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Chapter 1

Absolute values and norms

1.1 Metrics and ultrametrics

Let X be a set. A nonnegative real-valued function d(x, y) defined for x, y ∈ X
is said to be a semimetric on X if it satisfies the following three conditions.
First,

d(x, x) = 0(1.1.1)

for every x ∈ X. Second,
d(x, y) = d(y, x)(1.1.2)

for every x, y ∈ X. Third,

d(x, z) ≤ d(x, y) + d(y, z)(1.1.3)

for every x, y, z ∈ X. If we also have that

d(x, y) > 0(1.1.4)

for every x, y ∈ X with x ̸= y, then d(·, ·) is said to be a metric on X. The
discrete metric is defined on X by putting d(x, y) equal to 0 when x = y, and
equal to 1 when x ̸= y.

Similarly, a nonnegative real-valued function d(x, y) defined for x, y ∈ X is
said to be a semi-ultrametric on X if if it satisfies (1.1.1), (1.1.2), and

d(x, z) ≤ max(d(x, y), d(y, z))(1.1.5)

for every x, y, z ∈ X. Note that (1.1.5) implies (1.1.3), so that a semi-ultrametric
on X is a semimetric on X in particular. If a semi-ultrametric d(x, y) on X
satisfies (1.1.4), then d(x, y) is said to be an ultrametric on X. It is easy to see
that the discrete metric on X is an ultrametric.

Let d(x, y) be a semimetric on X. The open ball in X centered at x ∈ X
with radius r > 0 with respect to d(·, ·) is defined as usual by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(1.1.6)

2
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Similarly, the closed ball in X centered at x ∈ X with radius r ≥ 0 is defined
by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.(1.1.7)

A subset U of X is said to be an open set with respect to d(·, ·) if for every
x ∈ U there is an r > 0 such that

B(x, r) ⊆ U.(1.1.8)

This defines a topology on X, by standard arguments. One can check that open
balls in X are open sets, and that closed balls are closed sets. If d(·, ·) is a
metric on X, then X is Hausdorff with respect to the topology determined by
d(·, ·).

Suppose that d(·, ·) is a semi-ultrametric on X. If x, y ∈ X satisfy d(x, y) < r
for some r > 0, then it is easy to see that

B(x, r) ⊆ B(y, r).(1.1.9)

More precisely,
B(x, r) = B(y, r),(1.1.10)

because we can interchange the roles of x and y in (1.1.9). Similarly, if x, y ∈ X
satisfy d(x, y) ≤ r for some r ≥ 0, then

B(x, r) ⊆ B(y, r),(1.1.11)

and hence
B(x, r) = B(y, r).(1.1.12)

This implies that closed balls in X with positive radius are open sets, and one
can check that open balls in X are closed sets in this situation.

1.2 Absolute value functions

Let k be a field. A nonnegative real-valued function | · | on k is said to be an
absolute value function on k if it satisfies the following conditions. First, |x| = 0
if and only if x = 0. Second,

|x y| = |x| |y|(1.2.1)

for every x, y ∈ k. Third,
|x+ y| ≤ |x|+ |y|(1.2.2)

for every x, y ∈ k. The standard absolute value functions on the fields R of real
numbers and C of complex numbers are absolute value functions in this sense.
The trivial absolute value function on any field k is defined by putting |x| equal
to 0 when x = 0, and equal to 1 when x ̸= 0.

If |·| is any absolute value function on a field k, then |1| = 1, where the first 1
is the multiplicative identity element in k, and the second 1 is the multiplicative
identity element in R. This uses the fact that 12 = 1 in k, so that |1| = |1|2 by



4 CHAPTER 1. ABSOLUTE VALUES AND NORMS

(1.2.1). If x ∈ k satisfies xn = 1 for some positive integer n, then |x|n = |1| = 1,
and hence |x| = 1. In particular, | − 1| = 1, because (−1)2 = 1. It follows that

d(x, y) = |x− y|(1.2.3)

defines a metric on k, using | − 1| = 1 to get that (1.2.3) is symmetric in x and
y.

A nonnegative real-valued function |·| on a field k is said to be an ultrametric
absolute value function on k if it satisfies the first two conditions in the definition
of an absolute value function, and

|x+ y| ≤ max(|x|, |y|)(1.2.4)

for every x, y ∈ k. It is easy to see that (1.2.4) implies (1.2.2), so that an
ultrametric absolute value function on k is an absolute value function on k. If
| · | is an ultrametric absolute value function on k, then (1.2.3) is an ultrametric
on k. The trivial absolute value function on any field k is an ultrametric absolute
value function. The ultrametric associated to the trivial absolute value function
as in (1.2.3) is the discrete metric.

Let p be a prime number. The p-adic absolute value |x|p of a rational number
x is defined as follows. If x = 0, then we put |x|p = 0. Otherwise, if x ̸= 0, then
x can be expressed as pj (a/b) for some integers a, b, and j, where a, b ̸= 0, and
neither a nor b is an integer multiple of p. In this case, we put

|x|p = p−j .(1.2.5)

One can check that this defines an ultrametric absolute value function on the
field Q of rational numbers. The corresponding ultrametric

dp(x, y) = |x− y|p(1.2.6)

is known as the p-adic metric on Q.
Let k be any field again, and let Z+ be the set of positive integers, as usual.

If x ∈ k and n ∈ Z+, then let n · x be the sum of n x’s in k. An absolute value
function | · | on k is said to be archimedean on k if there are n ∈ Z+ such that
|n · 1| is arbitrarily large. Otherwise, | · | is said to be non-archimedean on k. If
| · | is an ultrametric absolute value function on k, then it is easy to see that

|n · 1| ≤ 1(1.2.7)

for every n ∈ Z+, so that | · | is non-archimedean on k. Conversely, it is well
known that a non-archimedean absolute value function on k is necessarily an
ultrametric absolute value function on k. In particular, (1.2.7) holds for every
n ∈ Z+ in this case, which can be verified more directly. More precisely, if | · |
is any absolute value function on k, then one can check that

|nj · 1| = |(n · 1)j | = |n · 1|j(1.2.8)

for all positive integers j, n. If |n · 1| > 1 for some n ∈ Z+, then (1.2.8) tends
to +∞ as j → ∞, so that | · | is archimedean on k.
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1.3 Equivalent absolute value functions

If a is a positive real number with a ≤ 1, then it is well known that

(r + t)a ≤ ra + ta(1.3.1)

for all nonnegative real numbers a, b. To see this, observe first that

max(r, t) ≤ (ra + ta)1/a(1.3.2)

for every a > 0. We also have that

r + t = r1−a ra + t1−a ta ≤ max(r1−a, t1−a) (ra + ta).(1.3.3)

If a ≤ 1, then it follows that

r + t ≤ max(r, t)1−a (ra + ta) ≤ (ra + ta)(1−a)/a+1 = (ra + ta)1/a,(1.3.4)

using (1.3.2) in the second step. This implies (1.3.1), as desired.
Let d(x, y) be a semimetric on a set X. If 0 < a ≤ 1, then one can check

that

d(x, y)a(1.3.5)

also defines a semimetric on X. More precisely, one can verify that (1.3.5) sat-
isfies the triangle inequality using (1.3.1) and the triangle inequality for d(x, y).
If d(x, y) is a semi-ultrametric on X, then (1.3.5) is a semi-ultrametric on X for
every a > 0.

Suppose that d(x, y) is a semimetric on X again, and that (1.3.5) is a semi-
metric on X too for some a > 0. Observe that

Bda(x, r
a) = Bd(x, r)(1.3.6)

for every x ∈ X and r > 0, and that

Bda(x, r
a) = Bd(x, r)(1.3.7)

for every x ∈ X and r ≥ 0. In particular, (1.3.6) implies that d(x, y) and (1.3.5)
determine the same topology on X.

Let k be a field, and let | · | be an absolute value function on k. If 0 < a ≤ 1,
then |x|a also defines an absolute value function on k. As before, this uses
(1.3.1) to get the triangle inequality for |x|a from the triangle inequality for | · |.
If | · | is an ultrametric absolute value function on k, then |x|a is an ultrametric
absolute value function on k for every a > 0.

Suppose that | · | is an absolute value function on k again, and that | · |a is an
absolute value function on k as well for some a > 0. Thus the metric associated
to | · |a on k is the same as the ath power of the metric associated to | · | on k.
Hence these two metrics determine the same topoplogy on k, as in the preceding
paragraph.
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Let | · |1 and | · |2 be absolute value functions on k. If there is a positive real
number a such that

|x|2 = |x|a1(1.3.8)

for every x ∈ k, then | · |1 and | · |2 are said to be equivalent on k. In this case,
the metrics associated to | · |1 and | · |2 determine the same topology on k, as in
the previous paragraph. Conversely, if the metrics associated to | · |1 and | · |2
determine the same topology on k, then it is well known that | · |1 and | · |2 are
equivalent on k, in the sense of (1.3.8).

Let | · | be an absolute value function on Q. A famous theorem of Ostrowski
implies that | · | is either equivalent to the standard absolute value function on
Q, or | · | is the trivial absolute value function on Q, or | · | is equivalent to the
p-adic absolute value function on Q for some prime number p.

1.4 Completions

Let (X, dX) and (Y, dY ) be metric spaces, and let E be a dense subset of X.
Suppose that f is a uniformly continuous mapping from E into Y , with respect
to the restriction of dX to E. If Y is complete with respect to dY , then it is well
known that there is a unique extension of f to a uniformly continuous mapping
from X into Y . More precisely, uniqueness only uses continuity of the extension.

If X is not complete, then it is well known that one can pass to a completion,
which is given by an isometric mapping fromX onto a dense subset of a complete
metric space. The completion is unique up to isometric equivalence, because of
the extension theorem mentioned in the preceding paragraph.

Let X be a set with a semimetric d(x, y), and let E be a dense subset of X.
If the restriction of d(x, y) to x, y ∈ E defines a semi-ultrametric on E, then one
can check that d(x, y) is a semi-ultrametric on X. In particular, the completion
of an ultrametric space is an ultrametric space too.

Let k be a field, and let | · | be an absolute value function on k. If k is not
complete with respect to the metric associated to | · |, then one can pass to a
completion. It is well known that the field operations on k can be extended to the
completion, in such a way that the completion is also a field. The absolute value
function on k can be extended to an absolute value function on the completion,
which corresponds to the distance to 0 in the completion. The completion of k
is unique, up to isometric isomorphic equivalence.

If | · | is an ultrametric absolute value function on k, then the extension of | · |
to the completion of k is an ultrametric absolute value function as well. This is
analogous to the earlier statement for ultrametric spaces, and can be obtained
from that statement. Alternatively, let k1 be any field with an absolute value
function |·|, and let k0 be a subfield of k1. It is easy to see that |·| is archimedean
on k1 if and only if the restriction of | · | to k0 is archimedean on k0.

Let p be a prime number. The field Qp of p-adic numbers is obtained by
completing Q with respect to the p-adic absolute value function | · |p. The
corresponding extension of | · |p to Qp is also denoted | · |p, and defines an
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ultrametric absolute value function on Qp. If x ∈ Qp and x ̸= 0, then one can
check that |x|p is an integer power of p.

Let k be a field with an absolute value function | · | again. If k has positive
characteristic, then it is easy to see that | · | is non-archimedean on k. Suppose
that | · | is archimedean on k, which implies that k has characteristic 0. If k
is complete with respect to the metric associated to | · |, then another famous
theorem of Ostrowski implies that k is isomorphic to R or C, in such a way
that | · | corresponds to an absolute value function on R or C that is equivalent
to the standard absolute value function.

1.5 Discreteness

Let k be a field, and let | · | be an absolute value function on k. Observe that

{|x| : x ∈ k, x ̸= 0}(1.5.1)

is a subgroup of the group R+ of positive real numbers with respect to multi-
plication. Of course, (1.5.1) is the trivial subgroup {1} of R+ exactly when | · |
is the trivial absolute value function on k. If 1 is not a limit point of (1.5.1)
with respect to the standard topology on R, then | · | is said to be discrete on k.

Put

ρ1 = sup{|x| : x ∈ k, |x| < 1},(1.5.2)

so that 0 ≤ ρ1 ≤ 1. If | · | is the trivial absolute value function on k, then ρ1 = 0.
Conversely, if | · | is not the trivial absolute value function on k, then there is a
y ∈ k such that y ̸= 0 and |y| ̸= 1. This implies that there is an x ∈ k such that
x ̸= 0 and |x| < 1, by taking x = y when |y| < 1 and x = 1/y when |y| > 1.
Thus ρ1 > 0 when | · | is nontrivial on k.

If | · | is a discrete absolute value function on k, then ρ1 < 1. Conversely,
if ρ1 < 1, then | · | is discrete on k. More precisely, the definition of ρ1 implies
that there is no x ∈ k such that ρ1 < |x| < 1. If y ∈ k and |y| > 1, then we can
apply the previous statement to x = 1/y, to get that 1/|y| ≤ ρ1. It follows that
1 is not a limit point of (1.5.1) in R when ρ1 < 1, as desired.

Suppose that | · | is an archimedean absolute value function on k. This
implies that k has characteristic 0, as in the previous section. Hence there is
a natural embedding of Q into k. This leads to an absolute value function on
Q, using | · | on k. It is easy to see that Q is archimedean with respect to this
absolute value function, because k is archimedean with respect to | · |. Using
this and Ostrowski’s classification of absolute value functions on Q mentioned
in Section 1.3, we get that this absolute value function on Q is equivalent to
the standard absolute value function. In particular, it follows that this absolute
value function on Q is not discrete. This means that | · | is not discrete on k. If
| · | is a discrete absolute value function on k, then | · | is non-archimedean on k,
and hence | · | is an ultrametric absolute value function on k.
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Suppose that | · | is a nontrivial discrete absolute value function on k, so that
0 < ρ1 < 1. If y, z ∈ k and |y| < |z|, then

|y| ≤ ρ1 |z|,(1.5.3)

because |y/z| = |y|/|z| < 1, and hence |y/z| ≤ ρ1, by the definition (1.5.2) of
ρ1. One can check that the supremum is attained in (1.5.2), since otherwise
there would be distinct elements of (1.5.1) close to ρ1, whose quotient would be
close to 1 but not equal to 1. Thus ρ1 is an element of (1.5.1), which implies
that (1.5.1) contains all integer powers of ρ1. In fact, one can verify that every
element of (1.5.1) is an integer power of ρ1 in this case.

Suppose that | · | is an ultrametric absolute value function on k. If x, y ∈ k
satisfy

|x− y| < |y|,(1.5.4)

then
|x| = |y|.(1.5.5)

More precisely,
|x| ≤ max(|x− y|, |y|) = |y|,(1.5.6)

by the ultrametric version of the triangle inequality. Similarly,

|y| ≤ max(|x− y|, |x|),(1.5.7)

which implies that |y| ≤ |x| in this situation.
Let k0 be a subfield of k that is dense with respect to the ultrametric asso-

ciated to | · |. The remarks in the preceding paragraph imply that

{|x| : x ∈ k0, x ̸= 0}(1.5.8)

is the same as (1.5.1). In particular, if k is not already complete with respect
to the ultrametric associated to | · |, then the nonzero values of the extension of
| · | to the completion of k is the same as (1.5.1).

1.6 p-Adic integers

Let k be a field, let x be an element of k, and let n be a nonnegative integer.
Observe that

(1− x)

n∑
j=0

xj =

n∑
j=0

xj −
n∑
j=0

xj+1 =

n∑
j=0

xj −
n+1∑
j=1

xj = 1− xn+1,(1.6.1)

where xj is interpreted as being the multiplicative identity element 1 in k when
j = 0. If x ̸= 1, then it follows that

n∑
j=0

xj = (1− xn+1) (1− x)−1.(1.6.2)
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Let | · | be an absolute value function on k, so that∣∣∣∣ n∑
j=0

xj − (1− x)−1

∣∣∣∣ = |xn+1 (1− x)−1| = |x|n+1 |1− x|−1.(1.6.3)

If |x| < 1, then we get that

lim
n→∞

∣∣∣∣ n∑
j=0

xj − (1− x)−1

∣∣∣∣ = 0.(1.6.4)

Let p be a prime number, and let y be an integer. Thus x = p y satisfies

|x|p = p−1 |y|p ≤ p−1 < 1,(1.6.5)

where | · |p is the p-adic absolute value, as before. It follows that

lim
n→∞

∣∣∣∣ n∑
j=0

pj yj − (1− p y)−1

∣∣∣∣
p

= 0,(1.6.6)

as in (1.6.4). Note that
∑n
j=0 p

j yj is an integer for each nonnegative integer n.

Suppose that z ∈ Q satisfies |z|p ≤ 1. This means that z can be expressed
as a/b, where a and b are integers, b ̸= 0, and b is not a multiple of p. Hence
there is an integer c such that b c ≡ 1 modulo p, because the integers modulo p
form a field. Thus z can be expressed as

z = (a c)/(b c) = a c (1− p y)−1,(1.6.7)

where y is an integer. This implies that z can be approximated by integers with
respect to the p-adic metric, because of the analogous statement for (1−p y)−1,
as in the preceding paragraph.

Put

Zp = {x ∈ Qp : |x|p ≤ 1},(1.6.8)

which is the set of p-adic integers. Of course, the set Z of integers is contained in
Zp, by the definition of the p-adic absolute value. This implies that the closure
of Z in Qp with respect to the p-adic metric is contained in Zp, because Zp is a
closed set in Qp. Conversely, let x ∈ Zp be given, and let us check that x is in
the closure of Z in Qp. Of course, Q is dense in Qp, by construction. Thus x can
be approximated by z ∈ Q with respect to the p-adic metric. In particular, if
|x− z|p ≤ 1, then |z|p ≤ 1, by the ultrametric version of the triangle inequality.
This means that x can be approximated by z ∈ Q with |z|p ≤ 1 with respect to
the p-adic metric. If z ∈ Q and |z|p ≤ 1, then z can be approximated by integers
with respect to the p-adic metric, as in the previous paragraph. This implies
that x can be approximated by integers with respect to the p-adic metric, as
desired.
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1.7 Residue fields

Let k be a field, and suppose that | · | is an ultrametric absolute value function
on k. It is easy to see that the open ball B(0, r) in k centered at 0 with radius
r > 0 with respect to the ultrametric associated to | · | is a subgroup of k as a
commutative group with respect to addition. Similarly, the closed ball B(0, r)
in k centered at 0 with radius r ≥ 0 is a subgroup of k with respect to addition.
The closed unit ball B(0, 1) is a subring of k, which contains the multiplicative
identity element 1 in k in particular. Note that B(0, r) is an ideal in B(0, 1)
when 0 < r ≤ 1, and that B(0, r) is an ideal in B(0, 1) when 0 ≤ r ≤ 1.

Thus the quotient
B(0, 1)/B(0, r)(1.7.1)

can be defined as a commutative ring when 0 < r ≤ 1, and

B(0, 1)/B(0, r)(1.7.2)

can be defined as a commutative ring when 0 ≤ r ≤ 1. One can check that

B(0, 1)/B(0, 1)(1.7.3)

is a field, which is the residue field associated to | · | on k. More precisely, a
nonzero element of (1.7.3) comes from an element x of B(0, 1) that is not in
B(0, 1). This means that |x| = 1, so that 1/x is an element of B(0, 1) too. The
element of (1.7.3) corresponding to 1/x is the inverse of the given element of
(1.7.3), as desired.

If | · | is the trivial absolute value function on k, then B(0, 1) = k, B(0, 1) =
{0}, and the residue field (1.7.3) reduces to k itself. If k has characteristic p > 0,
and | · | is any ultrametric absolute value function on k, then it is easy to see
that the reside field (1.7.3) has characteristic p as well.

Let k be any field with an ultrametric absolute value function | · | again, and
let k0 be a subfield of k. The restriction of | · | to k0 defines an ultrametric
absolute value function on k0, and there is a natural embedding of the residue
field associated to k0 into the residue field associated to k. If k0 is dense in k
with respect to the ultrametric associated to | · |, then one can check that the
embedding of the residue field associated to k0 into the residue field associated
to k is surjective, so that the residue fields are isomorphic. In particular, if
k is not complete with respect to the ultrametric associated to | · |, then the
residue field associated to the completion of k is isomorphic to the residue field
associated to k.

Let p be a prime number, and consider k = Qp with the p-adic absolute
value. In this case,

B(0, p−j) = pj Zp(1.7.4)

for every j ∈ Z, where pj Zp is the set of pj x, x ∈ Zp. As before, Zp is a
subring of Qp, p

j Zp is an ideal in Zp for each nonnegative integer j, and hence
the quotient

B(0, 1)/B(0, p−j) = Zp/(p
j Zp)(1.7.5)
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is defined as a commutative ring when j ≥ 0. There is a natural ring homomor-
phism from Z into (1.7.5), which is the composiiton of the inclusion of Z in Zp
with the quotient mapping from Zp onto (1.7.5). Observe that

Z ∩ (pj Zp) = pj Z(1.7.6)

for every nonnegative integer j, which is the kernel of the homomorphism from
Z into (1.7.5) just mentioned. Thus we get an injective ring homomorphism
from

Z/(pj Z)(1.7.7)

into (1.7.6) for each nonnegative integer j. One can check that this homomor-
phism is surjective, because Z is dense in Zp, as in the previous section. This
shows that (1.7.5) is isomorphic to (1.7.7) as a ring for every nonnegative integer
j.

1.8 Norms and ultranorms

Let k be a field with an absolute value function | · |, and let V be a vector space
over k. A nonnegative real-valued function N on V is said to be a seminorm
on V with respect to | · | if it satisfies the following two conditions. First,

N(t v) = |t|N(v)(1.8.1)

for every t ∈ k and v ∈ V . Second,

N(v + w) ≤ N(v) +N(w)(1.8.2)

for every v, w ∈ V . Note that (1.8.1) implies that N(0) = 0, by taking t = 0. If
we also have that

N(v) > 0(1.8.3)

for every v ∈ V with v ̸= 0, then N is said to be a norm on V with respect to
| · |. In particular, k may be considered as a one-dimensional vector space over
itself, and | · | may be considered as a norm on k with respect to itself.

