

hw(f) = f(w)(13.13.6)
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defines an element of Sp(A(Ur)), so that

w 7→ hw(13.13.7)

defines a mapping from Ur into Sp(A(Ur)). Put a0(z) = z, considered as an
element of A(Ur), so that hw(a0) = w. Thus (13.13.7) is one-to-one on Ur.

Let h ∈ Sp(A(Ur)) be given, and remember that

|h(f)| ≤ ‖f‖sup,Ur
(13.13.8)

for every f ∈ A(Ur), as in Section 6.9, where the right side is the supremum
norm of f on Ur. In particular,

|h(a0)| ≤ r.(13.13.9)

If we put w = h(a0), then would like to check that

h(f) = hw(f)(13.13.10)

for every f ∈ A(Ur). This can be verified directly when f is a polynomial.
Otherwise, one can reduce to that case, using (13.13.5) and (13.13.8).

This shows that (13.13.7) maps Ur onto Sp(A(Ur)), with inverse given by
h 7→ h(a0).

As usual, we take Sp(A(Ur)) to be equipped with the weak topology associ-

ated to the functions f̂(h) = h(f), f ∈ A(Ur). It is easy to see that (13.13.7) is
a homeomorphism from Ur onto Sp(A(Ur)) with respect to this topology. This
basically corresponds to the n = 1 case of Example 11.13 (c) on p271 of [162].
One can also use the maximum principle to identify A(Ur) with a subalgebra of
the algebra C(∂Ur,C) of continuous complex-valued function on the circle

∂Ur = {z ∈ C : |z| = r},(13.13.11)

which is the boundary of Ur in C. This corresponds to Example 1.11.2 on p31
of [8].

13.14 Polydisk algebras

Let n be a positive integer. It is well known that a number of equivalent condi-
tions may be used to characterize holomorphicity of functions of several complex
variables. It will be convenient here to use the following, as in Definition 7.20
on p180 of [162]. A continuous complex-valued function f on an open set in Cn

is holomorphic if it is holomorphic in each variable separately.
Let r = (r1, . . . , rn) be an n-tuple of positive real numbers, and let

Ur = {z ∈ Cn : |zj | < rj for j = 1, . . . , n}(13.14.1)

be the corresponding open polydisk in Cn centered at 0. The closure of Ur with
respect to the standard Euclidean metric on Cn is the corresponding closed
polydisk

Ur = {z ∈ Cn : |zj | ≤ rj for j = 1, . . . , n}(13.14.2)
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Consider the space A(Ur) of continuous complex-valued functions on Ur that
are holomorphic on Ur. This is a closed linear subspace of the space C(Ur,C)
of continuous complex-valued functions on Ur, with respect to the supremum
metric, for essentially the same reasons as when n = 1. We also have that
A(Ur) is a subalgebra of C(Ur,C), and thus a commutative Banach algebra
with respect to the supremum norm.

One can use linear mappings on Cn corresponding to dilations in each co-
ordinate to get that the A(Ur)’s are all isometrically isomorphic to each other,
as Banach algebras. If rj = 1 for each j, then A(Ur) may be called the polydisk
algebra, as in Exercise 4 on p288 of [162], which is often mostly considered.

Let f ∈ A(Ur) be given, and note that f is uniformly continuous on Ur,
because Ur is compact in Cn. If 0 < t < 1, then

ft(z) = f(t z)(13.14.3)

defines an element of A(Ut−1 r), where t
−1 r = (t−1 r1, . . . , t

−1 rn), as usual. It
is easy to see that

ft → f uniformly on Ur as t→ 1−,(13.14.4)

because f is uniformly continuous on Ur.
It is well known that any holomorphic function on Ur can be expressed as an

absolutely convergent multiple power series. Without getting into the details too
much, this can be obtained using the Cauchy integral formula in each variable
separately. The main point for the moment is that ft can be approximated
uniformly by polynomials in z1, . . . , zn with complex coefficients on Ur when
0 < t < 1. One can use this and (13.14.4) to get that

f can be approximated uniformly by polynomials on Ur.(13.14.5)

This corresponds to Exercise 4 on p288 of [162].
Remember that Sp(A(Ur)) is the space of nonzero algebra homomorphisms

from A(Ur) into C, as in Sections 12.10 and 12.14. If w ∈ Ur, then

hw(f) = f(w)(13.14.6)

defines an element of Sp(A(Ur)), so that

w 7→ hw(13.14.7)

defines a mapping from Ur into Sp(A(Ur)), as before. Put

aj(z) = zj(13.14.8)

for each j = 1, . . . , n, considered as an element of A(Ur). Thus

hw(aj) = wj(13.14.9)

for each j = 1, . . . , n and w ∈ Ur. This implies that (13.14.7) is one-to-one on
Ur.
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If h ∈ Sp(A(Ur)), then

|h(f)| ≤ ‖f‖sup,Ur
(13.14.10)

for every f ∈ A(Ur), as in Section 6.9, where the right side is the supremum
norm of f on Ur. This implies that

|h(aj)| ≤ rj(13.14.11)

for each j = 1, . . . , n. This means that

w = (h(a1), . . . , h(an))(13.14.12)

is an element of Ur.
Using this choice of w, one can check that

h(f) = hw(f)(13.14.13)

for every f ∈ A(Ur). More precisely, if f is a polynomial in z1, . . . , zn, then this
can be obtained from the fact that h is an algebra homomorphism. Otherwise,
one can approximate f by polynomials, as in (13.14.5), and use the continuity of
h on A(Ur), as in (13.14.10). It follows that (13.14.7) maps Ur onto Sp(A(Ur)).

As before, we take Sp(A(Ur)) to be equipped with the weak topology asso-

ciated to the functions f̂(h) = h(f), f ∈ A(Ur). One can verify that (13.14.7) is
a homeomorphism from Ur onto Sp(A(Ur)) with respect to this topology, and
the restriction of the standard Euclidean metric on Cn to Ur. This corresponds
to Example 11.13 (c) on p271 of [162].

13.15 Continuity and semisimplicity

Let (A, ‖·‖A), (B, ‖·‖B) be commutative Banach algebras, both real or both com-
plex, with multiplicative identitye elements eA, eB, respectively, and ‖eA‖A =
‖eB‖B = 1. Remember that Sp(A), Sp(B) are the spaces of nonzero algebra
homomorphisms from A, B, respectively, into R or C, as appropriate, as in
Section 12.10. These homomorphisms are bounded linear funtionals on A, B,
respectively, as in Section 6.9.

Let ϕ be an algebra homomorphism from A into B. If h ∈ Sp(B), then

h ◦ ϕ(13.15.1)

is an algebra homomorphism from A intoR orC, as appropriate. Thus (13.15.1)
is either an element of Sp(A), or it is identically equal to 0 on A. In both cases,
(13.15.1) is a bounded linear functional on A. Of course, if ϕ(eA) = eB, then
(13.15.1) is automatically nonzero.

Suppose that

the elements of Sp(B) separate points in B.(13.15.2)
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This is the same as saying that B is semisimple in the complex case, as in Section
6.12. Under these conditions, we have that

ϕ is bounded as a linear mapping from A into B,(13.15.3)

as in part (b) of Exercise (5) on p27 of [8], and Theorem 11.10 on p269 of
[161]. To see this, one can use the closed graph theorem, as in [8, 162]. This
corresponds to a criterion for the boundedness of a linear mapping mentioned
in Section 8.7.

Suppose that

the elements of Sp(A) separate points in A(13.15.4)

as well. If ϕ is an algebra isomorphism from A onto B, then we get that

ϕ−1 is bounded as a linear mapping from B into A,(13.15.5)

as before. In particular, algebra automorphisms of A are bounded and have
bounded inverses in this case. This corresponds to part (c) of Exercise (5) on
p27 of [8], and to the corollary and remark after Theorem 11.10 on p270 of [162].



Chapter 14

Algebras, norms, and
involutions

14.1 Some more remarks about involutions

Let A be an associative algebra over the real or complex numbers with a nonzero
multiplicative identity element eA. Suppose that

a 7→ a∗(14.1.1)

is an involution on A, which may be conjugate-linear in the complex case. If
the involution is linear, then it is easy to see that

σA(a
∗) = σA(a)(14.1.2)

for every a ∈ A. Similarly, if A is complex and the involution is conjugate-linear,
then

σA(a
∗) = {λ : λ ∈ σA(a)}.(14.1.3)

This corresponds to part (e) of Theorem 11.15 on p275 of [162], and to part (i)
of 2.1 on p262 of [167].

Let Sp(A) be the set of all nonzero algebra homomorphisms from A into R
or C, as appropriate, as in Section 12.14. If h ∈ Sp(A) and the involution on A
is linear, then

h̃(a) = h(a∗)(14.1.4)

defines an element of Sp(A) too. If A is complex and the involution is conjugate-
linear, then

h̃(a) = h(a∗)(14.1.5)

is an element of Sp(A), as mentioned in the proof of Theorem 11.16 on p276 of
[162]. It is easy to see that ˜̃

h = h(14.1.6)

315
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in both cases. In particular, this implies that

h 7→ h̃(14.1.7)

is a one-to-one mapping from Sp(A) onto itself.
If a ∈ A, then â(h) = h(a) defines a real or complex-valued function on

Sp(A), and we take Sp(A) to be equipped with the weakest topology for which
these functions are continuous, as before. If h ∈ Sp(A), then

â(h̃) = h̃(a) = h(a∗) = (̂a∗)(h)(14.1.8)

when the involution on A is linear, and

â(h̃) = h̃(a) = h(a∗) = (̂a∗)(h)(14.1.9)

when A is complex and the involution is conjugate-linear. One can use these to
get that (14.1.7) is a homeomorphism from Sp(A) onto itself in both cases.

Suppose that (A, ‖ · ‖A) is a Banach algebra, so that every h ∈ Sp(A) is a
bounded linear functional on A, as in Section 6.9. This implies that

h̃ is a bounded linear functional on A(14.1.10)

for every h ∈ Sp(A). Suppose also that A is commutative, and that

the elements of Sp(A) separate points in A,(14.1.11)

which is the same as saying that A is semisimple in the complex case, as in
Section 6.12. Under these conditions, there is a nonnegative real number C
such that

‖a∗‖A ≤ C ‖a‖A(14.1.12)

for every a ∈ A, as in Theorem 11.16 on p276 of [162].
More precisely, if the involution on A is linear, then it may be considered

as an algebra automorphism of A, because A is commutative, and (14.1.12)
follows from the remarks in Section 13.15. If A is complex and the involution
is conjugate-linear, then (14.1.12) is the same as saying that the involution is is
bounded as a real-linear mapping from A into itself. This can be obtained from
the closed graph theorem, in essentially the same way as before. In particular,
one can use the criterion for the boundedness of linear mappings mentioned in
Section 8.7.

14.2 Involutions and ideals

Let A be an algebra in the strict sense over the real or complex numbers with
an involution a 7→ a∗, which may be conjugate-linear in the complex case. Also
let I be a two-sided ideal in A, and let q be the corresponding quotient mapping
from A onto A/I. If

I is invariant under the involution on A,(14.2.1)
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then the involution on A induces a mapping from A/I into itself, defined by

q(a)∗ = q(a∗)(14.2.2)

for every a ∈ A. This defines an algebra involution on A/I, which is conjugate-
linear in the complex case when the involution on A is conjugate-linear.

Suppose now that A is commutative and associative, and that A has a
nonzero multiplicative identity element eA. Note that the involution on A takes
maximal proper ideals in A to maximal proper ideals in A. Remember that
the Jacobson radical R(A) of A is the intersection of all of the maximal proper
ideals in A. It follows that

R(A) is invariant under the involution on A.(14.2.3)

This implies that we get an induced involution on A/R(A), as in (14.2.2).
Remember that Sp(A) is the set of all nonzero algebra homomorphisms from

A into R or C, as appropriate. Put

radSp(A) =
⋂

{kerh : h ∈ Sp(A)},(14.2.4)

which may be described as the radical of A with respect to Sp(A). This is
interpreted as being equal to A when Sp(A) = ∅. Of course,

R(A) ⊆ radSp(A),(14.2.5)

because the kernel of every element of Sp(A) is a maximal proper ideal in A, as
in Section 6.12. If A is a complex Banach algebra, then

R(A) = radSp(A),(14.2.6)

as before.
Let h ∈ Sp(A) be given, and let h̃ ∈ Sp(A) be as in (14.1.4) or (14.1.5), as

appropriate. In both cases, we have that

ker h̃ = {a ∈ A : a∗ ∈ kerh}.(14.2.7)

This implies that

radSp(A) is invariant under the involution on A.(14.2.8)

Thus we get an induced involution on A/ radSp(A) too, as in (14.2.2).
If I is any ideal in A, then any maximal proper ideal in A/I corresponds

to a maximal proper ideal in A, by taking the inverse image under the quotient
mapping. The maximal proper ideals in A/I correspond exactly to the maximal
proper ideals in A that contain I in this way. If

I ⊆ R(A),(14.2.9)
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then every maximal proper ideal in A contains I, and thus corresponds to a
maximal proper ideal in A/I, so that

R(A/I) = R(A)/I.(14.2.10)

In particular,
R(A/R(A)) = {0}.(14.2.11)

Similarly, every element of Sp(A/I) determines an element of Sp(A), by
composition with the quotient mapping. In this case, the kernel of the corre-
sponding element of Sp(A) contains I, by construction. Conversely, if h ∈ Sp(A)
and

I ⊆ kerh,(14.2.12)

then h corresponds to a unique element of Sp(A/I) in this way. If

I ⊆ radSp(A),(14.2.13)

then every element of Sp(A) corresponds to a unique element of Sp(A/I) in this
way, and

radsp(A/I) = radSp(A)/I.(14.2.14)

Thus
radSp(A/radSp(A)) = {0}.(14.2.15)

Suppose now that (A, ‖ · ‖A) is a Banach algebra, and that Sp(A) 6= ∅. Re-
member that every h ∈ Sp(A) is a bounded linear functional on A, as in Section
6.9, so that kerh is a closed set in A, with respect to the metric associated to
‖·‖A. This implies that radSp(A) is a closed set in A too, so that A/ radsp(A) is
a Banach algebra with respect to the corresponding quotient norm, as in Section
6.11. Note that A/ radSp(A) 6= {0}, because Sp(A) 6= ∅.

We also have that Sp(A/ radSp(A)) separates points in A/ radSp(A), as in
(14.2.11). It follows that the induced involution on A/ radsp(A) is continuous
under these conditions, as in the previous section. This corresponds to an
argument in the proof of Theorem 11.20 on p278 of [162].

14.3 Involutions and square roots

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with a
multiplicative identity element eA. Suppose that a ∈ A satisfies ‖a‖A < 1, and
put

ϕa(x) = (1/2) a− (1/2)x2(14.3.1)

for every x ∈ A, as in Section 11.15. Under these conditions, we saw before
that ϕa defines a contraction from the closed ball B(0, ‖a‖A) in A into itself, so
that ϕa has a unique fixed point xa in B(0, ‖a‖A), by the contraction mapping
theorem. We also saw that

ϕa(x) = x(14.3.2)
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if and only if

(eA + x)2 = eA + a.(14.3.3)

More precisely, in the proof of the contraction theorem, we choose a point
u1 ∈ B(0, ‖a‖A), and we let {uj}∞j=1 be the sequence of elements of B(0, ‖a‖A)
defined recursively by

uj+1 = ϕa(uj)(14.3.4)

for each j, as in Section 7.12. This sequence converges to the unique fixed point
xa of ϕa in B(0, ‖a‖A), as before.

Suppose now that x 7→ x∗ is an involution on A, which may be conjugate-
linear in the complex case. Suppose also that a∗ = a, and observe that

ϕa(x)
∗ = ϕa(x

∗)(14.3.5)

for every x ∈ A. We can take u1 = 0 in the preceding paragraph, to get that

u∗j = uj(14.3.6)

for each j. If the involution is continuous on A, then it follows that

x∗a = xa.(14.3.7)

Self-adjoint square roots for a larger class of self-adjoint elements are con-
sidered in the complex case in Theorems 11.20 and 11.26 on p278, 281 of [162],
respectively, without asking that the involution be continuous. The argument
for commutative Banach algebras will be discussed in the next section. An ex-
tension for Banach algebras that may not be commutative will be discussed in
Section 14.9.

Remember that e∗A = eA, as in Section 6.4, so that

(eA + a)∗ = eA + a.(14.3.8)

We also have that

eA + a is invertible in A,(14.3.9)

because ‖a‖A < 1, as in Section 6.5. These conditions are used in the statement
dicsussed in the next section.

14.4 Self-adjoint square roots

Let (A, ‖ · ‖A) be a complex commutative Banach algebra with a multiplicative
identity element eA and ‖eA‖A = 1, and let v 7→ v∗ be an involution on A,
which may be conjugate-linear. Also let {yj}∞j=1 be a sequence of elements of
A that converges to y ∈ A, and suppose that

y∗j = yj(14.4.1)
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for each j. If the involution is continuous on A, then we get that

y∗ = y,(14.4.2)

and thus
(y2)∗ = y2.(14.4.3)

We would like to show that if

y2 is invertible in A,(14.4.4)

and if (14.4.3) holds then (14.4.2) holds, without asking that the involution be
continuous on A. This corresponds to part of the proof of Theorem 11.20 on
p278 of [162].

Let rad(A) be the radical of A, as in Section 6.12, which is the same as
the Jacobson radical R(A) of A, as well as the radical radSp(A) of A with
respect to Sp(A) in this case, as before. Remember that Sp(A) 6= ∅ under these
conditions, and that rad(A) is a proper closed ideal in A. Thus A/ rad(A) is a
Banach algebra with respect to the corresponding quotient norm, as in Section
6.11. Let q be the natural quotient mapping from A onto A/ rad(A), so that
q(eA) is the multiplicative identity element in A/ rad(A), as before. We also
have that the quotient norm of q(eA) is equal to 1, as before.

The involution on A induces an involution on A/ rad(A), with

q(u)∗ = q(u∗)(14.4.5)

for every u ∈ A, as in Section 14.2. Remember that the induced involution on
A/ rad(A) is continuous, as before. Of course, {q(yj)}∞j=1 converges to q(y) in
A/ rad(A), because {yj}∞j=1 converges to y in A, by hypothesis. This implies
that

q(y)∗ = lim
j→∞

q(yj)
∗ = lim

j→∞
q(y∗j ) = lim

j→∞
q(yj) = q(y),(14.4.6)

using (14.4.1) in the third step. It follows that

y∗ − y ∈ rad(A),(14.4.7)

because of (14.4.5).
Put w = (1/2) (y + y∗) and z = (1/2) (y − y∗), so that

y = w + z, w∗ = w, z∗ = −z,(14.4.8)

as in Section 7.5. Note that
z ∈ rad(A),(14.4.9)

by (14.4.7). Of course,
y2 = w2 + z2 + 2w z.(14.4.10)

We also have that

(w2)∗ = w2, (z2)∗ = z2, (w z)∗ = −w z.(14.4.11)
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Using our hypothesis (14.4.3), we get that

w z = 0.(14.4.12)

We would like to show that z = 0, to get (14.4.2). To do this, it suffices
to show that w is invertible in A, because of (14.4.12). Suppose for the sake
of a contradiction that w is not invertible in A, so that there is an algebra
homomorphism h from A into C such that

h(w) = 0(14.4.13)

and h(eA) = 1, as in Section 6.12. Note that

h(y2) 6= 0,(14.4.14)

by (14.4.4), and that
h(z) = 0,(14.4.15)

by (14.4.9). However, (14.4.13) nad (14.4.15) imply that

h(y2) = 0,(14.4.16)

because of (14.4.10).

14.5 Centralizers in associative algebras

Let A be an associative algebra over the real or complex numbers. If E is a
nonempty subset of A, then the centralizer of E in A is defined by

C(E) = CA(E) = {a ∈ A : a x = x a for every x ∈ E}.(14.5.1)

It is easy to see that
CA(E) is a subalgebra of A.(14.5.2)

If A has a multiplicative identity element eA, then

eA ∈ CA(E).(14.5.3)

If ‖ · ‖A is a submultiplicatve norm on A, then

CA(E) is a closed set in A,(14.5.4)

with respect to the metric associated to ‖ · ‖A. We also have that

E ⊆ CA(CA(E)).(14.5.5)

This corresponds to (a) and (b) in Section 11.21 on p280 of [162].
Suppose that A has a nonzero multiplicative identity element eA, and that

a ∈ CA(E) is invertible in A. Observe that

a−1 ∈ CA(E).(14.5.6)
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This implies that

σA(y) = σCA(E)(y)(14.5.7)

for every y ∈ CA(E). This corresponds to part of Theorem 11.22 on p280 of
[162], and its proof.

If E1, E2 are nonempty subsets of A with

E1 ⊆ E2,(14.5.8)

then

CA(E2) ⊆ CA(E1).(14.5.9)

Note that the elements of E commute with each other if and only if

E ⊆ CA(E).(14.5.10)

This implies that

CA(CA(E)) ⊆ CA(E),(14.5.11)

as in (14.5.9).
It is easy to see that

CA(E1) is a commutative subalgebra of A(14.5.12)

when

CA(E1) ⊆ E1.(14.5.13)

This means that

CA(CA(E)) is a commutative subalgebra of A(14.5.14)

when the elements of E commute with each other, because of (14.5.11). This
corresponds to (c) in Section 11.21 on p280 of [162].

If E is any nonempty subset of A, then

B = CA(CA(E))(14.5.15)

is a subalgebra of A that contains E, as before. If A has a nonzero multiplicative
identity element eA, then eA ∈ B, and

σA(b) = σB(b)(14.5.16)

for every b ∈ B, as in (14.5.7). In particular, this holds when b ∈ E. If the
elements of E commute with each other, and E is maximal with respect to
inclusion among subsets of A with this property, then

B = E,(14.5.17)

by (14.5.5) and (14.5.14).
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14.6 Spectra of sums and products

If E1, E2 are nonempty subsets of R or C, then put

E1 + E2 = {t1 + t2 : t1 ∈ E1, t2 ∈ E2},(14.6.1)

E1 − E2 = {t1 − t2 : t1 ∈ E1, t2 ∈ E2},(14.6.2)

and

E1E2 = {t1 t2 : t1 ∈ E1, t2 ∈ E2},(14.6.3)

as usual.
Let A be an associative algebra over the real or complex numbers with a

nonzero multiplicative identity element eA, and let B be a commutative subal-
gebra of A that contains eA. Also let h be a nonzero algebra homomorphism
from B into R or C, as appropriate. If x, y ∈ B, then

h(x+ y) = h(x) + h(y) ∈ σB(x) + σB(y)(14.6.4)

and

h(x y) = h(x)h(y) ∈ σB(x)σB(y).(14.6.5)

More precisely, the second step in each of (14.6.4) and (14.6.5) is as in Section
6.9.

Suppose now that (A, ‖ · ‖A) is a complex Banach algebra with ‖eA‖A = 1,
and that B is a closed subalgebra of A, with respect to the metric associated to
‖ · ‖A. Thus B is a commutative complex Banach algebra with respect to the
restriction of ‖ · ‖A to B. If b ∈ B, then σ(b) consists of all complex numbers of
the form h(b), where h is a nonzero algebra homomorphism from B into C, as
in Section 6.12. It follows that

σB(x+ y) ⊆ σB(x) + σB(y)(14.6.6)

and

σB(x y) ⊆ σB(x)σB(y)(14.6.7)

for every x, y ∈ B, by (14.6.4) and (14.6.5). Of course, if (14.5.16) holds for
every b ∈ B, then we get that

σA(x+ y) ⊆ σA(x) + σA(y)(14.6.8)

and

σA(x y) ⊆ σA(x)σA(y)(14.6.9)

for every x, y ∈ B.
Let x, y be any two commuting elements of A, and put E = {x, y}. If B is

as in (14.5.15), then B is a closed commutative subalgebra of A that contains
eA, x, and y, and (14.5.16) holds, as before. Thus (14.6.8) and (14.6.9) hold
under these conditions, as in Theorem 11.23 on p280 of [162].
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14.7 Invertibility of La, Ra

Let A be an associative algebra over the real or complex numbers with a nonzero
multiplicative identity element eA. If a ∈ A, then let La and Ra be the cor-
responding left and right multiplication operators on A, as in Sections 6.3 and
6.4. If a is invertible in A, then La and Ra are invertible as linear mappings
from A into itself, with

L−1
a = La−1 , R−1

a = Ra−1 .(14.7.1)

If b ∈ A, then it follows that the spectra of Lb and Rb in the algebra L(A)
of linear mappings from A into itself satisfy

σL(A)(Lb), σL(A)(Rb) ⊆ σA(b).(14.7.2)

Similarly, if ‖ · ‖A is a submultiplicative norm on A, then the spectra of Lb, Rb

in the algebra BL(A) of bounded linear mappings from A into itself satisfy

σBL(A)(Lb), σBL(A)(Rb) ⊆ σA(b).(14.7.3)

In fact,

σBL(A)(Lb), σBL(A)(Rb) = σA(b),(14.7.4)

as indicated in the proof of the corollary to Theorem 11.23 on p281 of [162].
Similarly,

σL(A)(Lb), σL(A)(Rb) = σA(b),(14.7.5)

without using a submultiplicative norm ‖ · ‖A on A.
To see this, it suffices to show that if La or Ra is invertible in L(A) for some

a ∈ A, then a is invertible in A. In particular, if ‖ · ‖A is a submultiplicative
norm on A, and La or Ra is invertible in BL(A), then a is invertible in A.

Put

LA = {La : a ∈ A}, RA = {Ra : a ∈ A},(14.7.6)

which are subalgebras of L(A). Note that

La ◦Rb = Rb ◦ La(14.7.7)

on A for every a, b ∈ A, because A is associative, which was mentioned in
Section 10.6 when a = b. In fact,

CL(A)(LA) = RA, CL(A)(RA) = LA,(14.7.8)

using the notation for centralizers in Section 14.5. Indeed, if T is a linear map-
ping from A into itself that commutes with all left multiplication operators, then
one can check that T is the same as right multiplication by T (eA). Similarly,
if T commutes with all right multilpication oprators, then T is the same as left
moltiplication by T (eA).
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If A is equipped with a submultiplicative norm ‖ · ‖A, then LA, RA may be
considered as subalgebras of BL(A). In this case, we have that

CBL(A)(LA) = RA, CBL(A)(RA) = LA,(14.7.9)

as in (14.7.8).
If La is invertible in L(A) for some a ∈ A, then L−1

a commutes with all right
multiplication operators on A. This implies that L−1

a = Lb for some b ∈ A,
and one can use this to get that b is the inverse of a in A. Similarly, if Ra

is invertible in L(A) for some a ∈ A, then R−1
a = Rb for some b ∈ A, which

implies that b is the inverse of a in A.
Suppose now that (A, ‖ · ‖A) is a complex Banach algebra, so that BL(A)

is a complex Banach algebra with respect to the corresponding operator norm.
Let a ∈ A be given, and put δa = La −Ra, as in Section 10.6. Observe that

σBL(A)(δa) ⊆ σBL(A)(La) + σBL(A)(−Ra),(14.7.10)

as in (14.6.8), because La and Ra commute with each other. This implies that

σBL(A)(δa) ⊆ σBL(A)(La)− σBL(A)(Ra).(14.7.11)

It follows that
σBL(A)(δa) ⊆ σA(a)− σA(a),(14.7.12)

because of (14.7.3), as in the corollary to Theorem 11.23 on p281 of [162].

14.8 Involutions and centralizers

Let A be an associative algebra over the real or complex numbers with an
involution a 7→ a∗, which may be conjugate-linear in the complex case. Also let
E be a nonempty subset of A, so that the centralizer CA(E) of E in A may be
defined as in Section 14.5. If

E is invariant under the involution on A,(14.8.1)

then
CA(E) is invariant under the involution on A.(14.8.2)

Indeed, if a ∈ CA(E) and (14.8.1) holds, then

a x∗ = x∗ a(14.8.3)

for every x ∈ E. This implies that

a∗ x = x a∗(14.8.4)

for every x ∈ E, so that a∗ ∈ CA(E).
It follows that

CA(CA(E)) is invariant under the involution on A(14.8.5)
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under these conditions. Remember that

B = CA(CA(E))(14.8.6)

is a subalgebra of A that contains E, as in Section 14.5. Of course, if A has a
multiplicative identity element eA, then eA is contained in the centralizer of any
nonempty subset of A, and in B in particular. If the elements of E commute
with each other, then B is a commutative subalgebra of A, as before. If E is
a subset of A whose elements commute with each other, and if E is invariant
under the involution on A and maximal with respect to inclusion among subsets
of A with these properties, then it follows that

B = E.(14.8.7)

Theorem 11.25 on p281 of [162] discusses some properties of maximal subsets
E of Banach algebras with involution such that the elements of E commute
with each other and E is invariant under the involution. These properties can
be obtained from (14.8.7) and the remarks in Section 14.5, which use similar
arguments. In particular, E is a closed set under these conditions, although the
involution is not asked to be continuous, as in [162].

14.9 Another criterion for self-adjointness

Let (A, ‖ · ‖A) be a complex Banach algebra with a multiplicative identity el-
ement eA with ‖eA‖A = 1, and an involution a 7→ a∗ that may be conjugate-
linear. Also let {yj}∞j=1 be a sequence of self-adjoint elements of A that converges

to an element y of A, and suppose that y2 is self-adjoint and invertible in A.
Let us ask as well that

yj yl = yl yj(14.9.1)

for all j, l, which implies that

yj y = y yj(14.9.2)

for each j. We would like to show that y is self-adjoint under these conditions.
Of course, if the involution on A is continuous, then the self-adjointness of y
follows from the self-adjointness of the yj ’s.

Remember that this was already shown in Section 14.4 when A is commu-
tative. We would like to reduce to the previous result, as in Theorem 11.26 on
p281 in [162], and its proof. To do this, we take

E = {yj : j ≥ 1},(14.9.3)

and B to be as in (14.8.6). The elements of E commute with each other and
are self-adjoint, by hypothesis, so that E is invariant under the involution on A.
This implies that B is a commutative subalgebra of A that is invariant under
the involution on A, as before.
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We also have that B contains eA and is a closed set with respect to the
metric associated to ‖ · ‖A, as in Section 14.5. Note that y ∈ B, so that y2 ∈ B
as well. This implies that

(y2)−1 ∈ B,(14.9.4)

because y2 is invertible in A, and B is the centralizer of a subset of A, as in
Section 14.5. Thus we can use the argument in Section 14.4, with B in place of
A, to get that y is self-adjoint.

In practive, we may start with an invertible self-adjoint element b of A with
some additional properties, and find a square root of b as a limit of a sequence
{yj}∞j=1 of self-adjoint elements ofA. The yj ’s may be elements of the subalgebra
of A generated by eA and b, which implies that they commute with each other.
In this case, we can take

E = {b}(14.9.5)

in the previous argument. This is a bit closed to the formulations in [162].
This includes the analogous question for complex Banach algebras in Section

14.3 too. In the previous notation, b = eA + a, and yj = eA + uj for each j.
Note that the inverse of b is automatically contained in any closed subalgebra
of A that contains eA and a or equivalently b, because ‖a‖A < 1, by hypothesis.

14.10 A nonnegativity condition

Let A be an associative algebra over the complex numbers with a nonzero mul-
tiplicative identity element eA and a conjugate-linear involution a 7→ a∗. Let us
say that a ∈ A is nonnegative if a∗ = a and

σA(a) ⊆ {λ ∈ R : λ ≥ 0}.(14.10.1)

This may be expressed by
a ≥ 0,(14.10.2)

as in Definition 11.27 on p282 of [162].
Let X be a nonempty metric or topological space, and consider the alge-

bra C(X,C) of all continuous complex-valued functions on X. The complex-
conjugate of such a function is clearly continuous on X too, which defines a
conjugate-linear involution on C(X,C). An element of C(X,C) is self-adjoint
with respect to this involution if and only if it is real-valued on X. The spec-
trum of an element of C(X,C) is its image in the complex plane, as mentioned
in Section 8.15. The nonnegative elements of C(X,C) in the sense described
in the preceding paragraph are the same as the elements of C(X,C) that are
real-valued and nonnegative on X.

Similarly, complex-conjugation defines a conjugate-linear involution on the
algebra Cb(X,C) of all bounded continuous complex-valued functions on X.
This is a subalgebra of C(X,C) that is invariant under complex-conjugation. In
particular, an element of Cb(X,C) is self-adjoint with respect to this involution
if and only if it is real-valued on X, as before. The spectrum of an element of
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Cb(X,C) is the closure of its image in the complex plane, as in Section 12.12.
The nonnegative elements of Cb(X,C) in the sense described earlier are the
same as the elements of Cb(X,C) that are real-valued and nonnegative on X.

If a ∈ A is self-adjoint, then a satisfies

a ≥ 0 and − a ≥ 0(14.10.3)

if and only if
σA(a) ⊆ {0}.(14.10.4)

This implies that a = 0 when A is a semisimple commutative Banach algebra,
as in Section 6.12. This also implies that a = 0 when A is a C∗ algebra and a
is normal, as in (14.12.1).

It is perhaps worth emphasizing that (14.10.1) includes the condition that

σA(a) ⊆ R.(14.10.5)

If A is a C∗ algebra, then this holds when a is self-adjoint, as in Section 12.8.
If a is any element of A, then

σA(a
2) = {λ2 : λ ∈ σA(a)},(14.10.6)

as in Section 8.13. If (12.8.1) holds, then it follows that

σA(a
2) ⊆ {µ ∈ R : µ ≥ 0}.(14.10.7)

If a is also self-adjoint, then a2 is self-adjoint as well, and we get that

a2 ≥ 0.(14.10.8)

Some additional properties of nonnegative elements of Banach algebras will
be discussed in the next section. Afterwards, we shall consider nonnegativity in
C∗ algebras.

14.11 More on nonnegativity

Let (A, ‖ · ‖A) be a complex Banach algebra, with a multiplicative identity ele-
ment eA with ‖eA‖A = 1 and a conjugate-linear involution, as before. Suppose
for the moment that A is commutative, and let Sp(A) be the set of nonzero
algebra homomorphisms from A into C, as usual. Remember that the Gelfand
transform of a is the complex-valued function defined on Sp(A) by â(h) = h(a),
as in Section 12.10. We have seen that the spectrum of a ∈ A is the same as
the image of â on Sp(A) in C, as in Sections 6.9 and 6.12. Thus (14.10.5) is
the same as saying that â is real-valued on Sp(A), and (14.10.1) is the same as
saying that â is nonnegative on Sp(A) too.

Suppose for the moment again that a, b are commuting elements of A. If a
satisfies (14.10.5) and

σA(b) ⊆ R,(14.11.1)



14.11. MORE ON NONNEGATIVITY 329

then
σA(a+ b) ⊆ R(14.11.2)

and
σA(a b) ⊆ R,(14.11.3)

as in Section 14.6. Similarly, if a satisfies (14.10.1) and

σA(b) ⊆ {λ ∈ R : λ ≥ 0},(14.11.4)

then
σA(a+ b) ⊆ {λ ∈ R : λ ≥ 0}(14.11.5)

and
σA(a b) ⊆ {λ ∈ R : λ ≥ 0}.(14.11.6)

If a and b are self-adjoint too, then a+ b and a b are self-adjoint, so that

a+ b ≥ 0(14.11.7)

and
a b ≥ 0.(14.11.8)

Suppose for the moment that a ∈ A is normal, so that a commutes with a∗.
We can express a as

a = a1 + i a2,(14.11.9)

where a1, a2 ∈ A are self-adjoint, because the involution on A is conjugate-
linear, as in Section 7.5. Note that a1 and a2 commute, because a is normal.
This implies that

a∗ a = a21 + a22.(14.11.10)

Of course, a∗ a is self-adjoint, and in fact

a∗ a ≥ 0,(14.11.11)

because of (14.10.8) and (14.11.7).
If a is any element of A and t ∈ C, then it is easy to see that

σA(t eA − a) = t− σA(a) = {t− λ : λ ∈ σA(a)}.(14.11.12)

Suppose that (14.10.5) holds, so that

σA(a) ⊆ [−‖a‖A, ‖a‖A],(14.11.13)

as in Section 6.8. If t ∈ R, then it follows that

σA(t eA − a) ⊆ [t− ‖a‖A, t+ ‖a‖A].(14.11.14)

In particular, this means that

σA(t eA − a) ⊆ {λ ∈ R : λ ≥ 0}(14.11.15)

when t ≥ ‖a‖A.
Suppose that b ∈ A, t ∈ R, and

‖t eA − b‖A ≤ t.(14.11.16)

If (14.11.1) holds, then (14.11.4) holds as well. This is the same as (14.11.15),
with a = t eA − b.
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14.12 Sums in C∗ algebras

Let (A, ‖ ·‖A) be a C∗ algebra, with nonzero multiplicative identity element eA.
If a is a normal element of A, then

‖a‖A = rA(a) = max{|λ| : λ ∈ σA(a)},(14.12.1)

where the first step is as in Section 7.7, and the second step is as in Section
6.14. In particular, this holds when a is self-adjoint.

Suppose that u, v are nonnegative elements of A, in the sense defined in
Section 14.10. We would like to show that

u+ v ≥ 0(14.12.2)

too. This corresponds to Lemma 4.8.1 on p126 of [8], part (d) of Theorem 11.28
on p282 of [162], and part of part (i) of Theorem 3.1 on p267 of [167]. Of course,
u+ v is self-adjoint, because u, v are self-adjoint, by hpothesis, and so we want
to show that

σA(u+ v) ⊆ {λ ∈ R : λ ≥ 0}.(14.12.3)

This was discussed in the previous section when u and v commute.

Note that

σA(u) ⊆ [0, ‖u‖A],(14.12.4)

because of (14.11.13) and the hypothesis that u ≥ 0. This implies that

σA(‖u‖A eA − u) ⊆ [0.‖u‖A],(14.12.5)

as in (14.11.12). It follows that∥∥‖u‖A eA − u
∥∥
A ≤ ‖u‖A,(14.12.6)

by (14.12.1). Similarly, ∥∥‖v‖A eA − v
∥∥
A ≤ ‖v‖A.(14.12.7)

Using (14.12.6) and (14.12.7), we get that

‖(‖u‖A + ‖v‖A) eA − (u+ v)‖A ≤
∥∥‖u‖A eA − u

∥∥
A +

∥∥‖v‖A eA − v
∥∥
A

≤ ‖u‖A + ‖v‖A.(14.12.8)

Put t = ‖u‖A + ‖v‖A, so that (14.12.8) is the same as saying that

‖t eA − (u+ v)‖A ≤ t.(14.12.9)

This implies (14.12.3), as mentioned at the end of the previous section, with
b = u+ v.
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14.13 Nonnegativity of a∗ a

Let (A, ‖ · ‖A) be a C∗ algebra again, with a nonzero multiplicative identity
element eA. If a ∈ A, then a∗ a is self-adjoint, and it is well known that

a∗ a ≥ 0,(14.13.1)

in the sense of Section 14.10. This is Theorem 4.8.3 on p127 of [8], part (e) of
Theorem 11.28 on p282 of [162], and part of part (iii) of Theorem 3.1 on p267
of [167]. A couple of proofs of this will be discussed in the next two sections.
Remember that this was discussed in Section 14.11 when a is normal.

Suppose that

σA(a
∗ a) ⊆ {λ ∈ R : λ ≤ 0},(14.13.2)

which means that

−a∗ a ≥ 0.(14.13.3)

If (14.13.1) holds, then

σA(a
∗ a) = {0},(14.13.4)

as in Section 14.10. This implies that

a∗ a = 0,(14.13.5)

as in (14.12.1), because a∗ a is self-adjoint. This means that

a = 0,(14.13.6)

because A is a C∗ algebra.
Lemma 4.8.2 on p127 of [8] states that (14.13.2) implies (14.13.6), without

using (14.13.1). In fact, this is used to get (14.13.1) afterwards, as in the next
section.

To see this, remember that the nonzero elements of the spectra of a∗ a and
a a∗ are the same, as in Section 11.5. Thus (14.13.2) implies that

σA(a a
∗) ⊆ {λ ∈ R : λ ≤ 0}.(14.13.7)

It follows that

σA(a
∗ a+ a a∗) ⊆ {λ ∈ R : λ ≤ 0},(14.13.8)

as in the previous section.
Let us express a as a1 + i a2, where a1, a2 ∈ A are self-adjoint, as in Section

7.5. Observe that

a∗ a+ a a∗ = 2 a21 + 2 a22.(14.13.9)

This means that

−2 a21 − 2 a22 ≥ 0,(14.13.10)

by (14.13.8).
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Note that a21, a
2
2 ≥ 0, because a1, a2 are self-adjoint, as in Section 14.10.

This implies that 2 a21, 2 a
2
2 ≥ 0 as well. It follows that

−2 a21 = (−2 a21 − 2 a22) + 2 a22 ≥ 0,(14.13.11)

as in the previous section. This means that 2 a21 = 0, as before. Thus a1 = 0,
because a1 is self-adjoint, and A is a C∗ algebra.

Similarly, a2 = 0. This shows that (14.13.6) holds, because a = a1 + i a2.
Observe that (14.13.9) implies that

a∗ a+ a a∗ ≥ 0,(14.13.12)

using the result in the previous section. This could also be obtained from
(14.13.1) and the analogous property of

a a∗ = (a∗)∗ a∗.(14.13.13)

14.14 A proof of a∗ a ≥ 0

Let (A, ‖ · ‖A) be a C∗ algebra with a nonzero multiplicative identity element
eA, and let a ∈ A be given. We would like to show that a∗ a ≥ 0, as mentioned
in the previous section, following the proof of Theorem 4.8.3 on p127 of [8]. Let

A1(a
∗ a)(14.14.1)

be the subalgebra of A generated by eA and a∗ a, and let

B(a∗ a)(14.14.2)

be the closure of A1(a
∗ a) in A with respect to the metric associated to ‖ · ‖A.

Note that A1(a
∗ a) is a commutative subalgebra of A that is invariant under the

involution, because a∗ a is self-adjoint. This implies that B(a∗ a) has the same
properties, so that it is a commutative C∗ algebra with respect to the restriction
of ‖ · ‖A to B(a∗ a).

Remember that the spectrum of a∗ a as an element of B(a∗ a) is the same
as σA(a

∗ a), as in Section 13.10. If f is a continuous complex-valued function
on σA(a

∗ a), then f(a∗ a) ∈ B(a∗ a) may be defined as in Section 13.9. The
mapping

f 7→ f(a∗ a)(14.14.3)

defines an isometric algebra isomorphism from C(σA(a
∗ a),C) onto B(a∗ a), as

before. We also have that

(f)(a∗ a) = f(a∗ a)∗(14.14.4)

for every f ∈ C(σA(a
∗ a),C). This means that

f(a∗ a)∗ = f(a∗ a)(14.14.5)
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when f is real-valued on σA(a).
Note that

σA(a
∗ a) ⊆ R,(14.14.6)

because a∗ a is self-adjoint. Consider the continuous real-valued functions f , g
defined on σA(a

∗ a) by

f(t) =
√
t when t ≥ 0(14.14.7)

= 0 when t < 0

and

g(t) = 0 when t > 0(14.14.8)

=
√
−t when t ≤ 0.

Thus
f(t)2 − g(t)2 = t(14.14.9)

and
f(t) g(t) = 0(14.14.10)

for every t ∈ σA(a
∗ a). Put

x = f(a∗ a), y = g(a∗ a),(14.14.11)

which are self-adjoint elements of B(a∗ a), as in the previous paragraph. These
elements satisfy

x2 − y2 = a∗ a(14.14.12)

and
x y = y x = 0,(14.14.13)

because of (14.14.9) and (14.14.10).
Consider

(a y)∗ (a y) = y a∗ a y = y (x2 − y2) y = −y4,(14.14.14)

as on p128 of [8]. Observe that

y4 = (y2)2 ≥ 0,(14.14.15)

as in Section 14.10, so that

σA((a y)
∗ (a y)) ⊆ {λ ∈ R : λ ≤ 0}.(14.14.16)

This implies that
a y = 0,(14.14.17)

as in the previous section. This means that

y4 = 0,(14.14.18)

because of (14.14.14). It follows that y2 = 0, because A is a C∗ algebra, and y
is self-adjoint. Similarly,

y = 0.(14.14.19)

Thus
a∗ a = x2 ≥ 0,(14.14.20)

as in Section 14.10.
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14.15 Some remarks about related arguments

Let (A, ‖ · ‖A) be a C∗ algebra with a nonzero multiplicative identity element
eA again, and let a ∈ A be given. The fact that a∗ a ≥ 0 corresponds to part
(e) of Theorem 11.28 on p282 of [162], as mentioned in Section 14.13. The proof
is basically similar to the one discussed in the previous two sections, aside from
one main difference near the beginning.

One starts by choosing a commutative subalgebra B of A that contains eA
and a∗ a, is invariant under the involution, is closed with respect to the metric
associated to ‖ · ‖A, and for which

σA(b) = σB(b)(14.15.1)

for every b ∈ B. In fact, this last property holds automatically under these
conditions, as in Section 13.10. This was discussed afterwards in Theorem 11.29
on p283 of [162], and B was taken instead to be a maximal subset of A whose
elements commute with each other, and which is invariant under the involution.
This is related to the remarks in Section 14.8. Using the result in Section 13.10,
one can take B = B(a∗ a) as in the previous section.

Remember that B is isometrically isomorphic to the algebra of continuous
complex-valued functions on the compact Hausdorff space Sp(B), as in Section
12.11. One can use this to deal with functions of a∗ a as elements of B, instead
of the version in Section 13.9, as in the previous section.

Note that nonnegativity of a self-adjoint element b of B is the same with
respect to A and B, because of (14.15.1). If b is any element of B, then

σB(b) = b̂(Sp(B)),(14.15.2)

where b̂ is the Gelfand transform of b. This is the same as the spectrum of b̂ in
C(Sp(B),C). The nonnegativity of b in B is equivalent to the nonnegativity of

b̂ in C(Sp(B),C), which means that b̂ is real-valued and nonnegative on Sp(B).
The nonnegativity of a∗ a is also part of part (iii) of Theorem 3.1 on p267

of [167], as mentioned in Section 14.13. The proof is basically similar to the
one in the previous two sections as well, and some additional related facts are
discussed too.



