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Abstract

These informal notes are concerned with power series in several vari-
ables over fields with absolute value functions.
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Part I

Polynomials and power series

1 Vector spaces and algebras

Let k be a field, and let V be a vector space over k. Also let X be a nonempty
set, and let c(X,V ) be the space of V -valued functions on X. This is a vector
space over k too, with respect to pointwise addition and scalar multiplication.
If f ∈ c(X,V ), then the support of f is defined to be the set of x ∈ X such
that f(x) ̸= 0. Let c00(X,V ) be the collection of f ∈ c(X,V ) such that the
support of f has only finitely many elements. It is easy to see that c00(X,V ) is
a linear subspace of c(X,V ). Of course, if X has only finitely many elements,
then c00(X,V ) is the same as c(X,V ).

In particular, we can apply this to V = k, considered as a one-dimensional
vector space over itself. If x, y ∈ X, then put

δx(y) = 1 when x = y,(1.1)

= 0 when x ̸= y,

where 0 and 1 are the additive and multiplicative identity elements in k, respec-
tively. Thus δx ∈ c00(X, k) for each x ∈ X, and the collection of δx, x ∈ X, is a
basis for c00(X, k) as a vector space over k.

If V , W are vector spaces over k, then we let L(V,W ) be the space of all
linear mappings from V into W . This is a vector space over k with respect to
pointwise addition and scalar multiplication.

Let V , W , and Z be vector spaces over k, and let b be a mapping from the
Cartesian product V ×W of V and W into Z. As usual, b is said to be bilinear
if b is linear in each coordinate. More precisely, this means that for each w ∈ W ,
b(v, w) is linear as a function of v ∈ V , and that for each v ∈ V , b(v, w) is linear
as a function of w ∈ W .

Let A be a vector space over k, and suppose that A is equipped with a
bilinear mapping

(a, b) 7→ a b(1.2)
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from A×A into A. If the associative law

(a b) c = a (b c)(1.3)

holds for every a, b, c ∈ A, then A is said to be an (associative) algebra over k.
If the commutative law

a b = b a(1.4)

holds for every a, b ∈ A as well, then A is said to be a commutative algebra over
k. Of course, k may be considered as a commutative algebra over itself.

An element e of an algebra A over k is said to be a multiplicative identity
element in A if

a e = e a = a(1.5)

for every a ∈ A. If A has a multiplicative identity element, then it is easy to
see that it is unique.

If V is a vector space over k, then the space L(V ) = L(V, V ) of linear
mappings from V into itself is an algebra over k, with composition of linear
mappings as multiplication. In this case, the identity mapping I = IV on V is
the multiplicative identity element in L(V ).

Let A be an algebra over k, and let X be a nonempty set again. The space
c(X,A) of A-valued functions on X is an algebra over k too, with respect to
pointwise multiplication of functions. If A is commutative, then c(X,A) is
commutative as well. If A has a multiplicative identity element e, then the
constant function on X equal to e at every point is the multiplicative identity
element in c(X,A). In particular, the space c(X, k) of k-valued functions on X
is a commutative algebra over k, with a multiplicative identity element.

Let A be an algebra over k with a multiplicative identity element e, and let
a be an element of A. If there is an element a−1 of A such that

a a−1 = a−1 a = e,(1.6)

then a is said to be invertible in A. It is easy to see that a−1 is uniquely
determined by (1.6). If a, b are invertible elements of A, then a b is invertible
too, with

(a b)−1 = b−1 a−1.(1.7)

Let A1, A2 be algebras over k. A linear mapping ϕ from A1 into A2 is said
to be an algebra homomorphism if

ϕ(a b) = ϕ(a)ϕ(b)(1.8)

for every a, b ∈ A1.

2 Polynomials with vector coefficients

If A is a set and n is a positive integer, then we let An be the set of n-tuples
a = (a1, . . . , an) with aj ∈ A for each j = 1, . . . , n, as usual. Let Z be the
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set of integers, and let Z+ be the set of positive integers. If n ∈ Z+ and
α ∈ (Z+ ∪ {0})n, then α is called a multi-index, and we put

|α| =
n∑

j=1

αj .(2.1)

If α, β ∈ (Z+∪{0})n, then their sum α+β is defined as an element of (Z+∪{0})n
by coordinatewise addition, and

|α+ β| = |α|+ |β|.(2.2)

Let k be a field, and let V be a vector space over k again. Also let T1, . . . , Tn

be n commuting indeterminates, for some positive integer n. As in [1, 3], we
normally try to use upper-case letters like T for indeterminates, and lower-case
letters like t for elements of k, or algebras over k. Put

Tα = Tα1
1 · · ·Tαn

n(2.3)

for each α ∈ (Z+ ∪ {0})n, which is a formal monomial in T1, . . . , Tn. A formal
polynomial in T1, . . . , Tn with coefficients in V can be expressed as

f(T ) =
∑

|α|≤N

fα Tα,(2.4)

where N is a nonnegative integer, the sum is taken over α ∈ (Z+ ∪ {0})n with
|α| ≤ N , and fα ∈ V for each such α.

The space of formal polynomials in T1, . . . , Tn with coefficients in V may be
denoted V [T1, . . . , Vn]. This is a vector space over k, with respect to termwise
addition and scalar multiplication. More precisely, V [T1, . . . , Tn] can be defined
as the space c00((Z+ ∪ {0})n, V ) of V -valued functions on (Z+ ∪ {0})n with
finite support, where such a function gives the coefficients of the polynomial. In
particular, the coefficient fα of a formal polynomial f(T ) may be considered as
being defined for every α ∈ (Z+ ∪ {0})n, with fα = 0 for all but finitely many
α. Addition and scalar multiplication of formal polynomials correspond exactly
to pointwise addition and scalar multiplication of these V -valued functions on
(Z+ ∪ {0})n.

Let f(T ) ∈ V [T1, . . . , Tn] be given as in (2.4), and let t be an element of kn.
If α ∈ (Z+ ∪ {0})n, then put

tα = tα1
1 · · · tαn

n ,(2.5)

where t
αj

j is interpreted as being the multiplicative identity element 1 in k when
αj = 0. This defines an element of k, so that

f(t) =
∑

|α|≤N

fα tα(2.6)

defines an element of V . Note that

f(T ) 7→ f(t)(2.7)
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defines a linear mapping from V [T1, . . . , Tn] into V . If t = 0, then tα = 0 when
α ̸= 0, and

f(0) = f0.(2.8)

As before, we can apply the previous remarks to V = k, considered as a
one-dimensional vector space over itself. Note that the monomials Tα, with
α ∈ (Z+ ∪ {0})n, may be considered as elements of k[T1, . . . , Tn], and that they
form a basis for k[T1, . . . , Tn] as a vector space over k. If f(T ) ∈ k[T1, . . . , Tn]
and v ∈ V , then f(T ) v defines an element of V [T1, . . . , Tn].

3 Coefficients in an algebra

Let k be a field, and letA be an algebra over k. Also let T1, . . . , Tn be commuting
indeterminates, so that A[T1, . . . , Tn] may be defined as a vector space over k
as in the previous section. Let f(T ) ∈ A[T1, . . . , Tn] be given as in (2.4), and
let

g(T ) =
∑

|β|≤N ′

gβ T
β(3.1)

be another element of A[T1, . . . , Tn], where N ′ is a nonnegative integer, and
gβ ∈ A for every β ∈ (Z+ ∪ {0})n with |β| ≤ N ′. The product

h(T ) = f(T ) g(T )(3.2)

is defined by

h(T ) =
∑

|γ|≤N+N ′

hγ T
γ ,(3.3)

where
hγ =

∑
α+β=γ

fα gβ(3.4)

for every γ ∈ (Z+∪{0})n with |γ| ≤ N+N ′. More precisely, the coefficients fα,
gβ of f(T ), g(T ) may be considered as being defined for all multi-indices α, β, as
in the previous section, with fα = 0 when |α| > N , and gβ = 0 when |β| > N ′. If
γ is any multi-index, then there are only finitely many pairs of multi-indices α, β
such that α+β = γ. The sum on the right side of (3.4) is taken over these pairs
of multi-indices, and defines an element of A. It is easy to see that hγ = 0 when
|γ| > N +N ′. This defines (3.3) as an element of A[T1, . . . , Tn], which defines
multiplication on A[T1, . . . , Tn]. Of course, multiplication on A[T1, . . . , Tn] is
bilinear with respect to k. One can check that multiplication on A[T1, . . . , Tn]
is associative, so that A[T1, . . . , Tn] is an algebra over k. If multiplication on A
is commutative, then multiplication on A[T1, . . . , Tn] is commutative as well.

There is a natural embedding of A into A[T1, . . . , Tn], which sends a ∈ A to
the polynomial for which the coefficient of Tα is equal to a when α = 0, and to
0 when α ̸= 0. This embedding is an algebra homomorphism, so that we may
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identify A with a subalgebra of A[T1, . . . , Tn]. If A has a multiplicative iden-
tity element e, then the corresponding polynomial is the multiplicative identity
element in A[T1, . . . , Tn].

Let f(T ) ∈ A[T1, . . . , Tn] be given as in (2.4) again, and let t ∈ kn be given.
Thus tα is defined as an element of k for each multi-index α, as in (2.5), so
that f(t) can be defined as an element of A as in (2.6). One can verify that
f(T ) 7→ f(t) defines an algebra homomorphism from A[T1, . . . , Tn] into A.

The previous remarks can be applied in particular to A = k, considered as
a commutative algebra over itself. Thus k[T1, . . . , Tn] is a commutative algebra
over k, with a multiplicative identity element corresponding to the multiplicative
identity element in k. Let A0 be an algebra over k with a multiplicative identity
element e0, and let x ∈ An

0 be given. Suppose that the coordinates of x commute
in A0, which is to say that

xj xl = xl xj(3.5)

for every j, l = 1, . . . , n. Note that this condition holds automatically when
n = 1. If α ∈ (Z+ ∪ {0})n, then put

xα = xα1
1 · · ·xαn

n ,(3.6)

where x
αj

j is interpreted as being equal to e0 when αj = 0. This defines (3.6)
as an element of A0. If f(T ) ∈ k[T1, . . . , Tn] is given as in (2.4), then

f(x) =
∑

|α|≤N

fα xα(3.7)

defines an element of A0. One can check that f(T ) 7→ f(x) defines an algebra
homomorphism from k[T1, . . . , Tn] into A0 under these conditions.

4 Formal power series

Let k be a field, let V be a vector space over k, and let T1, . . . , Tn be commuting
indeterminates. A formal power series in T1, . . . , Tn with coefficients in V can
be expressed as

f(T ) =
∑

α∈(Z+∪{0})n
fα Tα,(4.1)

where fα ∈ V for each multi-index α. The space V [[T1, . . . , Tn]] of these formal
power series is a vector space over k with respect to termwise addition and
scalar multiplication. As before, this space can be defined more precisely as
the space c((Z+ ∪ {0})n, V ) of all V -valued functions on (Z+ ∪ {0})n. The
space V [T1, . . . , Tn] of formal polynomials in T1, . . . , Tn with coefficients in V
may be considered as a linear subspace of V [[T1, . . . , Tn]], corresponding to
c00((Z+ ∪ {0})n, V ) as a linear subspace of c((Z+ ∪ {0})n, V ).

Let A be an algebra over k, so that A[[T1, . . . , Tn]] can be defined initially as
a vector space over k, as in the preceding paragraph. Let f(T ) ∈ A[[T1, . . . , Tn]]
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be given as in (4.1), and let

g(T ) =
∑

β∈(Z+∪{0})n
gβ T

β(4.2)

be another element of A[[T1, . . . , Tn]]. The product h(T ) = f(T ) g(T ) is defined
by

h(T ) =
∑

γ∈(Z+∪{0})n
hγ T

γ ,(4.3)

where
hγ =

∑
α+β=γ

fα gβ(4.4)

for each multi-index γ. More precisely, the sum on the right side of (4.4) is taken
over all pairs of multi-indices α, β such that α+β = γ, and there are only finitely
many such pairs for each multi-index γ, as before. Thus (4.4) defines an element
of A for every multi-index γ, so that (4.3) defines an element of A[[T1, . . . , Tn]].
This defines multiplication on A[[T1, . . . , Tn]], which is bilinear with respect to
k. One can verify that multiplication on A[[T1, . . . , Tn]] is associative, as before,
so that A[[T1, . . . , Tn]] is an algebra over k. If A is a commutative algebra, then
A[[T1, . . . , Tn]] is a commutative algebra too.

The algebra A[T1, . . . , Tn] of formal polynomials in T1, . . . , Tn with coeffi-
cients in A may be considered as a subalgebra of A[[T1, . . . , Tn]]. In particular,
A can be identified with a subalgebra of A[[T1, . . . , Tn]], as before. If A has a
multiplicative identity element e, then the corresponding formal power series is
the multiplicative identity element in A[[T1, . . . , Tn]].

There is a natural mapping fromA[[T1, . . . , Tn]] ontoA, which sends a formal
power series f(T ) as in (4.1) to the α = 0 coefficient f0. Note that this mapping
is an algebra homomorphism.

Let us suppose from now on in this section that A has a multiplicative
identity element e, for which the corresponding formal power series is the multi-
plicative identity element in A[[T1, . . . , Tn]], as before. Let f(T ) ∈ [[T1, . . . , Tn]]
be as in (4.1) again, and suppose that f(T ) has a multiplicative inverse in
A[[T1, . . . , Tn]]. Under these conditions, one can check that f0 has a multi-
plicative inverse in A[[T1, . . . , Tn]], using the homomorphism mentioned in the
preceding paragraph. It is well known that the converse holds, using geometric
series in A[[T1, . . . , Tn]], as follows.

Let
b(T ) =

∑
β∈(Z+∪{0})n

bβ T
β(4.5)

be an element of A[[T1, . . . , Tn]]. If j is a positive integer, then b(T )j can
be defined using multiplication in A[[T1, . . . , Tn]]. Suppose that b0 = 0. If
α ∈ (Z+ ∪ {0})n and j ∈ Z+ satisfy |α| < j, then one can verify that the
coefficient of Tα in b(T )j is equal to 0. Let us interpret b(T )j as being the
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power series corresponding to e when j = 0, so that

n∑
j=0

b(T )j(4.6)

can be defined as an element of A[[T1, . . . , Tn]] for each nonnegative integer n.
The coefficient of Tα in (4.6) does not depend on n when n ≥ |α|, because the
coefficient of Tα in b(T )j is 0 when j > |α|. This permits us to define

∞∑
j=0

b(T )j(4.7)

as an element of A[[T1, . . . , Tn]], where the coefficient of Tα in (4.7) is the same
as the coefficient of Tα in (4.6) when n ≥ |α|.

Of course,

(e− b(T ))
( n∑

j=0

b(T )j
)
=

( n∑
j=0

b(T )j
)
(e− b(T )) = e− b(T )n+1(4.8)

for each nonnegative integer n, where e is also used to denote the corresponding
formal power series. Using this, one can check that

(e− b(T ))
( ∞∑

j=0

b(T )j
)
=

( ∞∑
j=0

b(T )j
)
(e− b(T )) = e.(4.9)

More precisely, for each multi-index γ, the coefficient of T γ in either of the
products in (4.9) is the same as in the corresponding product in (4.9) when
n ≥ |γ|. Hence this coefficient is equal to e when γ = 0, and to 0 otherwise.
This shows that (4.7) is the multiplicative inverse of e− b(T ) in A[[T1, . . . , Tn]].

Let f(T ) ∈ A[[T1, . . . , Tn]] be as in (4.1) again, and suppose that f0 has a
multiplicative inverse in A. This permits us to express f(T ) as

f(T ) = f0 (e− b(T )),(4.10)

where b(T ) ∈ A[[T1, . . . , Tn]] satisfies b0 = 0. Thus e− b(T ) has a multiplicative
inverse in A[[T1, . . . , Tn]], as in the preceding paragraph. It follows that f(T )
has a multiplicative inverse in A[[T1, . . . , Tn]] as well in this case.

5 Combining indeterminates

Let k be a field, and let V be a vector space over k. Also let m, n be positive
integers, and let X1, . . . , Xm, Y1, . . . , Yn be m + n commuting indeterminates.
As in the previous section, the space V [[X1, . . . , Xm]] of formal power series in
X1, . . . , Xm with coefficients in V is a vector space over k. Thus the space

(V [[X1, . . . , Xm]])[[Y1, . . . , Yn]](5.1)
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of formal power series in Y1, . . . , Yn with coefficients in V [[X1, . . . , Xm]] may
be defined as before, and is a vector space over k. An element of (5.1) can be
expressed as

f(Y ) =
∑

β∈(Z+∪{0})n
fβ Y

β ,(5.2)

where fβ = fβ(X) ∈ V [[X1, . . . , Xm]] for each β ∈ (Z+ ∪ {0})n.
Of course, fβ(X) can be expressed as

fβ(X) =
∑

α∈(Z+∪{0})m
fα,β X

α(5.3)

for each β ∈ (Z+ ∪ {0})n, where fα,β ∈ V for every α ∈ (Z+ ∪ {0})m. Let us
consider

f(X,Y ) =
∑

α∈(Z+∪{0})m

∑
β∈(Z+∪{0})n

fα,β X
α Y β(5.4)

as a formal power series in X1, . . . , Xm, Y1, . . . , Yn, with coefficients in V . This
uses the obvious identification of (Z+ ∪ {0})m+n with the Cartesian product of
(Z+ ∪ {0})m and (Z+ ∪ {0})n. This leads to a one-to-one linear mapping from
(5.1) onto

V [[X1, . . . , Xm, Y1, . . . , Yn]].(5.5)

More precisely, if (5.4) is any element of (5.5), then (5.3) defines an element of
V [[X1, . . . , Xm]] for every β ∈ (Z+ ∪ {0})n, so that (5.2) defines an element of
(5.1).

If A is a nonempty set, then the space c(A, V ) of V -valued functions on A
is a vector space over k, as in Section 1. Similarly, if B is another nonempty
set, then the space c(B, c(A, V )) of functions on B with values in c(A, V ) is a
vector space over k too. The space c(A × B, V ) of V -valued functions on the
Cartesian product A×B of A and B is a vector space over k as well. If f(a, b)
is a V -valued function on A×B, then

fb(a) = f(a, b)(5.6)

defines a V -valued function of a ∈ A for each b ∈ B. Thus

b 7→ fb(5.7)

defines a function on B with values in c(A, V ). This defines a one-to-one linear
mapping from c(A × B, V ) onto c(B, c(A, V )). If we take A = (Z+ ∪ {0})m
and B = (Z+ ∪ {0})n, then A × B can be identified with (Z+ ∪ {0})m+n, as
before. In this case, the identification between (5.1) and (5.5) described in the
preceding paragraph corresponds to identifying c(B, c(A, V )) with c(A×B, V ).

The space V [X1, . . . , Xn] of formal polynomials in X1, . . . , Xm with coeffi-
cients in V may be considered as a linear subspace of V [[X1, . . . , Xm]], as before.
Similarly, the space

(V [X1, . . . , Xm])[Y1, . . . , Yn](5.8)
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of formal polynomials in Y1, . . . , Yn may be considered as a linear subspace
of (5.1). An element f(Y ) of (5.8) can be expressed as in (5.2), where fβ =
fβ(X) ∈ V [X1, . . . , Xm] for every β ∈ (Z+ ∪ {0})m, and fβ(X) = 0 for all
but finitely many β. If β ∈ (Z+ ∪ {0})n, then fβ(Y ) can be expressed as in
(5.3), where fα,β = 0 for all but finitely many α ∈ (Z+ ∪ {0})m. Under these
conditions, (5.4) defines an element of

V [X1, . . . , Xm, Y1, . . . , Yn],(5.9)

considered as a linear subspace of (5.5). Conversely, if (5.4) corresponds to an
element of (5.9), then fα,β = 0 for all but finitely many α ∈ (Z+ ∪ {0})m and
β ∈ (Z+ ∪ {0})n. This implies that (5.3) defines an element of V [X1, . . . , Xm]
for every β ∈ (Z+∪{0})n, which is equal to 0 for all but finitely many β. Hence
(5.2) defines an element of (5.1), so that (5.8) corresponds exactly to (5.9). One
can also look at this in terms of V -valued functions with finite support, as in
the previous paragraph.

Let A be an algebra over k, so that A[[X1, . . . , Xm]] is an algebra over k too.
Thus

(A[[X1, . . . , Xm]])[[Y1, . . . , Yn]](5.10)

is an algebra over k as well, as is

A[[X1, . . . , Xm, Y1, . . . , Ym]].(5.11)

One can verify that the mapping from (5.2) to (5.4) described earlier defines an
algebra isomorphism from (5.10) onto (5.11).

6 Adding indeterminates

Let k be a field, and let V be a vector space over k. If n is a positive integer
and v ∈ V , then n · v can be defined as the sum of n v’s in V . Note that

n · (v + w) = n · v + n · w(6.1)

for every n ≥ 1 and v, w ∈ V , and that

(m+ n) · v = m · v + n · v(6.2)

for every m,n ≥ 1 and v ∈ V . We also have that

(mn) · v = m · (n · v)(6.3)

for every m,n ≥ 1 and v ∈ V . Similarly, if n is a positive integer and t ∈ k,
then n · t can be defined as the sum of n x’s in k. If t ∈ k and v ∈ V , then

n · (t v) = (n · t) v = t (n · v)(6.4)

In particular, if 1 is the multiplicative identity element in k, then n ·v = (n ·1) v
for every n ≥ 1 and v ∈ V .
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Let X and Y be commuting indeterminates. If j is a nonnegative integer,
then (X +Y )j can be defined as a polynomial in X, Y with integer coefficients.
More precisely,

(X + Y )j =

j∑
l=0

(
j

l

)
X l Y j−l,(6.5)

where
(
j
l

)
are the usual binomial coefficients. One can also consider X and Y as

polynomials with coefficients in k, using the multiplicative identity element in
k. In this case, (X+Y )j is defined as a polynomial in X and Y with coefficients
in k too, and can be expressed as in (6.5), where positive integer multiples are
defined as in the preceding paragraph.

Let T be an indeterminate, and let

f(T ) =

∞∑
j=0

fj T
j(6.6)

be a formal power series in T with coefficients in V . Let us consider

f(X + Y ) =

∞∑
j=0

fj (X + Y )j =

∞∑
j=0

j∑
l=0

(
j

l

)
· fj X l Y j−l(6.7)

as a formal power series in X and Y , with coefficients in V . This defines a
linear mapping from V [[T ]] into V [[X,Y ]]. If f(T ) is a formal polynomial in
T , then f(X + Y ) is a formal polynomial in X and Y . There are analogous
statements for formal power series in several commuting indeterminates, which
can also be reduced to the case of formal power series in one indeterminate, as
in the preceding section.

Using (6.7), we can get a formal power series a(X,Y ) in X and Y with
coefficients in V such that

f(X + Y ) = f(X) + a(X,Y )Y.(6.8)

Here f(X) is defined as a formal power series in X using the same coefficients
as in (6.6), and a(X,Y )Y is defined as a formal power series in X and Y with
coefficients in V by multiplying a(X,Y ) by Y termwise in the obvious way.
More precisely, the sum of the terms on the right side of (6.7) with l = j gives
f(X). The sum of the other terms can be expressed as a(X,Y )Y , because each
of these terms has at least one factor of Y . If f(T ) is a formal polynomial in T ,
then a(X,Y ) is a formal polynomial in X and Y .

7 Differentiation

Let k be a field, and let V be a vector space over k. Also let T be an indeter-
minate, and let

f(T ) =

∞∑
j=0

fj T
j(7.1)
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be a formal power series in T with coefficients in V . The (formal) derivative of
f(T ) is defined as usual by

f ′(T ) =

∞∑
j=1

j · fj T j−1 =

∞∑
j=0

(j + 1) · fj+1 T
j ,(7.2)

which is a formal power series in T with coefficients in V as well. Here j · fj is
defined as an element of V as in the previous section. Note that

f(T ) 7→ f ′(T )(7.3)

defines a linear mapping from V [[T ]] into itself, which sends V [T ] into itself.
Suppose for the moment that k has characteristic 0, so that the field Q of

rational numbers may be considered as a subfield of k. If f(T ) ∈ V [[T ]] satisfies

f ′(T ) = 0,(7.4)

then it follows that fj = 0 for each j ≥ 1, so that f(T ) is a constant power
series. If g(T ) ∈ V [[T ]], then there is an f(T ) ∈ V [[T ]] such that

f ′(T ) = g(T ).(7.5)

In this case, f(T ) is uniquely determined by g(T ), except for the constant term
in f(T ). Similarly, if g(T ) ∈ V [T ], then there is an f(T ) ∈ V [T ] that satisfies
(7.5).

Let f(T ) ∈ V [[T ]] be given again, and let X, Y be commuting indetermi-
nates. Thus f(X + Y ) can be defined as formal power series in X and Y with
coefficients in V , as in the previous section. One can check that there is a formal
power series b(X,Y ) in X and Y with coefficients in V such that

f(X + Y ) = f(X) + f ′(X)Y + b(X,Y )Y 2,(7.6)

where f(X) and f ′(X) are defined as formal power series in X using the same
coefficients as in (7.1) and (7.2). Here f ′(X)Y and b(X,Y )Y 2 are defined as
formal power series in X and Y with coefficients in V by multiplying f ′(X) and
b(X,Y ) termwise by Y and Y 2, respectively, in the obvious way. As before, the
sum of the terms on the right side of (6.7) with l = j gives f(X). Similarly,
the sum of the terms on the right side of (6.7) with j ≥ 1 and l = j − 1 gives
f ′(X)Y . The sum of the other terms can be expressed as b(X,Y )Y 2, because
each of these terms has at least two factors of Y . If f(T ) is a formal polynomial
in T , then b(X,Y ) is a formal polynomial in X and Y .

Let T1, . . . , Tn be commuting indeterminates, and let f(T ) be a formal power
series in T1, . . . , Tn with coefficients in V , as in (4.1). The partial derivative

(∂jf)(T ) =
( ∂

∂Tj
f
)
(T )(7.7)

of f(T ) with respect to Tj can be defined as a formal power series in T1, . . . , Tn

with coefficients in V for each j = 1, . . . , n, in essentially the same way as before.
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One can also reduce to the one-variable case, by identifying f(T ) with a formal
power series in Tj with coefficients in the vector space of formal power series
in the other indeterminates, as in Section 5. In particular, if (∂jf)(T ) = 0 for
some j, and if k has characteristic 0, then f(T ) reduces to a formal power series
in the other n− 1 indeterminates.

8 The product rule

Let k be a field again, and let A be an algebra over k. If n is a positive integer
and x ∈ A, then n · x is defined as a sum of n x’s in A, as before. It is easy to
see that

n · (x y) = (n · x) y = x (n · y)(8.1)

for every n ≥ 1 and x, y ∈ A.
Let f(T ) as in (7.1) and

g(T ) =

∞∑
l=0

gl T
l(8.2)

be formal power series in T with coefficients in A. As in Section 4, the product
h(T ) = f(T ) g(T ) is defined by

h(T ) =

∞∑
n=0

hn T
n,(8.3)

where

hn =
∑
j,l≥0
j+l=n

fj gl =

n∑
j=0

fj gn−j(8.4)

for each nonnegative integer n. More precisely, the first sum is taken over all
nonnegative integers j and l such that j+ l = n, which is the same as the second
sum. Thus

h′(T ) =

∞∑
n=0

(n+ 1) · hn+1 T
n =

∞∑
n=0

( n+1∑
j=0

(n+ 1) · fj gn+1−j

)
Tn,(8.5)

as in the previous section. Under these conditions, we have that

h′(T ) = f ′(T ) g(T ) + f(T ) g′(T ),(8.6)

as in the usual product rule.
To see this, remember that f ′(T ) is given in (7.2), and similarly

g′(T ) =

∞∑
l=0

(l + 1) · gl+1 T
l.(8.7)
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Thus

f ′(T ) g(T ) =

∞∑
n=0

( n∑
j=0

(j + 1) · fj+1 gn−j

)
Tn(8.8)

and

f(T ) g′(T ) =

∞∑
n=0

( n∑
j=0

fj (n− j + 1) · gn−j+1

)
Tn.(8.9)

Equivalently,

f ′(T ) g(T ) =

∞∑
n=0

( n+1∑
j=1

j · fj gn−j+1

)
Tn =

∞∑
n=0

( n+1∑
j=0

j · fj gn+1−j

)
Tn(8.10)

and

f(T ) g′(T ) =

∞∑
n=0

( n+1∑
j=0

(n+ 1− j) · fj gn+1−j

)
Tn.(8.11)

The sum of the right sides of (8.10) and (8.11) is equal to the right side of (8.5),
as desired.