A nonnegative real-valued function N on V is said to be a semi-ultranorm
on V with respect to | · | on k if it satisfies (1.8.1) and

N(v + w) ≤ max(N(v), N(w))(1.8.4)

for every v, w ∈ V . If N also satisfies (1.8.3), then N is said to be an ultranorm
on V with respect to | · |. Of course, (1.8.4) implies (1.8.2), so that semi-
ultranorms and ultranorms are seminorms and ultranorms, respectively. If N is
a semi-ultranorm on V with respect to | · | on k, and if N(v) > 0 for some v ∈ V ,
then one can check that | · | is an ultrametric absolute value function on k. If
| · | is an ultrametric absolute value function on k, then | · | may be considered
as an ultranorm on k as a one-dimensional vector space over itself.
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Let | · | be any absolute value function on k again. If N is a seminorm on V
with respect to | · |, then

d(v, w) = dN (v, w) = N(v − w)(1.8.5)

defines a semimetric on V . If N is a norm on V , then (1.8.5) is a metric on V .
If N is a semi-ultranorm on V , then (1.8.5) is a semi-ultrametric on V . Thus
(1.8.5) is an ultrametric on V when N is an ultranorm on V .

Suppose for the moment that | · | is the trivial absolute value function on k.
The trivial ultranorm is defined on V by putting N(v) equal to 1 when v ̸= 0,
and equal to 0 when v = 0. It is easy to see that this defines an ultranorm on
V , for which the corresponding ultrametric is the discrete metric.

Let | · | be any absolute value function on k, and let a be a positive real
number with a ≤ 1. Remember that | · |a defines an absolute value function on
k too, as in Section 1.3. If N is a seminorm on V with respect to | · | on k, then
N(v)a is a seminorm on V with respect to | · |a on k. This uses (1.3.1) to get
the triangle inequality for N(v)a from the one for N . If N is a norm on V with
respect to | · | on k, then N(v)a is a norm on V with respect to | · |a on k.

If |·| is an ultrametric absolute value function on k, then |·|a is an ultrametric
absolute value function on k for every a > 0, as in Section 1.3. In this case,
if N is a semi-ultranorm on V with respect to | · | on k, then N(v)a is a semi-
ultranorm on V with respect to | · |a for every a > 0. If N is an ultranorm on
V with respect to | · | on k, then N(v)a is an ultranorm on V with respect to
| · |a on k for every a > 0.

Let N be a semi-ultranorm on V with respect to | · | on k. If v, w ∈ V satisfy

N(v − w) < N(w),(1.8.6)

then
N(v) = N(w).(1.8.7)

This is analogous to the corresponding statement for ultrametric absolute value
functions mentioned in Section 1.5. If N(v − w) ≤ N(w), then

N(v) ≤ max(N(v − w), N(w)) = N(w),(1.8.8)

by the semi-ultranorm version of the triangle inequality. We also have that

N(w) ≤ max(N(v − w), N(v)),(1.8.9)

which implies that N(w) ≤ N(v) when (1.8.6) holds.
Suppose that N is a norm on V with respect to an absolute value function |·|

on k. If V is complete with respect to the metric associated to N , then V is said
to be a Banach space with respect toN . Otherwise, one can pass to a completion
of V . The vector space operations on V can be extended to the completion, so
that the completion becomes a vector space over k. The extension of N to the
completion corresponds to the distance to 0 on the completion, and defines a
norm on the completion. If N is an ultranorm on V , then the extension of N
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to the completion of V is an ultranorm as well. The completion of V is unique,
up to isometric isomorphic equivalence.

If N is a seminorm on V with respect to | · | on k, and if V0 is a linear
subspace of V , then the restriction of N to V0 is a seminorm on V with respect
to | · | on k. If V0 is dense in V with respect to the semimetric associated to N ,
and if the restriction of N to V0 is a semi-ultranorm on V0, then it is easy to
see that N is a semi-ultranorm on V . In particular, if N is an ultranorm on V ,
and if V is not already complete with respect to the ultrametric associated to
N , then the extension of N to the completion of V is an ultranorm.

1.9 Bounded linear mappings

Let k be a field with an absolute value function | · |, and let V , W be vector
spaces over k. Also let NV , NW be seminorms on V , W , respectively, with
respect to | · | on k. A linear mapping T from V into W is said to be bounded
with respect to NV and NW if there is a nonnegative real number C such that

NW (T (v)) ≤ C NV (v)(1.9.1)

for every v ∈ V . This implies that

NW (T (v)− T (v′)) = NW (T (v − v′)) ≤ C NV (v − v′)(1.9.2)

for every v, v′ ∈ V , and in particular that T is continuous with respect to the
semimetrics associated to NV and NW on V and W , respectively. Conversely,
if a linear mapping T from V into W is continuous at 0 with respect to these
semimetrics, and if | · | is not the trivial absolute value function on k, then one
can check that T is bounded with respect to NV and NW .

Let BL(V,W ) be the space of bounded linear mappings from V intoW , with
respect to NV and NW . If T ∈ BL(V,W ), then put

∥T∥op = ∥T∥op,VW = inf{C ≥ 0 : (1.9.1) holds},(1.9.3)

where more precisely the infimum is taken over all nonnegative real numbers C
such that (1.9.1) holds for every v ∈ V . Note that the infimum is automatically
attained in this situation, which is to say that (1.9.1) holds with C = ∥T∥op.
One can verify that BL(V,W ) is a vector space over k with respect to pointwise
addition and scalar multiplication of mappings from V into W , and that (1.9.3)
defines a seminorm on B(V,W ) with respect to | · | on k. If NW is a norm on
W , then (1.9.3) is a norm on BL(V,W ). If NW is a semi-ultranorm on W , then
(1.9.3) is a semi-ultranorm on BL(V,W ). In particular, if NW is an ultranorm
on W , then (1.9.3) is an ultranorm on BL(V,W ).

Let Z be another vector space over k, and let NZ be a seminorm on Z with
respect to | · | on k. Suppose that T1 is a bounded linear mapping from V into
W with respect to NV and NW , and that T2 is a bounded linear mapping from
W into Z with respect to NW and NZ . If v ∈ V , then

NZ(T2(T1(v))) ≤ ∥T2∥op,WZ NW (T1(v))(1.9.4)

≤ ∥T1∥op,VW ∥T2∥op,WZ NV (v),
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where the subscripts indicate the spaces involved in the corresponding operator
seminorm. This implies that the composition T2 ◦ T1 is bounded as a linear
mapping from V into Z, with

∥T2 ◦ T1∥op,V Z ≤ ∥T1∥op,VW ∥T2∥op,WZ .(1.9.5)

Let us suppose from now on in this section thatNW is a norm onW , and that
W is complete with respect to the metric associated associated to NW . Under
these conditions, one can check that BL(V,W ) is complete with respect to the
operator norm (1.9.3), using standard arguments. More precisely, if {Tj}∞j=1 is
a Cauchy sequence in BL(V,W ) with respect to the metric associated to the
operator norm, then {Tj(v)}∞j=1 is a Cauchy sequence in W with respect to
the metric associated to NW for every v ∈ V . This implies that {Tj(v)}∞j=1

converges to a unique element T (v) of W with respect to the metric associated
to NW , because W is supposed to be complete with respect to this metric. It
is easy to see that T defines a linear mapping from V into W , because Tj is
linear for each j. The Cauchy condition for {Tj}∞j=1 with respect to the metric
associated to the operator norm implies that the operator norms of the Tj ’s are
bounded, which can be used to get that T is a bounded linear mapping. One
can use the Cauchy condition for {Tj}∞j=1 again to obtain that this sequence
converges to T with respect to the metric associated to the operator norm, as
desired.

Suppose for convenience that NV is a norm on V , although this is not really
needed. Let V0 be a linear subspace of V that is dense in V with respect to
the metric associated to NV , and let T0 be a bounded linear mapping from V0
into W , with respect to the restriction of NV to V0. Note that T0 is uniformly
continuous with respect to the metric on V0 associated to the restriction of NV
to V0, and the metric on W associated to NW , as in (1.9.2). It follows that
there is a unique extension of T0 to a uniformly continuous mapping from V
into W , with respect to the metrics associated to NV and NW , respectively, as
mentioned at the beginning of Section 1.4. One can check that this extension
is a bounded linear mapping from V into W with respect to NV and NW , with
the same operator norm as T0 has on V0.

1.10 Some norms on kn

Let k be a field, and let n be a positive integer. The space kn of n-tuples
v = (v1, . . . , vn) of elements of k is a vector space over k with respect to co-
ordinatewise addition and scalar multiplication. Let | · | be an absolute value
function on k. It is easy to see that

∥v∥1 =

n∑
j=1

|vj |(1.10.1)

and
∥v∥∞ = max

1≤j≤n
|vj |(1.10.2)
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are norms on kn with respect to | · | on k. If | · | is an ultrametric absolute value
function on k, then (1.10.2) is an ultranorm on kn.

Observe that
∥v∥∞ ≤ ∥v∥1 ≤ n ∥v∥∞(1.10.3)

for every v ∈ kn. Let
d1(v, w) = ∥v − w∥1(1.10.4)

and
d∞(v, w) = ∥v − w∥∞(1.10.5)

be the metrics on kn associated to (1.10.1) and (1.10.2), respectively. Thus

d∞(v, w) ≤ d1(v, w) ≤ nd∞(v, w)(1.10.6)

for every v, w ∈ kn, by (1.10.3). In particular, this implies that (1.10.4) and
(1.10.5) determine the same topology on kn. This is the same as the product
topology on kn, corresponding to the topology determined on k by the metric
associated to | · |.

The standard basis vectors e1, . . . , en in kn are defined as usual by taking
the jth coordinate of el to be equal to 1 when j = l and to 0 when j ̸= l, where
1 ≤ j, l ≤ n. Thus

v =

n∑
l=1

vl el(1.10.7)

for every v ∈ kn. Let W be a vector space over k, and let NW be a seminorm
on W with respect to | · | on k. If T is a linear mapping from kn into W , then

T (v) = T
( n∑
l=1

vl el

)
=

n∑
l=1

vl T (el)(1.10.8)

for every v ∈ kn, and hence

NW (T (v)) ≤
n∑
l=1

|vl|NW (T (el)).(1.10.9)

In particular,

NW (T (v)) ≤
(

max
1≤l≤n

NW (T (el))
)
∥v∥1(1.10.10)

for every v ∈ kn. This means that T is bounded as a linear mapping from kn

equipped with ∥v∥1 into W , with operator seminorm less than or equal to

max
1≤l≤n

NW (T (el)).(1.10.11)

In fact, the operator seminorm of T is equal to (1.10.11) in this situation, because
the operator seminorm of T is automatically greater than or equal to NW (T (el))
for each l = 1, . . . , n, since ∥el∥1 = 1. Similarly,

NW (T (v)) ≤
( n∑
l=1

NW (T (el))
)
∥v∥∞(1.10.12)
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for every v ∈ kn, by (1.10.9). This implies that T is bounded as a linear mapping
from kn equipped with ∥v∥∞ intoW , with operator seminorm less than or equal
to

n∑
l=1

NW (T (el)).(1.10.13)

Note that the operator seminorm of T is greater than or equal to (1.10.11),
because ∥el∥∞ = 1 for each l = 1, . . . , n.

Suppose now that | · | is an ultrametric absolute value function on k, and
that NW is a semi-ultranorm on W with respect to | · | on k. Using (1.10.8), we
get that

NW (T (v)) ≤ max
1≤l≤n

(|vl|NW (T (el))) ≤
(

max
1≤l≤n

NW (T (el))
)
∥v∥∞(1.10.14)

for every v ∈ kn. This implies that T is bounded as a linear mapping from
kn equipped with ∥v∥∞ into W , with operator seminorm less than or equal to
(1.10.11). The operator seminorm of T is also greater than or equal to (1.10.11),
as in the preceding paragraph. Hence the operator seminorm of T with respect
to ∥v∥∞ on kn is equal to (1.10.11) in this case.

1.11 Inner products

Suppose for the moment that V and W are vector spaces over the field C of
complex numbers, so that V and W may be considered as vector spaces over
R as well. Let us say that a mapping T from V into W is real-linear if T is
linear as a mapping from V into W as vector spaces over R, and that T is
complex-linear if T is linear as a mapping from V into W as vector spaces over
C. Thus a complex-linear mapping T from V intoW is the same as a real-linear
mapping that also satisfies

T (i v) = i T (v)(1.11.1)

for every v ∈ V . A real-linear mapping T from V intoW is said to be conjugate-
linear if

T (i v) = −i T (v)(1.11.2)

for every v ∈ V . This implies that

T (a v) = aT (v)(1.11.3)

for every a ∈ C and v ∈ V , where a is the usual complex-conjugate of a.
Suppose from now on in this section that k = R or C, with the standard

absolute value function. Let V be a vector space over k, and let ⟨v, w⟩ be a
k-valued function defined for v, w ∈ V . If the following three conditions are
satisfied, then ⟨v, w⟩ is said to be an inner product on V . The first condition is
that ⟨v, w⟩ be linear in v for each w ∈ V . The second condition is that

⟨w, v⟩ = ⟨v, w⟩(1.11.4)
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for every v, w ∈ V in the real case, and that

⟨w, v⟩ = ⟨v, w⟩(1.11.5)

for every v, w ∈ V in the complex case. Note that ⟨v, w⟩ is linear in w for each
v ∈ V in the real case, and conjugate-linear in w for each v ∈ V in the complex
case. In the complex case, we also get that ⟨v, v⟩ is a real number for every
v ∈ V , by (1.11.5). The third condition is that

⟨v, v⟩ > 0(1.11.6)

for every v ∈ V with v ̸= 0. Of course, ⟨v, w⟩ = 0 when either v = 0 or w = 0,
by the first two conditions. If⟨v, w⟩ is an inner product on V , then we put

∥v∥ = ⟨v, v⟩1/2(1.11.7)

for every v ∈ V , using the nonnegative square root on the right side. It is well
known that

|⟨v, w⟩| ≤ ∥v∥ ∥w∥(1.11.8)

for every v, w ∈ V , which is the Cauchy–Schwarz inequality. Using this, one can
show that ∥ · ∥ defines a norm on V . If V is complete with respect to the metric
associated to ∥ · ∥, then V is said to be a Hilbert space with respect to ⟨v, w⟩.
Otherwise, one can pass to a completion, as usual.

Let n be a positive integer. The standard inner product on Rn is given by

⟨v, w⟩ = ⟨v, w⟩Rn =

n∑
j=1

vj wj .(1.11.9)

Similarly, the standard inner product on Cn is given by

⟨v, w⟩ = ⟨v, w⟩Cn =

n∑
j=1

vj wj .(1.11.10)

In both cases, the corresponding norm is given by

∥v∥ = ∥v∥2 =
( n∑
j=1

|vj |2
)1/2

.(1.11.11)

It is easy to see that
∥v∥∞ ≤ ∥v∥2 ≤ n1/2 ∥v∥∞(1.11.12)

for every v ∈ Rn or Cn, where ∥v∥∞ is as in (1.10.2). One can also check that

∥v∥2 ≤ ∥v∥1 ≤ n1/2 ∥v∥2(1.11.13)

for every v ∈ Rn or Cn, where ∥v∥1 is as in (1.10.1). More precisely, the first
inequality in (1.11.13) can be verified using the first inequality in (1.10.3), and
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the second inequality in (1.11.13) can be obtained from the Cauchy–Schwarz
inequality.

Let (V, ⟨·, ·⟩V ) and (W, ⟨·, ·⟩W ) be Hilbert spaces, both real or both complex,
and let ∥ · ∥V and ∥ · ∥W be the corresponding norms on V and W , respectively.
Also let T be a bounded linear mapping from V into W , with respect to ∥ · ∥V
and ∥ · ∥W . It is well known that there is a unique bounded linear mapping T ∗

from W into V such that

⟨T (v), w⟩W = ⟨v, T ∗(w)⟩V(1.11.14)

for every v ∈ V and w ∈ W . This mapping T ∗ is called the adjoint of T . The
adjoint (T ∗)∗ of T ∗ can be defined as a bounded linear mapping from V into W
in the same way, and is equal to T . It is not difficult to show that

∥T ∗∥op,WV = ∥T∥op,VW .(1.11.15)

Note that T 7→ T ∗ is a linear mapping from BL(V,W ) into BL(W,V ) in the
real case, and that this mapping is conjugate-linear in the complex case.

Let (Z, ⟨·, ·⟩Z) be another Hilbert space, which is real when V andW are real,
and complex when V and W are complex, and let ∥ · ∥Z be the corresponding
norm on Z. If T1 is a bounded linear mapping from V into W , and T2 is a
bounded linear mapping from W into Z, then their composition T2 ◦ T1 is a
bounded linear mapping from V into Z, as before. It is easy to see that

(T2 ◦ T1)∗ = T ∗
1 ◦ T ∗

2(1.11.16)

as bounded linear mappings from Z into V .

1.12 Infinite series

Let k be a field with an absolute value function | · |, and let V be a vector space
over k with a norm N with respect to | · | on k. An infinite series

∑∞
j=1 vj with

terms in V is said to converge in V if the corresponding sequence of partial sums∑n
j=1 vj converges to an element of V with respect to the metric associated to

N . In this case, the value of the sum
∑∞
j=1 vj is defined to be the limit of the

sequence of partial sums. If
∑∞
j=1 vj converges in V and t ∈ k, then it is easy

to see that
∑∞
j=1 t vj converges in V too, with

∞∑
j=1

t vj = t

∞∑
j=1

vj .(1.12.1)

Similarly, if
∑∞
j=1 wj is another convergent series in V , then

∑∞
j=1(vj + wj)

converges in V as well, with

∞∑
j=1

(vj + wj) =

∞∑
j=1

vj +

∞∑
j=1

wj .(1.12.2)
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A necessary condition for the convergence of an infinite series
∑∞
j=1 vj with

terms in V is that the corresponding sequence of partial sums be a Cauchy
sequence with respect to the metric associated to N . This happens if and only
if for every ϵ > 0 there is a positive integer L such that

N
( n∑
j=l

vj

)
< ϵ(1.12.3)

for all l, n ∈ Z+ with n ≥ l ≥ L. In particular, this implies that

lim
j→∞

N(vj) = 0,(1.12.4)

by taking l = n in (1.12.3). Of course, if V is complete with respect to the
metric associated to N , then the Cauchy condition (1.12.3) implies that

∑∞
j=1 vj

converges in V .
If

∑∞
j=1N(vj) converges as an infinite series of nonnegative real numbers,

then
∑∞
j=1 vj is said to converge absolutely with respect to N . Observe that

N
( n∑
j=l

vj

)
≤

n∑
j=l

N(vj)(1.12.5)

for every l, n ∈ Z+ with n ≥ l, by the triangle inequality for N . If
∑∞
j=1 vj

converges absolutely with respect to N , then it is easy to see that the Cauchy
condition (1.12.3) holds, using (1.12.5). If V is complete with respect to the
metric associated to N , then it follows that

∑∞
j=1 vj converges in V . In this

case, we also have that

N
( ∞∑
j=1

vj

)
≤

∞∑
j=1

N(vj).(1.12.6)

Suppose for the moment that N is an ultranorm on V with respect to | · |
on k, so that

N
( n∑
j=l

vj

)
≤ max
l≤j≤n

N(vj)(1.12.7)

for every n ≥ l ≥ 1. If (1.12.4) holds, then it follows that the Cauchy condition
(1.12.3) holds too. If V is complete with respect to the ultrametric associated
to N , then we get that

∑∞
j=1 vj converges in V . Note that

N
( ∞∑
j=1

vj

)
≤ max

j≥1
N(vj)(1.12.8)

in this situation. More precisely, the maximum on the right side of (1.12.8) is
attained, because of (1.12.4).
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Let us now take k = R or C, with the standard absolute value function.
Let (V, ⟨·, ·⟩) be a real or complex inner product space, and let ∥ · ∥ be the
corresponding norm on V , as in the previous section. Suppose that

∑∞
j=1 vj is

an infinite series of pairwise-orthogonal vectors in V , so that

⟨vj , vl⟩ = 0(1.12.9)

when j ̸= l. This implies that∥∥∥∥ n∑
j=l

vj

∥∥∥∥2 =

n∑
j=l

∥vj∥2(1.12.10)

for every n ≥ l ≥ 1. If
∑∞
j=1 ∥vj∥2 converges as an infinite series of nonnegative

real numbers, then the Cauchy condition (1.12.3) holds, with N = ∥ · ∥. Hence∑∞
j=1 vj converges in V when V is a Hilbert space, in which case we have that∥∥∥∥ ∞∑

j=1

vj

∥∥∥∥2 =

∞∑
j=1

∥vj∥2.(1.12.11)

Conversely, if the Cauchy condition (1.12.3) holds, then
∑∞
j=1 ∥vj∥2 converges,

because the partial sums are bounded.

1.13 Bounded bilinear mappings

Let k be a field, and let V , W , and Z be vector spaces over k. A mapping b
from V ×W into Z is said to be bilinear if b(v, w) is linear in v for each w ∈W ,
and linear in w for each v ∈ V . Let | · | be an absolute value function on k, and
let NV , NW , and NZ be seminorms on V , W , and Z, respectively, with respect
to | · | on k. If there is a nonnegative real number C such that

NZ(b(v, w)) ≤ C NV (v)NW (w)(1.13.1)

for every v ∈ V and w ∈W , then b is said to be bounded as a bilinear mapping
from V ×W into Z.

Let b be a bilinear mapping from V ×W into Z that satisfies (1.13.1), and
let v, v′ ∈ V and w,w′ ∈W be given. Observe that

b(v, w)− b(v′, w′) = b(v − v′, w) + b(v′, w − w′),(1.13.2)

so that

NZ(b(v, w)− b(v′, w′)) ≤ NZ(b(v − v′, w)) +NZ(b(v
′, w − w′))

≤ C ∥v − v′∥V ∥w∥+ C ∥v′∥V ∥w − w′∥W .(1.13.3)

One can use this to check that b is continuous with respect to the semimetrics
associated to NV , NW , NZ and the corresponding product topology on V ×W .
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Conversely, if a bilinear mapping b from V ×W into Z is continuous at (0, 0)
in V × W with respect to these semimetrics and the corresponding product
topology on V ×W , and if | · | is not the trivial absolute value function on k,
then one can verify that b is bounded as a bilinear mapping.