Chapter 15

Norms, weights, and power
series

15.1 Norms, isometries, and G(A)

Let A be an associative algebra over the real or complex numbers with a nonzero
multiplicative identity element eA, and remember that G(A) is the group of
invertible elements of A. Of course, if x ∈ G(A), then 0 is not an element of
either σA(x) or σA(x

−1). One can check that

σA(x
−1) = {1/λ : λ ∈ σA(x)}(15.1.1)

in this case. Suppose that ‖·‖A is a submultiplicative norm on A with ‖eA‖A =
1. Observe that

1 = ‖eA‖A ≤ ‖x‖A ‖x−1‖A(15.1.2)

for every x ∈ G(A).
One can check that

{u ∈ G(A) : ‖u‖A, ‖u−1‖A ≤ 1}(15.1.3)

is a subgroup of G(A). This is the same as

{u ∈ G(A) : ‖u‖A = ‖u−1‖A = 1},(15.1.4)

because of (15.1.2). It is easy to see that this is a relatively closed set in G(A),
because x 7→ x−1 is continuous on G(A). If A is a Banach algebra, then one
can verify that

(15.1.3) is a closed set in A,(15.1.5)

using a remark in Section 6.7.
If u is an element of (15.1.3) and λ ∈ σA(u), then λ 6= 0, as before, and

|λ| ≤ 1, as in Section 6.8. Similarly,

|1/λ| ≤ 1,(15.1.6)

335
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because 1/λ ∈ σA(u
−1), as in (15.1.1). This means that

|λ| = 1.(15.1.7)

If u is an element of (15.1.3) and a ∈ A, then

‖u a‖A ≤ ‖u‖A ‖a‖A = ‖a‖A(15.1.8)

and

‖a‖A = ‖u−1 u a‖A ≤ ‖u−1‖A ‖u a‖A = ‖u a‖A.(15.1.9)

This implies that

‖u a‖A = ‖a‖A.(15.1.10)

Similarly,

‖a u‖A = ‖a‖A.(15.1.11)

Conversely, if u ∈ A and (15.1.10) or (15.1.11) holds with a = eA, then ‖u‖A =
1. If u ∈ G(A) and (15.1.10) or (15.1.11) holds with a = u−1, then ‖u−1‖A = 1.

Let V,W 6= {0} be vector spaces, both real or both complex, with norms
‖·‖V , ‖·‖W , respectively, and let T be a one-tone bounded linear mapping from
V onto W , with bounded inverse. Remember that ‖T−1‖op,WV is the smallest
nonnegative real number such that

‖T−1(w)‖V ≤ ‖T−1‖op,WV ‖w‖W(15.1.12)

for every w ∈ W . Equivalently, ‖T−1‖op,WV is the smallest nonnegative real
number such that

‖v‖V ≤ ‖T−1‖op,WV ‖T (v)‖W(15.1.13)

for every v ∈ V . It follows that T is an isometric linear mapping from V onto
W if and only if

‖T‖op,V W , ‖T−1‖op,WV ≤ 1,(15.1.14)

in which case ‖T‖op,V W = ‖T−1‖op,WV = 1. In particular, if A is the algebra
BL(V ) of bounded linear mappings from V into itself, then (15.1.3) is the group
of isometric linear mappings from V onto itself.

15.2 Some remarks about unitary elements

Let (A, ‖ ·‖A) be a C∗ algebra, with nonzero multiplicative identity element eA.
An element u of A is said to be unitary if

u∗ u = uu∗ = eA,(15.2.1)

as on p261 of [167]. Of course, this is the same as saying that u is invertible in
A, with

u−1 = u∗.(15.2.2)
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The collection U(A) of unitary elements of A is a subgroup of the group G(A)
of invertible elements of A. This was mentioned in Section 7.5 for arbitrary
associative algebras with involutions.

Using (15.2.1), we get that

‖u‖A = 1.(15.2.3)

Similarly,
‖u−1‖A = 1,(15.2.4)

because (u−1)∗ u−1 = uu−1 = eA. This shows that U(A) is contained in
(15.1.3).

Suppose now that u ∈ G(A) satisfies ‖u‖A, ‖u−1‖A ≤ 1, so that

‖u∗ u‖A = ‖u‖2A ≤ 1(15.2.5)

and
‖(u−1)∗‖A = ‖u−1‖A ≤ 1.(15.2.6)

This uses the fact that the involution on a C∗ algebra preserves the norm, as in
Section 7.7. It follows that

‖u−1 (u−1)∗‖A = ‖((u−1)∗)∗ (u−1)∗‖A = ‖(u−1)∗‖2A ≤ 1.(15.2.7)

Observe that
(u∗ u)−1 = u−1 (u∗)−1 = u−1 (u−1)∗,(15.2.8)

so that
‖(u∗ u)−1‖A ≤ 1.(15.2.9)

This shows that u∗ u is an element of (15.1.3), so that

σA(u
∗ u) ⊆ {λ ∈ C : |λ| = 1},(15.2.10)

as in (15.1.7). Of course, u∗ u is self-adjoint, so that

σA(u
∗ u) ⊆ R,(15.2.11)

as in Section 12.8. Combining this with (15.2.10), we get that

σA(u
∗ u) ⊆ {1,−1}.(15.2.12)

This implies that
σA(u

∗ u) = {1},(15.2.13)

because u∗ u ≥ 0, as in Section 14.13.
This means that

σA(u
∗ u− eA) = {0},(15.2.14)

as in Section 14.11. It follows that u∗ u = eA, because u
∗ u− eA is self-adjoint,

as in Section 14.12. Thus u ∈ U(A), because u ∈ G(A), by hypothesis. This
shows that U(A) is equal to (15.1.3) in this case.



338 CHAPTER 15. NORMS, WEIGHTS, AND POWER SERIES

15.3 Weighted ℓp spaces

Let X be a nonempty set, let p be a positive real number, and let Z be a vector
space over the real or complex numbers with a norm ‖ · ‖Z . Also let w be a
positive real-valued function on X, and consider the space

ℓpw(X,Z)(15.3.1)

of Z-valued functions f on X such that

‖f(x)‖Z w(x)(15.3.2)

is p-summable as a nonnegative real-valued function on X. Equivalently, this
means that

‖f(x)‖pZ w(x)
p(15.3.3)

is summable on X. Sometimes one may consider wp as the relevant weight here,
and use somewhat different notation to reflect that. This version can be more
convenient in some ways, in connection with the depedence on p.

Similarly, let ℓ∞w (X,Z) be the space of Z-valued functions f on X such that
(15.3.2) is bounded on X. If f ∈ ℓpw(X,Z), 0 < p ≤ ∞, then put

‖f‖p,w = ‖f‖ℓpw(X,Z) =
( ∑

x∈X

‖f(x)‖pZ w(x)
p
)1/p

(15.3.4)

when p <∞, and

‖f‖∞,w = ‖f‖ℓ∞w (X,Z) = sup
x∈X

(‖f(x)‖Z w(x))(15.3.5)

when p = ∞. Of course, ℓpw(X,Z) is the same as ℓp(X,Z), as in Section 2.6,
for every p > 0 when w ≡ 1 on X, in which case ‖f‖p,w is the same as ‖f‖p =
‖f‖ℓp(X,Z). Otherwise,

f ∈ ℓpw(X,Z) if and only if w f ∈ ℓp(X,Z),(15.3.6)

so that
f 7→ w f(15.3.7)

defines a one-to-one mapping from ℓpw(X,Z) onto ℓp(X,Z). In particular,
ℓpw(X,Z) is a linear subspace of the space of all Z-valued functions onX, because
of the analogous statement for ℓp(X,Z).

Equivalently,
‖f‖p,w = ‖w f‖p(15.3.8)

for every f ∈ ℓpw(X,Z) and p > 0. If p ≥ 1, then ‖ · ‖p,w defines a norm on
ℓpw(X,Z), because of the analogous statement for ℓp(X,Z). If 0 < p ≤ 1, then
(15.3.4) satisfies the usual homogeneity property of a norm, and

‖f + g‖pp,w ≤ ‖f‖pp,w + ‖g‖pp,w(15.3.9)
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for all f, g ∈ ℓpw(X,Z), because of the analogous statement for ℓp(X,Z). It
follows that

‖f − g‖pp,w(15.3.10)

defines a metric on ℓpw(X,Z) when p ≤ 1, as before. If Z is complete with
respect to the metric associated to ‖ · ‖Z , then

ℓpw(X,Z) is complete(15.3.11)

with respect to the appropriate metric for each p > 0, because of the analogous
statement for ℓp(X,Z).

Remember that c00(X,Z) is the space of Z-valued functions on X with finite
support, as in Section 2.3. Let

c0,w(X,Z)(15.3.12)

be the space of all Z-valued functions on X such that (15.3.2) vanishes at infinity
on X. This is the same as c0(X,Z) when w ≡ 1 on X, and otherwise

f ∈ c0,w(X,Z) if and only if w f ∈ c0(X,Z).(15.3.13)

Thus (15.3.7) is a one-to-one mapping from c0,w(X,Z) onto c0(X,Z), and

c0,w(X,Z) is a linear subspace of ℓ∞w (X,Z),(15.3.14)

because of the analogous statement for c0(X,Z). In fact,

c0,w(X,Z) is the same as the closure of c00(X,Z) in ℓ
∞
w (X,Z)(15.3.15)

with respect to the metric associated to (15.3.5), because of the analogous state-
ment for c0(X,Z).

If 0 < p1 ≤ p2 ≤ +∞, then

ℓp1
w (X,Z) ⊆ ℓp2

w (X,Z),(15.3.16)

and

‖f‖p2,w ≤ ‖f‖p1,w(15.3.17)

for all f ∈ ℓp1
w (X,Z), because of the analogous staements for ℓp(X,Z). If

0 < p <∞, then

c00(X,Z) ⊆ ℓpw(X,Z) ⊆ c0,w(X,Z),(15.3.18)

where the second inclusion follows from the analogous statement for ℓp(X,Z),
as usual. We also have that

c00(X,Z) is dense in ℓpw(X,Z)(15.3.19)

with respect to the appropriate metric when p < ∞, because of the analogous
statement for ℓp(X,Z).
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15.4 Polynomials with vector coefficients

Let V be a vector space over the real or complex numbers, and let T be an in-
determinate. A formal polynomial in T with coefficients in V may be expressed
as

f(T ) =

n∑
j=0

fj T
j ,(15.4.1)

with fj ∈ V for each j. The coefficients fj should be considered as being
defined for all j ≥ 0, with fj = 0 when j > n. The space of all of these formal
polynomials may be denoted V [T ]. This may be defined more precisely as the
space

c00(Z+ ∪ {0}, V )(15.4.2)

of all V -valued functions on the set Z+ ∪{0} of nonnegative integers with finite
support.

Note that V [T ] is a vector space over the real or complex numbers, as ap-
propriate, with respect to termwise addition and scalar multiplication of formal
polynomials. Of course, this corresponds to pointwise addition and scalar mul-
tiplication on (15.4.2). If f(T ) ∈ V [T ] is as in (15.4.1) and t ∈ R or C, as
appropriate, then

f(t) =

n∑
j=0

fj t
j(15.4.3)

defines an element of V . Clearly

f(T ) 7→ f(t)(15.4.4)

is a linear mapping from V [T ] into V .
It is sometimes convenient to identify v ∈ V with the formal polynomial in

T for which the coefficient of T j is equal to v when j = 0, and to 0 otherwise.
Thus V corresponds to a linear subspace of V [T ] in this way.

If A is an algebra in the strict sense over the real or complex numbers, then
A[T ] may be defined initially as a vector space over the real or complex numbers,
as appropriate, as before. Multiplication on A can be used to define a bilinear
operation of multiplication on A[T ], with

(aT j) (b T l) = (a b)T j+l(15.4.5)

for all a, b ∈ A and j, l ≥ 0. This makes A[T ] an algebra in the strict sense as
well. If A is commutative or associative, then one can check that A[T ] has the
same property. If t ∈ R or C, as appropriate, then (15.4.4) defines an algebra
homomorphism from A[T ] into A.

Let us identify a ∈ A with the formal polynomial in T whose constant term
is equal to a, and for which the coefficient of T j is 0 when j ≥ 1, as before. It
is easy to see that A corresponds to a subalgebra of A[T ] in this way. If A has
a multiplicative identity element eA, then the corresponding formal polynomial
is the multiplicative identity element in A[T ].
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Suppose for the moment that A = R or C, considered as an algebra over
itself. In this case, A[T ] is the same as R[T ] or C[T ], as in Section 13.3,
with n = 1. We may identify R and C with subalgebras of R[T ] and C[T ],
respectively, as in the preceding paragraph.

One can also consider formal polynomials in n commuting indeterminates
T1, . . . , Tn with coefficients in a vector space V or an algebra A for any positive
integer n, as in Section 13.3 for polynomials with real or complex coefficients.
If n ≥ 2, then a formal polynomial in T1, . . . , Tn corresponds to a formal poly-
nomial in Tn whose coefficients are formal polynomials in T1, . . . , Tn−1.

Let V be a vector space over the real or complex numbers again. If a(T )
is an element of R[T ] or C[T ], as appropriate, and f(T ) ∈ V [T ], then one can
define

a(T ) f(T ) ∈ V [T ](15.4.6)

in an obvious way.
Let f(T ) ∈ V [T ] be as in (15.4.1). We may say that f(T ) has degree less

than or equal to n in this case, or equal to n if fn 6= 0. If n ≥ 1 and t0 ∈ R or
C, as appropriate, then

f(T ) = f(t0) + (T − t0) g(T )(15.4.7)

for some g(T ) ∈ V [T ] of degree less than or equal to n − 1. In particular, if
f(t0) = 0, then

f(T ) = (T − t0) g(T ).(15.4.8)

It follows that f(t) has at most n zeros in R or C, as appropriate, unless
f(T ) = 0.

15.5 Formal power series

Let V be a vector space over the real or complex numbers, and let T be an
indeterminate again. A formal power series in T with coefficients in V may be
expressed as

f(T ) =

∞∑
j=0

fj T
j ,(15.5.1)

with fj ∈ V for each j. The space of all of these formal power series may
be denoted V [[T ]], which may be defined more precisely as the space of all V -
valued functions on Z+ ∪ {0}. This is a vector space over the real or complex
numbers, as appropriate, with respect to termwise addition and scalar multi-
plication, which corresponds to pointwise addition and scalar multiplication of
V -valued functions on Z+ ∪ {0}. The space V [T ] of formal polynomials in T
with coefficients in V may be considered as a linear subspace of V [[T ]].

If A is an algebra in the strict sense over the real or complex numbers,
then A[[T ]] may be defined initially as a vector space over the real or complex
numbers, as appropriate, as in the preceding paragraph. Multiplication in A[[T ]]
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may be defined using Cauchy products, as in Section 9.10, as follows. Let
f(T ), g(T ) ∈ A[[T ]] be given, with f(T ) as in (15.5.1), and

g(T ) =

∞∑
l=1

gl T
l.(15.5.2)

Put

hn =

n∑
j=0

fj gn−j(15.5.3)

for each n ≥ 0, and

h(T ) =

∞∑
n=0

hn T
n.(15.5.4)

The product of f(T ) and g(T ) in A[[T ]] is defined by

f(T ) g(T ) = h(T ).(15.5.5)

It is easy to see that this definition of multiplication is bilinear, so that
A[[T ]] is an algebra in the strict sense. One can check that this definition of
multiplication agrees with multiplication on A[T ], so that A[T ] is a subalgebra
of A[[T ]]. In particular, we may consider A as a subalgebra of A[[T ]]. If A has
a multiplicative identity element eA, then the corresponding element of A[T ] is
the multiplicative identity element in A[[T ]]. Note that

f(T ) 7→ f0(15.5.6)

defines an algebra homomorphism from A[[T ]] onto A.
Suppose that f(T ), g(T ) ∈ A[[T ]] are as in (15.5.1) and (15.5.2) again, with

fj = 0 when j ≤ j0(15.5.7)

and
gl = 0 when l ≤ l0(15.5.8)

for some j0, l0 ≥ 0. If hn is as in (15.5.3), then

hn = 0 when n ≤ j0 + l0.(15.5.9)

If A is commutative or associative, then one can check that A[[T ]] has the same
property. One way to do this is to reduce to the case of formal polynomials
using the previous remark. In particular, R[[T ]] and C[[T ]] are commutative
associative algebras over the real and complex numbers, respectively.

Let V be a vector space over the real or complex numbers again, and let
f(T ) ∈ R[[T ]] or C[[T ]], as appropriate, be given, as in (15.5.1). If g(T ) ∈ V [[T ]]
is as in (15.5.2), then (15.5.3) defines an element of V for each n ≥ 0, so that
(15.5.4) defines an element of V [[T ]]. Thus one can define f(T ) g(T ) ∈ V [[T ]]
as in (15.5.5). If f(T ) ∈ R[T ] or C[T ], as appropriate, and g(T ) ∈ V [T ], then
f(T ) g(T ) ∈ V [T ], as in the previous section. We also have that (15.5.7) and
(15.5.8) imply (15.5.9), as before.
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15.6 Invertibility in A[[T ]]

Let A be an associative algebra over the real or complex numbers with a nonzero
multiplicative identity element eA, and let T be an indeterminate. Also let
a(T ) ∈ A[[T ]] be given, so that a(T )T is a formal power series in T with
constant term equal to 0. If n is a nonnegative integer, then consider

n∑
j=0

(a(T )T )j =

n∑
j=0

a(T )j T j(15.6.1)

where
(a(T )T )j = a(T )j T j(15.6.2)

is interpreted as being eA when j = 0. If l is a nonnegative integer, then the
coefficient of T l in (15.6.2) is equal to 0 when j > l. It follows that the coefficient
of T l in (15.6.1) does not depend on n when n ≥ l.

We would like to define

∞∑
j=0

(a(T )T )j =

∞∑
j=0

a(T )j T j(15.6.3)

as an element of A[[T ]]. Namely, for each l ≥ 0, the coefficient of T l in (15.6.3)
is defined to be the same as in (15.6.1) when n ≥ l.

Note that

(eA − a(T )T )

n∑
j=0

(a(T )T )j =
( n∑

j=0

(a(T )T )j
)
(eA − a(T )T )

= eA − (a(T )T )n+1(15.6.4)

for every n ≥ 0, as in Section 6.5. This implies that

(eA − a(T )T )

∞∑
j=0

(a(T )T )j =
( ∞∑

j=0

(a(T )T )j
)
(eA − a(T )T ) = eA.(15.6.5)

More precisely, if n ≥ r ≥ 0, then the coefficient of T r in each of these three
expressions is the same as for the corresponding expression in (15.6.4). In fact,
the coefficient of T r in the first two expressions in (15.6.5) only involves the
coefficients of T l in (15.6.3) for 0 ≤ l ≤ r, which are the same as for (15.6.1),
because r ≤ n. It follows that

eA − a(T )T is invertible in A[[T ]],(15.6.6)

with inverse equal to (15.6.3).
Suppose that f(T ) ∈ A[[T ]] is as in (15.5.1), with f0 an invertible element

of A. In this case, f(T ) can be expressed as

f(T ) = f0 (eA − a(T )T )(15.6.7)
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for some a(T ) ∈ A[[T ]]. This implies that f(T ) is invertible in A[[T ]], with

f(T )−1 = (eA − a(T )T )−1 f−1
0 .(15.6.8)

Conversely, if f(T ) is invertible in A[[T ]], then one can check that f0 is invertible
in A, using the homomorphism (15.5.6).

15.7 Some spaces of power series

Let V be a vector space over the real or complex numbers with a norm ‖ · ‖V ,
and let r be a positive real number. Put

wr(j) = rj(15.7.1)

for each nonnegative integer j, which is interpreted as being equal to 1 when
j = 0, as usual. This is a positive real-valued function on the set Z+ ∪ {0} of
nonnegative integers, which can be used to define the spaces ℓpwr

(Z+ ∪ {0}, V )
for 0 < p ≤ ∞ as in Section 15.3, as well as the spaces c0,wr

(Z+ ∪ {0}, V ).
Suppose that

0 < r < t < +∞,(15.7.2)

so that
wr ≤ wt(15.7.3)

on Z+ ∪ {0}. This implies that

ℓpwt
(Z+ ∪ {0}, V ) ⊆ ℓpwr

(Z+ ∪ {0}, V ),(15.7.4)

with
‖a‖p,wr

≤ ‖a‖p,wt
(15.7.5)

for every a ∈ ℓpwt
(Z+ ∪ {0}, V ). Similarly,

c0,wt
(Z+ ∪ {0}, V ) ⊆ c0,wr

(Z+ ∪ {0}, V ).(15.7.6)

If p <∞, then

ℓ∞wt
(Z+ ∪ {0}, V ) ⊆ ℓpwr

(Z+ ∪ {0}, V ).(15.7.7)

More precisely, if a ∈ ℓ∞wt
(Z+ ∪ {0}, V ), then

‖a‖p,wr
=

( ∞∑
j=0

‖a(j)‖pV wr(j)
p
)1/p

≤ ‖a‖∞,wt

( ∞∑
j=0

wr(j)
p wt(j)

−p
)1/p

= ‖a‖∞,wt

( ∞∑
j=0

(r/t)j p
)1/p

= (1− (r/t)p)−1/p ‖a‖∞,wt
.(15.7.8)

Let T be an indeterminate, so that V [[T ]] is the space of formal power series
f(T ) =

∑∞
j=0 fj T

j in T with coefficients in V , as in Section 15.5. In this case,
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we may also use f to refer to the V -valued function on Z+ ∪ {0} defined by
the coefficients fj of f(T ). If 0 < p ≤ ∞, then let V p

r [[T ]] be the space of
f(T ) ∈ V [[T ]] such that

f ∈ ℓpwr
(Z+ ∪ {0}, V ),(15.7.9)

and put

‖f(T )‖p,r = ‖f(T )‖V p
r [[T ]] = ‖f‖p,wr

.(15.7.10)

Similarly, let V0,r[[T ]] be the space of f(T ) ∈ V [[T ]] such that

f ∈ c0,wr (Z+ ∪ {0}, V ).(15.7.11)

If p <∞, then

V [T ] ⊆ V p
r [[T ]] ⊆ V0,r[[T ]],(15.7.12)

as in Section 15.3. In fact, V [T ] is dense in V p
r [[T ]] when p < ∞, and V [T ]

is dense in V0,r[[T ]], with respect to the appropriate metrics, as before. If
0 < p1 ≤ p2 ≤ ∞, then

V p1
r [[T ]] ⊆ V p2

r [[T ]],(15.7.13)

as before. If 0 < r1 < r2 <∞, then

V p
r2 [[T ]] ⊆ V p

r1 [[T ]](15.7.14)

and

V0,r2 [[T ]] ⊆ V0,r1 [[T ]],(15.7.15)

as in (15.7.4) and (15.7.6), respectively. In this case, if p <∞, then

V∞
r2 [[T ]] ⊆ V p

r1 [[T ]],(15.7.16)

as in (15.7.7).

If 0 < ρ ≤ ∞, then put

Vρ[[T ]] =
⋂

0<r<ρ

V p
r [[T ]].(15.7.17)

It is easy to see that the right side does not depend on p > 0, because of (15.7.13)
and (15.7.16).

Of course, R and C may be considered as one-dimensional vector spaces over
themselves, with their standard absolute value functions as norms. If V = R or
C, then we may use (R)pr [[T ]] or (C)pr [[T ]], as appropriate, for V

1
r [[T ]]. Similarly,

we may use (R)0,r[[T ]] or (C)0,r[[T ]], as appropriate, for V0,r[[T ]]. We may also
use (R)ρ[[T ]] or (C)ρ[[T ]], as appropriate, for Vρ[[T ]] in this case.



346 CHAPTER 15. NORMS, WEIGHTS, AND POWER SERIES

15.8 Absolute convergence of power series

Let (V, ‖ · ‖V ) be a Banach space over the real or complex numbers, let T
be an indeterminate, and let r be a positive real number. Also let f(T ) =∑∞

j=0 fj T
j ∈ V 1

r [[T ]] be given, and let t be a real or complex number, as
appropriate, with |t| ≤ r. Under these conditions,

f(t) =

∞∑
j=0

fj t
j(15.8.1)

defines an element of V , because the sum on the right converges absolutely, as
in Section 1.7. More precisely,

‖f(t)‖V ≤
∞∑
j=0

‖fj‖V |t|j ≤
∞∑
j=0

‖fj‖V rj = ‖f(T )‖1,r.(15.8.2)

Thus (15.8.1) defines a V -valued function on

{t ∈ R : |t| ≤ r} = [−r, r](15.8.3)

or
{t ∈ C : |t| ≤ r},(15.8.4)

as appropriate.
The partial sums

n∑
j=0

fj t
j(15.8.5)

converge to (15.8.1) uniformly on (15.8.3) or (15.8.4), as appropriate, with re-
spect to the metric on V associated to ‖ · ‖V , as in Weierstrass’ well-known
criterion for uniform convergece. One can check that the partial sums (15.8.5)
are continuous as V -valued functions on (15.8.3) or (15.8.4), as appropriate. It
follows that (15.8.1) is continuous as a V -valued function on (15.8.3) or (15.8.4),
as appropriate. This defines a bounded linear mapping from V 1

r [[T ]] into the
space of continuous V -valued functions on (15.8.3) or (15.8.4), as appropriate,
with respect to the corresponding supremum norm, because of (15.8.2). One
may also consider the right side of (15.8.1) as an absolutely convergent sum
in this space of continuous V -valued functions with respect to the supremum
norm.

Suppose now that 0 < ρ ≤ ∞, and that f(T ) ∈ Vρ[[T ]]. If 0 < r < ρ, then
f(T ) ∈ V 1

r [[T ]], as in (15.7.17). If t ∈ R or C, as appropriate, and |t| < ρ, then
(15.8.1) defines an element of V , as before. This defines a V -valued function on

{t ∈ R : |t| < ρ} = (−ρ, ρ)(15.8.6)

or
{t ∈ C : |t| < ρ},(15.8.7)

as appropriate. This function is continuous with respect to the metric on V
associated to ‖ · ‖V . This can be obtained from the continuity of the restriction
of the function to (15.8.3) or (15.8.4), as appropriate, when 0 < r < ρ.
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15.9 Products and absolute convergence

Let A be an algebra in the strict sense over the real or complex numbers with
a submultiplicative norm ‖ · ‖A, let T be an indeterminate, and let r be a
positive real number. Suppose that f(T ) =

∑∞
j=0 fj T

j and g(T ) =
∑∞

l=0 gl T
l

are elements of A1
r[[T ]]. Let h(T ) = f(T ) g(T ) be their product in A[[T ]], as in

Section 15.5, with h(T ) =
∑∞

n=0 hn T
n. Observe that

‖hn‖A ≤
n∑

j=0

‖fj‖A ‖gn−j‖A(15.9.1)

for each n ≥ 0, so that

‖hn‖A rn ≤
n∑

j=0

(‖fj‖A rj) (‖gn−j‖A rn−j).(15.9.2)

The right side of (15.9.2) is the same as the nth term of the Cauchy product of
the sums corresponding to ‖f(T )‖1,r and ‖g(T )‖1,r, as in Section 9.10.

It follows that
h(T ) ∈ A1

r[[T ]](15.9.3)

too, with
‖h(T )‖1,r ≤ ‖f(T )‖1,r ‖g(T )‖1,r.(15.9.4)

Suppose that A is complete with respect to the metric associated to ‖ · ‖A, and
let t be a real or complex number, as appropriate, with |t| ≤ r. The series
corresponding to h(t) as in the previous section is the same as the Cauchy
product of the series corresponding to f(t) and g(t), as in Section 9.11. This
implies that

h(t) = f(t) g(t),(15.9.5)

as before. If 0 < ρ ≤ ∞ and f(T ), g(T ) ∈ Aρ[[T ]], then we get that

h(T ) ∈ Aρ[[T ]],(15.9.6)

and that (15.9.5) holds for every t ∈ R or C, as appropriate, with |t| < ρ.
In particular,

A1
r[[T ]] and Aρ[[T ]] are subalgebras of A[[T ]].(15.9.7)

If A is a Banach algebra, then A1
r[[T ]] is a Banach algebra with respect to ‖·‖1,r.

Now let V be a vector space over the real or complex numbers with a norm
‖ · ‖V , and let g(T ) be an element of V 1

r [[T ]]. Also let f(T ) be an element of
(R)1r[[T ]] or (C)1r[[T ]], as appropriate. Thus h(T ) = f(T ) g(T ) may be defined
as an element of V [[T ]], as in Section 15.5. As before, we have that

‖hn‖V ≤
n∑

j=0

|fj | ‖gn−j‖V(15.9.8)
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for each n ≥ 0, so that

‖hn‖V rn ≤
n∑

j=0

(|fj | rj) (‖gn−j‖V rn−j).(15.9.9)

The right side of (15.9.9) is the same as the nth term of the Cauchy product of
the sums corresponding to ‖f(T )‖1,r and ‖g(T )‖1,r.

This implies that
h(T ) ∈ V 1

r [[T ]],(15.9.10)

and that (15.9.4) holds, as before. Suppose that V is a Banach space, and
that t ∈ R or C, as appropriate, satisfies |t| ≤ r. The series corresponding to
h(t) as in the previous section may be considered as the Cauchy product of the
series corresponding to f(t) and g(t), as before. It follows that (15.9.5) holds
in this case as well. Similarly, if 0 < ρ ≤ ∞, f(T ) ∈ (R)ρ[[T ]] or (C)ρ[[T ]], as
appropriate, and g(T ) ∈ Vρ[[T ]], then

h(T ) ∈ Vρ[[T ]],(15.9.11)

and (15.9.5) holds for every t ∈ R or C, as appropriate, with |t| < ρ.

15.10 Differentiating power series

Let V be a vector space over the real or complex numbers, and let T be an
indeterminate. If f(T ) =

∑∞
j=0 fj T

j ∈ V [[T ]], then the derivative f ′(T ) of
f(T ) in V [[T ]] is defined by

f ′(T ) =

∞∑
j=1

j fj T
j−1 =

∞∑
j=0

(j + 1) fj+1 T
j .(15.10.1)

Note that
f(T ) 7→ f ′(T )(15.10.2)

is a linear mapping from V [[T ]] into itself that sends V [T ] into itself.
Let A be an algebra in the strict sense over the real or complex numbers.

One can check that

(f(T ) g(T ))′ = f ′(T ) g(T ) + f(T ) g′(T )(15.10.3)

for all f(T ), g(T ) ∈ A[[T ]]. Similarly, this holds when g(T ) ∈ V [[T ]] and f(T )
is an element of R[[T ]] or C[[T ]], as appropriate.

Suppose now that (V, ‖ · ‖V ) is a Banach space, and let r be a positive real
number. Suppose also that f(T ) ∈ V [[T ]] satisfies

f ′(T ) ∈ V 1
r [[T ]],(15.10.4)

and note that

‖f ′(T )‖1,r =

∞∑
j=1

j ‖fj‖V rj−1.(15.10.5)
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It is easy to see that

f(T ) ∈ V 1
r [[T ]](15.10.6)

in this case. Let t1, t2 be real or complex numbers, as appropriate, such that

|t1|, |t2| ≤ r.(15.10.7)

Thus f(t1), f(t2) ∈ V may be defined as in Section 15.8, and we have that

‖f(t1)− f(t2)‖V =

∥∥∥∥ ∞∑
j=0

fj t
j
1 −

∞∑
j=0

fj t
j
2

∥∥∥∥
V

=

∥∥∥∥ ∞∑
j=1

fj (t
j
1 − tj2)

∥∥∥∥
V

≤
∞∑
j=1

‖fj‖V |tj1 − tj2| ≤
∞∑
j=1

j ‖fj‖V rj−1 |t1 − t2|,(15.10.8)

where the last step is as in Section 10.1.

This implies that

‖f(t1)− f(t2)‖V ≤ ‖f ′(T )‖1,r |t1 − t2|(15.10.9)

when t1, t2 satisfy (15.10.7). This is a Lipschitz condition for f(t) on the set of
t ∈ R or C, as appropriate, with |t| ≤ r. If f(T ) ∈ V [T ], then completeness of
V is not needed here.

If t ∈ R or C, as appropriate, and |t| ≤ r, then

f ′(t) =

∞∑
j=1

j fj t
j−1 =

∞∑
j=0

(j + 1) fj+1 t
j(15.10.10)

defines an element of V , as in Sections 1.7 and 15.8. Of course, this corresponds
to differentiating the power series for f(t) termwise. One can use the same type
of Lipschitz conditions as before to show that the derivative of the sum is equal
to the sum of the derivatives, as mentioned in Section 10.1 for power series with
real or complex coefficients.

In the complex case, (15.10.10) should be interpreted as a suitable complex
derivative, as before. In particular, f(t) is holomorphic as a V -valued function
in a suitable sense.

If 0 < ρ ≤ ∞ and f(T ) ∈ Vρ[[T ]], then

f ′(T ) ∈ Vρ[[T ]](15.10.11)

too, by standard arguments. If t ∈ R orC, as appropriate, and |t| < ρ, then f(t)
and f ′(t) are defined as elements of V , and f ′(t) corresponds to the derivative of
f(t), as before. In the complex case, f(t) is holomorphic as a V -valued function
on

{t ∈ C : |t| < ρ}.(15.10.12)
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15.11 Coefficients in R, C

Let T be an indeterminate, and let A be an associative algebra over the real or
complex numbers with a multiplicative identity element eA. If f(T ) is a formal
polynomial in T with real or complex coefficients, as appropriate, and x ∈ A,
then we may define f(x) as an element of A, as in Section 8.13. We also have
that

f(T ) 7→ f(x)(15.11.1)

defines an algebra homomorphism from R[T ] or C[T ], as appropriate, into A,
as before. This corresponds to a remark in Section 13.4 with n = 1 as well.

Suppose now that (A, ‖ · ‖A) is a Banach algebra, ‖eA‖A = 1, and that f(T )
is a formal power series in T with real or complex coefficients, as appropriate.
Let r be a positive real number, and suppose that

f(T ) ∈ (R)1r[[T ]] or (C)1r[[T ]],(15.11.2)

as appropriate. If x ∈ A and ‖x‖A ≤ r, then f(x) may be defined as an element
of A as in Section 9.14, and we have that

‖f(x)‖A ≤ ‖f(T )‖1,r,(15.11.3)

as before. We also have that (15.11.1) defines an algebra homomorphism from
(R)1r[[T ]] or (C)1r[[T ]], as appropriate, into A, as in Section 9.13.

If
f ′(T ) ∈ (R)1r[[T ]] or (C)1r[[T ]],(15.11.4)

as appropriate, then (15.11.2) holds, as in the previous section. If x, y ∈ A and
‖x‖A, ‖y‖A ≤ r, then we get that

‖f(x)− f(y)‖A ≤ ‖f ′(T )‖1,r ‖x− y‖A,(15.11.5)

as in Section 10.1.
Suppose that 0 < ρ ≤ ∞, and that

f(T ) ∈ (R)ρ[[T ]] or (C)ρ[[T ]],(15.11.6)

as appropriate. If x ∈ A and ‖x‖A < ρ, then f(x) may be defined as an element
of A as in Section 9.14 again. Of course, we can take r > 0 such that

‖x‖A ≤ r < ρ,(15.11.7)

so that (15.11.2) holds. Under these conditions, (15.11.1) defines an algebra
homomorphism from (R)ρ[[T ]] or (C)ρ[[T ]], as appropriate, into A, as before.

Let A be any associative algebra over R or C with a multiplicative identity
element eA again, and suppose that f(T ) =

∑∞
j=0 fj T

j ∈ R[[T ]] or C[[T ]], as
appropriate. If x ∈ A is nilpotent, then

f(x) =

∞∑
j=0

fj x
j(15.11.8)
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reduces to a finite sum in A, and thus defines an element of A. One can
check that (15.11.1) defines an algebra homomorphism from R[[T ]] or C[[T ]],
as appropriate, into A, as usual.

Remember that A[[T ]] is an associative algebra over the real or complex
numbers, as appropriate, with a multiplicative identity element, as in Section
15.5. If f(T ) ∈ R[T ] or C[T ], as appropriate, and a(T ) ∈ A[[T ]], then

f(a(T ))(15.11.9)

may be defined as an element of A[[T ]], as in Section 8.13. The mapping

f(T ) 7→ f(a(T ))(15.11.10)

is an algebra homomorphism from R[T ] or C[T ], as appropriate, into A[[T ]], as
before. If a(T ) ∈ A[T ], then (15.11.9) is an element of A[T ] too.

Suppose that the constant term in a(T ) ∈ A[[T ]] is equal to 0, and that
f(T ) ∈ R[[T ]] or C[[T ]], as appropriate. Note that the coefficient of T l in a(T )j

is equal to 0 when j > l. This implies that the coefficient of T l in

n∑
j=0

fj a(T )
j(15.11.11)

does not depend on n when n ≥ l. Let us define

f(a(T )) =

∞∑
j=0

fj a(T )
j(15.11.12)

to be the formal power series in T with coefficients in A such that the coefficient
of T l is equal to the coefficient of T l in (15.11.11) when n ≥ l. One can check that
(15.11.10) is an algebra homomorphism from R[[T ]] or C[[T ]], as appropriate,
into A[[T ]] under these conditions.

15.12 Some formal compositions

Let T be an indeterminate, and let f(T ) and g(T ) be formal polynomials in
T with real or complex coefficients. Thus f(g(T )) may be defined as a formal
polynomial with coefficients inR orC, as appropriate, as in the previous section.
Let us put

(f ◦ g)(T ) = f(g(T )),(15.12.1)

which corresponds formally to composing g(T ) with f(T ).
Let A be an associative algebra over the real or complex numbers, as appro-

priate, with a multiplicative identity element eA. If x ∈ A, then g(x) may be
defined as an element of A as in Section 8.13. Similarly, f(g(x)) and (f ◦ g)(x)
may be defined as elements of A. One can check that

(f ◦ g)(x) = f(g(x))(15.12.2)
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under these conditions. In particular, one can take A = R[T ] or C[T ], as
appropriate, to get that formal compositions of formal polynomials in T with
coefficients in R or C is associative.

Let a(T ) be a formal power series in T with coefficients in A, so that g(a(T ))
may be defined as an element of A[[T ]], as in the previous section. As before,
we may put

(g ◦ a)(T ) = g(a(T )),(15.12.3)

because it also corresponds to formally composing a(T ) with g(T ). Similarly,

((f ◦ g) ◦ a)(T ) = (f ◦ g)(a(T ))(15.12.4)

and
(f ◦ (g ◦ a))(T ) = f((g ◦ a)(T ))(15.12.5)

are defined as elements of A[[T ]]. Note that

(f ◦ g)(a(T )) = f(g(a(T ))),(15.12.6)

as in (15.12.2). This implies that

((f ◦ g) ◦ a)(T ) = (f ◦ (g ◦ a))(T ),(15.12.7)

because of (15.12.3).
Suppose for the moment that a(T ) ∈ A[T ], so that (15.12.3) is an element

of A[T ] too, as before. If t ∈ R or C, as appropriate, then a(t) and (g ◦ a)(t)
may be defined as elements of A as in Section 15.4. Similarly, g(a(t)) is defined
as an element of A, because a(t) ∈ A, as in Section 8.13. One can verify that

(g ◦ a)(t) = g(a(t)).(15.12.8)

If a(T ) ∈ A[[T ]], then a(0) and (g ◦ a)(0) may be interpreted as the constant
terms of these power series, and one can check that (15.12.8) holds, with t = 0.

Suppose now that g(T ) is a formal power series in T with real or complex
coefficients, so that (15.12.1) is a formal power series in T with real or complex
coefficients too, as appropriate. If x ∈ A is nilpotent, then g(x) and (f ◦ g)(x)
may be defined as elements of A as in the previous section, and f(g(x)) may be
defined as an element of A as well. One can check that (15.12.2) also holds in
this case.

15.13 Some more formal compositions

Let T be an indeterminate, and let A be an associative algebra over the real
or complex numbers with a multiplicative identity element eE . If g is a formal
power series in T with real or complex coefficients, and x ∈ A is nilpotent, then
g(x) may be defined as an element of A, as in Section 15.11. Suppose that

the constant term in g(T ) is equal to 0.(15.13.1)
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In this case, one can check that

g(x) is nilpotent.(15.13.2)

Let f(T ) be another formal power series in T with coefficients in R or C,
as appropriate, and remember that f(g(T )) may be defined as an element of
R[[T ]] or C[[T ]] under these conditions, as appropriate, as in Section 15.11.
This corresponds to formally composing g(T ) with f(T ), as before, and thus
may be expressed as in (15.12.1) again. Note that (f ◦ g)(x) and f(g(x)) are
defined as elements of A, because x and g(x) are nilpotent. One can verify that
(15.12.2) holds in this case too.

Let a(T ) be a formal power series in T with coefficients in A, and suppose
that

the constant term in a(T ) is equal to 0.(15.13.3)

If g(T ) is a formal power series in R or R, as appropriate, then g(a(T )) may be
defined as a formal power series in T with coefficients in A as in Section 15.11.
This corresponds to formally composing a(T ) and g(T ), as usual, and may be
expressed as in (15.12.3).

If f(T ) is a formal polynomial in T with coefficients in R or C, as ap-
propriate, then f(g(T )) is a formal power series with coefficients in R or C,
as appropriate, which may be expressed as in (15.12.1), as before. Similarly,
(15.12.4) and (15.12.5) may be defined as formal power series in T with coeffi-
cients in A under these conditions. One can check that (15.12.6) holds in this
case too, using some of the remarks in Section 15.11. It follows that (15.12.7)
holds, as before.

Suppose now that the constant term in g(T ) is equal to 0 too. Using this, it
is easy to see that

the constant term in g(a(T )) is equal to 0,(15.13.4)

because of (15.13.3). If f(T ) is a formal power series in T with coefficients in R
or C, as appropriate, then f(g(T )) may be defined as a formal power series in T
with coefficients in R or C, as appropriate, as in Section 15.11, and which may
be expressed as in (15.12.1). Similarly, (15.12.4) and (15.12.5) may be defined
as formal power series in T with coefficients in A, as in Section 15.11. In order
to verify (15.12.6), one can approximate f(T ) by formal polynomials in T , for
which the analogous statement was mentioned in the preceding paragraph. This
implies that (15.12.7) holds under these conditions as well.

15.14 Polynomials of power series

Let A be an associative algebra over the real or complex numbers with a multi-
plicative identity element eA, and let T be an indeterminate. If f(T ) ∈ R[[T ]]
or C[[T ]], as appropriate, and a(T ) ∈ A[[T ]], then we may be able to define
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f(a(T )) as an element of A[[T ]] in a reasonable way under suitable conditions.
In this case, we may put

(f ◦ a)(T ) = f(a(T )),(15.14.1)

because it corresponds formally to composing a(T ) and f(T ), as before. In
particular, we would like to have

(f ◦ a)(t) = f(a(t))(15.14.2)

for suitable t ∈ R or C, as appropriate. Similarly, if the coefficients of a(T ) are
in R or C, as appropriate, then we would like to have

(f ◦ a)(x) = f(a(x))(15.14.3)

for suitable x ∈ A.
Of course, we have seen some versions of this in the previous two sections.

In this section and the next one, we would like to consider some more versions
of this, involving convergence of power series.

Suppose for the rest of this section that f(T ) is a formal polynomial in T
with real or complex coefficients, as appropriate. Thus f(a(T )) is defined as an
element of A[[T ]] for each a(T ) ∈ A[[T ]], as in Section 15.11. Let ‖ · ‖A be a
submultiplicative norm on A, let ra be a positive real number, and suppose that

a(T ) ∈ A1
ra [[T ]].(15.14.4)

This implies that
f(a(T )) ∈ A1

ra [[T ]],(15.14.5)

because A1
ra [[T ]] is a subalgebra of A[[T ]], as in Section 15.9.

Suppose that A is a Banach algebra with respect to ‖ · ‖A, and that t is a
real or complex number, as appropriate, that satisfies

|t| ≤ ra.(15.14.6)

This means that a(t) and (f ◦ a)(t) may be defined as elements of A, as in
Section 15.8, so that f(a(t)) may be defined as an element of A as well. One
can check that (15.14.2) holds, by reducing to the case where f(T ) = T j for
some j, as usual.

Similarly, let 0 < ρa ≤ ∞ be given, and suppose that

a(T ) ∈ Aρa
[[T ]].(15.14.7)

This implies that
f(a(T )) ∈ Aρa

[[T ]],(15.14.8)

because Aρa [[T ]] is a subalgebra of A[[T ]], as before. If A is a Banach algebra
and t ∈ R or C, as appropriate, satisfies

|t| < ρa,(15.14.9)
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then a(t), (f ◦a)(t), and f(a(t)) may be defined as elements of A. We also have
that (15.14.2) holds in this case, by the same type of argument as before, or by
reducing to the previous case.

Suppose now that a(T ) is a formal power series in T with real or complex
coefficients, as appropriate, so that f(a(T )) is a formal power series in T with
real or complex coefficients, as appropriate, too. Let ra be a positive real number
again, and suppose for the moment that

a(T ) ∈ (R)1ra [[T ]] or (C)1ra [[T ]],(15.14.10)

as appropriate, so that

(f ◦ a)(T ) = f(a(T )) ∈ (R)1ra [[T ]] or (C)1ra [[T ]],(15.14.11)

as appropriate. If A is a Banach algebra, and x ∈ A satisfies

‖x‖A ≤ ra,(15.14.12)

then a(x) and (f ◦ a)(x) may be defined as elements of A as in Section 9.14, so
that f(a(x)) is defined as an element of A too. One can verify that (15.14.3)
holds under these conditions, by reducing to the case where f(T ) = T j for some
j, as before.

Similarly, let 0 < ρa ≤ ∞ be given again, and suppose that

a(T ) ∈ (R)ρ[[T ]] or (C)ρ[[T ]],(15.14.13)

as appropriate, so that

(f ◦ a)(T ) = f(a(T )) ∈ (R)ρ[[T ]] or (C)ρ[[T ]],(15.14.14)

as appropriate. If A is a Banach algebra and x ∈ A satisfies

‖x‖A < ρa,(15.14.15)

then a(x), (f ◦a)(x), and f(a(x)) may be defined as elements of A. We also get
that (15.14.3) holds, by reducing to the previous case.