Now let T1, . . . , Tn be commuting indeterminates, and let f(T ) and g(T ) be
formal power series in T1, . . . , Tn with coefficients in A. Their product h(T ) =
f(T ) g(T ) is defined as a formal power series in T1, . . . , Tn with coefficients in
A too, as in Section 4. The partial derivatives of f(T ), g(T ), and h(T ) with
respect to Tj can be defined as formal power series in T1, . . . , Tn with coefficients
in A for each j = 1, . . . , n, as in the previous section. One can check that the
product rule

(∂jh)(T ) = (∂jf)(T ) g(T ) + f(T ) (∂jg)(T )(8.12)

holds for each j = 1, . . . , n. This can be verified directly, in essentially the
same way as before. Alternatively, for each j = 1, . . . , n, one can identify f(T ),
g(T ), and h(T ) with formal power series in Tj , with coefficients in the algebra
of formal power series in the other n − 1 indeterminates, as in Section 5. This
permits one to reduce (8.12) to the previous case.

9 Exponentiation

Let k be a field of characteristic 0, so that Q may be considered as a subfield
of k. The exponential function can be defined as a formal power series in an
indeterminate T with coefficients in k by

exp(T ) =

∞∑
j=0

(1/j!)T j ,(9.1)

as usual. Of course, the derivative of this formal power series is equal to itself.
If X and Y are commuting indeterminates, then

exp(X + Y ) =

∞∑
j=0

(1/j!) (X + Y )j =

∞∑
j=0

j∑
l=0

(1/j!)

(
j

l

)
X l Y j−l(9.2)
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defines a formal power series in X and Y with coefficients in k, as before. In
this case, this reduces to

exp(X + Y ) =

∞∑
j=0

j∑
l=0

(1/l!) (1/(j − l)!)X l Y j−l = exp(X) exp(Y ),(9.3)

using the fact that
(
j
l

)
= j!/l! (j − l)! in the first step.

Let A be an algebra over k with a multiplicative identity element e, and let
a ∈ A be given. Consider

Ea(T ) =

∞∑
j=0

(aj/j!)T j(9.4)

as a formal power series in an indeterminate T with coefficients in A, which
corresponds to exponentiating aT . Here aj is interpreted as being equal to e
when j = 0, as usual. Observe that

E′
a(T ) =

∞∑
j=0

(j + 1) (aj+1/(j + 1)!)T j = aEa(T ).(9.5)

Of course, if a = 0, then Ea(T ) is the constant power series corresponding to e,
which is the multiplicative identity element in A[[T ]].

Let b be another element of A, and suppose that a and b commute. This
implies that

(a+ b)j =

j∑
l=0

(
j

l

)
al bj−l(9.6)

for each nonnegative integer j, as in the binomial theorem. Thus

Ea+b(T ) =

∞∑
j=0

((a+ b)j/j!)T j =

∞∑
j=0

( j∑
l=0

(al/l!) (bj−l/(j − l)!)
)
T j .(9.7)

It follows that
Ea+b(T ) = Ea(T )Eb(T )(9.8)

as formal power series in T under these conditions.
In particular, we can apply this to b = −a, to get that

Ea(T )E−a(T ) = E0(T ) = e.(9.9)

This means that Ea(T ) has a multiplicative inverse in A[[T ]], namely

Ea(T )
−1 = E−a(T ).(9.10)

Similarly, we can use (9.8) to get that

Ea(T )
j = Ej a(T )(9.11)

for every positive integer j. This also works for negative integers j, because of
(9.10). If j = 0, then Ea(T )

j is interpreted as being the multiplicative identity
element in A[[T ]], which is the same as E0(T ), so that (9.11) holds in this case
too.
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10 Binomial series

Let k be a field of characteristic 0 again, and let A be an indeterminate. If j is
a positive integer, then(

A

j

)
=

A (A− 1) · · · (A− j + 1)

j!
(10.1)

defines a formal polynomial of degree j in A with coefficients in Q, and hence
k. If j = 0, then (10.1) is interpreted as being the constant polynomial corre-
sponding to 1, as usual. If a ∈ k, then(

a

j

)
=

a (a− 1) · · · (a− j + 1)

j!
(10.2)

defines an element of k for each positive integer j, which corresponds to evalu-
ating (10.1) at a. Similarly, (10.2) is interpreted as being equal to 1 for every
a ∈ k when j = 0. Of course, if a and j are nonnegative integers with j ≤ a,
then (10.2) is the usual binomial coefficient. If a and j are nonnegative integers
and a < j, then (10.2) is equal to 0.

Let X be another indeterminate, which commutes with A. We can consider

B(A,X) =

∞∑
j=0

(
A

j

)
Xj(10.3)

as a formal power series in X with coefficients in k[A], the algebra of formal
polynomials in A with coefficients in k. In particular, this corresponds to a
formal power series in A and X with coefficients in k, as in Section 5. It is well
known that (10.3) corresponds, at least formally, to

(1 +X)A.(10.4)

Let A be an algebra over k with a multiplicative identity element e. If a ∈ A,
then (

a

j

)
=

a (a− e) · · · (a− (j − 1) e)

j!
(10.5)

defines an element of A for each positive integer j. This corresponds to evaluat-
ing (10.1) at a, as in Section 3. Of course, (10.5) reduces to (10.2) when A = k.
If j = 0, then (10.5) is interpreted as being equal to e for every a ∈ A, as usual.
Thus

B(a,X) =

∞∑
j=0

(
α

j

)
Xj(10.6)

may be considered as a formal power series in X with coefficients in A when
a ∈ A. As before, this corresponds formally to

(1 +X)a.(10.7)
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In particular, we can take A = k, considered as an algebra over itself. If a
is a nonnegative integer, then (10.6) reduces to

B(a,X) =

n∑
j=0

(
a

j

)
Xj = (1 +X)a,(10.8)

using the binomial theorem in the second step. Observe that(
−1

j

)
= (−1)j(10.9)

for every nonnegative integer j. Thus

B(−1, X) =

∞∑
j=0

(−1)j Xj = (1 +X)−1,(10.10)

which is the multiplicative inverse of 1 +X in k[[T ]].

11 Some identities

Let X be an indeterminate. If a and b are nonnegative integers, then

(1 +X)a =

a∑
j=0

(
a

j

)
Xj ,(11.1)

(1 +X)b =

b∑
l=0

(
b

l

)
X l, and(11.2)

(1 +X)a+b =

a+b∑
n=0

(
a+ b

n

)
Xn(11.3)

as formal polynomials in X with integer coefficients, as in the binomial theorem.
Of course, we also have that

(1 +X)a (1 +X)b = (1 +X)a+b(11.4)

as formal polynomials in X. for all nonnegative integers a, b. It follows that(
a+ b

n

)
=

n∑
j=0

(
a

j

)(
b

n− j

)
(11.5)

for all nonnegative integers a, b, n. Remember that
(
u
v

)
= 0 when u and v are

nonnegative integers with u < v, as in the previous section.
Let A be another indeterminate. If j is a nonnegative integer, then

(
A
j

)
is defined as a formal polynomial in A with rational coefficients, as in (10.1).
Similarly, if b and n are nonnegative integers, then(

A+ b

n

)
=

(A+ b) (A+ b− 1) · · · (A+ b− n+ 1)

n!
(11.6)
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is defined as a formal polynomial in A with rational coefficients, which is inter-
preted as being the constant polynomial corresponding to 1 when n = 0. Using
(11.5), we get that (

A+ b

n

)
=

n∑
j=0

(
A

j

)(
b

n− j

)
(11.7)

as formal polynomials in A with rational coefficients for all nonnegative integers
b, n. More precisely, (11.5) says that the corresponding polynomial functions
take the same values on nonnegative integers, so that these polynomials are the
same.

Let B be an indeterminate that commutes with A. If l is a nonnegative
integer, then

(
B
l

)
can be defined as a formal polynomial with rational coefficients,

as in (10.1) again. If n is a nonnegative integer, then(
A+B

n

)
=

(A+B) (A+B − 1) · · · (A+B − n+ 1)

n!
(11.8)

defines a formal polynomial in A and B with rational coefficients, which is
interpreted as being the constant polynomial corresponding to 1 when n = 0,
as usual. As in Part (i) of Exercise 8 on p74 of [1],(

A+B

n

)
=

n∑
j=0

(
A

j

)(
B

n− j

)
(11.9)

as formal polynomials in A and B with rational coefficients for every nonnegative
integer n. To see this, one can consider both sides of (11.9) as formal polynomials
in A with coefficients in Q[B], the algebra of formal polynomials in B with
rational coefficients. If we evaluate both sides of (11.9) at a nonnegative integer
b, then we get an equality between formal polynomials in A, as in the preceding
paragraph. This implies that the polynomials in B that occur as coefficients
of powers of A in both sides of (11.9) are the same, because they are the same
when evaluated at nonnegative integers.

Let k be a field of characteristic 0, and let A1, A2, and X be commuting
indeterminates. One can define B(A1, X) and B(A2, X) as formal power series
in A1, X and A2, X, respectively, with coefficients in k, as in the previous
section. More precisely, B(A1, X) and B(A2, X) can be defined as formal power
series in X whose coefficients are formal polynomials in A1 and A2, respectively,
with coefficients in k. Similarly,

B(A1 +A2, X) =

∞∑
j=0

(
A1 +A2

j

)
Xj(11.10)

can be defined as a formal power series in X with coefficients in k[A1, A2], the
algebra of formal polynomials in A1 and A2 with coefficients in k. Using (11.9),
we get that

B(A1 +A2, X) = B(A1, X)B(A2, X),(11.11)
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as formal power series in X with coefficients in k[A1, A2].
Let A be an algebra over k with a multiplicative identity element e. If a ∈ A

and j is a nonnegative integer, then
(
a
j

)
can be defined as an element of A, as

in the previous section. If a and b are commuting elements of A, then (11.5)
holds for all nonnegative integers n, because of (11.8). This implies that

B(a+ b,X) = B(a,X)B(b,X)(11.12)

as formal power series in X with coefficients in A. Of course, this also corre-
sponds to evaluating (11.11) at a and b.

12 A differential equation

Let k be a field of characteristic 0, and let A be an indeterminate. If b ∈ k, then(
A+b
n

)
can be defined as a formal polynomial in A with coefficients in k for each

nonnegative integer n, as in (11.6). This also corresponds to evaluating
(
A+B
n

)
at b, where B is another indeterminate that commutes with A, and

(
A+B
n

)
is

defined as a formal polynomial in A and B with coefficients in k as in (11.8).
Note that (11.7) holds for every nonnegative integer n, as an equality of formal
polynomials in A with coefficients in k. This follows from (11.9), by evaluating
at b.

Similarly, if X is another indeterminate that commutes with A, then

B(A+ b,X) =

∞∑
j=0

(
A+ b

j

)
Xj(12.1)

can be defined as a formal power series in X with coefficients in k[A], the algebra
of formal polynomials in A with coefficients in k. This corresponds to (11.10)
with A1 = A and A2 evaluated at b. As before,

B(A+ b,X) = B(A,X)B(b,X),(12.2)

as formal power series in X with coefficients in k[A]. This follows from the ver-
sion of (11.7) mentioned in the preceding paragraph. This can also be obtained
from (11.11), with A1 = A and A2 evaluated at b again.

Consider
∂

∂X
B(A,X) =

∞∑
j=0

(j + 1)

(
A

j + 1

)
Xj ,(12.3)

which is another formal power series in X with coefficients in k[X]. Observe
that

(j + 1)

(
A

j + 1

)
= (j + 1)

A (A− 1) · · · (A− (j + 1) + 1)

(j + 1)!
(12.4)

=
A (A− 1) · · · (A− j)

j!
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for each nonnegative integer j, using (10.1) in the first step. Hence

(j + 1)

(
A

j + 1

)
= A

(A− 1) · · · ((A− 1)− j + 1)

j!
= A

(
A− 1

j

)
(12.5)

for every j ≥ 0, as formal polynomials in A. This implies that

∂

∂X
B(A,X) = AB(A− 1, X)(12.6)

as formal power series in X with coefficients in k[A]. Equivalently, this means
that

∂

∂X
B(A,X) = A (1 +X)−1 B(A,X),(12.7)

because of (10.10) and (12.2).
Let A be an algebra over k with multiplicative identity element e. If a ∈ A,

then B(a,X) is defined as a formal power series in X with coefficients in A, as
in Section 10, and

d

dX
B(a,X) =

∞∑
j=0

(j + 1)

(
a

j + 1

)
Xj .(12.8)

As in (12.7), we have that

d

dX
B(a,X) = a (1 +X)−1 B(a,X)(12.9)

as formal power series in X with coefficients in A. More precisely, this can be
obtained in the same way as before, or by evaluating (12.7) at a. Of course, we
are implicitly identifying elements of k with the corresponding multiples of e in
A.

Sometimes (12.7) is expressed as

(1 +X)
∂

∂X
B(A,X) = AB(A,X),(12.10)

and similarly (12.9) may be expressed as

(1 +X)
d

dX
B(a,X) = aB(a,X),(12.11)

as in Exercise 22 on p201 in [8]. To get this more directly, one should verify
that

B(A− 1, X) (1 +X) = B(A,X),(12.12)

as formal power series in X with coefficients in k[A]. This reduces to the fact
that (

A− 1

j

)
+

(
A− 1

j − 1

)
=

(
A

j

)
(12.13)
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as formal polynomials in A with coefficients in k for each positive integer j.
This corresponds to replacing A in (11.7) with A − 1, and taking b = 1. One
can check (12.13) directly from the definitions as well.

Part II

Absolute values and norms

13 Metrics and ultrametrics

Let X be a set, and let d(x, y) be a nonnegative real-valued function defined
for x, y ∈ X. As usual, d(x, y) is said to be a metric on X if it satisfies the
following three conditions. First,

d(x, y) = 0 if and only if x = y.(13.1)

Second,
d(x, y) = d(y, x) for every x, y ∈ X.(13.2)

Third,
d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X.(13.3)

If d(·, ·) satisfies (13.1), (13.2), and

d(x, z) ≤ max(d(x, y), d(y, z)) for every x, y, z ∈ X,(13.4)

then d(·, ·) is said to be an ultrametric on X. Note that (13.4) implies (13.3), so
that ultrametrics are metrics. The discrete metric is defined on X by putting
d(x, y) = 1 when x ̸= y, and d(x, x) = 0 for every x ∈ X. It is easy to see that
this defines an ultrametric on X.

Let d(x, y) be a metric on X. If x ∈ X and r is a positive real number, then
the open ball in X centered at x with radius r is defined by

B(x, r) = {y ∈ X : d(x, y) < r}.(13.5)

Similarly, if r is a nonnegative real number, then the closed ball in X centered
at x with radius r is defined by

B(x, r) = {y ∈ X : d(x, y) ≤ r}.(13.6)

It is well known that open balls in X are open sets with respect to the topology
determined by d(·, ·), and that closed balls are closed sets. If d(·, ·) is an ultra-
metric on X, then one can check that clsoed balls in X of positive radius are
open sets. More precisely, if x, y ∈ X and d(x, y) ≤ r, then

B(y, r) ⊆ B(x, r).(13.7)

In fact,
B(x, r) = B(y, r)(13.8)
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in this case, as one can see by exchanging the roles of x and y. One can also
verify that open balls in X are closed sets when d(·, ·) is an ultrametric on X.

Let d(x, y) be a metric on X again, and let Y be a subset of X. Of course,
the restriction of d(x, y) to x, y ∈ Y defines a metric on Y . If d(x, y) is an
ultrametric on X, then the restriction of d(x, y) to Y is an ultrametric on Y . If
Y is dense in X, and if the restriction of d(x, y) to x, y ∈ Y is an ultrametric
on Y , then one can check that d(x, y) is an ultrametric on X.

Let (X, dX) and (Y, dY ) be metric spaces, and let E be a dense subset of X.
Also let f be a uniformly continuous mapping from E into Y , with respect to
the restriction of dX to E. If Y is complete, then it is well known that there is a
unique extension of f to a uniformly continuous mapping from X into Y . More
precisely, the uniqueness of the extension only requires ordinary continuity.

If a metric space (X, d) is not complete, then one can pass to a completion,
by standard arguments. This can be defined as an isometric embedding of X
onto a dense subset of a complete metric space. The completion is unique up
to isometric equivalence, because of the extension theorem mentioned in the
preceding paragraph. If d(·, ·) is an ultrametric on X, then the metric on the
completion is an ultrametric as well, because its restriction to a dense set is an
ultrametric.

14 Absolute value functions

Let k be a field. A nonnegative real-valued function |x| defined on k is said to
be an absolute value function on k if it satisfies the following three conditions.
First,

|x| = 0 if and only if x = 0.(14.1)

Second,
|x y| = |x| |y| for every x, y ∈ k.(14.2)

Third,
|x+ y| ≤ |x|+ |y| for every x, y ∈ k.(14.3)

It is well known that the standard absolute value functions on the fields R of
real numbers and C of complex numbers are absolute value functions in this
sense. If | · | is an absolute value function on a field k and k0 is a subfield of k,
then the restriction of |x| to x ∈ k0 defines an absolute value function on k0.

A nonnegative real-valued function |·| on a field k is said to be an ultrametric
absolute value function on k if it satisfies (14.1), (14.2), and

|x+ y| ≤ max(|x|, |y|) for every x, y ∈ k.(14.4)

Clearly (14.4) implies (14.3), so that an ultrametric absolute value function on
k is an absolute value function on k. The trivial absolute value function is
defined on a field k by putting |x| = 1 when x ̸= 0, and |0| = 0. This defines
an ultrametric absolute value function on k. If | · | is an ultrametric absolute
value function on a field k and k0 is a subfield of k, then the restriction of |x|
to x ∈ k0 defines an ultrametric absolute value function on k0.
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Let | · | be a nonnegative real-valued function on a field k that satisfies (14.1)
and (14.2). Observe that

|1| = 1,(14.5)

where the first 1 is the multiplicative identity element in k, and the second is in
R. This uses the facts that |1| > 0 and |1| = |12| = |1|2, by (14.1) and (14.2).
Similarly, if x ∈ k satisfies xn = 1 for some positive integer n, then

|x| = 1,(14.6)

because |x|n = |xn| = |1| = 1. In particular, this holds when x = −1, the
additive inverse of 1 in k, because (−1)2 = −(−1) = 1 in k.

If | · | is an absolute value function on k, then

d(x, y) = |x− y|(14.7)

defines a metric on k. This uses (14.6) with x = −1 to get that (14.7) is
symmetric in x and y. Similarly, if | · | is an ultrametric absolute value function
on k, then (14.7) defines an ultrametric on k. If | · | is the trivial absolute value
function on k, then (14.7) is the discrete metric on k.

Let | · | be an absolute value function on a field k again, and let k0 be a
subfield of k. Suppose that k0 is dense in k with respect to the metric (14.7)
associated to | · |. If the restriction of | · | to k0 is an ultrametric absolute value
function on k0, then one can check that | · | is an ultrametric absolute value
function on k.

If p is a prime number, then the p-adic absolute value |x|p of a rational
number x is defined as follows. Of course, |0|p = 0. If x ̸= 0, then x can be
expressed as pj (a/b), where a, b, and j are integers, a, b ̸= 0, and neither a nor
b is a multiple of p. In this case,

|x|p = p−j .(14.8)

One can check that this defines an ultrametric absolute value function on the
field Q of rational numbers.

If a field k is not complete with respect to the metric (14.7) associated to an
absolute value function | · |, then one can pass to a completion of k, by standard
arguments. More precisely, this can be defined as an isomorphism between k
and a dense subfield of a field with an absolute value function, which is complete
with respect to the associated metric. Of course, the restriction of the absolute
value function on the completion to the image of k should correspond to | · |,
so that the embedding is an isometry with respect to the associated metrics.
To say that the image of k is dense in the completion means that it is a dense
subset of the completion with respect to the metric associated to the absolute
value function, as before. The completion of k with respect to | · | is unique up
to a suitable isomorphic equivalence. One often identifies k with its image in
the completion, so that k may be considered as a subfield of its completion. If
| · | is an ultrametric absolute value function on k, then absolute value function
on the completion of k is an ultrametric absolute value function as well.
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If p is a prime number, then the field Qp of p-adic numbers is the completion
of Q with respect to the p-adic absolute value function | · |p, as in the preceding
paragraph. The extension of | · |p to Qp is known as the p-adic absolute value
on Qp, and is also denoted | · |p.

15 Norms and ultranorms

Let k be a field, and let | · | be an absolute value function on k. Also let V be a
vector space over k. A nonnegative real-valued function N on V is said to be a
norm on V with respect to | · | on k if it satisfies the following three conditions.
First,

N(v) = 0 if and only if v = 0.(15.1)

Second,
N(t v) = |t|N(v) for every t ∈ k and v ∈ V.(15.2)

Third,
N(v + w) ≤ N(v) +N(w) for every v, w ∈ V.(15.3)

If N satisfies (15.1), (15.2), and

N(v + w) ≤ max(N(v), N(w)) for every v, w ∈ V,(15.4)

then N is said to be an ultranorm on V with respect to | · | on k. Ultranorms
are automatically norms, because (15.4) implies (15.3).

Of course, k may be considered as a one-dimensional vector space over itself,
and | · | may be considered as a norm on k with respect to itself. If | · | is
an ultrametric absolute value function on k, then | · | may be considered as an
ultranorm on k, as a one-dimensional vector space over itself.

If N is an ultranorm on a vector space V over k with respect to an absolute
value function | · | on k, and if V ̸= {0}, then | · | has to be an ultrametric
absolute value function on k. More precisely, (14.4) can be obtained from (15.2)
and (15.4) in this case.

Let | · | be an absolute value function on k again, and let N be a norm on a
vector space V over k, with respect to | · | on k. It is easy to see that

d(v, w) = dN (v, w) = N(v − w)(15.5)

defines a metric on V . If N is an ultranorm on V , then (15.5) is an ultrametric
on V .

Suppose for the moment that | · | is the trivial absolute value function on k.
The trivial ultranorm on a vector space V over k is defined by putting N(v) = 1
when v ̸= 0, and N(0) = 0. One can verify that this defines an ultranorm on
V , for which the corresponding ultrametric is the discrete metric.

Let | · | be an absolute value function on k, and let N be a norm on a vector
space V over k. If V0 is a linear subspace of V , then the restriction of N to V0

is a norm on V0. If N is an ultranorm on V , then the restriction of N to V0 is
an ultranorm on V0. Suppose that V0 is dense in V , with respect to the metric
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(15.5) associated to N . If the restriction of N to V0 is an ultranorm on V0, then
one can check that N is an ultranorm on V .

Let N be a norm on a vector space V over k again. If V is complete with
respect to the metric (15.5) associated to N , then V is said to be a Banach
space with respect to N . In this case, one may also ask that k be complete
with respect to the metric associated to | · |. Otherwise, one can pass to the
completion of k, as in the previous section. Using the completeness of V , one
can check that scalar multiplication on V can be extended to the completion of
k, so that V becomes a vector space over the completion of k, and N is a norm
on V as a vector space over the completion of k, with respect to the extension
of | · | to the completion of k.

If V is not complete with respect to (15.5), then one can pass to a completion,
as usual. This can be defined as a linear mapping from V onto a dense linear
subspace of a Banach space over k, where the linear mapping also preserves
norms. The condition that the image of V be dense in the completion uses the
metric associated to the norm on the completion. The completion of V with
respect to N is unique up to a suitable linear mapping that preserves norms. If
N is an ultranorm on V , then the norm on the completion of V is an ultranorm
too.

16 Infinite series

Let k be a field with an absolute value function | · |, let V be a vector space
over k, and let N be a norm on V with respect to | · | on k. An infinite series∑∞

j=1 vj with terms in V is said to converge if the corresponding sequence of

partial sums
∑n

j=1 vj converges to an element of V , with respect to the metric

associated to the norm N . In this case, the value of the sum
∑∞

j=1 vj is taken
to be the limit of the sequence of partial sums. Note that a linear combination
of convergent series in V converges too, with sum equal to the corresponding
linear combination of the sums of the individual series. This follows from the
analogous statement for convergent sequences in V , which can be verified using
standard arguments.

Let
∑∞

j=1 vj be an infinite series with terms in V again. One can check that

the corresponding sequence of partial sums
∑n

j=1 vj is a Cauchy sequence in V
with respect to the metric associated to N if and only if for every ϵ > 0 there is
a positive integer L such that

N
( n∑

j=l

vj

)
< ϵ(16.1)

for every n ≥ l ≥ L. In particular, this implies that

lim
l→∞

N(vl) = 0,(16.2)

by taking l = n in (16.1). Of course, (16.2) is the same as saying that {vj}∞j=1

converges to 0 in V with respect to the metric associated to N . If V is a Banach
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space with respect to N , then the Cauchy criterion (16.1) implies that
∑∞

j=1 vj
converges in V .

Observe that

N
( n∑

j=l

vj

)
≤

n∑
j=l

N(vj)(16.3)

for every n ≥ l ≥ 1, by the triangle inequality for N . If

∞∑
j=1

N(vj)(16.4)

converges as an infinite series of nonnegative real numbers, then
∑∞

j=1 vj is said
to converge absolutely with respect to N . In this case, one can use (16.3) to
verify the criterion (16.1), to get that the sequence of partial sums

∑n
j=1 vj is

a Cauchy sequence in V with respect to the metric associated to N . If V is a
Banach space with respect to N , then it follows that

∑∞
j=1 vj converges in V .

One can also check that

N
( ∞∑

j=1

vj

)
≤

∞∑
j=1

N(vj)(16.5)

in this situation, using (16.3).
If N is an ultranorm on V , then

N
( n∑

j=l

vj

)
≤ max

l≤j≤n
N(vj)(16.6)

for every n ≥ l ≥ 1. In this case, one can use (16.6) to verify the criterion
(16.1) when (16.2) holds, to get that the sequence of partial sums

∑n
j=1 vj is

a Cauchy sequence in V with respect to the metric associated to N . It follows
that

∑∞
j=1 vj converges in V when V is a Banach space with respect to N , as

before. Under these conditions, one can check that

N
( ∞∑

j=1

vj

)
≤ max

j≥1
N(vj),(16.7)

using (16.6). Note that the maximum on the right side of (16.7) is attained
when (16.2) holds.

Of course, there are analogous statements for infinite series that start at
j = 0, or some other integer.

17 Banach algebras

Let k be a field with an absolute value function | · |, and let A be an algebra
over k. A norm N on A is said to be submultiplicative on A if

N(a b) ≤ N(a)N(b)(17.1)
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for every a, b ∈ A. If N is a submultiplicative norm on A, and if A is complete
with respect to the metric associated to N , then A is said to be a Banach algebra
with respect to N . If A has a nonzero multiplicative identity element e, then it
is easy to see that N(e) ≥ 1, using submultiplicativity. Sometimes the condition
that there be a multiplicative identity element e with N(e) = 1 is included in
the definition of a Banach algebra.

If A is not complete with respect to the metric associated to N , then one
can pass to a completion of A, as before. This can be defined as a norm-
preserving algebra isomorphism from A onto a dense subalgebra of a Banach
algebra over k. The completion is unique up to a suitable norm-preserving
algebra isomorphism, as usual. If A is complete, but k is not complete with
respect to the metric associated to | · |, then scalar multiplication on A can be
extended to the completion of k, so that A becomes a Banach algebra over the
completion of k. One may wish to include the completeness of k in the definition
of a Banach algebra.

Let A be an algebra over k with a multiplicative identity element e. If a ∈ A
and n is a nonnegative integer, then

(e− a)

n∑
j=0

aj =
( n∑

j=0

aj
)
(e− a) = e− an+1,(17.2)

by a standard argument. Here aj is interpreted as being equal to e when j = 0,
as usual. Let N be a submultiplicative norm on A, and observe that

N(aj) ≤ N(a)j(17.3)

for every positive integer j. If N(e) = 1, then (17.3) also holds when j = 0,
with N(a)j interpreted as being equal to 1.

Suppose that N(a) < 1, so that

lim
j→∞

N(aj) = 0(17.4)

by (17.3). In this case,
∞∑
j=0

N(aj)(17.5)

converges as an infinite series of nonnegative real numbers, by comparison with
a convergent geometric series. More precisely, if N(e) = 1, then

∞∑
j=0

N(aj) ≤
∞∑
j=0

N(a)j = (1−N(a))−1,(17.6)

using (17.3) in the first step. Note that

max
j≥0

N(aj) = N(e),(17.7)
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by (17.5) and the fact that N(e) ≥ 1 when e ̸= 0, as mentioned earlier. Of
course, if e = 0, then A = {0}, and (17.7) is trivial.