Suppose for the moment that NV , NW , and NZ are norms on V , W , and
Z, respectively, and let V0, W0 be dense linear subspaces of V and W with
respect to the metrics associated to NV and NW . Let b0 be a bounded bilinear
mapping from V0 × W0 into Z, using the restrictions of NV and NW to V0
and W0, respectively. If Z is complete with respect to the metric associated to
NZ , then there is a unique extension of b0 to a bounded bilinear mapping from
V ×W into Z. More precisely, for each w ∈ W0, one can first extend b0(v, w)
to a bounded linear mapping from V into Z, as a function of v. This defines
a bounded bilinear mapping from V ×W0 into Z, which can be extended to a
bounded bilinear mapping from V ×W into Z in the same way.

Suppose now that V = knV and W = knW for some positive integers nV
and nW , and let NZ be any seminorm on Z again. Also let eV1 , . . . , e

V
nV

and
eW1 , . . . , eWnW

be the standard basis vectors in knV and knW , respectively, and
let b be a bilinear mapping from knV × knW into Z. Observe that

b(v, w) =

nV∑
j=1

nW∑
l=1

vj wl b(e
nV
j , enW

l )(1.13.4)

for every v ∈ V and w ∈W , so that

NZ(b(v, w)) ≤
nV∑
j=1

nW∑
l=1

|vj | |wl|NZ(b(enV
j , enW

l )).(1.13.5)

If we take NV (v) to be

∥v∥1,nV
=

nV∑
j=1

|vj |,(1.13.6)

and NW (w) to be

∥w∥1,nW
=

nW∑
l=1

|wl|,(1.13.7)

as in (1.10.1), then (1.13.5) implies that (1.13.1) holds with C equal to

max{NZ(b(enV
j , enw

l )) : 1 ≤ j ≤ nV , 1 ≤ l ≤ nW }.(1.13.8)

Similarly, if we take NV (v) to be

∥v∥∞,nV
= max

1≤j≤nV

|vj |,(1.13.9)

and NW (w) to be

∥w∥∞,nW
= max

1≤l≤nW

|wl|,(1.13.10)
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as in (1.10.2), then (1.13.5) implies that (1.13.1) holds, with C equal to

nV∑
j=1

nW∑
l=1

NZ(b(e
nV
j , enW

l )).(1.13.11)

If NZ is a semi-ultranorm on Z, then we get that

NZ(b(v, w))(1.13.12)

≤ max{|vj | |wl|N(b(enV
j , enW

l )) : 1 ≤ j ≤ nV , 1 ≤ l ≤ nW }

for every v ∈ knV and knW . In this case, if we take NV (v) and NW (w) to be
as in (1.13.9) and (1.13.10), respectively, then (1.13.1) holds with C equal to
(1.13.8).

1.14 Minkowski functionals

Let k be a field with an absolute value function | · |, and let V be a vector space
over k. If t ∈ k and E ⊆ V , then we put

t E = {t v : v ∈ E}.(1.14.1)

Let us say that E is balanced in V if

t E ⊆ E(1.14.2)

for every t ∈ k with |t| ≤ 1. If |t| = 1, then it follows that

t E = E,(1.14.3)

by applying (1.14.2) to both t and 1/t. Note that a nonempty balanced subset
of V contains 0.

Let us say that a balanced set A ⊆ V is absorbing if for every v ∈ V there
is a t1 ∈ k such that t1 ̸= 0 and

v ∈ t1A.(1.14.4)

This implies that
v ∈ tA(1.14.5)

for every t ∈ k such that |t| ≥ |t1|, because A is balanced. Equivalently, this
means that

t−1 v ∈ A(1.14.6)

when |t| ≥ |t1|. Of course, if (1.14.4) holds with t1 = 0, then v = 0. We also
have that 0 ∈ A, because A is balanced and nonempty, so that (1.14.5) holds
for every t ∈ k. Clearly V is automatically balanced and absorbing as a subset
of itself. If | · | is the trivial absolute value function on k, then V is the only
balanced absorbing subset of itself.
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Let N be a nonnegative real-valued function on V such that

N(t v) = |t|N(v)(1.14.7)

for every t ∈ k and v ∈ V . Put

BN (0, r) = {v ∈ V : N(v) < r}(1.14.8)

for every positive real number r, and

B(0, r) = {v ∈ V : N(v) ≤ r}(1.14.9)

for every nonnegative real number r. If t ∈ k and t ̸= 0, then

tBN (0, r) = BN (0, |t| r)(1.14.10)

for every r > 0, and
tBN (0, r) = BN (0, |t| r)(1.14.11)

for every r ≥ 0. In particular, BN (0, r) is balanced in V for every r > 0, and
BN (0, r) is balanced in V for every r ≥ 0. If | · | is not the trivial absolute value
function on k, then BN (0, r) and BN (0, r) are absorbing in V for every r > 0.

Let us suppose from now on in this section that | · | is not the trivial absolute
value function on k. Let A be a balanced absorbing subset of V , and put

NA(v) = inf{|t| : t ∈ k, t ̸= 0, v ∈ tA}(1.14.12)

= inf{|t| : t ∈ k, t ̸= 0, t−1 v ∈ A}

for each v ∈ V . Note that NA(0) = 0, so that we could have included the
possibility of t = 0 in the first formulation of NA(v). Of course, NA is a
nonnegative real-valued function on V , and one can check that

NA(t
′ v) = |t′|NA(v)(1.14.13)

for every t′ ∈ k and v ∈ V . If v ∈ A, then NA(v) ≤ 1, so that

A ⊆ BNA
(0, 1).(1.14.14)

If v ∈ V satisfies NA(v) < 1, then there is a t ∈ k such that |t| < 1 and v ∈ tA.
This implies that v ∈ A, because A is balanced in V , so that

BNA
(0, 1) ⊆ A.(1.14.15)

Suppose for the moment that | · | is discrete on k, as in Section 1.5. If v ∈ V
and NA(v) > 0, then it follows that the infimum in (1.14.12) is attained. If
v ∈ V and NA(v) ≤ 1, then there is a t ∈ k such that |t| ≤ 1 and v ∈ tA,
because the infimum is attained when NA(v) = 1. As before, this implies that
v ∈ A, because A is balanced in V . Hence

A = BNA
(0, 1)(1.14.16)

in this situation.
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1.15 Balanced subgroups

Let k be a field with an absolute value function | · | again, and let V be a vector
space over k. Let us say that E ⊆ V is a balanced subgroup of V if E is balanced
as a subset of V , as in the previous section, and E is a subgroup of V as a
commutative group with respect to addition. If E ⊆ V is a nonempty balanced
subset of V , then 0 ∈ E and −E = E. If we also have that

v + w ∈ E(1.15.1)

for every v, w ∈ E, then it follows that E is a balanced subgroup of V .
Let N be a semi-ultranorm on V with respect to |· | on k. Note that BN (0, r)

in (1.14.8) is the same as the open ball in V centered at 0 with radius r > 0
with respect to the semi-ultrametric associated to N , and that (1.14.9) is the
same as the closed ball in V centered at 0 with radius r ≥ 0 with respect to the
semi-ultrametric associated to N . It is easy to see that BN (0, r) is a balanced
subgroup in V for every r > 0, and that BN (0, r) is a balanced subgroup for
every r ≥ 0. More precisely, (1.15.1) holds in both cases, by the semi-ultranorm
version of the triangle inequality.

Of course, linear subspaces of V are balanced subgroups of V . If | · | is
archimedean on k, then one can check that any balanced subgroup E of V is
linear subspace of V . This uses the fact that for each v ∈ E and positive integer
n, the sum of n v’s in V is an element of E. If | · | is the trivial absolute value
function on k, then balanced subgroups of V are linear subspaces again.

If E is a balanced subgroup in V , and if the linear span of E in V is equal to
V , then E is absorbing in V . More precisely, if | · | is the trivial absolute value
function on E, then E is a linear subspace of V , and hence E = V . Otherwise,
suppose that | · | is not the trivial absolute value function on k, and let v ∈ V
be given. Thus v can be expressed as a linear combination of elements of E, by
hypothesis. This implies that t v ∈ E when t ∈ k and |t| is sufficiently small,
because E is a balanced subgroup of V .

Let us continue to suppose that | · | is not the trivial absolute value function
on k. Let A is a balanced subgroup of V that is also absorbing in V , and let
NA be as in (1.14.12). We would like to check that NA is a semi-ultranorm
on V with respect to | · | on k. We have already seen that NA satisfies the
homogeneity condition (1.14.13), and so it is enough to show that NA satisfies
the semi-ultranorm version of the triangle inequality. Let v, w ∈ V be given,
and let r be a positive real number such that

NA(v), NA(w) < r.(1.15.2)

This implies that there are nonzero elements t1(v), t1(w) of k such that

|t1(v)|, |t1(w)| < r(1.15.3)

and
v ∈ t1(v)A, w ∈ t1(w)A,(1.15.4)
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by the definition (1.14.12) of NA. Let us take t1 to be equal to t1(v) or t1(w),
in such a way that

|t1| = max(|t1(v)|, |t1(w)|).(1.15.5)

Thus t1(v)A, t1(w)A ⊆ t1A, because A is balanced. This implies that v and w
are both elements of t1A, by (1.15.4). It follows that

v + w ∈ t1A,(1.15.6)

because A is a subgroup of V with respect to addition. This means that

NA(v + w) ≤ |t1|,(1.15.7)

by the definition (1.14.12) of NA. Hence NA(v+w) < r, by (1.15.3) and (1.15.5).
This shows that

NA(v + w) ≤ max(NA(v), NA(w)),(1.15.8)

since r is any positive real number that satisfies (1.15.2).



Chapter 2

Some basic notions related
to Lie algebras

2.1 Modules and homomorphisms

Let k be a commutative ring with a multiplicative identity element 1 = 1k, and
let A be a commutative group, for which the group operations are expressed
additively. Suppose that scalar multiplication on A by elements of k is defined,
so that t a is defined as an element of A for every t ∈ k and a ∈ A. If scalar
multiplication satisfies the usual compatibility conditions with the group oper-
ations on A and the ring operations on k, then A is said to be a module over k.
If k is a field, then a module over k is the same as a vector space over k. Any
abelian group may be considered as a module over Z, where na is the sum of n
a’s in A for each a ∈ A and n ∈ Z+.

Let k be a commutative ring with a multiplicative identity element again,
and let A be a module over k. A submodule of A is a subgroup A0 of A with
respect to addition that is invariant under scalar multiplication by k. If k is a
field, then this is the same as a linear subspace.

Let k be a field with an ultrametric absolute value function | · |, and let k1
be the closed unit ball in k with respect to | · |. Thus k1 is a subring of k that
contains the multiplicative identity element in particular, as in Section 1.7. Let
V be a vector space over k, which may be considered as a module over k1 as
well. In this situation, a submodule of V as a module over k1 is the same as a
balanced subgroup of V , as in Section 1.15.

Let k be a commutative ring with a multiplicative identity element, and let
B be a module over k. If X is a nonempty set, then the space of all functions
on X with values in B is a module over k, with respect to pointwise addition
and scalar multiplication of the functions on X.

Let A be another module over k. A mapping ϕ from A into B is said to be a
module homomorphism if ϕ is a group homomorphism with respect to addition
that is also compatible with scalar multiplication by elements of k. One may

26
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say that ϕ is linear over k or k-linear in this case as well. If k is a field, then
this is the same as a linear mapping between vector spaces.

The collection of all module homomorphisms from A into B may be denoted
Hom(A,B), or Homk(A,B), to indicate the role of k. This is a module over k
too, with respect to pointwise addition and scalar multiplication of mappings
from A into B. More precisely, Hom(A,B) may be considered as a submodule
of the module of all B-valued functions on A.

Let C be another module over k. If ϕ is a module homomorphism from A
into B, and ψ is a module homomorphism from B into C, then their composition
ψ ◦ ϕ defines a module homomorphism from A into C.

If ϕ is a one-to-one module homomorphism from A onto B, then the inverse
mapping ϕ−1 is a module homomorphism from B onto A. In this case, ϕ is
said to be a module isomorphism from A onto B. If ϕ is a module isomorphism
from A onto B, and ψ is a module isomorphism from B onto C, then ψ ◦ ϕ is a
module isomorphism from A onto C.

A mapping β from A × B into C is said to be bilinear over k if β(a, b) is
linear over k in a as a mapping from A into C for every b ∈ B, and β(a, b) is
linear over k in b as a mapping from B into C for every a ∈ A. If k is a field,
then this is the same as the usual notion of bilinearity for a mapping from a
product of vector spaces over k into another vector space over k.

In particular, we can take A = B, so that β is a bilinear mapping from A×A
into C. If

β(b, a) = β(a, b)(2.1.1)

for every a, b ∈ A, then β is said to be symmetric on A×A. Similarly, if

β(b, a) = −β(a, b)(2.1.2)

for every a, b ∈ A, then β is said to be antisymmetric on A×A. However, it is
sometimes better to ask that

β(a, a) = 0(2.1.3)

for every a ∈ A. Of course,

β(a+ b, a+ b) = β(a, a) + β(a, b) + β(b, a) + β(b, b)(2.1.4)

for every a, b ∈ A, because of bilinearity. It is easy to see that (2.1.3) implies
(2.1.2), using (2.1.4). If 1 + 1 has a multiplicative inverse in k, then (2.1.2)
implies (2.1.3). If 1 + 1 = 0 in k, then (2.1.1) and (2.1.2) are the same.

2.2 Algebras

Let k be a commutative ring with a multiplicative identity element, and let A
be a module over k. If A is equipped with a mapping from A × A into A that
is bilinear over k, then A is said to be an algebra over k. In this case, we may
also say that A is an algebra over k in the strict sense. The bilinear mapping
may be expressed as

(a, b) 7→ a b,(2.2.1)
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and we may refer to a b as the product of a, b ∈ A. If this bilinear mapping is
symmetric, so that

a b = b a(2.2.2)

for every a, b ∈ A, then we may say that A is commutative.
Let A be an algebra over k. If the associative law

(a b) c = a (b c)(2.2.3)

holds for every a, b, c ∈ A, then A is said to be an associative algebra over k.
This is sometimes included in the definition of an algebra, and we do consider
associativity to be part of the definition of a ring here.

Let A be an algebra over k in the strict sense. An element e of A is said to
be the multiplicative identity element in A if

e a = a e = a(2.2.4)

for every a ∈ A. It is easy to see that this is unique when it exists.
Let A be any module over k, so that the space Homk(A,A) of module ho-

momorphisms from A into itself is a module over k too. One can check that
Homk(A,A) is an associative algebra over k, with composition of mappings as
multiplication. The identity mapping on A is the multiplicative identity element
in Homk(A,A).

Let A be an algebra over k in the strict sense, and let A0 be a submodule of
A, as a module over k. If, for every a, b ∈ A0, we have that a b ∈ A0, then A0

is said to be a subalgebra of A. In this case, A0 is also an algebra over k in the
strict sense, with respect to the restriction of multiplication on A to A0. If A is
an associative algebra, then A0 is associative as well.

Let A and B be algebras over k in the strict sense, so that A and B are
modules over k in particular. Also let ϕ be a module homomorphism from A
into B. If

ϕ(a1 a2) = ϕ(a1)ϕ(a2)(2.2.5)

for every a1, a2 ∈ A, then one may say that ϕ is an algebra homomorphism
from A into B. If A and B have multiplicative identity elements eA and eB ,
respectively, then one may require that

ϕ(eA) = eB(2.2.6)

too. If ϕ is a one-to-one algebra homomorphism from A onto B, then the inverse
mapping ϕ−1 is an algebra homomorphism from B onto A, and ϕ is said to be
an algebra isomorphism from A onto B. In this case, if A has a multiplicative
identity element eA, then ϕ(eA) is the multiplicative identity element in B. An
algebra isomorphism from A onto itself is called an algebra automorphism of A.

Let A be an algebra over k in the strict sense again. If a ∈ A, then put

Ma(x) = a x(2.2.7)
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for every x ∈ A. Note that Ma defines a module homomorphism from A into
itself for every a ∈ A, because of bilinearity of multiplication on A. Thus

a 7→Ma(2.2.8)

may be considered as a mapping from A into the space Homk(A,A) of module
homomorphisms from A into itself. More precisely, (2.2.8) is a module homo-
morphism from A into Homk(A,A) as modules over k, because multiplication
on A is bilinear.

Suppose for the moment that A has a multiplicative identity element e. In
this case, Me is the identity mapping on A. We also get that

Ma(e) = a e = a(2.2.9)

for every a ∈ A, which implies that (2.2.8) is injective.
If a, b, x ∈ A, then

Ma(Mb(x)) =Ma(b x) = a (b x)(2.2.10)

and

Ma b(x) = (a b)x.(2.2.11)

If A is an associative algebra, then it follows that

Ma ◦Mb =Ma b,(2.2.12)

as mappings from A into itself. This means that (2.2.8) is an algebra homo-
morphism from A into Homk(A,A), using composition as multiplication on the
space Homk(A,A) of module homomorphisms from A into itself, as before.

2.3 Lie algebras

Let k be a commutative ring with a multiplicative identity element again, and
let A be a module over k. Also let [x, y] be a mapping from A×A into A that
is bilinear over k. Suppose that

[x, x] = 0(2.3.1)

for every x ∈ A. This implies that

[y, x] = −[x, y](2.3.2)

for every x, y ∈ A, as in Section 2.1. If 1 + 1 has a multiplicative inverse in k,
then (2.3.2) implies (2.3.1), as before.

The Jacobi identity may be formulated as saying that

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0(2.3.3)
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for every x, y, z ∈ A. Alternatively, the Jacobi identity may be expressed as
saying that

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0(2.3.4)

for every x, y, z ∈ A. It is easy to see that (2.3.3) is equivalent to (2.3.4), if
we have (2.3.2). If [x, y] is a bilinear mapping from A× A into A that satisfies
(2.3.1) and either (2.3.3) or (2.3.4), then A is said to be a Lie algebra over k
with respect to the Lie bracket [x, y]. In particular, A may be considered as an
algebra over k in the strict sense, using [x, y] as multiplication on A.

If

[x, y] = 0(2.3.5)

for every x, y ∈ A, then A is said to be commutative as a Lie algebra. Com-
mutativity of A as an algebra over k in the strict sense with respect to [x, y]
means that [x, y] is symmetric in x and y, as in the previous section. If 1 + 1 is
invertible in k, then commutativity of A as an algebra in the strict sense implies
that A is commutative as a Lie algebra, because of (2.3.2). However, if 1+1 = 0
in k, then any Lie algebra over k is commutative as an algebra over k in the
strict sense.

Let A be any algebra over k in the strict sense, where multiplication on A
is expressed as in (2.2.1). Put

[x, y] = x y − y x(2.3.6)

for every x, y ∈ A, which defines a mapping from A× A into A. This mapping
is bilinear over k, because multiplication on A is bilinear, by hypothesis. Of
course, (2.3.6) satisfies (2.3.1) automatically. If A is associative with respect to
the given operation of multiplication, then one can verify that (2.3.6) satisfies
either of the Jacobi identities (2.3.3) or (2.3.4), so that A is a Lie algebra with
respect to (2.3.6).

Let (A, [x, y]) be a Lie algebra over k, and let A0 be a submodule of A, as
a module over k. As in the previous section, A0 is said to be a subalgebra of
A if [x, y] ∈ A0 for every x, y ∈ A0. In this situation, A0 is a Lie algebra over
k with respect to the restriction of [x, y] to x, y ∈ A0. One may also refer to
A0 as a Lie subalgebra of A. If A is an associative algebra over k, and A0 is
a subalgebra of A, then A0 is also a Lie subalgebra of A as a Lie algebra with
respect to (2.3.6).

Let (A, [·, ·]A) and (B, [·, ·]B) be Lie algebras over k. Thus A and B are
modules over k in particular, and we let ϕ be a module homomorphism from A
into B. If

ϕ([x, y]A) = [ϕ(x), ϕ(y)]B(2.3.7)

for every x, y ∈ A, then ϕ is said to be a Lie algebra homomorphism from A into
B. Remember that A and B may be considered as algebras over k in the strict
sense, using [·, ·]A and [·, ·]B as multiplication on A and B, respectively. A Lie
algebra homomorphism from A into B is the same as an algebra homomorphism
from A into B, as algebras over k in the strict sense, as in the previous section.
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Let A and B be algebras over k in the strict sense, with multiplication
expressed as in (2.2.1), and let ϕ be an algebra homomorphism from A into B.
Also let [·, ·]A and [·, ·]B be the corresponding commutators on A and B, as in
(2.3.6). If x, y ∈ A, then

ϕ([x, y]A) = ϕ(x y − y x) = ϕ(x)ϕ(y)− ϕ(y)ϕ(x) = [ϕ(x), ϕ(y)]B .(2.3.8)

This means that ϕ may be considered as an algebra homomorphism from A into
B, using [·, ·]A and [·, ·]B as the algebra operations on A and B, respectively.
If A and B are associative algebras with respect to their given operations of
multiplication, then A and B are Lie algebras with respect to [·, ·]A and [·, ·]B ,
respectively, as before, and ϕ may be considered as a Lie algebra homomorphism
from A into B with respect to these Lie brackets.

2.4 The adjoint representation

Let k be a commutative ring with a multiplicative identity element, and let
(A, [x, y]A) be a Lie algebra over k. If x ∈ A, then let adx be the mapping from
A into itself defined by

(adx)(y) = [x, y]A(2.4.1)

for every y ∈ A. This is the same as the multiplication operator on A corre-
sponding to x, as in Section 2.2, using the Lie bracket on A as multiplication.
In particular, adx is a module homomorphism from A into itself, as a module
over k, because [x, y]A is linear over k in y. Thus

x 7→ adx(2.4.2)

defines a mapping from A into the space Homk(A,A) of module homomor-
phisms from A into itself. Remember that Homk(A,A) is a module over k with
respect to pointwise addition and scalar multiplication of mappings from A into
itself. As before, (2.4.2) is a module homomorphism from A into Homk(A,A)
as modules over k, because [x, y]A is linear in x over k.