15.15 Some compositions of power series

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with a
multiplicative identity element eA with ‖eA‖A = 1, and let ra, rf be positive
real numbers. Also let

a(T ) ∈ A1
ra [[T ]](15.15.1)

and
f(T ) ∈ (R)1rf [[T ]] or (C)1rf [[T ]],(15.15.2)

as appropriate, be given. Remember that A1
ra [[T ]] is a Banach algebra with

respect to the appropriate norm, as in Section 15.9.
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If
‖a(T )‖1,ra ≤ rf ,(15.15.3)

then we may define
f(a(T )) ∈ A1

ra [[T ]],(15.15.4)

as in Section 9.14. The mapping

f(T ) 7→ f(a(T ))(15.15.5)

is an algebra homomorphism from (R)1rf [[T ]] or (C)1rf [[T ]], as appropriate, into

A1
ra [[T ]], as in Sections 9.13 and 15.11. Of course, this definition of f(a(T )) is

the same as the one in the previous section when f(T ) is a formal polynomial
in T . We may express f(a(T )) as (f ◦ a)(T ), as in (15.14.1).

We also have that

‖f(a(T ))‖1,ra ≤ ‖f(T )‖1,rf ,(15.15.6)

as in Sections 9.14 and 15.11. More precisely, the left side is the norm of
f(a(T )) in A1

ra [[T ]], and the right side refers to the norm of f(T ) in (R)1rf [[T ]]

or (C)1rf [[T ]], as appropriate. If f(T ) =
∑∞

j=0 fj T
j , as usual, then

lim
n→∞

n∑
j=0

fj (a(T ))
j = f(a(T )),(15.15.7)

with respect to the metric on A1
ra [[T ]] associated to its norm, by construction.

If t is a real or complex number, as appropriate, with |t| ≤ ra, then a(t) is
defined as an element of A as in Section 15.8, with

‖a(t)‖A ≤ ‖a(T )‖1,ra .(15.15.8)

This implies that
‖a(t)‖A ≤ rf ,(15.15.9)

because of (15.15.3), so that f(a(t)) may be defined as an element of A as in
Section 9.14. Similarly, (f ◦ a)(t) is defined as an element of A as in Section
15.8. One can check that (15.14.2) holds, by approximating f(T ) by formal
polynomials, for which the analogous statement was mentioned in the previous
section.

Suppose for the moment that constant term in a(T ) is equal to 0, so that
f(a(T )) may be defined as a formal power series in T with coefficients in A
as in Section 15.11. One can check that this is equivalent to the definition in
(15.15.4), as a formal power series in T , using (15.15.7).

Let ra be a positive real number again, and suppose now that

a(T ) ∈ (R)1ra [[T ]] or (C)1ra [[T ]],(15.15.10)

as appropriate. If a(T ) satisfies (15.15.3), then we may define

f(a(T )) ∈ (R)1ra [[T ]] or (C)1ra [[T ]],(15.15.11)
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as appropriate, as in Section 9.14 again. As before, (15.15.5) is an algebra
homomorphism from (R)1rf [[T ]] or (C)1rf [[T ]] into (R)1ra [[T ]] or (C)1ra [[T ]], as

appropriate. If f(T ) is a formal polynomial in T , then this definition of f(a(T ))
is the same as the one in the previous section, as before.

We also get that (15.15.6) holds, where now the left side is the norm of
f(a(T )) in (R)1ra [[T ]] or (C)1ra [[T ]], as appropriate. This implies f(a(T )) may
be given as in (15.15.7), as before.

If x ∈ A and ‖x‖A ≤ ra, then a(x) may be defined as an element of A as in
Section 9.14, with

‖a(x)‖A ≤ ‖a(T )‖1,ra .(15.15.12)

This means that
‖a(x)‖A ≤ rf ,(15.15.13)

by (15.15.3), so that f(a(x)) may be defined as an element of A in the same
way. We may define (f ◦ a)(x) as an element of A too, where (f ◦ a)(T ) =
f(a(T )), as before. One can use (15.15.7) to get that (15.14.3) holds, because of
the analogous statement when f(T ) is a formal polynomial, as in the previous
section. In particular, if t ∈ R or C, as appropriate, and |t| ≤ ra, then (15.14.2)
holds, as before.
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Chapter 16

Algebras, norms, and power
series

16.1 More on differentiation

Let A be a commutative associative algebra over the real or complex numbers,
and let T be an indeterminate. Remember that the space A[[T ]] of formal power
series in T with coefficients in A is a commutative associative algebra over R or
C, as appropriate, as well, as in Section 15.5. If a(T ) ∈ A[[T ]] and j is a positive
integer, then we can define a(T )j as formal power series in T with coefficients
in A in the usual way. The derivative of this power series is given by

(a(T )j)′ = j a(T )j−1 a′(T ),(16.1.1)

because of the product rule, as in Section 15.10. Of course, the factor of a(T )j−1

on the right is not needed when j = 1.
Suppose now that A also has a multiplicative identity element eA, which

may be considered as the multiplicative identity element in A[[T ]] too, as in
Section 15.5. If f is a formal polynomial in T with real or complex coefficients,
as appropriate, then f(a(T )) may be defined as an element of A[[T ]], as in
Sections 8.13 and 15.11. Note that the derivative f ′(T ) of f(T ) is a formal
polynomial in T with coefficients in R or C, as appropriate, so that

f ′(a(T ))(16.1.2)

may be defined as an element of A[[T ]], as before. It is easy to see that

f(a(T ))′ = f ′(a(T )) a′(T ),(16.1.3)

as in the chain rule, using (16.1.1).
Suppose that the constant term in a(T ) is equal to 0, and that f(T ) is a

formal power series in T with coefficients in R or C, as appropriate. Remember
that f(a(T )) may be defined as a formal power series in T with coefficients in A,

359
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as in Section 15.11. Similarly, (16.1.2) may be defined as an element of A[[T ]].
One can check that (16.1.3) also holds in this case, by approximating f(T ) by
formal polynomials in T .

16.2 Some norms of derivatives

Let A be an algebra in the strict sense over the real or complex numbers with a
submultiplicative norm ‖ · ‖A, let T be an indeterminate, and let r be a positive
real number. Suppose that a(T ), b(T ) are elements of the space Ar

1[[T ]] defined
in Section 15.7. This implies that

a(T ) b(T ) ∈ A1
r[[T ]],(16.2.1)

with
‖a(T ) b(T )‖1,r ≤ ‖a(T )‖1,r ‖b(T )‖1,r,(16.2.2)

as in Section 15.9. Remember that ‖ · ‖1,r = ‖ · ‖A1
r[[T ]] is as in Section 15.7.

We also have that

(a(T ) b(T ))′ = a′(T ) b(T ) + a(T ) b′(T ),(16.2.3)

as in Section 15.10. If
a′(T ), b′(T ) ∈ A1

r[[T ]],(16.2.4)

then we get that
(a(T ) b(T ))′ ∈ A1

r[[T ]],(16.2.5)

with

‖(a(T ) b(T ))′‖1,r ≤ ‖a′(T )‖1,r ‖b(T )‖1,r + ‖a(T )‖1,r ‖b′(T )‖1,r.(16.2.6)

Remember that a(T ) ∈ A1
r[[T ]] when a

′(T ) ∈ A1
r[[T ]], as mentioned in Section

15.10. Thus
{a(T ) ∈ A[[T ]] : a′(T ) ∈ A1

r[[T ]]}(16.2.7)

is a subalgebra of A1
r[[T ]].

Suppose now that A is associative too, and let j be a positive integer. If
a′(T ) ∈ A1

r[[T ]], then
(a(T )j)′ ∈ A1

r[[T ]],(16.2.8)

as in the preceding paragraph. More precisely, one can check that

‖(a(T )j)′‖1,r ≤ j ‖a(T )‖j−1
1,r ‖a′(T )‖1,r,(16.2.9)

using induction. This can be obtained from (16.1.1) when A is commutative as
well.

Suppose that A has a multiplicative identity element eA, and let f(T ) be a
formal polynomial with real or complex coefficients. Observe that

f(a(T ))′ ∈ A1
r[[T ]].(16.2.10)
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If
‖a(T )‖1.r ≤ r0(16.2.11)

for some positive real number r0, then one can check that

‖f(a(T ))′‖1,r ≤ ‖f ′(T )‖1,r0 ‖a′(T )‖1,r,(16.2.12)

where ‖f ′(T )‖1,r0 is as in Section 15.7. If A is commutative, then this can be
obtained from (16.1.3) and the fact that

‖f ′(a(T ))‖1,r ≤ ‖f ′(T )‖1,r0 .(16.2.13)

16.3 More on compositions

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with a
multiplicative identity element eA and ‖eA‖A = 1, let T be an indeterminate,
and let ra, rf be positive real numbers. Also let a(T ) and f(T ) be formal power
series in T with coefficients in A and R or C, as appropriate, respectively.
Suppose that

a′(T ) ∈ A1
ra [[T ]],(16.3.1)

where a′(T ) is as in Section 15.10 and A1
ra [[T ]] is as in Section 15.7. This implies

that a(T ) ∈ A1
ra [[T ]], as mentioned in Section 15.10, and we ask that

‖a(T )‖1,ra ≤ rf ,(16.3.2)

where ‖a(T )‖1,ra = ‖a(T )‖A1
ra

[[T ]] is as in Section 15.7.
Similarly, suppose that

f ′(T ) ∈ (R)1rf [[T ]] or (C)1rf [[T ]],(16.3.3)

as appropriate, which implies that f(T ) is an element of (R)1rf [[T ]] or (C)1rf [[T ]],

as appropriate, as before. This permits us to define f(a(T )) as an element of
A1

ra [[T ]], as in Section 15.15. We can define

f ′(a(T )) ∈ A1
ra [[T ]](16.3.4)

in the same way. Note that

‖f ′(a(T ))‖1,ra ≤ ‖f ′(T )‖1,rf ,(16.3.5)

as before.
Under these conditions, we would like to check that

f(a(T ))′ ∈ A1
ra [[T ]],(16.3.6)

with
‖f(a(T ))′‖1,ra ≤ ‖f ′(T )‖1,rf ‖a′(T )‖1,ra .(16.3.7)



362 CHAPTER 16. ALGEBRAS, NORMS, AND POWER SERIES

This follows from the remarks in the previous section when f(T ) is a formal
polynomial in T . Otherwise, we can approximate f(T ) by its partial sums,
which are formal polynomials in T , as follows.

Remember that if f(T ) =
∑∞

j=0 fj T
j , as usual, then

n∑
j=0

fj a(T )
j(16.3.8)

converges to f(a(T )) as n → ∞, with respect to the metric on A1
ra [[T ]] asso-

ciated to ‖ · ‖1,ra , as in Section 15.15. In particular, this implies that for each
nonnegative integer l, the coefficient of T l in (16.3.8) converges to the coefficient
of T l in f(a(T )) as n→ ∞, as a sequence of real or complex numbers, as appro-
priate. This means that the coefficients of f(a(T ))′ are the same as the limits
of the corresponding coefficients of the formal derivative of (16.3.8) as n→ ∞.

The analogue of (16.3.7) for formal polynomials implies that∥∥∥∥( n∑
j=0

fj a(T )
j
)′
∥∥∥∥
1,ra

≤
∥∥∥∥( n∑

j=0

fj T
j
)′
∥∥∥∥
1,rf

‖a′(T )‖1,ra(16.3.9)

for each n ≥ 0. It is easy to see that∥∥∥∥( n∑
j=0

fj T
j
)′
∥∥∥∥
1,rf

≤ ‖f ′(T )‖1,rj(16.3.10)

for each n, because of the way that the norm is defined. It follows that∥∥∥∥( n∑
j=0

fj a(T )
j
)′
∥∥∥∥
1,ra

≤ ‖f ′(T )‖1,rj ‖a′(T )‖1,ra(16.3.11)

for each n. One can use this to get the desired properties of f(a(T ))′, because
of the remarks in the preceding paragraph.

In fact, the formal derivative of (16.3.8) converges to f(a(T ))′ with respect
to the metric on A1

ra [[T ]] associated to ‖ · ‖1,ra . This can be obtained from
(16.3.7), with f(T ) replaced with

f(T )−
n∑

j=0

fj T
j =

∞∑
j=n+1

fj T
j .(16.3.12)

If A is commutative, then

f(a(T ))′ = f ′(a(T )) a′(T ).(16.3.13)

This was mentioned in Section 16.1 when f(T ) is a formal polynomial in T , and
when the constant term in a(T ) is equal to 0. Here one can reduce to the case
of formal polynomials by approximating f(T ) by its partial sums again.
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16.4 Some differential equations

Let T be an indeterminate, and let a(T ), b(T ) be formal power series in T with
coefficients in the real or complex numbers. Consider the ordinary differential
equation

f ′(T ) = a(T ) f(T ) + b(T ),(16.4.1)

where f(T ) is another formal power series in T with coefficients in R or C. It
is easy to see that there is a unique solution to this equation with a prescribed
constant term. Indeed, (16.4.1) determines the coefficients of f(T ) after the
constant term in terms of the previous coefficients of f(T ) and the coefficients
of a(T ) and b(T ).

The exponential function can be defined as a formal power series in T by

exp(T ) =

∞∑
j=0

(1/j!)T j ,(16.4.2)

as in Section 10.4. Of course,

exp′(T ) = exp(T ),(16.4.3)

as usual. This and the condition that the constant term in (16.4.2) be equal to
1 determines exp(T ) uniquely, as in the preceding paragraph.

Similarly, consider

log(1 + T ) =

∞∑
j=1

(−1)j+1

j
T j ,(16.4.4)

which is the formal power series corresponding to the natural logarithm of 1+T .
Observe that

log′(1 + T ) =

∞∑
j=1

(−1)j+1 T j−1 =

∞∑
j=0

(−1)j T j = (1 + T )−1,(16.4.5)

where the third step is as in Section 15.6. As before, (16.4.4) is uniquely deter-
mined by this and the condition that the constant term be equal to 0.

Because the constant term in (16.4.4) is equal to 0,

f(T ) = exp(log(1 + T ))(16.4.6)

may be defined as a formal power series in T as in Section 15.11. Of course, we
should have that

f(T ) = 1 + T.(16.4.7)

This could be obtained from the usual properties of the exponential and log-
arithm functions on the real line and the set R+ of positive real numbers,
respectively.
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Alternatively,

f ′(T ) = exp′(log(1 + T )) log′(1 + T )(16.4.8)

= exp(log(1 + T )) (1 + T )−1 = f(T ) (1 + T )−1,

where the first step is as in Section 16.1. The right side of (16.4.7) satisfies the
same differential equation. This implies (16.4.7), because both sides have the
same constant term.

16.5 More on log(1 + T )

Let T be an indeterminate, and let r be a positive real number strictly less than
1. It is easy to see that

log(1 + T ) ∈ (R)1r[[T ]],(16.5.1)

in the notation of Section 15.7. More precisely,

‖ log(1 + T )‖1,r = ‖ log(1 + T )‖(R)1r[[T ]] =

∞∑
j=1

rj

j
= − log(1− r),(16.5.2)

using the standard power series representation for log(1−t) when t ∈ R satisfies
|t| < 1 in the last step.

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with
a multiplicative identity element eA and ‖eA‖A = 1. If x ∈ A and ‖x‖A ≤ r,
then we put

log(eA + x) = logA(eA + x) =

∞∑
j=1

(−1)j+1

j
xj ,(16.5.3)

as in Sections 9.14 and 15.11. This is an element of A with

‖ log(eA + x)‖A ≤ ‖ log(1 + T )‖1,r = − log(1− r),(16.5.4)

as before.
Note that

exp(T ) ∈ (R)1r1 [[T ]](16.5.5)

for every positive real number r1, with

‖ exp(T )‖1,r1 =

∞∑
j=0

(r1)
j

j!
= exp(r1).(16.5.6)

Remember that the exponential function on A was discussed in Section 10.4.
In fact, we have that

exp(log(eA + x)) = eA + x(16.5.7)
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under these conditions. This uses (16.4.7) and the remarks in Section 15.15.
This is related to part (b) of Theorem 10.30 on p246 of [162].

Similarly, let A be any associative algebra over the real or complex numbers
with a multiplicative identity element eA, and suppose that x ∈ A is nilpotent.
This implies that log(eA + x) may be defined as an element of A as in (16.5.3),
as in Section 15.11. In fact,

log(eA + x) is nilpotent in A,(16.5.8)

as in Section 15.13. It follows that

exp(log(eA + x))(16.5.9)

may be defined as an element of A too, as in Sections 11.1 and 15.11. We also
have that (16.5.7) holds, as in Section 15.13 again.

16.6 Some more logarithms

Let T be an indeterminate, and consider the formal power series

exp(−T ) =
∞∑
j=0

(−1)j

j!
T j .(16.6.1)

This is the same as formally composing −T with exp(T ). One can check that

exp(−T ) exp(T ) = exp(T ) exp(−T ) = 1,(16.6.2)

using the binomial theorem, as in Section 10.4. This means that exp(−T ) is the
multiplicative inverse of exp(T ) in the algebra of formal power series in T with
coefficients in R, as in Section 15.6.

Let a(T ) be a formal power series in T with real or complex coefficients, and
suppose that the constant term in a(T ) is equal to 0. This implies that

f(T ) = log(1 + a(T )) =

∞∑
j=1

(−1)j+1

j
a(T )j(16.6.3)

may be defined as a formal power series in T with coefficients in R or C, as
appropriate, as in Section 15.11. Note that the constant term in (16.6.3) is equal
to 0 too. We also have that

f ′(T ) = a′(T ) (1 + a(T ))−1,(16.6.4)

as in Section 16.1. In fact, (16.6.3) is uniquely determined by these two prop-
erties.

In particular, we can take

a(T ) = exp(T )− 1 =

∞∑
l=1

(1/l!)T l.(16.6.5)
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Note that
a′(T ) = exp′(T ) = exp(T ).(16.6.6)

Thus
f ′(T ) = exp(T ) exp(T )−1 = 1,(16.6.7)

as in (16.6.4). It follows that
f(T ) = T,(16.6.8)

because the constant term in f(T ) is equal to 0 as before. This means that

log(exp(T )) = log(1 + (exp(T )− 1)) = T,(16.6.9)

where the first step may be considered as the definition of the left side.
If r1 is a positive real number, then exp(T )− 1 ∈ (R)1r1 [[T ]], as in (16.5.5).

More precisely,

‖ exp(T )− 1‖1,r1 =

∞∑
l=1

(1/l!) rl1 = exp(r1)− 1.(16.6.10)

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with
a multiplicative identity element eA and ‖eA‖A = 1. If x ∈ A, then

‖exp(x)− eA‖A ≤ exp(‖x‖A)− 1,(16.6.11)

as in Sections 9.14 and 15.11. If

exp(‖x‖A)− 1 < 1,(16.6.12)

then we would like to check that

log(exp(x)) = x.(16.6.13)

More precisely, the left side is interpreted as being

log(eA + (exp(x)− eA)),(16.6.14)

as defined as in the previous section.
Put

r = exp(‖x‖A)− 1,(16.6.15)

so that r < 1, by hypothesis. Remember that log(1 + T ) ∈ R)1r[[T ]], as in
(16.5.1). One can get (16.6.14) using (16.6.9) and the remarks in Section 15.15.
This also uses (16.6.10), with r1 = ‖x‖A.

Now let A be any associative algebra over the real or complex numbers witha
multiplicative identity element eA, and suppose that x ∈ A is nilpotent. This
means that exp(x) can be defined as an element of A as in Sections 11.1 and
15.11, and that

exp(x)− eA is nilpotent in A,(16.6.16)

as in Section 15.13. If we interpret log(exp(x)) as in (16.6.14), then this can be
defined as an element of A as in Section 15.11. Under these conditions, (16.6.13)
follows from (16.6.9), as in Section 15.13.
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16.7 A basic type of composition

Let T be an indeterminate, and let a(T ) =
∑∞

l=0 al T
l be a formal power series in

T with coefficients in the real or complex numbers. Also let A be an associative
algebra over the real or complex numbers, as appropriate, with a multiplicative
identity element eA. If x ∈ A, then

ax(T ) =

∞∑
l=0

al x
l T l(16.7.1)

is a formal power series in T with coefficients in A. This may also be expressed as
a(xT ), which may be considered as the formal power series in T with coefficients
in A obtained by composing xT with a(T ) as in Section 15.11. Note that

a(T ) 7→ ax(T ) = a(xT )(16.7.2)

is an algebra homomorphism from R[[T ]] or C[[T ]], as appropriate, into A[[T ]],
as before.

Suppose for the moment that a(T ) is a formal polynomial in T , so that ax(T )
is a formal polynomial in T as well. In this case, ax(t) and a(t x) are defined as
elements of A for every t ∈ R or C, as appropriate, and it is easy to see that

ax(t) = a(t x).(16.7.3)

Similarly, if a(T ) is a formal power series in T , and x ∈ A is nilpotent, then

ax(T ) = a(xT ) ∈ R[T ] or C[T ],(16.7.4)

as appropriate. If t ∈ R or C, then t x is nilpotent in A too, so that a(t x)
may be defined as an element of A, as in Section 15.11. Under these conditions,
ax(t) defines an element of A as well, and (16.7.3) holds.

Now let (A, ‖·‖A) be a Banach algebra over the real or complex numbers, as
appropriate, with a multiplicative identity element eA with ‖eA‖A = 1. Suppose
that x ∈ A has the property that

∞∑
l=0

|al| ‖xl‖A(16.7.5)

converges as an infinite series of nonnegative real numbers. In this case, we can
put

a(x) =

∞∑
l=0

al x
l,(16.7.6)

where the series on the right converges in A, because it converges absolutely.
Observe that

ax(T ) ∈ A1
1[[T ]],(16.7.7)
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in the notation of Section 15.7, with

‖ax(T )‖1,1 = ‖ax(T )‖A1
1[[T ]] =

∞∑
l=0

|al| ‖xl‖A.(16.7.8)

If t ∈ R or C, as appropriate, with |t| ≤ 1, then

ax(t) =

∞∑
l=0

al t
l xl(16.7.9)

defines an element of A, as in Section 15.8. Of course,

ax(1) = a(x),(16.7.10)

by construction.

16.8 Some more compositions

Let us return to the same notation and hypotheses as at the beginning of the
previous section. Suppose for the moment that f(T ) is a formal polynomial in
T with coefficients in the real or complex numbers, as appropriate. Remember
that (f ◦ a)(T ) = f(a(T )) may be defined as a formal power series in T with
coefficients in R or C, as appropriate, as in Sections 15.11 and 15.12. Thus

(f ◦ a)x(T ) = (f ◦ a)(xT )(16.8.1)

may be defined as a formal power series in T with coefficients in A, as in the
previous section. We can also define

(f ◦ ax)(T ) = f(ax(T ))(16.8.2)

as a formal power series in T with coefficients in A, as in Sections 15.11 and
15.12. It is easy to see that (16.8.1) and (16.8.2) are the same. We may express
this formal power series as

f(a(xT )).(16.8.3)

The type of formal composition mentioned in the previous section may be
considered as a version of one discussed in Section 15.13. This means that the
equality of (16.8.1) and (16.8.2) is basically an associativity property of formal
compositions like these, which were discussed previously.

Suppose for the moment again that the constant term in a(T ) is equal to
0, and let f(T ) be a formal power series in T with coefficients in R or C, as
appropriate. In this case, (f ◦a)(T ) = f(a(T )) may be defined as a formal power
series in T with coefficients in R or C, as appropriate, as in Sections 15.11 and
15.13. This means that (16.8.1) may be defined as a formal power series in T
with coefficients in A, as in the previous section again. Note that

the constant term in ax(T ) = a(xT ) is equal to 0,(16.8.4)
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so that (16.8.2) may be defined as a formal power series in T with coefficients in
A as in Sections 15.11 and 15.13. One can check that (16.8.1) and (16.8.2) are
the same under these conditions too. This can be seen by approximating f(T )
by formal polynomials in T , as in Section 15.11. This may also be considered
as an instance of an associativity property of formal compositions like these,
as in Section 15.13. The resulting formal power series may be expressed as in
(16.8.3), as before.

Suppose for the moment that a(T ) and f(T ) are formal polynomials in T ,
so that

(f ◦ a)(T ), ax(T ), and (f ◦ ax)(T )(16.8.5)

are formal polynomials in T too. If t ∈ R or C, as appropriate, then

(f ◦ ax)(t) = (f ◦ a)x(t) = (f ◦ a)(t x) = f(a(t x)),(16.8.6)

where the second step is as in (16.7.3), and the third step is as in Section 15.12.
Alternatively,

(f ◦ ax)(t) = f(ax(t)) = f(a(t x)),(16.8.7)

where the first step is as in Section 15.12, and the second step is as in (16.7.3).
Let a(T ) be a formal power series in T again, and suppose that x ∈ A is

nilpotent, so that ax(T ) is a formal polynomial in T , as in (16.7.4). If f(T ) is
a formal polynomial in T , then (f ◦ a)(T ) is a formal power series in T , and

(f ◦ ax)(T ), (f ◦ a)x(T ) are formal polynomials in T.(16.8.8)

If t ∈ R or C, as appropriate, then t x is nilpotent in A, a(t x) is defined as an
element of A, and (16.8.6) holds, where the second step is as in the previous
section, and the third step is as in Section 15.12. Alternatively, (16.8.7) holds,
where the first step is as in Section 15.12, and the second step is as in the
previous section.

Suppose that the constant term in a(T ) is equal to 0. If x ∈ A is nilpotent,
then it is easy to see that

ax(T ) = a(xT ) is nilpotent in A[T ].(16.8.9)

If f(T ) is a formal power series in T again, then it follows that

(f ◦ ax)(T ) = f(ax(T )) ∈ A[T ].(16.8.10)

More precisely, f(ax(T )) may be defined initially as a formal power series in T ,
because of (16.8.4), as in Section 15.11. It is easy to see that (16.8.10) holds
in this case, because of (16.8.9). However, one can also define f(ax(T )) as an
element of A[T ] more directly, because of (16.8.9), as in Section 15.11. One can
check that these two ways of defining f(a(T )) are equivalent.

Note that (f ◦ a)(T ) is defined as a formal power series in T , and that
(f ◦ a)x(T ) is a formal polynomial in T , as before. If t ∈ R or C, then t x is
nilpotent in A, and a(t x) is nilpotent as well, because the constant term in a(T )
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is equal to 0, as in Section 15.13. Thus f(a(t x)) is defined as an element of A,
as in Section 15.11. Under these conditions, (16.8.6) holds, where the second
step is as in the previous section again, and the third step is as in Section 15.13.

To get the first step in (16.8.7), one can approximate f(T ) by a formal poly-
nomial, because of (16.8.9). The analogous statement for formal polynomials
was mentioned in Section 15.12, as before. The second step in (16.8.7) is as in
the previous section, as before.

16.9 Some compositions with convergence

Let (A, ‖·‖A) be a Banach algebra over the real or complex numbers with a mul-
tiplicative identity element eA and ‖eA‖A = 1, and let T be an indeterminate.
Also let a(T ) =

∑∞
l=0 al T

l be a formal power series in T with coefficients in R
or C, as appropriate, let x be an element of A, and suppose that

∑∞
l=0 |al| ‖xl‖A

converges, as an infinite series of nonnegative real numbers. Thus

ax(T ) =

∞∑
l=0

al x
l T l ∈ A1

1[[T ]],(16.9.1)

in the notation of Section 15.7, as in Section 16.7.
Let f(T ) be a formal polynomial in T with coefficients in R or C, as appro-

priate. Observe that
f(ax(T )) ∈ A1

1[[T ]],(16.9.2)

as in Section 15.14. This may be expressed as (f ◦ ax)(T ), as in (16.8.2). If
t ∈ R or C, as appropriate, and

|t| ≤ 1,(16.9.3)

then ax(t) and (f ◦ ax)(t) may be defined as elements of A, as in Section 15.8.
This implies that f(ax(t)) may be defined as an element of A, and

(f ◦ ax)(t) = f(ax(t)),(16.9.4)

as in Section 15.14.
Remember that (f ◦ a)(T ) = f(a(T )) is a formal power series in T with

coefficients in R or C, as appropriate, which may be expressed as

(f ◦ a)(T ) =
∞∑

m=0

(f ◦ a)m Tm.(16.9.5)

We also have that (f ◦ ax)(T ) = f(ax(T )) is a formal power series in T with
coefficients in A, which may be expressed as

(f ◦ ax)(T ) = (f ◦ a)x(T ) =
∞∑

m=0

(f ◦ a)m xm Tm,(16.9.6)
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where the first step is as in the previous section. Note that

∞∑
m=0

|(f ◦ a)m| ‖xm‖A(16.9.7)

converges as an infinite series of nonnegative real numbers, as in (16.9.2). If
t ∈ R or C, as appropriate, satisfies (16.9.3), then we get that

f(ax(t)) = (f ◦ ax)(t) =
∞∑

m=0

(f ◦ a)m tm xm,(16.9.8)

using (16.9.4) in the first step. Of course, the right side converges absolutely in
this case, because (16.9.7) converges.

16.10 Some more convergence conditions

Let us return to the same notation and hypotheses as at the beginning of the
previous section. Now let f(T ) =

∑∞
j=0 fj T

j be a formal power series in T with
coefficients in R or C, as appropriate, with

f(T ) ∈ (R)1rf [[T ]] or (C)1rf [[T ]],(16.10.1)

as appropriate, for some positive real number rf , in the notation of Section 15.7.
Suppose that

‖ax(T )‖1,1 = ‖ax(T )‖A1
1[[T ]] =

∞∑
l=0

|al| ‖xl‖A ≤ rf .(16.10.2)

Under these conditions, we may define

f(ax(T )) ∈ A1
1[[T ]],(16.10.3)

as in Section 15.15. We also have that

‖f(ax(T ))‖1,1 ≤ ‖f(T )‖1,rf ,(16.10.4)

as before. Remember that the left side is the norm of f(ax(T )) in A1
1[[T ]], and

that the right side is the norm of f(T ) in (R)1rf [[T ]] or (C)1rf [[T ]], as appropriate.

We may express f(ax(T )) as (f◦ax)(T ), as before. If f(T ) is a formal polynomial
in T , then this is equivalent to the definition of f(a(T )) as in the previous section,
as mentioned in Section 15.15.

If t ∈ R or C, as appropriate, and |t| ≤ 1, then ax(t) may be defined as an
element of A as in Section 15.8, with

‖ax(t)‖A ≤ ‖ax(T )‖1,1.(16.10.5)

It follows that
‖ax(t)‖A ≤ rf ,(16.10.6)
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because of (16.10.2), so that f(ax(t)) may be defined as an element of A as in
Section 9.14. Similarly, (f ◦ ax)(t) may be defined as an element of A as in
Section 15.8. In fact, we have that

(f ◦ ax)(t) = f(ax(t)),(16.10.7)

as in Section 15.15.
Suppose that the constant term in a(T ) is equal to 0, so that (f ◦ a)(T ) =

f(a(T )) may be defined as a formal power series in T with coefficients in R or C,
as appropriate, as in Sections 15.11 and 15.13. This implies that the constant
term in ax(T ) is equal to 0, so that (f ◦ ax)(T ) = f(ax(T )) may be defined
as a formal power series in T with coefficients in A, as in Sections 15.11 and
15.13 again. This is the same as in (16.10.3), as a formal power series in T , as
mentioned in Section 15.15. Remember that (f ◦ a)x(T ) may be defined as a
formal power series in T with coefficients in A as in Section 16.7. We also have
that

(f ◦ a)x(T ) = (f ◦ ax)(T ),(16.10.8)

as in Section 16.8.
If (f ◦a)(T ) is as in (16.9.5), then (f ◦ax)(T ) is as in (16.9.6), as before. This

implies that (16.9.7) converges as an infinite series of nonnegative real numbers,
because of (16.10.3). In fact,

∞∑
m=0

|(f ◦ a)m| ‖xm‖A = ‖(f ◦ ax)(T )‖1,1 ≤ ‖f(T )‖1,rj ,(16.10.9)

as in (16.10.4). If t ∈ R or C, as appropriate, and |t| ≤ 1, then (16.9.8) holds,
where the first step is as in (16.10.7).

16.11 Some more exponentials of logarithms

Let T be an indeterminate, and let A be an associative algebra over the real or
complex numbers with a multiplicative identity element eA. Put

a(T ) = log(1 + T ) =

∞∑
l=1

(−1)l+1

l
T l,(16.11.1)

as in Section 16.4. If x ∈ A, then

ax(T ) = a(xT ) = log(1 + xT ) =

∞∑
l=1

(−1)l+1

l
xl T l(16.11.2)

is a formal power series in T with coefficients in A, as in Section 16.7.
Note that the constant term in (16.11.2) is equal to 0, so that

exp(ax(T ))(16.11.3)
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may be defined as a formal power series in T with coefficients in A as in Section
15.11. Remember that

exp(log(1 + T )) = 1 + T,(16.11.4)

as in Section 16.4. Using this, we get that

exp(ax(T )) = 1 + xT.(16.11.5)

as in Section 16.8.
Suppose now that (A, ‖ · ‖A) is a Banach algebra over the real or complex

numbers with a multiplicative identity element eA and ‖eA‖A = 1, and that
x ∈ A has the property that

∞∑
l=1

(1/l) ‖xl‖A(16.11.6)

converges as an infinite series of nonnegative real numbers. This means that

ax(T ) ∈ A1
1[[T ]],(16.11.7)

in the notation of Section 15.7, with

‖ax(T )‖1,1 = ‖ax(T )‖A1
1[[T ]] =

∞∑
l=1

(1/l) ‖xl‖A.(16.11.8)

Remember that
f(T ) = exp(T ) ∈ (R)1r1 [[T ]](16.11.9)

for every r1 > 0, as in Section 16.5. Thus

(f ◦ ax)(T ) = f(ax(T )) = exp(ax(T )) ∈ A1
1[[T ]](16.11.10)

may be defined as in Section 15.15. This is the same as (16.11.5), as a formal
power series in T with coefficients in A, as before.

If t ∈ R or C, as appropriate, and |t| ≤ 1, then ax(t) may be defined as an
element of A as in Section 15.8. This means that

f(ax(t)) = exp(ax(t))(16.11.11)

may be defined as an element of A too, as in Sections 9.14 and 10.4. Under
these conditions, we have that

exp(ax(t)) = f(ax(t)) = (f ◦ ax)(t) = eA + t x,(16.11.12)

as in the previous section. We may consider ax(t) as a definition of the logarithm
of eA + t x in A in this case, as in Section 16.5. This is related to part (b) of
Theorem 10.30 on p246 of [162].
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16.12 The binomial theorem

Let n be a positive integer, and let(
n

j

)
=

n!

j! (n− j)!
(16.12.1)

be the usual binomial coefficient for j = 0, 1, . . . , n. Here “l factorial” l! is
defined in the usual way for each positive integer l, and is interpreted as being
equal to 1 when l = 0, so that

(
0
0

)
is interpreted as being equal to 1 as well. It

is well known that

(x+ y)n =

n∑
j=0

(
n

j

)
xj yn−j(16.12.2)

when x and y are commuting elements of an associative algebra A over the real
or complex numbers, or a ring, for that matter, by the binomial theorem. If A
has a multiplicative identity element eA, then both sides of the equation may
be interpreted as being equal to eA when n = 0.

It is easy to see that (x + y)n can be expressed as a sum of 2n terms, each
of which is of the form

xj yn−j(16.12.3)

for some j. Thus (x+y)n may be expressed as a sum of terms of this form with
positive integer coefficients. The coefficients do not depend on x, y, or A, and
are the same as the number of subsets of {1, . . . , n} with j elements for each j.

The expression (16.12.1) for these coefficients can be verified by induction.
Alternatively, one can take x, y ∈ R, and consider the derivatives of (x + y)n

in x or y. More precisely, one can take y = 1, and consider the derivatives of
(x+ 1)n at x = 0.

In particular, the binomial coefficients are uniquely determined by the con-
dition that

(x+ 1)n =

n∑
j=0

(
n

j

)
xj(16.12.4)

on R. In fact,
(
n
j

)
is uniquely determined for j = 0, 1, . . . , n by the condition

that (16.12.4) holds for n+1 elements x of R, because (x+1)n is a polynomial
of degree n.

Let T be an indeterminate, and for each positive integer l, consider the
formal polynomial (

T

l

)
=
T (T − 1) · · · (T − l + 1)

l!
(16.12.5)

of degree l in T with rational coefficients, as in Exercise 8 on p 74 of [44]. If
l = 0, then this is interpreted as the constant polynomial equal to 1. This
corresponds to the polynomial function(

t

l

)
=
t (t− 1) · · · (t− l + 1)

l!
(16.12.6)
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of t in R, C, or any commutative associative algebra over the real or rational
numbers with a multiplicative identity element. If t ≥ l is an integer, then this
is the same as the usual binomial coefficient, as before. If t < l is a nonnegative
integer, then this is equal to 0.

If t1 and t2 are nonnegative integers, then

(x+ 1)t1+t2 = (x+ 1)t1 (1 + x)t2(16.12.7)

for every x ∈ R. One can check that

(
t1 + t2
l

)
=

l∑
j=0

(
t1
j

)(
t2
l − j

)
(16.12.8)

for every nonnegative integer l, using the appropriate binomial expansions for
both sides of (16.12.7).

If t2 is fixed, then both sides of (16.12.8) are polynomials in t1. It follows
that (16.12.8) holds for all t1 ∈ R, because it holds for all nonnegative integers
t1, as before.

If t1 ∈ R is fixed, then both sides of (16.12.8) are polynomials in t2 with real
coefficients. This implies that (16.12.8) holds for all t2 ∈ R, because it holds
for all nonnegative integers t2, as in the preceding paragraph.

Thus (16.12.8) holds for all t1, t2 ∈ R. The same argument could be used to
get that (16.12.8) holds for all t1, t2 ∈ C.

Let T1, T2 be commuting indeterminates, and observe that(
T1 + T2

l

)
(16.12.9)

defines a formal polynomial in T1, T2 with rational coefficients, as in Section
13.3. In fact, (

T1 + T2
l

)
=

l∑
j=0

(
T1
j

)(
T2
l − j

)
,(16.12.10)

as formal polynomials in T1, T2 for every nonnegative integer l. This means
that the coefficients of the monomials in T1, T2 on both sides of the equation
are the same.

Indeed, the corresponding polynomial functions on R2 are the same, as in
(16.12.8). To get that the coefficients are the same, one can consider the deriva-
tives of these polynomials at (0, 0). This corresponds to part (i) of Exercise 8
on p74 of [44]. It follows that (16.12.8) holds for all t1, t2 in any commuta-
tive associative algebra over the real or rational numbers with a multiplicative
identity element.
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16.13 Binomial series

Let X be an indeterminate. If α is a real or complex number, then

bα(X) =

∞∑
j=0

(
α

j

)
Xj(16.13.1)

is a formal power series in X with coefficients in R or C, as appropriate. This
is the binomial series in X associated to α. If α is a nonnegative integer, then

bα(X) = (1 +X)α,(16.13.2)

as before. Otherwise, this may be considered as a definition of the right side.
If β is another real or complex number, then

bα+β(X) = bα(X) bβ(X).(16.13.3)

This follows from (16.12.8), with t1 = α and t2 = β. This means that

(1 +X)α+β = (1 +X)α (1 +X)β ,(16.13.4)

using the notation in (16.13.2).
Observe that (

−1

l

)
= (−1)l(16.13.5)

for each nonnegative integer l. This implies that (16.13.2) is the same as the
usual definition of (1 +X)−1, as in Section 15.6, when α = −1. Similarly, if α
is a negative integer, then (1+X)−α is a formal polynomial in X, and (1+X)α

may be defined as its multiplicative inverse in R[[X]]. One can check that this
is the same as (16.13.2), using (16.13.4).

Of course,

b′α(X) =

∞∑
j=1

j

(
α

j

)
Xj−1 =

∞∑
j=0

(j + 1)

(
α

j + 1

)
Xj ,(16.13.6)

as in Section 15.10. If l is a positive integer, then it is easy to see that

l

(
α

l

)
= α

(
α− 1

l − 1

)
.(16.13.7)

This implies that

b′α(X) =

∞∑
j=0

α

(
α− 1

j

)
Xj = α bα−1(X).(16.13.8)

If l is a nonnegative integer, then(
α

l

)
=

l∑
j=0

(
1

j

)(
α− 1

l − j

)
,(16.13.9)
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by (16.12.8), with t1 = 1, and t2 = α− 1. This means that(
α

l

)
=

(
α− 1

l

)
+

(
α− 1

l − 1

)
(16.13.10)

when l ≥ 1.
It is easy to see that

(1 +X) b′α(X) =

∞∑
j=0

(j + 1)

(
α

j + 1

)
Xj +

∞∑
j=1

j

(
α

j

)
Xj .(16.13.11)

It follows that

(1 +X) b′α(X) =

∞∑
j=0

α

(
α− 1

j

)
Xj +

∞∑
j=1

α

(
α− 1

j − 1

)
Xj ,(16.13.12)

because of (16.13.7). One can use this and (16.13.10) to obtain that

(1 +X) b′α(X) = α bα(X),(16.13.13)

which is another way to look at (16.13.8). In fact, bα(X) is uniquely determined
by (16.13.13) and the condition that its constant term be equal to 1, as in Section
16.4.

Observe that
fα(X) = exp(α log(1 +X))(16.13.14)

defines a formal power series in X with real or complex coefficients, as appro-
priate, where log(1+X) is as in Section 16.4. More precisely, the constant term
in log(1 + X) is equal to 0, so that the formal composition may be defined as
in Section 15.11. We also have that

f ′α(X) = exp′(α log(1 +X))α log′(1 +X)

= exp(α log(1 +X))α (1 +X)−1 = α (1 +X)−1 fα(X),(16.13.15)

where the first step is as in Section 16.1, and the second step is as in Section
16.4. It is easy to see that the constant term in fα(X) is equal to 1, because
the constant term in log(1 +X) is equal to 0. It follows that

bα(X) = fα(X),(16.13.16)

as in the preceding paragraph.

16.14 Using the ratio test

If α is a real or complex number that it not a nonnegative integer, then it is
easy to see that (

α

l

)
6= 0(16.14.1)
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for each nonnegative integer l. In this case,(
α

l

)(
α

l + 1

)−1

=
α− l

l + 1
(16.14.2)

for every l ≥ 0. This implies that

lim
l→∞

((α
l

)(
α

l + 1

)−1)
= 1,(16.14.3)

by a standard argument. If r is a nonnegative real number with r < 1, then it
follows that

∞∑
j=0

∣∣∣∣(αj
)∣∣∣∣ rj(16.14.4)

converges as an infinite series of nonnegative real numbers, by the ratio test. If
X is an indeterminate, then we get that

bα(X) ∈ (R)1[[X]] or (C)1[[X]](16.14.5)

when α ∈ R or C, respectively, in the notation of Section 15.7.
If x is a real or complex number with |x| < 1, then put

bα(x) =

∞∑
j=0

(
α

j

)
xj ,(16.14.6)

where the series on the right converges absolutely, by the comparison test. Of
course, if α is a nonnegative integer, then the right side reduces to a finite sum.
If β is another real or complex number, then

bα+β(x) = bα(x) bβ(x),(16.14.7)

because of (16.13.3), as in Section 9.10.
It is well known that

bα(x) = (1 + x)α(16.14.8)

under these conditions, where the right side can be defined in other ways. One
can use the principal branch of the complex logarithm to define the right side
by

exp(α log(1 + x)),(16.14.9)

which is a holomorphic function on a larger open set in the complex plane. The
power series expansion for bα(x) corresponds exactly to the Taylor series for this
function at x = 0.

Of course, bα(x) is a holomorphic function on the open unit disk, because it
is defined by an absolutely convergent power series there. We have that

b′α(x) = α bα−1(x)(16.14.10)
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on the open unit disk, because of (16.13.8). Alternatively, we have that

(1 + x) b′α(x) = α bα(x)(16.14.11)

on the open unit disk, as in (16.13.13).
Similarly, we may consider bα(x) as a smooth function on the open interval

(−1, 1) in the real line. One can obtain (16.14.8) from (16.14.11), as in Exercise
22 on p201 of [159].

16.15 Some related estimates

If α is a real number and α ≤ 0, then it is easy to see that

(−1)l
(
α

l

)
≥ 0(16.15.1)

for every nonnegative integer l. If α is any real or complex number, then

|α− l| ≤ |α|+ l =
∣∣−|α| − l

∣∣(16.15.2)

for every nonnegative integer l. This implies that∣∣∣∣(αl
)∣∣∣∣ ≤ ∣∣∣∣(−|α|

l

)∣∣∣∣ = (−1)l
(
−|α|
l

)
(16.15.3)

for every nonnegative integer l.
If r is a nonnegative real number with r < 1, then we get that

∞∑
l=0

∣∣∣∣(αl
)∣∣∣∣ rl ≤ ∞∑

l=0

∣∣∣∣(−|α|
l

)∣∣∣∣ rl = ∞∑
l=0

(−1)l
(
−|α|
l

)
rl.(16.15.4)

Remember that these series converge, as in the previous section.
Of course,

∞∑
l=0

(−1)l
(
−|α|
l

)
rl = b−|α|(−r) = (1− r)−|α|,(16.15.5)

using (16.14.8) in the second step. Thus

∞∑
l=0

∣∣∣∣(αl
)∣∣∣∣ rl ≤ (1− r)−|α|,(16.15.6)

with equality when α is a real number with α ≤ 0.
Let X be an indeterminate, so that bα(X) may be defined as a formal power

series in X with real or complex coefficients as in (16.13.1). In addition to
(16.14.5), we get that

‖bα(X)‖1,r ≤ (1− r)−|α|,(16.15.7)

in the notation of Section 15.7, because of (16.15.6). We also have equality when
α is a real number with α ≤ 0, as before.