If A is a Banach algebra with respect to N , then it follows that

∞∑
j=0

aj(17.8)

converges in A with respect to the metric associated to N , as in the preceding
section. We also have that

(e− a)

∞∑
j=0

aj =
( ∞∑

j=0

aj
)
(e− a) = e,(17.9)

by taking the limit as n → ∞ in (17.2), using (17.4). This means that (17.8) is
the multiplicative inverse of e− a in A. If N(e) = 1, then

N
( ∞∑

j=1

aj
)
≤

∞∑
j=0

N(aj) ≤ (1−N(a))−1,(17.10)

by (16.5) and (17.6). Similarly, if N is an ultranorm on N , then

N
( ∞∑

j=0

aj
)
≤ max

j≥0
N(aj) = N(e),(17.11)

by (16.7) and (17.7).

18 Bounded functions

Let k be a field with an absolute value function | · |, and let X be a nonempty
set. Also let V be a vector space over k, with a norm N with respect to | · |
on k. A V -valued function f on X is said to be bounded with respect to N if
N(f(x)) is bounded as a nonnegative real-valued function on X. Let ℓ∞(X,V )
be the space of bounded V -valued functions on X, and put

∥f∥∞ = ∥f∥ℓ∞(X,V ) = sup
x∈X

N(f(x))(18.1)

for every f ∈ ℓ∞(X,V ). Remember that the space c(X,V ) of all V -valued
functions on X is a vector space over k with respect to pointwise addition and
scalar multiplication, as in Section 1. One can check that ℓ∞(X,V ) is a linear
subspace of the space c(X,V ), and that (18.1) defines a norm on ℓ∞(X,V ) with
respect to | · | on k. If N is an ultranorm on V , then (18.1) is an ultranorm
on ℓ∞(X,V ). If V is a Banach space with respect to N , then ℓ∞(X,V ) is a
Banach space with respect to (18.1), by standard arguments.

Suppose that X is a nonempty topological space, and let C(X,V ) be the
space of continuous mappings from X into V , with respect to the topology
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determined on V by the metric associated to N . This is a vector space over
k with respect to pointwise addition and scalar multiplication, by standard
arguments. Of course, constant functions on X are automatically continuous.
It follows that the space

Cb(X,V ) = C(X,V ) ∩ ℓ∞(X,V )(18.2)

of V -valued functions onX that are bounded and continuous is a linear subspace
of both C(X,V ) and ℓ∞(X,V ). If f ∈ Cb(X,V ), then the supremum norm
(18.1) of f may also be denoted

∥f∥sup = ∥f∥sup,X = ∥f∥Cb(X,V ).(18.3)

It is well known that Cb(X,V ) is a closed set in ℓ∞(X,V ) with respect to the
supremum metric. If X is compact, then every continuous V -valued function
f on X is bounded, and in fact the supremum on the right side of (18.1) is
attained.

Now let A be an algebra over k, and let N be a submultiplicative norm on
A with respect to | · | on k. If X is any nonempty set, then the space c(X,A) of
all A-valued functions on X is also an algebra over k with respect to pointwise
multiplication of functions, as in Section 1. It is easy to see that ℓ∞(X,A)
is a subalgebra of c(X,A), and that (18.1) is submultiplicative on ℓ∞(X,A).
Suppose that A has a multiplicative identity element e, so that the constant
function on x equal to e at every point inX is the multiplicative identity element
in c(X,A), as before. Of course, this constant function is bounded on X, with
ℓ∞ norm equal to N(e), and hence is the multiplicative identity element in
ℓ∞(X,A) too.

If X is a nonempty topological space, then the space C(X,A) of continuous
A-valued functions on X is also an algebra over k, with respect to pointwise
multiplication of functions. Thus

Cb(X,A) = C(X,A) ∩ ℓ∞(X,A)(18.4)

is a subalgebra of both C(X,A) and ℓ∞(X,A). If A has a multiplicative identity
element e, then the constant function on X equal to e at every point in X is
bounded and continuous, and hence defines the multiplicative identity element
in C(X,A) and Cb(X,A).

In particular, we can apply these remarks to A = k, considered as an algebra
over itself, and with | · | as the norm. If X is a nonempty set, then c(X, k) is
a commutative algebra over k, and ℓ∞(X, k) is a subalgebra of c(X, k). The
constant function onX equal to the multiplicative identity element 1 in k at each
point is the multiplicative identity element in c(X, k) and ℓ∞(X, k). Similarly, if
X is a nonempty topological space, then C(X, k) is a commutative algebra over
k, and Cb(X, k) is a subalgebra of both C(X, k) and ℓ∞(X, k). The constant
function on X equal to 1 at every point is continuous, and hence is contained
in C(X, k) and Cb(X, k).
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19 Bounded linear mappings

Let k be a field with an absolute value function | · |, and let V , W be vector
spaces over k, with norms NV , NW with respect to | · | on k, respectively. A
linear mapping T from V into W is said to be bounded with respect to NV , NW

if there is a nonnegative real number C such that

NW (T (v)) ≤ C NV (v)(19.1)

for every v ∈ V . Let BL(V,W ) be the space of bounded linear mappings from
V into W . If T ∈ BL(V,W ), then put

∥T∥op = ∥T∥op,VW = inf{C ≥ 0 : (19.1) holds},(19.2)

where more precisely the infimum is taken over all nonnegative real numbers
C such that (19.1) holds. One can check that the infimum is automatically
attained, so that (19.1) holds with C = ∥T∥op.

It is well known and not difficult to verify that BL(V,W ) is a vector space
over k with respect to pointwise addition and scalar multiplication. Moreover,
(19.2) defines a norm on BL(V,W ) with respect to |·| on k, which is the operator
norm associated to NV and NW . If NW is an ultranorm on W , then (19.2) is an
ultranorm on BL(V,W ). If W is complete with respect to the metric associated
to NW , then BL(V,W ) is complete with respect to the metric associated to
(19.2), by standard arguments.

Let Z be another vector space over k, and let NZ be a norm on Z with
respect to | · | on k. Suppose that T1 is a bounded linear mapping from V into
W , and that T2 is a bounded linear mapping from W into Z. If v ∈ V , then

NZ(T2(T1(v))) ≤ ∥T2∥op,WZ NW (T1(v))(19.3)

≤ ∥T2∥op,WZ ∥T1∥op,VW NV (v),

where the subscripts on the operator norms indicate the spaces and norms being
used. It follows that the composition of T1 and T2 is a bounded linear mapping
from V into Z, with

∥T2 ◦ T1∥op,V Z ≤ ∥T1∥op,VW ∥T2∥op,WZ .(19.4)

Let BL(V ) be the space of bounded linear mappings from V into itself,
using NV on V as both the domain and range of the mapping. This is an
algebra over k, using composition of mappings as multiplication. The operator
norm ∥T∥op = ∥T∥op,V V is submultiplicative on BL(V ), by (19.4). The identity
mapping I = IV on V is a bounded linear mapping from V into itself, with
∥I∥op = 1 when V ̸= {0}. Of course, I is the multiplicative identity element in
BL(V ).

Let V0 be a dense linear subspace of V , with respect to the metric associated
to NV , and let T0 be a bounded linear mapping from V0 into W , using the
restriction of NV to V0. It is easy to see that T0 is uniformly continuous with

32



respect to the metrics associated to NV and NW . If W is complete with respect
to the metric associated to NW , then there is a unique extension of T0 to a
uniformly continuous mapping from V into W , as in Section 13. One can check
that this extension is a bounded linear mapping from V into W , with the same
operator norm as on V0.

20 Sums of nonnegative real numbers

Let X be a nonempty set, and let f be a nonnegative real-valued function on
X. If A is a nonempty finite subset of X, then∑

x∈A

f(x)(20.1)

can be defined as a nonnegative real number in the usual way. The sum∑
x∈X

f(x)(20.2)

is defined as a nonnegative extended real number as the supremum of the finite
subsums (20.1), over all nonempty finite subsets A of X. If f is a nonnegative
extended real-valued function on X, then (20.1) can still be defined as a non-
negative extended real number, which is equal to +∞ when f(x) = +∞ for any
x ∈ A. Similarly, (20.2) can be defined as a nonnegative extended real-number
in this situation, which is equal to +∞ when f(x) = +∞ for any x ∈ X.

If
∑∞

j=1 aj is an infinite series of nonnegative real numbers, then the corre-

sponding sequence of partial sums
∑n

j=1 aj increases monotonically in n. The
series converges with respect to the standard absolute value function on R ex-
actly when the partial sums have a finite upper bound, in which case

∞∑
j=1

aj = sup
n≥1

n∑
j=1

aj .(20.3)

Otherwise,
∑∞

j=1 aj may be considered to be +∞ when the partial sums are
not bounded, so that (20.3) holds, with the supremum on the right defined as
a nonnegative real number. This is equivalent to the definition of

∑
j∈Z+

aj as
in the preceding paragraph, where Z+ is the set of positive integers, as usual.
This uses the fact that every finite subset of Z+ is contained in {1, . . . , n} for
some n ∈ Z+.

Let X be a nonempty set again, and let f , g be nonnegative extended real-
valued functions on X. One can check that∑

x∈X

(f(x) + g(x)) =
∑
x∈X

f(x) +
∑
x∈X

g(x),(20.4)

with the usual conventions for adding nonnegative extended real numbers. Sim-
ilarly, if t is a positive real number, then∑

x∈X

t f(x) = t
∑
x∈X

f(x),(20.5)
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where t (+∞) = +∞. More precisely, (20.4) and (20.5) can be obtained from
the analogous statements for finite sums, by approximating the sums over X by
finite subsums.

Let I be a nonempty set, and suppose that Ej is a nonempty subset of X
for each j ∈ I. If f is a nonnegative extended real-valued function on X again,
then ∑

x∈Ej

f(x)(20.6)

is defined as a nonnegative extended real number for each j ∈ I, as before. This
permits us to define ∑

j∈I

( ∑
x∈Ej

f(x)
)

(20.7)

as a nonnegative extended real number in the same way. Put

E =
∪
j∈I

Ej ,(20.8)

so that ∑
x∈E

f(x)(20.9)

is defined as a nonnegative extended real number as well. One can check that
(20.9) is less than or equal to (20.7), by approximating (20.9) by finite subsums,
as usual. If the Ej ’s are pairwise disjoint, so that Ej ∩El = ∅ when j ̸= l, then
(20.7) is equal to (20.9). To see this, one can start with the case where I has
only finitely many elements, and then use that to deal with the case where I
has infinitely many elements.

21 ℓ1 And c0 spaces

Let k be a field with an absolute value function | · |, and let V be a vector space
over k with a norm N with respect to | · | on k. A V -valued function f on a
nonempty set X is said to be summable on X with respect to N if N(f(x)) is
summable as a nonnegative real-valued function on X, in the sense that∑

x∈X

N(f(x)) < ∞.(21.1)

Let ℓ1(X,V ) be the space of summable V -valued functions on X, and put

∥f∥1 = ∥f∥ℓ1(X,V ) =
∑
x∈X

N(f(x))(21.2)

for each f ∈ ℓ1(X,V ). One can check that ℓ1(X,V ) is a vector space over k,
with respect to pointwise addition and scalar multiplication. One can also verify
that (21.2) is a norm on ℓ1(X,V ), with respect to | · | on k.
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A V -valued function f on X is said to vanish at infinity with respect to N
if for each ϵ > 0 we have that

N(f(x)) < ϵ(21.3)

for all but finitely many x ∈ X. Let c0(X,V ) be the space of V -valued functions
on X that vanish at infinity with respect to N . If f ∈ c0(X,V ), then it is easy
to see that f is bounded on X with respect to N . More precisely, c0(X,V ) is
a linear subspace of the space ℓ∞(X,V ) of V -valued functions on X that are
bounded with respect to N . In fact, c0(X,V ) is a closed set in ℓ∞(X,V ) with
respect to the supremum metric, by standard arguments.

If f ∈ ℓ1(X,V ), then it is easy to see that f is bounded on X with respect
to N , with

∥f∥∞ ≤ ∥f∥1.(21.4)

Here ∥f∥∞ is the supremum norm of f on X, with respect to N on V . We also
have that f vanishes at infinity on X in this case. Otherwise, there is an ϵ > 0
such that N(f(x)) ≥ ϵ for infinitely many x ∈ X, which implies that f is not
summable on X.

Remember that c00(X,V ) is the space of V -valued function on X with finite
support, as in Section 1. If f ∈ c00(X,V ), then f is clearly summable on X
with respect to N , and f vanishes at infinity on X with respect to N .

If f ∈ ℓ1(X,V ), then f can be approximated by elements of c00(X,V ) with
respect to the ℓ1 norm. This uses the fact that the right side of (21.2) can be
approximated by sums over finite subsets of X.

Similarly, if f ∈ c0(X,V ), then f can be approximated by elements of
c00(X,V ) with respect to the supremum metric. Thus c0(X,V ) is the same
as the closure of c00(X,V ) in ℓ∞(X,V ).

If f ∈ c0(X,V ), then the support of f has only finitely or countably many
elements. To see this, one can use the the condition that f vanishes at infinity
on X with ϵ = 1/n for each positive integer n. Note that this holds in particular
when f ∈ ℓ1(X,V ).

If V is complete with respect to the metric associated to N , then ℓ1(X,V )
is complete with the metric associated to (21.2), by standard arguments.

22 Sums of vectors

Let k be a field, let V be a vector space over k, and let X be a nonempty set.
If f is a V -valued function on X with finite support, then∑

x∈X

f(x)(22.1)

can be defined as an element of V , by reducing to a finite sum. This defines a
linear mapping from the space c00(X,V ) of V -valued functions on X with finite
support into V .
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Let | · | be an absolute value function on k, and let N be a norm on V with
respect to | · | on k. If f ∈ c00(X,V ), then

N
( ∑

x∈X

f(x)
)
≤ ∥f∥1,(22.2)

where ∥f∥1 is as in (21.2). Similarly, if N is an ultranorm on V , then

N
( ∑

x∈X

f(x)
)
≤ ∥f∥∞(22.3)

for every f ∈ c00(X,V ). Here ∥f∥∞ denotes the supremum norm of f on X
with respect to N , as usual.

Let us suppose for the rest of the section that V is complete with respect
to the metric associated to N . In this case, the sum (22.1) can be extended to
a linear mapping from ℓ1(X,V ) into V that satisfies (22.2). This uses the fact
that c00(X,V ) is dense in ℓ1(X,V ), as in the previous section, and the results
about extending bounded linear mappings mentioned in Section 19. If N is an
ultranorm on V , then the sum (22.1) can be extended to a linear mapping from
c0(X,V ) into V that satisfies (22.3). This uses the fact that c00(X,V ) is dense
in c0(X,V ) with respect to the supremum metric, as before.

Suppose for the moment that k = R with the standard absolute value func-
tion, and that V = R too. If f is a summable real-valued function on X,
then f can be expressed as the difference of nonnegative real-valued summable
functions on X. The sums over X of these nonnegative real-valued summable
functions can be defined as in Section 20, so that (22.1) can be defined as the
difference of these two sums. Similarly, if k = C with the standard absolute
value function, and f is a summable complex-valued function on X, then the
real and imaginary parts of f are summable on X, so that (22.1) can be de-
fined using the previous remarks. One can check that these definitions of the
sum are compatible with the one mentioned in the preceding paragraph in these
situations.

Let k and V be as before, and let {xj}∞j=1 be a sequence of disctinct elements
of X. Also let f be a V -valued function on X, and suppose that the support
of f is contained in the set of xj ’s, j ≥ 1. In this case, one can try to deal with
the sum (22.1) by considering the infinite series

∞∑
j=1

f(xj).(22.4)

If f ∈ ℓ1(X,V ), then (22.4) converges absolutely with respect to N . Similarly, if
f ∈ c0(X,V ), then {f(xj)}∞j=1 converges to 0 with respect to N . This permits
us to use the criteria for convergence of infinite series mentioned in Section
16. This approach to the sum (22.1) is also compatible with the one described
earlier, because of the way that it approximates the sum by finite sums.

36



23 Sums of sums

Let k be a field, let V be a vector space over k, and let X be a nonempty set
again. Also let I be a nonempty set, let Ej be a nonempty subset of X for
each j ∈ I, and suppose that the Ej ’s are pairwise disjoint. If f is a V -valued
function on X with finite support, then the restriction of f to Ej has finite
support for each j ∈ I, so that ∑

x∈Ej

f(x)(23.1)

can be defined as an element of V . Note that the restriction of f to Ej is
identically equal to 0 for all but finitely many j ∈ I, because the Ej ’s are
pairwise disjoint. This implies that (23.1) is equal to 0 for all but finitely many
j ∈ I, so that ∑

j∈I

( ∑
x∈Ej

f(x)
)

(23.2)

can be defined as an element of V as well. Put

E =
∪
j∈I

Ej ,(23.3)

so that ∑
x∈E

f(x)(23.4)

can be defined as an element of V too. It is easy to see that (23.2) is equal to
(23.4) under these conditions.

Let | · | be an absolute value function on k, and let N be a norm on V with
respect to | · | on k. If j ∈ I, then

N
( ∑

x∈Ej

f(x)
)
≤

∑
x∈Ej

N(f(x)),(23.5)

as in (22.2). Similarly,

N
(∑

j∈I

( ∑
x∈Ej

f(x)
))

≤
∑
j∈I

N
( ∑

x∈Ej

f(x)
)
≤

∑
j∈I

( ∑
x∈Ej

N(f(x))
)

(23.6)

and
N
( ∑

x∈E

f(x)
)
≤

∑
x∈E

N(f(x)).(23.7)

Note that ∑
j∈I

( ∑
x∈Ej

N(f(x))
)
=

∑
x∈E

N(f(x)) ≤
∑
x∈X

N(f(x)),(23.8)

as sums of nonnegative real numbers. More precisely, this works for any V -
valued function f on X, as in Section 20.
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Suppose now that f ∈ ℓ1(X,V ), and that V is complete with respect to the
metric associated to N . If j ∈ I, then the restriction of f to Ej is summable
on Ej , so that the sum (23.1) can be defined as an element of V as in the
previous section. We also have (23.5) for each j ∈ I, which implies that (23.1)
is summable as a V -valued function on I, because of (23.8). Thus the sum
(23.2) can be defined as an element of V , and satisfies (23.6). Similarly, the
sum (23.4) can be defined as an element of V , and satisfies (23.7). One can
check that (23.2) is equal to (23.4) in this situation. This uses the fact that
c00(X,V ) is dense in ℓ1(X,V ), as in Section 21.

Suppose from now on in this section that N is an ultranorm on V . If f is a
V -valued function on X with finite support, then

N
( ∑

x∈Ej

f(x)
)
≤ max

x∈Ej

N(f(x))(23.9)

for every j ∈ I, as in (22.3). Similarly,

N
(∑

j∈I

( ∑
x∈Ej

f(x)
))

≤ max
j∈I

N
( ∑

x∈Ej

f(x)
)
≤ max

j∈I

(
max
x∈Ej

N(f(x))
)

(23.10)

and
N
( ∑

x∈E

f(x)
)
≤ max

x∈E
N(f(x))(23.11)

in this case. Of course,

max
j∈I

(
max
x∈Ej

N(f(x))
)
= max

x∈E
N(f(x)) ≤ max

x∈X
N(f(x))(23.12)

for every f ∈ c00(X,V ). This works for any V -valued function f on X, with
the maxima replaced with suprema.

Suppose that f ∈ c0(X,V ), and that V is complete with respect to the
metric associated to N . Observe that the restriction of f to any nonempty
subset of X vanishes at infinity on that subset. In particular, the restriction of
f to Ej vanishes at infinity on Ej for each j ∈ I, so that the sum (23.1) can
be defined as an element of V that satisfies (23.9), as in the preceding section.
One can check that (23.1) vanishes at infinity as a V -valued function on I, using
(23.9) and the hypothesis that the Ej ’s are pairwise disjoint. Hence the sum
(23.2) can be defined as an element of V too, and satisfies (23.10). Similarly,
the restriction of f to E vanishes at infinity on E, so that the sum (23.4) can
be defined as an element of V , and satisfies (23.11). As before, one can verify
that (23.1) is equal to (23.4), by approximating f by elements of c00(X,V ) with
respect to the supremum norm.

24 Cauchy products

Let n be a positive integer, and put

Eγ = {(α, β) ∈ (Z+ ∪ {0})n × (Z+ ∪ {0})n : α+ β = γ}(24.1)
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for each γ ∈ (Z+ ∪ {0})n. Thus the Eγ ’s are pairwise-disjoint nonempty finite
sets such that ∪

γ∈(Z+∪{0})n
Eγ = (Z+ ∪ {0})n × (Z+ ∪ {0})n.(24.2)

Let k be a field, and let A be an algebra over k. Also let f , g be A-valued
functions on (Z+ ∪ {0})n, and put

h(γ) =
∑

(α,β)∈Eγ

f(α) g(β)(24.3)

for each γ ∈ (Z+∪{0})n. This defines h as an A-valued function on (Z+∪{0})n.
Observe that ∑

γ∈(Z+∪{0})n
h(γ)(24.4)

is equal to ∑
(α,β)∈(Z+∪{0})n×(Z+∪{0})n

f(α) g(β),(24.5)

at least formally, because of (24.2). This is the same as the iterated sum∑
α∈(Z+∪{0})n

( ∑
β∈(Z+∪{0})n

f(α) g(β)
)
,(24.6)

at least formally, which reduces to the product( ∑
α∈(Z+∪{0})n

f(α)
)( ∑

β∈(Z+∪{0})n
g(β)

)
.(24.7)

Suppose for the moment that f and g have finite support in (Z+ ∪ {0})n,
so that each of the sums in (24.7) are defined as elements of A. In this case,
f(α) g(β) has finite support as a function of (α, β), so that the sum in (24.5)
is also defined as an element of A. It is easy to see that h has finite support
in (Z+ ∪ {0})n in this situation too, so that (24.4) is defined as an element of
A. As in the previous section, (24.4) is equal to (24.5) under these conditions.
Similarly, (24.5) is equal to (24.7), so that (24.4) is equal to (24.7).

Suppose now that f , g are nonnegative real-valued functions on (Z+∪{0})n,
so that h is a nonnegative real-valued function on (Z+ ∪ {0})n as well. This
implies that (24.4), (24.5), and each of the sums in (24.7) are defined as nonneg-
ative extended real numbers. If both factors in (24.7) are positive, then (24.7)
can be defined as a nonnegative extended real number in the usual way. If one
of the factors in (24.7) is equal to 0, then let us take the product to be 0, even
if the other factor is +∞. In this case, (24.4), (24.5), and (24.7) are the same,
as in Section 20.

Let | · | be an absolute value function on k, and let N be a submultiplicative
norm on A, with respect to | · | on k. Let f , g be A-valued functions on
(Z+ ∪ {0})n again, and note that

N(f(α) g(β)) ≤ N(f(α))N(g(β))(24.8)
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for every α, β ∈ (Z+ ∪ {0})n. Thus

N(h(γ)) ≤
∑

(α,β)∈Eγ

N(f(α))N(g(β))(24.9)

for every γ ∈ (Z+ ∪ {0})n. Suppose that f and g are summable as A-valued
functions on (Z+ ∪ {0})n with respect to N , so that N(f(α)) and N(g(β)) are
summable as nonnegative real-valued functions on (Z+ ∪ {0})n. This implies
that N(f(α))N(g(β)) is summable as a nonnegative real-valued function of
(α, β), as in the preceding paragraph. It follows that f(α) g(β) is summable as
an A-valued function of (α, β) with respect to N , because of (24.8). We also get
that the right side of (24.9) is summable as a nonnegative real-valued function
on (Z+ ∪ {0})n, so that h is summable as an A-valued function on (Z+ ∪ {0})n
with respect to N .

Suppose from now on in this section that A is complete with respect to
the metric associated to N . Using the summability conditions mentioned in the
previous paragraph, the sums (24.4), (24.5), and in both factors in (24.7) can be
defined as elements of A, as in Section 22. The remarks in the preceding section
imply that (24.4) is equal to (24.5). Similarly, the remarks in the preceding
section can be used to treat (24.5) as an iterated sum. It follows that (24.5) is
equal to (24.7), so that (24.4) is equal to (24.7).

Suppose now that N is an ultranorm on A. Using (24.8), we get that

N(h(γ)) ≤ max
(α,β)∈Eγ

(N(f(α))N(g(β)))(24.10)

for every γ ∈ (Z+ ∪ {0})n. Suppose that f and g vanish at infinity as A-valued
functions on (Z+ ∪ {0})n with respect to N . In particular, this implies that f
and g are bounded on (Z+ ∪ {0})n, as before. One can check that f(α) g(β)
vanishes at infinity as an A-valued function of (α, β) with respect to N , using
(24.8) again. One can also verify that h vanishes at infinity as an A-valued
function on (Z+ ∪ {0})n with respect to N . More precisely, the right side of
(24.10) vanishes at infinity as a nonnegative real-valued function on (Z+∪{0})n.

Because A is complete, the sums (24.4), (24.5), and in both factors in (24.7)
are defined as elements of A in this situation, as in Section 22. As before, the
remarks in the previous section imply that (24.4) is equal to (24.5), and (24.5)
can be treated as an iterated sum. Thus (24.5) is equal to (24.7), and hence
(24.4) is equal to (24.7).

25 Some weighted conditions

Let k be a field with an absolute value function | · |, and let V be a vector space
over k with a norm N with respect to | · | on k. Also let X be a nonempty set,
and let w be a positive real-valued function defined on X. A V -valued function
f on X is said to be bounded with respect to N on V and w on X if

N(f(x))w(x)(25.1)
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is bounded in the usual sense as a nonnegative real-valued function on X. Let
ℓ∞w (X,V ) be the space of V -valued functions onX that are bounded with respect
to N on V and w on X. If f ∈ ℓ∞w (X,V ), then put

∥f∥∞,w = ∥f∥ℓ∞w (X,V ) = sup
x∈X

(N(f(x))w(x)).(25.2)

which is the same as the ordinary supremum norm of (25.1). One can check
that ℓ∞w (X,V ) is a vector space over k with respect to pointwise addition and
scalar multiplication, and that (25.2) defines a norm on ℓ∞w (X,V ) with respect
to | · | on k. If N is an ultranorm on V , then (25.2) is an ultranorm on ℓ∞w (X,V ).
If V is complete with respect to the metric associated to N , then one can verify
that ℓ∞w (X,V ) is complete with respect to the metric associated to (25.2).

A V -valued function f on X is said to be summable with respect to N on V
and w on X if (25.1) is summable in the usual sense as a nonnegative real-valued
function on X. Let ℓ1w(X,V ) be the space of V -valued functions on X that are
summable with respect to N on V and w on X. If f ∈ ℓ1w(X,V ), then put

∥f∥1,w = ∥f∥ℓ1w(X,V ) =
∑
x∈X

N(f(x))w(x),(25.3)

which is the same as the ordinary ℓ1 norm of (25.1). One can check that ℓ1w(X,V )
is a vector space over k with respect to pointwise addition and scalar multipli-
cation, and that (25.3) defines a norm on ℓ1w(X,V ) with respect to | · | on k,
as usual. If V is complete with respect to the metric associated to N , then
ℓ1w(X,V ) is complete with respect to the metric associated to (25.3), by stan-
dard arguments.

A V -valued function f on X is said to vanish at infinity with respect to
N on V and w on X if (25.1) vanishes at infinity as a nonnegative real-valued
function on X. Let c0,w(X,V ) be the space of V -valued functions on X that
vanish at infinity with respect to N on V and w on X. If f ∈ c0,w(X,V ), then
f is bounded with respect to N on V and w on X, as before. It is easy to
see that c0,w(X,V ) is a linear subspace of ℓ∞w (X,V ). One can also verify that
c0,w(X,V ) is a closed set in ℓ∞w (X,V ), with respect to the metric associated to
(25.2).