If ϕ, ψ ∈ Homk(A,A), then put

[ϕ, ψ] = [ϕ, ψ]Homk(A,A) = ϕ ◦ ψ − ψ ◦ ϕ,(2.4.3)

which is an element of Homk(A,A) too. Of course, Homk(A,A) is a Lie algebra
over k with respect to (2.4.3), because Homk(A,A) is an associative algebra
over k with respect to composition of mappings. It is well known that (2.4.2) is
a Lie algebra homomorphism from A into Homk(A,A), with respect to (2.4.3)
on Homk(A,A). To see this, let x, y, z ∈ A be given, and observe that

([adx, ad y])(z) = (adx)((ad y)(z))− (ad y)((adx)(z))(2.4.4)

= (adx)([y, z]A)− (ad y)([x, z]A)

= [x, [y, z]A]A − [y, [x, z]A]A

= [x, [y, z]A]A + [y, [z, x]A]A.
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This uses the fact that [x, z]A = −[z, x]A, as in (2.3.2), in the last step. We also
have that

(ad[x, y]A)(z) = [[x, y]A, z]A = −[z, [x, y]A]A,(2.4.5)

using (2.3.2) in the second step. The Jacobi identity (2.3.4) says exactly that
the right sides of (2.4.4) and (2.4.5) are equal to each other. Thus

(ad[x, y]A)(z) = ([adx, ad y])(z)(2.4.6)

for every z ∈ A, so that
ad[x, y]A = [adx, ad y](2.4.7)

as mappings from A into itself.

2.5 Derivations

Let k be a commutative ring with a multiplicative identity element, and let
A be an algebra over k in the strict sense, where multiplication of a, b ∈ A is
expressed as a b. Also let δ be a module homomorphism from A into itself, as a
module over k. If δ satisfies the product rule

δ(a b) = δ(a) b+ a δ(b)(2.5.1)

for every a, b ∈ A, then δ is said to be a derivation on A. Let Der(A) be the
collection of derivations on A. Remember that the space Homk(A,A) of all
module homomorphisms from A into itself is a module over k with respect to
pointwise addition and scalar multiplication of mappings on A. It is easy to see
that Der(A) is a submodule of Homk(A,A), as a module over k. We also have
that Homk(A,A) is an associative algebra over k, with respect to composition
of mappings. This implies that Homk(A,A) is a Lie algebra over k with respect
to the corresponding commutator bracket. It is well known that Der(A) is a Lie
subalgebra of Homk(A,A) with respect to the commutator bracket.

More precisely, let δ, δ′ ∈ Der(A) and a, b ∈ A be given. Thus the commu-
tator

[δ, δ′] = δ ◦ δ′ − δ′ ◦ δ(2.5.2)

of δ and δ′ is defined as a module homomorphism from A into itself. Observe
that

([δ, δ′])(a b) = δ(δ′(a b))− δ′(δ(a b))(2.5.3)

= δ(δ′(a) b+ a δ′(b))− δ′(δ(a) b+ a δ(b))

= δ(δ′(a)) b+ δ′(a) δ(b) + δ(a) δ′(b) + a δ(δ′(b))

−δ′(δ(a)) b− δ(a) δ′(b)− δ′(a) δ(b)− a δ′(δ(b)).

The middle pair of terms in the last two lines cancel each other, so that

([δ, δ′])(a b) = δ(δ′(a)) b+ a δ(δ′(b))− δ′(δ(a)) b− a δ′(δ(b))(2.5.4)

= ([δ, δ′])(a) b+ a ([δ, δ′])(b),
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as desired.
Let a ∈ A be given, and put

δa(x) = a x− x a(2.5.5)

for every x ∈ A. Of course, the right side of (2.5.5) is the same as the commu-
tator bracket corresponding to multiplication on A. Note that δa is a module
homomorphism from A into itself, because of bilinearity over k of multiplication
on A. Similarly,

a 7→ δa(2.5.6)

is a module homomorphism from A into Homk(A,A), as modules over k. If A
is an associative algebra over k and x, y ∈ A, then

δa(x y) = a (x y)− (x y) a(2.5.7)

= (a x) y − x (y a)

= (a x) y − (x a) y + x (a y)− x (y a)

= δa(x) y + x δa(y),

so that δa ∈ Der(A).
Suppose now that (A, [·, ·]A) is a Lie algebra over k. Let δ be a module

homomorphism from A into itself, as a module over k. In this situation, the
product rule says that

δ([a, b]A) = [δ(a), b]A + [a, δ(b)]A(2.5.8)

for every a, b ∈ A. Thus δ ∈ Der(A) when this holds. Let x ∈ A be given, and
let us verify that adx = [x, ·]A ∈ Der(A). If y, z ∈ A, then

(adx)([y, z]A) = [x, [y, z]A]A = −[y, [z, x]A]A − [z, [x, y]A]A,(2.5.9)

using the Jacobi identity in the second step. It follows that

(adx)([y, z]A) = [[x, y]A, z]A + [y, [x, z]A]A(2.5.10)

= [(adx)(y), z]A + [y, (adx)(z)]A,

as desired.
Let A be an algebra over k in the strict sense again, where the product of

a, b ∈ A is denoted a b. If x, y ∈ A, then let [x, y] = x y − y x be the usual
commutator bracket corresponding to multiplication in A. Let δ ∈ Der(A) be
given, and observe that

δ([x, y]) = δ(x y − y x) = δ(x) y + x δ(y)− δ(y)x− y δ(x)(2.5.11)

= [δ(x), y] + [x, δ(y)]

for every x, y ∈ A. Of course, we can also consider A as an algebra over k in the
strict sense with respect to [x, y]. It follows from (2.5.11) that δ is a derivation
on A with respect to [x, y] as well.
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2.6 Involutions

Let k be a commutative ring with a multiplicative identity element, and let A,
B be algebras over k in the strict sense, where multiplication of x, y is expressed
as x y. In particular, A and B are modules over k, and we let ϕ be a module
homomorphism from A into B. If

ϕ(a1 a2) = ϕ(a2)ϕ(a1)(2.6.1)

for every a1, a2 ∈ A, then one may say that ϕ is an opposite algebra homo-
morphism from A into B. Of course, this is the same as an ordinary algebra
homomorphism when A or B is commutative. If A and B have multiplicative
identity elements eA and eB , respectively, then one may also ask that

ϕ(eA) = eB .(2.6.2)

If ϕ is a one-to-one opposite algebra homomorphism from A onto B, then ϕ−1

is an opposite algebra homomorphism from B onto A, and ϕ is said to be an
opposite algebra isomorphism from A onto B. In this case, if A has a multiplica-
tive identity element eA, then it is easy to see that ϕ(eA) is the multiplicative
identity element in B. An opposite algebra automorphism on A is an oppposite
algebra isomorphism from A onto itself.

Let [a1, a2]A = a1 a2−a2 a1 and [b1, b2]B = b1 b2−b2 b1 be the corresponding
commutator brackets on A and B. If ϕ is an opposite algebra homomorphism
from A into B and a1, a2 ∈ A, then

ϕ([a1, a2]A) = ϕ(a1 a2 − a2 a1) = ϕ(a2)ϕ(a1)− ϕ(a1)ϕ(a2)(2.6.3)

= −[ϕ(a1), ϕ(a2)]B .

An opposite algebra homomorphism x 7→ x∗ from A into itself is said to be
an (algebra) involution on A if

(x∗)∗ = x(2.6.4)

for every x ∈ A. This implies that x 7→ x∗ is a one-to-one mapping from A onto
itself, which is its own inverse mapping.

Let x 7→ x∗ be an opposite algebra automorphism on A. An element a of A
is said to be self-adjoint with respect to x 7→ x∗ if

a∗ = a,(2.6.5)

and a is said to be anti-self-adjoint with respect to x 7→ x∗ if

a∗ = −a.(2.6.6)

The collections of self-adjoint and anti-self-ajoint elements of A are submodules
of A, as a module over k. If 1 + 1 = 0 in k, then self-adjointness and anti-self-
adjointness are the same. If 1+1 is invertible in k and a ∈ A is both self-adjoint
and anti-self-adjoint, then a = 0.



2.6. INVOLUTIONS 35

Suppose that x 7→ x∗ is an algebra involution on A. If a is any element of
A, then

a+ a∗(2.6.7)

is self-adjoint with respect to x 7→ x∗, and

a− a∗(2.6.8)

is anti-self-adjoint with respect to x 7→ x∗. If 1 + 1 = 0 in k, then (2.6.7) and
(2.6.8) are the same. If 1 + 1 is invertible in k, then every element of A can be
expressed as the sum of self-adjoint and anti-self-adjoint elements of A, using
(2.6.7) and (2.6.8). This expression is unique in this case, because 0 is the only
element of A that is both self-adjoint and anti-self-adjoint.

Let a, b ∈ A be given, and let [a, b] = a b − b a be their usual commutator
in A. If x 7→ x∗ is an opposite algebra automorphism on A, and a, b are
anti-self-adjoint with respect to x 7→ x∗, then

([a, b])∗ = −[a∗, b∗] = −[−a,−b] = −[a, b],(2.6.9)

using (2.6.3) in the first step. Thus [a, b] is anti-self-adjoint as well.

Suppose now that k is the field C of complex numbers, and that A and B
are algebras in the strict sense over C. A conjugate-linear mapping ϕ from A
into B is said to be a conjugate-linear algebra homomorphism if it preserves
products as in (2.2.5), and ϕ is said to be a conjugate-linear opposite algebra
homomorphism if it satisfies (2.6.1). If A and B are considered as algebras over
the real numbers, then ϕ may be considered as a real-linear algebra homomor-
phism or opposite algebra homomorphism from A into B, as appropriate. If ϕ is
a one-to-one conjugate-linear algebra homomorphism or opposite algebra homo-
morphism from A onto B, then ϕ−1 is a conjugate-linear algebra homomorphism
or opposite algebra homomorphism from B onto A, as appropriate, and ϕ is said
to be a conjugate-linear algebra isomorphism or opposite algebra isomorphism
from A onto B, as appropriate. In particular, if A = B, then ϕ is said to be a
conjugate-linear algebra automorphism or opposite algebra automorphism on A,
as appropriate.

A conjugate-linear algebra homomorphism x 7→ x∗ from A into itself is said
to be a conjugate-linear (algebra) involution on A if it satisfies (2.6.4) for every
x ∈ A. In this case, x 7→ x∗ is a conjugate-linear opposite algebra automorphism
on A, as before. Suppose that x 7→ x∗ is a conjugate-linear opposite algebra
automorphism on A, which may be considered as a real-linear opposite algebra
automorphism of A as an algebra over R. In particular, A may be considered
as a vector space over R, and the collections of self-adjoint and anti-self-adjoint
elements of A are real-linear subspaces of A, which is to say that they are linear
subspaces of A as a vector space over R. In this situation, the anti-self-adjoint
elements of A are exactly those that can be expressed as i times a self-adjoint
element of A.
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2.7 More on multiplication operators

Let k be a commutative ring with a multiplicative identity element, and let A
be an algebra over k in the strict sense again, where multiplication of a, b ∈ A
is expressed as a b. If a ∈ A, then

Ma(x) = a x(2.7.1)

defines a module homomorphism from A into itself, as in Section 2.2. This is
the operator of left multiplication by a on A. Similarly,

M̃a(x) = x a(2.7.2)

defines a module homomorphism from A into itself, which is the operator of
right multiplication by a on A. Of course, if A is commutative, then (2.7.1) and
(2.7.2) are the same.

As before,
a 7→ M̃a(2.7.3)

defines a mapping from A into the space Homk(A,A) of all homomorphisms
from A into itself, as a module over k. Bilinearity of multiplication on A implies
that (2.7.3) is a module homomorphism from A into Homk(A,A), as modules

over k. If A has a multiplicative identity element e, then M̃e is the identity
mapping on A. We also have that

M̃a(e) = e a = a(2.7.4)

for every a ∈ A in this case, so that (2.7.3) is injective.
Observe that

M̃a(M̃b(x)) = M̃a(x b) = (x b) a(2.7.5)

and
M̃b a(x) = x (b a)(2.7.6)

for every a, b, x ∈ A. If A is an associative algebra, then we get that

M̃a ◦ M̃b = M̃b a(2.7.7)

for every a, b ∈ A, as mappings from A into itself. This implies that (2.7.3) is an
opposite algebra homomorphism from A into Homk(A,A), using composition of
mappings as multiplication on Homk(A,A), as usual.

Let [x, y] = x y − y x be the usual commutator of x, y ∈ A. If A is an
associative algebra, then it follows that

M̃[a,b] = M̃a b−b a = M̃a b − M̃b a = M̃b ◦ M̃a − M̃a ◦ M̃b(2.7.8)

for every a, b ∈ A. Similarly,

M[a,b] =Ma b−b a =Ma b −Mb a =Ma ◦Mb −Mb ◦Ma(2.7.9)
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for every a, b ∈ A in this situation, using (2.2.12) in the third step. If a, b, x ∈ A,
then

Ma(M̃b(x)) =Ma(x b) = a (x b)(2.7.10)

and

M̃b(Ma(x)) = M̃b(a x) = (a x) b.(2.7.11)

These are the same when A is an associative algebra, in which case

Ma ◦ M̃b = M̃b ◦Ma(2.7.12)

for every a, b ∈ A.
If a ∈ A, then let ad a be the mapping from A into itself defined by

(ad a)(x) = [a, x] = a x− x a =Ma(x)− M̃a(x)(2.7.13)

for every x ∈ A. Equivalently,

ad a =Ma − M̃a,(2.7.14)

which is a module homomorphism from A into itself, as a module over k. We
also have that

a 7→ ad a(2.7.15)

is a module homomorphism from A into Homk(A,A), as modules over k. If A
is an associative algebra, then

ad[a, b] = [ad a, ad b] = (ad a) ◦ (ad b)− (ad b) ◦ (ad a)(2.7.16)

for every a, b ∈ A, as mappings from A into itself. More precisely, if A is an
associative algebra over k, then A is also a Lie algebra over k with respect to the
commutator bracket [x, y]. Thus (2.7.16) follows from the analogous statement
for Lie algebras. Alternatively, one can use (2.7.14) to reduce to the properties

(2.7.8), (2.7.9), and (2.7.12) of the multiplication operators Ma and M̃a.

2.8 Matrices

Let k be a commutative ring with a multiplicative identity element, and let
A be a module over k. If n ∈ Z+, then we let Mn(A) be the space of n × n
matrices with entries in A. An element of Mn(A) may be given as a = (aj,l),
where aj,l ∈ A for every j, l = 1, . . . , n. It is easy to see that Mn(A) is also a
module over k, with respect to entrywise addition and scalar multiplication.

Suppose that A is an algebra over k in the strict sense, where multiplication
of x, y ∈ A is expressed as x y. If a, b ∈ Mn(A), then their product c = a b is
defined as usual by

cj,r =

n∑
l=1

aj,l bl,r(2.8.1)
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for every j, r = 1, . . . , n. It is easy to see that this is bilinear in a and b over k,
so that Mn(A) is an algebra in the strict sense over k with respect to matrix
multiplication. If A is an associative algebra over k, then Mn(A) is associative
with respect to matrix multiplication.

Suppose for the moment that A has a multiplicative identity element e. The
identity matrix I = In in Mn(A) is the n×n matrix whose diagonal entries are
equal to e, and whose other entries are equal to 0. This is the multiplicative
identity element in Mn(A).

If a = (aj,l) ∈ Mn(A), then the transpose at = (atj,l) ∈ Mn(A) is defined as
usual by

atj,l = al,j(2.8.2)

for every j, l = 1, . . . , n. Note that the mapping a 7→ at from a matrix to its
transpose defines a module homomorphism from Mn(A) into itself, which is to
say that it is linear over k. Let x 7→ x∗ be an opposite algebra automorphism
on A, as in Section 2.6. If a = (aj,l) ∈ Mn(A), then let a∗ = ((a∗)j,l) ∈ Mn(A)
be defined by

(a∗)j,l = (al,j)
∗(2.8.3)

for every j, l = 1, . . . , n, which is to say that we apply x 7→ x∗ to the entries
of the transpose at of a. One can check that this defines an opposite algebra
automorphism on Mn(A), and an involution on Mn(A) when x 7→ x∗ is an
involution on A.

If A is a commutative algebra, then the identity mapping on A defines an
algebra involution on A. In this case, a∗ reduces to the transpose at of A.

Suppose now that k is the field C of complex numbers. Let x 7→ x∗ be
a conjugate-linear opposite algebra automorphism on A, as in Section 2.6. In
this situation, a 7→ a∗ is a conjugate-linear opposite algebra automorphism
on Mn(A), and a conjugate-linear involution on Mn(A) when x 7→ x∗ is a
conjugate-linear involution on A.

In particular, we can take A = C, as a commutative algebra over itself. Of
course, complex-conjugation may be considered as a conjugate-linear involution
on C. If a = (aj,l) ∈Mn(C), then let a∗ = ((a∗)j,l) ∈Mn(C) be defined by

(a∗)j,l = al,j(2.8.4)

for every j, l = 1, . . . , n, which is the same as the complex-conjugate of the
entries of the transpose at of a. This defines a conjugate-linear involution on
Mn(C), as before.

2.9 Traces of matrices

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. If A is a module over k, then Mn(A) is a module over k
as well, with respect to entrywise addition and scalar multiplication, as in the
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previous section. If a = (aj,l) ∈ Mn(A), then the trace of a is defined as an
element of A as usual by

tr a =

n∑
j=1

aj,j .(2.9.1)

It is easy to see that this defines a homomorphism from Mn(A) into A, as
modules over k. We also have that

tr at = tr a(2.9.2)

for every a ∈ Mn(A), where the transpose at of a is defined as in the previous
section.

Suppose that A is an algebra over k in the strict sense, where multiplication
of x, y ∈ A is expressed as x y. If a, b ∈ Mn(A), then the products a b and b a
are defined as elements of Mn(A) as in the previous section. Observe that

tr(a b) =

n∑
j=1

aj,l bl,j(2.9.3)

and

tr(b a) =

n∑
j=1

bl,j aj,l.(2.9.4)

If A is a commutative algebra over k, then we get that

tr(a b) = tr(b a)(2.9.5)

for every a, b ∈Mn(A). Equivalently, this means that

tr(a b− b a) = 0(2.9.6)

for every a, b ∈Mn(A).
The nth general linear algebra gln(A) with entries in A is defined as an

algebra over k in the following way. As a module over k, gln(A) is the same as
Mn(A). We use the commutator [a, b] = a b − b a as the bilinear operation on
gln(A), where the products a b and b a are as defined in the previous section.
This makes gln(A) into an algebra over k in the strict sense. If A is an associative
algebra over k, then Mn(A) is an associative algebra over k too, so that gln(A)
is a Lie algebra over k.

Put
sln(A) = {a ∈ gln(A) : tr a = 0},(2.9.7)

which defines a submodule of gln(A) as a module over k, or equivalently a
submodule of Mn(A). If A is a commutative algebra over k, then

[a, b] ∈ sln(A)(2.9.8)

for every a, b ∈ gln(A), as in (2.9.6). In particular, this means that sln(A) is a
subalgebra of gln(A) with respect to the commutator [a, b] when A is commuta-
tive. In this case, sln(A) is called the nth special linear algebra with entries in
A. If A is a commutative associative algebra over k, then sln(A) is a Lie algebra
over k with respect to [a, b].
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2.10 Vector spaces and linear mappings

Let k be a field. If V and W are vector spaces over k, then the space L(V,W )
of linear mappings from V into W is a vector space over k with respect to
pointwise addition and scalar multiplication. This is the same as the space
Homk(V,W ) of module homomorphisms from V into W , where V and W are
considered as modules over k. Similarly, if V is a vector space over k, then the
space L(V ) = L(V, V ) of linear mappings from V into itself is an associative
algebra over k with respect composition of mappings.

The general linear algebra gl(V ) associated to a vector space V over k is
defined as a Lie algebra over k in the following way. As a vector space over k,
gl(V ) is the same as L(V ). If T1 and T2 are linear mappings from V into itself,
then their commutator

[T1, T2] = T1 ◦ T2 − T2 ◦ T1(2.10.1)

defines a linear mapping from V into itself as well. This defines a bilinear
operation on gl(V ), which we use to define the Lie bracket on gl(V ). This
satisfies the requirements of a Lie algebra, because L(V ) is an associative algebra
over k with respect to composition of linear mappings.

Suppose that V is a finite-dimensional vector space over k, with dimension
n ≥ 1. Let v1, . . . , vn be a basis for V , as a vector space over k. Thus every
v ∈ V can be expressed in a unique way as

v =

n∑
l=1

tl vl,(2.10.2)

where t1, . . . , tn ∈ k. Let a = (aj,l) be an n × n matrix with entries in k. If
v ∈ V is as in (2.10.2), then put

Ta(v) =

n∑
j=1

( n∑
l=1

aj,l tl

)
vj ,(2.10.3)

which defines an element of V . Of course, Ta is a linear mapping from V into
itself, and

a 7→ Ta(2.10.4)

is a linear mapping from Mn(k) into L(V ). More precisely, (2.10.4) is a one-to-
one mapping from Mn(k) onto L(V ), and

Ta ◦ Tb = Ta b(2.10.5)

for every a, b ∈ Mn(k). This means that (2.10.4) is an algebra isomorphism
from Mn(k) onto L(V ), with respect to matrix multiplication on Mn(k), and
composition of linear mappings on V . It follows that (2.10.4) is also a Lie
algebra isomorphism from gln(k) onto gl(V ), with respect to their corresponding
commutator brackets.
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If a = (aj,l) ∈Mn(k), then the trace of Ta is defined as an element of k by

trTa = tr a =

n∑
j=1

aj,j ,(2.10.6)

where tr a refers to the trace of a as a matrix, as in the previous section. This
defines the trace trT of every linear mapping T from V into itself, by the
remarks in the preceding paragraph. Note that the trace is a linear mapping
from L(V ) into k. If T1, T2 ∈ L(V ), then

tr(T1 ◦ T2) = tr(T2 ◦ T1),(2.10.7)

by (2.9.5) and (2.10.5). It is well known that the trace of T ∈ L(V ) does not
depend on the choice of basis v1, . . . , vn for V , because of (2.9.5) or (2.10.7).

Put
sl(V ) = {T ∈ gl(V ) : trT = 0},(2.10.8)

which is a linear subspace of gl(V ), or equivalently of L(V ). If T1, T2 ∈ gl(V ),
then

tr[T1, T2] = 0,(2.10.9)

by (2.10.7), and hence
[T1, T2] ∈ sl(V ).(2.10.10)

by (2.10.9). In particular, sl(V ) is a subalgebra of gl(V ) as a Lie algebra with
respect to the commutator bracket. This is the special linear algebra associated
to V . The mapping (2.10.4) defines a Lie algebra isomorphism from sln(k) onto
sl(V ).