Chapter 17

Norms, power series, and
involutions

17.1 Another convergence property

Let α be a real number, so that
(
α
l

)
∈ R for every nonnegative integer l. Suppose

that
0 < α < 1.(17.1.1)

It is easy to see that

(−1)l+1

(
α

l

)
> 0(17.1.2)

for every l ≥ 1. This corresponds to part (a) of Exercise 1 on p125 of [8].
If x ∈ R and |x| < 1, then

bα(−x) =
∞∑
j=0

(
α

j

)
(−x)j = 1−

∞∑
j=1

(−1)j+1

(
α

j

)
xj .(17.1.3)

This means that

1−
∞∑
j=1

(−1)j+1

(
α

j

)
xj = (1− x)α,(17.1.4)

because of (16.14.8). This is closer to the formulation in [8].
We can use this to get that

∞∑
j=1

(−1)j+1

(
α

j

)
= 1,(17.1.5)

as in part (b) of Exercise 1 on p125 of [8]. Indeed,

n∑
j=1

(−1)j+1

(
α

j

)
xj ≤ 1− (1− x)α ≤ 1(17.1.6)

380
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for each positive integer n when 0 ≤ x < 1, by (17.1.4). This implies that

n∑
j=1

(−1)j+1

(
α

j

)
≤ 1(17.1.7)

for every n ≥ 1, by taking the limit as x→ 1−. This means that

∞∑
j=1

(−1)j+1

(
α

j

)
≤ 1,(17.1.8)

which includes the convergence of the series on the left.
If 0 ≤ x < 1, then

1− (1− x)α =

∞∑
j=1

(−1)j+1

(
α

j

)
xj ≤

∞∑
j=1

(−1)j+1

(
α

j

)
,(17.1.9)

using (17.1.4) in the first step. It follows that (17.1.5) holds, by taking the limit
as x→ 1−. Of course, (17.1.5) implies that

∞∑
j=0

∣∣∣∣(αj
)∣∣∣∣(17.1.10)

converges. If X is an indeterminate, then we get that

bα(X) ∈ (R)11[[X]],(17.1.11)

in the notation of Section 15.7.
If α is a nonnegative integer, then (17.1.10) reduces to a finite sum, and

bα(X) ∈ R[T ], as before. If α is any nonnegative real number, then one can
use (16.13.3) to get that (17.1.10) converges, so that (17.1.11) holds, using the
remarks in Section 15.9. In this case, if x is a real or complex number, then
one can define bα(x) as a real or complex number as in (16.14.6). This defines
a continuous real or complex-valued function on the set of x ∈ R or C, as
appropriate, such that |x| ≤ 1, as in Section 9.12. It follows that (16.14.8) holds
for all x ∈ R or C with |x| ≤ 1, because of the analogous statement when
|x| < 1, and because both sides of the equation are continuous on the set where
|x| ≤ 1.

17.2 Binomial series and Banach algebras

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with a
multiplicative identity element eA and ‖eA‖ = 1, and let α be a real or complex
number, appropriate. If x ∈ A and

‖x‖A < 1,(17.2.1)
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then

bα(x) =

∞∑
j=0

(
α

j

)
xj(17.2.2)

defines an element of A, as in Section 9.14, because of (16.14.5). If α is a
nonnegative real number, then this works when

‖x‖A ≤ 1,(17.2.3)

because of (17.1.11).
Let β be another real or complex number, as appropriate. If (17.2.1) holds,

then

bα+β(x) = bα(x) bβ(x),(17.2.4)

because of (16.13.3), as in Sections 9.13 and 15.11. Similarly, this works when
α and β are nonnegative real numbers, and (17.2.3) holds.

Let us put

(eA + x)α = bα(x)(17.2.5)

for every real or complex number α when (17.2.1) holds, and for every nonneg-
ative real number α when (17.2.3) holds. If n is a positive integer, then

((eA + x)α)n = (eA + x)nα(17.2.6)

in both cases, because of (17.2.4). In particular,

((eA + x)1/n)n = eA + x(17.2.7)

when (17.2.3) holds. The n = 2 case corresponds to part (a) of Exercise 2 on
p125 of [8]. This is also related to part (a) of Theorem 10.30 on p246 of [162].

Similarly, let A be an associative algebra over the real or complex numbers
with a multiplicative identity element eA, and suppose that x ∈ A is nilpotent.
If α ∈ R or C, as appropriate, then bα(x) may be defined as an element of
A as in (17.2.2), as in Section 15.11. If β is another real or complex number,
then (17.2.4) holds, because of (16.13.3), as before. We may also express bα(x)
as in (17.2.5) in this case. Of course, (17.2.6) and (17.2.7) hold for all positive
integers n, as before.

17.3 Some related formal power series

Let A be an associative algebra over the real or complex numbers with a mul-
tiplicative identity element eA, and let T be an indeterminate. If α is a real or
complex number and x ∈ A, then

bα,x(T ) = bα(xT ) =

∞∑
j=0

(
α

j

)
xj T j(17.3.1)
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is a formal power series in T with coefficients in A, as in Section 16.7. If β is
another real or complex number, as appropriate, then

bα+β,x(T ) = bα,x(T ) bβ,x(T ),(17.3.2)

because of (16.13.3) and a remark in Section 16.7. If n is a positive integer,
then it follows that

bα,x(T )
n = bnα,x(T ).(17.3.3)

In particular, we can take α = 1/n, to get that

b1/n,x(T )
n = 1 + xT.(17.3.4)

Suppose that (A, ‖·‖A) is a Banach algebra over the real or complex numbers
with a multiplicative identity element eA and ‖eA‖A = 1, and that x ∈ A has
the property that

∞∑
j=0

∣∣∣∣(αj
)∣∣∣∣ ‖xj‖A(17.3.5)

converges as an infinite series of nonnegative real numbers. This implies that

bα,x(T ) ∈ A1
1[[T ]],(17.3.6)

in the notation of Section 15.7, with

‖bα,x(T )‖1,1 = ‖bα,x(T )‖A1
1[[T ]] =

∞∑
j=0

∣∣∣∣(αj
)∣∣∣∣ ‖xj‖A.(17.3.7)

If t ∈ R or C, as appropriate, and |t| ≤ 1, then

bα,x(t) =

∞∑
j=0

(
α

j

)
tj xj(17.3.8)

may be defined as an element of A as in Sections 15.8 and 16.7.
Suppose for the moment that x also has the property that

∞∑
j=0

∣∣∣∣(βj
)∣∣∣∣ ‖xj‖A(17.3.9)

converges as an infinite series of nonnegative real numbers, so that

bβ,x(T ) ∈ A1
1[[T ]],(17.3.10)

with

‖bβ,x(T )‖1,1 =

∞∑
j=0

∣∣∣∣(βj
)∣∣∣∣ ‖xj‖A.(17.3.11)

This implies that
bα+β,x(T ) ∈ A1

1[[T ]],(17.3.12)
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because of (17.3.2), as in Section 15.9. This means that

∞∑
j=0

∣∣∣∣(α+ β

j

)∣∣∣∣ ‖xj‖A(17.3.13)

converges as an infinite series of nonnegative real numbers too, with

∞∑
j=0

∣∣∣∣(α+ β

j

)∣∣∣∣ ‖xj‖A = ‖bα+β,x(T )‖1,1 ≤ ‖bα,x(T )‖1,1 ‖bβ,x(T )‖1,1,(17.3.14)

as before. If t ∈ R or C, as appropriate, and |t| ≤ 1, then bβ,x(t) and bα+β,x(t)
may be defined as elements of A as well, and

bα+β,x(t) = bα,x(t) bβ,x(t),(17.3.15)

as in Section 15.9 again.
If (17.3.5) converges, then it follows that

∞∑
j=0

∣∣∣∣(nαj
)∣∣∣∣ ‖xj‖A(17.3.16)

converges as an infinite series of nonnegative real numbers for every positive
integer n, so that

bnα,x(T ) ∈ A1
1[[T ]].(17.3.17)

If t ∈ R or C, as appropriate, and |t| ≤ 1, then bnα,x(t) may be defined as an
element of A, and

bα,x(T )
n = bα,x(t)

n.(17.3.18)

If α = 1/n, then we get that

b1/n,x(t)
n = eA + t x,(17.3.19)

because of (17.3.4). This is related to part (a) of Theorem 10.30 on p246 of
[162].

17.4 Logarithms and binomial series

Let A be an associative algebra over the real or complex numbers with a multi-
plicative identity element eA, and suppose that x ∈ A is nilpotent. Remember
that log(eA + x) may be defined as an element of A as in Section 16.5, and is
nilpotent. If α is a real or complex number, as appropriate, then

α log(eA + x) is nilpotent in A(17.4.1)

too, so that
exp(α log(eA + x))(17.4.2)
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may be defined as an element of A, as in Sections 11.1 and 15.11.
Note that bα(x) may be defined as an element of A as well, as in Section

15.11. Under these conditions,

bα(x) = exp(α log(eA + x)),(17.4.3)

because of the analogous statement for formal power series in Section 16.13, as
in Section 15.13.

Let T be an indeterminate, and let r be a positive real number strictly less
than 1. Remember that

a(T ) = log(1 + T ) ∈ (R)1r[[T ]],(17.4.4)

in the notation of Section 15.7, with

‖a(T )‖1,r = ‖ log(1 + T )‖1,r = ‖ log(1 + t)‖(R)1r[[T ]] = − log(1− r),(17.4.5)

as in Section 16.5. We also have that

f(T ) = exp(T ) ∈ (R)1r1 [[T ]](17.4.6)

for every r1 > 0, with

‖f(T )‖1,r1 = ‖ exp(T )‖1,r1 = exp(r1)(17.4.7)

as in Section 16.5.
If α is a real or complex number, then

αa(T ) ∈ (R)1r[[T ]] or (C)1r[[T ]],(17.4.8)

as appropriate, with

‖αa(T )‖1,r = |α| ‖a(T )‖1,r = −|α| log(1− r).(17.4.9)

It follows that

(f ◦ (αa))(T ) = f(αa(T ))

= exp(α log(1 + T )) ∈ (R)1r[[T ]] or (C)1r[[T ]],(17.4.10)

as appropriate, may be defined as in Section 15.15. More precisely, if α 6= 0,
then we can take

r1 = −|α| log(1− r),(17.4.11)

to get that
‖f(αa(T ))‖1,r ≤ ‖f(T )‖1,r1 = (1− r)−|α|.(17.4.12)

Note that the constant term in αa(T ) is equal to 0, because of the analogous
statement for a(T ), as in Section 16.4. This implies that

f(αa(T )) = exp(α log(1 + T ))(17.4.13)
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may be defined as a formal power series in T with coefficients in the real or
complex numbers, as appropriate, as in Section 15.11. In fact,

exp(α log(1 + T )) = bα(T )(17.4.14)

as a formal power series in T , as in Section 16.13. This is the same as in
(17.4.10), as a formal power series in T , as in Section 15.15.

It follows that
bα(T ) ∈ (R)1r[[T ]] or (C)1r[[T ]],(17.4.15)

as appropriate. Remember that this was obtained in Section 16.14 as well,
because r < 1. If α 6= 0, then (17.4.12) implies that

‖bα(T )‖1,r ≤ (1− r)−|α|.(17.4.16)

Of course, this is clear when α = 0. Note that this is the same as in Section
16.15.

Now let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers,
as appropriate, with a multiplicative identity element eA and ‖eA‖A = 1. If
x ∈ A and ‖x‖A ≤ r, then log(eA + x) may be defined as an element of A as
in Section 16.5. This means that (17.4.2) may be defined as an element of A
as in Section 10.4. Similarly, bα(x) may be defined as an element of A, as in
Sections 9.14 and 17.2. We also have that (17.4.3) holds in this case, because
of the remarks in Section 15.15.

17.5 More on logarithms, binomial series

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with a
multiplicative identity element eA and ‖eA‖A = 1, and suppose that x ∈ A has
the property that

∞∑
l=1

(1/l) ‖xl‖A(17.5.1)

converges as an infinite series of nonnegative real numbers. Let T be an inde-
terminate, and let us take a(T ) = log(1 + T ) and

ax(T ) = log(1 + xT ) =

∞∑
l=1

(−1)l+1

l
xl T l,(17.5.2)

as in Section 16.11. Remember that

ax(T ) ∈ A1
1[[T ]],(17.5.3)

as in Section 15.7. We also have that f(T ) = exp(T ) is an element of (R)1r1 [[T ]]
for every r1 > 0, as in Section 16.5.

If α ∈ R or C, as appropriate, then αax(T ) is an element of A1
1[[T ]], because

of (17.5.3). This implies that

(f ◦ (αax))(T ) = f(αax(T )) = exp(αax(T )) ∈ A1
1[[T ]](17.5.4)
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may be defined as in Section 15.15.
Remember that the constant term in a(T ) is equal to 0, so that αa(T ) has

the same property. This means that

exp(αa(T )) = exp(α log(1 + T ))(17.5.5)

may be defined as a formal power series in T with coefficients in R or C, as
appropriate, as in Section 15.11. This is equal to bα(T ), as in Section 16.13.

Similarly, the constant term in αax(T ) is equal to 0, because of the analogous
property of ax(T ), so that exp(αax(T )) may be defined as a formal power series
in T with coefficients in A as in Section 15.11. One can use this to get that

exp(αax(T )) = bα,x(T ),(17.5.6)

as in Section 16.8.
This definition of exp(αax(T )) as a formal power series in T with coefficients

in A is equivalent to the one in Section 15.15 under these conditions, as before.
It follows that

bα,x(T ) ∈ A1
1[[T ]],(17.5.7)

because of (17.5.4). Another way to look at this will be mentioned in a moment.
If t ∈ R or C, as appropriate, and |t| ≤ 1, then ax(t) may be defined as an

element of A, as in Sections 15.8 and 16.11. This implies that

f(αax(t)) = exp(αax(t))(17.5.8)

may be defined as an element of A as well, as in Sections 9.14 and 10.4. Similarly,
bα,x(t) may be defined as an element of A as in Section 15.8 and the previous
section.

It is easy to see that

exp(αax(t)) = f(αax(t)) = (f ◦ (αax))(t) = bα,x(t),(17.5.9)

using some remarks in Section 15.15 in the second step, and (17.5.6) and the
remark at the beginning of the paragraph that followed in the third step. This
reduces to a statement in Section 16.11 when α = 1.

Observe that the convergence of the series (17.5.1) implies that

‖xl0‖A < 1(17.5.10)

for some positive integer l0. This means that

‖xl0‖1/l0A < 1,(17.5.11)

so that
rA(x) < 1,(17.5.12)

in the notation of Section 6.13. Remember that ‖xl‖1/lA → rA(x) as l → ∞, as in
Section 6.14. It is easy to see that (17.5.12) implies (17.5.7), using this and the
remarks in Section 16.14. Similarly, (17.5.12) implies that (17.5.1) converges.
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17.6 Power series and involutions

Let T be an indeterminate, and let f(T ) =
∑∞

j=0 fj T
j be a formal power series

in T with complex coefficients. Put

f(T ) =

∞∑
j=0

fj T
j ,(17.6.1)

which is another element of C[[T ]]. It is easy to see that

f(T ) 7→ f(T )(17.6.2)

defines a conjugate-linear involution on C[[T ]], as an algebra over the complex
numbers, as in Section 6.4. Of course, f(T ) is a formal polynomial in T if and
only if f(T ) ∈ C[T ].

Similarly, if r is a positive real number, then

f(T ) ∈ (C)1r[[T ]](17.6.3)

if and only if
f(T ) ∈ (C)1r[[T ]],(17.6.4)

in the notation of Section 15.7. In this case,

‖f(T )‖1,r = ‖f(T )‖1,r.(17.6.5)

If 0 < ρ ≤ ∞, then
f(T ) ∈ (C)ρ[[T ]](17.6.6)

if and only if
f(T ) ∈ (C)ρ[[T ]],(17.6.7)

using the notation in Section 15.7 again.
Let A be an associative algebra over the real or complex numbers with a

multiplicative identity element eA and an algebra involution x 7→ x∗, which
may be conjugate-linear in the complex case. If x ∈ A and f(T ) is a formal
polynomial in T with real or complex coefficients, as appropriate, then

f(x)∗ = f(x∗)(17.6.8)

in the real case, and in the complex case when the involution is complex-linear,
and

f(x)∗ = f(x∗)(17.6.9)

in the complex case when the involution is conjugate-linear.
If x ∈ A is nilpotent, then it is easy to see that

x∗ is nilpotent in A(17.6.10)

too. If f(T ) is a formal power series in T with real or complex coefficients, as
appropriate, then f(x) may be defined as an element of A as in Section 15.11,
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and similarly for f(x∗), and for f(x∗) in the complex case. We also have (17.6.8)
or (17.6.9), as appropriate, as before.

Now let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers
with a multiplicative identity element eA, ‖eA‖A = 1, and an algebra involution
x 7→ x∗, which may be conjugate-linear in the complex case. Suppose that there
is a real number C ≥ 1 such that

‖x∗‖A ≤ C ‖x‖A(17.6.11)

for every x ∈ A. Of course, this implies that

‖x‖A = ‖(x∗)∗‖A ≤ C ‖x∗‖A(17.6.12)

for every x ∈ A. If C = 1, then we get that ‖x∗‖A = ‖x‖A for every x ∈ A.
Suppose that f(T ) is an element of (R)1r[[T ]] or (C)1r[[T ]], as appropriate,

for some r > 0. If x ∈ A and ‖x‖A ≤ r, then f(x) may be defined as an element
of A, as in Sections 9.14 and 15.11. Similarly, if

‖x∗‖A ≤ r,(17.6.13)

then f(x∗) may be defined as an element of A, and f(x∗) may be defined as
an element of A in the complex case. It is easy to see that (17.6.8) or (17.6.9)
holds under these conditions, as appropriate.

Of course, (17.6.13) follows from the hypothesis that ‖x‖A ≤ r when C = 1.
We shall consider another version of this with a simpler role for C in Section
17.8.

17.7 Coefficients in A
Let A be an algebra in the strict sense over the real or complex numbers with
an involution x 7→ x∗ that may be conjugate-linear in the complex case, and let
T be an indeterminate. If f(T ) =

∑∞
j=0 fj T

j is a formal power series in T with
coefficients in A, then put

f∗(T ) =

∞∑
j=0

f∗j T
j ,(17.7.1)

which is another element of A[[T ]]. One can check that

f(T ) 7→ f∗(T )(17.7.2)

defines an algebra involution on A[[T ]], which is conjugate-linear in the complex
case when x 7→ x∗ is conjugate-linear on A. Note that (17.7.2) maps A[T ] onto
itself.

If f(T ) is a formal polynomial in T and t ∈ R or C, as appropriate, then
f(t) may be defined as an element of A, as in Section 15.4. It is easy to see that

f(t)∗ = f∗(t)(17.7.3)
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in the real case, and in the complex case when the involution is complex-linear,
and that

f(t)∗ = f∗(t)(17.7.4)

in the complex case when the involution is conjugate-linear.

Let ‖ · ‖A be a submultiplicative norm on A, and suppose that (17.6.11)
holds on A for some C ≥ 1. Also let r be a positive real number, and suppose
that f(T ) ∈ A1

r[[T ]], in the notation of Section 15.7. This implies that

f∗(T ) ∈ A1
r[[T ]](17.7.5)

too, with

‖f∗(T )‖1,r ≤ C ‖f(T )‖1,r.(17.7.6)

Similarly, if 0 < ρ ≤ ∞ and f(T ) ∈ Aρ[[T ]], then

f∗(T ) ∈ Aρ[[T ]](17.7.7)

as well.

Suppose that A is complete with respect to the metric associated to ‖ · ‖A,
and that f(T ) ∈ A1

r[[T ]] for some r > 0, as before. If t ∈ R or C, as appropriate,
and |t| ≤ r, then f(t) and f∗(t) may be defined as elements of A as in Section
15.8, and f∗(t) may be defined as an element of A in the complec case. We also
have that (17.7.3) or (17.7.4) holds, as appropriate, under these conditions.

17.8 Convergence conditions and involutions

Let A be an associative algebra over the real or complex numbers with a mul-
tiplicative identity element eA, and let T be an indeterminate. If a(T ) =∑∞

l=0 al T
l is a formal power series in T with real or complex coefficients, as

appropriate, and x ∈ A, then put

ax(T ) =

∞∑
l=0

al x
l T l,(17.8.1)

as in Section 16.7. In the complex case, a(T ) ∈ C[[T ]] may be defined as in
Section 17.6. Let y 7→ y∗ be an involution on A, which may be conjugate-linear
in the complex case, so that (ax)

∗(T ) ∈ A[[T ]] may be defined as in the previous
section. Observe that

(ax)
∗(T ) = ax∗(T )(17.8.2)

in the real case, and in the complex case when the involution is complex-linear,
and that

(ax)
∗(T ) = ax∗(T )(17.8.3)

in the complex case when the involution is conjugate-linear.
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Now let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers
with a multiplicative identity element eA, ‖eA‖A = 1, and an algebra involution
y 7→ y∗, which may be conjugate-linear in the complex case. Suppose that

‖y∗‖A ≤ C ‖y‖A(17.8.4)

for some C ≥ 1 and every y ∈ A, as before. Suppose also that x ∈ A has the
property that

∞∑
l=0

|al| ‖xl‖A(17.8.5)

converges as an infinite series of nonnegative real numbers. Note that

‖(x∗)l‖A = ‖(xl)∗‖A ≤ C ‖xl‖A(17.8.6)

for each l. It follows that
∞∑
l=0

|al| ‖(x∗)l‖A(17.8.7)

converges too, by the comparison test, with

∞∑
l=0

|al| ‖(x∗)l‖A ≤ C

∞∑
l=0

|al| ‖xl‖A.(17.8.8)

This means that
ax(T ), ax∗(T ) ∈ A1

1[[T ]],(17.8.9)

in the notation of Section 15.7, with

‖ax∗(T )‖1,1 ≤ C ‖ax(T )‖1,1.(17.8.10)

In the complex case, we also have that

ax(T ), ax∗(T ) ∈ A1
1[[T ]],(17.8.11)

with
‖ax(T )‖1,1 = ‖ax(T )‖1,1, ‖ax∗(T )‖1,1 = ‖ax∗(T )‖1,1.(17.8.12)

If t ∈ R or C, as appropriate, and |t| ≤ 1, then ax(t) and ax∗(t) may be defined
as elements of A, as in Sections 15.8 and 16.7. In the complex case, ax(t) and
ax∗(t) may be defined as elements of A too, and of course these statements hold
with t replaced by t as well. Under these conditions, one can check that

(ax(t))
∗ = (ax)

∗(t) = ax∗(t)(17.8.13)

in the real case, and in the complex case when the involution is complex-linear,
and that

(ax(t))
∗ = (ax)

∗(t) = ax∗(t)(17.8.14)

in the complex case when the involution is conjugate-linear.
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17.9 Square roots from binomial series

Let (A, ‖·‖A) be a Banach algebra over the real or complex numbers with a mul-
tiplicative identity element eA and ‖eA‖A = 1. Also let T be an indeterminate,
and for each x ∈ A, put

b1/2,x(T ) =
∑
j=0

(
1/2

j

)
xj T j ,(17.9.1)

as in Section 17.3. This is a formal power series in T with coefficients in A such
that

b1/2,x(T )
2 = 1 + xT,(17.9.2)

as before. Remember that
∞∑
j=0

∣∣∣∣(1/2j
)∣∣∣∣(17.9.3)

converges as an infinite series of nonnegative real numbers, as in Section 17.1.
Suppose that

∞∑
j=0

∣∣∣∣(1/2j
)∣∣∣∣ ‖xj‖A(17.9.4)

converges as an infinite series of nonnegative real numbers, so that

b1/2,x(T ) ∈ A1
1[[T ]],(17.9.5)

in the notation of Section 15.7. If t ∈ R or C, as appropriate, and |t| ≤ 1, then

b1/2,x(t) =

∞∑
j=0

(
1/2

j

)
tj xj(17.9.6)

may be defined as an element of A, as in Sections 15.8, 16.7, and 17.3. We also
have that

b1/2,x(t)
2 = eA + t x,(17.9.7)

as in Section 17.3.
Let y 7→ y∗ be an algebra involution on A that may be conjugate-linear in

the complex case, and that satisfies (17.8.4) on A for some C ≥ 1. This implies
that

∞∑
j=0

∣∣∣∣(1/2j
)∣∣∣∣ ‖(x∗)j‖A(17.9.8)

converges as an infinite series of nonnegative real numbers, as in the previous
section. This means that

b1/2,x∗(T ) ∈ A1
1[[T ]],(17.9.9)

so that b1/2,x∗(t) may be defined as an element of A when |t| ≤ 1, as before. In
fact,

b1/2,x(t)
∗ = b1/2,x∗(t)(17.9.10)
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in the real case, and in the complex case when the involution is complex-linear,
and

b1/2,x(t)
∗ = b1/2,x∗(t)(17.9.11)

in the complex case when the involution is conjugate-linear, as before.
In particular, if x is self-adjoint, so that x∗ = x, then

b1/2,x(t)
∗ = b1/2,x(t)(17.9.12)

in the real case, and in the complex case when the involution is complex-linear,
and

b1/2,x(t)
∗ = b1/2,x(t)(17.9.13)

in the complex case when the involution is conjugate-linear. This implies that
b1/2,x(t) is self-adjoint in A in the real case, in the complex case when the
involution is complex-linear, and in the complex case when the involution is
conjugate-linear and t ∈ R. This is related to part (b) of Exercise 2 on p125 of
[8].

17.10 Some more self-adjointness arguments

Let (A, ‖·‖A) be a real or complex Banach algebra with a multiplicative identity
element eA and ‖eA‖A = 1. Suppose that x ∈ A satisfies

rA(x) < 1,(17.10.1)

where rA(x) is as in Section 6.13. This implies that (17.9.4) converges, as in
Section 17.5. Thus

b1/2,x(1) =

∞∑
j=1

(
1/2

j

)
xj(17.10.2)

may be defined as an element of A as before, and satisfies

b1/2,x(1)
2 = eA + x.(17.10.3)

We also have that eA + x is invertible in A, as in Section 6.13.
Let y 7→ y∗ be an involution on A that may be conjugate-linear in the

complex case. Suppose that x is also self-adjoint, so that the partial sums of
the series on the right side of (17.10.2) are self-adjoint elements of A too. If the
involution on A is continuous, then

b1/2,x(1)
∗ = b1/2,x(1),(17.10.4)

as before. If A is complex and commutative, then this holds without asking
that the involution be continuous, as in Section 14.4. This is basically a version
of Theorem 11.20 on p278 of [162], with simpler hypotheses on x.

The same conclusion holds when A is complex and not necessarily commu-
tative, as in Section 14.9. This uses the fact that the partial sums of the series
on the right side of (17.10.2) commute with each other. This corresponds to
Theorem 11.26 on p281 of [162].
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17.11 Involutions and rA(x)

Let A be an associative algebra over the real or complex numbers with a sub-
multiplicative norm ‖ · ‖A. If x ∈ A, then rA(x) may be defined as in Section
6.13, as mentioned at the beginning of Section 7.2. Let y 7→ y∗ be an involution
on A, which may be conjugate-linear in the complex case.

It would sometimes be nice to have

rA(x
∗) = rA(x)(17.11.1)

for every x ∈ A. It is easy to see that this holds when

rA(x
∗) ≤ rA(x)(17.11.2)

for every x ∈ A. If the involution on A is continuous, so that (17.8.4) holds for
some C ≥ 1, then (17.11.2) follows from the fact that

‖(x∗)l‖1/lA = ‖(xl)∗‖1/lA ≤ C1/l ‖xl‖1/lA(17.11.3)

for every positive integer l, by taking the limit as l → ∞.
If A is a complex Banach algebra with a multiplicative identity element, then

(17.11.1) follows from the characterization of rA(·) in terms of the spectrum of
an element of A, as in Section 6.14. This also uses the characterization of the
spectrum of x∗ in terms of the spectrum of x, as in Section 14.1.

Suppose that x ∈ A is normal in the sense that it commutes with x∗, as in
Section 7.5. This implies that

rA(xx
∗) ≤ rA(x) rA(x

∗),(17.11.4)

as in Section 7.2. If (17.11.2) holds, then we get that

rA(xx
∗) ≤ rA(x)

2.(17.11.5)

17.12 Identity elements and rA(·)
Let A be an algebra in the strict sense over the real or complex numbers with
a submultiplicative norm ‖ · ‖A. If α is a positive real number, then

‖x‖A,α = α ‖x‖A(17.12.1)

defines a norm on A. If α ≥ 1, then it is easy to see that

‖ · ‖A,α is submultiplicative on A.(17.12.2)

Suppose for the moment that A is an associative algebra. If x ∈ A, then
rA(x) may be defined as in Sections 6.13 and 7.2. If α ≥ 1, then we can define
rA,α(x) in the same way, with respect to the norm ‖ · ‖A,α on A. Observe that

rA,α(x) = lim
l→∞

‖xl‖1/lA,α = lim
l→∞

(α1/l ‖xl‖1/lA ) = rA(x),(17.12.3)
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because α1/l → 1 as l → ∞.
Let A1 = A×R or A×C, as appropriate, considered as an algebra in the

strict sense over the real or complex numbers, as appropriate, as in Section 6.15.
Remember that

x 7→ (x, 0)(17.12.4)

is an injective algebra homomorphism from A into A1, and that eA1 = (0, 1)
is the multiplicative identity element in A1, by construction. If A has a multi-
plicative identity element eA, then (eA, 0) is an idempotent element of A1, as
in Section 7.6. If α ≥ 1, then

‖(x, t)‖A1,α = ‖x‖A,α + |t| = α ‖x‖A + |t|(17.12.5)

defines a submultiplicative norm on A1, as before. Of course, this is the same
as ‖ · ‖A1

in Section 6.15 when α = 1.
Suppose that A is an associative algebra again, so that A1 is associative as

well, as in Section 6.15. If (x, t) ∈ A1 and α ≥ 1, then rA1,α((x, t)) may be
defined in the usual way, with respect to the norm ‖ · ‖A1,α on A1. Note that

rA1,α((x, 0)) = rA,α(x) = rA(x)(17.12.6)

for every x ∈ A. Similarly,

rA1,α((0, t)) = |t|(17.12.7)

for every t ∈ R or C, as appropriate.
If (x, t) ∈ A1 and l is a positive integer, then one can check that

‖(x, t)l‖A1,α ≥ |t|l.(17.12.8)

This implies that
rA1,α((x, t)) ≥ |t|.(17.12.9)

It is easy to see that (x, 0) and (0, t) commute in A1. It follows that

rA1,α((x, t)) ≤ rA1,α((x, 0)) + rA1,α((0, t)) = rA(x) + |t|,(17.12.10)

where the first step is as in Section 9.7. We also have that

rA1,α((x, t)) = rA1,1((x, t)),(17.12.11)

because
‖(x, t)l‖1/lA1,1

≤ ‖(x, t)l‖1/lA1,α
≤ α1/l ‖(x, t)l‖1/lA1,1

.(17.12.12)

Let A be an algebra in the strict sense again, and let x 7→ x∗ be an involution
on A, which may be conjugate-linear in the complex case. If (x, t) ∈ A1, then
put

(x, t)∗ = (x∗, t)(17.12.13)

in the real case, and in the complex case when the involution on A is complex-
linear, and

(x, t)∗ = (x∗, t)(17.12.14)
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in the complex case when the involution on A is conjugate-linear. One can verify
that this defines an involution on A1, which is conjugate-linear in the complex
case when the involution on A is conjugate linear.

More precisely, this is the unique extension of the involution on A to an
involution on A1, that is complex-linear or conjugate-linear in the complex case
depending on whether the involution on A is complex-linear or conjugate-linear.
This uses the fact that the multiplicative identity element in A1 is self-adjoint
with respect to any involution on A1, as in Section 7.5.

Let ‖ · ‖A be a submultiplicative norm on A again, and suppose that

‖x∗‖A ≤ C ‖x‖A(17.12.15)

for some C ≥ 1 and all x ∈ A. This implies that

‖x∗‖A,α ≤ C ‖x‖A,α(17.12.16)

for all x ∈ A, so that

‖(x, t)∗‖A1,α ≤ C ‖(x, t)‖A1,α(17.12.17)

for all (x, t) ∈ A1. In particular, if the involution on A preserves ‖ · ‖A, then it
preserves ‖ · ‖A,α, and the corresponding involution on A1 preserves ‖ · ‖A1,α.
This corresponds to part of Proposition 2.5.4 on p58 of [8].

17.13 Limits at infinity

Let X be an infinite set, and remember that clai(X,R), clai(X,C) are the
spaces of real or complex-valued functions f on X, as appropriate, with a limit
at infinity, as in Section 3.3. This means that f may be expressed as

f = f0 + t1X ,(17.13.1)

where f0 is a real or complex-valued function on X that vanishes at infinity, as
appropriate, 1X is the constant function on X equal to 1 at every point, and
t = t(f) ∈ R or C, as appropriate, as before.

If f has a limit at infinity, then f is bounded on X, as before. Remember
that clai(X,R), clai(X,C) are closed linear subspaces of ℓ∞(X,R), ℓ∞(X,C),
respectively. It is easy to see that in fact

clai(X,R), clai(X,C) are subalgebras of ℓ∞(X,R), ℓ∞(X,C),(17.13.2)

respectively.
If f is as in (17.13.1), then t is called the limit of f at infinity on X, and it

is uniquely determined by f . We have seen that

|t(f)| ≤ ‖f‖∞,(17.13.3)

and that
f 7→ t(f)(17.13.4)
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is a linear functional on each of clai(X,R), clai(X,C). More precisely, one can
check that this is an algebra homomorphism from clai(X,R), clai(X,C) into R,
C, respectively.

Remember that c0(X,R), c0(X,C) are the spaces of real and complex-valued
functions on X that vanish at infinity, respectively, as in Section 1.13. These are
commutative and associative algebras over the real and complex numbers, as
appropriate, without multiplicative identity elements, because X is an infinite
set. Of course, 1X is the multiplicative identity element in each of ℓ∞(X,R),
ℓ∞(X,C), and in particular in each of clai(X,R), clai(X,C).

Let us take A = c0(X,R) or c0(X,C), and let A1 be as in Section 6.15 and
the previous section. It is easy to see that

(f0, t) 7→ f0 + t1X(17.13.5)

defines an algebra isomorphism from A1 onto clai(X,R) or clai(X,C), as ap-
propriate.

Similarly, let X be a metric space or a Hausdorff topological space that is
locally compact, as in Section 5.1, and not compact. Let us say that a real
or complex-valued function f on X has a limit at infinity on X if f can be
expressed as in (17.13.1), where t = t(f) ∈ R or C, as appropriate, and f0
vanishes at infinity on X as in Section 5.2. In this case, one can verify that t is
unique, and one may call it the limit of f at infinity on X.

This is the same as saying that f has a limit at the point at infinity in the
one-point compactification of X, and that this limit is equal to t. The previous
remarks for infinite sets correspond to using the discrete metric or topology on
X.

One can check that the space of real or complex-valued functions f on X
with a limit t at infinity is a subalgebra of the space of all real or complex-valued
functions on X, as a commutative algebra over R or C, as appropriate, with
respect to pointwise multiplication of functions. The mapping from f to t(f) is
an algebra homomorphism from the space of real or complex-valued functions
on X with a limit at infinity to R or C, as appropriate. These statements are
analogous to standard facts about the limit of a function at a point in a topolog-
ical space, and one can reduce to that case using the one-point compactification
of X, as in the preceding paragraph.

If f is bounded on X, then |t| is less than or equal to the supremum norm
of f on X, as before. Note that 1X does not vanish at infinity on X, because
X is not compact.

Remember that C0(X,R), C0(X,C) are the spaces of continuous real and
complex-valued functions on X that vanish at infinity, as in Section 5.2. These
are closed linear subspaces of the spaces Cb(X,R), Cb(X,C) of bounded con-
tinuous real and complex-valued functions on X, as appropriate, as before.

Let
Clai(X,R), Clai(X,C)(17.13.6)

be the spaces of continuous real or complex-valued functions f on X with a limit
at infinity, as appropriate. This means that f can be expressed as in (17.13.1),
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where f0 is continuous on X and vanishes at infinity. One can check that

Clai(X,R), Clai(X,C) are closed subalgebras of(17.13.7)

Cb(X,R), Cb(X,C),

respectively.
A continuous real or complex-valued function f on X has a limit at infinity

if and only if it extends to a continuous real or complex-valued function to the
one-point compactification of X, as appropriate, whose value at the point at
infinity is the same as the limit of f at infinity. In this case, the supremum
norm of f on X is the same as the supremum norm of its continuous extension
to the one-point compactification of X.

Let us now take A = C0(X,R) or C0(X,C), which is a commutative asso-
ciative algebra over the real or complex numbers, as appropriate, with respect
to pointwise multiplication of functions. If A1 is as in Section 6.15 and the
previous section again, then it is easy to see that (17.13.5) defines an algebra
isomorphism from A1 onto Clai(X,R) or Clai(X,C), as appropriate.

17.14 Some weighted ℓ∞ spaces

Let X be a nonempty set, and let w be a positive real-valued function on X.
As in Section 15.3, we let ℓ∞w (X,R) and ℓ∞w (X,C) be the spaces of real and
complex-valued functions f on X such that

|f(x)|w(x)(17.14.1)

is bounded on X, with the corresponding weighted supremum norm

‖f‖∞,w = ‖f‖sup,w = sup
x∈X

(|f(x)|w(x)).(17.14.2)

These are the same as the usual ℓ∞ spaces and supremum norm when w ≡ 1
on X, as in Section 1.1.

If c is a positive real number, then cw is another positive real-valued func-
tion on X, and ℓ∞cw(X,R), ℓ∞cw(X,C) are the same as ℓ∞w (X,R), ℓ∞w (X,C),
respectively. If f is an element of one of these spaces, then

‖f‖∞,c w = c ‖f‖∞,w.(17.14.3)

Let w1, w2 be positive real-valued functions on X, and suppose for the
moment that

cw1 ≤ w2(17.14.4)

on X. This implies that

ℓ∞w2
(X,R) ⊆ ℓ∞w1

(X,R), ℓ∞w2
(X,C) ⊆ ℓ∞w1

(X,R),(17.14.5)

with
c ‖f‖∞,w1

= ‖f‖∞,c w1
≤ ‖f‖∞,w2

(17.14.6)
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for all f ∈ ℓ∞w2
(X,R) or ℓ∞w2

(X,C).
Let w1, w2 be any positive real-valued functions on X again, and suppose

for the moment that f , g are real or complex-valued functions on X such that

|f |w1 and |g|w2 are bounded on X.(17.14.7)

Under these conditions, w1 w2 is a positive real-valued function on X, and

f g ∈ ℓ∞w1 w2
(X,R) or ℓ∞w1 w2

(X,C),(17.14.8)

as appropriate. We also have that

‖f g‖w1 w2 ≤ ‖f‖w1 ‖g‖w2 .(17.14.9)

Suppose now that
w ≥ c(17.14.10)

on X, so that
cw ≤ w2(17.14.11)

on X. If f, g ∈ ℓ∞w (x,R) or ℓ∞w (X,C), then

f g ∈ ℓ∞w2(X,R) or ℓ∞w2(X,C),(17.14.12)

as appropriate, as in (17.14.8). This implies that

f g ∈ ℓ∞w (X,R) or ℓ∞w (X,C),(17.14.13)

as appropriate, so that ℓ∞w (X,R), ℓ∞w (X,C) are subalgebras of the algebras of
bounded real and complex-valued functions on X, respectively. We also get that

c ‖f g‖∞,w = ‖f g‖∞,c w ≤ ‖f g‖∞,w2 ≤ ‖f‖∞,w ‖g‖∞,w.(17.14.14)

Suppose that c = 1, so that
w ≥ 1(17.14.15)

on X. In this case, ℓ∞w (X,R) and ℓ∞w (X,C) are Banach algebras over the real
and complex numbers, respectively, with respect to ‖ · ‖∞,w. Of course, the
constant function 1X on X equal to 1 at every point is contained in these
spaces if and only if w is bounded on X. In fact,

‖1X‖∞,w = 1(17.14.16)

if and only if w ≡ 1 on X, because of (17.14.15).
Let f ∈ ℓ∞w (X,R) or ℓ∞(X,C) be given, and observe that for each integer

l ≥ 2,

‖f‖l∞ = ‖f l‖∞ ≤ ‖f l‖∞,w ≤ ‖f l−1‖∞ ‖f‖∞,w = ‖f‖l−1
∞ ‖f‖∞,w.(17.14.17)

This implies that

‖f‖∞ ≤ ‖f l‖1/l∞,w ≤ ‖f‖1−(1/l)
∞ ‖f‖1/l∞,w.(17.14.18)

Let us take A = ℓ∞w (X,R) or ℓ∞w (X,C), as appropriate, so that rA(f) may be
defined as in Sections 6.13 and 7.2. Using (17.14.18), we obtain that

rA(f) = lim
l→∞

‖f l‖1/l∞,w = ‖f‖∞.(17.14.19)
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17.15 Continuous weights

Let X be a nonempty metric or topological space, and let w be a continuous
positive real-valued function on X. Consider the spaces

Cb,w(X,R) = C(X,R) ∩ ℓ∞w (X,R),(17.15.1)

Cb,w(X,C) = C(X,C) ∩ ℓ∞w (X,C)(17.15.2)

of continuous real and complex-valued functions on X, respectively, such that
(17.14.1) is bounded on X. These are linear subspaces of C(X,R), C(X,C) and
ℓ∞w (X,R), ℓ∞w (X,C), respectively. Of course, these are the same as the usual
spaces Cb(X,R), Cb(X,C) of bounded continuous real and complex-valued func-
tions onX when w ≡ 1 onX, as in Section 1.4. IfX is equipped with the discrete
metric or topology, then every function on X is continuous, and Cb,w(X,R),
Cb,w(X,C) are the same as ℓ∞w (X,R), ℓ∞w (X,C), respectively.

Note that
f ∈ Cb,w(X,R) or Cb,w(X,C)(17.15.3)

if and only if
w f ∈ Cb(X,R) or Cb,w(X,C),(17.15.4)

as appropriate. Remember that

f 7→ w f(17.15.5)

is an isometric linear mapping from each of ℓ∞w (X,R), ℓ∞w (X,C) onto ℓ∞(X,R),
ℓ∞(X,C), respectively, as in Section 15.3. This mapping sends Cb,w(X,R),
Cb,w(X,C) onto Cb(X,R), Cb(X,C), respectively. It follows that

Cb,w(X,R), Cb,w(X,C) are closed subsets of ℓ∞w (X,R), ℓ∞w (X,C),(17.15.6)

respectively, because of the analogous statement when w ≡ 1 on X, as in Section
1.4. We also have that

Cb,w(X,R), Cb,w(X,C) are Banach spaces(17.15.7)

with respect to the weighted supremum norm ‖f‖sup,w in (17.14.2).
Remember that Ccom(X,R), Ccom(X,C) are the spaces of continuous real

and complex-valued functions on X with compact support, as in Section 5.1.
Observe that

Ccom(X,R) ⊆ Cb,w(X,R), Ccom(X,C) ⊆ Cb,w(X,C),(17.15.8)

because w is bounded on compact subsets of X. We also have that (17.15.5)
maps Ccom(X,R) and Ccom(X,C) onto themselves.

Let
C0,w(X,R), C0,w(X,C)(17.15.9)

be the spaces of continuous real and complex-valued functions on X, respec-
tively, such that

w f vanishes at infinity on X,(17.15.10)
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as in Section 5.2. These are the same as the usual spaces C0(X,R), C0(X,C)
of continuous real and complex-valued functions on X that vanish at infinity
when w ≡ 1 on X. If X is equipped with the discrete metric or topology,
then these are the same as c0,w(X,R), c0,w(X,C) in Section 15.3. Of course,
(17.15.5) maps C0,w(X,R), C0,w(X,C) onto C0(X,R), C0(X,C), respectively,
This implies that

C0,w(X,R), C0,w(X,C) are closed linear subspaces of(17.15.11)

Cb,w(X,R), Cb(X,C),

respectively, because of the analogous statement when w ≡ 1 on X.
In fact,

C0,w(X,R), C0,w(X,C) are the same as the closures of(17.15.12)

Ccom(X,R), Ccom(X,C) in Cb,w(X,R), Cb,w(X,C),

respectively. This follows from the analogous statement when w ≡ 1 on X, as
in Section 5.2.

Let w1, w2 be continuous positive real-valued functions on X such that
(17.14.4) holds for some positive real number c. This implies that

Cb,w2(X,R) ⊆ Cb,w1(X,R), Cb,w2(X,C) ⊆ Cb,w1(X,C),(17.15.13)

as in (17.14.5). Similarly,

C0,w2
(X,R) ⊆ C0,w1

(X,R), C0,w2
(X,C) ⊆ C0,w1

(X,C).(17.15.14)

If we also have that
c′ w2 ≤ w1(17.15.15)

on X for some positive real number c′, then we get that

Cb,w1
(X,R) = Cb,w2

(X,R), Cb,w1
(X,C) = Cb,w1

(X,C)(17.15.16)

and
C0,w1(X,R) = C0,w2(X,C), C0,w1(X,C) = C0,w2(X,C).(17.15.17)

Let w1, w2 be any continuous positive real-valued functions on X, so that

w1 w2 is a continuous positive real-valued function on X(17.15.18)

as well. If f , g are continuous real or complex-valued functions on X such that
(17.14.7) holds, then

f g ∈ Cb,w1 w2
(X,R) or Cb,w1 w2

(X,C),(17.15.19)

as appropriate, as in (17.14.8). If we also have that

f w1 or g w2 vanishes at infinity on X,(17.15.20)

as in Section 5.2, then

f g ∈ C0,w1 w2
(X,R) or C0,w1 w2

(X,C),(17.15.21)

as appropriate.



Chapter 18

Algebras, involutions, and
positivity

18.1 One-sided multiplicative identity elements

Let A be an algebra in the strict sense over the real or complex numbers. An
element eL of A is said to be a left multiplicative identity element in A if

eL x = x(18.1.1)

for every x ∈ A. Similarly, an element eR of A is said to be a right multiplicative
identity element in A if

x eR = x(18.1.2)

for every x ∈ A. Thus a multiplicative identity element in A is the same as an
element of A that is both a left and right multiplicative identity element. If A
has a left multiplicative identity element eL and a right multiplicative element
eR, then it is easy to see that

eL = eR,(18.1.3)

so that this is a multiplicative identity element of A.

If a ∈ A, then let

La(x) = a x(18.1.4)

be the corresponding left multiplication operator on A, as in Section 6.3. Note
that eL ∈ A is a left multiplicative identity element in A if and only if

LeL = IA,(18.1.5)

the identity mapping on A. Similarly, eR ∈ A is a right multiplicative identity
element in A if and only if

La(eR) = a(18.1.6)

402
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for every a ∈ A. If A has a right multiplicative identity element, then it follows
that

a 7→ La(18.1.7)

is a one-to-one mapping from A into the space L(A) of all linear mappings from
A into itself.