If f ∈ ℓ1w(X,V ), then f is bounded with respect to N on V and w on X,
with

∥f∥∞,w ≤ ∥f∥1,w.(25.4)

More precisely, f vanishes at infinity with respect to N on V and w on X, as
before. If f is a V -valued function on X with finite support, then f is summable
with respect to N on V and w on X, and f vanishes at infinity with respect
to N on V and w on X. One can check that c00(X,V ) is dense in ℓ1w(X,V )
with respect to the metric associated to (25.3). Similarly, c00(X,V ) is dense
in c0,w(X,V ) with respect to (25.2). If f ∈ c0,w(X,V ), then the support of f
has only finitely or countably many elements. This follows from the analogous
statement for (25.1), which was mentioned previously.
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26 Cartesian products

Let k be a field, let V be a vector space over k, and let X, Y be nonempty sets.
If f(x, y) is a V -valued function on the Cartesian product X × Y , then

fy(x) = f(x, y)(26.1)

defines a V -valued function of x ∈ X for each y ∈ Y , as in Section 5. Thus

F (y) = fy(26.2)

may be considered as a mapping from Y into the space c(X,V ) of V -valued
functions on X, as before. Conversely, any mapping from Y into c(X,V ) cor-
responds to a V -valued function on X × Y in this way. This defines a natural
one-to-one linear mapping from c(X × Y, V ) onto c(Y, c(X,V )).

Similarly, if f(x, y) is a V -valued function on X×Y with finite support, then
(26.1) has finite support as a function of x ∈ X for each y ∈ Y . Hence (26.2)
may be considered as a mapping from Y into the space c00(X,V ) of V -valued
functions on X with finite support, and this mapping has finite support in Y in
this case. Conversely, one can check that any mapping from Y into c00(X,V )
with finite support in Y corresponds to a V -valued function on X × Y with
finite support in this way. This means that c00(X × Y, V ) corresponds exactly
to c00(Y, c00(X,V )) as in the previous paragraph.

Let | · | be an absolute value function on k, and let N be a norm on V with
respect to | · | on k. Also let w1(x) be a positive real-valued function on X, and
let w2(y) be a positive real-valued function on Y . Put

w(x, y) = w1(x)w2(y),(26.3)

which defines a positive real-valued function on X × Y .
Suppose that f(x, y) is a V -valued function on X × Y that is bounded with

respect to N on V and w on X × Y , so that

N(f(x, y))w(x, y) = N(f(x, y))w1(x)w2(y)(26.4)

is bounded as a nonnegative real-valued function onX×Y . Equivalently, f(x, y)
is an element of the space ℓ∞w (X ×Y, V ) defined in the previous section, and we
put

∥f∥ℓ∞w (X×Y,V ) = sup
(x,y)∈X×Y

(N(f(x, y))w(x, y))(26.5)

= sup
y∈Y

sup
x∈X

(N(f(x, y))w1(x)w2(y)),

as before. If y ∈ Y and fy is the V -valued function defined on X as in (26.1),
then fy is bounded with respect to N on V and w1 on X. More precisely,

N(fy(x))w1(x) = N(f(x, y))w1(x) ≤ ∥f∥ℓ∞w (X×Y,V ) w2(y)
−1(26.6)
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for every x ∈ X, so that fy is an element of the space ℓ∞w1
(X,V ) defined in the

previous section, with

∥fy∥ℓ∞w1
(X,V ) = sup

x∈X
(N(fy(x))w1(x)) ≤ ∥f∥ℓ∞w (X×Y,V ) w2(y)

−1.(26.7)

Of course, this is the same as saying that

∥fy∥ℓ∞w1
(X,V ) w2(y) = sup

x∈X
(N(f(x, y))w1(x))w2(y) ≤ ∥f∥ℓ∞(X×Y,V )(26.8)

for every y ∈ Y . In this situation, we may consider F in (26.2) as a mapping
from Y into ℓ∞w1

(X,V ), with

∥F (y)∥ℓ∞w1
(X,V ) w2(y) = ∥fy∥ℓ∞w1

(X,V ) w2(y) ≤ ∥f∥ℓ∞w (X×Y,V )(26.9)

for every y ∈ Y . This implies that F is bounded with respect to the ℓ∞w1
(X,V )

norm and w2 on Y , so that F is an element of ℓ∞w2
(Y, ℓ∞w1

(X,V )). We also have
that

∥F∥ℓ∞w2
(Y,ℓ∞w1

(X,V )) = sup
y∈Y

(∥F (y)∥ℓ∞w1
(X,V ) w2(y)) = ∥f∥ℓ∞w (X×Y,V ).(26.10)

Conversely, every element of ℓ∞w2
(Y, ℓ∞w1

(X,V )) corresponds to an element of
ℓ∞w (X × Y, V ) in this way.

Suppose now that f(x, y) is a V -valued function on X × Y that vanishes at
infinity with respect to N on V and w on X × Y , so that (26.4) vanishes at
infinity as a nonnegative real-valued function on X × Y . Thus, for each ϵ > 0,
there is a finite subset Eϵ of X × Y such that

N(f(x, y))w1(x)w2(y) < ϵ(26.11)

for every (x, y) ∈ X × Y \ Eϵ. Note that

Eϵ(y) = {x ∈ X : (x, y) ∈ Eϵ}(26.12)

is a finite subset of X for every ϵ > 0 and y ∈ Y . If y ∈ Y , then

N(fy(x))w1(x)w2(y) = N(f(x, y))w1(x)w2(y)(26.13)

vanishes at infinity as a nonnegative real-valued function of x ∈ X, and hence

N(fy(x))w1(x)(26.14)

vanishes at infinity as a nonnegative real-valued function of x ∈ X. This means
that

fy ∈ c0,w1
(X,V )(26.15)

for every y ∈ Y , where c0,w1(X,V ) is the space of V -valued functions on X
that vanish at infinity with respect to N on V and w1 on X, as in the previous
section.
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If y ∈ Y and Eϵ(y) = ∅, then

N(fy(x))w1(x) = N(f(x, y))w1(x) < ϵw2(y)
−1(26.16)

for every x ∈ X, because of (26.11). In this case, we get that

∥fy∥ℓ∞w1
(X,V ) = sup

x∈X
(N(fy(x))w1(x)) ≤ ϵw2(y)

−1,(26.17)

so that
∥fy∥ℓ∞w1

(X,V ) w2(y) ≤ ϵ.(26.18)

We may consider F in (26.2) as a mapping from Y into c0,w1
(X,V ), by (26.15).

Under these conditions, F vanishes at infinity with respect to the ℓ∞w1
(X,V )

norm on c0,w1(X,V ) and w2 on Y . This uses the fact that for each ϵ > 0, there
are only finitely many y ∈ Y such that Eϵ(y) ̸= ∅. Thus

F ∈ c0,w2
(Y, c0,w1

(X,V )),(26.19)

using the ℓ∞w1
(X,V ) norm on c0,w1

(X,V ) to define c0,w2
(Y, c0,w1

(X,V )). Con-
versely, every element of c0,w2

(Y, c0,w1
(X,V )) corresponds to an element of

c0,w(X × Y, V ) in this way.
Now let f(x, y) be a V -valued function on X × Y that is summable with

respect to N on V and w on X×Y , so that (26.4) is summable as a nonnegative
real-valued function on X×Y . If y ∈ Y , then it follows that (26.13) is summable
as a nonnegative real-valued function of x ∈ X, so that (26.14) is summable as
a nonnegative real-valued function of x ∈ X. Thus

fy ∈ ℓ1w1
(X,V )(26.20)

for every y ∈ Y , where ℓ1w1
(X,V ) is the space of V -valued functions on X that

are summable with respect to N on V and w1 on X, as in the previous section.
Of course,

∥fy∥ℓ1w1
(X,V ) w2(y) =

∑
x∈X

N(fy(x))w1(x)w2(y)(26.21)

=
∑
x∈X

N(f(x, y))w1(x)w2(y)

for every y ∈ Y . Summing over y ∈ Y , we get that∑
y∈Y

∥fy∥ℓ1w1
(X,V ) w2(y) =

∑
y∈Y

( ∑
x∈X

N(f(x, y))w1(x)w2(y)
)

(26.22)

=
∑

(x,y)∈X×Y

N(f(x, y))w1(x)w2(y)

= ∥f∥ℓ1w(X×Y,V ),

using the remarks about sums of sums in Section 20 in the second step. Because
of (26.20), we may consider F in (26.2) as a mapping from Y into ℓ1w1

(X,V ).
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This mapping is summable with respect to the ℓ1w1
(X,V ) norm and w2 on Y ,

by (26.22). This means that F is an element of ℓ1w2
(Y, ℓ1w1

(X,V )), with

∥F∥ℓ1w2
(Y,ℓ1w1

(X,V )) =
∑
y∈Y

∥F (y)∥ℓ1w1
(X,V ) w2(y) = ∥f∥ℓ1w(X×Y,V ).(26.23)

Conversely, every element of ℓ1w2
(Y, ℓ1w1

(X,V )) corresponds to an element of
ℓ1w(X × Y, V ) in this way.

27 Hölder’s inequality

Let X be a nonempty set, and let q be a positive real number. A nonnegative
real-valued function f on X is said to be q-summable on X if f(x)q is summable
on X. In this case, we put

∥f∥q =
( ∑

x∈X

f(x)q
)1/q

.(27.1)

Similarly, if f is bounded on X, then we put

∥f∥∞ = sup
x∈X

f(x),(27.2)

as before.
Let q1, q2, q3 be positive real numbers such that

1/q3 = 1/q1 + 1/q2.(27.3)

This implies that 1/q1, 1/q2 < 1/q3, so that q3 < q1, q2. Let f , g be nonnegative
real-valued functions on X that are q1, q2-summable, respectively. Under these
conditions, Hölder’s inequality implies that f g is q3-summable on X, with

∥f g∥q3 ≤ ∥f∥q1 ∥g∥q2 .(27.4)

This is often stated for q3 = 1, and it is easy to reduce to that case.
If we take q1 = ∞, then 1/q1 is interpreted as being equal to 0, as usual,

and (27.3) reduces to saying that q2 = q3. Let f , g be nonnegative real-valued
functions on X again, and suppose that f is bounded on X, and that g is q2-
summable on X for some positive real number q2. It is easy to see that f g
is also q2-summable on X, and that (27.4) holds with q3 = q2. This is often
included in the statement of Hölder’s inequality. Of course, one can deal with
q2 = ∞ in the same way.

If we take q1 = q2 = ∞, then (27.4) says that q3 = ∞ as well. If f , g are
bounded nonnegative real-valued functions on X, then f g is bounded on X too,
and (27.4) holds with q1 = q2 = q3 = ∞. In this case, if either f or g vanishes
at infinity on X, then f g vanishes at infinity on X.
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Let f be a nonnegative real-valued function on X again, and let w be a
positive real-valued function on X. If f w is summable on X, then we say that
f is summable on X with respect to w, as before, and we put

∥f∥1,w =
∑
x∈X

f(x)w(x) = ∥f w∥1.(27.5)

If f w is bounded on X, then we say that f is bounded with respect to w on X,
and we put

∥f∥∞,w = sup
x∈X

(f(x)w(w)) = ∥f w∥∞.(27.6)

If f w vanishes at infinity on X, then we may say that f vanishes at infinity
with respect to w on X. This implies that f is bounded on X with respect to
w, as usual.

Let w0, w1 be positive real-valued functions on X, and put

wt(x) = w0(x)
1−t w1(x)

t(27.7)

for every x ∈ X and t ∈ R with 0 < t < 1. Note that this reduces to w0 when
t = 0, and to w1 when t = 1. If f is a nonnegative real-valued function on X,
then

f(x)wt(x) = f(x)1−t w0(x)
1−t f(x)t w1(x)

t(27.8)

= (f(x)w0(x))
1−t (f(x)w1(x))

t

for every x ∈ X and 0 < t < 1.
Let 0 < t < 1 be given, and put

q1 = 1/(1− t), q2 = 1/t.(27.9)

Thus 1 < q1, q2 < ∞, and

1/q1 + 1/q2 = (1− t) + t = 1.(27.10)

Let f be a nonnegative real-valued function on X that is summable with respect
to w0 and w1 on X, so that f w0 and f w1 are summable on X. This implies
that (f(x)w0(x))

1−t is q1-summable on X, with

∥(f w0)
1−t∥q1 =

( ∑
x∈X

f(x)w0(x)
)1−t

= ∥f∥1−t
1,w0

.(27.11)

Similarly, (f(x)w1(x))
t is q2-summable on X, with

∥(f w1)
t∥q2 =

( ∑
x∈X

f(x)w1(x)
)t

= ∥f∥t1,w1
.(27.12)

Let wt be as in (27.7), so that f wt can be expressed as in (27.8). Using Hölder’s
inequality, we get that f wt is summable on X, with

∥f∥1,wt
= ∥f wt∥1 ≤ ∥(f w0)

1−t∥q1 ∥(f w1)
t∥q2 = ∥f∥1−t

1,w0
∥f∥t1,w1

.(27.13)
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Now let f be a nonnegative real-valued function on X that is bounded with
respect to w0 and w1. If 0 < t < 1 and wt is as in (27.7), then it is easy to see
that f is bounded with respect to wt, using (27.8). More precisely,

∥f∥∞,wt = ∥f wt∥∞ = ∥(f w0)
1−t (f w1)

t∥∞
≤ ∥(f w0)

1−t∥∞ ∥(f w1)
t∥∞(27.14)

= ∥f w0∥1−t
∞ ∥f w1∥t∞ = ∥f∥1−t

∞,w0
∥f∥t∞,w1

.

If f also vanishes at infinity on X with respect to w0 or w1, then f vanishes at
infinity on X with respect to wt when 0 < t < 1.

Let k be a field with an absolute value function | · |, and let V be a vector
space over k with a norm N with respect to | · | on k. Also let f be a V -valued
function on X, so that N(f(x)) is a nonnegative real-valued function on X, to
which the previous remarks can be applied. Let w0, w1 be positive real-valued
functions on X again, and let wt be as in (27.7) for 0 < t < 1. If f is summable
with respect to N on V and both w0 and w1 on X, then it follows that f is
summable with respect to N on V and wt on X when 0 < t < 1, with

∥f∥1,wt ≤ ∥f∥1−t
1,w0

∥f∥t1,w1
,(27.15)

as in (27.13). This uses the terminology and notation in Section 25. Thus

ℓ1w0
(X,V ) ∩ ℓ1w1

(X,V ) ⊆ ℓ1wt
(X,V )(27.16)

when 0 < t < 1. Similarly, if f is bounded with respect to N on V and both
w0 and w1 on X, then f is bounded with respect to N on V and wt on X when
0 < t < 1, with

∥f∥∞,wt
≤ ∥f∥1−t

∞,w0
∥f∥t∞,w1

,(27.17)

as in (27.14). Hence

ℓ∞w0
(X,V ) ∩ ℓ∞w1

(X,V ) ⊆ ℓ∞wt
(X,V )(27.18)

when 0 < t < 1. In this case, if f also vanishes at infinity with respect to N on
V and either w0 or w1 on X, then f vanishes at infinity with respect to N on
V and wt on X when 0 < t < 1. This means that

c0,w0(X,V ) ∩ ℓ∞w1
(X,V ), ℓ∞w0

(X,V ) ∩ c0,w1(X,V ) ⊆ c0,wt(X,V )(27.19)

when 0 < t < 1.

28 Generalized convergence of sums

Let k be a field with an absolute value function | · |, and let V be a vector space
over k with a norm N with respect to | · | on k. Also let X be a nonempty set,
and let f be a V -valued function on X. If A is a nonempty finite subset of X,
then the sum ∑

x∈A

f(x)(28.1)
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can be defined as an element of V in the usual way. One way to try to define
the sum ∑

x∈X

f(x)(28.2)

is as a limit of the finite subsums (28.1), when the limit exists. More precisely,
the collection of all nonempty finite subsets of X is a partially-ordered set with
respect to inclusion. If A1, A2 are nonempty finite subsets of X, then A1 ∪ A2

is a nonempty finite subset of X that contains A1 and A2. This means that the
collection of nonempty finite subsets of X is a directed system with respect to
inclusion. The family of finite subsums (28.1) may be considered as a net in V ,
indexed by this directed system. Convergence of this net in V can be defined
in the usual way, using the topology determined on V by the metric associated
to N .

In this situation, the convergence of the net of finite subsums (28.1) to a
vector v ∈ V means that for every ϵ > 0 there is a nonempty finite subset A(ϵ)
of X such that

N
(∑

x∈A

f(x)− v
)
< ϵ(28.3)

for every nonempty finite subset A of X with

A(ϵ) ⊆ A.(28.4)

One can check that the limit v is unique when it exists, in which case the sum
(28.2) is defined to be v. The collection of V -valued functions f on X for which
the limit exists is a vector space over k with respect to pointwise addition and
scalar multiplication, and the sum (28.2) is linear in f . If f is a nonnegative real-
valued summable function on X, then the net of finite subsums (28.1) converges
to the supremum of these subsums, so that this definition of the sum (28.2) is
compatible with the one in Section 20. If f is a V -valued function on X with
finite support, then the finite subsums (28.1) are the same when A contains the
support of f , so that the sum (28.2) reduces to this finite sum.

Let f be a V -valued function on X again. The net of finite subsums (28.1)
is a Cauchy net with respect to the metric on V associated to N if for every
ϵ > 0 there is a nonempty finite subset A1(ϵ) of X such that

N
( ∑

x∈A1

f(x)−
∑
x∈A2

f(x)
)
< ϵ(28.5)

for all finite subsets A1, A2 of X that contain A1(ϵ). If the net of finite sums
(28.1) converges in V , as in the preceding paragraph, then this condition holds
with A1(ϵ) = A(ϵ/2). If N is an ultranorm on V , then one can take A1(ϵ) =
A(ϵ). Alternatively, this Cauchy condition can be formulated as saying that for
every ϵ > 0 there is a nonempty finite subset A2(ϵ) of X such that

N
( ∑

x∈B

f(x)
)
< ϵ(28.6)
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for every nonempty finite subset B ofX such that A2(ϵ)∩B = ∅. More precisely,
the previous condition implies this one with A2(ϵ) = A1(ϵ), by taking A1 =
A1(ϵ)∪B and A2 = A1(ϵ). Conversely, the second formulation implies the first
one with A1(ϵ) = A2(ϵ/2), and with A1(ϵ) = A2(ϵ) when N is an ultranorm on
V . Note that the second formulation implies that f vanishes at infinity on X
with respect to N on V , by taking B = {x} when x ∈ X \A2(ϵ).

Of course,

N
( ∑

x∈B

f(x)
)
≤

∑
x∈B

N(f(x))(28.7)

for every nonempty finite subset B of X, by the triangle inequality. If f is
summable on X with respect to N on V , then one can use (28.7) to check that
the second version of the Cauchy condition in the preceding paragraph holds.
If N is an ultranorm on V , then

N
( ∑

x∈B

f(x)
)
≤ max

x∈B
N(f(x))(28.8)

for every nonempty finite subset B of X. In this case, if f vanishes at infinity
on X with respect to N on V , then it follows that the second version of the
Cauchy condition in the preceding paragraph holds again.

Suppose that A1, A2, A3, . . . is an infinite sequence of nonempty finite subsets
of X such that

Aj ⊆ Aj+1(28.9)

for each j ≥ 1, and that the support of f is contained in
∪∞

j=1 Aj . If the net of
all finite subsums (28.1) converges in V , then the sequence of subsums∑

x∈Aj

f(x)(28.10)

converges to the same element of V . Similarly, if the net of finite subsums
(28.1) satisfies the Cauchy condition mentioned earlier, then the sequence of
finite subsums (28.10) is a Cauchy sequence in V with respect to the metric
associated to N . In particular, if V is complete with respect to this metric,
then it follows that the sequence of finite subsums (28.10) converges in V . If
the net of finite subsums (28.1) satisfies the Cauchy condition mentioned earlier,
and if the sequence of finite subsums (28.10) converges in V , then the net of all
finite subsums (28.1) converges to the same limit.

If the net of finite subsums (28.1) satisfies the Cauchy condition mentioned
earlier, then f vanishes at infinity on X with respect to N on V , and hence
the support of f has only finitely or countably many elements. This implies
that the support of f is contained in the union of a sequence of monotonically
increasing nonempty finite subsets of X, as in the previous paragraph. If V is
complete with respect to the metric associated to N , then it follows that the
net of all finite subsums (28.1) converges in V , as before. This can be used as
another way to define the sum (28.2) in Section 22.
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Suppose that f is a real or complex-valued function onX, using the standard
absolute value function on R or C, as appropriate. If f is summable on X,
then f can be expressed as a linear combination of nonnegative real-valued
summable functions on X. This can be used to define the sum (28.2) as a real
or complex number, as appropriate, by reducing to the case of nonnegative real-
valued summable functions. In particular, the convergence of the net of finite
subsums (28.1) follows from the analogous statement for nonnegative real-valued
summable functions on X in this case.

If f is any V -valued function on X, then the Cauchy condition mentioned
earlier implies that the finite subsums (28.1) have bounded norm. If f is a
real-valued function on X, then the boundedness of the finite subsums (28.1)
implies that f is summable on X, by considering nonempty finite subsets of X
on which f has constant sign. Similarly, if f is a complex-valued function on X,
then the boundedness of the finite subsums (28.1) implies that f is summable
on X, by applying the previous statement to the real and imaginary parts of f .

Part III

Norms and power series

29 Some norms on polynomials

Let n be a positive integer, and let r = (r1, . . . , rn) be an n-tuple of positive
real numbers. If α ∈ (Z+ ∪ {0})n is a multi-index, then put

wr(α) = rα = rα1
1 · · · rαn

n .(29.1)

This defines wr as a positive real-valued function on (Z+ ∪ {0})n.
Let k be a field, let V be a vector space over k, and let T1, . . . , Tn be n

commuting indeterminates. Remember that the space V [T1, . . . , Tn] of formal
polynomials in T1, . . . , Tn with coefficients in V is a vector space over k with
respect to termwise addition and scalar multiplication, as in Section 2. Let | · |
be an absolute value function on k, and let N be a norm on V with respect to
| · | on k. Also let

f(T ) =
∑

α∈(Z+∪{0})n
fα Tα(29.2)

be a formal polynomial in T1, . . . , Tn with coefficients in V , so that fα ∈ V for
every multi-index α, and fα = 0 for all but finitely many α. Put

∥f(T )∥1,r =
∑

α∈(Z+∪{0})n
N(fα) r

α,(29.3)

where the sum on the right is a sum of nonnegative real numbers, all but finitely
many of which are equal to 0. It is easy to see that this defines a norm on
V [T1, . . . , Tn], with respect to | · | on k.
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Remember that V [T1, . . . , Tn] can be defined as the space c00((Z+∪{0})n, V )
of V -valued functions on (Z+ ∪ {0})n with finite support, where f(T ) in (29.2)
corresponds to fα as a V -valued function of α. Using this identification and
wr in (29.1), (29.3) corresponds to the ℓ1wr

((Z+ ∪ {0})n, V ) norm defined as in
Section 25, restricted to c00((Z+ ∪ {0})n, V ).

Similarly, put

∥f(T )∥∞,r = max
α∈(Z+∪{0})n

(N(fα) r
α)(29.4)

for each f(T ) ∈ V [T1, . . . , Tn], where the maximum on the right is automatically
attained, because all but finitely many of the terms are equal to 0. This defines
a norm on V [T1, . . . , Tn] too, with respect to | · | on k. As in the previous
paragraph, (29.4) corresponds exactly to the ℓ∞wr

((Z+ ∪ {0})n, V ) norm defined
as in Section 25, restricted to c00((Z+ ∪ {0})n, V ). If N is an ultranorm on V ,
then (29.4) is an ultranorm on V [T1, . . . , Tn]. Note that

∥f(T )∥∞,r ≤ ∥f(T )∥1,r(29.5)

for every f(T ) ∈ V [T1, . . . , Tn].
If f(T ) ∈ V [T1, . . . , Tn] and t ∈ kn, then

f(t) =
∑

α∈(Z+∪{0})n
fα tα(29.6)

defines an element of V , as in Section 2, because all but finitely many terms on
the right side are equal to 0. Of course,

N(f(t)) ≤
∑

α∈(Z+∪{0})n
N(fα) |tα|,(29.7)

and
|tα| = |tα1

1 · · · tαn
n | = |t1|α1 · · · |tn|αn(29.8)

for every multi-index α. If |tj | ≤ rj for each j = 1, . . . , n, then

|tα| ≤ rα(29.9)

for every multi-index α, so that

N(f(t)) ≤
∑

α∈(Z+∪{0})n
N(fα) r

α = ∥f(T )∥1,r.(29.10)

If N is an ultranorm on V , then

N(f(t)) ≤ max
α∈(Z+∪{0})n

(N(fα) |tα|)(29.11)

for every t ∈ kn. In this case, if we also have that |tj | ≤ rj for each j = 1, . . . , n,
then we get that

N(f(t)) ≤ max
α∈(Z+∪{0})n

(N(fα) r
α) = ∥f(T )∥∞,r.(29.12)
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30 Summable power series

Let k be a field, let V be a vector space over k, and let T1, . . . , Tn be n com-
muting indeterminates for some positive integer n. Remember that the space
V [[T1, . . . , Tn]] of formal power series in T1, . . . , Tn with coefficients in V is a
vector space over k with respect to pointwise addition and scalar multiplication,
as in Section 4. Let | · | be an absolute value function on k, let N be a norm
on V with respect to | · | on k, and let r = (r1, . . . , rn) be an n-tuple of positive
real numbers. If

f(T ) =
∑

α∈(Z+∪{0})n
fα Tα(30.1)

is an element of V [[T1, . . . , Tn]], then

∥f(T )∥1,r =
∑

α∈(Z+∪{0})n
N(fα) r

α(30.2)

can be defined as a nonnegative extended real number, as in Section 20. Put

V 1
r [[T1, . . . , Tn]] = {f(T ) ∈ V [[T1, . . . , Tn]] : ∥f(T )∥1,r < ∞}.(30.3)

More precisely, remember that V [[T1, . . . , Tn]] can be defined as the space
c((Z+∪{0})n, V ) of V -valued functions on the set (Z+∪{0})n of multi-indices, as
in Section 4. Let wr be the positive real-valued function defined on (Z+∪{0})n
in (29.1). Thus (30.3) corresponds exactly to the space ℓ1wr

((Z+ ∪ {0})n, V ) of
V -valued functions on (Z+ ∪ {0})n that are summable with respect to N on
V and wr on (Z+ ∪ {0})n, as in Section 25. Similarly, (30.2) corresponds to
the ℓ1wr

((Z+ ∪ {0})n, V ) norm defined earlier. In particular, (30.3) is a linear
subspace of V [[T1, . . . , Tn]], and (30.2) defines a norm on (30.3) with respect to
| · | on k.

The space V [T1, . . . , Tn] of formal polynomials in T1, . . . , Tn with coefficients
in V corresponds to the space c00(Z+ ∪ {0})n, V ) of V -valued functions on
(Z+ ∪ {0})n, as before. This is a linear subspace of (30.3), which is dense
in (30.3) with respect to the metric associated to the norm (30.2). If V is
complete with respect to the metric associated toN , then (30.3) is complete with
respect to the metric associated to (30.2), because of the analogous statement
for ℓ1wr

((Z+ ∪ {0})n, V ).
Let t ∈ kn be given, with

|tj | ≤ rj(30.4)

for each j = 1, . . . , n, so that (29.9) holds for every multi-index α. Also let
f(T ) ∈ V 1

r [[T1, . . . , Tn]] be given, and observe that∑
α∈(Z+∪{0})n

N(fα) |tα| ≤ ∥f(T )∥1,r.(30.5)

Thus fα tα defines a summable V -valued function of α on (Z+ ∪ {0})n with
respect to N . Suppose that V is complete with respect to the metric associated
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to N , and put

f(t) =
∑

α∈(Z+∪{0})n
fα tα,(30.6)

where the sum on the right can be defined as an element of V as in Section 22.
Note that

N(f(t)) ≤
∑

α∈(Z+∪{0})n
N(fα) |tα| ≤ ∥f(T )∥1,r.(30.7)

Under these conditions,
f(T ) 7→ f(t)(30.8)

defines a linear mapping from V 1
r [[T1, . . . , Tn]] into V . More precisely,

f(T ) 7→ fα tα(30.9)

defines a linear mapping from V 1
r [[T1, . . . , Tn]] into the space ℓ1((Z+∪{0})n, V )

of summable V -valued functions of α on (Z+ ∪ {0})n with respect to N . The
mapping (30.8) is the same as the composition of (30.9) with the mapping from
ℓ1((Z+ ∪ {0})n, V ) into V defined by summing over α, as in Section 22.