2.11 Ideals and quotients

Let k be a commutative ring with a multiplicative identity element. If A and B
are modules over k and ϕ is a module homomorphism from A into B, then the
kernel of ϕ is the set of a ∈ A such that ϕ(a) = 0, as usual. Of course, this is a
submodule of A.

If A is a module over k, and A0 is a submodule of A, then the quotient
A/A0 can be defined as a module over k in the usual way. More precisely, one
can consider the quotient A/A0 initially as a commutative group with respect
to addition, and check that scalar multiplication on A/A0 by elements of k can
be defined in a natural way. The corresponding quotient mapping is a module
homomorphism from A onto A/A0, with kernel equal to A0.

Let A be an algebra over k in the strict sense, where multiplication of a, b ∈ A
is expressed as a b. Also let A0 be a submodule of A, as a module over k. If

a b ∈ A0(2.11.1)

for every a ∈ A and b ∈ A0, then A0 is said to be a left ideal in A. Similarly,
if (2.11.1) holds for every a ∈ A0 and b ∈ A, then A0 is said to be a right ideal
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in A. If A0 is both a left and right ideal in A, then A is said to be a two-sided
ideal in A. Of course, if A is a commutative algebra, then left and right ideals
in A are the same. If B is another algebra over k in the strict sense, and ϕ is
an algebra homomorphism from A into B, then the kernel of ϕ is a two-sided
ideal in A.

If A0 is a submodule of A, as a module over k, then the quotient A/A0

can be defined as a module over k too, as before. Let q0 be the corresponding
quotient mapping from A onto A/A0. Thus

(a, b) 7→ q0(a b)(2.11.2)

is bilinear over k as a mapping from A×A into A/A0. If A0 is a left ideal in A,
then

q0(a b) = 0(2.11.3)

for every a ∈ A and b ∈ A0, and (2.11.2) leads to a bilinear mapping from
A × (A/A0) into A/A0. More precisely, if a, b ∈ A, then q0(a b) only depends
on a and q0(b) in this case. Similarly, if A0 is a right ideal in A, then (2.11.3)
holds for every a ∈ A0 and b ∈ A, and (2.11.2) leads to a bilinear mapping
from (A/A0)×A into A/A0. If A0 is a two-sided ideal in A, then (2.11.3) holds
when either a or b is in A0, so that q0(a b) only depends on q0(a) and q0(b). In
this situation, (2.11.2) leads to a bilinear mapping from (A/A0)× (A/A0) into
A/A0, which makes A/A0 into an algebra over k in the strict sense, for which
the quotient mapping q0 is an algebra homomorphism.

Suppose for the moment that A is an associative algebra over k. If A0 is a
two-sided ideal in A, then A/A0 is an associative algebra over k as well. If A0 is
a left ideal in A, then elements of A act on A/A0 by multiplication on the left,
as in the preceding paragraph. Associativity of multiplication on A implies that
the action on A/A0 by products of elements of A corresponds to the composition
of the actions on A/A0 of the individual elements of A. Similarly, if A0 is a right
ideal in A, then elements of A act on A/A0 by multiplication on the right, with
the appropriate relationship between products of elements of A and their actions
on A/A0.

Suppose now that (A, [·, ·]A) is a Lie algebra over k, and let A0 be a sub-
module of A as a module over k. If

[a, b]A ∈ A0(2.11.4)

for every a ∈ A and b ∈ A0, then A0 is said to be an ideal in A as a Lie algebra.
This is equivalent to saying that A0 is a left, right, or two-sided ideal in A, as
an algebra over k in the strict sense. In this case, if q0 is the usual quotient
mapping from A onto A0, then q0([a, b]A) depends only on q0(a) and q0(b), as
before. It is easy to see that A/A0 is also a Lie algebra over k with respect to
the Lie bracket [·, ·]A/A0

obtained from [·, ·]A in this way.
Let A be an associative algebra over k again, where the product of a, b ∈ A

is denoted a b. Let A0 be a two-sided ideal in A. Remember that A may also
be considered as a Lie algebra over k with respect to the commutator bracket
[a, b]A = a b− b a. Under these conditions, A0 may be considered an an ideal in
A as a Lie algebra with respect to [a, b]A as well.
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2.12 Bilinear forms

Let k be a commutative ring with a multiplicative identity element, and let A,
C be modules over k. Also let β be a mapping from A×A into C that is bilinear
over k. Of course, k may be considered as a module over itself as well, using
multiplication on k as scalar multiplication. If C = k, as a module over itself,
then β is said to be a bilinear form on A, as a module over k. As before, β is
said to be symmetric on A×A when

β(b, a) = β(a, b)(2.12.1)

for every a, b ∈ A, and antisymmetric on A×A when

β(b, a) = −β(a, b)(2.12.2)

for every a, b ∈ A. It is sometimes better to ask that

β(a, a) = 0(2.12.3)

for every a ∈ A, instead of (2.12.2). Remember that (2.12.3) implies (2.12.2),
because of bilinearity, as in Section 2.1. If 1 + 1 = 0 in k, then (2.12.1) and
(2.12.2) are the same. If 1 + 1 is invertible in k, then (2.12.2) implies (2.12.3).

If β is any bilinear mapping from A×A into C, then

β(a, b) + β(b, a)(2.12.4)

is symmetric on A×A, and

β(a, b)− β(b, a)(2.12.5)

is antisymmetric on A × A. If 1 + 1 = 0 in k, then (2.12.4) is the same as
(2.12.5), and is equal to 0 when a = b. If 1 + 1 is invertible in k, then every
bilinear mapping from A×A into C can be expressed as the sum of a symmetric
bilinear mapping and an antisymmetric bilinear mapping. In this case, a bilinear
mapping from A×A into C that is both symmetric and antisymmetric on A×A
is identically 0 on A × A, which implies that the previous expression as a sum
is unique.

Let β be a bilinear mapping from A × A into C, and let ϕ be a module
homomorphism from A into itself. Let us say that ϕ is symmetric with respect
to β on A if

β(ϕ(a), b) = β(a, ϕ(b))(2.12.6)

for every a, b ∈ A. Similarly, let us say that ϕ is antisymmetric with respect to
β on A if

β(ϕ(a), b) = −β(a, ϕ(b))(2.12.7)

for every a, b ∈ A. The collections of module homomorphisms from A into
itself that are symmetric or antisymmetric with respect to β are submodules of
Homk(A,A). If 1+1 = 0 in k, then (2.12.6) and (2.12.7) are the same, as usual.
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Let ϕ and ψ be module homomorphisms from A into itself, and let [ϕ, ψ] =
ϕ ◦ ψ − ψ ◦ ϕ be their commutator with respect to composition. If ϕ and ψ are
both symmetric on A with respect to β, then

β(([ϕ, ψ])(a), b) = β(ϕ(ψ(a)), b)− β(ψ(ϕ(a)), b)

= β(a, ψ(ϕ(b)))− β(a, ϕ(ψ(b))) = −β(a, ([ϕ, ψ])(b)))(2.12.8)

for every a, b ∈ A. This also works when ϕ and ψ are both antisymmetric with
respect to β on A, using antisymmetry twice in each term in the second step.
In both cases, we get that [ϕ, ψ] is antisymmetric with respect to β on A. In
particular, the collection of module homomorphisms from A into itself that are
antisymmetric with respect to β is a Lie subalgebra of Homk(A,A), as a Lie
algebra over k with respect to the commutator bracket.

2.13 Dual spaces and mappings

Let k be a field, and let V be a vector space over k. Remember that a linear
functional on V is a linear mapping from V into k, where k is considered as a
one-dimensional vector space over itself. The dual V ′ of V is the space of all
linear functionals on V , which is a vector space over k with respect to pointwise
addition and scalar multiplication. If V has finite dimension, then it is well
known that the dimension of V ′ is the same as the dimension of V . This can
be seen by expressing linear functionals on V in terms of a basis for V .

Let W be another vector space over k, and let T be a linear mapping from
V into W . If µ is a linear functional on W , then

T ′(µ) = µ ◦ T(2.13.1)

is a linear functional on V . This defines a linear mapping T ′ from W ′ into V ′,
which is the dual mapping associated to T . We also have that

T 7→ T ′(2.13.2)

is linear as a mapping from the space L(V,W ) of linear mappings from V into
W into the space L(W ′, V ′) of linear mappings from W ′ into V ′. The dual of
the identity mapping IV on V , as a linear mapping from V into itself, is the
identity mapping IV ′ on V ′.

Let Z be a third vector space over k, let T1 be a linear mapping from V into
W , and let T2 be a linear mapping fromW into Z. Thus the composition T2◦T1
is a linear mapping from V into Z, whose dual maps Z ′ into V ′. If ν ∈ Z ′, then

(T2 ◦ T1)′(ν) = ν ◦ (T2 ◦ T1) = (ν ◦ T2) ◦ T1 = T ′
1(T

′
2(ν)).(2.13.3)

This shows that
(T2 ◦ T1)′ = T ′

1 ◦ T ′
2(2.13.4)

as mappings from Z ′ into V ′.
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Let V ′′ = (V ′)′ be the dual of V ′. If v ∈ V and λ ∈ V ′, then

Lv(λ) = λ(v)(2.13.5)

is an element of k. This defines Lv as a linear functional on V ′, and

v 7→ Lv(2.13.6)

is a linear mapping from V into V ′′. If v ∈ V and v ̸= 0, then one can find a
λ ∈ V ′ such that λ(v) ̸= 0, using a basis for V . This implies that (2.13.6) is
injective as a mapping from V into V ′′. If V has finite dimension, then V ′ has
the same dimension as V , and hence V ′′ has the same dimension as well. In
this case, (2.13.6) also maps V onto V ′′.

Let λ1, . . . , λn be n linear functionals on V for some positive integer n, and
put

Λ(v) = (λ1(v), . . . , λn(v))(2.13.7)

for each v ∈ V . This defines a linear mapping from V into the space kn of
n-tuples of elements of k, which is a vector space over k with respect to coordi-
natewise addition and scalar multiplication, as usual. Of course, the kernel of
Λ is the same as the intersection of the kernels of λ1, . . . , λn. If Λ is injective,
then the dimension of V is less than or equal to n, by standard results in linear
algebra. In particular, if Λ is injective and the dimension of V is equal to n,
then Λ maps V onto kn.

2.14 Nondegenerate bilinear forms

Let k be a field, and let V be a finite-dimensional vector space over k. Also let
b(v, w) be a bilinear form on V . If w ∈ V , then

bw(v) = b(v, w)(2.14.1)

defines a linear functional on V as a function of v, and w 7→ bw defines a linear
mapping from V into its dual space V ′. The image

{bw : w ∈ V }(2.14.2)

of this linear mapping is a linear subspace of V ′. Note that (2.14.2) is equal
to V ′ exactly when w 7→ bw is injective as a linear mapping from V into V ′,
because V and V ′ have the same dimension.

If for every v ∈ V with v ̸= 0 there is a w ∈ V such that b(v, w) ̸= 0, then b is
said to be nondegenerate on V . This is the same as saying that the intersections
of the kernels of the bw’s, w ∈ V , is the trivial subspace {0} of V . One can
check that this happens exactly when (2.14.2) is equal to V ′.

Suppose that b is a nondegenerate bilinear form on V , and let T be a linear
mapping from V into itself. If w ∈ V , then b(T (v), w) defines a linear functional
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on V , as a function of v. This implies that there is a unique element T ∗(w) of
V such that

b(T (v), w) = b(v, T ∗(w))(2.14.3)

for every v ∈ V , because b is nondegenerate on V . This defines a mapping T ∗

from V into itself, which is the adjoint of T with respect to b. It is easy to
see that T ∗ is a linear mapping from V into itself, because T ∗(w) is uniquely
determined by (2.14.3).

Remember that the space L(V ) of linear mappings from V into itself is an
algebra over k with respect to composition of mappings. One can check that
T 7→ T ∗ defines a linear mapping from L(V ) into itself, because T ∗ is uniquely
determined by (2.14.3). Clearly I∗ = I, where I is the identity mapping on V .

If T is any linear mapping from V into itself, then T ∗ = T exactly when T
is symmetric with respect to b, as in Section 2.12. Similarly, T ∗ = −T exactly
when T is antisymmetric with respect to b.

If T is a linear mapping from V into itself and T ∗ = 0 on V , then T = 0
on V , because of (2.14.3) and the nondegeneracy of b on V . This implies that
T 7→ T ∗ is a one-to-one mapping from L(V ) onto itself, because L(V ) is a
finite-dimensional vector space over k.

Let T1 and T2 be linear mappings from V into itself. If v, w ∈ V , then

b((T2 ◦ T1)(v), w) = b(T2(T1(v)), w) = b(T1(v), T
∗
2 (w))(2.14.4)

= b(v, T ∗
1 (T

∗
2 (w))) = b(v, (T ∗

1 ◦ T ∗
2 )(w)).

This implies that

(T2 ◦ T1)∗ = T ∗
1 ◦ T ∗

2 ,(2.14.5)

so that T 7→ T ∗ is an opposite algebra automorphism on L(V ), as in Section
2.6.

Let T be a linear mapping from V into itself again, so that T ∗ and hence
(T ∗)∗ are defined as linear mappings from V into itself, as before. If b is sym-
metric on V , then

b(T (v), w) = b(T ∗(w), v) = b(w, (T ∗)∗(v)) = b((T ∗)∗(v), w)(2.14.6)

for every v, w ∈ V . Similarly, if b is antisymmetric on V , then

b(T (v), w) = −b(T ∗(w), v) = −b(w, (T ∗)∗(v)) = b((T ∗)∗(v), w)(2.14.7)

for every v, w ∈ V . In both cases, we get that

(T ∗)∗ = T.(2.14.8)

It follows that T 7→ T ∗ defines an involution on L(V ), as an algebra over k with
respect to composition, when b is symmetric or antisymmetric on V .
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2.15 Sesquilinear forms

Let V be a vector space over the field C of complex numbers. A complex-valued
function b on V ×V is said to be sesquilinear if b(v, w) is complex-linear in v for
each w ∈ V , and b(v, w) is conjugate-linear in w for every v ∈ V . In particular,
if we consider V and C as vector spaces over the real numbers, then it follows
that b is bilinear over R. If we also have that

b(w, v) = b(v, w)(2.15.1)

for every v, w ∈ V , then b is said to be Hermitian-symmetric on V , or equiv-
alently b is a Hermitian form on V . The analogous Hermitian-antisymmetry
condition

b(w, v) = −b(v, w)(2.15.2)

is the same as saying that i b(v, w) is a Hermitian form on V . If b is any
sesquilinear form on V , then b(w, v) is a sesquilinear form on V too,

b(v, w) + b(w, v)(2.15.3)

is a Hermitian form on V , and

b(v, w)− b(w, v)(2.15.4)

is Hermitian-antisymmetric on V . This permits us to express b(v, w) in a unique
way as b1(v, w) + i b2(v, w), where b1(v, w) and b2(v, w) are Hermitian forms on
V . Note that b(v, v) ∈ R for every v ∈ V when b is a Hermitian form on V .

Let b be a sesquilinear form on V , and let T be a linear mapping from V
into itself. Let us say that T is self-adjoint with respect to b on V if

b(T (v), w) = b(v, T (w))(2.15.5)

for every v, w ∈ V , and that T is anti-self-adjoint with respect to b on V if

b(T (v), w) = −b(v, T (w))(2.15.6)

for every v, w ∈ V . One can check that T is anti-self-adjoint with respect to b
on V if and only if i T is self-adjoint with respect to b on V . If we consider b
as a real-bilinear mapping from V × V into C, then these self-adjointness and
anti-self-adjointness conditions correspond exactly to the symmetry and anti-
symmetry conditions for module homomorphisms mentioned in Section 2.12.
The space of self-adjoint linear mappings from V into itself with respect to b on
V is a real-linear subspace of the space L(V ) of linear mappings from V into
itself, which is to say that it is a linear subspace of L(V ) when L(V ) is considered
as a vector space over R. If T1, T2 are self-adjoint linear mappings from V into
itself with respect to b, then their commutator [T1, T2] = T1 ◦ T2 − T2 ◦ T1 with
respect to composition is anti-self-adjoint with respect to b, as before. Similarly,
if T1, T2 are anti-self-adjoint linear mappings from V into itself with respect to
b, then [T1, T2] is anti-self-adjoint with respect to b as well. It follows that the
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space of anti-self-adjoint linear mappings from V into itself with respect to b is
a real Lie subalgebra of L(V ), which is to say that it is a subalgebra of L(V ) as
a Lie algebra over R with respect to the commutator bracket.

Suppose from now on in this section that V has finite dimension as a complex
vector space. If w ∈ V , then

bw(v) = b(v, w)(2.15.7)

defines a linear functional on V as a function of v, as before. In this situation,
w 7→ bw is a conjugate-linear mapping from V into its dual space V ′. The image

{bw : w ∈ V }(2.15.8)

of this mapping is still a linear subspace of V ′, as a complex vector space. One
can check that (2.15.8) is equal to V ′ exactly when w 7→ bw is injective as a
mapping from V into V ′, because V and V ′ have the same dimension as complex
vector spaces.

If for every v ∈ V with v ̸= 0 there is a w ∈ V such that b(v, w) ̸= 0, then
b is said to be nondegenerate as a sesquilinear form on V . This is the same
as saying that the intersections of the kernels of the bw’s, w ∈ V , is trivial, as
before. This happens exactly when (2.15.8) is equal to V ′, as in the previous
section.

Let b be a nondegenerate sesquilinear form on V , and let T be a linear
mapping from V into itself. Also let w ∈ V be given, so that b(T (v), w) defines
a linear functional on V , as a function of v. It follows that there is a unique
element T ∗(w) of V such that

b(T (v), w) = b(v, T ∗(w))(2.15.9)

for every v ∈ V , because b is nondegenerate on V . The resulting mapping T ∗

from V into itself is called the adjoint of T with respect to b. One can check
that T ∗ is a linear mapping from V into itself, using the sesquilinearity of b.

However, T 7→ T ∗ is conjugate-linear as a mapping from L(V ) into itself in
this situation. We still have that I∗ = I, where I is the identity mapping on
V . A linear mapping T from V into itself is self-adjoint with respect to b if and
only if T ∗ = T . Similarly, T is anti-self-adjoint with respect to b if and only if
T ∗ = −T .

If T is a linear mapping from V into itself and T ∗ = 0 on V , then T = 0 on
V , because of (2.15.9) and nondegeneracy of b on V , as before. If T1 and T2 are
linear mappings from V into itself, then one can verify that

(T2 ◦ T1)∗ = T ∗
1 ◦ T ∗

2 ,(2.15.10)

in the same way as before. It follows that T 7→ T ∗ is a conjugate-linear opposite
algebra automorphism on L(V ), because L(V ) is a finite-dimensional vector
space over C.
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Suppose now that b is also Hermitian-symmetric on V . Let T be a linear
mapping from V into itself, so that T ∗ and (T ∗)∗ are defined as linear mappings
from V into itself as well. If v, w ∈ V , then

b(T (v), w) = b(T ∗(w), v) = b(w, (T ∗)∗(v)) = b((T ∗)∗(v), w).(2.15.11)

Thus
(T ∗)∗ = T,(2.15.12)

so that T 7→ T ∗ is a conjugate-linear involution on L(V ) in this case.



Chapter 3

Submultiplicativity and
invertibility

3.1 Invertibility

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element e, where
multiplication of a, b ∈ A is expressed as a b. An element a of A is said to be
invertible in A if there is an element b of A such that

a b = b a = e.(3.1.1)

It is easy to see that b is unique when it exists, using associativity of multipli-
cation on A. In this case, b is called the multiplicative inverse of a in A, and
is denoted a−1. Of course, e is its own inverse in A. If x and y are invertible
elements of A, then x y is invertible in A too, with

(x y)−1 = y−1 x−1.(3.1.2)

Thus the collection of invertible elements in A is a group.
Let x and y be commuting elements of A, so that x y = y x. If x is invertible

in A, then x−1 commutes with y too. Suppose that w and z are commuting
elements of A, and w z is invertible in A. Note that w z commutes with w and
z, so that (w z)−1 commutes with w and z too. It follows that w and z are
invertible in A, with w−1 = (w z)−1 z and z−1 = (w z)−1 w.

Let a ∈ A be given, and let n be a nonnegative integer. Using a standard
computation, we get that

(e− a)

n∑
j=0

aj =
( n∑
j=0

aj
)
(e− a) = e− an+1,(3.1.3)

where aj is interpreted as being equal to e when j = 0. In particular, if an+1 = 0,

50
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then it follows that e− a is invertible in A, with

(e− a)−1 =

n∑
j=0

aj .(3.1.4)

If e − an+1 is invertible in A, then (3.1.3) implies that e − a is invertible in A
too, as in the previous paragraph.

Let n be a positive integer, and consider the algebraMn(A) of n×n matrices
with entries in A. The group of invertible elements ofMn(A) is denotedGLn(A),
and is called the nth general linear group with entries in A.

Suppose for the moment that A is also commutative, so that the determinant
of a = (aj,l) ∈ Mn(A) can be defined as an element of A in the usual way. If
a ∈ GLn(A), then det a is an invertible element of A. Conversely, if a ∈Mn(A)
and det a is an invertible element of A, then a ∈ GLn(A), by Cramer’s rule. The
nth special linear group SLn(A) with entries in A consists of the a ∈ Mn(A)
such that det a is the multiplicative identity element e in A. This is a normal
subgroup of GLn(A), because SLn(A) is the kernel of the determinant as a
group homomorphism from GLn(A) into the multiplicative group of invertible
elements in A.

Let k be a field, and let V be a vector space over k. Remember that the
space L(V ) of linear mappings from V into itself is an associative algebra with
respect to composition of mappings, and with the identity mapping I = IV on V
as the multiplicative identity element in L(V ). The group GL(V ) of one-to-one
linear mappings from V onto itself with respect to composition of mappings is
the same as the group of invertible elements in L(V ), and may be called the
general linear group associated to V .