Suppose for the moment that x 7→ x∗ is an algebra involution on A, which
may be conjugate-linear in the complex case. Observe that eL ∈ A is a left
multiplicative identity element in A if and only if

e∗L is a right multiplicative identity element in A.(18.1.8)

Under these conditions, we get that

e∗L = eL,(18.1.9)

as in (18.1.3), and that eL is a multiplicative identity element in A. Of course,
there are analogous statements for right multiplicative identity elements in A.

Of course, (18.1.7) is a linear mapping from A into L(A), as in Section 6.3.
The kernel of this mapping is equal to

AL = {a ∈ A : a y = 0 for every y ∈ A}.(18.1.10)

Thus (18.1.7) is one-to-one on A if and only if

AL = {0}.(18.1.11)

Note that (18.1.10) is automatically a right ideal in A.
Suppose now that A is an associative algebra. Remember that (18.1.7) is an

algebra homomorphism from A into L(A) in this case, as in Section 6.3. This
implies that (18.1.10) is a two-sided ideal in A, as in Section 6.11, which can
also be verified directly.

If eL ∈ A is a left multiplicative identity element in A, then

(x eL) y = x (eL y) = x y(18.1.12)

for every x, y ∈ A. This means that

(x eL − x) y = 0(18.1.13)

for every x, y ∈ A, which is the same as saying that

x eL − x ∈ AL(18.1.14)

for every x ∈ A. If (18.1.11) holds, then we get that

x eL = x(18.1.15)

for every x ∈ A, so that eL is a right multiplicative identity element in A too.
There are analogous statements for right multiplicative identity elements in A,
as usual.
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Suppose that a0 ∈ A has the property that

La0
is a one-to-one mapping from A onto itself.(18.1.16)

This implies that there is an x0 ∈ A such that

a0 x0 = La0(x0) = a0.(18.1.17)

It follows that
a0 (x0 y) = (a0 x0) y = a0 y(18.1.18)

for every y ∈ A. This means that

x0 y = y(18.1.19)

for every y ∈ A, because La0
is injective, so that x0 is a left multiplicative

identity element in A.
Of course, (18.1.16) also implies that there is a b0 ∈ A such that

a0 b0 = La0
(b0) = x0.(18.1.20)

This means that
La0

◦ Lb0 = La0 b0 = Lx0
= IA.(18.1.21)

It follows that
L−1
a0

= Lb0 ,(18.1.22)

which is to say that we also have that

Lb0 ◦ La0
= IA.(18.1.23)

If (18.1.11) holds, then x0 is the multiplicative identity element in A, and
(18.1.23) implies that

b0 a0 = x0.(18.1.24)

Of course, this means that a0 is invertible in A, with a−1
0 = b0.

18.2 Some subalgebras of L(A)

Let A be an associative algebra over the real or complex numbers again, and
let us continue to use the notation in (18.1.4) and (18.1.10). Put

B = {La : a ∈ A}.(18.2.1)

This is a subalgebra of L(A), as an algebra with respect to composition of
linear mappings on A, because (18.1.7) is an algebra homomorphism from A
into L(A).

Observe that
IA ∈ B(18.2.2)
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if and only if A has a left multiplicative identity element. If (18.1.11) holds,
then this is the same as saying that A has a multiplicative identity element, as
in the previous section.

Let B1 be the subset of L(A) consisting of linear mappings of the form

La + t IA,(18.2.3)

where a ∈ A and t ∈ R or C, as appropriate. This is the same as the linear
subspace of L(A) spanned by B and IA. Thus

B = B1(18.2.4)

if and only if (18.2.2) holds. It is easy to see that

B1 is a subalgebra of L(A)(18.2.5)

too. In fact, B is a two-sided ideal in B1, as in Section 6.11.
If

La + t IA = 0(18.2.6)

for some a ∈ A and t ∈ R or C, as appropriate, with t 6= 0, then (18.2.2) holds.
If (18.2.2) does not hold, then

La + t IA 7→ t(18.2.7)

is a well-defined linear mapping from B1 onto R or C, as appropriate, with
kernel B. More precisely, this is an algebra homomorphism from B1 onto R or
C, as appropriate, in this case.

Let A1 = A × R or A × C, as appropriate, be defined as an associative
algebra over the real or complex numbers, as appropriate, as in Section 6.15.
Consider the mapping from A1 into L(A) defined by

(a, t) 7→ La + t IA.(18.2.8)

One can check that this defines an algebra homomorphism from A1 into L(A).
Of course, B1 is the same as the image of A1 under this homomorphism.

Suppose that (18.1.11) holds, so that (18.1.7) is one-to-one on A. If the
kernel of (18.2.8) is nontrivial, then (18.2.6) holds with t 6= 0, so that (18.2.2)
holds, as before. Otherwise, if (18.2.2) does not hold, then it follows that (18.2.8)
is an algebra isomorphism from A1 onto B1.

Suppose that A 6= {0}, so that IA 6= {0}. If (18.2.2) holds, then it is easy
to see that the kernel of (18.2.8) is nontrivial.

18.3 Another condition on La

Let A be an algebra in the strict sense over the real or complex numbers with
a submultiplicative norm ‖ · ‖A. If a ∈ A, then let La be as in (18.1.4), which
is a bounded linear mapping from A into itself, with

‖La‖op ≤ ‖a‖A,(18.3.1)



406 CHAPTER 18. ALGEBRAS, INVOLUTIONS, AND POSITIVITY

as in Section 6.3. Thus (18.2.1) defines a linear subspace of the space BL(A) of
all bounded linear mappings from A into itself.

In this section, we ask that there be a nonnegative real number C such that

‖a‖A ≤ C ‖La‖op(18.3.2)

for every a ∈ A. Of course, this implies in particular that a 7→ La is a one-to-one
linear mapping from A into BL(A), so that (18.1.11) holds, as before. If A has
a right multiplicative identity element eR, then

‖a‖A = ‖La(eR)‖A ≤ ‖La‖op ‖eR‖A(18.3.3)

for every a ∈ A, as in Section 6.3.
Suppose that A is complete with respect to the metric associated to ‖ · ‖A.

This implies that that B is complete with respect to the restriction to B of the
metric associated to the operator norm on BL(A), because (18.3.1) and (18.3.2).
This means that

B is a closed set in BL(A),(18.3.4)

as in Section 1.6.
Suppose that

IA 6∈ B.(18.3.5)

This implies that there is a positive real number c1 such that

‖La + IA‖op ≥ c1(18.3.6)

for every a ∈ A, because of (18.3.4). It follows that

‖La + t IA‖op ≥ c1 |t|(18.3.7)

for every a ∈ A and t ∈ R or C, as appropriate.
Let B1 be the linear subspace of BL(A) spanned by B and IA, which is

equivalent to the definition of B1 in the previous section in this case. As before,
(18.2.7) defines a linear functional on B1 with kernel equal to B. Let us check
that

B1 is a closed set in BL(A)(18.3.8)

under these conditions.
Let {aj}∞j=1 and {tj}∞j=1 be sequences of elements of A and R or C, as

appropriate, respectively. Suppose that the corresponding sequence

{Laj
+ tj IA}∞j=1(18.3.9)

of elements of B1 converges to an element of BL(A). In particular, this implies
that (18.3.9) is a Cauchy sequence in BL(A). This means that {tj}∞j=1 is a
Cauchy sequence in R or C, as appropriate, because of (18.3.7). It follows that
{tj}∞j=1 converges to t ∈ R or C, as appropriate, because R and C are complete
with respect to their standard metrics.
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This implies that {Laj}∞j=1 converges in BL(A), because (18.3.9) converges
in BL(A). In fact, {Laj}∞j=1 converges to an element of B, because of (18.3.4).
This means that (18.3.9) converges to an element of B1.

Suppose now that A is associative as an algebra over the real or complex
numbers, so that B and B1 are subalgebras of BL(A), as in the previous section.
In this case, (18.3.6) and thus (18.3.7) hold with c1 = 1. Otherwise, there would
be an element of B that is invertible as an element of B1, as in Section 6.5. This
is not possible, because (18.2.7) is an algebra homomorphism from B1 onto R
or C, as appropriate.

18.4 An involution on B1

Let A be an associative algebra over the real or complex with an involution
x 7→ x∗, which may be conjugate-linear in the complex case. If a ∈ A, then let
La be as in (18.1.4), and remember that a 7→ La is an algebra homomorphism
from A into L(A), as in Section 6.3. Suppose that

a 7→ La is one-to-one on A,(18.4.1)

which is the same as saying that (18.1.11) holds, as before. Let B, B1 be the
subalgebras of L(A) defined in Section 18.2.

Suppose from now on in this section that

A does not have a multiplicative identity element.(18.4.2)

This implies that

A does not have a left multiplicative identity element,(18.4.3)

as in Section 18.1. It follows that (18.3.5) holds, because of (18.4.3), as in
Section 18.2. This means that (18.2.7) is an algebra homomorphism from B1

onto R or C, as appropriate, with kernel B, as before.
If a ∈ A and t ∈ R or C, as appropriate, then put

(La + t IA)
∗ = La∗ + t IA(18.4.4)

in the real case, and in the complex case when the involution on A is complex-
linear, and

(La + t IA)
∗ = La∗ + t IA(18.4.5)

in the complex case when the involution on A is conjugate-linear. One can check
that this defines an algebra involution on B1, which is conjugate-linear in the
complex case when the involution on A is conjugate-linear.

Remember that A1 = A ×R or A ×C, as appropriate, may be defined as
an associative algebra over R or C, as appropriate, as in Section 6.15, and that
(18.2.8) defines an algebra isomorphism from A1 onto B1 under these conditions.
The involution on B1 defined in the preceding paragraph corresponds exactly
to the one defined on A1 as in Section 17.12 with respect to this isomorphism.
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If x ∈ A, then
(La + t IA)(x) = a x+ t x.(18.4.6)

If y ∈ A, then

x∗ (La)
∗(y) = x∗ La∗(y) = x∗ a∗ y = (a x)∗ y.(18.4.7)

Using this, it is easy to see that

x∗ ((La + t IA)
∗(y)) = (a x+ t x)∗ y.(18.4.8)

This implies that

x∗ ((La + t IA)
∗((La + t IA)(x))) = (a x+ t x)∗ (a x+ t x).(18.4.9)

18.5 Multiplication operators on C∗ algebras

Let A be an algebra in the strict sense over the real or complex numbers with a
submultiplicative norm ‖ · ‖A. If a ∈ A, then we let La be as in (18.1.4) again,
which is a bounded linear mapping from A into itself, as before.

Let x 7→ x∗ be an algebra involution on A, which may be conjugate-linear
in the complex case, and suppose that ‖ · ‖A satisfies the C∗ identity

‖x∗ x‖A = ‖x‖2A(18.5.1)

for every x ∈ A, as in Section 7.7. Remember that this implies that

‖x∗‖A = ‖x‖A(18.5.2)

for every x ∈ A, so that

‖xx∗‖A = ‖x∗‖2A = ‖x‖A ‖x∗‖A(18.5.3)

for every x ∈ A. If a ∈ A, then

‖La(a
∗)‖A = ‖a a∗‖A = ‖a‖A ‖a∗‖A.(18.5.4)

It follows that
‖La‖op = ‖a‖A(18.5.5)

for every a ∈ A under these conditions, because of (18.3.1). Note that A is not
asked to have a left or right multiplicative identity element here.

Of course, (18.5.5) implies that

a 7→ La is a one-to-one linear mapping from A into BL(A),(18.5.6)

so that (18.1.11) holds, as in Section 18.3. Suppose now that A is associative
as an algebra over the real or complex numbers, and let B, B1 be as in Section
18.2. Suppose also that (18.4.2) holds, so that we can define an involution on
B1 as in the previous section.
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We would like to show that

‖(La + t IA)
∗ ◦ (La + t IA)‖op = ‖La + t IA‖2op(18.5.7)

for every a ∈ A and t ∈ R or C, as appropriate. To do this, it sufices to verify
that

‖(La + t IA)‖2op ≤ ‖(La + t IA)
∗ ◦ (La + t IA)‖op,(18.5.8)

as in Section 7.7. Let x ∈ A be given, and let us check that

‖(La + t IA)(x)‖2A ≤ ‖(La + t IA)
∗ ◦ (La + t IA)‖op ‖x‖2A.(18.5.9)

Observe that

‖(La + t IA)(x)‖2A = ‖a x+ t x‖2A = ‖(a x+ t x)∗ (a x+ t x)‖A,(18.5.10)

using (18.4.6) in the first step, and (18.5.1) in the second step. We can use
(18.4.9) and (18.5.2) to get that

‖(a x+ t x)∗ (a x+ t x)‖A = ‖x∗ ((La + t IA)
∗((La + t a)(x)))‖A

≤ ‖x∗‖A ‖(La + t IA)
∗((La + t IA)(x))‖A(18.5.11)

≤ ‖(La + t IA)
∗ ◦ (La + t IA)‖op ‖x‖2A.

This corresponds to Proposition 2.9.2 on p75 of [8], some remarks on p264
of [167], and Exercise 5 on p300 of [167].

18.6 Positive linear functionals

Let A be an associative algebra over the complex numbers with a conjugate-
linear involution

y 7→ y∗.(18.6.1)

Let us say that a linear functional λ on A, as a vector space over the complex
numbers, is positive in the strict sense with respect to this involution if for every
x ∈ A, we have that

λ(x∗ x) ∈ R(18.6.2)

and
λ(x∗ x) ≥ 0.(18.6.3)

Of course, this is the same as saying that

λ(xx∗) ∈ R(18.6.4)

and
λ(xx∗) ≥ 0(18.6.5)

for every x ∈ A, by replacing x with x∗. One may also say that λ is a positive
functional in the strict sense on A in this case. This corresponds to Definition
21.16 on p316 of [91], and some other versions of this are mentioned at the
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beginning of Section 4.7 on p122 of [8], in Definition 11.30 on p283 of [162], and
at the beginning of Section 4 in Chapter VI on p270 of [167].

If λ is any linear functional on A that satisfies (18.6.2) for every x ∈ A, then

λ(x∗ y) = λ(y∗ x)(18.6.6)

for every x, y ∈ A, as in part (i) of Theorem 21.17 on p316 of [91]. Indeed, if
x, y ∈ A and t ∈ C, then

λ((x+ t y)∗ (x+ t y)) = λ(x∗ x) + t λ(x∗ y) + t λ(y∗ x) + |t|2λ(y∗ y).(18.6.7)

This implies that
t λ(x∗ y) + t λ(y∗ x) ∈ R,(18.6.8)

because of (18.6.2). One can get (18.6.6) from this by taking t = 1, i. Note that
(18.6.6) implies (18.6.2), by taking y = x.

If λ is any linear functional on A, then

bλ(x, y) = λ(y∗ x)(18.6.9)

defines a sesquilinear form on A, as in Section 5.15. The condition (18.6.6) is
the same as saying that (18.6.9) is Hermitian symmetric on A, as in Section
8.5. In this case, (18.6.3) is the same as saying that (18.6.9) is nonnegative as
a Hermitian form on A, as in Section 8.10. This implies that

|bλ(x, y)| ≤ bλ(x, x)
1/2 bλ(y, y)

1/2(18.6.10)

for every x, y ∈ A, as before. Equivalently, this means that

|λ(y∗ x)| ≤ λ(x∗ x)1/2 λ(y∗ y)1/2(18.6.11)

for every x, y ∈ A. This corresponds to part (ii) of Theorem 21.17 on p316 of
[91]. This also corresponds to part of Proposition 4.7.1 on p123 of [8], part (b)
of Theorem 11.31 on p284 of [162], and a remark in the proof of 4.1 on p271 of
[167].

Now let A be an associative algebra over the real numbers with an involution
as in (18.6.1). Let us say that a linear functional on A, as a vector space over
the real numbers, is positive in the strict sense with respect to the involution if

λ(x∗ y) = λ(y∗ x)(18.6.12)

for every x, y ∈ A, and if (18.6.3) holds for every x ∈ A. As before, we may
also say that λ is a positive functional in the strict sense on A under these
conditions.

If λ is any linear functional on A, then (18.6.9) defines a bilinear form on
A, as in Section 5.15. Of course, (18.6.12) is the same as saying that

bλ is symmetric on A,(18.6.13)

as in Section 8.5. If we have this, then (18.6.3) is the same as saying that bλ is
nonnegative as a symmetric bilinear form on A, as in Section 8.10. This implies
that (18.6.10) holds, which is the same as saying that (18.6.11) holds, as before.
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18.7 Positive functionals and identity elements

Let A be an associative algebra over the real or complex numbers with an
involution y 7→ y∗ that is conjugate-linear in the complex case. If A has a
multiplicative identity element eA, then e∗A = eA, as in Section 6.4. If λ is a
linear functional on A that satisfies (18.6.6) or (18.6.12), as appropriate, then
we can take y = eA to get that

λ(x∗) = λ(x)(18.7.1)

or
λ(x∗) = λ(x),(18.7.2)

as appropriate, for every x ∈ A. Conversely, it is easy to see that each of these
conditions implies (18.6.6) or (18.6.12), as appropriate.

If A has a multiplicative identity element eA, and if λ is a positive linear
functional on A in the strict sense, then we can take y = eA in (18.6.11) to get
that

|λ(x)| ≤ λ(eA)
1/2 λ(x∗ x)1/2(18.7.3)

for every x ∈ A. Note that
λ(eA) ≥ 0,(18.7.4)

by taking x = eA in (18.6.3).
Suppose that we do not ask that A have a multiplicative identity element,

and that λ is a positive linear functional on A in the strict sense with respect
to the involution. Let us say that λ is positive in the strong sense with respect
to the involution if (18.7.1) or (18.7.2) holds for every x ∈ A, as appropriate,
and there is a nonnegative real number c such that

|λ(x)| ≤ c1/2 λ(x∗ x)1/2(18.7.5)

for every x ∈ A. We may also say that λ is a positive functional in the strong
sense on A with respect to the involution in this case. If A has a multiplica-
tive identity element, then positivity in the strict sense implies positivity in
the strong sense, as before, and we may simply say that λ is a positive linear
functional or positive functional on A with respect to the involution.

In [8, 162], positive linear functionals are considered on algebras with mul-
tiplicative identity elements. In [167], positivity is defined for bounded linear
functionals on complex C∗ algebras that may not have a multiplicative identity
element, and (18.7.1) is basically included in the definition. If the algebra does
not have a multiplicative identity element, then a positive linear functional on
the algebra may be extended to a positive linear functional on the unitization
of the algebra, as in Corollary 1 on p271 of [167].

In the complex case, it is easy to see that (18.7.1) holds if and only if

λ(x) ∈ R(18.7.6)

for every x ∈ A that is self-adjoint. In the real case, (18.7.2) holds if and only if

λ(x) = 0(18.7.7)

for every x ∈ A that is anti-self-adjoint, as in Section 7.5.
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18.8 Positive linear functionals on A1

Let A be an associative algebra over the real or complex numbers with an
involution y 7→ y∗ that is conjugate-linear in the complex case again, and let

A1 = A×R or A×C,(18.8.1)

as appropriate, be defined as an associative algebra over the real or complex
numbers, as appropriate, as in Section 6.15. Also let

(x, t) 7→ (x, t)∗(18.8.2)

be the involution on A1 defined in Section 17.12. This involution on A1 is
conjugate-linear in the complex case, because of the correspoinding property of
the involution on A.

Remember that eA1 = (0, 1) is the multiplicative identity element in A1. If
λ1 is a positive linear functional on A1, then

λ(x) = λ1((x, 0))(18.8.3)

defines a positive linear functional on A in the strong sense. More precisely,
(18.7.5) holds in this case with

c = λ1(eA1
) = λ1((0, 1)).(18.8.4)

This corresponds to the “only if” part of Theorem 21.18 on p317 of [91].
Conversely, suppose that λ is a positive linear functional on A in the strong

sense, and let c be a nonnegative real number such that (18.7.5) holds for every
x ∈ A. Put

λ1((x, t)) = λ(x) + t c(18.8.5)

for every (x, t) ∈ A1, which defines a linear functional on A1. Clearly

λ1((x, t)
∗) = λ1((x, t))(18.8.6)

or
λ1((x, t)

∗) = λ1((x, t)),(18.8.7)

as appropriate, for each (x, t) ∈ A1, because of (18.7.1) or (18.7.2), as appropri-
ate.

If (x, t) ∈ A1, then

(x, t)∗ (x, t) = (x∗ x+ t x∗ + t x, |t|2)(18.8.8)

in the complex case, and

(x, t)∗ (x, t) = (x∗ x+ t x∗ + t x, t2)(18.8.9)

in the real case. This implies that

λ1((x, t)
∗ (x, t)) = λ(x∗ x) + 2Re(t λ(x)) + |t|2 c(18.8.10)
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in the complex case, and

λ((x, t)∗ (x, t)) = λ(x∗ x) + 2 t λ(x) + t2c(18.8.11)

in the real case, using (18.7.1) and (18.7.2), as appropriate. It follows that

λ((x, t)∗ (x, t)) ≥ λ(x∗ x)− 2 |t| |λ(x)|+ |t|2 c(18.8.12)

≥ λ(x∗ x)− 2 |t| c1/2 + |t|2 c
= (λ(x∗ x)1/2 − |t| c1/2)2 ≥ 0

in both cases, using (18.7.5) in the second step. This corresponds to the “if”
part of Theorem 21.18 on p317 of [91].

18.9 Another nonnegativity condition

Let X be a nonempty metric or topological space, and remember that

Ccom(X,R), Ccom(X,C)(18.9.1)

are the spaces of continuous real and complex-valued functions on X with com-
pact support, respectively, as in Section 5.1. A linear functional λ on either of
these spaces is said to be nonnegative if

λ(f) ≥ 0(18.9.2)

for every nonnegative real-valued continuous function f on X with compact
support. In the complex case, this includes the condition that

λ(f) ∈ R(18.9.3)

for all such functions f .
Of course, Ccom(X,R) and Ccom(X,C) are commutative associative alge-

bras over the real and complex numbers, respectively, with respect to pointwise
multiplication of functions on X. We may also consider these algebras to be
equipped with involutions, where we take the involution on Ccom(X,R) to be
the identity mapping, and the involution on Ccom(X,C) to be defined by taking
the complex conjugate

f(18.9.4)

of f ∈ Ccom(X,C).
In both cases, a nonnegative linear functional in the sense considered here

is a positive linear functional in the strict sense as in Section 18.6, with respect
to the corresponding involution. Conversely, every positive linear functional in
the strict sense on these algebras is nonnegative in the sense considered here.
This uses the fact that if f is a nonnegative real-valued continuous function on
X with compact support, then its square root

f1/2(18.9.5)
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is a nonnegative real-valued continuous function on X with the same support
as f .

Note that (18.7.2) holds trivially for any linear functional on Ccom(X,R),
because the involution is taken to be the identity mapping on Ccom(X,R). In
the complex case, (18.7.1) is equivalent to the condition that (18.9.3) hold when

f is a continuous real-valued function on X with compact support,(18.9.6)

as in (18.7.6).
If f is any continuous real-valued function on X, then

f+ = max(f, 0)(18.9.7)

and
f− = max(−f, 0)(18.9.8)

are nonnegative continuous real-valued functions on X. Note that

f = f+ − f−(18.9.9)

on X. If f has compact support in X, then

f+, f− have compact supports as well.(18.9.10)

This uses the well-known fact that a closed set in X that is contained in a
compact set is compact too. If λ is a linear functional on Ccom(X,C) that
satisfies (18.9.3) when f is a nonnegative real-valued continuous function on X
with compact support, then it follows that (18.9.3) holds for every continuous
real-valued function f on X with compact support.

18.10 Nonnegativity and local compactness

Let X be a nonempty metric or topological space again, and let λ be a non-
negative linear functional on Ccom(X,R) or Ccom(X,C). Thus λ is a positive
linear functional in the strict sense on Ccom(X,R) or Ccom(X,C), as appropri-
ate, as a commutative associative algebra over the real or complex numbers, as
appropriate, with respect to the involution mentioned in the previous section.
We have also seen that λ satisfies one of the conditions needed to be a positive
linear functional in the strong sense, as in Section 18.7. The other condition
may be restated as saying that there is a nonnegative real number c such that

|λ(f)| ≤ c1/2 λ(|f |2)1/2(18.10.1)

for every f ∈ Ccom(X,R) or Ccom(X,C), as appropriate.
Suppose for the moment that this condition holds, and let a be a continuous

real-valued function on X with compact support such that

0 ≤ a ≤ 1(18.10.2)
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on X. This implies that
a2 ≤ a(18.10.3)

on X, so that a− a2 ≥ 0 on X, and thus

λ(a− a2) ≥ 0.(18.10.4)

This means that λ(a2) ≤ λ(a), which we can use in (18.10.1) to get that

λ(a) ≤ c.(18.10.5)

Suppose now that X is a nonempty metric space or Hausdorff topologi-
cal space that is locally compact, as in Section 5.1. If f is a continuous real
or complex-valued function on X with compact support, then the version of
Urysohn’s lemma mentioned in Section 5.1 implies that there is a continuous
real-valued function b on X with compact support such that

0 ≤ b ≤ 1(18.10.6)

on X and
b = 1 on supp f.(18.10.7)

This means that
f = b f(18.10.8)

on X, so that
|λ(f)| = |λ(b f)| ≤ λ(b2)1/2 λ(|f |2)1/2,(18.10.9)

where the second step is as in Section 18.6. If (18.10.5) holds for some c ≥ 0 and
all continuous real-valued functions a on X with compact support that satisfy
(18.10.2) on X, then we can take a = b2 to get that (18.10.1) holds. This
implies that λ is positive in the strong sense on Ccom(X,R) or Ccom(X,C), as
appropriate, as in Section 18.7.

Let µ be a nonnegative Borel measure on X such that

µ(K) < +∞(18.10.10)

for all compact subsets K of X. This implies that continuous real and complex-
valued functions on X with compact support are integrable on X with respect
to µ, so that

λµ(f) =

∫
X

f dµ(18.10.11)

defines a nonnegative linear functional on Ccom(X,R) and Ccom(X,C). If

µ(X) <∞,(18.10.12)

then ∣∣∣∣∫
X

fdµ

∣∣∣∣ ≤ ∫
X

|f | dµ ≤ µ(X)1/2
(∫

X

|f |2 dµ
)1/2

(18.10.13)
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for all square-integrable functions f on X with respect to µ, by the Cauchy–
Schwarz inequality. In this case, we get that λµ is positive in the strong sense
on Ccom(X,R) and Ccom(X,C), as in Section 18.7. Of course, if X is compact,
then (18.10.12) follows from (18.10.10). If λ is any nonnegative linear func-
tional on Ccom(X,R) or Ccom(X,C), then a version of another type of Riesz
representation theorem states that there is a unique nonnegative Borel measure
µ on X with suitable regularity properties such that (18.10.10) holds, and λ
can be expressed as in (18.10.11). If there is a nonnegative real number c such
that (18.10.5) holds for all continuous real-valued functions a on X that satisfy
(18.10.2), then

µ(X) ≤ c.(18.10.14)

This is all much simpler when X is equipped with the discrete metric or
topology, so that Ccom(C,R) and Ccom(X,C) are the same as c00(X,R) and
c00(X,C), respectively, as mentioned in Section 5.1. If ρ is a nonnegative real-
valued function on X, then

λρ(f) =
∑
x∈X

f(x)ρ(x)(18.10.15)

defines a nonnegative linear functional on c00(X,R) and c00(X,C). If ρ is
summable on X, then one can use the Cauchy–Schwarz inequality for sums to
get that λρ is positive in the strong sense on c00(X,R) and c00(X,C), as before.
Conversely, if λρ is positive in the strong sense on c00(X,R) or c00(X,C), then ρ
is summable on X, with sum less than or equal to the corresponding constant c.
Any nonnegative linear functional on c00(X,R) or c00(X,C) can be expressed
as (18.10.15) for a unique nonnegative real-valued function ρ on X.

18.11 Positivity on Banach algebras

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with a
multiplicative identity element eA, ‖eA‖A = 1, and an involution y 7→ y∗ that is
conjugate linear in the complex case. Also let λ be a positive linear functional
on A, as in Section 18.7. Suppose that w ∈ A has the property that

eA − w = v∗ v(18.11.1)

for some x ∈ A. This implies that

λ(eA)− λ(w) = λ(eA − w) = λ(v∗ v) ≥ 0,(18.11.2)

so that
λ(w) ≤ λ(eA).(18.11.3)

Note that
w∗ = w(18.11.4)

in this case, because eA and v v∗ are self-adjoint.
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If
‖w‖A ≤ 1,(18.11.5)

then b1/2(−w) ∈ A may be defined as in Section 17.2, and

b1/2(−w)2 = eA − w.(18.11.6)

Suppose that
‖y∗‖A ≤ C ‖y‖A(18.11.7)

for some C ≥ 1 and all y ∈ A, so that the involution is continuous on A. If w
satisfies (18.11.4) too, then

b1/2(−w)∗ = b1/2(−w),(18.11.8)

so that (18.11.1) holds, with v = b1/2(−w). It follows that (18.11.3) holds, as
before. If w is any self-adjoint element of A, then we get that

|λ(w)| ≤ λ(eA) ‖w‖A,(18.11.9)

by multiplying w by ±1/‖w‖A when w 6= 0.
If x is any element of A, then

|λ(x)| ≤ λ(eA)
1/2 λ(x∗ x)1/2 ≤ λ(eA) ‖x∗ x‖1/2A ,(18.11.10)

using (18.7.3) in the first step, and (18.11.9) in the second step. This implies
that

|λ(x)| ≤ C1/2 λ(eA) ‖x‖A,(18.11.11)

because of (18.11.7). This corresponds to part of Proposition 4.7.1 on p123 of[8],
and to Theorem 21.19 on p317 of [91], when C = 1. This also corresponds to
part of part (e) of Theorem 11.31 on p284 of [162], and it is related to 4.1 and
Corollary 1 on p271 of [167].

If z ∈ A is self-adjoint, then

|λ(z)| ≤ λ(eA)
1/2 λ(z2)1/2,(18.11.12)

because of (18.7.3). If x ∈ A and l is a positive integer, then we can take
z = (x∗ x)l, to get that

λ((x∗ x)l) ≤ λ(eA)
1/2 λ((x∗ x)2 l)1/2.(18.11.13)

It is well known that
n∑

j=1

2−j = 1− 2−n(18.11.14)

for every positive integer n. One can use (18.11.13) repeatedly to get that

λ(x∗ x) ≤ λ(eA)
1−2−n

λ((x∗ x)2
n

)2
−n

(18.11.15)
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for every nonnegative integer n. Note that

λ((x∗ x)2
n

) ≤ C1/2 λ(eA) ‖(x∗ x)2
n

‖A,(18.11.16)

as in (18.11.11).
It follows that

λ(x∗ x) ≤ C2−n−1

λ(eA) ‖(x∗ x)2
n

‖2
−n

A(18.11.17)

for every nonnegative integer n. Taking the limit as n→ ∞, we get that

λ(x∗ x) ≤ λ(eA) rA(x
∗ x),(18.11.18)

where rA(·) is as in Section 6.13. This implies that

|λ(x)| ≤ λ(eA)
1/2 λ(x∗ x)1/2 ≤ λ(eA) rA(x

∗ x)1/2,(18.11.19)

using (18.7.3) in the first step. This corresponds to Corollary 21.21 on p319 of
[91]. This also corresponds to part (c) of Theorem 11.31 on p284 of [162], and
we shall say more about this in the next section.

18.12 Another approach to estimating λ

Let (A, ‖·‖A) be a real or complex Banach algebra with a multiplicative identity
element eA and ‖eA‖A = 1. Suppose that w ∈ A satisfies

rA(w) < 1,(18.12.1)

where rA(w) is as in Section 6.13. Remember that

rA(t w) = |t| rA(w)(18.12.2)

for every t ∈ R or C, as appropriate, as in Section 10.14. In particular,
rA(−w) < 1, so that b1/2,−w(1) ∈ A may be defined as in Section 17.10, and
satisfies

b1/2,−w(1)
2 = eA − w.(18.12.3)

Let y 7→ y∗ be an involution on A that is conjugate-linear in the complex
case, and suppose that w is self-adjoint. If this involution is continuous on A,
then

b1/2,−w(1)
∗ = b1/2,−w(1),(18.12.4)

as in Section 17.10. This also holds when A is complex, without asking that the
involution be continuous, as before.

Let λ be a positive linear functional on A again. Under the conditions
mentioned in the previous paragraphs, (18.11.3) holds, as before. If w is any
self-adjoint element of A, t ∈ R, and

|t| rA(w) < 1,(18.12.5)
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then t w is self-adjoint in A, and

λ(t w) ≤ λ(eA).(18.12.6)

This implies that
|λ(w)| ≤ λ(eA) rA(w)(18.12.7)

for every self-adjoint w ∈ A.
If x is any element of A, then x∗ is self-adjoint, and we can take w = x∗ x

in (18.12.7) to get (18.11.18), and thus (18.11.19). This corresponds to part (c)
of Theorem 11.31 on p284 of [162].

18.13 Some related properties of λ

Let (A, ‖ · ‖A) be a Banach algebra over the real or complex numbers with a
multiplicative identity element eA, ‖eA‖A = 1, and an involution y 7→ y∗ which
is conjugate-linear in the complex case. Also let λ be a positive linear functional
on A, and suppose that

the involution on A is continuous, or A is complex.(18.13.1)

Remember that (18.11.19) holds for every x ∈ A under these conditions, as
in the previous two sections. If x is normal, then we can combine this with
(17.11.5) to get that

|λ(x)| ≤ λ(eA) rA(x).(18.13.2)

This corresponds to part (d) of Theorem 11.31 on p284 of [162].
Note that (18.13.2) implies that

|λ(x)| ≤ λ(eA) ‖x‖A.(18.13.3)

This also follows from (18.11.11) when (18.11.7) holds with C = 1. If A is
commutative, then every element of A is normal. This means that (18.13.3)
holds for every x ∈ A when A is commutative, and (18.13.1) holds. This
corresponds to part of part (e) of Theorem 11.31 on p284 of [162].

If A is complex, then the first part of part (e) of Theorem 11.31 on p284 of
[162] states that

λ is a bounded linear functional on A.(18.13.4)

In this statement, A is not asked to be commutative, nor is the involution on
A asked to be continuous.

18.14 Positivity and homomorphisms

Let A be an associative algebra over the real or complex numbers with an
involution y 7→ y∗ that is conjugate-linear in the complex case. Also let h be an
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algebra homomorphism from A into R or C, as appropriate, as in Section 6.9.
Suppose that for every x ∈ A,

h(x∗) = h(x)(18.14.1)

in the complex case, or

h(x∗) = h(x)(18.14.2)

in the real case. In both cases, we get that

h(x∗ x) = h(x∗)h(x) = |h(x)|2,(18.14.3)

so that h is positive in the strong sense with respect to the involution on A, as
in Section 18.7.

Let U be a nonempty open subset of the complex plane, and suppose that

z ∈ U(18.14.4)

for every z ∈ U . Remember that the space H(U) of holomorphic functions on
U is a commutative associative algebra over the complex numbers with respect
to pointwise multiplication of functions, as in Section 13.12. If f ∈ H(U), then
let f∗ be the complex-valued function defined on U by

f∗(z) = f(z).(18.14.5)

It is well known that f∗ is holomorphic on U as well. This defines a conjugate-
linear involution on H(U).

If w ∈ U , then

hw(f) = f(w)(18.14.6)

defines an algebra homomorphism from H(U) onto C, as in Section 13.12. Ob-
serve that

hw(f
∗) = f(w) = hw(f).(18.14.7)

Thus hw satisfies (18.14.1) if and only if

w = w,(18.14.8)

which is to say that w ∈ R.

Let U1 be the open unit disk in the complex plane, and let A(U1) be the
disk algebra, consisting of continuous complex-valued functions on the closed
unit disk that are holomorphic on U1, as in Section 13.13. This is a Banach
algebra with respect to the supremum norm, as before, and (18.14.5) defines an
involution on A(U1) that preserves the supremum norm. Note that (18.14.6)
defines an algebra homomorphism from A(U1) onto C for every w in the closed
unit disk, as before. This example is mentioned in Exercise 3 on p126 of [8],
and in Exercise 10 on p289 of [162].
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18.15 Positivity and commutativity

Let (A, ‖ · ‖A) be a commutative Banach algebra over the complex numbers
with a multiplicative identity element eA, ‖eA‖A = 1, and a conjugate-linear
involution y 7→ y∗, and let λ be a positive linear functional on A. If x ∈ A, then

|λ(x)| ≤ λ(eA) rA(x)(18.15.1)

as in Section 18.13. Remember that Sp(A) is the space of all nonzero algebra
homomorphisms from A into C, as in Section 12.10, and that

x̂(h) = h(x)(18.15.2)

is called the Gelfand transform of x. We also have that

‖x̂‖sup = ‖x̂‖sup,Sp(A) = rA(x),(18.15.3)

where the left side is the supremum norm of x̂ on Sp(A), as before. Combining
this with (18.15.1), we get that

|λ(x)| ≤ λ(eA) ‖x̂‖sup.(18.15.4)

Remember too that
Â = {x̂ : x ∈ A}(18.15.5)

is a subalgebra of the algebra C(Sp(A),C) of continuous complex-valued func-
tions on Sp(A) that contains the constant functions and separates points in

Sp(A), as in Section 12.11. We would like to define a linear functional λ̂ on Â
by

λ̂(x̂) = λ(x)(18.15.6)

for every x ∈ A. Note that λ(x) = 0 when x̂ = 0, because of (18.15.4). One can

use this to check that λ̂ is well defined on Â in this way. Of course,

|λ̂(x̂)| ≤ λ(eA) ‖x̂‖sup(18.15.7)

for every x ∈ A, by (18.15.4).
Suppose that y 7→ y∗ is symmetric on A, in the sense that

h(y∗) = h(y)(18.15.8)

for every y ∈ A, as on p285 of [162]. This implies that Â is invariant under
complex conjugation, so that

Â is dense in C(Sp(A),C)(18.15.9)

with respect to the supremum metric, by the Stone–Weierstrass theorem. It
follows that

λ̂ has a unique extension to a bounded(18.15.10)

linear functional on C(Sp(A),C),
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with respect to the supremum norm, and it is easy to see that this extension is
nonnegative on C(Sp(A),C). This corresponds to part of the proof of Theorem
11.32 on p285 of [162]. This is related to a famous theorem of Bochner, as in
[162].

In fact, the argument in [162] shows more than this. One can use the Hahn–

Banach theorem to get an extension of λ̂ to a bounded linear functional on
C(Sp(A),C), with dual norm equal to λ(eA) with respect to the supremum norm
on C(Sp(A),C), without using (18.15.8). A version of the Riesz representation
theorem implies that this extension corresponds to a regular complex Borel
measure µ on Sp(A), with total variation norm equal to λ(eA). In particular,

µ(Sp(A)) = λ̂(êA) = λ(eA),(18.15.11)

and one can use this to get that µ is a nonnegative real measure on Sp(A). If
(18.15.8) holds, then µ is uniquely determined by λ, because of (18.15.9).

Conversely, if (18.15.8) holds, then any nonnegative linear functional on
C(Sp(A),C) leads to a positive linear functional on A, using composition with
the Gelfand transform. This corresponds to another part of the proof of Theo-
rem 11.32 on p285 of [162].



Chapter 19

Algebras over fields

19.1 Algebras and homomorphisms

Let k be a field, such as the real or complex numbers, and let V , W , and Z be
vector spaces over k. A mapping B from V ×W into Z is said to be bilinear if
B(v, w) is linear as a function of v ∈ V for each w ∈W , and linear as a function
of w ∈W for each v ∈ V , as in Section 5.13.

We can define the notion of an algebra in the strict sense over k in the same
way as in Section 6.1, for algebras over R orC. Thus A is an algebra in the strict
sense over k if A is a vector space over k equipped with a mapping from A×A
into A that is bilinear over k. The properties of associativity and commutativity
may be defined as before, as well as multiplicative identity elements.

If X is a nonempty set, then the space of all k-valued functions on X is a
commutative associative algebra over k, with respect to pointwise multiplication
of functions. If 1 = 1k is the multiplicative identity element in k, then the
function 1X equal to 1k at every point in X is the multiplicative identity in this
algebra.

If V is a vector space over k, then the space L(V ) of linear mappings from
V into itself is an associative algebra over k with respect to composition of
mappings. The identity mapping I = IV on V is the multiplicative identity
element in L(V ), as before.

If A is an algebra in the strict sense over k and A0 is a linear subspace of A
such that

a b ∈ A0(19.1.1)

for every a, b ∈ A0, then A0 is an algebra in the strict sense over k with respect
to the restriction of multiplication on A to A0. In this case, A0 is said to be a
subalgebra of A, as in Section 6.1. If A is associative or commutative, then A0

has the same property, as before.
Let A, B be algebras in the strict sense over k. A linear mapping ϕ from A

into B is said to be an algebra homomorphism if

ϕ(x y) = ϕ(x)ϕ(y)(19.1.2)

423
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for every x, y ∈ A, as in Section 6.3. If A and B have multiplicative identity
elements eA and eB, respectively, then one may also wish to ask that

ϕ(eA) = eB,(19.1.3)

as before. If A has a multiplicative identity element eA and ϕ(A) = B, then
(19.1.2) implies that ϕ(eA) is the multiplicative identity element in B. A one-to-
one homomorphism ϕ from A onto B is called as algebra isomorphism, in which
case ϕ−1 is an isomorphism from B onto A.

A linear mapping ϕ from A into B is said to be an opposite algebra homo-
morphism if

ϕ(x y) = ϕ(y)ϕ(x)(19.1.4)

for every x, y ∈ A, as in Section 6.4. If A and B have multiplicative identity
elements eA and eB, respectively, then one may wish to ask that (19.1.3) hold,
as usual. If A has a multiplicative identity element eA and ϕ(A) = B, then
(19.1.4) implies that ϕ(eA) is the multiplicative identity element in B. A one-
to-one opposite algebra homomorphism ϕ from A onto B is called an opposite
algebra isomorphism, which means that ϕ−1 is an opposite algebra isomorphism
from B onto A. If ϕ is an opposite algebra homomorphism from A onto itself,
and

ϕ ◦ ϕ = IA,(19.1.5)

then ϕ is said to be an algebra involution on A, as before.
Let C be another algebra in the strict sense over k. If ϕ is a homomorphism

from A into B, and if ψ is a homomorphism from B into C, then ψ ◦ ϕ is a
homomorphism from A into C. If ϕ and ψ are opposite algebra homomorphisms,
then ψ ◦ ϕ is a homomorphism. If one of ϕ and ψ is a homomorphism and the
other is an opposite algebra homomorphism, then ψ ◦ ϕ is an opposite algebra
homomorphism.

19.2 Ideals and identity elements

Let k be a field, let A be an algebra in the strict sense over k, and consider

A1 = A× k(19.2.1)

initially as a vector space over k, with respect to coordinatewise addition and
scalar multiplication. We can use multiplication on A to define multiplication
on A1 by

(a, t) (b, z) = (a b+ z a+ t b, t z)(19.2.2)

for every a, b ∈ A and t, z ∈ k, as in Section 6.15. This makes A1 into an
algebra in the strict sense over k, for which a 7→ (a, 0) is an injective algebra
homomorphism from A into A1. By construction,

eA1
= (0, 1k)(19.2.3)
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is the multiplicative identity element in A1. If A is associative or commutative,
then A1 has the same property, as before.

Let A be an algebra over k in the struct sense again, and let I be a linear
subspace of A. If

a x ∈ I(19.2.4)

for every a ∈ A and x ∈ I, then I is said to be a left ideal in A. Similarly, if

x a ∈ I(19.2.5)

for every a ∈ A and x ∈ I, then I is said to be a right ideal in A. Note that
left and right ideals in A are both subalgebras of A. If A is commutative, then
left and right ideals in A are the same.

If I is both a left and right ideal in A, then I is said to be a two-sided ideal
in A, as in Section 6.11. If B is another algebra in the strict sense over k, then
the kernel of any homomorphism from A into B is a two-sided ideal in A. The
kernel of an opposite algebra homomorphism from A into B is a two-sided ideal
in A as well.

If I is a linear subspace of A, then the quotient space A/I may be defined as
a vector space over k in a standard way. Let q be the natural quotient mapping
from A onto A/I, which is a linear mapping with kernel equal to I. If I is a
two-sided ideal in A, then one can define multiplication on A/I in such a way
that

q(a) q(b) = q(a b)(19.2.6)

for every a, b ∈ A, as mentioned in Section 6.11. In this case, A/I may be
considered as an algebra in the strict sense over k, and q is an algebra homo-
morphism from A onto A/I. Of course, if A is commutative or associative, then
A/I has the same property, as before.

Let V be a vector space over k. If v ∈ V , then

{T ∈ L(V ) : T (v) = 0}(19.2.7)

is a left ideal in L(V ). If λ is a linear functional on V , then

{T ∈ L(V ) : λ ◦ T = 0}(19.2.8)

is a right ideal in L(V ).

19.3 Invertible elements and homomorphisms

Let k be a field, and let A be an associative algebra over k with a multiplicative
identity element eA. An element x of A is said to be invertible in A if there is
an element x−1 of A such that

xx−1 = x−1 x = eA,(19.3.1)
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as in Section 6.5. The collection G(A) of invertible elements of A is a group
with respect to multiplication, as before. If x ∈ A is nilpotent, so that xl = 0
for some positive integer l, then

eA − x ∈ G(A),(19.3.2)

as in Section 6.13. If x is any element of A, then the spectrum of x with respect
to A may be defined by

σA(x) = {λ ∈ k : λ eA − x 6∈ G(A)},(19.3.3)

as in Section 6.8.
Let h be a homomorphism from A into k, as an algebra into itself, and let

0k and 1k be the additive and multiplicative identity elements in k. It is easy
to see that h(eA) is either 0k or 1k, as in Section 6.9, and that h ≡ 0k on A
when h(eA) = 0k. Suppose that h(eA) = 1k, and observe that

h(a) 6= 0k when a ∈ G(A),(19.3.4)

as before. If a is any element of A, then it follows that

h(a) ∈ σA(a),(19.3.5)

as before. We may use the notation Sp(A) = Spk(A) for the set of all nonzero
algebra homomorphisms from A into k, as in Sections 12.10 and 12.14, partic-
ularly when A is commutative.