31 More spaces of power series

Let k be a field with an absolute value function | · |, and let V be a vector
space over k with a norm N with respect to | · | on k. Also let T1, . . . , Tn be
n commuting indeterminates for some n ∈ Z+, and let r = (r1, . . . , rn) be an
n-tuple of positive real numbers. If f(T ) is a formal power series in T1, . . . , Tn

with coefficients in V as in (30.1), then

∥f(T )∥∞,r = sup
α∈(Z+∪{0})n

(N(fα) r
α)(31.1)

is defined as a nonnegative extended real number. Let V ∞
r [[T1, . . . , Tn]] be the

space of f(T ) ∈ V [[T1, . . . , Tn]] such that

N(fα) r
α(31.2)

is bounded as a nonnegative real-valued function of α on (Z+ ∪ {0})n, so that
(31.1) is finite. Similarly, let V0,r[[T1, . . . , Tn]] be the space of formal power series
f(T ) in T1, . . . , Tn with coefficients in V such that (31.2) vanishes at infinity as
a nonnegative real-valued function of α on (Z+ ∪ {0})n.

As before, the space V [[T1, . . . , Tn]] of formal power series in T1, . . . , Tn with
coefficients in V can be defined as the space c((Z+ ∪ {0})n, V ) of all V -valued
functions on (Z+ ∪ {0})n. Let wr be the positive real-valued function defined
on (Z+ ∪ {0})n as in (29.1) again. The space V ∞

r [[T1, . . . , Tn]] defined in the
preceding paragraph corresponds exactly to the space ℓ∞wr

((Z+ ∪ {0})n, V ) of
V -valued functions on (Z+ ∪ {0})n that are bounded with respect to N on V
and wr on (Z+∪{0})n, as in Section 25. Similarly, V0,r[[T1, . . . , Tn]] corresponds
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exactly to the space c0,wr ((Z+∪{0})n, V ) of V -valued functions on (Z+∪{0})n
that vanish at infinity with respect to N on V and wr on (Z+ ∪ {0})n, as
in Section 25. Note that (31.1) corresponds to the ℓ∞wr

((Z+ ∪ {0})n, V ) norm
defined previously.

In particular, V ∞
r [[T1, . . . , Tn]] and V0,r[[T1, . . . , Tn]] are linear subspaces of

V [[T1, . . . , Tn]]. We also have that

V [T1, . . . , Tn] ⊆ V 1
r [[T1, . . . , Tn]] ⊆ V0,r[[T1, . . . , Tn]](31.3)

⊆ V ∞
r [[T1, . . . , Tn]],

because of the analogous statements for functions that are summable, vanish at
infinity, or are bounded. Of course, (31.1) defines a norm on V ∞

r [[T1, . . . , Tn]]
with respect to | · | on k. If f(T ) ∈ V 1

r [[T1, . . . , Tn]], then

∥f(T )∥∞,r ≤ ∥f(T )∥1,r,(31.4)

where ∥f(T )∥1,r is as in (30.2). As in Section 25, V [T1, . . . , Tn] is dense in
V0,r[[T1, . . . , Tn]] with respect to the metric associated to (31.1). Similarly,
V0,r[[T1, . . . , Tn]] is a closed set in V ∞

r [[T1, . . . , Tn]] with respect to this metric. If
V is complete with respect to the metric associated to N , then V ∞

r [[T1, . . . , Tn]]
is complete with respect to the metric associated to (31.1).

Suppose from now on in this section that N is an ultranorm on V . This
implies that (31.1) is an ultranorm on V ∞

r [[T1, . . . , Tn]], as before. Let t ∈ k be
given, with |tj | ≤ rj for each j = 1, . . . , n, so that |tα| ≤ rα for every multi-index
α, as in (29.9). Also let f(T ) ∈ V0,r[[T1, . . . , Tn]] be given, and observe that

N(fα tα) = N(fα) |tα| ≤ N(fα) r
α(31.5)

for every α ∈ (Z+ ∪ {0})n. This implies that fα tα vanishes at infinity as a
V -valued function of α on (Z+ ∪ {0})n with respect to N .

If V is complete with respect to the ultrametric associated to N , then we
can put

f(t) =
∑

α∈(Z+∪{0})n
fα tα,(31.6)

where the sum on the right is defined as an element of V as in Section 22. In
this situation, we have that

N(f(t)) ≤ max
α∈(Z+∪{0})n

N(fα tα) ≤ ∥f(T )∥∞,r,(31.7)

because N is an ultranorm on V . As before, f(T ) 7→ f(t) is a linear mapping
from V0,r[[T1, . . . , Tn]] into V . Indeed, f(T ) 7→ fα tα is a linear mapping from
V0,r[[T1, . . . , Tn]] into the space c0((Z+ ∪ {0})n, V ) of V -valued functions on
(Z+∪{0})n that vanish at infinity with respect to N . By construction, the first
mapping f(T ) 7→ f(t) is the composition of the second mapping f(T ) 7→ fα Tα

with the mapping from c0((Z+ ∪ {0})n, V ) into V defined by summing over α,
as in Section 22.
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32 Comparing r’s

Let n be a positive integer, and let ρ = (ρ1, . . . , ρn) be an n-tuple of positive real
numbers with ρj < 1 for each j = 1, . . . , n. As usual, we put ρα = ρα1

1 · · · ραn
n

for each α ∈ (Z+ ∪ {0})n. Observe that

∑
α∈(Z+∪{0})n

ρα =

n∏
j=1

( ∞∑
αj=0

ρ
αj

j

)
=

n∏
j=1

(1− ρj)
−1.(32.1)

More precisely, the sum over α ∈ (Z+ ∪ {0})n on the left can be identified with
the iterated sum

∞∑
α1=0

( ∞∑
α2=0

· · ·
( ∞∑

αn=0

ρα
)
· · ·

)
,(32.2)

as in Section 23. This iterated sum reduces to the product of the geometric
series in the middle of (32.1).

Let k be a field with an absolute value function | · |, and let V be a vector
space over k with a norm N with respect to | · | on k. Also let T1, . . . , Tn be
commuting indeterminates, and let r = (r1, . . . , rn) and R = (R1, . . . , Rn) be
n-tuples of positive real numbers. Suppose that

rj ≤ Rj(32.3)

for each j = 1, . . . , n, so that
rα ≤ Rα(32.4)

for every α ∈ (Z+ ∪ {0})n. It is easy to see that

V 1
R[[T1, . . . , Tn]] ⊆ V 1

r [[T1, . . . , Tn]],(32.5)

with
∥f(T )∥1,r ≤ ∥f(T )∥1,R(32.6)

for every f(T ) ∈ V 1
R[[T1, . . . , Tn]]. Similarly,

V ∞
R [[T1, . . . , Tn]] ⊆ V ∞

r [[T1, . . . , Tn]],(32.7)

with
∥f(T )∥∞,r ≤ ∥f(T )∥∞,R(32.8)

for every f(T ) ∈ V ∞
R [[T1, . . . , Tn]]. Moreover,

V0,R[[T1, . . . , Tn]] ⊆ V0,r[[T1, . . . , Tn]].(32.9)

Of course,

{t ∈ kn : |tj | ≤ rj for each j = 1, . . . , n}(32.10)

⊆ {t ∈ kn : |tj | ≤ Rj for each j = 1, . . . , n}.
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Suppose now that
rj < Rj(32.11)

for each j = 1, . . . , n, and put

ρj = rj/Rj ,(32.12)

1 ≤ j ≤ n. Thus ρj < 1 for each j = 1, . . . , n, and we put ρ = (ρ1, . . . , ρn).
Observe that

rα = ρα Rα(32.13)

for every α ∈ (Z+ ∪ {0})n. If f(T ) ∈ V ∞
R [[T1, . . . , Tn]], then

N(fα) r
α = N(fα) ρ

α Rα ≤ ∥f(T )∥∞,R ρα(32.14)

for every α ∈ (Z+ ∪ {0})n, by the definition (31.1) of ∥f(T )∥∞,R. This implies
that

∥f(T )∥1,r =
∑

α∈(Z+∪{0})n
N(fα) r

α ≤
∑

α∈(Z+∪{0})n
∥f(T )∥∞,R ρα

= ∥f(T )∥∞,R

n∏
j=1

(1− ρj)
−1,(32.15)

using (32.1) in the third step. It follows that f(T ) ∈ V 1
r [[T1, . . . , Tn]], so that

V ∞
R [[T1, . . . , Tn]] ⊆ V 1

r [[T1, . . . , Tn]].(32.16)

In particular,
V ∞
R [[T1, . . . , Tn]] ⊆ V0,r[[T1, . . . , Tn]].(32.17)

Note that

{t ∈ kn : |tj | ≤ rj for each j = 1, . . . , n}(32.18)

⊆ {t ∈ kn : |tj | < Rj for each j = 1, . . . , n}.

Let t ∈ kn be given, and suppose that

|tj | < Rj(32.19)

for each j = 1, . . . , n. Also let r1, . . . , rn be positive real numbers such that

|tj | ≤ rj < Rj(32.20)

for each j. Suppose that V is complete with respect to the metric associated to
N . If f(T ) ∈ V ∞

R [[T1, . . . , Tn]], then f(T ) ∈ V 1
r [[T1, . . . , Tn]], as in the preceding

paragraph. Under these conditions, f(t) can be defined as an element of V , as
in Section 30.
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33 Uniform convergence

Let k be a field with an absolute value function | · |, and let V be a vector
space over k with a norm N with respect to | · | on k. Also let T1, . . . , Tn be
n commuting indeterminates for some n ∈ Z+, and let r = (r1, . . . , rn) be an
n-tuple of positive real numbers. Suppose that f(T ) =

∑
α∈(Z+∪{0})n fα Tα is

an element of the space V 1
r [[T1, . . . , Tn]] defined in Section 30, and that V is

complete with respect to the metric associated to N . Put

D(r) = {t ∈ kn : |tj | ≤ rj for each j = 1, . . . , n},(33.1)

which is the closed polydisk in kn centered at 0 associated to r. If t ∈ D(r),
then f(t) can be defined as an element of V as in Sections 22 and 30.

Let A be a finite subset of (Z+ ∪ {0})n, so that

fA(T ) =
∑
α∈A

fα Tα(33.2)

is a formal polynomial in T1, . . . , Tn with coefficients in V . More precisely, the
right side of (33.2) is interpreted as being equal to 0 when A = ∅. Of course,

f(T )− fA(T ) =
∑

α∈(Z+∪{0})n\A

fα Tα.(33.3)

If t ∈ D(r), then

f(t)− fA(t) =
∑

α∈(Z+∪{0})n\A

fα tα,(33.4)

where the sum on the right is defined as an element of V as in Section 22. Thus

N(f(t)− fA(t)) ≤
∑

α∈(Z+∪{0})n\A

N(fα) |tα|

≤
∑

α∈(Z+∪{0})n\A

N(fα) r
α = ∥f(T )− fA(T )∥1,r,(33.5)

as in (30.7).
Let ϵ > 0 be given, and remember that N(fα) r

α is summable as a nonneg-
ative real-valued function of α ∈ (Z+ ∪ {0})n, by hypothesis. This implies that
there is a finite subset A(ϵ) of (Z+ ∪ {0})n such that∑

α∈(Z+∪{0})n
N(fα) r

α <
∑

α∈A(ϵ)

N(fα) r
α + ϵ.(33.6)

It follows that∑
α∈(Z+∪{0})n\A(ϵ)

N(fα) r
α =

∑
α∈(Z+∪{0})n

N(fα) r
α −

∑
α∈A(ϵ)

N(fα) r
α < ϵ.(33.7)
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If A ⊆ (Z+ ∪ {0})n is a finite set, A(ϵ) ⊆ A, and t ∈ D(r), then

N(f(t)− fA(t)) ≤
∑

α∈(Z+∪{0})n\A

N(fα) r
α(33.8)

≤
∑

α∈(Z+∪{0})n\A(ϵ)

N(fα) r
α < ϵ,

by (33.5) and (33.7). Thus f(t) can be approximated uniformly by the fA(t)’s
on D(r) under these conditions.

Suppose now that N is an ultranorm on V , and that f(T ) is an element of
the space V0,r[[T1, . . . , Tn]] defined in Section 31. We continue to ask that V be
complete with respect to the metric associated to N , so that f(t) can be defined
as an element of V when t ∈ D(r), as in Sections 22 and 31. If A is a finite
subset of (Z+ ∪ {0})n again and t ∈ D(r), then

N(f(t)− fA(t)) ≤ max
α∈(Z+∪{0})n\A

(N(fα) |tα|)

≤ max
α∈(Z+∪{0})n\A

(N(fα) r
α) = ∥f(T )− fA(T )∥∞,r,(33.9)

as in (31.7). Remember that N(fα) r
α vanishes at infinity as a function of

α ∈ (Z+ ∪ {0})n, by hypothesis. Let ϵ > 0 be given, and let A(ϵ) be a finite
subset of (Z+ ∪ {0})n such that

N(fα) r
α < ϵ(33.10)

for every α ∈ (Z+ ∪ {0})n \A(ϵ). If A(ϵ) ⊆ A and t ∈ D(r), then

N(f(t)− fA(t)) ≤ max
α∈(Z+∪{0})n\A

(N(fα) r
α)(33.11)

≤ max
α∈(Z+∪{0})n\A(ϵ)

(N(fα) r
α) < ϵ,

by (33.9) and (33.10). This shows that f(t) can be approximated uniformly by
the fA(t)’s on D(r) in this situation as well.

34 Continuity conditions

Let k be a field with an absolute value function | · |, and let n be a positive
integer. Of course, kn may be considered as a vector space over k, with respect
to coordinatewise addition and scalar multiplication. Put

∥t∥∞ = max
1≤j≤n

|tj |(34.1)

for each t ∈ k, which defines a norm on kn with respect to | · | on k. If | · | is
an ultrametric absolute value function on k, then (34.1) is an ultranorm on kn.
The topology determined on kn by the metric associated to (34.1) is the same
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as the product topology corresponding to the topology determined on k by the
metric associated to | · |.

If α is any multi-index, then tα defines a continuous k-valued function on
kn, by standard arguments. The restriction of tα to any bounded subset of kn

with respect to (34.1) is bounded and uniformly continuous on that set, with
respect to the restriction of the metric associated to (34.1) to the bounded set
in kn, and the metric associated to | · | on k. Let V be a vector space over
k, and let N be a norm on V with respect to | · | on k. If f(T ) is a formal
polynomial in T1, . . . , Tn with coefficients in V and t ∈ kn, then f(t) can be
defined as an element of V , as in Section 2. This defines a mapping from kn

into V associated to f(T ). It is easy to see that this mapping is continuous,
with respect to the topology determined on V by N . The restriction of this
mapping to any bounded subset of kn is bounded and uniformly continuous on
that set, with respect to the restriction of the metric associated to (34.1) to the
bounded set in kn, and the metric associated to N on V .

Let r = (r1, . . . , rn) be an n-tuple of positive real numbers, and let f(T )
be an element of the space V 1

r [[T1, . . . , Tn]] defined in Section 30. Suppose that
V is complete with respect to the metric associated to N , and let D(r) be the
closed polydisk in kn associated to r as in (33.1). Thus f(t) can be defined
as an element of V for each t ∈ D(r), as before. This defines a mapping from
D(r) into V associated to f(T ). Note that D(r) is bounded in kn with respect
to (34.1). The mapping on D(r) associated to f(T ) is bounded with respect
to N on V , as in Section 30. This mapping can be approximated uniformly
on D(r) by polynomial mappings, as in the previous section. The restrictions
of these polynomial mappings to D(r) are uniformly continuous on D(r), with
respect to the restriction of the metric associated to (34.1) to D(r) and the
metric associated to N on V , as in the preceding paragraph. It follows that
the mapping from D(r) into V associated to f(T ) is uniformly continuous, with
respect to the restriction of the metric associated to (34.1) to D(r) and the
metric associated to N on V .

Suppose now that N is an ultranorm on V , and let f(T ) be an element of
the space V0,r[[T1, . . . , Tn]] defined in Section 31. As before, f(t) can be defined
as an element of V for each t ∈ D(r), because V is complete. This defines a
mapping from D(r) into V associated to f(T ), and this mapping is bounded
with respect to N on V , as in Section 31. This mapping can be approximated
uniformly on D(r) by polynomial mappings, as in the previous section again.
Hence this mapping is uniformly continuous with respect to the restriction of
the metric associated to (34.1) to D(r) and the metric associated to N on V ,
because of the corresponding uniform continuity properties of the restrictions
of polynomial mappings to D(r), as before.

35 Open polydisks

Let k be a field with an absolute value function |·|, and let n be a positive integer.
Also let R = (R1, . . . , Rn) be an n-tuple of positive extended real numbers, so
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that 0 < Rj ≤ ∞ for each j = 1, . . . , n. Put

D(R) = {t ∈ kn : |tj | < Rj for each j = 1, . . . , n},(35.1)

which is the open polydisk in kn centered at 0 associated to R. Note that (35.1)
is an open set in kn, with respect to the product topology corresponding to
the topology determined on k by the metric associated to | · |. Similarly, closed
polydisks in kn are closed sets with respect to this product topology.

Let us useR+ to denote the set of positive real numbers, so thatRn
+ is the set

of n-tuples of positive real numbers. Let V be a vector space over k with a norm
N with respect to | · | on k, and suppose that V is complete with respect to the
metric associated to N . Also let T1, . . . , Tn be commuting indeterminates, and
let f(T ) be a formal power series in T1, . . . , Tn with coefficients in V . Suppose
that for every r ∈ Rn

+ with
rj < Rj(35.2)

for each j = 1, . . . , n, we have that

f(T ) ∈ V 1
r [[T1, . . . , Tn]],(35.3)

where V 1
r [[T1, . . . , Tn]] is as in Section 30. Let t ∈ D(R) be given, and suppose

that r ∈ Rn
+ satisfies

|tj | ≤ rj < Rj(35.4)

for each j = 1, . . . , n. Under these conditions, f(t) can be defined as an element
of V , as in Section 30. More precisely, (35.3) implies that the sum used to define
f(t) is the sum of a summable V -valued function on (Z+ ∪ {0})n, because of
(35.4). This sum does not depend on r, but different r’s may be used to get the
summability condition being used.

This defines a mapping from D(R) into V associated to f(T ). If r ∈ R+

satisfies (35.2), then the restriction of this mapping to D(r) is bounded and
uniformly continuous, as in the previous section. Let us check that this mapping
is continuous on D(R). Let t0 = (t0,1, . . . , t0,n) ∈ D(R) be given, and let us
verify that this mapping is continuous at t0. Because t0 ∈ D(R), there is an
r ∈ Rn

+ such that
|t0,j | < rj < Rj(35.5)

for each j = 1, . . . , n. As before, the restriction of the mapping to D(r) ⊆ D(r)
is continuous, and in particular it is continuous at t0. The continuity of the
restriction of this mapping to D(r) at t0 implies that the mapping on D(R) is
continuous at t0, because t0 ∈ D(r) and D(r) is an open set in kn.

If | · | is an ultrametric absolute value function on k, then closed balls in k of
positive radius are open sets, as in Section 13. If r ∈ Rn

+, then it follows that

the closed polydisk D(r) is an open set in kn.

36 Submultiplicativity conditions

Let k be a field with an absolute value function | · |, and let A be an algebra
over k with a submultiplicative norm N with respect to | · | on k. Also let
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T1, . . . , Tn be commuting indeterminates for some n ∈ Z+, and let f(T ) =∑
α∈(Z+∪{0})n fα Tα and g(T ) =

∑
β∈(Z+∪{0})n gβ T

β be formal power series in

T1, . . . , Tn with coefficients in A. If γ ∈ (Z+ ∪ {0})n, then put

Eγ = {(α, β) ∈ (Z+ ∪ {0})n × (Z+ ∪ {0})n : α+ β = γ},(36.1)

as in Section 24. Remember that the product of f(T ) and g(T ) is defined by
f(T ) g(T ) = h(T ) =

∑
γ∈(Z+∪{0})n hγ T

γ , where

hγ =
∑

(α,β)∈Eγ

fα gβ(36.2)

for every γ ∈ (Z+ ∪ {0})n, as in Section 4. Thus

N(hγ) ≤
∑

(α,β)∈Eγ

N(fα gβ) ≤
∑

(α,β)∈Eγ

N(fα)N(gβ)(36.3)

for every γ ∈ (Z+ ∪ {0})n, using the triangle inequality in the first step, and
the submultiplicativity of N in the second step.

Let r ∈ Rn
+ be given, and observe that

N(hγ) r
γ ≤

∑
(α,β)∈Eγ

N(fα)N(gβ) r
γ =

∑
(α,β)∈Eγ

(N(fα) r
α) (N(gβ) r

β)(36.4)

for every γ ∈ (Z+ ∪ {0})n. Suppose that f(T ) and g(T ) are elements of the
space A1

r[[T1, . . . , Tn]] defined in Section 30. Using (36.4), we get that

∥h(T )∥1,r =
∑

γ∈(Z+∪{0})n
N(hγ) r

γ(36.5)

≤
∑

γ∈(Z+∪{0})n

( ∑
(α,β)∈Eγ

(N(fα) r
α) (N(gβ) r

β)
)
,

where ∥h(T )∥1,r is as defined in Section 30. The right side of (36.5) is equal to( ∑
α∈(Z+∪{0})n

N(fα) r
α
)( ∑

β∈(Z+∪{0})n
N(gβ) r

β
)

(36.6)

as in Section 24. This implies that h(T ) ∈ A1
r[[T1, . . . , Tn]], with

∥h(T )∥1,r ≤ ∥f(T )∥1,r ∥g(T )∥1,r.(36.7)

Suppose that A is complete with respect to the metric associated to N , and
let t be an element of the closed polydisk D(r) in kn associated to r. In this
case, f(t), g(t), and h(t) can be defined as elements of A, as in Section 30. Note
that

hγ t
γ =

∑
(α,β)∈Eγ

fα gβ t
γ =

∑
(α,β)∈Eγ

(fα tα) (gβ t
β)(36.8)
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for every γ ∈ (Z+∪{0})n, using (36.2) in the first step. Under these conditions,
we have that

h(t) = f(t) g(t),(36.9)

as in Section 24.
Suppose now that N is an ultranorm on A. Observe that

N(hγ) ≤ max
(α,β)∈Eγ

N(fα gβ) ≤ max
(α,β)∈Eγ

(N(fα)N(gβ))(36.10)

for every γ ∈ (Z+ ∪ {0})n, using (36.2) in the first step, and the submultiplica-
tivity of N in the second step. Let r ∈ Rn

+ be given again, and let us use (36.10)
to get that

N(hγ) r
γ ≤ max

(α,β)∈Eγ

(N(fα)N(gβ)) r
γ(36.11)

= max
(α,β)∈Eγ

((N(fα) r
α) (N(gβ) r

β))

for every γ ∈ (Z+ ∪ {0})n. Suppose that f(T ) and g(T ) are elements of the
space A∞

r [[T1, . . . , Tn]] defined in Section 31, so that

N(hγ) r
γ ≤ ∥f(T )∥r,∞ ∥g∥r,∞(36.12)

for every γ ∈ (Z+ ∪ {0})n. This means that h(T ) ∈ A∞
r [[T1, . . . , Tn]] too, with

∥h(T )∥r,∞ ≤ ∥f(T )∥r,∞ ∥g(T )∥r,∞.(36.13)

If f(T ) and g(T ) are elements of the space A0,r[[T1, . . . , Tn]] defined in Sec-
tion 31, then one can check that h(T ) is an element of A0,r[[T1, . . . , Tn]] as well,
using (36.11). Suppose that A is complete with respect to the metric associated
to N again, and that t ∈ D(r). Under these conditions, f(t), g(t), and h(t)
can be defined as elements of A, as in Section 31. One can verify that (36.9)
also holds in this situation. This uses (36.8) and the remarks in Section 24, as
before.

37 More sums in algebras

Let k be a field with an absolute value function | · |, and let A0 be an algebra
over k with a submultiplicative norm N0 with respect to | · | on k. Suppose that
A0 has a multiplicative identity element e0, with N0(e0) = 1. Let n ∈ Z+ and
x ∈ An

0 be given, with
xj xl = xl xj(37.1)

for each j, l = 1, . . . , n. Put

xα = xα1
1 · · ·xαn

n(37.2)

for each α ∈ (Z+ ∪ {0})n, as in Section 3, where x
αj

j is interpreted as being
equal to e0 when αj = 0. Thus

N0(x
α) ≤ N0(x

α1
1 ) · · ·N0(x

αn
n ) ≤ N0(x1)

α1 · · ·N0(xn)
αn(37.3)
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for every α ∈ (Z+ ∪ {0})n, where N0(xj)
αj is interpreted as being equal to 1

when αj = 0, as usual. Note that

xα+β = xα xβ(37.4)

for every α, β ∈ (Z+ ∪ {0})n, by (37.1).
Let T1, . . . , Tn be commuting indeterminates, and let r ∈ Rn

+ be given. Also
let f(T ) =

∑
α∈(Z+∪{0})n fα Tα be a formal power series in T1, . . . , Tn with

coefficients in k such that

∥f(T )∥1,r =
∑

α∈(Z+∪{0})n
|fα| rα(37.5)

is finite. This is the same type of condition as in Section 30, where k is considered
as a one-dimensional vector space over itself, and | · | is considered as a norm on
k. Suppose that

N0(xj) ≤ rj(37.6)

for each j = 1, . . . , n, so that

N0(x
α) ≤ rα(37.7)

for every α ∈ (Z+ ∪ {0})n, by (37.3). This implies that∑
α∈(Z+∪{0})n

|fα|N0(x
α) ≤ ∥f(T )∥1,r.(37.8)

In particular, this means that fα xα is a summable A0-valued function of α on
(Z+ ∪ {0})n with respect to N0. Suppose that A0 is complete with respect to
the metric associated to N0. Put

f(x) =
∑

α∈(Z+∪{0})n
fα xα,(37.9)

where the sum on the right is defined as an element of A0 as in Section 22. Of
course,

N0(f(x)) ≤
∑

α∈(Z+∪{0})n
|fα|N0(x

α) ≤ ∥f(T )∥1,r.(37.10)

Let g(T ) =
∑

β∈(Z+∪{0})n gβ T
β be another formal power series in T1, . . . , Tn

with coefficients in k such that ∥g(T )∥1,r is finite. As before, the coefficients of
the product h(T ) =

∑
γ∈(Z+∪{0})n hγ T

γ of f(T ) and g(T ) are given as in (36.2),

and ∥h(T )∥1,r is less than or equal to the product of ∥f(T )∥1,r and ∥g(T )∥1,r,
as in (36.7). Thus g(x) and h(x) can be defined as elements of A0 too, as in
Section 22. If γ ∈ (Z+ ∪ {0})n and Eγ is as in (36.1), then

hγ x
γ =

∑
(α,β)∈Eγ

fα gβ x
γ =

∑
(α,β)∈Eγ

(fα xα) (gβ x
β),(37.11)
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using (36.2) in the first step, and (37.4) in the second step. It follows that

h(x) = f(x) g(x),(37.12)

as in Section 24.
Suppose now that N0 is an ultranorm on A0. In this case, we let f(T ) =∑

α∈(Z+∪{0})n fα Tα be a formal power series in T1, . . . , Tn with coefficients in
k such that

|fα| rα(37.13)

vanishes at infinity as a nonnegative real-valued function of α on (Z+ ∪ {0})n.
This type of condition was discussed in Section 31, where k is considered as a
one-dimensional vector space over itself again, and | · | is considered as a norm
on k. Put

∥f(T )∥∞,r = sup
α∈(Z+∪{0})n

(|fα| rα),(37.14)

as before. Suppose that (37.6) holds for each j = 1, . . . , n again, so that (37.7)
holds for every α ∈ (Z+ ∪ {0})n. Thus

N0(fα xα) = |fα|N0(x
α) ≤ |fα| rα(37.15)

for every α ∈ (Z+ ∪ {0})n, which implies that

fα xα(37.16)

vanishes at infinity as an A0-valued function of α on (Z+∪{0})n with respect to
N0. As before, we ask that A0 be complete with respect to the metric associated
to N0. Under these conditions, f(x) can be defined as an element of A as in
(37.9), where the sum on the right side of (37.9) is defined as in Section 22. We
also have that

N0(f(x)) ≤ max
α∈(Z+∪{0})n

N0(fα xα) ≤ ∥f(T )∥∞,r(37.17)

in this situation.
Let g(T ) =

∑
β∈(Z+∪{0})n gβ T

β be another formal power series in T1, . . . , Tn

with coefficients in k such that
|gβ | rβ(37.18)

vanishes at infinity as a nonnegative real-valued function of β on (Z+ ∪ {0})n.
Remember that the coefficients of the product h(T ) =

∑
γ∈(Z+∪{0})n hγ T

γ of

f(T ) and g(T ) are given as in (36.2). As in the previous section,

|hγ | rγ(37.19)

vanishes at infinity as a nonnegative real-valued function of γ on (Z+ ∪ {0})n.
It follows that g(x) and h(x) can be defined as elements of A0 as well, as in
Section 22. Under these conditions, we have that (37.12) holds, as in Section
24, and using (37.11), as before.
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38 Some more continuity conditions

Let k be a field with an absolute value function | · | again, and let A0 be an
algebra over k with a submultiplicative normN0. As before, we ask thatA0 have
a multiplicative identity element e, with N0(e) = 1, and that A0 be complete
with respect to the metric associated to N0. Let r be a positive real number,
and let

f(T ) =

∞∑
j=0

fj T
j(38.1)

be a formal power series in an indeterminate T with coefficients in k such that

∥f(T )∥1,r =

∞∑
j=0

|fj | rj(38.2)

is finite. If x ∈ A0 satisfies N0(x) ≤ r, then

N0(fj x
j) = |fj |N0(x

j) ≤ |fj |N0(x)
j ≤ |fj | rj(38.3)

for every nonnegative integer j. This implies that

f(x) =

∞∑
j=0

fj x
j(38.4)

is defined as an element of A0, because the series on the right converges abso-
lutely with respect to N0. We also have that

N0(f(x)) ≤
∞∑
j=0

N0(fj x
j) ≤

∞∑
j=0

|fj |N0(x)
j ≤ ∥f(T )∥1,r(38.5)

in this case. Of course, this corresponds to taking n = 1 in the previous section.
Similarly, if l is a nonnegative integer, then

N0

(
f(x)−

l∑
j=0

fj x
j
)
= N0

( ∞∑
j=l+1

fj x
j
)

≤
∞∑

j=l+1

|fj |N0(x)
j(38.6)

≤
∞∑

j=l+1

|fj | rj

when N0(x) ≤ r. Let

BA0
(0, r) = {x ∈ A0 : N0(x) ≤ r}(38.7)

be the closed ball in A0 centered at 0 with radius r with respect to N0. It
follows from (38.6) that the partial sums

l∑
j=0

fj x
j(38.8)
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converge to f(x) uniformly on (38.7) as l → ∞, with respect to the metric on
A0 associated to N0. One can check that (38.8) is uniformly continuous on
(38.7) for each l ≥ 0, with respect to the metric on A0 associated to N0, and
its restriction to (38.7). This implies that f(x) is uniformly continuous as a
mapping from (38.7) into A0 too, by standard arguments.