Suppose that V has finite dimension n ≥ 1, and let v1, . . . , vn be a basis for
V . This leads to an algebra isomorphism from Mn(k) onto L(V ), as in Section
2.10. The restriction of this mapping to GLn(k) defines a group isomorphism
from GLn(k) onto GL(V ).

The determinant of a linear mapping T from V into itself can be defined as
an element of k as the determinant of the corresponding matrix in Mn(k). It
is well known that this does not depend on the choice of basis v1, . . . , vn of V .
Note that a ∈ Mn(k) is invertible exactly when det a ̸= 0, because k is a field.
Thus T ∈ L(V ) is invertible exactly when detT ̸= 0.

The special linear group SL(V ) associated to V consists of the linear map-
pings T from V into itself such that detT = 1 in k. In particular, these linear
mappings are invertible on V , and SL(V ) is a normal subgroup of GL(V ), be-
cause it is the kernel of the determinant as a group homomorphism from GL(V )
into the multiplicative group of non-zero elements of k. The restriction of the
algebra isomorphism fromMn(k) onto L(V ) mentioned earlier to SLn(k) defines
a group isomorphism from SLn(k) onto SL(V ).
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3.2 Submultiplicative seminorms

Let k be a field with an absolute value function | · |, and let A be an algebra
over k in the strict sense, where multiplication of a, b ∈ A is expressed as a b.
Also let NA be a seminorm on A, as a vector space over k, and with respect
to | · | on k. As in Section 1.13, multiplication on A is bounded as a bilinear
mapping from A× A into A with respect to NA on A if there is a nonnegative
real number C such that

NA(a b) ≤ C NA(a)NA(b)(3.2.1)

for every a, b ∈ A. If this holds with C = 1, then NA is said to be submulti-
plicative on A. Similarly, if

NA(a b) = NA(a)NA(b)(3.2.2)

for every a, b ∈ A, then NA is said to be multiplicative on A.
Suppose for the moment that A has a multiplicative identity element e. If

(3.2.1) holds for some C ≥ 0, then we get that

NA(a) ≤ C NA(a)NA(e)(3.2.3)

for every a ∈ A. If NA(a) > 0 for some a ∈ A, then it follows that

1 ≤ C NA(e).(3.2.4)

Let V be a vector space over k, and let NV be a seminorm on V with
respect to | · | on k. Consider the space BL(V ) = BL(V, V ) of bounded linear
mappings from V into itself, with respect to NV on V . This is a subalgebra of
the algebra L(V ) of all linear mappings from V into itself, with composition of
mappings as multiplication. Let ∥·∥op = ∥·∥op,V V be the operator seminorm on
BL(V ) corresponding to NV on V , as in Section 1.9. This is a submultiplicative
seminorm on BL(V ) with respect to | · | on k, as before. It is easy to see that
the identity mapping I = IV on V is bounded with respect to NV , with

∥I∥op = 1(3.2.5)

when NV (v) > 0 for some v ∈ V , and ∥I∥op = 0 otherwise.
Let A be an algebra over k in the strict sense again, and letNA be a seminorm

on A with respect to | · | on k that satisfies (3.2.1) for some C ≥ 0. If a ∈ A,
then

Ma(x) = a x(3.2.6)

defines a linear mapping from A into itself, as a vector space over k, as in Section
2.2. Using (3.2.1), we get that

NA(Ma(x)) ≤ C NA(a)NA(x)(3.2.7)

for every x ∈ A, so that Ma is bounded as a linear mapping from A into itself
with respect to NA. More precisely, we have that

∥Ma∥op ≤ C NA(a)(3.2.8)
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for every a ∈ A, where ∥ · ∥op = ∥ · ∥op,AA is the operator seminorm on the space
BL(A) of bounded linear mappings from A into itself with respect to NA. If A
has a multiplicative identity element e, then

NA(a) = NA(Ma(e)) ≤ ∥Ma∥opNA(e)(3.2.9)

for every a ∈ A.
Similarly, if a ∈ A, then

M̃a(x) = x a(3.2.10)

defines a linear mapping from A into itself, as in Section 2.7. As before, we can
use (3.2.1) to get that

NA(M̃a(x)) ≤ C NA(x)NA(a)(3.2.11)

for every x ∈ A. This implies that M̃a is bounded as a linear mapping from A
into itself with respect to NA, with

∥M̃a∥op ≤ C NA(a)(3.2.12)

for every a ∈ A. If A has a multiplicative identity element e, then

NA(a) = NA(M̃a(e)) ≤ ∥M̃a∥opNA(e)(3.2.13)

for every a ∈ A.
Let α be a positive real number, and put

N̂A(a) = αNA(a)(3.2.14)

for every a ∈ A. This defines a seminorm on A as a vector space over k too,
with respect to | · | on k. Using (3.2.1), we get that

N̂A(a b) ≤ (C/α) N̂A(a) N̂A(b)(3.2.15)

for every a, b ∈ A. In particular, this means that N̂A is submultiplicative on A
when α ≥ C.

Alternatively, ∥Ma∥op defines a seminorm on A as a vector space over k,
with respect to | · | on k. Suppose that A is an associative algebra over k, so
that a 7→ Ma is an algebra homomorphism from A into BL(A), as in Section
2.2. This implies that ∥Ma∥op is submultiplicative as a seminorm on A, because
∥ · ∥op is submultiplicative on BL(A). If A has a multiplicative identity element
e, then Me is the identity operator on A, as before. Hence ∥Me∥op is equal to
1 when NA(a) > 0 for some a ∈ A, and is equal to 0 otherwise.

3.3 Some matrix seminorms

Let k be a field with an absolute value function | · |, and let A be an algebra over
k in the strict sense again, where multiplication of a, b ∈ A is expressed as a b.
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Also let n be a positive integer, and letMn(A) be the space of n×nmatrices with
entries in A, which is an algebra over k in the strict sense with respect to matrix
multiplication, as in Section 2.8. Suppose that NA is a seminorm on A with
respect to | · | on k that satisfies (3.2.1) for some C ≥ 0. If a = (aj,l) ∈Mn(A),
then put

N∞(a) = max
1≤j,l≤n

NA(aj,l),(3.3.1)

N1,∞(a) = max
1≤l≤n

( n∑
j=1

NA(aj,l)
)
,(3.3.2)

and

N∞,1(a) = max
1≤j≤n

( n∑
l=1

NA(aj,l)
)
.(3.3.3)

It is easy to see that (3.3.1), (3.3.2), and (3.3.3) define seminorms on Mn(A),
as a vector space over k, and with respect to | · | on k. If NA is a norm on A,
then (3.3.1), (3.3.2), and (3.3.3) are norms on Mn(A). Observe that

N∞(a) ≤ N1,∞(a) ≤ nN∞(a)(3.3.4)

and

N∞(a) ≤ N∞,1(a) ≤ nN∞(a)(3.3.5)

for every a ∈Mn(A). In addition,

N∞(at) = N∞(a)(3.3.6)

and

N1,∞(at) = N∞,1(a)(3.3.7)

for every a ∈Mn(A), where a
t ∈Mn(A) is the transpose of a, as before.

Suppose for the moment that A has a multiplicative identity element e.
Remember that the corresponding identity matrix I ∈ Mn(A) has diagonal
entries equal to e, and all other entries equal to 0. Thus

N∞(I) = N1,∞(I) = N∞,1(I) = NA(e).(3.3.8)

Let a, b ∈Mn(A) be given, and let c = a b be their product, so that

cj,r =

n∑
l=1

aj,l bl,r(3.3.9)

for every j, r = 1, . . . , n. Observe that

NA(cj,r) ≤
n∑
l=1

NA(aj,l bl,r) ≤ C

n∑
l=1

NA(aj,l)NA(bl,r)(3.3.10)
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for every j, r = 1, . . . , r, using (3.2.1) in the second step. Thus

n∑
j=1

NA(cj,r) ≤ C

n∑
j=1

n∑
l=1

NA(aj,l)NA(bl,r)

= C

n∑
l=1

n∑
j=1

NA(aj,l)NA(bl,r)(3.3.11)

≤ C N1,∞(a)

n∑
l=1

NA(bl,r) ≤ C N1,∞(a)N1,∞(b)

for every l = 1, . . . , n, so that

N1,∞(c) ≤ C N1,∞(a)N1,∞(b).(3.3.12)

Similarly,

n∑
r=1

NA(cj,r) ≤ C

n∑
r=1

n∑
l=1

NA(aj,l)NA(bl,r)

= C

n∑
l=1

n∑
r=1

NA(aj,l)NA(bl,r)(3.3.13)

≤ C

n∑
l=1

NA(aj,l)N∞,1(b) ≤ C N∞,1(a)N∞,1(b)

for every j = 1, . . . , n, so that

N∞,1(c) ≤ C N∞,1(a)N∞,1(b).(3.3.14)

Suppose now that NA is a semi-ultranorm on A with respect to | · | on k.
This implies that N∞ is a semi-ultranorm on Mn(A), as a vector space over k,
and with respect to | · | on k. In this case, we have that

NA(cj,r) ≤ max
1≤l≤n

NA(aj,l bl,r) ≤ C max
1≤l≤n

(NA(aj,l)NA(bl,r))(3.3.15)

for every j, r = 1, . . . , n, using (3.2.1) in the second step. It follows that

N∞(c) ≤ C N∞(a)N∞(b).(3.3.16)

3.4 Continuity of inverses

Let k be a field with an absolute value function | · |, and let A be an associative
algebra over k with a multiplicative identity element e. Also let NA be a semi-
norm on A as a vector space over k, with respect to | · | on k, and suppose that
NA satisfies the boundedness condition (3.2.1) with constant C ≥ 0. If a is an
invertible element of A, then

NA(e) ≤ C NA(a)NA(a
−1).(3.4.1)
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Let x, y be invertible elements of A, and observe that

x−1 − y−1 = x−1 (y y−1)− (x−1 x) y−1 = x−1 (y − x) y−1.(3.4.2)

It follows that

NA(x
−1 − y−1) ≤ C2NA(x

−1)NA(y
−1)NA(x− y).(3.4.3)

Hence

NA(y
−1) ≤ NA(x

−1) +NA(x
−1 − y−1)(3.4.4)

≤ NA(x
−1) + C2NA(x

−1)NA(y
−1)NA(x− y),

so that
(1− C2NA(x

−1)NA(x− y))NA(y
−1) ≤ NA(x

−1).(3.4.5)

If
C2NA(x

−1)NA(x− y) < 1,(3.4.6)

then we get that

NA(y
−1) ≤ (1− C2NA(x

−1)NA(x− y))−1NA(x
−1).(3.4.7)

Combining this with (3.4.3), we obtain that

NA(x
−1 − y−1) ≤ C2 (1− C2NA(x

−1))−1NA(x
−1)2NA(x− y)(3.4.8)

when (3.4.6) holds.
Suppose for the moment that NA is a semi-ultranorm on A, as a vector space

over k. Let us check that

NA(x
−1) = NA(y

−1)(3.4.9)

when (3.4.6) holds. Of course, this is trivial when NA ≡ 0 on A. Otherwise,
if NA ̸≡ 0 on A, then NA(e) > 0, and hence NA(y

−1) > 0, by (3.4.1). In this
case, (3.4.6) implies that

C2NA(x
−1)NA(y

−1)NA(x− y) < NA(y
−1).(3.4.10)

Combining this with (3.4.3), we get that

NA(x
−1 − y−1) < NA(y

−1).(3.4.11)

This implies (3.4.9) in this situation, as in (1.8.7). It follows that

NA(x
−1 − y−1) ≤ C2NA(x

−1)2NA(x− y)(3.4.12)

when (3.4.6) holds, by (3.4.3) and (3.4.9).
Let us now take x = e, for which there are some simplifications. If y is an

invertible element of A, then

e− y−1 = (y − e) y−1,(3.4.13)
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so that
NA(e− y−1) ≤ C NA(y

−1)NA(y − e).(3.4.14)

This implies that

NA(y
−1) ≤ NA(e) +NA(e− y−1) ≤ NA(e) + C NA(y

−1)NA(y − e),(3.4.15)

and hence
(1− C NA(y − e))NA(y

−1) ≤ NA(e).(3.4.16)

If
C NA(y − e) < 1,(3.4.17)

then it follows that

NA(y
−1) ≤ (1− C NA(y − e))−1NA(e).(3.4.18)

This implies that

NA(e− y−1) ≤ C (1− C NA(y − e))−1NA(e)NA(y − e)(3.4.19)

when (3.4.17) holds, because of (3.4.14).
Suppose now that NA is a semi-ultranorm on A again, and let us verify that

NA(y
−1) = NA(e)(3.4.20)

when (3.4.17) holds. This is trivial when NA ≡ 0 on A, as before. Suppose
instead that NA ̸≡ 0 on A, so that NA(e) > 0, and thus NA(y

−1) > 0. We can
multiply both sides of (3.4.17) by NA(y

−1), to get that

C NA(y
−1)NA(y − e) < NA(y

−1).(3.4.21)

This implies that
NA(e− y−1) < NA(y

−1),(3.4.22)

because of (3.4.14). This permits us to obtain (3.4.20) using (1.8.7), as before.
Hence

NA(e− y−1) ≤ C NA(e)NA(y − e)(3.4.23)

when (3.4.17) holds, by (3.4.14) and (3.4.20).

3.5 Banach algebras

Let k be a field with an absolute value function | · |, and let A be an associative
algebra over k. Also let ∥ · ∥ be a norm on A with respect to | · | on k such that

∥x y∥ ≤ C ∥x∥ ∥y∥(3.5.1)

for some C ≥ 0 and every x, y ∈ A. In this section, we ask that A be complete
with respect to the metric associated to ∥ · ∥. Otherwise, one can pass to a
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completion of A, as usual. If (3.5.1) holds with C = 1, then A is said to be a
Banach algebra with respect to ∥ · ∥.

Let us suppose too that A has a nonzero multiplicative identity element e,
which is sometimes included in the definition of a Banach algebra. The condition

∥e∥ = 1(3.5.2)

is sometimes included in the definition of a Banach algebra as well.
Let a ∈ A be given, and remember that

(e− a)

n∑
j=0

aj =
( n∑
j=0

aj
)
(e− a) = e− an+1(3.5.3)

for every nonnegative integer n, as in (3.1.3). Observe that

∥aj∥ ≤ Cj−1 ∥a∥j(3.5.4)

for every positive integer j, by (3.5.1). Suppose that

C ∥a∥ < 1,(3.5.5)

so that
lim
j→∞

∥aj∥ → 0,(3.5.6)

by (3.5.4). We also get that
∞∑
j=0

∥aj∥(3.5.7)

converges as an infinite series of nonnegative real numbers, because

∞∑
j=0

Cj ∥a∥j(3.5.8)

is a convergent geometric series. This means that
∑∞
j=0 a

j converges absolutely

with respect to ∥ · ∥, and hence that
∑∞
j=0 a

j converges in A, because A is
complete with respect to the metric associated to ∥ · ∥. The value of this sum
satisfies

(e− a)

∞∑
j=0

aj =
( ∞∑
j=0

aj
)
(a− e) = e,(3.5.9)

by taking the limit as n→ ∞ in (3.5.3). Thus e− a is invertible in A, with

(e− a)−1 =

∞∑
j=0

aj .(3.5.10)

Let x be an invertible element of A, and let y be another element of A.
Observe that

y = x− (x− y) = x (e− x−1 (x− y)).(3.5.11)
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Suppose that
C2 ∥x−1∥ ∥x− y∥ < 1,(3.5.12)

so that
C ∥x−1 (x− y)∥ ≤ C2 ∥x−1∥ ∥x− y∥ < 1.(3.5.13)

This implies that e−x−1 (x−y) is invertible in A, as in the preceding paragraph.
It follows that y is invertible in A, by (3.5.11).

Let a be an element of A again, and let j0 be a positive integer. If e− aj0 is
invertible in A, then e− a is invertible in A, because of (3.5.3), with n = j0 − 1.
In particular, this holds when

C ∥aj0∥ < 1,(3.5.14)

as before. Alternatively, one can use (3.5.1) to estimate ∥aj0 l+r∥ in terms of
Cl−1 ∥aj0∥l when l ≥ 1 and 0 ≤ r < j0, to get that (3.5.6) holds and that (3.5.7)
converges when (3.5.14) holds. This implies that

∑∞
j=0 a

j converges in A and
satisfies (3.5.9) when (3.5.14) holds, as before.

3.6 Invertible linear mappings

Let k be a field with an absolute value function | · |, and let V , W be vector
spaces over k with seminorms NV , NW , respectively, with respect to | · | on k.
If T is a one-to-one linear mapping from V onto W , then the corresponding
inverse mapping T−1 is a linear mapping from W onto V . As usual, T−1 is
bounded with respect to NW , NV if there is a nonnegative real number C such
that

NV (T
−1(w)) ≤ C NW (w)(3.6.1)

for every w ∈W . This is the same as saying that

NV (v) ≤ C NW (T (v))(3.6.2)

for every v ∈ V .
Now let T be a linear mapping from V into W , and suppose that (3.6.2)

holds for some C ≥ 0. If NV is a norm on V , then it follows that T is injective
on V . Let T1 be another linear mapping from V into W , and observe that

NV (v) ≤ C NW (T1(v)) + C NW (T1(v)− T (v))(3.6.3)

for every v ∈ V . If T1 −T is bounded as a linear mapping from V into W , then
we get that

NV (v) ≤ C NW (T1(v)) + C ∥T1 − T∥op,VW NV (v)(3.6.4)

for every v ∈ V , where the operator seminorm ∥ ·∥op,VW is as defined in Section
1.9. Thus

(1− C ∥T1 − T∥op,VW )NV (v) ≤ C NW (T1(v))(3.6.5)
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for every v ∈ V . If
C ∥T1 − T∥op,VW < 1,(3.6.6)

then it follows that

NV (v) ≤ C (1− C ∥T1 − T∥op,VW )−1NW (T1(v))(3.6.7)

for every v ∈ V .
Suppose that NW is a semi-ultranorm on W with respect to | · | on k. In

this case, we have that

NV (v) ≤ C max(NW (T1(v)), NW (T1(v)− T (v)))(3.6.8)

for every v ∈ V , by (3.6.2). Suppose for the moment that

C NW (T1(v)− T (v)) < NV (v)(3.6.9)

for every v ∈ V with NV (v) > 0. It follows that

NV (v) ≤ C NW (T1(v))(3.6.10)

for every v ∈ V with NV (v) > 0. Of course, (3.6.10) holds trivially when
NV (v) = 0, so that (3.6.10) holds for all v ∈ V . If T1−T is bounded as a linear
mapping from V into W , then

NW (T1(v)− T (v)) ≤ ∥T1 − T∥op,VW NV (v)(3.6.11)

for every v ∈ V . If (3.6.6) holds, then we get that (3.6.9) holds when NV (v) > 0.
A bounded linear mapping T from V onto W is said to be invertible as a

bounded linear mapping if T is a one-to-one mapping from V onto W whose
inverse T−1 is bounded with respect to NW , NV . The bounded linear mappings
from V onto itself with bounded inverses are the same as the invertible elements
of BL(V ), as an algebra with respect to composition of mappings.

Suppose that NV and NW are norms on V and W , respectively, and that
T is a bounded linear mapping from V into W that satisfies (3.6.2) for some
C ≥ 0. If V is complete with respect to the metric associated to NV , then it is
easy to see that the image T (V ) of V under T is complete with respect to the
restriction of the metric on W associated to NW to T (V ). This implies that
T (V ) is a closed set in W with respect to the metric associated to NW , by a
standard argument.

3.7 Isometric linear mappings

Let k be a field with an absolute value function | · | again, and let V , W be
vector spaces over k with seminorms NV , NW , respectively, with respect to | · |
on k. A linear mapping T from V into W is said to be an isometry with respect
to NV and NW if

NW (T (v)) = NV (v)(3.7.1)
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for every v ∈ V . Of course, this is the same as saying that

NW (T (v)) ≤ NV (v)(3.7.2)

and
NV (v) ≤ NW (T (v))(3.7.3)

for every v ∈ V . The first condition (3.7.2) means that T is a bounded linear
mapping from V into W with respect to NV and NW , with

∥T∥op,VW ≤ 1,(3.7.4)

where the operator seminorm is as defined in Section 1.9. The second condition
(3.7.3) is the same as (3.6.2), with C = 1.

Let Z be another vector space over k with a seminorm NZ with respect to
| · | on k. Also let T1 be an isometric linear mapping from V intoW with respect
to NV and NW , and let T2 be an isometric linear mapping from W into Z with
respect to NW and NZ . Observe that

NZ((T2 ◦ T1)(v)) = NZ(T2(T1(v))) = NW (T1(v)) = NV (v)(3.7.5)

for every v ∈ V , so that T2 ◦ T1 is an isometric linear mapping from V into Z.
If T is a one-to-one linear mapping from V ontoW , then (3.7.3) is equivalent

to saying that T−1 is a bounded linear mapping from W into V with respect to
NW and NV , with

∥T−1∥op,WV ≤ 1,(3.7.6)

as in the previous section. Thus T is an isometric linear mapping if and only T
and T−1 are bounded linear mappings that satisfy (3.7.4) and (3.7.6). In par-
ticular, T is an isometric linear mapping if and only if T−1 is an isometric linear
mapping. Of course, the identity mapping on V is an isometric linear mapping
from V onto itself with respect to NV . The collection of one-to-one isometric
linear mappings from V onto itself is a group with respect to composition of
mappings.

Suppose now that NW is a semi-ultranorm on W with respect to | · | on k.
Let T be a linear mapping from V into W that satisfies (3.7.3) for every v ∈ V .
Let T1 be another linear mapping from V into W such that

NW (T1(v)− T (v)) < NV (v)(3.7.7)

for every v ∈ V with NV (v) > 0. Under these conditions, we have that

NV (v) ≤ NW (T1(v))(3.7.8)

for every v ∈ V , as in (3.6.10), with C = 1.
Let T be an isometric linear mapping from V into W , and let T1 be a

bounded linear mapping from V into W . If

∥T1 − T∥op,VW ≤ 1,(3.7.9)
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then
∥T1∥op,VW ≤ 1,(3.7.10)

because of (3.7.4) and the hypothesis that NW be a semi-ultranorm on W . If

∥T1 − T∥op,VW < 1,(3.7.11)

then (3.7.7) holds for every v ∈ V with NV (v) > 0, so that T1 satisfies (3.7.8),
as before. This shows that T1 is also an isometric linear mapping from V into
W when (3.7.11) holds.