Let B be another associative algebra over k with a multiplicative identity
element eB, and let ϕ be a homomorphism or an opposite algebra homomorphism
fromA into B such that ϕ(eA) = eB. If x ∈ A is invertible, then ϕ(x) is invertible
in B, with

ϕ(x−1) = ϕ(x)−1,(19.3.6)

as in Section 10.11. This implies that

ϕ(G(A)) ⊆ G(B),(19.3.7)

as before. It follows that
σB(ϕ(y)) ⊆ σA(y)(19.3.8)

for every y ∈ A. If β ∈ Sp(B), then

ϕ̂(β) = β ◦ ϕ(19.3.9)

is an element of Sp(A), as in Section 12.14.
Let V 6= {0} be a vector space over k, and let T be a linear mapping from

V into itself. Remember that λ ∈ k is said to be an eigenvalue of T if there is
a nonzero eigenvector v ∈ V corresponding to λ, so that

T (v) = λ v.(19.3.10)
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The set σp(T ) of eigenvalues of T is called the point spectrum of T , as in Section
9.1. It is easy to see that

σp(T ) ⊆ σL(V )(T ),(19.3.11)

and that
σp(T ) = σL(V )(T )(19.3.12)

when V has finite dimension, as before. If k is algebraically closed, then

σL(V )(T ) 6= ∅(19.3.13)

when V has finite dimension.

19.4 Left and right multiplication operators

Let k be a field, and let A be an algebra over k in the strict sense. An element
eL of A is said to be a left multiplicative identity element in A if

eL x = x(19.4.1)

for every x ∈ A, as in Section 18.1. Similarly, eR ∈ A is said to be a right
multiplicative identity element in A if

x eR = x(19.4.2)

for every x ∈ A. Of course, a multiplicative identity element in A is the same as
an element of A that is both a left and right multiplicative identity element. If
A has a left multiplicative identity element eL and a right multiplicative identity
element eR, then eL = eR, so that this is a multiplicative identity element in A,
as before.

If a ∈ A, then let
La(x) = a x(19.4.3)

and
Ra(x) = x a(19.4.4)

be the corresponding left and right multiplication operators on A, as in Sections
6.3 and 6.4. Of course,

a 7→ La(19.4.5)

and
a 7→ Ra(19.4.6)

are linear mappings from A into the space L(A) of linear mappings from A into
itself, as before. Remember that eL ∈ A is a left multiplicative identity element
in A if and only if

LeL = IA,(19.4.7)

as in Section 18.1. This happens if and only if

Ra(eL) = a(19.4.8)
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for every a ∈ A. Similarly, eR ∈ A is a right multiplicative identity element in
A if and only if

ReR = IA,(19.4.9)

which is the same as saying that

La(eR) = a(19.4.10)

for every a ∈ A.
Suppose now that A is an associative algebra over k, so that (19.4.5) is an

algebra homomorphism from A into L(A), as in Section 6.3. Similarly, (19.4.6)
is an opposite algebra homomorphism from A into L(A), as in Section 6.4.
Suppose also that A has a multiplicative identity element eA, so that (19.4.5)
and (19.4.6) are injective, as in (19.4.8) and (19.4.10).

If A has finite dimension as a vector space over k, and k is algebraically
closed, then

σL(A)(La) 6= ∅(19.4.11)

for every a ∈ A, as in (19.3.13). This implies that

σA(a) 6= ∅(19.4.12)

for every a ∈ A, as in (19.3.8).

19.5 Centralizers and invertibility

Let k be a field, and let A be an associative algebra over k. If E is a nonempty
subset of A, then the centralizer of E in A is defined by

C(E) = CA(E) = {a ∈ A : a x = x a for every x ∈ E},(19.5.1)

as in Section 14.5. One can check that

CA(E) is a subalgebra of A,(19.5.2)

as before. Of course, if A has a multiplicative identity element eA, then

eA ∈ CA(E).(19.5.3)

Note that
E ⊆ CA(CA(E)),(19.5.4)

as before.
If A has a multiplicative identity element eA and a ∈ CA(E) is invertible in

A, then one can check that
a−1 ∈ CA(E),(19.5.5)

as in Section 14.5. This implies that

σA(y) = σCA(E)(y)(19.5.6)
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for every y ∈ CA(E), as before.
If E1, E2 are nonempty subsets of A and

E1 ⊆ E2,(19.5.7)

then
CA(E2) ⊆ CA(E1),(19.5.8)

as in Section 14.5. The elements of E commute with each other if and only if

E ⊆ CA(E),(19.5.9)

in which case
CA(CA(E)) ⊆ CA(E),(19.5.10)

by (19.5.8). Observe that

CA(E1) is a commutative subalgebra of A(19.5.11)

when
CA(E1) ⊆ E1.(19.5.12)

This implies that

CA(CA(E)) is a commutative subalgebra of A(19.5.13)

when the elements of E commute with each other, as in Section 14.5.
If E is any nonempty subset of A, then

B = CA(CA(E))(19.5.14)

is a subalgebra of A that contains E. If A has a multiplicative identity element
eA, then eA ∈ B, and

σA(b) = σB(b)(19.5.15)

for every b ∈ B, as in (19.5.6). This holds in particular when b ∈ E, as in
Section 14.5.

If a ∈ A, then let La and Ra be as in (19.4.3) and (19.4.4), respectively, and
put

LA = {La : a ∈ A}, RA = {Ra : a ∈ A},(19.5.16)

as in Section 14.7. These are subalgebras of L(A), and

La ◦Rb = Rb ◦ La(19.5.17)

for every a, b ∈ A, because A is associative, as before. If A has a multiplicative
identity element eA, then

CL(A)(LA) = RA, CL(A)(RA) = LA,(19.5.18)

as in Section 14.7. One can use this to get that La is invertible in L(A) exactly
when a is invertible in A, and similarly for Ra, as before. One can use this to
get that

σL(A)(Lb), σL(A)(Rb) = σA(b)(19.5.19)

for every b ∈ A, as in Section 14.7 again.
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19.6 Some algebras of polynomials

Let k be a field, let n be a positive integer, and let X1, . . . , Xn be n commuting
indeterminates. One can define formal polynomials in X1, . . . , Xn with coef-
ficients in k in the same way as in Section 13.3. The space k[X1, . . . , Xn] of
these formal polynomials is a commutative associative algebra over k with a
multiplicative identity element, as before.

Let a = (a1, . . . , an) be an n-tuple of commuting elements of A. If p(X) =
p(X1, . . . , Xn) is an element of k[X1, . . . , Xn], then one can define

p(a) = p(a1, . . . , an) ∈ A(19.6.1)

as in Section 13.4. One may also use the notation pA(a) = pA(a1, . . . , an) to
indicate the role of A here, as before. Note that

p(X) 7→ p(a)(19.6.2)

defines an algebra homomorphism from k[X1, . . . , Xn] into A, as before.

Let kn be the space of n-tuples of elements of k, as usual. If w ∈ kn, then

hw(p(X)) = p(w)(19.6.3)

defines an algebra homomorphism from k[X1, . . . , Xn] onto k, as in Section 13.5.
Of course,

hw(Xj) = wj(19.6.4)

for each j = 1, . . . , n, by construction. In fact,

w 7→ hw(19.6.5)

is a one-to-one mapping from kn onto Sp(k[X1, . . . , Xn]), as before.

Let us now take n = 1, and let X be a single indeterminate. If p(X) is an
element of k[X] and a ∈ A, then p(a) = pA(a) ∈ A may be defined as before,
which is essentially the same as in Section 8.13. In particular, p(X) determines
a polynomial function pk on k. One can check that

pk(σA(a)) ⊆ σA(pA(a)),(19.6.6)

as in Section 8.13. This may be considered as at least part of a version of the
spectral mapping theorem, as before.

One might also like to have that

σA(pA(a)) ⊆ pk(σA(a))(19.6.7)

under suitable conditions, as before. If p(X) is a constant polynomial, then
this holds when σA(a) 6= ∅. If p(X) is not a constant polynomial, and k is
algebraically closed, then one can verify that (19.6.7) holds, as in Section 8.13.
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19.7 Subalgebras of finite dimension

Let k be a field, let B be an associative algebra over k with a multiplicative
identity element e = eB, and let A be a subalgebra of B that contains e. Note
that

G(A) ⊆ G(B),(19.7.1)

as in Section 7.3. If x ∈ A, then

σB(x) ⊆ σA(x),(19.7.2)

as before. This corresponds to (19.3.8) as well, with ϕ taken to be the obvious
inclusion mapping from A into B.

Suppose that A has finite dimension as a vector space over k, and that e 6= 0,
to avoid trivialities. If a ∈ A, then one can get nontrivial formal polynomial
p(X) with coefficients in k such that

pA(a) = 0.(19.7.3)

Note that this implies that

σA(a) ⊆ {t ∈ k : pk(t) = 0},(19.7.4)

as in (19.6.6).
If a is invertible in B, then one can take p(X) to have degree which is as

small as possible, to get that the constant term is not zero. One can use this to
get a formal polynomial q(X) with coefficients in k such that

a qA(a) = e.(19.7.5)

This means that
a−1 = qA(a) ∈ A.(19.7.6)

It follows that
G(A) = A ∩G(B)(19.7.7)

in this case. This implies that

σA(x) = σB(x)(19.7.8)

for every x ∈ A.

19.8 An invariant linear subspace

Let k be a field, let V be a vector space over k, and let W be a linear subspace
of V . Put

LW (V ) = {T ∈ L(V ) : T (W ) ⊆W},(19.8.1)

which is a subalgebra of L(V ) that contains IV .



432 CHAPTER 19. ALGEBRAS OVER FIELDS

If T ∈ LW (V ), then let TW be the restriction of T to W . Note that

T 7→ TW(19.8.2)

defines a homomorphism from LW (V ) into L(W ), as algebras over k. The kernel
of this homomorphism is equal to

{T ∈ L(V ) : T = 0 on W}.(19.8.3)

Thus this a two-sided ideal in LW (V ), which is a left ideal in L(V ) too.
The quotient space V/W may be defined as a vector space over k in a natural

way. Let qV/W be the natural quotient mapping from V onto V/W , which is a
linear mapping with kernel equal to W . If T is any linear mapping from V into
itself, then

qV/W ◦ T(19.8.4)

is a linear mapping from V into V/W . Clearly T ∈ LW (V ) if and only if

qV/W ◦ T = 0 on W.(19.8.5)

In this case, there is a unique linear mapping TV/W from V/W into itself such
that

TV/W ◦ qV/W = qV/W ◦ T,(19.8.6)

by standard arguments.
One can check that

T 7→ TV/W(19.8.7)

is a homomorphism from LW (V ) into L(V/W ), as algebras over k. The kernel
of this homomorphism is equal to

{T ∈ L(V ) : T (V ) ⊆W}.(19.8.8)

This is another two-sided ideal in LW (V ), which is also a right ideal in L(V ).
Of course, the group G(L(V )) of invertible elements of L(V ) consists of the

one-to-one linear mappings T from V onto itself. This is also known as the
general linear group of V , which may be denoted GL(V ) as well.

It is easy to see that

G(LW (V )) = {T ∈ GL(V ) : T (W ) =W}.(19.8.9)

If W has finite dimension, as a vector space over k, then

G(LW (V )) = GL(V ) ∩ LW (V ).(19.8.10)

Indeed, if W has finite dimention, T ∈ LW (V ), and T is injective on W , then
T (W ) =W .

The codimension of W as a linear subspace of V may be defined as the
dimension of V/W , as a vector space over k. If W has finite codimension in V ,
then (19.8.10) holds. More precisely, if T ∈ LW (V ) and T (V ) = V , then

TV/W (V/W ) = V/W,(19.8.11)
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by (19.8.6). If dim(V/W ) <∞, then it follows that

kerTV/W = {0}.(19.8.12)

This means that
T−1(W ) =W.(19.8.13)

Suppose that V has finite dimension, so that W and V/W have finite di-
mension too, with

dimV = dimW + dim(V/W ).(19.8.14)

In this case, L(V ) has finite dimension as well, with

dimL(V ) = (dimV )2,(19.8.15)

by standard arguments. One can use a basis for V that includes a basis for W
to get that

dimLW (V ) = (dimW )2 + (dimV − dimW ) (dimV ).(19.8.16)

19.9 Algebraic duals

Let k be a field, and let V be a vector space over k. As in Section 3.1, a
linear functional on V is a linear mapping from V into k, considered as a one-
dimensional vector space over itself. The space V alg of all linear functionals on
V may be called the algebraic dual of V , as before. This is a linear subspace of
the space of all k-valued functions on V , as usual.

Let W be another vector space over k, and let T be a linear mapping from
V into W . If µ is a linear functional on W , then

T alg(µ) = µ ◦ T(19.9.1)

is a linear functional on V , as in Section 3.13. This defines a linear mapping
fromW alg into V alg, which is the dual linear mapping associated to T , as before.

The space L(V,W ) of all linear mappings from V intoW is a linear subspace
of the space of all W -valued functions on V , as in Section 2.2. Note that

T 7→ T alg(19.9.2)

is a linear mapping from L(V,W ) into L(W alg, V alg), as in Section 3.13.
If T 6= 0, then T (v) 6= 0 for some v ∈ V , which implies that µ(T (v)) 6= 0 for

some µ ∈W alg. This means that

(T alg(µ))(v) = (µ ◦ T )(v) = µ(T (v)) 6= 0,(19.9.3)

so that T alg 6= 0. Thus (19.9.2) is one-to-one on L(V,W ).
Let Z be another vector space over k. If T1 is a linear mapping from V into

W , and T2 is a linear mapping from W into Z, then

(T2 ◦ T1)alg = T alg
1 ◦ T alg

2 ,(19.9.4)
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as linear mappings from Zalg into W alg, as in Section 3.13.
In particular, we may consider linear mappings from V into itself, and the

corresponding dual linear mappings on V alg. The remarks in the previous para-
graphs imply that (19.9.2) defines an injective opposite algebra homomorphism
from L(V ) into L(V alg). Note that

(IV )
alg = IV alg .(19.9.5)

Suppose for the moment that V has finite dimension, so that (19.8.15) holds.
In this case, we also have that

dimV alg = dimV,(19.9.6)

and
dimL(V alg) = (dimV alg)2 = (dimV )2.(19.9.7)

It follows that (19.9.2) maps L(V ) onto L(V alg) under these conditions.
If v ∈ V , then

L̂v(λ) = L̂V
v (λ) = λ(v)(19.9.8)

defines an element of the algebraic dual (V alg)alg of V alg, as in Section 3.14.
More precisely,

v 7→ L̂v(19.9.9)

defines a one-to-one linear mapping from V into (V alg)alg, as before.
If V has finite dimension, then

dimV = dimV alg = dim(V alg)alg,(19.9.10)

as before. This implies that (19.9.9) maps V onto (V alg)alg in this case.
If T is a linear mappng from V into W , then the second dual mapping

(T alg)alg may be defined as a linear mapping from (V alg)alg into (W alg)alg by
taking the dual linear mapping associated to T alg, as in Section 3.15. If w ∈W ,
then let L̂W

w ∈ (W alg)alg be as in (19.9.8). One can check that

(T alg)alg(L̂V
v ) = L̂W

T (v)(19.9.11)

for every v ∈ V , as in Section 3.15.

19.10 Algebraic duals and linear subspaces

Let k be a field, let V be a vector space over k, and let V0 be a linear subspace
over V . Also let T0 be the natural inclusion mapping from V0 into V , which
sends every element of V0 to itself, considered as an element of V . If µ is a linear
functional on V , then

(T0)
alg(µ) = µ ◦ T0(19.10.1)

is the same as the restriction of µ to V0, considered as an element of (V0)
alg.

This defines a linear mapping from V alg into (V0)
alg, as in the previous section.
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In fact,
(T0)

alg(V alg) = (V0)
alg.(19.10.2)

This is the same as saying that every linear functional on V0 can be extended
to a linear functional on V . This can be seen using elementary arguments when
V0 has finite codimension in V , and in particular when V has finite dimension.
Otherwise, there are standard arguments based on the axiom of choice using
Zorn’s lemma or Hausdorff’s maximality principle.

Put
(V0)

⊥alg = ker(T0)
alg = {µ ∈ V alg : µ ≡ 0 on V0},(19.10.3)

which is a linear subspace of V alg. If V0 has finite dimension, then the codimen-
sion of (V0)

⊥alg in V alg is equal to

dim(V0)
alg = dimV0,(19.10.4)

because of (19.10.2). If V has finite dimension, then we get that

dimV = dimV alg = dim(V0)
⊥alg + dim(V0)

alg(19.10.5)

= dim(V0)
⊥alg + dimV0.

If V1 is a linear subspace of V alg, then put

⊥algV1 =
⋂

λ∈V1

kerλ = {v ∈ V : λ(v) = 0 for every λ ∈ V1},(19.10.6)

which is a linear subspace of V . Clearly

V0 ⊆ ⊥alg((V0)
⊥alg).(19.10.7)

In fact,
V0 = ⊥alg((V0)

⊥alg).(19.10.8)

This means that if v ∈ V and v is not an element of V0, then there is a linear
functional µ on V such that µ ≡ 0 on V0, and

µ(v) 6= 0.(19.10.9)

One can first get such a linear functional on the linear subspace of V spanned
by V0 and v, and then use an extension of that to a linear functional on V .

Let T be a linear mapping from V into itself. If

T (V0) ⊆ V0,(19.10.10)

then it is easy to see that

T alg(µ) = µ ◦ T ≡ 0 on V0 for every µ ∈ (V0)
⊥alg .(19.10.11)

Equivalently, this means that

T alg((V0)
⊥alg) ⊆ (V0)

⊥alg .(19.10.12)
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This is also the same as saying that

T (V0) ⊆ kerµ for every µ ∈ (V0)
⊥alg ,(19.10.13)

which means that
T (V0) ⊆ ⊥alg((V0)

⊥alg).(19.10.14)

This shows that (19.10.12) is equivalent to (19.10.10), because of (19.10.8).

19.11 Bilinear functionals

Let k be a field, and let V , W be vector spaces over k. A bilinear mapping
b from V × W into k may be called a bilinear functional on V × W , as in
Section 5.15. This is called a bilinear function on p251 of [30], and a bilinear
form on p337 of [124] and p338 of [138]. The term “bilinear form” is defined
another way on p281 of [30], as a type of formal polynomial with coefficients in
k. This corresponds to a bilinear functional on the Cartesian product of two
finite-dimensional vector spaces over k with the appropriate dimensions, using
bases for these vector spaces, as on p282 of [30].

Let b be a bilinear functional on V ×W , and put

b1,w(v) = b(v, w)(19.11.1)

and
b2,v(w) = b(v, w)(19.11.2)

for all v ∈ V and w ∈W , as in Sections 5.13 and 5.15. Note that b1,w is a linear
functional on V for each w ∈W , and that w 7→ b1,w is a linear mapping from W
into V alg, as before. Similarly, b2,v is a linear functional on W for every v ∈ V ,
and v 7→ b2,v is a linear mapping from V into W alg. Any linear mapping from
W into V alg or from V into W alg corresponds to a bilinear functional on V ×W
in this way, as before.

Let 0k and 1k be the additive and multiplicative identity elements in k, as
before. If 1k +1k = 0k, then k is said to have characteristic two, as usual. This
is the same as saying that −1k = 1k, and otherwise 1k +1k has a multiplicative
inverse in k.

Suppose now that V =W . In this case, one may refer to b as a bilinear form
on V , as in Sections 5.15 and 8.5. If

b(v, w) = b(w, v)(19.11.3)

for all v, w ∈ V , then we say that b is symmetric on V , as in Section 8.5. If

b(v, w) = −b(w, v)(19.11.4)

for all v, w ∈ V , then b is said to be antisymmetric on V , as before, or skew-
symmetric, as on p341 of [138]. If

b(v, v) = 0(19.11.5)
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for all v ∈ V , then b is said to be alternating on V , as on p329, 354 of [124],
and p341 of [138].

It is easy to see that b is alternating when b is antisymmetric and the char-
acteristic of k is not equal to 2. If the characteristic of k is equal to 2, then
(19.11.3) and (19.11.4) are the same.

Note that

b(v + w, v + w) = b(v, v) + b(v, w) + b(w, v) + b(w,w)(19.11.6)

for all v, w ∈ V , as in Section 8.5. If b is alternating on V , then it follows that b
is antisymmetic on V , as before. If b is symmetric on V , and if the characteristic
of k is not equal to 2, then one can use (19.11.6) to get that b is determined by
the values of b(u, u), u ∈ V , as in Section 8.5 again.

If b is any bilinear form on V , then

b(v, w) + b(w, v)(19.11.7)

is a symmetric bilinear form on V . If the characteristic of k is equal to 2, then
(19.11.7) is alternating on V .

19.12 Nondegenerate bilinear forms

Let k be a field, and let V be a finite-dimensional vector space over k. A bilinear
form b on V is said to be nondegenerate if for every v ∈ V with v 6= 0 there is
a w ∈ V such that

b(v, w) 6= 0.(19.12.1)

If b2,v is as in (19.11.2), then b is nondegenerate on V if and only if

v 7→ b2,v is one-to-one on V,(19.12.2)

as a linear mapping from V into V alg. Equivalently, this means that

v 7→ b2,v maps V onto V alg,(19.12.3)

because dimV = dimV alg.
Similarly, if b1,w is as in (19.11.1), then

w 7→ b1,w is one-to-one on V,(19.12.4)

as a linear mapping from V into V alg, if and only if for every w ∈ V with w 6= 0
there is a v ∈ V such that (19.12.1) holds. As before, (19.12.4) holds if and only
if

w 7→ b1,w maps V onto V alg,(19.12.5)

because dimV = dimV alg. It is easy to see that (19.12.5) implies that b is non-
degenerate on V , in the formulation used earlier. Conversely, (19.12.3) implies
the version of nondegeneracy that is equivalent to (19.12.4).
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Suppose that b is nondegenerate on V , and let T be a linear mapping from
V into itself. If w ∈ V , then put

µw(v) = µT,w(v) = b(T (v), w)(19.12.6)

for each v ∈ V , which defines a linear functional on V . It follows that there is
a unique element T ∗b(w) of V such that

b(T (v), w) = µw(v) = b(v, T ∗b(w))(19.12.7)

for every v ∈ V , as in the preceding paragraph. It is easy to see that T ∗b is a
linear mapping from V into itself, which may be called the adjoint of T with
respect to b. If k = R and b is an inner product on V , then this corresponds to
the adjoint of T in the sense of Section 3.5.

We also have that
T 7→ T ∗b(19.12.8)

is a linear mapping from L(V ) into itself. If T 6= 0, then there is a v ∈ V such
that T (v) 6= 0, which implies that

b(T (v), w) 6= 0(19.12.9)

for some w ∈ V . This means that

b(v, T ∗b(w)) 6= 0,(19.12.10)

so that T ∗b 6= 0. Thus (19.12.8) is injective on L(V ). It follows that (19.12.8)
maps L(V ) onto itself, because V has finite dimension, by hypothesis.

If T1, T2 are linear mappings from V into itself, then

b(T2(T1(v)), w) = b(T1(v), T
∗b
2 (w)) = b(v, T ∗b

1 (T ∗
2 (w)))(19.12.11)

for all v, w ∈ V . This implies that

(T2 ◦ T1)∗b = T ∗b
1 ◦ T ∗b

2 ,(19.12.12)

so that (19.12.8) is an opposite algebra isomorphism from L(V ) onto itself.

19.13 More on bilinear forms

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If r ∈ k and r 6= 0, then it is easy to see that

r b is nondegenerate as a bilinear form on V.(19.13.1)

If T is a linear mapping from V into itself, then T ∗b and T ∗r b may be defined
as linear mappings from V into itself, as in the previous section, and one can
check that

T ∗r b = T ∗b .(19.13.2)
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Note that
c(v, w) = b(w, v)(19.13.3)

is another bilinear form on V , and that the nondegeneracy of b on V is equivalent
to the nondegeneracy of c on V , as before. If T is a linear mapping from V into
itself, then there is a unique linear mapping T ∗c from V into itself such that

c(T (v), w) = c(v, T ∗c(w))(19.13.4)

for every v, w ∈ V , as before. Equivalently, this means that

b(w, T (v)) = b(T ∗c(w), v)(19.13.5)

for every v, w ∈ V . Of course, this is the same as saying that

b(v, T (w)) = b(T ∗c(v), w)(19.13.6)

for every v, w ∈ V , so that
T = (T ∗c)∗b .(19.13.7)

Similarly,
T = (T ∗b)∗c .(19.13.8)

Thus
T 7→ T ∗c(19.13.9)

is the inverse of (19.12.8).
Of course, b = c if and only if b is symmetric on V , and b = −c if and only

if b is antisymmetric on V . In both cases, we get that

T ∗b = T ∗c(19.13.10)

for every T ∈ L(V ), as in (19.13.2).
It follows that

(T ∗b)∗b = T(19.13.11)

for every T ∈ L(V ) when b is symmetric or antisymmetric on V , because of
(19.13.7). This means that (19.12.8) defines an involution on L(V ) in these two
cases.

Note that T ∈ L(V ) satisfies

T ∗b = T(19.13.12)

if and only if
b(T (v), w) = b(v, T (w))(19.13.13)

for every v, w ∈ V . Similarly,
T ∗b = −T(19.13.14)

if and only if
b(T (v), w) = −b(v, T (w))(19.13.15)
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for every v, w ∈ V .
If A is a linear mapping from V into itself, then

bA(v, w) = b(A(v), w)(19.13.16)

defines another bilinear form on V . One can check that every bilinear form on
V corresponds to a unique A ∈ L(V ) in this way, because b is nondegenerate on
V . We also have that

bA is nondegenerate on V(19.13.17)

exactly when A is injective on V , which is the same as saying that A is invertible
on V , because V has finite dimension. In this case, if T ∈ L(V ), then

bA(T (v), w) = b(A(T (v)), w) = b(A(v), (A−1)∗b(T ∗b(A∗b)(w)))

= bA(v, (A
−1)∗b(T ∗b(A∗b(w))))(19.13.18)

for every v, w ∈ V . This means that if T ∗bA is defined on V using bA as in the
previous section, then

T ∗bA = (A−1)∗b ◦ T ∗b ◦A∗b .(19.13.19)

Suppose for the moment that b is symmetric on V , so that

bA(w, v) = b(A(w), v) = b(v,A(w))(19.13.20)

for every v, w ∈ V . Observe that

bA(v, w) = bA(w, v)(19.13.21)

for every v, w ∈ V if and only if A∗b = A, and that

bA(v, w) = −bA(w, v)(19.13.22)

for all v, w ∈ V if and only if A∗b = −A. Similarly, suppose for the moment
that b is antisymmetric on V , so that

bA(w, v) = b(A(w), v) = −b(v,A(w))(19.13.23)

for all v, w ∈ V . In this case, (19.13.21) holds if and only if A∗b = −A, and
(19.13.22) holds if and only if A∗b = A.

19.14 Involutions and conjugations

Let k be a field, and let A be an associative algebra over k with a multiplicative
identity element eA. Also let x 7→ x∗ be an opposite algebra isomorphism from
A onto itself, and note that e∗A = eA. Of course, if x is an invertible element of
A, then x∗ is invertible too, with

(x∗)−1 = (x−1)∗.(19.14.1)
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Put
U(A) = {x ∈ A : xx∗ = x∗ x = eA},(19.14.2)

as in Section 7.5. One can check that this is a subgroup of the group G(A) of
invertible elements of A, as before. Equivalently,

U(A) = {x ∈ G(A) : x−1 = x∗}.(19.14.3)

If x ∈ U(A), then

(x∗)∗ = (x−1)∗ = (x∗)−1 = (x−1)−1 = x.(19.14.4)

Let us say that y ∈ A is self-adjoint with respect to x 7→ x∗ if

y∗ = y,(19.14.5)

and that y is anti-self-adjoint if

y∗ = −y,(19.14.6)

as in Section 7.5. If x 7→ x∗ is an involution on A, then

y + y∗(19.14.7)

is self-adjoint, and
y − y∗(19.14.8)

is anti-self-adjoint. If k has characteristic 2, then (19.14.5) and (19.14.6) are the
same, and (19.14.7) is equal to (19.14.8). If k does not have characteristic 2,
and if x 7→ x∗ is an involution on A, then every element of A can be expressed
in a unique way as a sum of self-adjoint and anti-self-adjoint elements, as in
Section 7.5.

Let a be an invertible element of A, so that

x 7→ a x a−1(19.14.9)

is an automorphism of A. This implies that

x∗a = a x∗ a−1(19.14.10)

also defines an opposite algebra isomorphism from A onto itself. If x ∈ A, then

(x∗a)∗a = a (a x∗ a−1)∗ a−1 = a (a−1)∗ (x∗)∗ a∗ a−1.(19.14.11)

If a is self-adjoint, then a−1 is self-adjoint, and

(x∗a)∗a = (x∗)∗(19.14.12)

for all x ∈ A. Similarly, if a is anti-self-adjoint, then a−1 is anti-self-adjoint, and
(19.14.12) holds. If x 7→ x∗ is an involution on A, then it follows that (19.14.10)
defines an involution on A in both of these cases.
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Let V be a finite-dimensional vector space over k, and let b be a nondegener-
ate bilinear form on V . Thus T 7→ T ∗b defines an opposite algebra isomorphism
from L(V ) onto itself, as in Section 19.12. If T ∈ L(V ), then

b(T (v), T (w)) = b(v, T ∗b(T (w)))(19.14.13)

for every v, w ∈ V . This means that

b(T (v), T (w)) = b(v, w)(19.14.14)

for all v, w ∈ V if and only if
T ∗b ◦ T = I(19.14.15)

on V .
Note that (19.14.15) implies that is injective on V . This means that T is

invertible on V , because V has finite dimension. Thus (19.14.15) is the same as
saying that T is invertible on V , with

T−1 = T ∗b .(19.14.16)

This is related to remarks in Sections 2.10, 3.5, and 7.5 when k = R and b is
an inner product on V .

19.15 Nondegenerate sesquilinear forms

Let V be a finite-dimensional vector space over the complex numbers, and let b
be a sesquilinear form on V , as in Section 5.15. We say that b is nondegenerate
on V if for every v ∈ V with v 6= 0 there is a w ∈ V such that

b(v, w) 6= 0.(19.15.1)

Remember that VR is the same as V , considered as a vector space over the
real numbers, as in Section 1.1. The dimension of VR is equal to twice the
dimension of V . It is easy to see that the real part of b defines a bilinear form
on VR. One can check that b is nondegenerate on V if and only if

Re b is nondegenerate on VR.(19.15.2)

As in Section 19.12, (19.15.2) holds if and only if for every w ∈ V with w 6= 0
there is a v ∈ V such that

Re b(v, w) 6= 0.(19.15.3)

One can use this to get that b is nondegenerate on V if and only if for every
w ∈ V with w 6= 0 there is a v ∈ V such that (19.15.1) holds.

If w ∈ V , then b1,w(v) = b(v, w) defines a linear functional on V , as before.
In this case, w 7→ b1,w defines a conjugate-linear mapping from V into V alg.
Conversely, any conjugate-linear mapping from V into V alg corresponds to a
sesquilinear form on V in this way.
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Similarly, if v ∈ V , then

b̃2,v(w) = b(v, w)(19.15.4)

is complex-linear in w, as in Section 5.15. We also have that

v 7→ b̃2,v(19.15.5)

defines a conjugate-linear mapping from V into V alg, and that every such map-
ping corresponds to a sesquilinear form on V in this way.

Observe that b is nondegenerate on V if and only if

v 7→ b̃2,v is one-to-one on V.(19.15.6)

This is equivalent to the condition that

v 7→ b̃2,v maps V onto V alg,(19.15.7)

because V and V alg have the same dimension. One can consider (19.15.5) as a
real-linear mapping here, in order to use standard results from linear algebra.

Similarly,

w 7→ b1,w is one-to-one on V,(19.15.8)

as a conjugate-linear mapping from V into V alg, if and only if for every w ∈ V
with w 6= 0 there is a v ∈ V such that (19.15.1) holds. This condition holds if
and only if

w 7→ b1,w maps V onto V alg,(19.15.9)

as in the preceding paragraph. It is easy to see that (19.15.9) implies the
earlier formulation of nondegeneracy of b on V , as in Section 19.12. Conversely,
(19.15.7) implies the version of nondegeneracy that is equivalent to (19.15.8), as
before. This is another way to look at the equivalence of these two formuations
of nondegeneracy of b on V .

Suppose that b is nondegenerate on V , let T be a linear mapping from V
into itself, and put

µw(v) = µT,w(v) = b(T (v), w)(19.15.10)

for every v, w ∈ V , as in Section 19.12. If w ∈ V , then (19.15.10) defines a
linear functional on V , and thus there is a unique element T ∗b(w) ov V such
that

b(T (v), w) = µw(v) = b(v, T ∗b(w))(19.15.11)

for all v ∈ V , as in the previous paragraph. This defines a linear mapping T ∗b

from V into itself, as in Section 19.12, which may be called the adjoint of T
with respect to b. This corresponds to the adjoint of T in the sense of Section
3.5 when b is an inner product on V .

In this case,

T 7→ T ∗b(19.15.12)
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is a conjugate-linear mapping from L(V ) into itself. If T1, T2 are linear mappings
from V into itself, then

(T2 ◦ T1)∗b = T ∗b
1 ◦ T ∗b

2 ,(19.15.13)

as in Section 19.12.
Observe that

c(w, v) = b(v, w)(19.15.14)

is another sesquilinear form on V , and that the nondegeneracy of b on V is
equivalent to the nondegeneracy of c on V , by the earlier remarks. If T is a
linear mapping from V into itself, then there is a unique linear mapping T ∗c

from V into itself such that

c(T (v), w) = c(v, T ∗c(w))(19.15.15)

for every v, w ∈ V , as before, which is the same as saying that

b(w, T (v)) = b(T ∗c(w), v)(19.15.16)

for all v, w ∈ V . This implies that

T = (T ∗c)∗b ,(19.15.17)

as in Section 19.13. Similarly,

T = (T ∗b)∗c ,(19.15.18)

so that T 7→ T ∗c is the inverse of (19.15.12), as before.
Note that b = c exactly when b is Hermitian symmetric on V , as in Section

8.5. In this case,
(T ∗b)∗b = T(19.15.19)

for every T ∈ L(V ), so that (19.15.12) defines a conjugate-linear algebra invo-
lution on L(V ).

If A is a linear mapping from V into itself, then

bA(v, w) = b(A(v), w)(19.15.20)

defines another sesquilinear form on V , and one can check that every sesquilin-
ear form on V corresponds to a unique A ∈ L(V ) in this way, because b is
nondegenerate on V , as in Section 19.13. Note that

bA is nondegenerate on V(19.15.21)

exactly when A is injective on V , which means that A is invertible on V , because
V has finite dimension, by hypothesis, as before. In this case, if T ∈ L(V ), and
T ∗ba is defined using bA in the same way as before, then one can check that

T ∗bA = (A−1)∗b ◦ T ∗b ◦A∗b ,(19.15.22)
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as in Section 19.13.
If b is Hermitian symmetric, then one can verify that bA is Hermitian sym-

metric on V exactly when A∗b = A.
If T ∈ L(V ), then

b(T (v), T (w)) = b(v, w)(19.15.23)

for every v, w ∈ V if and only if

T ∗b ◦ T = I(19.15.24)

on V , as in the previous section. This happens exactly when T is invertible on
V , with

T−1 = T ∗b ,(19.15.25)

as before. This is related to remarks in Sections 2.10, 3.5, and 7.5 when b is an
inner product on V , as before.



Chapter 20

Representations of algebras

20.1 Representations and modules

Let k be a field, and let A be an associative algebra over k. A representation
ρ = ρV of A on a vector space V over k is an algebra homomorphism from A
into L(V ). If x ∈ A, then we may use ρx = ρVx for the corresponding linear
mapping on V . Thus

ρx y = ρx ◦ ρy(20.1.1)

for every x, y ∈ A, as in (19.1.2). If A has a multiplicative identity element eA,
then we may wish to ask that

ρeA = IV ,(20.1.2)

as in (19.1.3).
This corresponds to Definition 21.4 on p312 of [91], and to the definition on

p384 of [124]. More precisely, if A has a multiplicative identity element eA, then
one can look at the behavior of ρeA on A, as in Note 21.5 on p313 of [91], and
we shall return to this later. After those remarks, it is stated in [91] that repre-
sentations of an associative algebra with a multiplicative identity element will
be asked to satisfy (20.1.2). In [124], A is asked to have a multiplicative identity
element, and (20.1.2) is included in the definition of a representation, because
the analogous condition is included in the definition of a ring homomorphism.

If x ∈ A and v ∈ V , then we may put

x · v = ρx(v),(20.1.3)

to indicate the action of ρx on V . Using this notation, (20.1.1) is the same as
saying that

(x y) · v = x · (y · v)(20.1.4)

for every x, y ∈ A and v ∈ V . Similarly, if A has a multiplicative identity
element eA, then (20.1.2) is the same as saying that

eA · v = v(20.1.5)

446
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for every v ∈ V . We may also refer to the representation of A on V by saying
that V is a left module over A.

A vector space V over k is said to be a right module over A if it is equipped
with an action of A on the right that corresponds to an opposite algebra homo-
morphism from A into L(V ). This means that if x ∈ A and v ∈ V , then

v · x(20.1.6)

is defined as an element of V , with the following properties. If x ∈ A, then

v 7→ v · x(20.1.7)

is a linear mapping from V into itself. If v ∈ V , then

x 7→ v · x(20.1.8)

is a linear mapping from A into V . This means that the mapping from x ∈ A
to (20.1.7) is linear as a mapping from A into L(V ). The condition that this
mapping be an opposite algebra homomorphism is the same as saying that

v · (x y) = (v · x) · y(20.1.9)

for every x, y ∈ A and v ∈ V . If A has a multiplicative identity element eA,
then we may wish to ask that

v · eA = v(20.1.10)

for every v ∈ V , as before.
A left module over A is sometimes simply called a module over A. Of course,

if A is commutative, then left and right modules over A are the same.

20.2 Some examples and remarks

Let k be a field, and let V be a vector space over k. If A is a subalgebra of L(V ),
then the obvious inclusion mapping from A into L(V ) defines a representation
of A on V .

Let A be any associative algebra over k, and if a, x ∈ A, then put

La(x) = a x,(20.2.1)

as in Sections 6.3 and 19.4. This defines La as a linear mapping from A into
itself, which is the left multiplication operator associated to a. In fact,

a 7→ La(20.2.2)

defines a homomorphism from A into the algebra L(A) of linear mappings on
A, as before, and thus a representation of A on itself, as a vector space over k.
Equivalently, A may be considered as a left module over itself, as a vector space
over k, where the action of a ∈ A on A on the left is defined using multiplication
on A.
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Similarly, A may be considered as a right module over itself, as a vector
space over k, where the action of a ∈ A on A on the right is defined using
multiplication in A again. Equivalently, if a, x ∈ A, then put

Ra(x) = x a,(20.2.3)

as in Sections 6.4 and 19.4. This defines a linear mapping from A into itself,
which is the right multiplication operator associated to a. We also have that

a 7→ Ra(20.2.4)

defines an opposite algebra homomorphism from A into L(A), as before.

Let V be a vector space over k again. If V is a left module over A, then

(a, v) 7→ a · v(20.2.5)

is a bilinear mapping from A× V into V . Similarly, if V is a right module over
A, then

(v, a) 7→ v · a(20.2.6)

is a bilinear mapping from V ×A into V .

Suppose now that k = R or C, and that V is a vector space over k with a
norm ‖ · ‖V . In this case, we may be interested in representations of associative
algebras A over k corresponding to homomorphisms from A into the algebra
BL(V ) of bounded linear mappings on V . Similarly, we may be interested in
actions of A on V on the right, corresponding to opposite algebra homomor-
phisms from A into BL(V ).

If ‖ · ‖A is a norm on A, then we may be interested in representations of A
on V corresponding to homomorphisms from A into BL(V ) that are bounded
linear mappings, with respect to the operator norm on BL(A) associated to
‖ · ‖V . This means that there is a nonnegative real number C such that

‖a · v‖V ≤ C‖a‖A ‖v‖V(20.2.7)

for every a ∈ A and v ∈ V . This is the same as saying that (20.2.5) is bounded
as a bilinear mapping from A× V into V , as in Section 5.13.

Similarly, we may be interested in actions of A on V on the right that
correspond to opposite algebra homomorphisms from A into BL(V ) that are
bounded as linear mappings, so that

‖v · a‖V ≤ C ‖a‖A ‖v‖V(20.2.8)

for some C ≥ 0 and all a ∈ A, v ∈ V . This is the same as saying that (20.2.6) is
bounded as a bilinear mapping from V ×A into V . If ‖ · ‖A is submultiplicative
on A, then the actions of A on itself on the left and right satisfy these conditions
with C = 1.
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20.3 Invariant linear subspaces

Let k be a field, let A be an associative algebra over k, and let ρV be a repre-
sentation of A on a vector space V over k. A linear subspace W of V is said to
be invariant under ρV if

ρVx (W ) ⊆W(20.3.1)

for every x ∈ A. In this case, for each x ∈ A,

let ρWx be the restriction of ρVx to W.(20.3.2)

It is easy to see that this defines a representation of A on W . This may be
called a subrepresentation of ρV .

Equivalently, if V is a left module over A, then a linear subspace W of V is
said to be a submodule of V if

x · w ∈W(20.3.3)

for every x ∈ A and w ∈ W . This means that W may be considered as a left
module over A as well, using the restriction of the action of A on V to W .

Similarly, if V is a right module over A, then a linear subspace W of V is
said to be a submodule of V if

w · x ∈W(20.3.4)

for every x ∈ A and w ∈W . This implies that W may be considered as a right
module over A, with respect to the restriction of the action of A on V to W .

Remember that A may be considered as a left and right module over itself,
as in the previous section. A linear subspace I of A is a submodule of A, as a
left or right module over itself, exactly when I is a left or right ideal in A, as
appropriate, as in Section 19.2.

Suppose for the moment that k = R or C, and that V is a vector space over
k with a norm ‖ · ‖V . Suppose also that V is a left or right module over A, and
that the action of each element of A on V is a bounded linear mapping on V .
If W is a submodule of V , as a module over A, then it is easy to see that

W is a submodule of V,(20.3.5)

as a module over A. Here W is the closure of W in V with respect to the metric
associated to ‖ · ‖V , as usual.

Let k be any field again, let X1, . . . , Xn be commuting indeterminates, and
let k[X1, . . . , Xn] be the algebra of formal polynomials in X1, . . . , Xn with co-
efficients in k, as in Section 19.6. Also let V be a vector space over k, and let
T1, . . . , Tn be n commuting linear mappings from V into itself, so that

Tj ◦ Tl = Tl ◦ Tj(20.3.6)

for all j, l = 1, . . . , n. This leads to a representation of k[X1, . . . , Xn] on V , as in
Section 19.6 again. This representation is characterized by the properties that

1k · v = v(20.3.7)
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for every v ∈ V , and
Xj · v = Tj(v)(20.3.8)

for each j = 1, . . . , n and v ∈ V . If W is a linear subspace of V such that

Tj(W ) ⊆W(20.3.9)

for each j = 1, . . . , n, then W is invariant under this representation.
In particular, we can take n = 1 here. Equivalently, if X is an indeterminate,

then we let k[X] be the algebra of formal polynomials in X with coefficients in
k, as before. If T is a linear mapping from V into itself, then there is a unique
representation of k[X] on V that satisfies (20.3.7) and

X · v = T (v)(20.3.10)

for every v ∈ V . If W is a linear subspace of V such that

T (W ) ⊆W,(20.3.11)

then W is invariant under this representation.

20.4 More on invariant linear subspaces

Let k be a field, let V be a vector space over k, and let W be a linear subspace
of V . Remember that LW (V ) be the subalgebra of L(V ) of linear mappings T
from V into itself that mapW into itself, as in Section 19.8. One may consider V
as a left module over LW (V ), as mentioned at the beginning of Section 20.2. Of
course, W is a submodule of V , as a left module over LW (V ), by construction.

Suppose now that k = R or C, and that ‖ · ‖V is a norm on V . Consider
the space

BLW (V ) = BL(V ) ∩ LW (V )(20.4.1)

of bounded linear mappings T from V into itself such that T (W ) ⊆W . This is
a subalgebra of BL(V ) that contains the identity mapping on V . If W is also a
closed set in V , with respect to the metric associated to ‖ · ‖V , then it is easy
to see that

BLW (V ) is a closed set in BL(V ),(20.4.2)

with respect to the metric associated to the operator norm. Note that

BLW (V ) ⊆ BLW (V ).(20.4.3)

If T ∈ LW (V ), then let TW be the restriction of T to W , as in Section 19.8.
Remember that T 7→ TW defines a homomorphism from LW (V ) into L(W ), as
algebras over k, as before. The restriction of this homomorphism to BLW (V )
defines a homomorphism into BL(W ). More precisely, if T ∈ BLW (V ), then
TW ∈ BL(W ), and the operator norm of TW on W is less than or equal to the
operator norm of T on V .
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The kernel of T 7→ TW on BLW (V ) is equal to

{T ∈ BL(V ) : T = 0 on W}.(20.4.4)

This is a two-sided ideal in BLW (V ), and a left ideal in BL(V ). Note that
(20.4.4) is a closed set in BL(V ), with respect to the metric associated to the
operator norm. It is easy to see that (20.4.4) is the same as

{T ∈ BL(V ) : T = 0 on W}.(20.4.5)

Let V/W be the usual quotient space, and let qV/W be the corresponding
quotient mapping from V onto V/W . Suppose from now on in this section
that W is a closed linear subspace of V , and let ‖ · ‖V/W be the corresponding
quotient norm on V/W , as in Section 6.10. If T ∈ BLW (V ), then there is a
unique linear mapping TV/W from V/W into itself such that

TV/W ◦ qV/W = qV/W ◦ T,(20.4.6)

as in Section 19.8. Let us check that TV/W is bounded, with respect to the
quotient norm.