Let R be a positive real number, and let

BA0
(0, R) = {x ∈ A0 : N0(x) < R}(38.9)

be the open ball in A0 centered at 0 with radius R with respect to N0. Suppose
that (38.2) is finite for every positive real number r with r < R, so that f(x) is
defined as an element of A0 for every x in (38.9). Under these conditions, f(x)
is continuous as a mapping from (38.9) into A0, with respect to the metric on
A0 associated to N0, and its restriction to (38.9). This can be obtained from
the continuity of f(x) on the smaller closed balls, as before. If (38.2) is finite
for every r > 0, then f(x) is defined an continuous on all of A0.

Suppose now that N0 is an ultranorm on A0. Let r > 0 be given again, and
suppose that

lim
j→∞

|fj | rj = 0.(38.10)

Put
∥f(T )∥∞,r = sup

j≥0
(|fj | rj),(38.11)

as usual. If x ∈ A0 and N0(x) ≤ r, then

lim
j→∞

N0(fj x
j) = 0,(38.12)

by (38.3). This implies that the series on the right side of (38.4) converges in
A0, as in Section 16. Note that

N0(f(x)) ≤ max
j≥0

N0(fj x
j) ≤ max

j≥0
(|fj |N0(x)

j) ≤ ∥f(T )∥∞,r(38.13)

in this situation.
If l is a nonnegative integer, then we get that

N0

(
f(x)−

l∑
j=0

fj x
j
)
= N0

( ∞∑
j=l+1

fj x
j
)

≤ max
j≥l+1

(|fj |N(x)j)(38.14)

≤ max
j≥l+1

(|fj | rj)

when N0(x) ≤ r. This implies that the partial sums (38.8) converge uniformly
to f(x) on (38.7) as l → ∞, because of (38.10). It follows that f(x) is uniformly
continuous as a mapping from (38.7) into A0, with respect to the metric on A0

associated to N0 and its restriction to (38.7), as before.
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39 Combining indeterminates again

Let k be a field with an absolute value function | · |, and let V be a vector space
over k with a norm N with respect to | · | on k. Also let m and n be positive
integers, and letX1, . . . , Xm, Y1, . . . , Yn bem+n commuting indeterminates. As
before, we can identify (Z+∪{0})m+n with the Cartesian product of (Z+∪{0})m
and (Z+ ∪ {0})n in the obvious way. A formal power series in X1, . . . , Xm,
Y1, . . . , Yn with coefficients in V can be expressed as

f(X,Y ) =
∑

α∈(Z+∪{0})m

∑
β∈(Z+∪{0})n

fα,β X
α Y β ,(39.1)

where fα,β ∈ V for every α ∈ (Z+∪{0})m and β ∈ (Z+∪{0})n. More precisely,
fα,β corresponds to a V -valued function on (Z+ ∪ {0})m+n, which is being
expressed as a function of α and β. If β ∈ (Z+ ∪ {0})n, then

fβ(X) =
∑

α∈(Z+∪{0})m
fα,β X

α(39.2)

defines a formal power series in X1, . . . , Xm with coefficients in V , which is to
say an element of V [[X1, . . . , Xm]]. Thus∑

β∈(Z+∪{0})n

fβ(X)Y β(39.3)

defines a formal power series in Y1, . . . , Yn with coefficients in V [[X1, . . . , Xm]],
which is to say an element of

(V [[X1, . . . , Xm]])[[Y1, . . . , Yn]].(39.4)

This defines a one-to-one correspondence between (39.4) and the space

V [[X1, . . . , Xm, Y1, . . . , Yn]](39.5)

of formal power series in X1, . . . , Xm, Y1, . . . , Yn with coefficients in V , as in
Section 5.

Let r = (r1, . . . , rm+n) ∈ Rm+n
+ be an (m+n)-tuple of positive real numbers,

and let rX = (rX,1, . . . , rX,m) ∈ Rm
+ and rY = (rY,1, . . . , rY,n) ∈ Rn

+ be defined
by

rX,j = rj for j = 1, . . . ,m, rY,l = rm+l for l = 1, . . . , n.(39.6)

If we identify Rm+n
+ with the Cartesian product of Rm

+ and Rn
+ in the usual

way, then
r corresponds to (rX , rY ).(39.7)

Put
wX

rX (α) = rαX = rα1

X,1 · · · r
αm

X,m = rα1
1 · · · rαm

m(39.8)

for every α ∈ (Z+ ∪ {0})n, and

wY
rY (β) = rβY = rβ1

Y,1 · · · r
βn

Y,n = rβ1

m+1 · · · r
βn

m+n(39.9)
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for every β ∈ (Z+ ∪ {0})n. Thus

wr(α, β) = wX
rX (α)wY

rY (β) = rα1
1 · · · rαm

m rβ1

m+1 · · · r
βn

m+n(39.10)

is the analogous function associated to r on (Z+ ∪ {0})m+n. These functions
correspond to rX , rY , and r as in (29.1).

We can define V 1
rX [[X1, . . . , Xm]] as in Section 30, with its corresponding

norm. Using this, we can define

(V 1
rX [[X1, . . . , Xn]])

1
rY [[Y1, . . . , Yn]](39.11)

in the same way, with its corresponding norm. Similarly, we can define

V 1
r [[X1, . . . , Xm, Y1, . . . , Yn]],(39.12)

with its corresponding norm. The one-to-one correspondence between (39.4)
and (39.5) mentioned earlier leads to an isometric linear mapping from (39.11)
onto (39.12). This follows from the remarks about weighted ℓ1 spaces associated
to Cartesian products of nonempty sets in Section 26.

We can define V ∞
rX [[X1, . . . , Xm]] as in Section 31, with its corresponding

norm. Using this, we can define

(V ∞
rX [[X1, . . . , Xm]])∞rY [[Y1, . . . , Yn]],(39.13)

with its corresponding norm. We can also define

V ∞
r [[X1, . . . , Xm, Y1, . . . , Yn]],(39.14)

with its corresponding norm. As before, the one-to-one correspondence between
(39.4) and (39.5) mentioned earlier leads to an isometric linear mapping from
(39.13) onto (39.14). This uses the remarks about weighted ℓ∞ spaces associated
to Cartesian product of nonempty sets in Section 26.

We can define V0,rX [[X1, . . . , Xm]] as in Section 31 as well, and we take it to
be equipped with the restriction of the norm from V ∞

rX [[X1, . . . , Xm]], as usual.
Using this, we can define

(V0,rX [[X1, . . . , Xm]])0,rY [[Y1, . . . , Yn]](39.15)

as in Section 31. Similarly, we can define

V0,r[[X1, . . . , Xm, Y1, . . . , Yn]].(39.16)

As in the previous situations, the one-to-one correspondence between (39.4) and
(39.5) mentioned earlier maps (39.15) onto (39.16). This uses the remarks in
Section 26 about functions that vanish at infinity with respect to a weight.
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40 Logarithmic convexity

Let n be a positive integer, and remember that a subset A of Rn is said to be
convex if for every x, y ∈ A and t ∈ R with 0 ≤ t ≤ 1 we have that

t x+ (1− t) y ∈ A.(40.1)

Let E be a subset of Rn
+, and let logE be the subset of Rn consisting of points

of the form
(log r1, . . . , log rn),(40.2)

where r = (r1, . . . , rn) ∈ E. If logE is convex in Rn, then E is said to be
logarithmically convex in Rn

+. Equivalently, let r(0) = (r1(0), . . . , rn(0)) and
r(1) = (r1(1), . . . , rn(1)) be elements of E, and let r(t) = (r1(t), . . . , rn(t)) be
defined for t ∈ R by

rj(t) = rj(0)
t rj(1)

1−t,(40.3)

for j = 1, . . . , n. The condition that E be logarithmically convex means that
r(t) ∈ E when 0 ≤ t ≤ 1.

If r ∈ Rn
+ and α ∈ (Z+ ∪ {0})n, then we put

wr(α) = rα = rα1
1 · · · rαn

n ,(40.4)

as in (29.1). Let r(0), r(1) ∈ Rn
+ and t ∈ R be given, and let r(t) ∈ Rn

+ be as
in (40.3). Observe that

wr(t)(α) = wr(0)(α)
t wr(1)(α)

1−t(40.5)

for every α ∈ (Z+ ∪ {0})n. This corresponds to (27.7), with X = (Z+ ∪ {0})n,
w0 = wr(0), w1 = wr(1), and wt = wr(t).

Let k be a field with an absolute value function | · |, and let V be a vector
space over k with a norm N with respect to | · | on k. Also let T1, . . . , Tn be
commuting indeterminates, and let f(T ) be a formal power series in T1, . . . , Tn

with coefficients in V . Put

E1(f(T )) = {r ∈ Rn
+ : f(T ) ∈ V 1

r [[T1, . . . , Tn]]},(40.6)

where V 1
r [[T1, . . . , Tn]] is as in Section 30. Equivalently, this is the set of r ∈ Rn

+

such that the coefficients fα of f(T ) are summable with respect to N on V and
wr on (Z+∪{0})n, as in Section 25. Using the remarks in Section 27, we get that
E1(f(T )) is logarithmically convex. More precisely, let r(0), r(1) ∈ E1(f(T ))
and t ∈ R be given, with 0 ≤ t ≤ 1, and let r(t) ∈ Rn

+ be as in (40.3). By
hypothesis, N(fα) is summable with respect to wr(0) and wr(1) as a nonnegative
real-valued function of α on (Z+ ∪{0})n. This implies that N(fα) is summable
with respect to wr(t) as a function of α ∈ (Z+ ∪ {0})n, because of (40.5) and
the remarks in Section 27. Hence r(t) ∈ E1(f(T )), as desired.

Similarly, put

E∞(f(T )) = {r ∈ Rn
+ : f(T ) ∈ V ∞

r [[T1, . . . , Tn]]},(40.7)
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where V ∞
r [[T1, . . . , Tn]] is as in Section 31. This is the same as the set of r ∈ Rn

+

such that the coefficients fα of f(T ) are bounded with respect to N on V
and wr on (Z+ ∪ {0})n, as in Section 25. It is easy to see that E∞(f(T )) is
logarithmically convex, using the remarks in Section 27. Indeed, suppose that
r(0), r(1) ∈ E∞(f(T )), so that N(fα) is bounded with respect to wr(0) and
wr(1) as a nonnegative real-valued function of α on (Z+ ∪ {0})n. This implies
that N(fα) is bounded with respect to wr(t) when 0 ≤ t ≤ 1, as in Section 27.

Let us also put

E0(f(T )) = {r ∈ Rn
+ : f(T ) ∈ V0,r[[T1, . . . , Tn]]},(40.8)

where V0,r[[T1, . . . , Tn]] is as in Section 31. This is the set of r ∈ Rn
+ such that

fα vanishes at infinity with respect to N on V and wr on (Z+ ∪ {0})n, as in
Section 25. Note that

E1(f(T )) ⊆ E0(f(T )) ⊆ E∞(f(T )),(40.9)

by (31.3). One can check that E0(f(T )) is logarithmically convex, using the
remarks in Section 27 again. More precisely, suppose that r(0) ∈ E0(f(T )) and
r(1) ∈ E∞(f(T )), so that N(fα) vanishes at infinity with respect to wr(0), and
N(fα) is bounded with respect to wr(1). If 0 < t < 1, then it follows that N(fα)
vanishes at infinity with respect to wr(t), as in Section 27. In particular, this
holds when both r(0) and r(1) are elements of E0(f(T )), because of the second
inclusion in (40.9).

41 Multiplicative ultranorms

Let k be a field with an absolute value function | · |, and let A be an algebra
over k with a norm N with respect to | · | on k. If

N(a b) = N(a)N(b)(41.1)

for every a, b ∈ A, then N is said to be multiplicative on A. Let us suppose
from now on in this section that N is a multiplicative ultranorm on A.

Let T be an indeterminate, and let f(T ) =
∑∞

j=0 fj T
j , g(T ) =

∑∞
l=0 gl T

l be
formal power series in T with coefficients in A. Their product h(T ) = f(T ) g(T )
is given by h(T ) =

∑∞
n=0 hn T

n, where

hn =

n∑
j=0

fj gn−j(41.2)

for each nonnegative integer n. Let r be a positive real number, and suppose
that f(T ), g(T ) are elements of the space A0,r[[T ]] defined in Section 31. This
implies that h(T ) ∈ A0,r[[T ]] too, as in Section 36. Put

∥f(T )∥∞,r = sup
j≥0

(N(fj) r
j),(41.3)
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where the supremum is taken over all nonnegative integers j, and similarly for
g(T ), h(T ), as in Section 31.

We would like to verify that

∥h(T )∥∞,r = ∥f(T )∥∞,r ∥g(T )∥∞,r(41.4)

under these conditions. It suffices to check that

∥f(T )∥∞,r ∥g(T )∥∞,r ≤ ∥h(T )∥∞,r,(41.5)

because the opposite inequality was already given in Section 36. This is trivial
when f(T ) = 0 and when g(T ) = 0, and so we may suppose that f(T ), g(T ) ̸= 0.
The hypothesis that f(T ) ∈ A0,r[[T ]] means that

lim
j→∞

(N(fj) r
j) = 0.(41.6)

In particular, this implies that the supremum in (41.3) is attained. Let j0 be
the smallest nonnegative integer such that

N(fj0) r
j0 = ∥f(T )∥∞,r.(41.7)

Similarly, let l0 be the smallest nonnegative integer such that

N(gl0) r
l0 = ∥g(T )∥∞,r.(41.8)

In order to get (41.5), we shall look at hj0+l0 , as usual. Observe that

fj0 gl0 = hj0+l0 −
j0−1∑
j=0

fj gj0+l0−j −
j0+l0∑

j=j0+1

fj gj0+l0−j ,(41.9)

by (41.2) with n = j0 + l0. More precisely, the first sum on the right side of
(41.9) should be interpreted as being equal to 0 when j0 = 0, and the second
sum on the right side of (41.9) is interpreted as being equal to 0 when l0 = 0.
It follows that

N(fj0 gl0)(41.10)

≤ max
(
N(hj0+l0), max

0≤j≤j0−1
N(fj gj0+l0−j), max

j0+1≤j≤j0+l0
N(fj gj0+l0−j)

)
,

by the ultranorm version of the triangle inequality. As before, the maximum
over 0 ≤ j ≤ j0 − 1 is interpreted as being equal to 0 when j0 = 0, and the
maximum over j0 + 1 ≤ j ≤ j0 + l0 is interpreted as being equal to 0 when
l0 = 0. We also have that

∥f(T )∥∞,r ∥g(T )∥∞,r = N(fj0) r
j0 N(gl0) r

l0 = N(fj0 gl0) r
j0+l0 ,(41.11)

using (41.7) and (41.8) in the first step, and (41.1) in the second step. Combining
this with (41.10), we obtain that

∥f(T )∥∞,r ∥g(T )∥∞,r(41.12)

≤ max
(
N(hj0+l0) r

j0+l0 , max
0≤j≤j0−1

N(fj gj0+l0−j) r
j0+l0 ,

max
j0+1≤j≤j0+l0

N(fj gj0+l0−j) r
j0+l0

)
,
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with the same interpretations for the right side as before.
Of course,

N(hj0+l0) r
j0+l0 ≤ ∥h(T )∥∞,r.(41.13)

If 0 ≤ j ≤ j0 − 1, then
N(fj) r

j < ∥f(T )∥∞,r,(41.14)

by the definition of j0. This implies that

N(fj gj0+l0−j) r
j0+l0 = N(fj) r

j N(gj0+l0−j) r
j0+l0−j(41.15)

< ∥f(T )∥∞,r ∥g(T )∥∞,r

when 0 ≤ j ≤ j0−1. Similarly, if j0+1 ≤ j ≤ j0+l0, then 0 ≤ j0+l0−j ≤ l0−1,
and hence

N(gj0+l0−j) r
j0+l0−j < ∥g(T )∥∞,r,(41.16)

by the definition of l0. It follows that (41.15) holds in this case as well. Thus
the second and third expressions in the maximum on the right side of (41.12)
are strictly less than the left side of (41.12). Note that this also holds when
either of these expressions is interpreted as being equal to 0, as in the preceding
paragraph. This means that the left side of (41.12) is less than or equal to the
first expression in the maximum on the right side of (41.12). This shows that
(41.5) holds, as desired, because of (41.13).

42 Some limits in r

Let k be a field with an absolute value function | · |, and let V be a vector space
over k with a norm N with respect to | · | on k. Also let T be an indeterminate,
and let f(T ) =

∑∞
j=0 fj T

j be a formal power series in T with coefficients in V .
If r is a positive real number, then

∥f(T )∥1,r =

∞∑
j=0

N(fj) r
j(42.1)

can be defined as a nonnegative extended real number, as in Section 30. It is
easy to see that this sum increases monotonically in r, as in Section 32. This
uses the fact that rj increases monotonically in r for each j ≥ 0.

Let r0 be a positive real number, and suppose that (42.1) is finite when
0 < r < r0. We would like to check that

∥f(T )∥1,r0 = sup
0<r<r0

∥f(T )∥1,r,(42.2)

where the supremum on the right side is defined as a nonnegative extended real
number. This is the same as saying that

∥f(T )∥1,r → ∥f(T )∥1,r0 as r → r0−,(42.3)
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because (42.1) increases monotonically in r. Of course, the right side of (42.2)
is less than or equal to the left side, by monotonicity in r. Thus it is enough to
verify that

∥f(T )∥1,r0 ≤ sup
0<r<r0

∥f(T )∥1,r.(42.4)

If n is a nonnegative integer, then

n∑
j=0

N(fj) r
j
0 = lim

r→r0−

n∑
j=0

N(fj) r
j ≤ sup

0<r<r0

∞∑
j=0

N(fj) r
j .(42.5)

This implies (42.4), by taking the supremum over n ≥ 0 of the sum on the left.
Similarly, if r is a positive real number, then

∥f(T )∥∞,r = sup
j≥0

(N(fj) r
j)(42.6)

can be defined as a nonnegative extended real number. Note that this increases
monotonically in r. Let r0 be a positive real number again, and suppose that
(41.3) is finite when 0 < r < r0. Let us check that

∥f(T )∥∞,r0 = sup
0<r<r0

∥f(T )∥∞,r,(42.7)

where the supremum on the right is defined as a nonnegative extended real
number. As before, this is the same as saying that

∥f(T )∥∞,r → ∥f(T )∥∞,r0 as r → r0−,(42.8)

because of monotonicity. The right side of (42.7) is automatically less than or
equal to the left side, by monotonicity, and so it suffices to verify that

∥f(T )∥∞,r0 ≤ sup
0<r<r0

∥f(T )∥∞,r.(42.9)

If j is a nonnegative integer, then

N(fj) r
j
0 = lim

r→r0
(N(fj) r

j) ≤ sup
0<r<r0

∥f(T )∥∞,r.(42.10)

This implies (42.9), as desired.
Now let A be an algebra over k, and let N be a multiplicative ultranorm

on A with respect to | · | on k. Let r0 be a positive real number, and suppose
that f(T ), g(T ) are elements of the space A∞

r0 [[T ]] defined in Section 31. This
means that h(T ) = f(T ) g(T ) ∈ A∞

r0 [[T ]] as well, as in Section 36. Under these
conditions, we have that

∥h(T )∥∞,r0 = ∥f(T )∥∞,r0 ∥g(T )∥∞,r0 .(42.11)

Indeed, if 0 < r < r0, then f(T ), g(T ) ∈ A0,r[[T ]], as in Section 32. Thus (41.4)
holds when 0 < r < r0, as before. To get (42.11), one can take the limit as
r → r0− on both sides of (42.11), using (42.8).
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Part IV

Some additional properties

43 More on metrics and ultrametrics

Let a be a positive real number, with a ≤ 1. If r, t are nonnegative real numbers,
then it is well known that

(r + t)a ≤ ra + ta.(43.1)

To see this, observe first that

max(r, t) ≤ (ra + ta)1/a.(43.2)

It follows that

r + t ≤ (ra + ta) max(r, t)1−a ≤ (ra + ta)1+(1−a)/a = (ra + ta)1/a,(43.3)

using (43.2) in the second step. This implies (43.1), as desired.
Let X be a set, and let d(x, y) be a metric on X. If 0 < a ≤ 1, then

d(x, y)a defines a metric on X too. More precisely, one can check that d(x, y)a

satisfies the triangle inequality on X, using (43.1) and the triangle inequality
for d(x, y). If d(x, y) is an ultrametric on X, then one can verify that d(x, y)a

is an ultrametric on X for every a > 0.
Suppose that d(x, y)a is a metric on X for some a > 0, which includes the

cases mentioned in the preceding paragraph. Let Bd(x, r) and Bda(x, r) denote
the open balls in X centered at x ∈ X with radius r > 0 with respect to d(·, ·)
and d(·, ·)a, respectively, as in Section 13. It is easy to see that

Bda(x, ra) = Bd(x, r)(43.4)

for every x ∈ X and r > 0. Similarly, let Bd(x, r) and Bda(x, r) be the closed
balls in X centered at x ∈ X with radius r ≥ 0 with respect to d(·, ·) and d(·, ·)a,
respectively. As before,

Bda(x, ra) = Bd(x, r)(43.5)

for every x ∈ X and r ≥ 0.
It follows from (43.4) that d(·, ·) and d(·, ·)a determine the same topologies

on X. More precisely, the identity mapping on X is uniformly continuous as a
mapping fromX equipped with d(·, ·) intoX equipped with d(·, ·)a. The identity
mapping on X is also uniformly continuous as a mapping from X equipped
with d(·, ·)a into X equipped with d(·, ·). In particular, a sequence {xj}∞j=1 of
elements of X is a Cauchy sequence with respect to d(·, ·) if and only if {xj}∞j=1

is a Cauchy sequence with respect to d(·, ·). It follows that X is complete with
respect to d(·, ·) if and only if X is complete with respect to d(·, ·)a.
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44 More on absolute value functions

Let k be a field, and let | · | be an absolute value function on k. If a is a positive
real number with a ≤ 1, then |x|a defines an absolute value function on k as
well. Indeed, the triangle inequality for |x|a can be obtained from (43.1) and
the triangle inequality for |x|. If | · | is an ultrametric absolute value function
on k, then |x|a is an ultrametric absolute value function on k for every a > 0.

Let |x|1 and |x|2 be two absolute value functions on k. If there is a positive
real number a such that

|x|2 = |x|a1(44.1)

for every x ∈ k, then | · |1 and | · |2 are said to be equivalent on k. Of course,
this implies that

|x− y|2 = |x− y|a1(44.2)

for every x, y ∈ k. It follows that the topologies determined on k by the metrics
associated to | · |1 and | · |2 are the same in this case, as in the previous section.
Conversely, if the topologies determined on k be the metrics associated to | · |1
and | · |2 are the same, then it is well known that | · |1 and | · |2 are equivalent
on k in this sense.

If x ∈ k and n ∈ Z+, then n · x denotes the sum of n x’s in k, as before.
Let | · | be an absolute value function on k again. If there are positive integers
n such that |n · 1| can be arbitrarily large, where 1 is the multiplicative identity
element in k, then | · | is said to be archimedean on k. Otherwise, | · | is said to
be non-archimedean on k. Observe that

|nj · 1| = |(n · 1)j | = |n · 1|j(44.3)

for every j, n ∈ Z+. If |n · 1| > 1 for some n ∈ Z+, then (44.3) tends to +∞ as
j → ∞, so that | · | is archimedean on k. If | · | is non-archimedean on k, then
it follows that

|n · 1| ≤ 1(44.4)

for every n ∈ Z+. If | · | is an ultrametric absolute value function on k, then it is
easy to see that (44.4) holds for every n ∈ Z+, so that | · | is non-archimedean on
k. Conversely, it is well known that non-archimedean absolute value functions
are ultrametric absolute value functions. Note that every absolute value function
on k is non-archimedean when k has positive characteristic.

Let | · | be an absolute value function on the field Q of rational numbers.
A famous theorem of Ostrowski that | · | is either equivalent to the standard
Euclidean absolute value function on Q, or | · | is the trivial absolute value
function on Q, or | · | is equivalent to the p-adic absolute value function on
Q for some prime number p. More precisely, the first case occurs when | · |
is archimedean on Q. If |n| = 1 for every n ∈ Z+, then | · | is trivial on Q.
The third case occurs when | · | is non-archimedean on Q, and |n| < 1 for some
n ∈ Z+.

Suppose that | · | is an archimedean absolute value function on a field k.
In particular, this implies that k has characteristic 0, as before. This means

75



that there is a natural embedding of Q into k. The absolute value function
induced on Q by | · | on k is also archimedean, and hence is equivalent to the
standard Euclidean absolute value function on Q, as in the previous paragraph.
If k is complete with respect to the metric associated to | · |, then another
famous theorem of Ostrowski implies that k is isomorphic to R or C, and
that | · | corresponds to an absolute value function that is equivalent to the
standard Euclidean absolute value function on R or C, as appropriate, using
this isomorphism.

45 p-Adic integers

Let p be a prime number, and remember that Qp is the field of p-adic numbers,
with the p-adic absolute value function | · |p. The ultrametric on Qp associated
to | · |p is known as the p-adic metric. Put

Zp = {x ∈ Qp : |x|p ≤ 1},(45.1)

which is the set of p-adic integers. This is the same as the closed unit ball in Qp

with respect to the p-adic metric. In particular, Zp is both open and closed in
Qp, with respect to the topology determined by the p-adic metric, as in Section
13. Note that Z ⊆ Zp, by definition of | · |p. Thus Zp contains the closure of Z
in Qp, with respect to the p-adic metric. Let us check that Zp is equal to the
closure of Z in Qp.

Let l ∈ Z be given, and observe that

|p l|p = |p|p |l|p ≤ 1/p < 1.(45.2)

This implies that
n∑

j=0

(p l)j =
1− (p l)n+1

1− p l
→ 1

1− p l
(45.3)

as n → ∞, with respect to the p-adic metric. Of course,
∑n

j=0(p l)
j ∈ Z for

each n ≥ 0. It follows that 1/(1 − p l) can be approximated by integers with
respect to the p-adic metric.