3.8 Hilbert space isometries

Let (V, ⟨·, ·⟩V ) and (W, ⟨·, ·⟩W ) be inner product spaces, both real or both com-
plex, and let ∥ · ∥V and ∥ · ∥W be the corresponding norms on V and W , respec-
tively, as in Section 1.11. If a linear mapping T from V into W satisfies

⟨T (u), T (v)⟩W = ⟨u, v⟩V(3.8.1)

for every u, v ∈ V , then it is easy to see that T is an isometry with respect to ∥·∥V
and ∥·∥W , by taking u = v. Conversely, if T is an isometric linear mapping from
V into W with respect to ∥ · ∥V and ∥ · ∥W , then one can check that T satisfies
(3.8.1), using polarization identities. An isometric linear mapping from V onto
W is also known as an orthogonal transformation in the real case, and a unitary
transformation in the complex case. The orthogonal or unitary transformations
from V onto itself form a group with respect to composition of mappings.

Suppose that V and W are Hilbert spaces, and that T is a bounded linear
mapping from V into W . Let T ∗ be the corresponding adjoint mapping from
W into V , as in Section 1.11. Observe that

⟨T (u), T (v)⟩W = ⟨u, T ∗(T (v))⟩V(3.8.2)

for every u, v ∈ V . Thus T is an isometric linear mapping from V into W if and
only if

T ∗ ◦ T = IV ,(3.8.3)

where IV is the identity mapping on V . This is the same as saying that

T ∗ = T−1(3.8.4)

when T maps V onto W .
If T is any bounded linear mapping from V into W , then it is well known

that
∥T ∗ ◦ T∥op,V V = ∥T∥2VW ,(3.8.5)

where these operator norms are taken with respect to ∥ · ∥V and ∥ · ∥W , as
appropriate. More precisely,

∥T ∗ ◦ T∥op,V V ≤ ∥T∥op,VW ∥T ∗∥op,WV = ∥T∥2op,VW ,(3.8.6)
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using (1.11.15) in the second step. We also have that

∥T (v)∥2W = ⟨v, T ∗(T (v))⟩V ≤ ∥v∥V ∥T ∗(T (v))∥V(3.8.7)

≤ ∥T ∗ ◦ T∥op,V V ∥v∥2V

for every v ∈ V , by taking u = v in (3.8.2) in the first step, and using the
Cauchy–Schwarz inequality in the second step. This implies that

∥T∥2op,VW ≤ ∥T ∗ ◦ T∥op,V V ,(3.8.8)

as desired.
Observe that w ∈W satisfies T ∗(w) = 0 if and only if

⟨T (v), w⟩W = 0(3.8.9)

for every v ∈ V , by the definition of T ∗. If the image T (V ) of V under T is
dense in W with respect to the metric associated to ∥ · ∥W , then it follows that
T ∗(w) = 0. However, if T (V ) is not dense in W , then there is a w ∈ W such
that w ̸= 0 and (3.8.9) holds for every v ∈ V , by standard results about Hilbert
spaces. Thus T (V ) is dense in W if and only if the kernel of T ∗ is trivial.

Suppose that

∥v∥V ≤ C ∥T (v)∥W(3.8.10)

for some nonnegative real number C and every v ∈ V . This implies that T (V )
is a closed set in W with respect to the metric associated to ∥ ·∥W , as in Section
3.6, because V is complete, by hypothesis. If T (V ) is dense inW , then it follows
that T (V ) =W .

3.9 Preserving bilinear forms

Let k be a commutative ring with a multiplicative identity element, and let A1,
A2, and C be modules over k. Also let β1, β2 be bilinear mappings from A1×A1

and A2 × A2 into C, respectively, as in Section 2.12. Let us say that a module
homomorphism ϕ from A1 into A2 preserves these bilinear mappings if

β2(ϕ(a1), ϕ(b1)) = β1(a1, b1)(3.9.1)

for every a1, b1 ∈ A1. If ϕ is a one-to-one mapping from A1 onto A2, then (3.9.1)
is equivalent to asking that

β1(ϕ
−1(a2), ϕ

−1(b2)) = β2(a2, b2)(3.9.2)

for every a2, b2 ∈ A2. Of course, this is the same as saying that ϕ−1 preserves
β2, β1.

Let A3 be another module over k, and let β3 be a bilinear mapping from
A3 ×A3 into C. Suppose that ϕ1 is a module homomorphism from A1 into A2



64 CHAPTER 3. SUBMULTIPLICATIVITY AND INVERTIBILITY

that preserves β1, β2, and that ϕ2 is a module homomorphism from A2 into A3

that preserves β2, β3. This implies that

β3(ϕ2(ϕ1(a1)), ϕ2(ϕ1(b1))) = β2(ϕ1(a1), ϕ1(b1)) = β1(a1, b1)(3.9.3)

for every a1, b1 ∈ A1, so that ϕ2 ◦ ϕ1 is a module homomorphism from A1 into
A3 that preserves β1, β3.

Let ϕ be a module homomorphism from A1 into A2, and suppose that

β2(ϕ(a), ϕ(a)) = β1(a, a)(3.9.4)

for every a ∈ A1. If a, b ∈ A1, then

β1(a+ b, a+ b) = β1(a, a) + β1(a, b) + β1(b, a) + β1(b, b)(3.9.5)

and

β2(ϕ(a+ b), ϕ(a+ b)) = β2(ϕ(a) + ϕ(b), ϕ(a) + ϕ(b))(3.9.6)

= β2(ϕ(a), ϕ(a)) + β2(ϕ(a), ϕ(b))

+β2(ϕ(b), ϕ(a)) + β2(ϕ(b), ϕ(b)).

It follows that

β2(ϕ(a), ϕ(b)) + β2(ϕ(b), ϕ(a)) = β1(a, b) + β1(b, a)(3.9.7)

for every a, b ∈ A1. If β1 and β2 are symmetric bilinear mappings, and if 1 + 1
is invertible in k, then we get that ϕ preserves β1, β2. Of course, (3.9.4) holds
when ϕ preserves β1, β2.

Let A be a module over k, and remember that the space Homk(A,A) of
module homomorphisms from A into itself is an associative algebra over k with
respect to composition of mappings. If ϕ is a one-to-one module homomorphism
from A onto itself, then ϕ−1 is a module homomorphism from A into itself as
well. In this case, ϕ may be called an module automorphism of A. The module
automorphisms of A are the same as the invertible elements of Homk(A,A), and
form a group with respect to composition of mappings.

A bilinear mapping β from A × A into C is said to be invariant under an
module automorphism ϕ on A if

β(ϕ(a), ϕ(b)) = β(a, b)(3.9.8)

for every a, b ∈ A, which is the same as saying that ϕ preserves β as a bilinear
mapping from A×A into C for both the domain and range. The identity map-
ping on A obviously has this property. The collection of module automorphisms
of A that preserve β is a subgroup of the group of all module automorphisms
of A.
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3.10 Preserving nondegenerate bilinear forms

Let k be a field, let V1, V2 be vector spaces over k, and let b1, b2 be bilinear
forms on V1, V2, respectively. Suppose that V1 has finite dimension, and that
b1 is nondegenerate on V1, as in Section 2.14. Let T be a linear mapping from
V1 into V2. If w2 ∈ V2, then b2(T (v1), w2) defines a linear functional on V1, as
a function of v1. This implies that there is a unique element T ∗(w2) of V1 such
that

b2(T (v1), w2) = b1(v1, T
∗(w2))(3.10.1)

for every v1 ∈ V1. This defines a linear mapping T ∗ from V2 into V1, which is
the adjoint of T with respect to b1, b2. The mapping T 7→ T ∗ is linear as a
mapping from the space L(V1, V2) of linear mappings from V1 into V2 into the
corresponding space L(V2, V1).

Let V3 be another vector space over k with a bilinear form b3, and suppose
that V2 also has finite dimension, and that b2 is nondegenerate on V2. If T1 is
a linear mapping from V1 into V2, and T2 is a linear mapping from V2 into V3,
then their adjoints T ∗

1 and T ∗
2 can be defined as in the preceding paragraph.

Similarly, T2 ◦ T1 is a linear mapping from V1 into V3, whose adjoint can be
defined as in the previous paragraph as well. Observe that

b3((T2 ◦ T1)(v1), w3) = b3(T2(T1(v1)), w3) = b2(T1(v1), T
∗
2 (w3))

= b1(v1, T
∗
1 (T

∗
2 (w3))) = b1(v1, (T

∗
1 ◦ T ∗

2 )(w3))(3.10.2)

for every v1 ∈ V1 and w3 ∈ V3. This implies that

(T2 ◦ T1)∗ = T ∗
1 ◦ T ∗

2(3.10.3)

as linear mappings from V3 into V1.
Let us continue to suppose for the moment that V2 has finite dimension, and

that b2 is nondegenerate on V2. If T is a linear mapping from V1 into V2 and
T ∗ = 0 on V2, then T = 0 on V1, because of (3.10.1) and the nondegeneracy of
b2 on V2. This implies that T 7→ T ∗ is a one-to-one mapping from L(V1, V2) onto
L(V2, V1), because L(V1, V2) and L(V2, V1) are finite-dimensional vector spaces
over k with the same dimension. Let T be a linear mapping from V1 into V2
again, and note that the adjoint (T ∗)∗ of the adjoint T ∗ of T can be defined as
a linear mapping from V1 into V2 in the same way in this situation. If b1 and
b2 are symmetric on V1 and V2, respectively, then

b2(T (v1), w2) = b1(T
∗(w2), v1) = b2(w2, (T

∗)∗(v1))(3.10.4)

= b2((T
∗)∗(v1), w2)

for every v1 ∈ V1 and w2 ∈ V2. Similarly, if b1 and b2 are antisymmetric on V1
and V2, respectively, then

b2(T (v1), w2) = −b1(T ∗(w2), v1) = −b2(w2, (T
∗)∗(v1))(3.10.5)

= b2((T
∗)∗(v1), w2)
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for every v1 ∈ V1 and w2 ∈ V2. In both cases, it follows that

(T ∗)∗ = T.(3.10.6)

If one of b1 and b2 is symmetric, and the other is antisymmetric, then

(T ∗)∗ = −T,(3.10.7)

by the analogous argument.
If T is any linear mapping from V1 into V2, then

b2(T (v1), T (w1)) = b1(v1, T
∗(T (w1)))(3.10.8)

for every v1, w1 ∈ V1, by the definition of T ∗. Thus T preserves b1, b2, as in the
previous section, if and only if

T ∗ ◦ T = IV1
,(3.10.9)

where IV1
is the identity mapping on V1. In particular, this implies that T is

injective, which could also be obtained more directly from the nondegeneracy
of b1 on V1. If V2 has the same dimension as V1, then it follows that T maps V1
onto V2. In this case, we get that

T ∗ = T−1.(3.10.10)

3.11 Preserving sesquilinear forms

Let V1, V2 be vector spaces over the complex numbers, and let b1, b2 be sesquilin-
ear forms on V1, V2, respectively. Let us say that a linear mapping T from V1
into V2 preserves b1, b2 if

b2(T (v1), T (w1)) = b1(v1, w1)(3.11.1)

for every v1, w1 ∈ V1. If T is a one-to-one linear mapping from V1 onto V2, then
this is the same as saying that

b1(T
−1(v2), T

−1(w2)) = b2(v2, w2)(3.11.2)

for every v2, w2 ∈ V2, which means that T−1 preserves b2, b1.
Let V3 be another complex vector space with a sesquilinear form b3. If T1

is a linear mapping from V1 into V2 that preserves b1, b2, and T2 is a linear
mapping from V2 into V3 that preserves b2, b3, then it is easy to see that their
composition T2 ◦ T1 preserves b1, b3.

Let T be a linear mapping from V1 into V2 that satisfies

b2(T (u1), T (u1)) = b1(u1, u1)(3.11.3)

for every u1 ∈ V . One can check that T satisfies (3.11.1) for every v1, w1 ∈ V1,
by applying (3.11.3) to u1 = v1 + w1 and to u1 = v1 + i w1. Of course, (3.11.1)
implies (3.11.3), by taking v1, w1 = u1.
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Let V be a complex vector space, and let T be a one-to-one linear mapping
from V onto itself. A sesquilinear form b on V is said to be invariant under T
if

b(T (v), T (w)) = b(v, w)(3.11.4)

for every v, w ∈ V , which is to say that T preserves b as a sesquilinear form on
both the domain and range. The collection of one-to-one linear mappings from
V onto itself that preserve b is a group with respect to composition.

Let V1, V2 be complex vector spaces again, and let b1, b2 be sesquilinear
forms on them, respectively. Let us suppose for the rest of the section that V1
has finite dimension, and that b1 is nondegenerate on V1, as in Section 2.15.
Let T be a linear mapping from V1 into V2, and let w2 ∈ V2 be given. Thus
b2(T (v1), w2) is a linear functional on V1, as a function of v1, so that there is a
unique element T ∗(w2) of V1 such that

b2(T (v1), w2) = b1(v1, T
∗(w2))(3.11.5)

for every v1 ∈ V1. One can check that T ∗ is a linear mapping from V2 into V1,
and that the mapping from T to its adjoint T ∗ is conjugate-linear as a mapping
from L(V1, V2) into L(V2, V1).

Let V3 be another complex vector space with a sesquilinear form b3, and
suppose that V2 has finite dimension, and that b2 is nondegenerate on b2. If T1
is a linear mapping from V1 into V2, and T2 is a linear mapping from V2 into
V3, then T2 ◦ T1 is a linear mapping from V1 into V3, and the adjoints of T1, T2,
and T3 can be defined as in the preceding paragraph. Under these conditions,
one can verify that

(T2 ◦ T1)∗ = T ∗
1 ◦ T ∗

2 ,(3.11.6)

as linear mappings from V3 into V1.
Let us continue to ask for the moment that V2 have finite dimension, and

that b2 be nondegenerate on V2. If T is a linear mapping from V1 into V2 such
that T ∗ = 0 on V2, then T = 0 on V1, because of (3.11.5) and the nondegeneracy
of b2 on V2. It follows that T 7→ T ∗ is a one-to-one mapping from L(V1, V2) onto
L(V2, V1), because L(V1, V2) and L(V2, V1) are finite-dimensional vector spaces
over C with the same dimension. Let T be a linear mapping from V1 into V2
again, so that the adjoint (T ∗)∗ of T ∗ is defined as a linear mapping from V1 into
V2. Suppose that b1 and b2 are Hermitian-symmetric on V1 and V2, respectively.
Under these conditions, we have that

b2(T (v1), w2) = b1(T ∗(w2), v1) = b2(w2, (T ∗)∗(v1))(3.11.7)

= b2((T
∗)∗(v1), w2)

for every v1 ∈ V1 and w2 ∈ V2. This implies that

(T ∗)∗ = T(3.11.8)

in this situation.
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As before,
b2(T (v1), T (w1)) = b1(v1, T

∗(T (w1)))(3.11.9)

for every linear mapping T from V1 into V2 and v1, w1 ∈ V1. This implies that
T preserves b1, b2 if and only if

T ∗ ◦ T = IV1
,(3.11.10)

because b1 is nondegenerate on V1. Note that T is injective in this case. If T
maps V1 onto V2, then (3.11.10) is the same as saying that

T ∗ = T−1.(3.11.11)

Of course, surjectivity of T follows from injectivity when V2 has the same di-
mension as V1.

3.12 Bilinear forms and matrices

Let k be a commutative ring with a multiplicative identity element, and let n be
a positive integer. The space kn of n-tuples of elements of k is a (free) module
over k with respect to coordinatewise addition and scalar multiplication. Let C
be another module over k, and let (βj,l) be an n× n matrix with entries in C.
Put

β(x, y) =

n∑
j=1

n∑
l=1

βj,l xl yj(3.12.1)

for every x, y ∈ kn, where the terms of the sum are defined using multiplication
on k and scalar multiplication on C. This defines a mapping from kn × kn into
C that is bilinear over k, and it is easy to see that every bilinear mapping from
kn × kn into C can be expressed as (3.12.1) in a unique way.

Observe that (3.12.1) is symmetric as a bilinear mapping from kn × kn into
C if and only if (βj,l) is symmetric as a matrix, which is to say that

βl,j = βj,l(3.12.2)

for every j, l = 1, . . . , n. Similarly, (3.12.1) is antisymmetric as a bilinear map-
ping from kn × kn into C if and only if (βj,l) is antisymmetric as a matrix, in
the sense that

βl,j = −βj,l(3.12.3)

for every j, l = 1, . . . , n. Remember that (3.12.1) is antisymmetric as a bilinear
mapping from kn × kn into C when

β(x, x) = 0(3.12.4)

for every x ∈ kn, as in Section 2.1. In this situation, one can check that (3.12.4)
holds for every x ∈ kn if and only if (βj,l) is antisymmetric and

βj,j = 0(3.12.5)
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for every j = 1, . . . , n. If 1 + 1 is invertible in k, then (3.12.3) implies (3.12.5),
by taking j = l.

Let a = (aj,l) be an n×n matrix with entries in k. If x ∈ kn, then let Ta(x)
be the element of kn whose jth coordinate is given by

(Ta(x))j =

n∑
l=1

aj,l xl(3.12.6)

for each j = 1, . . . , n. This defines a module homomorphism from kn into itself,
and every module homomorphism from kn into itself corresponds to a unique
a ∈ Mn(k) in this way. More precisely, a 7→ Ta is an isomorphism from Mn(k)
as an algebra over k with respect to matrix multiplication onto the algebra
Homk(k

n, kn) of module homomorphisms from kn into itself with respect to
composition of mappings. This corresponds to some of the remarks in Section
2.10 when k is a field.

Let a ∈Mn(k) be given again, and observe that

β(Ta(x), y) =
n∑
j=1

n∑
l=1

n∑
r=1

βr,j aj,l xl yr(3.12.7)

for every x, y ∈ kn, where the terms of the sum are again defined using multi-
plication on k and scalar multiplication on C. Similarly,

β(x, Ta(y)) =

n∑
j=1

n∑
l=1

n∑
r=1

βj,l aj,r xl yr(3.12.8)

for every x, y ∈ kn. It follows that Ta is symmetric with respect to β, as in
Section 2.12, if and only if

n∑
j=1

βr,j aj,l =

n∑
j=1

βj,l aj,r(3.12.9)

for every l, r = 1, . . . , n. Similarly, Ta is antisymmetric with respect to β if and
only if

n∑
j=1

βr,j aj,l = −
n∑
j=1

βj,l aj,r(3.12.10)

for every l, r = 1, . . . , n.
We also have that

β(Ta(x), Ta(y)) =

n∑
j=1

n∑
l=1

n∑
m=1

n∑
r=1

βm,j aj,l am,r xl yr(3.12.11)

for every x, y ∈ kn, where the terms of the sum are defined using multiplication
on k and scalar multiplication on C. Thus Ta preserves β, as in Section 3.9, if
and only if

n∑
j=1

n∑
m=1

βm,j aj,l am,r = βr,l(3.12.12)
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for every l, r = 1, . . . , n. Note that Ta is a module automorphism of kn exactly
when a is invertible in Mn(k).

Let b ∈Mn(k) be given, so that Tb can be defined as before, and

β(x, Tb(y)) =

n∑
j=1

n∑
l=1

n∑
r=1

βj,l bj,r xl yr(3.12.13)

for every x, y ∈ kn, as in (3.12.8). Comparing this with (3.12.7), we get that

β(Ta(x), y) = β(x, Tb(y))(3.12.14)

for every x, y ∈ kn if and only if

n∑
j=1

βr,j aj,l =

n∑
j=1

βj,lbj,r(3.12.15)

for every l, r = 1, . . . , n.

The product of an n× n matrix with entries in C and an n× n matrix with
entries in k, in either order, can be defined as an n × n matrix with entries in
C in the usual way. Let us also use β to denote (βj,l), as an element of Mn(C).
Thus (3.12.9) is the same as saying that

β a = at β(3.12.16)

as elements ofMn(C), where a
t is the transpose of a, as in Section 2.8. Similarly,

(3.12.10) is the same as saying that

β a = −at β(3.12.17)

as elements of Mn(C). We can reexpress (3.12.12) as

at β a = β,(3.12.18)

and (3.12.15) as

β a = bt β.(3.12.19)

Let us now take C = k, as a module over itself with respect to multiplication
on k. If β is invertible in Mn(k), then (3.12.19) is the same as saying that

bt = β−1 a β.(3.12.20)

If k is a field, then the invertibility of β in Mn(k) is equivalent to the nondegen-
eracy of the corresponding bilinear form (3.12.1) on kn as a vector space over
k, as in Section 2.14. In this case, (3.12.20) characterizes Tb as the adjoint of
Ta with respect to (3.12.1).
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3.13 Sesquilinear forms and matrices

Let n be a positive integer, so that the space Cn of n-tuples of complex numbers
is a vector space over C with respect to coordinatewise addition and scalar
multiplication, as usual. Also let (βj,l) be an n × n matrix with entries in C,
and put

β(z, w) =

n∑
j=1

n∑
l=1

βj,l zl wj(3.13.1)

for every z, w ∈ Cn. This defines a sesquilinear form on Cn, and one can check
that every sesquilinear form on Cn corresponds to a unique matrix (βj,l) in this
way. Note that (3.13.1) is Hermitian-symmetric on Cn if and only if

βl,j = βj,l(3.13.2)

for every j, l = 1, . . . , n.
If a = (aj,l) ∈ Mn(C) and z ∈ Cn, then let Ta(z) be the element of Cn

whose jth coordinate is given by

(Ta(z))j =

n∑
l=1

aj,l zl(3.13.3)

for each j = 1, . . . , n, as before. This defines a linear mapping from Cn into
itself, and a 7→ Ta is an isomorphism from Mn(C) as an algebra over C with
respect to matrix multiplication onto the algebra L(Cn) of linear mappings from
Cn into itself with respect to composition of mappings, as in Section 2.10 and
the previous section. Remember that a∗ = ((a∗)j,l) ∈Mn(C) is defined for each
a ∈Mn(C) by

(a∗)j,l = al,j ,(3.13.4)

as in Section 2.8, and that a 7→ a∗ is a conjugate-linear involution on Mn(C).
Let a ∈Mn(C) be given, and observe that

β(Ta(z), w) =

n∑
j=1

n∑
l=1

n∑
r=1

βr,j aj,l zl wr(3.13.5)

for every z, w ∈ Cn. Similarly,

β(z, Ta(w)) =

n∑
j=1

n∑
l=1

n∑
r=1

βj,l aj,r zl wr(3.13.6)

for every z, w ∈ Cn. Thus Ta is self-adjoint with respect to β, as in Section
2.15, if and only if

n∑
j=1

βr,j aj,l =

n∑
j=1

βj,l aj,r(3.13.7)
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for every l, r = 1, . . . , n. If we also use β to denote (βj,l) as an element of
Mn(C), then (3.13.7) is the same as saying that

β a = a∗ β.(3.13.8)

Observe that

β(Ta(z), Ta(w)) =

n∑
j=1

n∑
l=1

n∑
m=1

n∑
r=1

βm,j aj,l am,r zl wr(3.13.9)

for every z, w ∈ Cn. It follows that Ta preserves β(·, ·), as in Section 3.11, if
and only if

n∑
j=1

n∑
m=1

βm,j aj,l am,r = βr,l(3.13.10)

for every l, r = 1, . . . , n. This is the same as saying that

a∗ β a = β(3.13.11)

as elements of Mn(C).