If v ∈ V and w ∈W , then

‖TV/W (qV/W (v))‖V/W = ‖TV/W (qV/W (v − w))‖V/W

= ‖qV/W (T (v − w))‖V/W(20.4.7)

≤ ‖T (v − w)‖V ≤ ‖T‖op,V V ‖v − w‖V ,

using the definition of the quotient norm in the third step. This implies that

‖TV/W (qV/W (v))‖V/W ≤ ‖T‖op,V V ‖qV/W (v)‖V/W ,(20.4.8)

by the definition of the quotient norm. This shows that TV/W is bounded on
V/W , with operator norm less than or equal to the operator norm of T on V .

As in Section 19.8,

T 7→ TV/W(20.4.9)

is a homomorphism from BLW (V ) into BL(V/W ), as algebras over k. The
kernel of this homomorphism is equal to

{T ∈ BL(V ) : T (V ) ⊆W},(20.4.10)

as before. This is another two-sided ideal in BLW (V ), and a right ideal in
BL(V ). We also have that (20.4.10) is a closed set in BL(V ), with respect to
the metric associated to the operator norm, because W is a closed set in V , by
hypothesis.
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20.5 Quotient representations

Let k be a field, let A be an associative algebra over k, and let ρV be a repre-
sentation of A on a vector space V over k. Also let W be a linear subspace of V
that is invariant under ρ, as in Section 20.3. If x ∈ A, and qV/W is the natural
quotient mapping from V onto V/W , then there is a unique linear mapping

ρ
V/W
x from V/W into itself such that

ρV/W
x ◦ qV/W = qV/W ◦ ρVx ,(20.5.1)

as in Section 19.8. One can check that

ρV/W is a representation of A on V/W.(20.5.2)

This may be called a quotient representation of ρV .
Equivalently, if V is a left module over A, and W is a submodule of V , then

there is a unique action of A on V/W such that

x · qV/W (v) = qV/W (x · v)(20.5.3)

for every x ∈ A and v ∈ V . This makes V/W a left module over A, which may
be called a quotient module. Similarly, if V is a right module over A, and W is
a submodule of V , then there is a unique action of A on V/W such that

qV/W (v) · x = qV/W (v · x)(20.5.4)

for every x ∈ A and v ∈ V . This makes V/W a right module over A, which
may also be called a quotient module.

In particular, if I is a left or right ideal in A, then

A/I may be considered as a left or right module over A,(20.5.5)

as appropriate. If I is a two-sided ideal in A, then A may be considered as
both a left and right module over A, and as an associative algebra over k, as in
Section 19.2. If qA/I is the natural quotient homomorphism from A onto A/I,
as in Section 19.2, then the action of x ∈ A on A/I on the left and the right
corresponds to multiplication by qA/I(x) on the left and the right in A/I.

Suppose now that k = R or C, and that V is a vector space over k with a
norm ‖ · ‖V . Let W be a closed linear subspace of V , and let ‖ · ‖V/W be the
corresponding quotient norm on V/W , as in Section 6.10. Suppose that V is a
left or right module over A, where the action of elements of A on V are bounded
linear mappings on V . In this case, the action of elements of A on V/W are
bounded linear mappings on V/W , as in the previous section. More precisely,
the operator norm of the action of a ∈ A on V/W is less than or equal to the
operator norm of the action of a on V , as before.

Let ‖ · ‖A be a norm on A, and suppose that there is a nonnegative real
number C such that the operator norm of the action of a ∈ A on V is less than
or equal C ‖a‖A. This implies that the operator norm of the action of a on
V/W is less than or equal to C ‖a‖A as well.
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20.6 Homomorphisms between representations

Let k be a field, let A be an associative algebra over k, and let V1, V2 be vector
spaces over k. Also let ρV1 , ρV2 be representations of A on V1, V2, respectively. A
linear mapping T from V1 into V2 is said to intertwine these two representations
if

T ◦ ρV1
x = ρV2

x ◦ T,(20.6.1)

as linear mappings from V1 into V2, for every x ∈ A. We may also say that T
is a homomorphism between these two representations in this case.

20.7

Let k be any field again, and let x be an idempotent element of A, so that
x2 = x, as in Section 7.6. If V is a left module over A, then it follows that

v 7→ x · v(20.7.1)

is idempotent as an element of L(V ). This means that (20.7.1) is a projection
on V , as in Section 8.2. Similarly, if V is a right module over A, then

v 7→ v · x(20.7.2)

is a projection on V .
In particular, if eA is a multiplicative identity element of A, then

v 7→ eA · v(20.7.3)

is a projection on V when V is a left module over A, and

v 7→ v · eA(20.7.4)

is a projection on V when V is a right module over A. If P is any projection
on V , then V corresponds to the direct sum of the kernel of P and P (V ), as in
Section 8.2.
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Appendix A

Absolute values on fields

A.1 Metrics and ultrametrics

Let X be a set, and let d(x, y) be a nonnegative real-valued function defined
for x, y ∈ X. As usual, d(x, y) is said to be a metric on X if it satisfies the
following three conditions. First,

d(x, y) = 0 if and only if x = y.(A.1.1)

Second,
d(x, y) = d(y, x) for every x, y ∈ X.(A.1.2)

Third,
d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X,(A.1.3)

which is known as the triangle inequality.
The condition

d(x, z) ≤ max(d(x, y), d(y, z)) for every x, y, z ∈ X(A.1.4)

is the ultrametric version of the triangle inequality. If d(x, y) satisfies (A.1.1),
(A.1.2), and (A.1.4) on X, then d(x, y) is said to be an ultrametric on X.
Of course, (A.1.4) implies (A.1.3), so that an ultrametric on X is a metric in
particular.

The discrete metric on X is defined by putting d(x, y) equal to 0 when x = y,
and to 1 otherwise. It is easy to see that this is an ultrametric on X.

If d(·, ·) is any metric on X, then the open ball in X centered at x ∈ X with
radius r > 0 with respect to d(·, ·) is defined as usual by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(A.1.5)

Similarly, the closed ball in X centered at x with radius r ≥ 0 with respect to
d(·, ·) is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.(A.1.6)

456
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It is well known that open balls are open sets in X, and that closed balls are
closed sets. If d(·, ·) is an ultrametric on X, then one can check that open balls
in X are closed sets. One can also verify that closed balls in X of positive radius
are open sets in this case.

Let a be a positive real number. If a ≤ 1, then it is well known that

(r + t)a ≤ ra + ta(A.1.7)

for all nonnegative real numbers r, t, as in Section 1.12. If d(·, ·) is a metric on
X, then it follows that

d(x, y)a(A.1.8)

is a metric on X as well. If d(·, ·) is an ultrametric on X, then it is easy to see
that (A.1.8) is an ultrametric on X for every a > 0. In both cases, we have that

Bda(x, ra) = Bd(x, r)(A.1.9)

for every x ∈ X and r > 0, and

Bda(x, ra) = Bd(x, r)(A.1.10)

for every x ∈ X and r ≥ 0.
In particular, one can use (A.1.9) to get that d(·, ·) and (A.1.8) determine

the same topology on X. This means that convergence of sequences in X is the
same for d(·, ·) and (A.1.8), which is easy to see directly anyway. These metrics
also determine the same Cauchy sequences in X, for instance. Using this, one
can check that X is complete as a metric space with respect to d(·, ·) if and only
if X is complete with respect to (A.1.8).

If d(·, ·) is a metric on X and Y is a subset of X, then the restriction of
d(x, y) to x, y ∈ Y defines a metric on Y . Similarly, if d(·, ·) is an ultrametric
on X, then the restriction of d(x, y) to x, y ∈ Y is an ultrametric on Y .

See [42, 95, 195] for some topics related to ultrametrics.

A.2 Absolute value functions

Let k be a field. A nonnegative real-valued function | · | on k is said to be an
absolute value function on k if it satisfies the following three conditions. First,

|x| = 0 if and only if x = 0.(A.2.1)

Second,
|x y| = |x| |y| for every x, y ∈ k.(A.2.2)

Third,
|x+ y| ≤ |x|+ |y| for every x, y ∈ k.(A.2.3)

Let us say that | · | is an ultrametric absolute value function on k if it satisfies
(A.2.1), (A.2.2), and

|x+ y| ≤ max(|x|, |y|) for every x, y ∈ k.(A.2.4)
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Clearly (A.2.4) implies (A.2.3), so that an ultrametric absolute value function
on k is an absolute value function in the previous sense.

It is well known that the standard absolute values on R and C are absolute
value functions in this sense. The trivial absolute value function may be defined
on any field k by putting |x| equal to 0 when x = 0, and to 1 otherwise. It is
easy to see that this defines an ultrametric absolute value function on k.

If | · | is an absolute value function on a field k and k0 is a subfield of k, then
the restriction of |x| to x ∈ k0 defines an absolute value function on k0. If | · |
is an ultrametric absolute value function on k, then its restriction to k0 is an
ultrametric absolute value function as well.

If | · | is an absolute value function on a field k, then

d(x, y) = |x− y|(A.2.5)

defines a metric on k. More precisely, in order to check that this is symmetric
in x and y, one needs to verify that

| − 1k| = 1,(A.2.6)

where 1k is the multiplicative identity element in k, and 1 = 1R is the multi-
plicative identity element in R. To do this, one should first get that

|1k| = 1.(A.2.7)

One can obtain (A.2.7) using the facts that 12k = 1k and 1k 6= 0 in k, and one can
obtain (A.2.6) from this and the fact that (−1k)

2 = 1k. If | · | is an ultrametric
absolute value function on k, then (A.2.5) is an ultrametric on k.

Let p be a prime number. The p-adic absolute value |x|p of a rational number
x is defined as follows. Of course, we put |0|p = 0, and so we may suppose that
x 6= 0. In this case,

x = pj (a/b)(A.2.8)

for some integers a, b, and j, where a, b 6= 0 and neither a nor b is a multiple of
p, and we put

|x|p = p−j .(A.2.9)

It is easy to see that this is well defined, even though the expression (A.2.8) for
x is not unique.

One can check that this defines an ultrametric absolute value function on
the field Q of rational numbers. This implies that

dp(x, y) = |x− y|p(A.2.10)

defines an ultrametric on Q, as before. This is known as the p-adic metric on
Q.

The field Qp of p-adic numbers can be obtained by completing Q with
respect to the p-adic metric, in much the same way that the real numbers can
be obtained by completing Q with respect to the standard Euclidean metric.
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Similarly, if k is a field with an absolute value function | · |, and if k is not
complete with respect to the associated metric (A.2.5), then one can pass to a
completion. It is well known that the completion is also a field, and that | · |
extends to an absolute value function on the completion in a natural way. If
| · | is an ultrametric absolute value function on k, then its extension to the
completion of k is an ultrametric absolute value function on the completion.

A.3 The archimedean property

Let k be a field. If x ∈ k and n is a positive integer, then let n · x be the sum
of n x’s in k. It is easy to see that

m · (n · x) = (mn) · x(A.3.1)

for all m,n ∈ Z+ and x ∈ k. Note that

n · x = (n · 1k)x(A.3.2)

for every n ∈ Z+ and x ∈ k. We also have that

(mn) · 1k = m · (n · 1k) = (m · 1k) (n · 1k)(A.3.3)

for every m,n ∈ Z+.
Let | · | be an absolute value function on k. We say that | · | is archimedean

on k if there are positive integers n such that

|n · 1k| is arbitrarily large.(A.3.4)

Thus | · | is non-archimedean on k if there is a positive real number C such that

|n · 1k| ≤ C(A.3.5)

for all n ∈ Z+.
If there is a positive integer n0 such that

|n0 · 1k| > 1,(A.3.6)

then | · | is archimedean on k. Indeed, in this case,

|nj0 · 1k| = |(n0 · 1k)j | = |n0 · 1k|j → ∞ as j → ∞.(A.3.7)

If | · | is non-archimedean on k, then it follows that (A.3.5) holds with C = 1.
If |·| is an ultrametric absolute value function on k, then it is easy to see that

(A.3.5) holds with C = 1, so that | · | is non-archimedean on k. Conversely, if | · |
is non-archimedean on k, then it is well known that |·| is an ultrametric absolute
value function on k. This corresponds to Lemma 1.5 on p16 of [44], and Theorem
2.2.2 on p28 of [80]. Note that the term “non-archimedean” is sometimes used
directly for absolute value functions that satisfy the ultrametric version of the
triangle inequality, or something equivalent to it in a straightforward way, as in
[44, 80]. This is equivalent to the terminology being used here, because of the
result that was just mentioned.
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A.4 Equivalent absolute value functions

Let k be a field, and let | · | be an absolute value function on k. If a is a positive
real number, then

|x|a(A.4.1)

satisfies the first two conditions in the definition of an absolute value function.
If a ≤ 1, then (A.4.1) satisfies the triangle inequality on k, because of (A.1.7).
and thus defines an absolute value function on k. If |·| is an ultrametric absolute
value function on k, then it is easy to see that (A.4.1) is an ultrametric absolute
value function on k for every a > 0.

A pair | · |1, | · |2 of absolute value functions on k are said to be equivalent
on k if there is a positive real number a such that

|x|2 = |x|a1(A.4.2)

for every x ∈ k. Of course, this implies that

|x− y|2 = |x− y|a1(A.4.3)

for every x, y ∈ k. In particular, this means that the metrics on k associated to
| · |1 and | · |2 determine the same topology on k, as in Section A.1.

Conversely, if |·|1 and |·|2 are absolute value functions on k whose associated
metrics determine the same topology on k, then it is well known that | · |1 and
| · |2 are equivalent in the sense of (A.4.2). This corresponds to Lemma 3.2 on
p20 of [44], and to Lemma 3.1.2 on p42 of [80].

A famous theorem of Ostrowski states that any absolute value function on
Q is either equivalent to the standard Euclidean absolute value function, trivial,
or equivalent to the p-adic absolute value function for some p. This corresponds
to Theorem 2.1 on p16 of [44], and to Theorem 3.1.3 on p44 of [80].

Suppose that k is a field with an archimedean absolute value function | · |,
and that k is complete with respect to the metric associated to | · |. Another
famous theorem of Ostrowski states that k is isomorphic to R or C, in such a
way that | · | corresponds to an absolute value function that is equivalent to the
standard Euclidean absolute value function. See Theorem 1.1 on p33 of [44].

A.5 Norms and seminorms

Let k be a field with an absolute value function | · |, and let V be a vector space
over k. A nonnegative real-valued function N on V is said to be a seminorm or
pseudonorm with respect to | · | on k if

N(t v) = |t|N(v)(A.5.1)

for every t ∈ k and v ∈ V , and

N(v + w) ≤ N(v) +N(w)(A.5.2)
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for every v, w ∈ V . Of course, if k = R or C, equipped with the standard
Euclidean absolute value function, then this is the same as in Section 1.2.

If N is a nonnegative real-valued function on V that satisfies (A.5.1) and

N(v + w) ≤ max(N(v), N(w))(A.5.3)

for every v, w ∈ V , then we say that N is a semi-ultranorm or pseudo-ultranorm
on V with respect to | · | on k. As usual, (A.5.3) implies (A.5.2), so that a semi-
ultranorm on V is a seminorm in particular. If N is a semi-ultranorm on V ,
and N(v) > 0 for some v ∈ V , then one can check that | · | is an ultrametric
absolute value function on k.

If N is a seminorm on V with respect to | · | on k, and if

N(v) > 0 for every v ∈ V with v 6= 0,(A.5.4)

then we say that N is a norm on V with respect to | · | on k. This is the same
as in Section 1.1 when k = R or C with the standard absolute value function,
as before. If N is a semi-ultranorm on V with respect to | · | on k that satisfies
(A.5.3), then we say that N is an ultranorm on V with respect to | · | on k. Note
that | · | is a norm on k, as a one-dimensional vector space over itself, and an
ultranorm on k when | · | is ultrametric absolute value function on k.

If N is a norm on V , then it is easy to see that

dN (v, w) = N(v − w)(A.5.5)

is a metric on V . This uses (A.2.7) to get that (A.5.5) is symmetric in v and w.
If N is an ultranorm on V , then (A.5.5) is an ultrametric on V .

Suppose for the moment that | · | is the trivial absolute value function on
k. The trivial ultranorm on V is defined by taking N(v) = 1 when v ∈ V and
v 6= 0, and N(0) = 0. It is easy to see that this defines an ultranorm on V , for
which the corresponding metric is the discrete metric.

Let a be a positive real number, and suppose that | · |a is an absolute value
function on k too. Suppose that N is a nonnegative real-valued function on V
that satisfies (A.5.1), so that

N(t v)a = |t|aN(v)a(A.5.6)

for every t ∈ k and v ∈ V . If we also have that

N(v + w)a ≤ N(v)a +N(w)a,(A.5.7)

then Na is a seminorm on V with respect to | · |a on k. If N is a seminorm on V
with respect to | · | on k and a ≤ 1, then (A.5.7) follows from (A.5.2), because of
(A.1.7). If N satisfies (A.5.4) and (A.5.7), then Na is a norm on V with respect
to | · |a on k.

Similarly, if | · | is an ultrametric absolute value function on k, and N is a
semi-ultranorm on V with respect to | · | on k, then Na is a semi-ultranorm on
V with respect to | · |a on k for every a > 0. In this case, if N is an ultranorm
on V with respect to | · | on k, then Na is an ultranorm on V with respect to
| · |a on k for every a > 0.
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A.6 Some norms on kn

Let k be a field with an absolute value function | · |, and let n be a positive
integer. Of course, the space kn of n-tuples of elements of k is a vector space
over k, with respect to coordinatewise addition and scalar multiplication. If
v ∈ kn, then put

‖v‖∞ = max
1≤j≤n

|vj |,(A.6.1)

as in Section 1.3. One can check that this defines a norm on kn with respect to
| · | on k, as before. If | · | is an ultrametric absolute value function on k, then
one can verify that (A.6.1) defines an ultranorm on kn with respect to | · | on k.

Let r be a positive real number, and put

‖v‖r =
( n∑

j=1

|vj |r
)1/r

(A.6.2)

for every v ∈ kn. It is easy to see that this defines a norm on kn with respect to
| · | on k when r = 1. If 1 < r <∞, then one can check that this defines a norm
on kn with respect to | · | on k, using Minkowski’s inequality for finite sums, as
in Section 1.3. We also have that

‖v‖∞ ≤ ‖v‖r ≤ n1/r ‖v‖r(A.6.3)

for every v ∈ kn and 0 < r <∞, as before.
Let e1, . . . , en be the standard basis vectors for kn, so that the lth coordinate

of ej is equal to 1 when j = l, and to 0 otherwise. If N is a seminorm on kn

with respect to | · | on k, then it is easy to see that

N(v) ≤
n∑

j=1

N(ej) |vj |(A.6.4)

for every v ∈ kn, as in Section 1.11. This implies that

N(v) ≤
(

max
1≤j≤n

N(ej)
)
‖v‖1(A.6.5)

for every v ∈ kn. Similarly,

N(v) ≤
( n∑

j=1

N(ej)
)
‖v‖∞(A.6.6)

for every v ∈ kn. If N is a semi-ultranorm on kn with respect to | · | on k, then
we get that

N(v) ≤ max
1≤j≤n

(N(ej)|vj |) ≤
(

max
1≤j≤n

N(ej)
)
‖v‖∞(A.6.7)

for every v ∈ kn.
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Suppose that k is complete with respect to the metric associated to | · |. This
implies that kn is complete with respect to the metric associated to (A.6.1),
by standard arguments. Similarly, kn is complete with respect to the metric
associated to (A.6.2) when r ≥ 1.

Let N be a norm on kn with respect to | · | on k. Suppose that there is a
positive real number c such that

c ‖v‖∞ ≤ N(v)(A.6.8)

for every v ∈ kn. Under these conditions, one can check that kn is also complete
with respect to the metric associated to N .

In fact, if k is complete with respect to the metric associated to | · |, and N
is any norm on kn with respect to | · | on k, then it is well known that there is a
c > 0 such that (A.6.8) holds for every v ∈ kn. This corresponds to Lemma 2.1
on p116 of [44], and to Proposition 5.2.3 on p138 of [80].

If V is a vector space over k of positive finite dimension n, then V is iso-
morphis to kn, as a vector space over k. If NV is a norm on V with respect to
| · | on k, and if k is complete with respect to the metric associatived to | · |,
then V is complete with respect to the metric associated to NV , because of the
analogous statement for kn in the preceding paragraphs.

Let W be a vector space over k with a norm NW with respect to | · | on
k. Of course, if V is a linear subspace of W , then the restriction of NW to V
defines a norm on V . If V has finite dimension as a vector space over k, and if
k is complete with respect to the metric associated to | · |, then V is complete
with respect to the metric associated to the restriction of NW to V . This is the
same as the restriction to V of the metric on W associated to NW . This implies
that V is a closed set in W with respect to the metric associated to NW , as in
Section 1.6.

A.7 Sequences and series

Let k be a field with an absolute value function | · |, let V be a vector space
over k, and let N be a norm on V with respect to | · | on k. If {vj}∞j=1 and
{wj}∞j=1 are sequences of elements of V that converge to v, w ∈ V , respectively,
with respect to the metric dN associated to N , then it is easy to see that

{vj + wj}∞j=1 converges to v + w(A.7.1)

with respect to dN . Similarly, if {tj}∞j=1 is a sequence of elements of k that
converges to t ∈ k with respect to the metric associated to | · |, then

{tj vj}∞j=1 converges to t v(A.7.2)

in V with respect to N , as in Section 1.5.
An infinite series

∑∞
j=1 vj with terms in V is said to converge in V with

respect to N if the sequence of partial sums
∑n

j=1 vj converges in V with respect
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to dN , in which case we put

∞∑
j=1

vj = lim
n→∞

n∑
j=1

vj ,(A.7.3)

as usual. Under these conditions, if t ∈ k, then
∑∞

j=1 t vj converges in V as
well, with

∞∑
j=1

(t vj) = t

∞∑
j=1

vj .(A.7.4)

If
∑∞

j=1 wj is another convergent series of elements of V , then
∑∞

j=1(vj + wj)
converges, with

∞∑
j=1

(vj + wj) =

∞∑
j=1

vj +

∞∑
j=1

wj ,(A.7.5)

as before.
If

∑∞
j=1 vj is any infinite series with terms in V , then the corresponding

sequence of partial sums is a Cauchy sequence with respect to dN if and only if
for every ϵ > 0 there is a positive integer L(ϵ) such that

N
( n∑

j=l

vj

)
< ϵ(A.7.6)

for all integers n ≥ l ≥ L(ϵ), as in Section 1.5 again. This implies that

lim
j→∞

N(vj) = 0,(A.7.7)

as before. Note that

N
( n∑

j=l

vj

)
≤

n∑
j=l

N(vj)(A.7.8)

for all positive integers l ≤ n, as in Section 1.7. If N is an ultranorm on V , then

N
( n∑

j=l

vj

)
≤ max

l≤j≤n
N(vj)(A.7.9)

for all l ≤ n.
We say that

∑∞
j=1 vj converges absolutely with respect to N if

∞∑
j=1

N(vj)(A.7.10)

converges as an infinite series of nonnegative real numbers, as in Section 1.7.
This implies that the corresponding sequence of partial sums is a Cauchy se-
quence with respect to dN , as before.
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If V is complete with respect to dN , then V is said to be a Banach space with
respect to N , as in Section 1.5. In this case, if

∑∞
j=1 vj converges absolutely

with respect to N , then
∑∞

j=1 vj converges in V , with

N
( ∞∑

j=1

vj

)
≤

∞∑
j=1

N(vj),(A.7.11)

as in Section 1.7. We also have that the completeness of V with respect to dN
is characterized by the condition that absolute convergence of an infinite series
in V with respect to N implies that the series converges, as before.

If N is an ultranorm on V , then (A.7.7) implies that the sequence of partial
sums

∑n
j=1 vj is a Cauchy sequence in V with respect to dN , because of (A.7.9).

If V is a Banach space with respect to N too, then it follows that
∑∞

j=1 vj
converges in V . One can check that

N
( ∞∑

j=1

vj

)
≤ max

j≥1
N(vj)(A.7.12)

in this case. More precisely, one can verify that the maximum on the right side
is attained, by reducing to the maximum of finitely many terms when at least
one of the terms is not zero.

If V is not already complete with respect to dN , then V has a completion
that is a Banach space over k, as in Section 1.15. If N is an ultranorm on V ,
then its extension to the completion of V is an ultranorm on the completion of
V .

A.8 Discrete absolute value functions

Let k be a field with an absolute value function | · | again. Observe that

{|t| : t ∈ k, t 6= 0}(A.8.1)

is a subgroup of the multiplicative group R+ of positive real numbers. This
may be called the valuation group associatied to | · | on k, as on p42 of [44]. Of
course, this is the trivial subgroup {1} of R+ if and only if | · | is the trivial
absolute value function on k.

Put
ρ1 = sup{|t| : t ∈ k, |t| < 1},(A.8.2)

so that
0 ≤ ρ1 ≤ 1,(A.8.3)

by construction. It is easy to see that

ρ1 = 0(A.8.4)

if and only if | · | is the trivial absolute value function on k.
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If

ρ1 = 1,(A.8.5)

then

1 is a limit point of (A.8.1),(A.8.6)

with respect to the standard Eulidean metric on R. Conversely, one can check
that (A.8.6) implies (A.8.5), because the valuation group (A.8.2) contains the
multiplicative inverses of its elements. In this case, one can verify that (A.8.1)
is dense in R+, with respect to the standard Euclidean metric.

If

ρ1 < 1,(A.8.7)

then | · | is said to be discrete on k, as on p42 of [44]. If | · | is nontrivial on k too,
so that ρ1 > 0, then it is not too difficult to show that (A.8.1) consists exactly
of the integer powers of ρ1. In particular, this means that the supremum on the
right side of (A.8.2) is attained. This corresponds to Lemma 1.2 on p42 of [44],
and to part of Problem 63 on p39 of [80]. More precisely, in these statements in
[44, 80], | · | is asked to be an ultrametric absolute value function on k, and this
is used to consider other versions of these properties. However, this is not really
needed for the versions of these properties mentioned here. If | · | is discrete on
k, then one can show that | · | is an ultrametric absolute value function on k, as
in the next paragraph.

If | · | is archimedean on k, then it is easy to see that k has characteristic
0, so that k contains a copy of Q. This implies that | · | on k induces an
archimedean absolute value function on Q. This induced absolute value function
on Q is equivalent to the standard Euclidean absolute value function on Q, by
Ostrowski’s theorem, as in Section A.4. One can use this to get that | · | is not
discrete on k, because the standard Euclidean absolute value function on Q is
not discrete. If | · | is a discrete absolute value function on k, then it follows
that | · | is non-archimedean on k, so that | · | is an ultrametric absolute value
function on k, as in Section A.3.

A.9 Supremum seminorms and c0 spaces

Let X be a nonempty set, let k be a field, and let W be a vector space over k.
The space of all functions on X with values in W is a vector space over k with
respect to pointwise addition and scalar multiplication, as in Section 2.1.

Let | · | be an absolute value function on k, and let NW be a seminorm on
W with respect to | · | on k. Let us say that a W -valued function f on X is
bounded with respect to NW on W if

NW (f(x)) is bounded as a real-valued function on X.(A.9.1)

Let

ℓ∞(X,W ) = ℓ∞NW
(X,W )(A.9.2)
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be the space of all W -valued functions on X that are bounded with respect to
NW . This is a linear subspace of the space of all W -valued functions on X, as
in Section 2.3.

If f ∈ ℓ∞NW
(X,W ), then put

‖f‖∞ = ‖f‖sup = ‖f‖ℓ∞(X,W ) = ‖f‖ℓ∞
NW

(X,W ) = sup
x∈X

NW (f(x)),(A.9.3)

as before. One can check that this defines a seminorm on ℓ∞NW
(X,W ), which is

the supremum seminorm associated to NW . If NW is a semi-ultranorm on W ,
then (A.9.3) is a semi-ultranorm on ℓ∞NW

(X,W ).

If NW is a norm on W , then (A.9.3) is a norm on ℓ∞NW
(X,W ), which is

the supremum norm associated to NW on W . The metric on ℓ∞NW
(X,W ) cor-

responding to the supremum norm is the same as the supremum metric corre-
sponding to the metric on W associated to NW , as in Section 2.3. If NW is an
ultranorm on W , then (A.9.3) is an ultranorm on ℓ∞NW

(X,W ).

If NW is a norm on W , and W is a Banach space with respect to NW , then

ℓ∞NW
(X,W ) is a Banach space(A.9.4)

with respect to (A.9.3). This is analogous to the statements in Sections 1.6 and
2.3 for vector spaces over the real and complex numbers. In particular, if k is
complete with respect to the metric associated to | · |, then one can take W = k.

If f is a function on X with values in W , then the support of f may be
defined as the set supp f of x ∈ X such that f(x) 6= 0, as in Sections 1.12 and
2.3. Let

c00(X,W )(A.9.5)

be the space of W -valued functions f on X such that supp f has only finitely
many elements, as before. This is a linear subspace of the space of all W -valued
functions on X, as a vector space over k.

Let NW be a seminorm on W with respect to | · | on k again. A W -valued
function f on X is said to vanish at infinity on X with respect to NW if

NW (f(x)) vanishes at infinity on X,(A.9.6)

as a nonnegative real-valued function on X, as in Section 2.6. Let

c0(X,W ) = c0,NW
(X,W )(A.9.7)

be the space of W -valued functions on X that vanish at infinity with respect to
NW . It is easy to see that this is a linear subspace of ℓ∞NW

(X,W ), as before. If
NW is a norm on W , then c0,NW

(X,W ) is the same as the closure of c00(X,W )
in ℓ∞NW

(X,W ) with respect to the supremum metric, as in Sections 1.13 and
2.6.
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A.10 Lipschitz and operator seminorms

Let (X, dX) be a nonempty metric space, let k be a field with an absolute value
function | · |, and let W be a vector space over k with a norm NW with respect
to | · | on k. Thus W may also be considered as a metric space with respect
to the corresponding metric dNW

, so that the space Lip(X,W ) of all Lipschitz
mappings from X into W may be defined as in Section 2.1. One can check that

Lip(X,W ) is a linear subspace of the space(A.10.1)

of all W -valued functions on X,

as a vector space over k with respect to pointwise addition and scalar multipli-
cation on X, as before.

If f ∈ Lip(X,W ), then the corresponding Lipschitz constant Lip(f) =
LipX,W (f) may be defined as in Section 2.1. One can verify that

Lip(f) is a seminorm on Lip(X,W )(A.10.2)

with respect to | · |, on k, as before. Remember that Lip(f) = 0 if and only if f
is constant on X. Similarly, if NW is an ultranorm on W , then one can check
that

Lip(f) is a semi-ultranorm on Lip(X,W ).(A.10.3)

Let V be another vector space over k, and let us denote the space of all
linear mappings from V into W as L(V,W ), as in Section 2.2. This is a linear
subspace of the space of all W -valued functions on V , as a vector space over k.

Let NV , NW be seminorms on V , W , respectively, with respect to | · | on k.
A linear mapping T from V into W is said to be bounded with respect to these
seminorms if there is a nonnegative real number C such that

NW (T (v)) ≤ C NV (v)(A.10.4)

for every v ∈ V , as in Section 2.2. This implies that

NW (T (u)− T (v)) = NW (T (u− v)) ≤ C NV (u− v)(A.10.5)

for every u, v ∈ V , as before. If NV , NW are norms on V , W , respectively, then
(A.10.5) says that T is Lipschitz with constant C with respect to the associated
metrics dNV

, dNW
. Otherwise, dNV

and dNW
may be considered as semimetrics

on V and W , respectively, as in Section 1.2.
Let BL(V,W ) be the space of all bounded linear mappings from V into

W with respect to NV , NW , respectively. One can check that this is a linear
subspace of L(V,W ), as in Section 2.2.

If T ∈ BL(V,W ), then put

‖T‖op = ‖T‖op,VW = inf{C ≥ 0 : (A.10.4) holds}.(A.10.6)

One can verify that

‖ · ‖op defines a seminorm on BL(V,W )(A.10.7)
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with respect to | · | on k, which is the operator seminorm associated to NV , NW .
It is easy to see that the infimum on the right side of (A.10.6) is automatically
attained, so that

NW (T (v)) ≤ ‖T‖op,V W NV (v)(A.10.8)

for every v ∈ V . If NW is a norm on W , then

‖ · ‖op is a norm on BL(V,W ),(A.10.9)

which is the operator norm associated to NV , NW .
Similarly, if NW is a semi-ultranorm on W , then one can check that

‖ · ‖op is a semi-ultranorm on BL(V,W ).(A.10.10)

If NW is an ultranorm on W , then

‖ · ‖op is an ultranorm on BL(V,W ).(A.10.11)

Let Z be another vector space over k, with a seminorm NZ with respect to
| · | on k. If T1 is a bounded linear mapping from V into W , and T2 is a bounded
linear mapping from W into Z, then T2 ◦ T1 is a bounded linear mapping from
V into Z, with

‖T2 ◦ T1‖op,V Z ≤ ‖T1‖op,V W ‖T2‖op,WZ ,(A.10.12)

as in Section 2.2.
If NW is a norm on W , and W is complete with respect to the metric

associated to NW , then
BL(V,W ) is complete(A.10.13)

with respect to the metric associated to the operator norm. This follows from
the same type of argument as in Section 2.2.

Let us suppose from now on in this section that NV and NW are norms on
V andW , respectively. Note that (A.10.6) is the same as the Lipschitz constant
Lip(T ) of T with respect to the metrics associated to NV , NW , as in Section
2.2.

Let T be a linear mapping from V intoW , and suppose for the moment that
NW (T (v)) is bounded on a ball of positive radius in V centered at 0 with respect
to the metric associated to NV . Of course, this condition holds in particular
when T is continuous at 0 with respect to the metrics associated to NV , NW .
If | · | is not the trivial absolute value function on k, then one can check that

T is a bounded linear mapping from V into W.(A.10.14)

Let V0 be a linear subspace of V that is dense in V with respect to the
metric associated to NV , and let T0 be a bounded linear mapping from V0 into
W , with respect to the restriction of NV to V0. If W is complete with respect
to the metric associated to NW , then

there is a unique extension of T0 to a(A.10.15)

bounded linear mapping T from V into W,

as in Section 2.2. One can check that the operator norm of T on V is equal to
the operator norm of T0 on V0, as before.
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A.11 ℓr Spaces

Let X be a nonempty set, let r be a positive real number, and let k be a field
with an absolute value function | · |. Also let W be a vector space over k with
a seminorm NW with respect to | · | on k. Consider the space

ℓr(X,W ) = ℓrNW
(X,W )(A.11.1)

of W -valued functions f on X such that

NW (f(x)) is r-summable as a(A.11.2)

nonnegative real-valued function on X,

as in Section 2.5. This was discussed in Section 2.6 for vector spaces over the
real or complex numbers with a norm. As before, one can take W = k, with | · |
as the norm.

One can check that ℓrNW
(X,W ) is a linear subspace of the space of all W -

valued functions on X, as in Section 2.6. If f ∈ ℓrNW
(X,W ), then put

‖f‖r = ‖f‖ℓr(X,W ) = ‖f‖ℓr
NW

(X,W ) =
( ∑

x∈X

NW (f(x))r
)1/r

,(A.11.3)

as before. If r ≥ 1, then this defines a seminorm on ℓrNw
(X,W ) with respect to

| · |, and a norm when NW is a norm on W . If 0 < r ≤ 1, then this satisfies the
usual homogeneity property of a seminorm, and

‖f + g‖rr ≤ ‖f‖rr + ‖g‖rr(A.11.4)

for all f, g ∈ ℓrNW
(X,W ). If NW is a norm on W , then we get that

‖f − g‖rr(A.11.5)

is a metric on ℓrNW
(X,W ) when r ≤ 1, as usual.

If 0 < r1 ≤ r2 ≤ +∞, then

ℓr1NW
(X,W ) ⊆ ℓr2NW

(X,W ),(A.11.6)

as in Section 2.6. If f ∈ ℓr1NW
(X,W ), then

‖f‖r2 ≤ ‖f‖r1 ,(A.11.7)

as before. If 0 < r <∞, then

c00(X,W ) ⊆ ℓrNW
(X,W ) ⊆ c0,NW

(X,W ),(A.11.8)

as before, where c0,NW
(X,W ) is as in Section A.9. If NW is a norm on W , then

one can check that

c00(X,W ) is dense in ℓrNW
(X,W )(A.11.9)
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when r < ∞, as in Section 2.6. This uses the metric associated to (A.11.3)
when r ≥ 1, and the metric (A.11.5) when r ≤ 1.

If NW is a norm on W and W is complete with respect to the associated
metric, then

ℓrNW
(X,W ) is complete(A.11.10)

with respect to the metric associated to (A.11.3) when r ≥ 1, and with respect
to the metric (A.11.5) when r ≤ 1, as in Section 2.6.

A.12 Some bounded linear mappings

Let X be a nonempty set, let k be a field, and let W be a vector space over k.
If f ∈ c00(X,W ), then ∑

x∈X

f(x)(A.12.1)

may be defined as an element of W as in Section 2.3. This defines a linear
mapping from c00(X,W ) into W , as before.

If a is any W -valued function on X and f ∈ c00(X, k), then

a f ∈ c00(X,W ).(A.12.2)

This means that
Ta(f) =

∑
x∈X

a(x) f(x)(A.12.3)

defines an element of W , and that Ta defines a linear mapping from c00(X, k)
into W , as in Section 2.3.

If y ∈ X, then let δy be the k-valued function on X equal to 1 at y at to 0
at every other point in X, as in Section 1.12. It is easy to see that

the collection of δy’s, y ∈ X, is a basis for c00(X, k),(A.12.4)

as a vector space over k, as before. If 0 < r ≤ ∞, then

‖δy‖ℓr(X,k) = 1(A.12.5)

for every y ∈ X, using | · | as the norm on k on the left side.
Of course,

Ta(δy) = a(y)(A.12.6)

for every y ∈ X, as in Section 2.3. If T is any linear mapping from c00(X, k)
into W , then

a(y) = aT (y) = T (δy)(A.12.7)

defines a W -valued function on X. It is easy to see that this is the unique
W -valued function on X such that

T = Ta,(A.12.8)
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as before.
Let NW be a seminorm on W with respect to | · | on k, and suppose that

1 ≤ r ≤ ∞, so that the restriction of the ℓr norm to c00(X, k) defines a norm
on c00(X, k) with respect to | · | on k. Also let a be a W -valued function on X
again, and suppose that

Ta is bounded as a linear mapping from c00(X, k) into W,(A.12.9)

with respect to the ℓr norm on c00(X, k) and NW on W.

Under these conditions, we get that

N(a(y)) = NW (Ta(δy)) ≤ ‖Ta‖op,r ‖δy‖ℓr(X,k) = ‖Ta‖op,r(A.12.10)

for every y ∈ X, where ‖Ta‖op,r is the operator seminorm of Ta corresponding
to the restriction of the ℓr norm to c00(X, k) and NW on W . This means that
a is bounded on X with respect to NW on W , with

‖a‖ℓ∞
NW

(X,W ) ≤ ‖Ta‖op,r.(A.12.11)

If a is any element of ℓ∞NW
(X,W ) and f ∈ c00(X, k), then

NW (Ta(f)) ≤
∑
x∈X

NW (a(x)) |f(x)| ≤ ‖a‖ℓ∞
Nw

(X,W ) ‖f‖ℓ1(X,k),(A.12.12)

as in Section 2.3. This implies that

Ta is a bounded linear mapping from c00(X, k) into W,(A.12.13)

with respect to the ℓ1 norm on c00(X, k) and NW on W,

with
‖Ta‖op,1 ≤ ‖a‖ℓ∞

NW
(X,W ).(A.12.14)

Thus
‖Ta‖op,1 = ‖a‖ℓ∞

NW
(X,W ),(A.12.15)

because of (A.12.11). If NW is a norm on W , and W is complete with respect
to the associated metric, then

Ta has a unique extension to a bounded linear mapping(A.12.16)

from ℓ1(X, k) into W, with the same operator norm,

as in Section A.10.
If NW is a semi-ultranorm on W with respect to | · | on k, then

NW (Ta(f)) ≤ max
x∈X

(NW (a(x)) |f(x)|) ≤ ‖a‖ℓ∞
NW

(X,W ) ‖f‖ℓ∞(X,k)(A.12.17)

for every f ∈ c00(X, k). In this case,

Ta is a bounded linear mapping from c00(X, k) into W,(A.12.18)

with respect to the ℓ∞ norm on c00(X, k) and NW on W,
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with

‖Ta‖op,∞ ≤ ‖a‖ℓ∞
NW

(X,W ).(A.12.19)

This means that

‖Ta‖op,∞ = ‖a‖ℓ∞
NW

(X,W ),(A.12.20)

by (A.12.11). If NW is an ultranorm on W , and W is complete with respect to
the associated ultrametric, then

Ta has a unique extension to a bounded linear mapping(A.12.21)

from c0(X, k) into W, with the same operator norm,

as in Section A.10 again.

A.13 Sums of vectors

Let X be a nonempty set, and let k be a field with an absolute value function
| · |. Also let W be a vector space over k with a norm NW with respect to | · |
on k, and let f be a function on X with values in W . As in Section 2.7, we say
that ∑

x∈X

f(x) converges in the generalized sense(A.13.1)

with respect to the metric associated to NW if there is a w ∈ W with the
following property: for every ϵ > 0 there is a finite set A(ϵ) ⊆ X such that for
every finite set A ⊆ X with

A(ϵ) ⊆ A,(A.13.2)

we have that

NW

(∑
x∈A

f(x)− w
)
< ϵ.(A.13.3)

One can check that such a w ∈ W is unique when it exists, as before, in which
case it is considered to be the value of the sum. This is equivalent to the
convergence of the corresponding net of sums over finite subsets of X, as before.

Let us say that∑
x∈X

f(x) satisfies the generalized Cauchy condition(A.13.4)

with respect to NW if for every ϵ > 0 there is a finite subset A0(ϵ) of X with
the following property, as before: if A, B are finite subsets of X such that

A0(ϵ) ⊆ A,B,(A.13.5)

then

NW

(∑
x∈A

f(x)−
∑
x∈B

f(x)
)
< ϵ.(A.13.6)



474 APPENDIX A. ABSOLUTE VALUES ON FIELDS

This is the same as saying that the corresponding net of sums over finite subsets
of X is a Cauchy net with respect to the metric associated to NW , as before.
If the sum converges in the generalized sense, then it satisfies the generalized
Cauchy condition with

A0(ϵ) = A(ϵ/2)(A.13.7)

for every ϵ > 0, as before. If NW is an ultranorm on W , then one can take

A0(ϵ) = A(ϵ)(A.13.8)

for each ϵ > 0.
As in Section 2.7, the generalized Cauchy condition is the same as saying that

for every ϵ > 0 there is a finite subset A1(ϵ) of X with the following property:
if C is a finite subset of X such that

A1(ϵ) ∩ C = ∅,(A.13.9)

then
NW

( ∑
x∈C

f(x)
)
< ϵ.(A.13.10)

The previous version implies this one, with

A1(ϵ) = A0(ϵ)(A.13.11)

for each ϵ > 0, as before. This version also implies the previous one, with

A0(ϵ) = A1(ϵ/2)(A.13.12)

for every ϵ > 0, as before. If NW is an ultranorm on W , then one can take

A0(ϵ) = A1(ϵ)(A.13.13)

for every ϵ > 0.
If C is any nonempty finite subset of X, then

NW

( ∑
x∈C

f(x)
)
≤

∑
x∈C

NW (f(x)),(A.13.14)

as in Section 2.7. If f ∈ ℓ1NW
(X,W ), then one can use this to get that the sum

satisfies the generalized Cauchy condition, as before. If the sum converges in
the generalized sense, then one can verify that

NW

( ∑
x∈X

f(x)
)
≤

∑
x∈X

NW (f(x)),(A.13.15)

as before.
The generalized Cauchy condition implies that

f vanishes at infinity on X with respect to NW ,(A.13.16)
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as before. If NW is an ultranorm on W , then

NW

( ∑
x∈C

f(x)
)
≤ max

x∈C
NW (f(x))(A.13.17)

for every nonempty finite subset C of X. In this case, if f vanishes at infinity
on X with respect to NW , then it is easy to see that the sum satisfies the
generalized Cauchy condition, using the remarks in the preceding paragraph. If
the sum converges in the generalized sense, then one can check that

NW

( ∑
x∈X

f(x)
)
≤ max

x∈X
NW (f(x)).(A.13.18)

Note that the maximum on the right is attained on X, because NW (f(x))
vanishes at infinity on X, by hypothesis.

Let {xj}∞j=1 be a sequence of distinct elements of X such that

supp f ⊆ {xj : j ∈ Z+}.(A.13.19)

If
∑

x∈X f(x) converges in the generalized sense, then it is easy to see that

∞∑
j=1

f(xj) =
∑
x∈X

f(x),(A.13.20)

including the convergese of the series on the left, as in Section 2.7. If
∑

x∈X f(x)
satisfies the generalized Cauchy condition, and if the sum on the left side of
(A.13.20) converges, then one can check that

∑
x∈X f(x) converges in the gen-

eralized sense, with sum as in (A.13.20), as before.
If
∑

x∈X f(x) satisfies the generalized Cauchy condition, then{ n∑
j=1

f(xj)

}∞

n=1

is a Cauchy sequence in W(A.13.21)

with respect to the metric associated to NW , as in Section 2.7. If W is a
Banach space with respect to NW , then it follows that the series on the left side
of (A.13.20) converges in W . This implies that

∑
x∈W f(x) converges in the

generalized sense, with sum as in (A.13.20), as in the preceding paragraph.