Suppose that x ∈ Q satisfies |x|p ≤ 1. This means that x can be expressed
as a/b, where a, b ∈ Z, b ̸= 0, and in fact b is not a multiple of p. Let c be an
integer such that b c ≡ 1 modulo p, which is to say that there is an integer l
with b c = 1− p l. Thus

x =
a

b
=

a c

b c
=

a c

1− p l
.(45.4)

This implies that x can be approximated by integers with respect to the p-adic
metric, by the remarks in the preceding paragraph.

Remember that Q is dense in Qp, by construction. If y ∈ Zp, x ∈ Q,
and |y − x|p ≤ 1, then |x|p ≤ 1 too, by the ultrametric version of the triangle
inequality. Hence y can be approximated by x ∈ Q with |x|p ≤ 1 with respect
to the p-adic metric. These x’s can be approximated by integers with respect to
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the p-adic metric, as in the previous paragraph. This shows that every y ∈ Zp

can be approximated by integers with respect to the p-adic metric, so that Zp

is the same as the closure of Z in Qp.
Note that the set Z+ is dense in Z with respect to the p-adic metric. It

follows that Z+ is also dense in Zp with respect to the p-adic metric.

46 Some basic polynomials

Let k be a field, and let X, Y be commuting indeterminates. Of course, X and
Y may be considered as elements of the algebra k[X,Y ] of formal polynomials
in X and Y with coefficients in k, using the multiplicative identity element 1 in
k. If j is a nonnegative integer, then (X+Y )j may be considered as an element
of k[X,Y ] too. This polynomial can be expressed as

(X + Y )j =

j∑
l=0

((j
l

)
· 1
)
X l Y j−l,(46.1)

as in the binomial theorem. More precisely, the binomial coefficient
(
j
l

)
is a

positive integer, so that
(
j
l

)
· 1 is defined as an element of k.

Let | · | be an absolute value function on k, and let ρ = (ρ1, ρ2) be an
ordered pair of positive real numbers. Of course, k may be considered as a
one-dimensional vector space over itself, and | · | may be considered as a norm
on k. Observe that

∥(X + Y )j∥1,ρ =

j∑
l=0

∣∣∣∣(jl
)
· 1
∣∣∣∣ ρl1 ρj−l

2(46.2)

for each nonnegative integer j, where the left side is as in (29.3). It is easy to
see that

|n · 1| ≤ n |1| = n(46.3)

for every n ∈ Z+, using the triangle inequality, so that∣∣∣∣(jl
)
· 1
∣∣∣∣ ≤ (

j

l

)
(46.4)

for all nonnegative integers j, l with l ≤ j. This implies that

∥(X + Y )j∥1,ρ ≤
j∑

l=0

(
j

l

)
ρl1 ρ

j−l
2 = (ρ1 + ρ2)

j(46.5)

for each j ≥ 0, using the binomial theorem in the second step.
Suppose that k has characteristic 0, so that there is a natural embedding

of Q into k. This leads to an absolute value function on Q, induced by | · | on
k. Suppose that this induced absolute value function on Q is the same as the
standard absolute value function on k, so that equality holds in the first step in
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(46.3). In particular, equality holds in (46.4) for every 0 ≤ l ≤ j. This means
that equality holds in (46.5), so that

∥(X + Y )j∥1,ρ = (ρ1 + ρ2)
j(46.6)

for every j ≥ 0.
Let k be any field again, and note that

∥(X + Y )j∥∞,ρ = max
0≤l≤j

(∣∣∣∣(jl
)
· 1
∣∣∣∣ ρl1 ρj−l

2

)
(46.7)

for every nonnegative integer j, where the left side is as in (29.4). Suppose now
that | · | is an ultrametric absolute value function on k. This implies that∣∣∣∣(jl

)
· 1
∣∣∣∣ ≤ 1(46.8)

when j, l are nonnegative integers with l ≤ j, as in (44.4). Hence

∥(X + Y )j∥∞,ρ ≤ max(ρ1, ρ2)
j(46.9)

for each j ≥ 0, by (46.7). In fact,

∥(X + Y )j∥∞,ρ = max(ρ1, ρ2)
j(46.10)

for every j ≥ 0, because
(
j
l

)
= 1 when l = 0 or j.

47 Adding indeterminates again

Let k be a field with an absolute value function | · |, and let V be a vector space
over k with a norm N with respect to | · | on k. Also let f(T ) =

∑∞
j=0 fj T

j be
a formal power series in an indeterminate T with coefficients in V , and let X,
Y be commuting indeterminates. As before,

f(X + Y ) =

∞∑
j=0

fj (X + Y )j =

∞∑
j=0

j∑
l=0

(
j

l

)
· fj X l Y j−l(47.1)

defines a formal power series in X and Y with coefficients in V . Let ρ = (ρ1, ρ2)
be an ordered pair of positive real numbers, and observe that

∥f(X + Y )∥1,ρ =

∞∑
j=0

j∑
l=0

N
((j

l

)
· fj

)
ρl1 ρ

j−l
2 ,(47.2)

where the left side is as in Section 30. More precisely, the sum on the right can
be arranged in this way using remarks in Section 20. Remember that(

j

l

)
· fj =

((j
l

)
· 1
)
fj(47.3)
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for all nonnegative integers j, l with l ≤ j, where 1 is the multiplicative identity
element in k. Thus

N
((j

l

)
· fj

)
=

∣∣∣∣(jl
)
· 1
∣∣∣∣N(fj) ≤

(
j

l

)
N(fj)(47.4)

when 0 ≤ l ≤ j, using (46.4) in the second step. It follows that

j∑
l=0

N
((j

l

)
· fj

)
ρl1 ρ

j−l
2 = N(fj)

j∑
l=0

∣∣∣∣(jl
)
· 1
∣∣∣∣ ρl1 ρj−l

2

≤ N(fj)

j∑
l=0

(
j

l

)
ρl1 ρ

j−l
2 = N(fj) (ρ1 + ρ2)

j(47.5)

for every nonnegative integer j, using the binomial theorem in the third step.
Combining this with (47.2), we get that

∥f(X + Y )∥1,ρ =

∞∑
j=0

N(fj)

j∑
l=0

∣∣∣∣(jl
)
· 1
∣∣∣∣ ρl1 ρj−l

2(47.6)

≤
∞∑
j=0

N(fj) (ρ1 + ρ2)
j = ∥f(T )∥1,ρ1+ρ2 ,

where the right side is as in Section 30. In particular, if f(T ) is an element of
the space V 1

ρ1+ρ2
[[T ]] defined in Section 30, then f(X + Y ) is an element of the

space V 1
ρ [[X,Y ]] defined in Section 30.

Suppose that k has characteristic 0, and that the absolute value function on
Q induced by | · | on k and the natural embedding of Q in k is the standard
absolute value function. In this case, the inequalities in the second steps of each
of (47.4), (47.5), and (47.6) are equalities, as in the previous section. Hence

∥f(X + Y )∥1,ρ = ∥f(T )∥1,ρ1+ρ2(47.7)

in this situation.
Let k be any field again, and observe that

∥f(X + Y )∥∞,ρ = sup
0≤l≤j

(
N
((j

l

)
· fj

)
ρl1 ρ

j−l
2

)
,(47.8)

where the left side is as in Section 31. More precisely, the supremum on the
right is taken over all nonnegative integers j, l with l ≤ j. Equivalently,

∥f(X + Y )∥∞,ρ = sup
0≤l≤j

(
N(fj)

∣∣∣∣(jl
)
· 1
∣∣∣∣ ρl1 ρj−l

2

)
(47.9)

by the first step in (47.4). Suppose from now on in this section that | · | is an
ultrametric absolute value function on k, so that (46.8) holds. Using this, it is
easy to see that

∥f(X + Y )∥∞,ρ ≤ sup
j≥0

(
N(fj) max(ρ1, ρ2)

j
)
= ∥f(T )∥∞,max(ρ1,ρ2),(47.10)
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where the supremum in the middle is taken over all nonnegative integers j, and
the right side is as in Section 31. We also have that

N(fj) ρ
j
1, N(fj) ρ

j
2 ≤ ∥f(X + Y )∥∞,ρ(47.11)

for every j ≥ 0, by taking l = j or 0 in the right side of (47.9). Thus

∥f(X + Y )∥∞,ρ = sup
j≥0

(
N(fj) max(ρ1, ρ2)

j
)
= ∥f(T )∥∞,max(ρ1,ρ2).(47.12)

Note that f(T ) is in the space V0,max(ρ1,ρ2)[[T ]] defined in Section 31 when

lim
j→∞

(
N(fj) max(ρ1, ρ2)

j
)
= 0.(47.13)

Similarly, f(X + Y ) is in the space V0,ρ[[X,Y ]] defined in Section 31 when

N
((j

l

)
· fj

)
ρl1 ρ

j−l
2(47.14)

vanishes at infinity on the set of ordered pairs (j, l) of nonnegative integers with
l ≤ j. More precisely, in the definition of V0,ρ[[X,Y ]], (47.14) was considered as
a function of (l, j − l), on the set (Z+ ∪ {0})2 of ordered pairs of nonnegative
integers. It is easy to see that (47.14) vanishes at infinity as a function of (l, j−l)
if and only if it vanishes at infinity as a function of (j, l). Of course, (47.14) is
the same as

N(fj)

∣∣∣∣(jl
)
· 1
∣∣∣∣ ρl1 ρj−l

2 ,(47.15)

as in the first step in (47.4). Thus f(X+Y ) ∈ V0,ρ[[X,Y ]] exactly when (47.15)
vanishes at infinity on the set of ordered pairs (j, l) of nonnegative integers with
l ≤ j. Remember that | · | is supposed to be an ultrametric absolute value
function on k, so that (46.8) holds. If (47.13) holds, then one can use this
to verify that (47.15) vanishes at infinity as a function of (j, l). Conversely, if
(47.15) vanishes at infinity as a function of (j, l), then one can get (47.13), by
taking l = j or 0 in (47.15). This shows that f(T ) ∈ V0,max(ρ1,ρ2)[[T ]] if and
only if f(X + Y ) ∈ V0,ρ[[X,Y ]].

48 Adding arguments

Let k be a field with an absolute value function | · | again, let V be a vector
space over k with a norm N with respect to | · | on k, and let f(T ) =

∑∞
j=0 fj T

j

be a formal power series in an indeterminate T with coefficients in V . Also let
X, Y be commuting indeterminates, and let

F (X,Y ) = f(X + Y ) =

∞∑
j=0

fj (X + Y )j =

∞∑
j=0

j∑
l=0

(
j

l

)
· fj X l Y j−l(48.1)

80



be the formal power series in X and Y with coefficients in V in (47.1). Let r
be a positive real number, and suppose for the moment that f(T ) is an element
of the space V 1

r [[T ]] defined in Section 30. If ρ = (ρ1, ρ2) is an ordered pair of
positive real numbers such that

ρ1 + ρ2 ≤ r,(48.2)

then it follows that F (X,Y ) is an element of the space V 1
ρ [[X,Y ]] defined in

Section 30. This uses the remarks in Section 32 and the previous section. Sup-
pose that V is complete with respect to the metric associated to N , and let
x, y ∈ k be given, with

|x| ≤ ρ1, |y| ≤ ρ2.(48.3)

Thus
|x+ y| ≤ |x|+ |y| ≤ ρ1 + ρ2 ≤ r.(48.4)

Under these conditions, we have that

f(x+ y) = F (x, y),(48.5)

where both sides of the equation are defined as elements of V as in Section 30.
More precisely,

f(x+ y) =

∞∑
j=0

fj (x+ y)j ,(48.6)

where the right side converges absolutely in V . Of course,

∞∑
j=0

fj (x+ y)j =

∞∑
j=0

j∑
l=0

(
j

l

)
· fj xl yj−l,(48.7)

by the binomial theorem. By definition, F (x, y) can be expressed as the sum of(
j
l

)
· fj xl yj−l over nonnegative integers j, l with l ≤ j. This sum can also be

obtained using the iterated sum on the right side of (48.7), as in Section 23.
Suppose now that | · | is an ultrametric absolute value function on k, and

that N is an ultranorm on V . Let r > 0 be given again, and suppose that f(T )
is an element of the space V0,r[[T ]] defined in Section 31. If ρ ∈ R2

+ satisfies

ρ1, ρ2 ≤ r,(48.8)

then F (X,Y ) is an element of the space V0,ρ[[X,Y ]] defined in Section 31. As
before, this uses the remarks in Section 32 and the previous section. Suppose
that V is complete with respect to the metric associated to N again, and let x,
y be elements of k that satisfy (48.3). This implies that

|x+ y| ≤ max(|x|, |y|) ≤ max(ρ1, ρ2) ≤ r,(48.9)

by the ultrametric version of the triangle inequality. We would like to verify
that (48.5) holds, where both sides of the equation are defined as elements of
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V as in Section 31. In particular, f(x+ y) can be expressed as in (48.6), where
the series on the right side of the equation converges in V . This series can be
reexpressed as in (48.7), using the binomial theorem. The sum used to define
F (x, y) is equal to the iterated sum on the right side of (48.7), as in Section 23.

Let | · | be any absolute value function on k again, and suppose that f(T ) is
a formal power series in T with coefficients in k. In this case, F (X,Y ) is defined
as a formal power series in X and Y with coefficients in k. Let r > 0 be given,
and suppose that f(T ) is an element of the space k1r [[T ]] defined in Section 30.
Here we take V = k, considered as a one-dimensional vector space over itself,
with | · | as the norm on V . Let ρ ∈ R2

+ be given such that (48.2) holds, and
observe that F (X,Y ) is an element of the space k1ρ[[X,Y ]] defined in Section 30.
This uses the remarks in Section 32 and the previous section, as usual. Let A0

be an algebra over k with a submultiplicative norm N0 with respect to | · | on k,
and suppose that A0 has a mutliplicative identity element e0 with N0(e0) = 1.
Let x, y ∈ A0 be given, with

x y = y x(48.10)

and
N0(x) ≤ ρ1, N0(y) ≤ ρ2.(48.11)

Hence
N0(x+ y) ≤ N0(x) +N0(y) ≤ ρ1 + ρ2 ≤ r.(48.12)

Suppose that A0 is complete with respect to the metric associated to N0, so
that f(x+y) and F (x, y) can be defined as elements of A0 as in Section 37. One
can check that (48.5) holds in this situation as well. This uses the hypothesis
(48.10) that x and y commute, to get (48.7).

Suppose that | · | is an ultrametric absolute value function on k, and that N0

is an ultranorm on A0. Let r > 0 be given, and suppose that f(T ) is an element
of the space k0,r[[T ]] defined in Section 31, with V = k. Let ρ ∈ R2

+ be given
such that (48.8) holds, so that F (X,Y ) is an element of the space k0,ρ[[X,Y ]]
defined in Section 31, with V = k. This uses the remarks in Section 32 and
the previous section again. Let x, y be elements of A0 that satisfy (48.10) and
(48.11), so that

N0(x+ y) ≤ max(N0(x), N0(y)) ≤ max(ρ1, ρ2) ≤ r,(48.13)

by the ultrametric version of the triangle inequality. If A0 is complete with
respect to the metric associated to N0, then f(x+y) and F (x, y) can be defined
as elements of A0, as in Section 37. It is easy to see that (48.5) holds in this
case too, using the same types of arguments as before.

49 The exponential function

If z is a complex number, then the exponential of z is defined as usual by

exp(z) =

∞∑
j=0

(1/j!) zj .(49.1)
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More precisely, it is well known and easy to see that the series on the right
converges absolutely with respect to the standard absolute value function on C,
using the ratio test, for instance. This implies that the series converges in C,
so that exp(z) is defined as a complex number. Of course, if z is a real number,
then exp(z) ∈ R too.

Let k be a field of characteristic 0, so that there is a natural embedding of Q
into k. If T is an indeterminate, then the exponential function can be defined
as a formal power series in T with coefficients in k by

exp(T ) =

∞∑
j=0

(1/j!)T j ,(49.2)

as in Section 9. Let | · | be an absolute value function on k, and suppose for the
rest of the section that the absolute value function induced on Q by | · | on k
and the natural embedding of Q into k is the same as the standard Euclidean
absolute value function on Q. If r is a positive real number, then

∥ exp(T )∥1,r =

∞∑
j=0

|1/j!| rj = exp(r),(49.3)

where the left side is defined as in Section 30, with V = k and N = | · |. The
right side of the equation is defined as a positive real number, as in the previous
paragraph.

Let X and Y be commuting indeterminates, so that

exp(X + Y ) =

∞∑
j=0

(1/j!) (X + Y )j =

∞∑
j=0

j∑
l=0

(1/l!) (1/(j − l)!)X l Y j−l(49.4)

defines a formal power series in X and Y with coefficients in k. Of course,

exp(X + Y ) = exp(X) exp(Y ),(49.5)

as in Section 9. Let ρ = (ρ1, ρ2) be an ordered pair of positive real numbers, so
that

∥ exp(X + Y )∥1,ρ =

∞∑
j=0

j∑
l=0

(1/l!) (1/(j − l)!) ρl1 ρ
j−l
2 ,(49.6)

where the left side is defined as in Section 30 again, with V = k and N = | · |.
Thus

∥ exp(X + Y )∥1,ρ =

∞∑
j=0

(1/j!) (ρ1 + ρ2)
j = exp(ρ1 + ρ2),(49.7)

using the binomial theorem in the first step. This can also be seen in terms of
the remarks in Section 47.

Let A be an algebra over k with a submultiplicative norm N with respect to
| · | on k. Suppose that A has a multiplicative identity element e with N(e) = 1,
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and that A is complete with respect to the metric associated to N . If x ∈ A,
then

exp(x) =

∞∑
j=0

(1/j!)xj(49.8)

is defined as an element of A, as in Section 37. More precisely, the series on the
right converges absolutely with respect to N , and

N(exp(x)) ≤
∞∑
j=0

(1/j!)N(xj) ≤
∞∑
j=0

(1/j!)N(x)j = exp(N(x)).(49.9)

If y ∈ A commutes with x, then

exp(x+ y) =

∞∑
j=0

(1/j!) (x+ y)j

=

∞∑
j=0

j∑
l=0

(1/l!) (1/(j − l)!)xl yj−l = exp(x) exp(y).(49.10)

The second step uses the binomial theorem, as usual. In the third step, we use
the fact that the double sum corresponds to the Cauchy product of the series
defining exp(x) and exp(y).

50 Another case

Let k be a field of characteristic 0 with an absolute value function | · |. In
this section, we suppose that the absolute value function induced on Q by the
natural embedding of Q into k and | · | on k is the trivial absolute value function
on Q. In particular, this implies that | · | is non-archimedean on k, so that | · |
is an ultrametric absolute value function on k, as in Section 44.

Let T be an indeterminate, so that exp(T ) can be defined as a formal power
series in T with coefficients in k as in (49.2). In this situation,

∥ exp(T )∥∞,1 = 1,(50.1)

where the left side is as defined in Section 31, with V = k and N = |·|. Similarly,
ifX and Y are commuting indeterminates, then exp(X+Y ) is defined as a formal
power series in X and Y with coefficients in k as in (49.4). It is easy to see that

∥ exp(X + Y )∥∞,(1,1) = 1,(50.2)

where the left side is as defined as in Section 31 again. More precisely, this
corresponds to taking r = (1, 1) as an ordered pair of positive real numbers in
Section 31.

Of course,

exp(T )− 1 =

∞∑
j=1

(1/j!)T j .(50.3)
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If r is a positive real number with r ≤ 1, then

∥ exp(T )− 1∥∞,r = r,(50.4)

where the left side is as defined in Section 31 again.
Let A be an algebra over k with a submultiplicative norm N with respect to

| · | on k and a multiplicative identity element e with N(e) = 1. If x ∈ A, then

N((1/j!)xj) = N(xj) ≤ N(x)j(50.5)

for every nonnegative integer j. Suppose that A is complete with respect to the
metric associated to N , and that

N(x) < 1.(50.6)

Under these conditions, exp(x) can be defined as an element of A, as in (49.8)
and Section 37. This uses the fact that exp(T ) is in the space k1r [[T ]] defined in
Section 30 with V = k when 0 < r < 1, as in Section 32.

Suppose from now on in this section that N is an ultranorm on A. In this
case, we have that

N(exp(x)) ≤ max
j≥0

N((1/j!)xj) = 1,(50.7)

using (50.5) in the second step. Similarly,

N(exp(x)− e) = N
( ∞∑

j=1

(1/j!)xj
)
≤ max

j≥1
N((1/j!)xj) = N(x),(50.8)

using (50.5) in the third step. Suppose that y ∈ A also satisfies

N(y) < 1,(50.9)

so that exp(y) is defined as an element of A too. Note that

N(x+ y) ≤ max(N(x), N(y)) < 1,(50.10)

by the ultrametric version of the triangle inequality for N . Thus exp(x + y) is
defined as an element of A as well. If x y = y x, then

exp(x+ y) = exp(x) exp(y),(50.11)

as in (49.10).

51 Some basic estimates

Let p be a prime number, and let | · |p be the p-adic absolute value function on
Q, as in Section 14. Also let j be a nonnegative integer, and let us review some
basic estimates for

|1/j!|p = 1/|j!|p,(51.1)
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as in [1, 3]. If r is a nonnegative real number, then let [r] be the integer part of
r, which is the largest nonnegative integer less than or equal to r. Observe that
for each n ∈ Z+,

[j/n](51.2)

is the same as the number of positive integer multiples of n that are less than
or equal to j. Thus, for each l ∈ Z+,

[j/pl](51.3)

is the same as the number of positive integer multiplies of pl less than or equal
to j. Using this, one can check that

∞∑
l=1

[j/pl](51.4)

is the same as the total number of factors of p in j!. Of course, (51.3) is equal
to 0 when j < pl, so that all but finitely many terms in (51.4) are equal to 0. It
follows that (51.1) is equal to p raised to the power (51.4).

If j ≥ 1, then

∞∑
l=1

[j/pl] <

∞∑
l=1

j/pl = (j/p)

∞∑
l=0

p−l = (j/p) (1− (1/p))−1 = j/(p− 1).(51.5)

This implies that

(p− 1)

∞∑
l=1

[j/pl] < j.(51.6)

Because the left side of the inequality is an integer, we get that

(p− 1)

∞∑
l=1

[j/pl] ≤ j − 1(51.7)

when j ≥ 1. Equivalently,

∞∑
l=1

[j/pl] ≤ (j − 1)/(p− 1)(51.8)

when j ≥ 1. Thus
|1/j!|p ≤ p(j−1)/(p−1)(51.9)

when j ≥ 1, because the left side is equal to p to the power (51.4), as before.
Suppose for the moment that j = pn for some positive integer n. In this

case,
∞∑
l=1

[j/pl] =

n∑
l=1

pn−l =

n−1∑
l=0

pl = (pn − 1)/(p− 1).(51.10)
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This also works when n = 0, with the second and third sums interpreted as
being equal to 0. This shows that equality holds in (51.8) in this situation. It
follows that equality holds in (51.9) in this situation as well.

Put
rp = p−1/(p−1),(51.11)

which is a positive real number less than 1. Using (51.9), we get that

|1/j!|p rj−1
p ≤ 1(51.12)

when j ≥ 1. If j = pn for some nonnegative integer n, then equality holds in
(51.12), as in the preceding paragraph.

52 Some consequences

Let k be a field of characteristic 0 with an absolute value function | · | again.
Suppose that the absolute value function induced on Q by the natural embed-
ding of Q into k and | · | on k is the same as the p-adic absolute value function
| · | on Q for some prime number p. Note that | · | is non-archimedian on k, and
hence | · | is an ultrametric absolute value function on k, as in Section 44.

Let T be an indeterminate, and remember that exp(T ) can be defined as a
formal power series in T with coefficients in k as in (49.2). If r is a positive real
number, then

∥ exp(T )∥∞,r = sup
j≥0

(|1/j!|p rj),(52.1)

where the left side is as defined in Section 31, with V = k and N = | · |. Let rp
be as in (51.11), and remember that 0 < rp < 1. It is easy to see that

∥ exp(T )∥∞,rp = 1,(52.2)

using (51.12) and the usual convention that 0! = 1. If X and Y are commuting
indeterminates, then exp(X + Y ) can be defined as a formal power series in X
and Y with coefficients in k as in (49.4). Note that

∥ exp(X + Y )∥∞,(rp,rp) = 1,(52.3)

where the left side is also defined as in Section 31. This can be verified directly
from the definitions, using (51.12) again, or from the remarks in Section 47.

Similarly,
∥ exp(T )− 1∥∞,r = sup

j≥1
(|1/j!|p rj)(52.4)

for every r > 0, where the left side is defined as in Section 31 again. If r ≤ rp,
then one can check that

∥ exp(T )− 1∥∞,r = r,(52.5)

using (51.12).
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Let A be an algebra over k with a submultiplicative norm N with respect to
| · | on k and a multiplicative identity element e such that N(e) = 1, as before.
In this case, if x ∈ A, then

N((1/j!)xj) = |1/j!|p N(xj) ≤ |1/j!|p N(x)j(52.6)

for every nonnegative integer j. This implies that

N((1/j!)xj) ≤ r1−j
p N(x)j(52.7)

when j ≥ 1, by (51.9). Suppose that A is complete with respect to the metric
associated to N . If

N(x) < rp,(52.8)

then exp(x) can be defined as an element of A, as in (49.8) and Section 37.
Suppose that N is an ultranorm on A, so that

N(exp(x)) ≤ max
j≥0

N((1/j!)xj) ≤ max
j≥0

(|1/j!|p N(x)j) = 1,(52.9)

using the inequalities in the previous paragraph. Moreover,

N(exp(x)− e) = N
( ∞∑

j=1

(1/j!)xj
)

≤ max
j≥1

N((1/j!)xj)

≤ max
j≥1

(r1−j
p N(x)j) = N(x).(52.10)

If y ∈ A satisfies
N(y) < rp(52.11)

too, then exp(y) can be defined as an element of A as well. In this situation,

N(x+ y) ≤ max(N(x), N(y)) < rp,(52.12)

so that exp(x+ y) is also defined as an element of A. If x and y commute, then
exp(x+ y) is equal to the product of exp(x) and exp(y), as before.

53 More on Zp

Let p be a prime number, and let Zp be the set of p-adic integers, as in Section
45. If x, y ∈ Zp, then one can check that x+ y and x y are elements of Zp too,
so that Zp is a subring of Qp. Put

pj Zp = {pj x : x ∈ Zp} = {y ∈ Qp : |y|p ≤ p−j}(53.1)

for each integer j, which is the same as Zp when j = 0. If j ≥ 1, then it is easy
to see that pj Zp is an ideal in Zp. Of course,

pj Z = {pj x : x ∈ Z}(53.2)
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is an ideal in Z for each nonnegative integer j.
Let j be a positive integer, so that the quotient

Zp/p
j Zp(53.3)

is defined as a commutative ring. The inclusion of Z in Zp leads to a natural
ring homomorphism from Z into (53.3). The kernel of this homomorphism is
equal to

Z ∩ (pj Zp) = pj Z.(53.4)

Thus we get an injective ring homomorphism from

Z/pj Z(53.5)

into (53.3). One can verify that this homomorphism is also surjective, using the
fact that Z is dense in Zp.

This shows that (53.3) is isomorphic to (53.5) as a ring. In particular, Zp

can be expressed as the union of pj translates of pj Zp. Each translate of pj Zp

in Qp is a closed ball in Qp of radius p−j with respect to the p-adic metric.
Remember that a subset E of a metric space X is said to be totally bounded
in X if for each ϵ > 0, E can be covered by finitely many balls of radius ϵ. It
follows that Zp is totally bounded as a subset of Qp with respect to the p-adic
metric, because j ∈ Z+ is arbitrary.

It is well known that a subset E of a complete metric space X is compact in
X if and only if E is closed and totally bounded in X. Of course, Qp is complete
with respect to the p-adic metric, by construction. Thus Zp is compact in Qp,
because Zp is closed and totally bounded. Note that pl Zp is also compact in Qp

for every l ∈ Z, because x 7→ pl x is a continuous mapping on Qp. If E ⊆ Qp is
closed and bounded, then it follows that E is compact, because E ⊆ pl Zp when
−l is sufficiently large.

Part V

Binomial expansions

54 Binomial coefficient polynomials

Let k be a field of characteristic 0, and let A be an indeterminate. Put

bj(A) =

(
A

j

)
=

A (A− 1) · · · (A− j + 1)

j!
(54.1)

for each positive integer j, as in Section 10. More precisely, this defines a formal
polynomial in A with coefficients in k, using the natural embedding of Q into k.
As before, (54.1) is interpreted as being the constant polynomial corresponding
to 1 when j = 0.
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Let | · | be an absolute value function on k. If r is a positive real number,
then

∥ · ∥1,r,k[A] = ∥ · ∥1,r(54.2)

can be defined on the algebra k[A] of formal polynomials in A with coefficients
in k as in Section 29, with V = k and N = | · |. More precisely, this is a norm
on k[A] with respect to | · | on k. Suppose for the rest of the section that the
absolute value function induced on Q by | · | on k and the natural embedding of
Q into k is the standard Euclidean absolute value function on Q. Observe that

∥bj(A)∥1,r,k[A] ≤
r (r + 1) · · · (r + j − 1)

j!
(54.3)

for every positive integer j and r > 0. This follows from submultiplicativity of
the norm (54.2) on k[A], as in Section 36. If j = 0, then the left side of (54.3)
is equal to 1, and the right side of (54.3) can be interpreted as being equal to 1
as well.

Put

Bj(r) =
r (r + 1) · · · (r + j − 1)

j!
(54.4)

for each r > 0 and j ∈ Z+, which is the same as the right side of (54.3). As
before, we can interpret this as being equal to 1 for every r > 0 when j = 0.
Note that

Bj+1(r) = Bj(r) (r + j)/(j + 1)(54.5)

for every j ≥ 0 and r > 0. Thus

Bj+1(r)/Bj(r) = (r + j)/(j + 1) → 1 as j → ∞(54.6)

for every r > 0. If t is a positive real number with t < 1, then it follows that

∞∑
j=0

Bj(r) t
j < ∞(54.7)

for every r > 0, by the ratio test.
Let X be another indeterminate, which we can take to commute with A. As

in Section 10,

B(A,X) =

∞∑
j=0

(
A

j

)
Xj =

∞∑
j=0

bj(A)Xj(54.8)

may be considered as a formal power series in X with coefficients in k[A]. Let
r be a positive real number, so that (54.2) defines a norm on k[A], as before. If
t is a positive real number, then

∥ · ∥1,t,(k[A])[[X]] = ∥ · ∥1,t(54.9)

can be defined on the space (k[A])[[X]] of formal power series in X with coef-
ficients in k[A] as in Section 30, with V = k[A] and N taken to be the norm
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(54.2) on k[A]. Note that

∥B(A,X)∥1,t,(k[A])[[X]] =

∞∑
j=0

∥bj(A)∥1,r,k[A] t
j ≤

∞∑
j=0

Bj(r) t
j(54.10)

for every t > 0, using the definition of (54.9) in the first step, and (54.3) in the
second step. In particular, the right side is finite when t < 1, as in (54.7). This
means that (54.8) is an element of the space (k[A])1t [[X]] defined in Section 30
when t < 1.

Let A be an algebra over k with a submultiplicative norm N with respect to
| · | on k, and a multiplicative identity element e with N(e) = 1. Also let a ∈ A
be given, so that

bj(a) =

(
a

j

)
=

a (a− e) · · · (a− (j − 1) e)

j!
(54.11)

is defined as an element of A for each positive integer j. This is interpreted as
being equal to e when j = 0, as usual. Note that

N(bj(a)) ≤ Bj(N(a))(54.12)

for every j ≥ 0, by (54.3) and the remarks in Section 29. As in Section 10,

B(a,X) =

∞∑
j=0

(
a

j

)
Xj =

∞∑
j=0

bj(a)X
j(54.13)

may be considered as a formal power series in X with coefficients in A. If
t ∈ R+, then

∥ · ∥1,t,A[[X]] = ∥ · ∥1,t(54.14)

can be defined on the space A[[X]] of formal power series in X with coefficients
in A, as in Section 30, and using N on A. Using (54.12), we get that

∥B(a,X)∥1,t,A[[X]] =

∞∑
j=0

N(bj(a)) t
j ≤

∞∑
j=0

Bj(N(a)) tj(54.15)

for every t > 0. The sum on the right is finite when t < 1, as in (54.7). Thus
(54.13) is an element of the space A1

t [[X]] defined in Section 30 when t < 1.

55 An easy case

Let k be a field of characteristic 0, and let | · | be an absolute value function on
k. In this section, we suppose that the absolute value function induced on Q
by | · | on k and the natural embedding of Q into k is the trivial absolute value
function on Q. This implies that | · | is non-archimedean on k, so that | · | is an
ultrametric absolute value function on k, as in Section 44.
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Let A be an indeterminate, and let bj(A) be as in the previous section for
each nonnegative integer j. Also let r be a positive real number, so that

∥ · ∥∞,r,k[A] = ∥ · ∥∞,r(55.1)

can be defined on the algebra k[A] of formal polynomials in A with coefficients
in k as in Section 29, with V = k and N = | · |. Note that (55.1) is an ultranorm
on k[A] with respect to | · | on k, because | · | is an ultrametric absolute value
function on k. If j ∈ Z+, then

∥bj(A)∥∞,r,k[A] =

j−1∏
l=0

∥A− l∥∞,r,k[A].(55.2)

This follows from the definition (54.1) of bj(A), and the multiplicativity of (55.1)
on k[A], as in Section 41. If l ∈ Z+, then

∥A− l∥∞,r,k[A] = max(r, 1),(55.3)

by the definition of (55.1), and the hypothesis on | · | in this section. Of course,

∥A∥∞,r,k[A] = r.(55.4)

Thus
∥bj(A)∥∞,r,k[A] = r max(r, 1)j−1(55.5)

for each j ∈ Z+. If j = 0, then bj(A) is the constant polynomial corresponding
to 1, so that the left side of (55.5) is equal to 1.

Let X be another indeterminate, which we take to commute with A, and let
B(A,X) be as in (54.8). This may be considered as a formal power series in X
with coefficients in k[A], as before. If t ∈ R+, then

∥ · ∥∞,t,(k[A])[[X]] = ∥ · ∥∞,t(55.6)

can be defined on the space (k[A])[[X]] of formal power series in X with coef-
ficients on k[A] as in Section 31, with V = k[A] and N equal to the ultranorm
(55.1) on k[A]. By definition of (55.6),

∥B(A,X)∥∞,t,(k[A])[[X]] = sup
j≥0

(∥bj(A)∥∞,r,k[A] t
j)(55.7)

for every t > 0. Similarly,

B(A,X)− 1 =

∞∑
j=1

(
A

j

)
Xj =

∞∑
j=1

bj(A)Xj ,(55.8)

so that
∥B(A,X)− 1∥∞,t,(k[A])[[X]] = sup

j≥1
(∥bj(A)∥∞,r,k[A] t

j)(55.9)

for each t > 0.
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Suppose for the moment that r ≥ 1, so that

∥bj(A)∥∞,r,k[A] t
j = rj tj = (r t)j(55.10)

for every t > 0 and j ≥ 0, using (55.5) in the first step. If t ≤ 1/r, then it
follows that

∥B(A,X)∥∞,t,(k[A])[[X]] = 1,(55.11)

by (55.7). In particular, this means that B(A,X) is an element of the space
(k[A])∞t [[X]] defined in Section 31 when t ≤ 1/r. If t < 1/r, then B(A,X) is
an element of the space (k[A])0,t[[X]] defined in Section 31. We also get that

∥B(A,X)− 1∥∞,t,(k[A])[[X]] = r t(55.12)

when t ≤ 1/r, using (55.9) and (55.10).
Suppose now that r ≤ 1. If t > 0, then

∥bj(A)∥∞,r,k[A] t
j = r tj when j ≥ 1(55.13)

= 1 when j = 0,

by (55.5). This implies that (55.11) holds when t ≤ 1, and in particular that
B(A,X) is an element of (k[A])∞t [[X]]. If t < 1, then B(A,X) is an element
of (k[A])0,t[[X]]. Using (55.9) and (55.13), we obtain that (55.12) holds when
t ≤ 1 as well.

56 The next case

Let k be a field of characteristic 0 again, and let |·| be an absolute value function
on k. Suppose that the absolute value function induced on Q by |· | on k and the
natural embedding of Q into k is the p-adic absolute value function | · |p on Q
for some prime number p. In particular, this means that | · | is non-archimedean
on k, and hence is an ultrametric absolute value function on k, as in Section 44.

Let A be an indeterminate, and let bj(A) be as in Section 54 for each non-
negative integer j. Also let r ∈ R+ be given, so that

∥ · ∥∞,r,k[A] = ∥ · ∥∞,r(56.1)

can be defined on the algebra k[A] of formal polynomials in A with coefficients in
k as in Section 29, with V = k and N = | · |. More precisely, this is an ultranorm
on k[A] with respect to | · | on k, because | · | is an ultrametric absolute value
function on k. If j ∈ Z+, then

∥bj(A)∥∞,r,k[A] = (1/|j!|p)
j−1∏
l=0

∥A− l∥∞,r,k[A].(56.2)

This uses the definition (54.1) of bj(A), and the fact that (56.1) is multiplicative
on k[A], as in Section 41. Note that

∥A− l∥∞,r,k[A] = max(r, |l|p)(56.3)
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for every nonnegative integer l, by the definition of ∥ · ∥∞,r,k[A]. It follows that

∥bj(A)∥∞,r,k[A] = (1/|j!|p)
j−1∏
l=0

max(r, |l|p)(56.4)

for every j ∈ Z+. As before, the left side of (56.4) is equal to 1 when j = 0.
Let X be another indeterminate again, which we take to commute with A,

and let B(A,X) be as in (54.8). This may be considered as a formal power
series in X with coefficients in k[A], as usual. If t ∈ R+, then

∥ · ∥∞,t,(k[A])[[X]] = ∥ · ∥∞,t(56.5)

can be defined on the space (k[A])[[X]] of formal power series in X with coef-
ficients in k[A] as in Section 31, with V = k[A] and N taken to be ∥ · ∥∞,r,k[A]

on k[A]. As before,

∥B(A,X)∥∞,t,(k[A])[[X]] = sup
j≥0

(∥bj(A)∥∞,r,k[A] t
j)(56.6)

for every t > 0. Similarly,

∥B(A,X)− 1∥∞,t,(k[A])[[X]] = sup
j≥1

(∥bj(A)∥∞,r,k[A] t
j)(56.7)

for every t > 0.
Suppose that r ≥ 1, so that

∥bj(A)∥∞,r,k[A] = rj/|j!|p(56.8)

for every nonnegative integer j, by (56.4). This implies that

∥B(A,X)∥∞,t,(k[A])[[X]] = sup
j≥0

((r t)j/|j!|p)(56.9)

for every t > 0, by (56.6). Remember that

1/|j!|p ≤ p(j−1)/(p−1) ≤ pj/(p−1)(56.10)

for every j ∈ Z+, as in Section 51. If t ≤ p−1/(p−1)/r, then it follows that

∥B(A,X)∥∞,t,(k[A])[[X]] = 1,(56.11)

and in particular that B(A,X) is an element of the space (k[A])∞t [[X]] defined
in Section 31. If t < p−1/(p−1)/r, then B(A,X) is an element of the space
(k[A])0,t[[X]] defined in Section 31.

Using (56.7) and (56.8), we get that

∥B(A,X)− 1∥∞,t,(k[A])[[X]] = sup
j≥1

((r t)j/|j!|p) = r t sup
j≥1

((r t)j−1/|j!|p)(56.12)

for every t > 0. If t ≤ p−1/(p−1)/r, then the first inequality in (56.10) implies
that

∥B(A,X)− 1∥∞,t,(k[A])[[X]] = r t.(56.13)

This also uses the fact that equality holds in the first step in (56.10) when j = 1.
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57 A related situation

Let p be a prime number, and let us take k = Qp, with the p-adic absolute value
| · |p. If a ∈ Qp and j ∈ Z+, then

bj(a) =

(
a

j

)
=

a (a− 1) · · · (a− j + 1)

j!
(57.1)

defines an element of Qp. As before, this is interpreted as being equal to 1 for
every a ∈ Qp when j = 0. Note that bj(a) defines a continuous mapping from
Qp into itself for each j ≥ 0, with respect to the p-adic metric on Qp. Of course,
if a is a nonnegative integer, then it is well known that (57.1) is a nonnegative
integer as well.

Remember that Zp consists of x ∈ Qp with |x|p ≤ 1, as in Section 45.
Equivalently, Zp is the closure of Z in Qp with respect to the p-adic metric, as
before. More precisely, we have seen that Zp is the same as the closure of Z+

in Qp. If a ∈ Zp, then it follows that

bj(a) ∈ Zp(57.2)

for every j ≥ 0. This uses the continuity of bj on Qp, as in the previous
paragraph.

Let X be an indeterminate, so that

B(a,X) =

∞∑
j=0

(
a

j

)
Xj =

∞∑
j=0

bj(a)X
j(57.3)

defines a formal power series in X with coefficients in Qp for every a ∈ Qp. If
r is a positive real number, then let

∥ · ∥∞,r,Qp[[X]] = ∥ · ∥∞,r(57.4)

be defined on the space Qp[[X]] of formal power series in X with coefficients in
Qp as in Section 31, with V = Qp and N = | · |p. If a ∈ Zp, then it is easy to
see that

∥B(a,X)∥∞,1,Qp[[X]] = 1,(57.5)

using (57.2). In particular, (57.3) is an element of the space (Qp)
∞
1 [[X]] defined

in Section 31 when a ∈ Zp. Similarly, if a ∈ Zp and 0 < r ≤ 1, then we have
that

∥B(a,X)− 1∥∞,r,Qp[[X]] ≤ r.(57.6)

Let A be an algebra over Qp with a submultiplicative norm N with respect
to | · |p and a multiplicative identity element e such that N(e) = 1. If a ∈ Qp

and x ∈ A, then

N(bj(a)x
j) = |bj(a)|p N(xj) ≤ |bj(a)|p N(x)j(57.7)
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for every nonnegative integer j. Thus

N(bj(a)x
j) ≤ N(x)j(57.8)

for every j ≥ 0 when a ∈ Zp. Suppose that A is complete with respect to the
metric associated to N , and let x ∈ A be given, with N(x) < 1. If a ∈ Zp, then

B(a, x) =

∞∑
j=0

(
a

j

)
xj =

∞∑
j=0

bj(a)x
j(57.9)

defines an element of A, as in Section 37. This also uses the remarks in Section
32 to get that (57.3) is an element of the space (Qp)

1
r[[X]] defined in Section 30

with V = Qp when 0 < r < 1. If N is an ultranorm on A, then

N(B(a, x)− e) = N
( ∞∑

j=1

bj(a)x
j
)
≤ max

j≥1
N(bj(a)x

j) ≤ N(x),(57.10)

using (57.8) in the third step.

58 Continous functions as coefficients

Let p be a prime number, and let C(Zp,Qp) be the space of continuous mappings
from Zp into Qp, as before. Of course, this uses the p-adic metric on Qp, and
its restriction to Zp. Remember that Zp is compact, as in Section 53, so that
continuous mappings from Zp into Qp are automatically bounded. Thus the
supremum norm

∥f∥sup = ∥f∥sup,Zp
= ∥f∥C(Zp,Qp)(58.1)

can be defined on C(Zp,Qp) in the usual way, using the p-adic absolute value
function | · |p on Qp. Note that C(Zp,Qp) is a commutative algebra over Qp

with respect to pointwise multiplication of functions.
As in the previous section, (57.1) defines a continuous mapping from Qp into

itself for each nonnegative integer j. In this section, it is convenient to consider
the restriction of this mapping to Zp, which defines an element bj of C(Zp,Qp).
It is easy to see that

∥bj∥C(Zp,Qp) = 1(58.2)

for every j ≥ 0, because of (57.2) and the fact that bj(j) = 1. Of course, b0 is
interpreted as the constant function equal to 1 on Zp. This is the same as the
multiplicative identity element in C(Zp,Qp).

Let X be an indeterminate, and let us consider

B(·, X) =

∞∑
j=0

bj(·)Xj(58.3)

as a formal power series in X with coefficients in C(Zp,Qp). If r is a positive
real number, then let

∥ · ∥∞,r,C(Zp,Qp)[[X]] = ∥ · ∥∞,r(58.4)

96



be defined on the space C(Zp,Qp)[[X]] of formal power series in X with coef-
ficients in C(Zp,Qp) as in Section 31, with V = C(Zp,Qp) and N taken to be
the supremum norm (58.1). Clearly

∥B(·, X)∥∞,1,C(Zp,Qp) = 1,(58.5)

by (58.2). Thus (58.3) is an element of the space C(Zp,Qp)
∞
1 [[X]] defined in

Section 31. If 0 < r ≤ 1, then

∥B(·, X)− 1∥∞,r,C(Zp,Qp) = r.(58.6)

Let A be an algebra over Qp with a submultiplicative norm N with respect
to | · |p and a multiplicative identity element e with N(e) = 1. Consider the
space C(Zp,A) of continuous mappings from Zp intoA. This uses the restriction
of the p-adic metric to Zp, and the metric on A associated to N . As before,
continuous mappings from Zp into A are automatically bounded, because Zp is
compact. Let

∥f∥sup = ∥f∥sup,Zp = ∥f∥C(Zp,A)(58.7)

be the supremum norm on C(Zp,A), corresponding to N on A. If j is a non-
negative integer and x ∈ A, then bj x

j defines an element of C(Zp,A). It is easy
to see that

∥bj xj∥C(Zp,A) = ∥bj∥C(Zp,Qp) N(xj) ≤ N(x)j(58.8)

for every j ≥ 0.
Suppose that A is complete with respect to the metric associated to N . This

implies that C(Zp,A) is complete with respect to the metric associated to the
supremum norm, as usual. Let x ∈ A be given, with N(x) < 1, and observe
that

B(·, x) =
∞∑
j=0

bj x
j(58.9)

defines an element of C(Zp,A), because the series on the right converges ab-
solutely with respect to the supremum norm, by (58.8). More precisely, the
right side of (58.9) converges in C(Zp,A) with respect to the supremum norm,
which means that the partial sums converge uniformly on Zp. If a ∈ Zp, then
let B(a, x) be the value of (58.9) at a, as an A-valued function on Zp. This is
equivalent to the definition of B(a, x) in the previous section, because uniform
convergence implies pointwise convergence. If N is an ultranorm on A, then the
corresponding supremum norm on C(Zp,Qp) is an ultranorm as well. In this
case, we have that

∥B(·, x)− e∥C(Zp,A) =

∥∥∥∥ ∞∑
j=1

bj x
j

∥∥∥∥
C(Zp,A)

(58.10)

≤ max
j≥1

∥bj xj∥C(Zp,A) = N(x),

by (58.8).
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59 Adding exponents

Let k be a field of characteristic 0, and let A1, A2 be commuting indeterminates.
If j is a positive integer, then

bj(A1 +A1) =

(
A1 +A2

j

)
(59.1)

=
(A1 +A1) (A1 +A2 − 1) · · · (A1 +A2 − j + 1)

j!

may be considered as a formal polynomial in A1 and A2 with coefficients in
k, using the natural embedding of Q into k. This is interpreted as being the
constant polynomial corresponding to 1 when j = 0, as usual.

Let | · | be an absolute value function on k, and let ρ = (ρ1, ρ2) be an ordered
pair of positive real numbers. Consider the norm

∥ · ∥1,ρ,k[A1,A2] = ∥ · ∥1,ρ(59.2)

defined on the algebra k[A1, A2] of formal polynomials in A1 and A2 with coef-
ficients in k as in Section 29, with V = k and N = | · |. Suppose for the rest of
the section that the absolute value function induced on Q by | · | on k and the
natural embedding of Q into k is the standard absolute value function on Q.
Put

Bj(r) =
r (r + 1) · · · (r + j − 1)

j!
(59.3)

for every r ∈ R+ and j ∈ Z+, as in Section 54. This is interpreted as being
equal to 1 for every r > 0 when j = 0, as before. It is easy to see that

∥bj(A1 +A2)∥1,ρ,k[A1,A2] ≤ Bj(ρ1 + ρ2)(59.4)

for every j ≥ 0. This uses the submultiplicativity of (59.2) on k[A1, A2], as in
Section 36. Alternatively, if A is another indeterminate, then

∥bj(A1 +A2)∥1,ρ,k[A1,A2] = ∥bj(A)∥1,ρ1+ρ2,k[A](59.5)

for every j ≥ 0, as in Section 47. One can use this to get (59.4) from the
analogous statement for bj(A) in Section 54.

Let X be another indeterminate, which we can take to commute with A1

and A2. We may consider

B(A1 +A2, X) =

∞∑
j=0

(
A1 +A2

j

)
=

∞∑
j=0

bj(A1 +A2)X
j(59.6)

as a formal power series in X with coefficients in k[A1, A2]. Of course, B(A1, X)
and B(A2, X) can be defined as formal power series in X with coefficients in
k[A1] and k[A2], respectively, as in Sections 10 and 54. In particular, they can
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both be considered as formal power series in X with coefficients in k[A1, A2].
Remember that

B(A1 +A2, X) = B(A1, X)B(A2, X)(59.7)

as formal power series with coefficients in k[A1, A2], as in Section 11.
Let t be a positive real number, and let

∥ · ∥1,t,(k[A1,A2])[[X]] = ∥ · ∥1,t(59.8)

be defined on the space (k[A1, A2])[[X]] of formal power series in X with co-
efficients in k[A1, A2] as in Section 30, with V = k[A1, A2] and N taken to be
(59.2). Observe that

∥B(A1 +A2, X)∥1,t,(k[A1+A2])[[X]] =

∞∑
j=0

∥bj(A1 +A2)∥1,ρ,k[A1,A2] t
j

≤
∞∑
j=0

Bj(ρ1 + ρ2) t
j ,(59.9)

using the definition of (59.8) in the first step, and (59.4) in the second step. If
t < 1, then the right side of (59.9) is finite, by (54.7). Thus (59.6) is an element
of the space (k[A1, A2])

1
t [[X]] defined in Section 30 when t < 1.

Let A be an algebra over k with a multiplicative identity element e. If a ∈ A,
then bj(a) can be defined as an element of A for every nonnegative integer j,
as in Sections 10 and 54. Similarly, B(a,X) is defined as a formal power series
in X with coefficients in A, as before. If a1, a2 are commuting elements of A,
then

B(a1 + a2, X) = B(a1, X)B(a2, X),(59.10)

as in Section 11. If N is a submultiplicative norm on A and 0 < t < 1, then
B(a,X) is an element of the corresponding space A1

t [[X]] defined in Section 30
for every a ∈ A, as in Section 54.

60 Other cases

Let k be a field of characteristic 0, and let | · | be an absolute value function
on k. Suppose that | · | is non-archimedean on k, so that | · | is an ultrametric
absolute value function on k, as in Section 44. Let A1 and A2 be commuting
indeterminates, and let r ∈ R+ be given. The norm

∥ · ∥∞,(r,r),k[A1,A2] = ∥ · ∥∞,(r,r)(60.1)

can be defined on the algebra k[A1, A2] of formal polynomials in A1 and A2

with coefficients in k as in Section 29, with V = k, N = | · |, and using (r, r)
as the ordered pair of real numbers. More precisely, (60.1) is an ultranorm on
k[A1, A2], because | · | is non-archmedean on k.
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Let A be another indeterminate, so that

∥ · ∥∞,r,k[A] = ∥ · ∥∞,r(60.2)

can be defined on the algebra k[A] of formal polynomials in A with coefficients
in k as in Section 29 too, with V = k and N = | · |. If j is a nonnegative integer,
then bj(A) and bj(A1 + A2) can be defined as formal polynomials in A and in
A1, A2, respectively, with coefficients in k, as before. Under these conditions,

∥bj(A1 +A2)∥∞,(r,r),k[A1,A2] = ∥bj(A)∥∞,r,k[A](60.3)

for every j ≥ 0, as in Section 47. Let X be another indeterminate, which we
can take to commute with A1, A2, and A, and let t ∈ R+ be given. As before,

∥ · ∥∞,t,(k[A])[[X]] = ∥ · ∥∞,t(60.4)

can be defined on the space (k[A])[[X]] of formal power series in X with coeffi-
cients in k[A] as in Section 31, with V = k[A] and N equal to (60.2). Similarly,

∥ · ∥∞,t,(k[A1,A2])[[X]] = ∥ · ∥∞,t(60.5)

can be defined on the space (k[A1, A2])[[X]] of formal power series in X with
coefficients in k[A1, A2] as in Section 31, with V = k[A1, A2] and N equal to
(60.1). Remember that B(A,X) is defined as a formal power series in X with
coefficients in k[A] as in Sections 10 and 54, and that B(A1 + A2, X) can be
defined as a formal power series in X with coefficients in k[A1, A2], as in the
previous section. It is easy to see that

∥B(A1 +A2, X)∥∞,t,(k[A1,A2])[[X]] = ∥B(A,X)∥∞,t,(k[A])[[X]],(60.6)

using (60.3) and the definitions of these norms.
Suppose for the moment that the absolute value function induced on Q by

| · | on k and the natural embedding of Q into k is the trivial absolute value
function on Q, as in Section 55. If r ≥ 1 and t ≤ 1/r, then

∥B(A1 +A2)∥∞,t,(k[A1,A2])[[X]] = 1,(60.7)

by (60.6) and the analogous statement for B(A,X) in Section 55. Similarly,
(60.7) holds when r, t ≤ 1, because of the analogous statement for B(A,X) in
Section 55.

Suppose now that the absolute value function induced on Q by | · | on k and
the natural embedding of Q into k is the p-adic absolute value function | · |p on
Q for some prime number p. If r ≥ 1 and t ≤ p−1/(p−1)/r, then (60.7) holds,
because of (60.6) and the analogous statement for B(A,X) in Section 56.

Let us now simply take k = Qp for some prime number p, with the p-adic
absolute value | · |p. If a ∈ Qp, then B(a,X) may be considered as a formal
power series in X with coefficients in Qp, as before. In particular, if a ∈ Zp,
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then B(a,X) is a formal power series in X with coefficients in Zp, as in Section
57. Remember that

B(a1 + a2, X) = B(a1, X)B(a2, X)(60.8)

for every a1, a2 ∈ Qp, as in Section 11. Let A be an algebra over Qp with
a submultiplicative norm N with respect to | · |p and a multiplcative identity
element e with N(e), and suppose that A is complete with respect to the metric
associated to N . Let x ∈ A be given, with N(x) < 1, so that B(a, x) can be
defined as an element of A when a ∈ Zp, as in Section 57. Also let a1, a2 ∈ Zp

be given, so that a1 + a2 ∈ Zp, as in Section 53. Under these conditions, we
have that

B(a1 + a2, x) = B(a1, x)B(a2, x),(60.9)

as in Section 24.

61 Commutativity conditions

Let k be a field of characteristic 0 again, and let | · | be an absolute value
function on k. Also let A be an algebra over k with a submultiplicative N and a
multiplicative identity element e, and suppose that A is complete with respect
to the metric associated to N . If a, x ∈ A, then one might like to define

B(a, x) =

∞∑
j=0

(
a

j

)
xj =

∞∑
j=0

bj(a)x
j(61.1)

as an element of A, under suitable conditions. In particular, we have seen
situations in which the convergence of this series can be obtained by estimating
N(bj(a)) and asking that N(x) satisfy a corresponding restriction. However,
basic properties of the sum can involve additional commutativity conditions.

If a1, a2, x ∈ A, then

B(a1, x)B(a2, x) =
( ∞∑

j=0

bj(a1)x
j
)( ∞∑

l=0

bl(a2)x
l
)

(61.2)

=

∞∑
n=0

( n∑
j=0

bj(a1)x
j bn−j(a2)x

n−j
)

formally, where the right side is the Cauchy product of the series corresponding
toB(a1, x) and B(a2, x). Remember that the second step in (61.2) holds un-
der suitable conditions, as in Section 24. If a2 commutes with x, then bl(a2)
commutes with xj for all j, l ≥ 0, so that the right side of (61.2) reduces to

∞∑
n=0

( n∑
j=0

bj(a1) bn−j(a2)
)
xn.(61.3)
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If a1 commutes with a2 as well, then this is the same as

∞∑
n=0

bn(a1 + a2)x
n,(61.4)

as in Section 11. Of course, this sum corresponds to B(a1 + a2, x), as in (61.1).
In particular, if a1 and a2 are multiples of e by elements of k, then a1 and a2

commute with each other, and with every element of A. In this case, one might
as well take a1 and a2 to be elements of k, and consider these power series as
having coefficients in k.
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