A.14 Some related spaces of functions

Let us continue with the same notation and hypotheses as at the beginning of
the previous section. Let

SumNW
(X,W )(A.14.1)

be the space of W -valued functions f on X such that
∑

x∈X f(x) converges in
the generalized sense, as in Section 2.8. This is a linear subspace of the space



476 APPENDIX A. ABSOLUTE VALUES ON FIELDS

of all W -valued functions on X, and the sum defines a linear mapping from
SumNW

(X,W ) into W , as before.
Let

GCCNW
(X,W )(A.14.2)

be the space of allW -valued functions f on X such that
∑

x∈X f(x) satisfies the
generalized Cauchy condition, as in Section 2.8 again. This is a linear subspace
of the space of all W -valued functions on X too, with

c00(X,W ) ⊆ SumNW
(X,W ) ⊆ GCCNW

(X,W ) ⊆ c0,NW
(X,W ),(A.14.3)

as before. If W is a Banach space, then

SumNW
(X,W ) = GCCNW

(X,W ),(A.14.4)

as in the previous section.
We have seen that

ℓ1NW
(X,W ) ⊆ GCCNW

(X,W )(A.14.5)

so that

ℓ1NW
(X,W ) ⊆ SumNW

(X,W )(A.14.6)

when W is a Banach space. If NW is an ultranorm on W , then

GCCNW
(X,W ) = c0,NW

(X,W ),(A.14.7)

as in the previous section. If W is also a Banach space, then it follows that

SumNW
(X,W ) = c0,NW

(X,W )(A.14.8)

in this case.
As in Section 2.9, we say that a W -valued function f on X has bounded

finite sums on X with respect to NW if the norms

NW

(∑
x∈A

f(x)
)

(A.14.9)

of the sums of f over all finite subsets A of X are bounded. The space

BFSNW
(X,W )(A.14.10)

of all W -valued functions on X with bounded finite sums is a linear subspace
of the space of all W -valued functions on X, as before. One can check that

GCCNW
(X,W ) ⊆ BFSNW

(X,W ) ⊆ ℓ∞NW
(X,W ),(A.14.11)

as before.
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If f ∈ BFSNW
(X,W ), then we put

‖f‖BFS = ‖f‖BFSNW
(X,W )

= sup

{
NW

(∑
x∈A

f(x)
)
: A is a finite subset of X

}
.(A.14.12)

This defines a norm on BFSNW
(X,W ) with respect to | · | on k, as before.

Clearly
‖f‖ℓ∞

NW
(X,W ) ≤ ‖f‖BFSNW

(X,W )(A.14.13)

for every f ∈ BFSNW
(X,W ). If f ∈ ℓ1NW

(X,W ), then f ∈ BFSNW
(X,W ),

with
‖f‖BFSNW

(X,W ) ≤ ‖f‖ℓ1
NW

(X,W ),(A.14.14)

as before. If f ∈ SumNW
(X,W ), then f ∈ BFSNW

(X,W ), by (A.14.3) and
(A.14.11), and

NW

( ∑
x∈X

f(x)
)
≤ ‖f‖BFSNW

(X,W ),(A.14.15)

as before.
Suppose for the moment that NW is an ultranorm onW . If f ∈ ℓ∞NW

(X,W ),
then it is easy to see that f ∈ BFSNW

(X,W ), with

‖f‖BFSNW
(X,W ) ≤ ‖f‖ℓ∞

NW
(X,W ).(A.14.16)

This implies that
BFSNW

(X,W ) = ℓ∞NW
(X,W ),(A.14.17)

with
‖f‖BFSNW

(X,W ) = ‖f‖ℓ∞
NW

(X,W )(A.14.18)

for every f ∈ ℓ∞NW
(X,W ).

If NW is any norm on W , then

GCCNW
(X,W ) is the same as the closure(A.14.19)

of c00(X,W ) in BFSNW
(X,W ),

as in Section 2.9. If W is a Banach space, then

BFSNW
(X,W ) is complete(A.14.20)

with respect to the metric associated to (A.14.12), as before.



Appendix B

More on metrics and norms

B.1 q-Metrics and q-semimetrics

Let X be a set, and let d(x, y) be a nonnegative real-valued function defined for
x, y ∈ X such that

d(x, x) = 0(B.1.1)

for every x ∈ X, and
d(x, y) = d(y, x)(B.1.2)

for every x, y ∈ X. Also let q be a positive real number, and suppose that

d(x, z)q ≤ d(x, y)q + d(y, z)q(B.1.3)

for every x, y, z ∈ X. Under these conditions, we say that d(·, ·) is a q-semimetric
or q-pseudometric on X. If we also have that

d(x, y) > 0(B.1.4)

when x 6= y, then we say that d(·, ·) is a q-metric on X. Thus q-semimetrics
and q-metrics are the same as ordinary semimetrics and metrics when q = 1, as
in Sections 1.2 and A.1.

Of course, (B.1.3) is the same as saying that

d(x, z) ≤ (d(x, y)q + d(y, z)q)1/q.(B.1.5)

The right side is monotonically decreasing in q, as in Section 1.12. This implies
that the property of being a q-semimetric or q-metric is more restrictive as q
increases.

If d(·, ·) satisfies (B.1.1), (B.1.2), and

d(x, z) ≤ max(d(x, y), d(y, z))(B.1.6)

for every x, y, z ∈ X, then we say that d(·, ·) is a semi-ultrametric or pseudo-
ultrametric on X. If d(·, ·) satisfies (B.1.4) as well, then d(·, ·) is an ultrametric

478
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on X, as in Section A.1. It is easy to see that a semi-ultrametric on X is a
q-semimetric on X for every q > 0, and similarly an ultrametric on X is a
q-metric for every q > 0.

Note that

lim
q→∞

(d(x, y)q + d(y, z)q)1/q = max(d(x, y), d(y, z))(B.1.7)

for every x, y, z ∈ X, as in Section 1.3. Because of this, we shall consider semi-
ultrametrics and ultrametrics as being q-semimetrics and q-metrics, respectively,
with q = ∞.

Of course, if d(·, ·) is a q-semimetric on X and Y is a subset of X, then the
restriction of d(x, y) to x, y ∈ Y is a q-semimetric on Y . Similarly, if d(·, ·) is a
q-metric on X, then the restriction of d(x, y) to x, y ∈ Y is a q-metric on Y .

B.2 More on q-metrics and q-semimetrics

Let X be a set, and let a be a positive real number. If d(·, ·) is a q-semimetric
on X for some q > 0, then it is easy to see that

d(x, y)a(B.2.1)

is a (q/a)-semimetric on X. Similarly, if d(·, ·) is a q-metric on X, then (B.2.1)
is a (q/a) metric on X. If q = ∞, then this means that if d(·, ·) is a semi-
ultrametric or ultrametric on X, then (B.2.1) has the same property, as in
Section A.1.

If d(·, ·) is a q-semimetric or q-metric on X and a ≤ 1, then it follows that
(B.2.1) has the same property, as in Section A.1. This uses the fact that the
property of being a q-semimetric of q-metric is more restrictive as q increases,
as in the previous section.

If d(·, ·) is a q-semimetric on X, then one can define open and closed balls
in X with respect to d(·, ·) in the usual way, as in Section A.1. The open and
closed balls in X with radius r with respect to d(·, ·) are the same as the open
and closed balls in X with radius ra with respect to (B.2.1), respectively, and
with the same center, as before.

One can use open balls with respect to d(·, ·) to define what it means for a
subset of X to be an open set with respect to d(·, ·) in the usual way. The open
subsets of X with respect to d(·, ·) are the same as the open sets with respect
to (B.2.1), because of the remark about the corresponding open balls in the
preceding paragraph.

It is easy to see that this defines a topology on X, as usual. If q ≥ 1, then
d(·, ·) is a semimetric on X, and otherwise

d(x, y)q(B.2.2)

is a semimetric on X that determines the same topology as d(·, ·). The topology
determined by a semimetric has many of the same properties as the topology
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determined by a metric. In particular, one can check that open balls with
respect to a semimetric are open sets. This implies that open balls with respect
to d(·, ·) are open sets, which could also be verified more directly when q < 1.

Similarly, closed balls with respect to a semimetric are closed sets, by stan-
dard arguments. This implies that closed balls with respect to d(·, ·) are closed
sets, which could be verified more directly when q < 1 as well.

If d(·, ·) is a semi-ultrametric on X, then open balls in X with respect to
d(·, ·) are closed sets too, and closed balls of positive radius are open sets, as in
Section A.1.

It is well known and easy to see that the topology determined by a metric is
Hausdorff. This implies that the topology determined by a q-metric is Hausdorff,
which could be verified more directly, as usual. If d(·, ·) is a q-semimetric on
X, and the topology determined on X by d(·, ·) satisfies the first or zeroth
separation condition, then d(·, ·) is a q-metric on X.

It is well known that the topology determined by a metric is normal in the
strong sense, and regular in the strong sense in particular, as mentioned in
Section 5.5. This implies that the topology determined by a q-metric has the
same properties, as before. It is not too difficult to show that the topology
determined by a semimetric is regular and normal in the strict sense, which
implies the analogous statements for q-semimetrics.

If d(·, ·) is a q-metric on X, then one can define the notions of Cauchy
sequences and completeness with respect to d(·, ·) in the usual way. It is easy
to see that d(·, ·) and (B.2.1) determine the same Cauchy sequences in X, as in
Section A.1. This implies that X is complete with respect to d(·, ·) if and only
if X is complete with respect to (B.2.1), as before.

B.3 q-Absolute value functions

Let k be a field, and let | · | be a nonnegative real-valued function on k such that

|x| = 0 if and only if x = 0(B.3.1)

and
|x y| = |x| |y|(B.3.2)

for every x, y ∈ k. This implies that

|1k| = | − 1k| = 1,(B.3.3)

as in Section A.2.
Let q be a positive real number, and suppose that

|x+ y|q ≤ |x|q + |y|q(B.3.4)

for every x, y ∈ k. In this case, we say that | · | is a q-absolute value function on
k. This is the same as an ordinary absolute value function, as in Section A.2,
when q = 1.



B.4. QUASIMETRIC ABSOLUTE VALUE FUNCTIONS 481

Note that (B.3.4) is the same as saying that

|x+ y| ≤ (|x|q + |y|q)1/q.(B.3.5)

The right side is monotonically decreasing in q, as in Section 1.12, so that this
condition becomes more restrictive as q increases.

It is easy to see that an ultrametric absolute value function on k is a q-
absolute value function for every q > 0. We also have that

lim
q→∞

(|x|q + |y|q)1/q(B.3.6)

for every x, y ∈ k, as in Section 1.3. Ultrametric absolute value functions on k
will be considered as q-absolute value functions with q = ∞.

If | · | is a q-absolute value function on k for some q > 0 and a is a positive
real number, then

|x|a(B.3.7)

is a (q/a)-absolute value function on k. If q = ∞, then this means that (B.3.7) is
an ultrametric absolute value function on k when | · | is an ultrametric absolute
value function on k, as in Section A.4.

If |·| is a q-absolute value function on k, then |·| is an absolute value function
on k when q ≥ 1, and otherwise

|x|q(B.3.8)

is an absolute value function on k. This means that q-absolute value functions
have the same types of properties as ordinary absolute value functions, as in
Sections A.2, A.3, A.4, and A.8.

In particular, if | · | is a q-absolute value function on k, then

d(x, y) = |x− y|(B.3.9)

is a q-metric on k.

B.4 Quasimetric absolute value functions

Let k be a field again, and let | · | be a nonnegative real-valued function on k
that satisfies (B.3.1) and (B.3.2). Suppose that there is a real number C ≥ 1
such that

|1k + z| ≤ C(B.4.1)

for every z ∈ k with
|z| ≤ 1,(B.4.2)

where 1k is the multiplicative identity element in k. In this case, | · | may be
called a valuation on k, as in Definition 1.1 on p12 of [44]. This term is also
sometimes used in other but related ways.

Suppose that x, y ∈ k satisfy

|x| ≤ |y|.(B.4.3)
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If y 6= 0, then z = x/y satisfies (B.4.2), and (B.4.1) implies that

|x+ y| = |1k + z| |y| ≤ C |y|.(B.4.4)

Let us say that | · | is a quasimetric absolute value function on k if it satisfies
(B.3.1) and (B.3.2), as before, and if there is a real number C1 ≥ 1 such that

|x+ y| ≤ C1 (|x|+ |y|)(B.4.5)

for every x, y ∈ k. This is the same as saying that | · | is an absolute value
function on k when C1 = 1.

Alternatively, one may ask that there be a real number C0 ≥ 1 such that

|x+ y| ≤ C0 max(|x|, |y|)(B.4.6)

for every x, y ∈ k. This means that | · | is an ultrametric absolute value function
on k when C0 = 1.

Clearly (B.4.6) implies (B.4.5), with C1 = C0. Conversely, (B.4.5) implies
(B.4.6), with C0 = 2C1.

Similarly, (B.4.6) implies (B.4.1), with C = C0. Conversely, (B.4.1) implies
(B.4.6), with C0 = C, as in (B.4.4). Thus a quasimetric absolute value function
on k is the same as a valuation on k in the sense of [44].

If a is a positive real number, then (B.3.7) also satisfies (B.3.1) and (B.3.2).
If | · | is a valuation on k in the sense of [44] with constant C, then

|1k + z|a ≤ Ca(B.4.7)

for every z ∈ k with
|z|a ≤ 1,(B.4.8)

so that (B.3.7) is a valuation on k in the sense of [44] with constant Ca. This
corresponds to Lemma 1.1 on p13 of [44]. Equivalently, if | · | is a quasimetric
absolute value function on k satisfying (B.4.6) for some C0, then

|x+ y|a ≤ Ca
0 max(|x|a, |y|a)(B.4.9)

for every x, y ∈ k.
Lemma 1.2 on p13 of [44] says that | · | is an absolute value function on k if

and only if | · | is a valuation on k in the sense of [44] with constant C = 2. Of
course, the “only if” part of this statement is very easy to see. This means that
| · | is an absolute value function on k if and only if | · | is a quasimetric absolute
value function on k that satisfies (B.4.6) with C0 = 2.

If | · | is a valuation on k in the sense of [44], or equivalently a quasimetric
absolute value function, then it follows that (B.3.7) is an absolute value function
on k when a > 0 is sufficiently small, as in the corollary on p14 of [44].

Let q be a positive real number, and remember that

| · | is a q-absolute value function on k(B.4.10)
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if and only if |x|q is an absolute value function on k. Lemma 1.2 on p13 of [44]
implies that this happens if and only if | · | is a valuation on k in the sense of [44]
with constant C = 21/q, which is the same as saying that | · | is a quasimetric
absolute value function on k that satisfies (B.4.6) with C0 = 21/q. If | · | is a
valuation on k in the sense of [44], or equivalently a quasimetric absolute value
function, then we get that (B.4.10) holds when q > 0 is sufficiently small.

B.5 q-Norms and q-seminorms

Let k be a field, and let | · | be a qk-absolute value function on k for some qk > 0.
Also let V be a vector space over k, let N be a nonnegative real-valued function
on V , and let qN be a positive real number. We say that N is a qN -seminorm
or qN -pseudonorm on V with respect to | · | on k if it satisfies the following two
conditions. The first condition is the usual homogeneity property

N(t v) = |t|N(v)(B.5.1)

for every t ∈ k and v ∈ V . The second condition is the qN -seminorm version of
the triangle inequality, which is that

N(v + w)qN ≤ N(v)qN +N(w)qN(B.5.2)

for every v, w ∈ V .
If we also have that N(v) > 0 when v 6= 0, then N is said to be a qN -norm

on V with respect to | · | on k. If qk = qN = 1, then qN -seminorms and qN -norms
on V with respect to | · | on k are the same as ordinary seminorms and norms,
as in Section A.5. Of course, | · | is a qk-norm on k, as a one-dimensional vector
space over itself, as before.

As usual, (B.5.2) is the same as saying that

N(v + w) ≤ (N(v)qN +N(w)qN )1/qN(B.5.3)

for every v, w ∈ V . The right side is monotonically decreasing in qN , as in
Section 1.12, so that this condition is more restrictive as qN increases, as before.

If N satisfies (B.5.1) and

N(v + w) ≤ max(N(v), N(w))(B.5.4)

for every v, w ∈ V , then we say that N is a semi-ultranorm or pseudo-ultranorm
on V with respect to | · | on k, as in Section A.5. If N(v) > 0 when v 6= 0 too,
then N is said to be an ultranorm on V with respect to | · | on k, as before. A
semi-ultranorm on V is a qN -seminorm for every qN > 0, as usual, and similarly
an ultranorm is a qN -norm for every qN > 0.

As in Section 1.3,

lim
qN→∞

(N(v)qN +N(w)qN )1/qN = max(N(v), N(w))(B.5.5)
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for every v, w ∈ V . Semi-ultranorms and ultranorms on V may be considered
as qN -seminorms and qN -norms, respectively, with qN = ∞, as before.

If N is a qN -seminorm on V with respect to | · | on k, and if N(v) > 0 for
some v ∈ V , then it is easy to see that | · | is a qN -absolute value function on k.
In particular, if N is a qN -norm on V , and V 6= {0}, then | · | is a qN -absolute
value function on k.

If N is a qN -seminorm on V with respect to | · | on k, then

dN (v, w) = N(v − w)(B.5.6)

is a qN -semimetric on V . If N is a qN -norm on V , then this is a qN -metic on
V .

Let a be a positive real number, and remember that | · |a defines a (qk/a)-
absolute value function on k, as in Section B.3. If N is a qN -seminorm on V
with respect to | · | on k, then it is easy to see that

N(v)a(B.5.7)

is a (qN/a)-semimetric on V with respect to | · |a on k. Similarly, if N is a
qN -norm on V with respect to | · | on k, then this is a (qN/a)-norm on V with
respect to | · |a on k.

B.6 ℓr Spaces and q-seminorms

Let X be a nonempty set, and let k be a field with a qk-absolute value function
| · | for some qk > 0. Also let W be a vector space over k, and let NW be a
qW -seminorm on W with respect to | · | on k for some qW > 0. Consider the
space

ℓ∞(X,W ) = ℓ∞NW
(X,W )(B.6.1)

of all W -valued functions f on X that are bounded with respect to NW , so that
NW (f(x)) is bounded as a real-valued function on X, as in Section A.9. In this
case, we put

‖f‖∞ = ‖f‖sup = ‖f‖ℓ∞(X,W ) = ‖f‖ℓ∞
NW

(X,W ) = sup
x∈X

N(f(x)),(B.6.2)

as before.
If r is a positive real number, then we let

ℓr(X,W ) = ℓrNW
(X,W )(B.6.3)

be the space of W -valued functions f on X such that NW (f(x)) is r-summable
as a nonnegative real-valued function on X, as in Section A.11. Under these
conditions, we put

‖f‖r = ‖f‖ℓr(X,W ) = ‖f‖ℓr
NW

(X,W ) =
( ∑

x∈X

NW (f(x))r
)1/r

,(B.6.4)
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as before.
One can check that ℓrNW

(X,W ) is a linear subspace of the space of all W -
valued functions on X for each 0 < r ≤ ∞. Note that (B.6.2) and (B.6.4) satisfy
the usual homogeneity condition (B.5.1) with respect to | · | on k.

If
r ≤ qW ,(B.6.5)

then one can verify that

‖ · ‖ℓr
NW

(X,W ) is an r-seminorm on ℓrNW
(X,W ),(B.6.6)

with respect to | · | on k. This uses the fact that

NW is an r-seminorm on W(B.6.7)

with respect to | · | on k, because of (B.6.5), as in the previous section. If NW

is a qW -norm on W , then

‖ · ‖ℓr
NW

(X,W ) is an r-norm on ℓrNW
(X,W ).(B.6.8)

If
qW ≤ r,(B.6.9)

then
‖ · ‖ℓr

NW
(X,W ) is a qW -seminorm on ℓrNW

(X,W )(B.6.10)

with respect to | · | on k. This can be seen fairly directly when r = ∞, and
otherwise it can be obtained using Minkowski’s inequality for sums. If NW is a
qW -norm on W , then we get that

‖ · ‖ℓr
NW

(X,W ) is a qW -norm on ℓrNW
(X,W ),(B.6.11)

as before.

B.7 More on ℓr spaces

Let us continue with the same notation and hypotheses as in the previous sec-
tion. We may refer to (B.6.2) as the supremum qW -seminorm on ℓ∞NW

(X,W )
associated to NW , or as the supremum qW -norm when NW is a qW -norm on
W . This leads to the corresponding supremum qW -semimetric or supremum
qW -metric on ℓ∞NW

(X,W ) in the usual way.
If 0 < r1 ≤ r2 ≤ +∞, then

ℓr1NW
(X,W ) ⊆ ℓr2NW

(X,W ),(B.7.1)

as in Sections 2.6 and A.11. In this case,

‖f‖ℓr2
NW

(X,W ) ≤ ‖f‖ℓr1
NW

(X,W )(B.7.2)
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for every f ∈ ℓr1NW
(X,W ), as before.

Let us say that a W -valued function f on X vanishes at infinity on X with
respect to NW if NW (f(x)) vanishes at infinity as a nonnegative real-valued
function on X, as in Section A.9. The space

c0(X,W ) = c0,NW
(X,W )(B.7.3)

of these functions is a linear subspace of ℓ∞NW
(X,W ), as before. Remember that

c00(X,W ) is the space of Wvalued functions on X with finite support, as in
Section A.9. One can check that

c0,NW
(X,W ) is the closure of c00(X,W ) in ℓ∞NW

(X,W )(B.7.4)

with respect to the supremum qW -semimetric, as before.
If 0 < r <∞, then

c00(X,W ) ⊆ ℓrNW
(X,W ) ⊆ c0,NW

(X,W ),(B.7.5)

as in Section A.11. In this case, one can verify that

c00(X,W ) is dense in ℓrNW
(X,W )(B.7.6)

with respect to the qW or r-semimetric, as appropriate, associated to (B.6.4),
as before.

Suppose that NW is a qW -norm on W , and that W is complete with respect
to the corresponding qW -metric. One can check that

ℓrNW
(X,W ) is complete(B.7.7)

with respect to the qW or r-metric associated to (B.6.2) or (B.6.4), as appro-
priate, as in Sections A.9 and A.11.

B.8 q-Absolute convergence

Let k be a field with a qk-absolute value function for some qk > 0, let V be
a vector space over k, and let N be a qN -norm on V with respect to | · | on
k for some qN > 0. Of course, one can define convergence of sequences in V
with respect to the qN -metric dN associated to N as in Section B.5 in the usual
way, which is the same as convergence of sequences with respect to the topology
determined on V by dN as in Section B.2. One can check that convergent
sequences in V with respect to dN have the usual properties in terms of sums
and scalar multiplication, as in Section A.7.

Convergence of an infinite series
∑∞

j=1 vj with terms in V with respect to N

means that the corresponding sequence of partial sums
∑n

j=1 vj converges in V
with respect to dN , as before. This also has the usual properties in terms of sums
and scalar multiplication, because of the analogous statements for sequences.
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The sequence of partial sums is a Cauchy sequence with respect to dN if and
only if for every ϵ > 0 there is a positive integer L(ϵ) such that

N
( n∑

j=l

vj

)
< ϵ(B.8.1)

for all integers n ≥ l ≥ L(ϵ), as in Section A.7. This implies that {vj}∞j=1

converges to 0 with respect to dN , as usual.
Suppose that qN <∞, and observe that

N
( n∑

j=l

vj

)qN
≤

n∑
j=l

N(vj)
qN(B.8.2)

for all positive integers l ≤ n. We say that
∑∞

j=1 converges qN -absolutely with
respect to N if

∞∑
j=1

N(vj)
qN(B.8.3)

converges as an infinite series of nonnegative real numbers. This is the same as
ordinary absolute convergence when qN = 1, as in Section A.7. This implies that
the corresponding sequence of partial sums is a Cauchy sequence with respect
to dN , because of (B.8.2), as before.

If V is complete with respect to dN , as in Section B.2, then we say that
V is a qN -Banach space. This is the same as a Banach space when qN = 1,
as in Section A.7. If V is a qN -Banach space with respect to N and

∑∞
j=1 vj

converges qN -absolutely with respect to N , then
∑∞

j=1 vj converges in V , and
one can check that

N
( ∞∑

j=1

vj

)qN
≤

∞∑
j=1

N(vj)
qN .(B.8.4)

One can also verify that the completeness of V with respect to dN is character-
ized by the condition that qN -absolutely convergent series in V with respect to
N converge in V , as before. If V is not already complete with respect to dN ,
then V has a completion that is a qN -Banach space over k, as usual.

B.9 Some more Lipschitz conditions

Let X, Y be sets with qX , qY -semimetrics dX , dY for some qX , qY > 0, and let
α be a positive real number. A mapping f from X into Y is said to be Lipschitz
of order α with respect to dX , dY if there is a nonnegative real number C such
that

dY (f(x), f(w)) ≤ C dX(x,w)α(B.9.1)

for every x,w ∈ X. This is the same as in Section 2.1 when α = 1. As before,
we may say that f is Lipschitz of order α with constant C, to be more precise.
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One can define uniform continuity of mappings from X into Y with respect
to dX , dY in the same way as for metric spaces. In particular,

Lipschitz mappings of order α are uniformly continuous,(B.9.2)

as in Section 2.1. Constant mappings from X into Y are Lipschitz of order α
with C = 0. If f is Lipschitz of order α with constant C = 0, and if dY is a
qY -metric on Y , then f is constant on X.

Let aX , aY be positive real numbers, so that daX

X , daY

Y are (qX/aX), (qY /aY )-
semimetrics onX, Y , respectively, as in Section B.2. It is easy to see that (B.9.1)
is the same as saying that

dY (f(x), f(w))
aY ≤ CaY (dX(x,w)aX )αaY /aX(B.9.3)

for every x,w ∈ X. This means that f is Lipschitz of order α with constant C
with respect to dX , dY if and only if

f is Lipschitz of order αaY /aX with constant CaY(B.9.4)

with respect to daX

X , daY

Y .
The space of all Lipschitz mappings from X into Y of order α with respect

to dX , dY may be denoted
Lipα(X,Y ).(B.9.5)

If α = 1, then this corresponds to Lip(X,Y ), as in Section 2.1.
Suppose that X 6= ∅, and that f is a Lipschitz mapping of order α from X

into Y . We would like to put

Lipα(f) = Lipα,X,Y (f)(B.9.6)

= sup

{
dY (f(x), f(w))

dX(x,w)α
: x,w ∈ X, dX(x,w) > 0

}
,

at least if there are x,w ∈ X such that dX(x,w) > 0. Otherwise, this may be
interpreted as being equal to 0. This corresponds to Lip(f) as in Section 2.1
when α = 1, and we may also use this notation here in this case. One can check
that Lipα(f) is the smallest nonnegative real number C such that f is Lipschitz
of order α with constant C, as before.

Let k be a field with a qk-absolute value function | · | for some qk > 0, and
suppose now that Y is a vector space over k with a qY -seminorm NY with
respect to | · | on k. In this case, we can take dY to be the qY -semimetric dNY

on Y associated to NY . One can check that

Lipα(X,Y ) is a linear subspace of the space(B.9.7)

of all functions on X with values in Y,

as in Sections 2.1 and A.10. More precisely,

Lipα(f) is a qY -seminorm on Lipα(X,Y )(B.9.8)

with respect to | · | on k, as before.
Note that the space of uniformly continuous mappings from X into Y is

a linear subspace of the space of all mappings from X into Y under these
conditions.
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B.10 Operator q-seminorms

Let k be a field with a qk-absolute value function for some qk > 0, and let V ,
W be vector spaces over k with qV , qW -seminorms NV , NW , respectively, with
respect to | · | on k, for some qV , qW > 0. A linear mapping T from V into
W is said to be bounded with respect to NV , NW if there is a nonnegative real
number C such that

NW (T (v)) ≤ C NV (v)(B.10.1)

for every v ∈ V , as in Sections 2.2 and A.10. This means that

NW (T (u)− T (v)) ≤ C NV (u− v)(B.10.2)

for every u, v ∈ V , as before. This says that T is Lipschitz of order 1 with
constant C with respect to the qV , qW -semimetrics dNV

, dNW
associated to

NV , NW , respectively, as in the previous section.
Let BL(V,W ) be the space of all bounded linear mappings from V into W

with respect to NV , NW , respectively, as before. One can verify that this is a
linear subspace of the space L(V,W ) of all linear mappings from V into W , as
before. If T ∈ BL(V,W ), then put

‖T‖op = ‖T‖op,V W = inf{C ≥ 0 : (B.10.1) holds},(B.10.3)

as in Section A.10. This is the same as the Lipschitz constant Lip(T ) = Lip1(T )
of T with respect to the qV , qW -metrics associated to NV , NW , respectively, as
before.

In particular,

‖ · ‖op is a qW -seminorm on BL(V,W )(B.10.4)

with respect to | · | on k, as in the previous section. This is the operator qW -
seminorm on BL(V,W ) associated to NV , NW . Note that the infimum on the
right side of (B.10.3) is automatically attained, so that

NW (T (v)) ≤ ‖T‖op,VW NV (v)(B.10.5)

for every v ∈ V . If NW is a qW -norm on W , then

‖ · ‖op is a qW -norm on BL(V,W ),(B.10.6)

as in Section A.10. In this case, ‖ · ‖op may be called the operator qW -norm on
BL(V,W ) associated to NV , NW .

Let Z be another vector space over k, with a qZ-seminorm NZ with respect
to | · | on k for some qZ > 0. If T1, T2 are bounded linear mappings from V , W
into W , Z, respectively, then T2 ◦ T1 is a bounded linear mapping from V into
Z, with

‖T2 ◦ T1‖op,V Z ≤ ‖T1‖op,V W ‖T2‖op,WZ ,(B.10.7)

as in Sections 2.2 and A.10.



490 APPENDIX B. MORE ON METRICS AND NORMS

Let T be a linear mapping from V intoW again, and suppose for the moment
that NW (T (v)) is bounded on a ball of positive radius in V centered at 0 with
respect to the qV -semimetric associated to NV . If | · | is not the trivial absolute
value function on k, then one can verify that

T is a bounded linear mapping from V into W(B.10.8)

with respect to NV , NW , as in Section A.10. In particular, the hypothesis
on T holds when T is continuous at 0 with respect to the qV , qW -semimetrics
associated to NV , NW , respectively, as before.

If NW is a qW -norm onW , andW is complete with respect to the qW -metric
associated to NW , then

BL(V,W ) is complete(B.10.9)

with respect to the qW -metric associated to ‖ · ‖op, as in Sections 2.2 and A.10.
Let V0 be a linear subspace of V that is dense in V with respect to the

qV -semimetric associated to NV , and let T0 be a bounded linear mapping from
V0 into W , with respect to the restriction of NV to V0. If NW is a qW -norm on
W , and W is complete with respect to the qW -metric associated to NW , then

there is a unique extension of T0 to a(B.10.10)

bounded linear mapping T from V into W,

as in Sections 2.2 and A.10. One can verify that the operator qW -norm of T on
V is equal to the operator qW -norm of T0 on V0, as before.

B.11 Some more bounded linear mappings

Let X be a nonempty set, let k be a field with a qk-absolute value function for
some qk > 0, and let W be a vector space over k with a qW -seminorm NW with
respect to | · | on k for some qW > 0. If a is a W -valued function on X and f is
a k-valued function on X with finite support, then put

Ta(f) =
∑
x∈X

a(x) f(x),(B.11.1)

as in Section A.12. This defines a linear mapping from c00(X, k) into W , as
before.

Let δy be the k-valued function on X equal to 1 at y ∈ X and to 0 at every
other point in X, as before. Remember that ‖δy‖ℓr(X,k) = 1 for every r > 0,
using | · | as a qk-norm on k, as a one-dimensional vector space over itself. We
also have that

Ta(δy) = a(y)(B.11.2)

for every y ∈ X, as before.
Suppose that

Ta is bounded as a linear mapping from c00(X, k) into W,(B.11.3)

with respect to ‖ · ‖ℓr(X,k) on c00(X, k) and NW on W
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for some r > 0. This implies that

N(a(y)) ≤ ‖T‖op,r(B.11.4)

for every y ∈ X, as in Section A.12, where ‖Ta‖op,r is the operator qW -seminorm
of Ta with respect to ‖ · ‖ℓr(X,k) on c00(X, k) and NW on W . Equivalently, a is
bounded on X with respect to NW on W , with

‖a‖ℓ∞
NW

(X,W ) ≤ ‖Ta‖op,r.(B.11.5)

If a is any element of ℓ∞NW
(X,W ), f ∈ c00(X,W ), and qW <∞, then

NW (Ta(f))
qW ≤

∑
x∈X

NW (a(x))qW |f(x)|qW(B.11.6)

≤ ‖a‖qWℓ∞
NW

(X,W ) ‖f‖
qW
ℓqW (X,k),

as before. This means that

Ta is a bounded linear mapping from c00(X, k) into W,(B.11.7)

with respect to ‖ · ‖ℓqW (X,k) on c00(X, k) and NW on W,

with
‖Ta‖op,qW ≤ ‖a‖ℓ∞

NW
(X,W ).(B.11.8)

More precisely, we have that

‖Ta‖op,qW = ‖a‖ℓ∞
NW

(X,W ),(B.11.9)

because of (B.11.5). If NW is a qW -norm onW , andW is complete with respect
to the associated qW -metric, then it follows that

Ta has a unique extension to a bounded linear mapping(B.11.10)

from ℓqW (X, k) into W, with the same operator qW -norm,

as in the previous section.
If qW = ∞, then

NW (Ta(f)) ≤ ‖a‖ℓ∞
NW

(X,W ) ‖f‖ℓ∞(X,k)(B.11.11)

for every f ∈ c00(X, k), so that Ta is a bounded linear mapping from c00(X, k)
into W , with respect to ‖ · ‖ℓ∞(X,k) on c00(X, k) and NW on W , as in Section
A.12. We also have that

‖Ta‖op,∞ = ‖a‖ℓ∞
NW

(X,W )(B.11.12)

in this case, because of (B.11.5), as before. If NW is an ultranorm on W , and
W is complete with respect to the associated ultrametric, then Ta has a unique
extension to a bounded linear mapping from c0(X, k) into W , with the same
operator norm, as before.
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B.12 More on sums of vectors

Let X be a nonempty set, let k be a field with a qk-absolute value function | · |
for some qk > 0 again, and let W be a vector space over k with a qW -norm
NW with respect to | · | on k for some qW > 0. If f is a W -valued function on
X, then the convergence of the sum

∑
x∈X f(x) in the generalized sense with

respect to the qW -metric associated to NW can be defined in the same way as
in Section A.13. Similarly, the generalized Cauchy condition for the sum can be
defined in the same way as before. These have essentially the same properties
as before, with ϵ/2 replaced with

ϵ/2qW(B.12.1)

in a couple of places when qW <∞.
If qW <∞, then

NW

( ∑
x∈C

f(x)
)qW

≤
∑
x∈C

NW (f(x))qW(B.12.2)

for every nonempty finite subset C of X. This implies that the sum satisfies the
generalized Cauchy condition when

f ∈ ℓqWNW
(X,W ),(B.12.3)

as before. If the sum converges in the generalized sense, then one can check
that

NW

( ∑
x∈X

f(x)
)qW

≤
∑
x∈X

NW (f(x))qW ,(B.12.4)

as before.
One can define SumNW

(X,W ) and GCCNW
(X,W ) in the same was as in

Section A.14, and with basically the same properties as before. If qW < ∞,
then

ℓqWNW
(X,W ) ⊆ GCCNW

(X,W ),(B.12.5)

as in the preceding paragraph. This implies that

ℓqWNW
(X,W ) ⊆ SumNW

(X,W )(B.12.6)

when W is a qW -Banach space, as before.
One can also define BFSNW

(X,W ) and ‖f‖BFSNW
(X,W ) in the same way

as before, and with essentially the same properties as before. More precisely,

‖f‖BFSNW
(X,W ) is a qW -norm on BFSNW

(X,W ),(B.12.7)

with respect to | · | on k. It is easy to see that

ℓqWNW
(X,W ) ⊆ BFSNW

(X,W ),(B.12.8)

with
‖f‖BFSNW

(X,W ) ≤ ‖f‖ℓqW
NW

(X,W )(B.12.9)

for every f ∈ ℓqWNW
(X,W ).
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bounded functions, 3, 28, 155, 466
bounded linear functionals, 52
bounded linear mappings, 25, 468, 489
bounded sesquilinear forms, 121

C, 2
C(X,A), 158
C(X,C), 6
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C(X,R), 6
C(X,Y ), 155
C[T1, . . . , Tn], 297
C∗ algebras, 275
C∗ algebras of operators, 276
C∗ identity, 60, 154
Clai(X,C), 397
clai(X,C), 56
Clai(X,R), 397
clai(X,R), 56
(C)pr [[T ]], 345
C0(X,C), 100
c0(X,C), 19
C0(X,R), 100
c0(X,R), 19
c0(X,W ), 33, 467, 486
c0,NW

(X,W ), 467, 486
(C)0,r[[T ]], 345
C0,w(X,C), 400
C0,w(X,R), 400
c0,w(X,Z), 339
c00(X,C), 17
c00(X,R), 17
c00(X,W ), 27, 467
Cb(X,C), 7
Cb(X,R), 7
Cb(X,Y ), 155
Cb,w(X,C), 400
Cb,w(X,R), 400
Ccom(X,C), 99
Ccom(X,R), 99
(C)ρ[[T ]], 345
Cartesian products, 114
Cauchy nets, 271
Cauchy products, 211, 212, 215
Cauchy–Schwarz inequality, 13, 91

semidefinite case, 186, 187
centralizers, 321, 428
chain rule, 359
closed balls, 4, 456
closed graph theorem, 169
codimensions of linear subspaces, 432
commutative algebras, 124, 423
compact support, 99
complete regularity, 104
complete separability, 21

completely Hausdorff spaces, 105
completions, 22
complex measures, 111
complex-linear mappings, 12
complexifications

inner products, 268
linear mappings, 268
vector spaces, 267

conjugate exponents, 57
conjugate-linear mappings, 13
contraction mapping theorem, 162
contractions, 162
convergence in measure, 96
convergent nets, 270
convergent series, 8, 463
convex cones, 63
convex sets, 3
countable compactness, 296

degrees of polynomials, 341
dense sets, 77
derivations, 227
derivatives, 348
direct sums, 116
directed systems, 270
discrete metric, 456
disk algebra, 310, 420
dual linear mappings, 72, 433
dual norms, 52
dual spaces, 52

eigenvalues, 197, 426
eigenvectors, 197, 426
equicontinuity, 238
essential range, 145
exponential function, 226, 245, 363

Fσ sets, 107
first category, 78
first countability condition, 102
formal polynomials, 296, 340, 430
formal power series, 341

G(A), 131, 426
G1(A), 235
Gδ sets, 107
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GCC(X,W ), 36
GCCNW

(X,W ), 476, 492
Gelfand map, 283
Gelfand spectrum, 282
Gelfand transform, 282, 283
Gelfand–Mazur theorem, 136
general linear groups, 432
generalized Cauchy condition, 34, 473,

492
generalized convergence, 33, 473, 492
GL(V ), 432
graphs of mappings, 167, 168

H, 146
H(U), 12
H∞(U), 12
Hahn decomposition theorem, 112
Hahn–Banach theorem, 65, 67
Hermitian antisymmetry, 179
Hermitian elements, 151
Hermitian forms, 178
Hermitian linear operators, 180
Hermitian symmetry, 178
Hilbert spaces, 14
Hölder’s inequality, 57, 92
holomorphic functions, 311
homogeneous functions, 61
homotopies, 239

ideals
in commutative algebras, 139
left, 425
right, 425
two-sided, 138, 425

idempotent elements, 148, 152
indicator functions, 95
inner derivations, 229
inner products, 13
intertwining mappings, 453
isometric linear mappings, 42
isometric mappings, 22

Jacobson radical, 140
Jordan decomposition, 112

k[X1, . . . , Xn], 430

L(V ), 124, 423
L(V,W ), 25, 433, 468
ℓ2(X,C), 38
ℓ2(X,R), 38
ℓ2(X,W ), 37
ℓ∞(X,A), 157
L∞(X,C), 91
ℓ∞(X,C), 3
L∞(X,R), 91
ℓ∞(X,R), 3
ℓ∞(X,W ), 28, 466, 484
ℓ∞NW

(X,W ), 466, 484
ℓ∞w (X,Z), 338
Lp(X,C), 90
Lp(X,R), 90
ℓp(X,W ), 32
ℓpw(X,Z), 338
ℓr(X,W ), 470, 484
ℓrNW

(X,W ), 470, 484
LW (V ), 431
left inverses, 246, 247
left topological divisors of zero, 248
Leibniz rule, 228
limit point property, 295
limit points, 295
limits at infinity, 56, 397
Lindelöf’s theorem, 296
Lindelöf property, 296
linear orderings, 270
linear functionals, 52, 433
Lip(X,Y ), 23
Lipα(X,Y ), 488
Lipb(X,W ), 158
Lipschitz mappings, 23, 487

of order α, 487
local compactness, 100
logarithms, 363, 364, 373

M(X,C), 111
M(X,R), 111
maximal ideal space, 282
meager sets, 78
metrics, 456, 478
Minkowski functional, 64
Minkowski’s inequality, 5, 31, 91
modules over associative algebras, 447
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left, 447
quotient modules, 452
right, 447
submodules, 449

multi-indices, 296
multiplication operators, 88, 94, 102

left, 127, 427, 447
right, 128, 427, 448

multiplicative inverses, 129
multiplicative identity elements, 124,

423
left, 402, 427
right, 402, 427

N = N (A), 140
negative variation measures, 112
nets, 270
nilpotent elements, 140, 141, 148, 426
nilradical, 140
non-meager sets, 78
nonnegative bilinear forms, 186
nonnegative elements, 327
nonnegative Hermitian forms, 186
nonnegative linear functionasls, 413
nonnegative linear operators, 187
normal operators, 188
normal elements, 152
normal topological spaces, 104
norms, 2, 461
nowhere dense sets, 78

open balls, 4, 456
open mapping theorem, 165
open mappings, 164
operator norms, 25, 469, 489
operator q-norms, 489
operator q-seminorms, 489
operator seminorms, 469, 489
orthogonal complements, 51
orthogonal projections, 45, 48, 49, 51,

174
orthogonal transformations, 42
orthogonal vectors, 14
orthonormal bases, 48
orthonormal vectors, 44, 46
Ostrowski’s theorems, 460

p-adic absolute value, 458
p-adic metric, 458
p-adic numbers, 458
p-summable functions, 31
parallelogram law, 50
partial isometries, 261
partial orderings, 270
perfectly normal spaces, 110
point spectrum, 197, 427
pointwise boundedness, 79
pointwise convergence, 272
polar decompositions, 259, 260
polarization, 42, 178, 179, 183, 184
polydisk algebras, 312
polynomial convexity, 303
positive functionals, 409–411
positive linear functionals, 409–411
positive variation measures, 112
pre-directed system, 270
pre-orderings, 270
product topology, 114
projections, 172
pseudo-ultrametrics, 478
pseudo-ultranorms, 461, 483
pseudocompactness, 296
pseudometrics, 4, 478
pseudonorms, 4, 460

Q, 458
q-absolute convergence, 487
q-absolute value functions, 480
q-Banach spaces, 487
q-metrics, 478
q-norms, 483
q-pseudometrics, 478
q-pseudonorms, 483
q-semimetrics, 478
q-seminorms, 483
Qp, 458
quasinilpotent elements, 148
quaternions, 146
quotient algebras, 138
quotient mappings, 136
quotient spaces, 136

R, 2
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R = R(A), 140
R[T1, . . . , Tn], 297
(R)pr [[T ]], 345
R+, 363, 465
(R)0,r[[T ]], 345
rA(x), 142, 147
(R)ρ[[T ]], 345
rad(A), 140
radSp(A), 317
radial at a point, 64
radicals, 140, 317
radius of convergence, 214
real measures, 111
real-linear mappings, 13
real-linear subspaces, 151
reflexive Banach spaces, 75
regular topological spaces, 105
representations

homomorphisms between, 453
invariant linear subspaces, 449
of associative algebras, 446
quotient representations, 452
subrepresentations, 449

resolvent set of an element, 134
Riesz representation theorems, 53, 416
right inverses, 247
right topological divisors of zero, 248
roots, 382, 384

second category, 78
second countability condition, 21
second dual mappings, 75, 76
second dual spaces, 74
self-adjoint elements, 151, 441
self-adjoint linear operators, 180
semi-ultrametrics, 478
semi-ultranorms, 461, 483
semimetrics, 4, 478
seminorms, 4, 460
semisimple Banach algebras, 141
separable topological spaces, 20, 296
separate continuity, 119
sequential continuity, 101, 102
sesquilinear forms, 121

Hermitian antisymmetric, 179
Hermitian symmetric, 178

nondegenerate, 442
σA(x), 133, 426
σap(T ), 200
σp(T ), 197, 427
signed measures, 111
Sp(A), 282, 289, 426
spectral mapping theorem, 192, 430
spectral permanence theorem, 149
spectrum of an element, 133, 426
square roots, 258, 266, 382, 384
standard Euclidean norm, 6
starlike sets, 64
strong limit point property, 295
strong limit points, 295
strong operator topology, 82, 273
subadditive functions, 61
subalgebras, 125, 423
sublinear functions, 61
submultiplicative norms, 125
submultiplicative sequences, 142
Sum(X,W ), 36
SumNW

(X,W ), 475, 492
summable functions, 30
supports of functions, 16, 27, 99, 467
supremum metrics, 3, 28, 155, 467, 485
supremum norms, 3, 28, 467, 485
supremum semimetrics, 485
supremum seminorms, 467, 485
symmetric functions, 61
symmetric linear operators, 179
symmetric sets, 62

tending to infinity, 107
topological divisors of zero, 249
total orderings, 270
total variation measures, 111
totally bounded sets, 84
triangle inequality, 2, 456, 483

ultrametric version, 456
trivial ultranorm, 461
trivial absolute value function, 458
two-sided ideals, 138

U(A), 152, 337, 441
UC(X,Y ), 156
UCb(X,Y ), 156
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ultrametrics, 456, 479
ultranorms, 461, 483
uniform boundedness, 79
uniform boundedness principle, 80
uniform continuity, 488
uniform convergence, 272
unitary elements, 336
unitary mappings, 42
Urysohn spaces, 104
Urysohn’s lemma, 100, 105
Urysohn’s metrization theorem, 106

V ′, 52
V [[T ]], 341
V [T ], 340
V alg, 52, 433
V p
r [[T ]], 345
V0,r[[T ]], 345
VR, 2
Vρ[[T ]], 345
valuations, 481
vanishing at infinity, 19, 32, 100, 467,

486

weak convergence, 86, 273
weak topologies, 287
weak topology, 86
weak∗ topology, 82, 273
weakly bounded sets, 87

Z+, 19