If b ∈Mn(C), then Tb can be defined as in (3.13.3), and

β(z, Tb(w)) =

n∑
j=1

n∑
l=1

n∑
r=1

βj,l bj,r zl wr(3.13.12)

for every z, w ∈ Cn, as before. Hence

β(Ta(z), w) = β(z, Tb(w))(3.13.13)

for every z, w ∈ Cn if and only if

n∑
j=1

βr,j aj,l =

n∑
j=1

βj,l bj,r(3.13.14)

for every l, r = 1, . . . , n. This is the same as saying that

β a = b∗ β(3.13.15)

as elements ofMn(C). Suppose that (βj,l) is invertible as an element ofMn(C),
which is equivalent to the nondegeneracy of β(·, ·) as a sesquilinear form on Cn,
as in Section 2.15. In this situation, (3.13.15) is the same as saying that

b∗ = β a β−1,(3.13.16)

which characterizes Tb as the adjoint of Ta with respect to β(·, ·).
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3.14 Invertibility and involutions

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element e. Also
let x 7→ x∗ be an opposite algebra automorphism on A, as in Section 2.6. Thus
e∗ = e, as before. If x is an invertible element of A, then

x∗ (x−1)∗ = (x−1 x)∗ = e∗ = e(3.14.1)

and
(x−1)∗ x∗ = (xx−1)∗ = e∗ = e.(3.14.2)

This implies that x∗ is invertible in A, with

(x∗)−1 = (x−1)∗.(3.14.3)

Let β be an element of A, and let us say that x ∈ A is self-adjoint with
respect to β and the given opposite algebra automorphism on A if

β x = x∗ β.(3.14.4)

Similarly, let us say that x is anti-self-adjoint with respect to β and the given
opposite algebra automorphism on A if

β x = −x∗ β.(3.14.5)

If β = e, then these reduce to the usual notions of self-adjointness and anti-
self-adjointness with respect to the given opposite algebra automorphism on A,
as in Section 2.6. The collections of self-adjoint and anti-self-adjoint elements
of A with respect to β and the given opposite algebra automorphism on A are
submodules of A, as a module over k.

Suppose for the moment that x, y ∈ A are both anti-self-adjoint with respect
to β and the given opposite algebra automorphism on A. This implies that

β x y = −x∗ β y = x∗ y∗ β = (y x)∗ β(3.14.6)

and
β y x = −y∗ β x = y∗ x∗ β = (x y)∗ β.(3.14.7)

If [x, y] = x y − y x is the usual commutator of x and y in A, then we get that

β [x, y] = β x y − β y x = (y x)∗ β − (x y)∗ β = −([x, y])∗ β.(3.14.8)

Thus [x, y] is anti-self-adjoint with respect to β and the given opposite algebra
automorphism on A too.

Suppose that x, y ∈ A satisfy

x∗ β x = β(3.14.9)

and
y∗ β y = β.(3.14.10)
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This implies that

(x y)∗ β x y = y∗ x∗ β x y = y∗ β y = β.(3.14.11)

Note that (3.14.9) holds when x = e, because e∗ = e. If x is an invertible
element of A that satisfies (3.14.9), then

β = (x∗)−1 β x−1 = (x−1)∗ β x−1,(3.14.12)

using (3.14.3) in the second step. This shows that the collection of invertible
elements x of A that satisfy (3.14.9) forms a group with respect to multiplication.

If β is an invertible element of A, then

ϕβ(x) = β−1 x∗ β(3.14.13)

defines an opposite algebra automorphism on A. In this case, (3.14.4) is equiv-
alent to

ϕβ(x) = x,(3.14.14)

which means that x is self-adjoint with respect to ϕβ . Similarly, (3.14.5) is
equivalent to

ϕβ(x) = −x,(3.14.15)

which means that x is anti-self-adjoint with respect to ϕβ . We also have that
(3.14.9) is equivalent to

ϕβ(x)x = e,(3.14.16)

which is the same as saying that

x−1 = ϕβ(x)(3.14.17)

when x is invertible in A. Of course, (3.14.13) reduces to the given opposite
algebra automorphism x 7→ x∗ on A when β = e.

Suppose for the moment that x 7→ x∗ is an involution on A, as in Section
2.6. If x, β ∈ A, then

(β x)∗ = x∗ β∗(3.14.18)

and

(x∗ β)∗ = β∗ (x∗)∗ = β∗ x.(3.14.19)

It follows that x is self-adjoint or anti-self-adjoint with respect to β and the given
involution on A if and only if x is self-adjoint or anti-self-adjoint, respectively,
with respect to β∗ and the given involution on A. We also have that

(x∗ β x)∗ = x∗ β∗ (x∗)∗ = x∗ β x(3.14.20)

for every x, β ∈ A, so that (3.14.9) is equivalent to

x∗ β∗ x = β∗.(3.14.21)
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Let β be an invertible element of A again, so that ϕβ can be defined on A
as in (3.14.13). Observe that

(ϕβ(x))
∗ = (β−1 x∗ β)∗ = β∗ (x∗)∗ (β−1)∗ = β∗ x (β∗)−1(3.14.22)

for every x ∈ A, using the hypothesis that x 7→ x∗ be an involution on A and
(3.14.3) for β in the last step. Thus

ϕβ(ϕβ(x)) = β−1 β∗ x (β∗)−1 β(3.14.23)

for every x ∈ A. If β is either self-adjoint or anti-self-adjoint with respect to
the given involution on A, then it follows that ϕβ is an involution on A as well.

Suppose now that k is the field C of complex numbers, and that x 7→ x∗ is a
conjugate-linear opposite algebra automorphism on A, as in Section 2.6. Thus
x 7→ x∗ may be considered as a real-linear opposite algebra automorphism on
A as an algebra over R, as before. In particular, if β ∈ A, then the collections
of elements of A that are self-adjoint or anti-self-adjoint with respect to β and
x 7→ x∗ are real-linear subspaces of A. In this situation, x ∈ A is anti-self-adjoint
with respect to β if and only if i x is self-adjoint with respect to β.

3.15 Invertibility and seminorms

Let k be a field with an absolute value function | · |, and let A be an associative
algebra over k with a submultiplicative seminorm NA with respect to | · | on k.
Suppose that A has a multiplicative identity element e such that

NA(e) = 1.(3.15.1)

If x is an invertible element of A, then it follows that

NA(x)NA(x
−1) ≥ 1.(3.15.2)

In particular, if we have that

NA(x), NA(x
−1) ≤ 1,(3.15.3)

then
NA(x) = NA(x

−1) = 1.(3.15.4)

Let y be another invertible element of A such that

NA(y), NA(y
−1) ≤ 1.(3.15.5)

Thus x y is an invertible element of A too,

NA(x, y) ≤ NA(x)NA(y) ≤ 1,(3.15.6)

and
NA((x y)

−1) = NA(y
−1 x−1) ≤ NA(x

−1)NA(y
−1) ≤ 1.(3.15.7)
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This shows that the collection of invertible elements x of A that satisfy (3.15.3)
forms a group with respect to multiplication.

Suppose that NA is a semi-ultranorm on A, and that x is an invertible
element of A that satisfies (3.15.3). Let y be another invertible element of A
such that

NA(x− y) < 1.(3.15.8)

This implies that

NA(y) ≤ max(NA(x), NA(x− y)) ≤ 1.(3.15.9)

We also have that
NA(y

−1) = NA(x
−1) ≤ 1,(3.15.10)

as in (3.4.9). Thus y satisfies (3.15.5) under these conditions.
Let A be an algebra over k in the strict sense, and let NA be a seminorm on

A with respect to |·| on k. Also let x 7→ x∗ be an opposite algebra automorphism
on A, as in Section 2.6. A basic compatibility condition between x 7→ x∗ and
NA is that there be a nonnegative real number C1 such that

NA(x
∗) ≤ C1NA(x)(3.15.11)

for every x ∈ A. This is the same as saying that x 7→ x∗ is bounded as a
linear mapping from A into itself, using NA on the domain and range. Another
compatibility condition is that there be a nonnegative real number C2 such that

NA(x) ≤ C2NA(x
∗)(3.15.12)

for every x ∈ A. In particular, (3.15.11) and (3.15.12) hold with C1 = C2 = 1 if
and only if

NA(x
∗) = NA(x)(3.15.13)

for every x ∈ A, which is to say that x 7→ x∗ is an isometric linear mapping
from A into itself with respect to NA. If x 7→ x∗ is an involution on A, then
(3.15.11) and (3.15.12) are equivalent, and with the same constant. If k is the
field of complex numbers with the standard absolute value function, then one
can consider conjugate-linear opposite algebra automorphisms on A as well.



Chapter 4

Formal power series

4.1 Direct sums and products

Let k be a commutative ring with a multiplicative identity element, and let I
be a nonempty set. Suppose that for each j ∈ I, Aj is a module over k. Under
these conditions, the Cartesian product

∏
j∈I Aj of the Aj ’s is a module over

k too, with respect to coordinatewise addition and scalar multiplication. This
is the direct product of the Aj ’s, j ∈ I. If a ∈

∏
j∈I Aj and l ∈ I, then we let

al be the lth coordinate of a in Al. Thus a 7→ al is the standard coordinate
projection from

∏
j∈I Aj onto Al. Of course, this mapping is linear over k.

Let
⊕

j∈I Aj be the set of a ∈
∏
j∈I Aj such that al = 0 for all but finitely

many l ∈ I. This is the direct sum of Aj , j ∈ I. Note that
⊕

j∈I Aj is a
submodule of

∏
j∈I Aj , as a module over k. If I has only finitely many elements,

then
⊕

j∈I Aj is the same as
∏
j∈I Aj . If I = {1, . . . , n} for some n ∈ Z+, then

we may use the notation
⊕n

j=1Aj or
∏n
j=1Aj .

If Aj is an algebra over k in the strict sense for each j ∈ I, then
∏
j∈I Aj is an

algebra in the strict sense over k with respect to coordinatewise multiplication,
and

⊕
j∈I Aj is a two-sided ideal in

∏
j∈I Aj . If Aj is commutative for every

j ∈ I, then
∏
j∈I Aj is commutative as well. Similarly, if Aj is associative

for every j ∈ I, then
∏
j∈I Aj is associative. If Aj has a multiplicative identity

element for every j ∈ I, then we get a multiplicative identity element in
∏
j∈I Aj .

If Aj is a Lie algebra for every j ∈ I, then
∏
j∈I Aj is a Lie algebra.

Now let k be a field with an absolute value function | · |, and let I be a
nonempty set again. Suppose that Vj is a vector space over k for each j ∈ I, so
that the direct product

∏
j∈I Vj is a vector space over k too. If Nl is a seminorm

on Vl with respect to | · | on k for some l ∈ I, then it is easy to see that

Ñl(v) = Nl(vl)(4.1.1)

defines a seminorm on
∏
j∈I Vj with respect to |·| on k. If Nl is a semi-ultranorm

on Vl, then (4.1.1) is a semi-ultranorm on
∏
j∈I Vj .

77
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As before, the direct sum
⊕

j∈I Vj is a linear subspace of
∏
j∈I Vj . Suppose

that Nj is a seminorm on Vj for each j ∈ I, and put

Ñ1(v) =
∑
j∈I

Nj(vj)(4.1.2)

for every v ∈
⊕

j∈I Vj . More precisely, if v ∈
⊕

j∈I Vj , then vj = 0 for all but
finitely many j ∈ I, so that the sum on the right side of (4.1.2) reduces to a
finite sum of nonnegative real numbers. One can check that (4.1.2) defines a
seminorm on

⊕
j∈I Vj with respect to | · | on k, which is a norm when Nj is a

norm on Vj for every j ∈ I.
Similarly, put

Ñ∞(v) = max
j∈I

Nj(vj)(4.1.3)

for every v ∈
⊕

j∈I Vj , which reduces to the maximum of finitely many nonneg-
ative real numbers. One can verify that this defines a seminorm on

⊕
j∈I Vj ,

which is a norm when Nj is a norm on Vj for every j ∈ I. If Nj is a semi-
ultranorm on Vj for each j ∈ I, then (4.1.3) is a semi-ultranorm on

⊕
j∈I Vj .

Observe that
Ñ∞(v) ≤ Ñ1(v)(4.1.4)

for every v ∈
⊕

j∈I Vj . If I has only finitely many elements, then

Ñ1(v) ≤ (#I) Ñ∞(v)(4.1.5)

for every v ∈
⊕

j∈I Vj , where #I is the number of elements in I.
Let aj be a positive real number for each j ∈ I. As before,

Ñ1
a (v) =

∑
j∈I

aj Nj(vj)(4.1.6)

defines a seminorm on
⊕

j∈I Vj with respect to | · | on k. Similarly,

Ñ∞
a (v) = max

j∈I
(aj Nj(vj))(4.1.7)

defines a seminorm on
⊕

j∈I Vj with respect to | · | on k, which is a semi-
ultranorm when Nj is a semi-ultranorm on Vj for each j ∈ I. Clearly

Ñ∞
a (v) ≤ Ñ1

a (v)(4.1.8)

for every v ∈
⊕

j∈I Vj . If I has only finitely many elements, then

Ñ1
a (v) ≤

(∑
j∈I

aj

)
Ñ∞(v)(4.1.9)

for every v ∈
⊕

j∈I Vj . If I has infinitely many elements, then
∑
j∈I aj can be

defined as an extended real number, as the supremum of the corresponding finite
subsums. If the supremum is finite, then (4.1.9) still holds and is nontrivial.
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4.2 Bilinear mappings and Cauchy products

Let k be a commutative ring with a multiplicative identity element, let A, B,
and C be modules over k, and let β be a mapping from A × B into C that is
bilinear over k. Also let

∑∞
j=0 aj and

∑∞
l=0 bl be infinite series with terms in A

and B, respectively, considered formally for the moment. Put

cn =

n∑
j=0

β(aj , bn−j)(4.2.1)

for each nonnegative integer n. It is easy to see that

∞∑
n=0

cn = β
( ∞∑
j=0

aj ,

∞∑
l=0

bl

)
,(4.2.2)

at least formally. More precisely, suppose for the moment that there are non-
negative integers J , L such that aj = 0 when j > J and bl = 0 when l > L. If
n > J+L, then it follows that cn = 0. Thus the infinite series

∑∞
j=0 aj ,

∑∞
l=0 bl,

and
∑∞
n=0 cn reduce to the finite sums

∑J
j=0 aj ,

∑L
l=0 bl, and

∑J+L
n=0 cn, respec-

tively, and the formal argument for (4.2.2) works in this case.
In particular, if A is an algebra over k in the strict sense, then we can take β

to be the corresponding mapping from A×A into A. Let
∑∞
j=0 aj and

∑∞
l=0 bl

be infinite series with terms in A, and let us express multiplication of a, b ∈ A
as a b. The Cauchy product of these series is defined to be the series

∑∞
n=0 cn,

where

cn =

n∑
j=0

aj bn−j ,(4.2.3)

as in (4.2.1). Thus
∞∑
n=0

cn =
( ∞∑
j=0

aj

)( ∞∑
l=0

bl

)
,(4.2.4)

at least formally, as before.
Suppose for the moment that k = R with the standard absolute value func-

tion, and that aj , bl are nonnegative real numbers for every j, l ≥ 0. If cn is as
in (4.2.3), then cn is a nonnegative real number for every n ≥ 0. If J , L are
nonnegative integers, then one can verify that

( J∑
j=0

aj

)( L∑
l=0

bl

)
≤
J+L∑
n=0

cn.(4.2.5)

Similarly, if N is a nonnegative integer, then

N∑
n=0

cn ≤
( N∑
j=0

aj

)( N∑
l=0

bl

)
.(4.2.6)
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If
∑∞
j=0 aj and

∑∞
l=0 bl converge, then it follows that

∑∞
n=0 cn converges, and

that the sums satisfy (4.2.4).
Let k be any field with an absolute value function | · |, and let A, B, and C

be vector spaces over k with norms NA, NB , and NC , respectively, with respect
to | · | on k. Also let β be a bounded bilinear mapping from A×B into C with
respect to these norms, so that there is a nonnegative real number C(β) such
that

NC(β(a, b)) ≤ C(β)NA(a)NB(b)(4.2.7)

for every a ∈ A and b ∈ B. Suppose that A, B, and C are complete with respect
to the metrics associated to NA, NB , and NC , respectively. Let

∑∞
j=0 aj and∑∞

l=0 bl be infinite series with terms in A and B that converge absolutely with
respect to NA and NB , respectively, so that

∑∞
j=0NA(aj) and

∑∞
l=0NB(bl)

converge as infinite series of nonnegative real numbers. If cn is as in (4.2.1),
then

NC(cn) ≤
n∑
j=0

NC(β(aj , bn−j)) ≤ C(β)

n∑
j=0

NA(aj)NB(bn−j)(4.2.8)

for every n ≥ 0. The sum on the right side of (4.2.8) is the same as the nth
term of the Cauchy product of

∑∞
j=0NA(aj) and

∑∞
l=0NB(bl). It follows that∑∞

n=0NC(cn) converges as an infinite series of nonnegative real numbers, with

∞∑
n=0

NC(cn) ≤ C(β)
( ∞∑
j=0

NA(aj)
)( ∞∑

l=0

NB(bl)
)
.(4.2.9)

Thus
∑∞
n=0 cn converges absolutely with respect to NC , and

∑∞
j=0 aj ,

∑∞
l=0 bl,

and
∑∞
n=0 cn converge in A, B, and C, respectively, by completeness. One can

check that (4.2.2) holds in this situation, by approximating these sums by finite
sums.

Suppose now that NA, NB , and NC are ultranorms on A, B, and C, respec-
tively, and let

∑∞
j=0 aj and

∑∞
l=0 bl be infinite series with terms in A and B,

respectively, such that

lim
j→∞

NA(aj) = lim
l→∞

NB(bl) = 0.(4.2.10)

If cn is as in (4.2.1) again, then

NC(cn) ≤ max
0≤j≤n

NC(β(aj , bn−j)) ≤ C(β) max
0≤j≤n

(NA(aj)NB(bl))(4.2.11)

for every n ≥ 0. One can verify that

lim
n→∞

NC(cn) = 0,(4.2.12)

using (4.2.10) and (4.2.11). It follows that
∑∞
j=0 aj ,

∑∞
l=0 bl, and

∑∞
n=0 cn

converge in A, B, and C, respectively, because of completeness, as in Section
1.12. One can check that (4.2.2) holds in this situation too, by approximating
these sums by finite sums, as before.
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4.3 Formal power series and modules

Let k be a commutative ring with a multiplicative identity element, let A be a
module over k, and let T be an indeterminate. As in [4, 11], we shall try to use
upper-case letters like T for indeterminates, and lower-case letters for elements
of k or A. A formal power series in T with coefficients in A can be expressed as

f(T ) =

∞∑
j=0

fj T
j ,(4.3.1)

where fj is an element of A for each nonnegative integer j. The space A[[T ]]
of these formal power series can be defined as the space of functions on the set
Z+ ∪ {0} of nonnegative integers with values in A, where (4.3.1) corresponds
to j 7→ fj as an A-valued function on Z+ ∪ {0}. This is a module over k with
respect to pointwise addition and scalar multiplication of A-valued functions on
Z+ ∪ {0}, which corresponds to termwise addition and scalar multiplication of
formal power series as in (4.3.1).

Similarly, a formal polynomial in T with coefficients in A can be expressed
as

f(T ) =

n∑
j=0

fj T
j(4.3.2)

for some nonnegative integer n, where fj ∈ A for each j = 0, . . . , n. This may
be considered as a formal power series in T too, with fj = 0 for j > n. The
space A[T ] of these formal polynomials can be defined as the space of A-valued
functions on Z+ ∪ {0} that are equal to 0 at all but finitely many nonnegative
integers. Of course, A[T ] is a submodule of A[[T ]], as a module over k. Observe
that A[[T ]] corresponds to the direct product of copies of A indexed by the set
Z+∪{0} of nonnegative integers, as a module over k, and that A[T ] corresponds
to the analogous direct sum.

There is a natural mapping from A into A[T ], which sends a ∈ A to the
formal polynomial f(T ) with f0 = a and fj = 0 when j ≥ 1. This is an injective
module homomorphism from A into A[T ], and it is sometimes convenient to
think of A as a submodule of A[T ] in this way. Note that the mapping

f(T ) 7→ f0(4.3.3)

is a module homomorphism from A[[T ]] onto A.
If f(T ) ∈ A[[T ]] and l is a nonnegative integer, then

f(T )T l =

∞∑
j=0

fj T
j+l =

∞∑
j=l

fj−l T
j(4.3.4)

defines an element of A[[T ]], which is the same as f(T ) when l = 0. Of course,
(4.3.4) is in A[T ] when f(T ) ∈ A[T ]. The mapping

f(T ) 7→ f(T )T l(4.3.5)
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is an injective module homomorphism from A[[T ]] into itself for every l ≥ 0.

Let us say that f(T ) ∈ A[[T ]] vanishes to order n for some nonnegative
integer n if fj = 0 for every j = 0, . . . , n. Equivalently, this means that f(T ) =
g(T )Tn+1 for some g(T ) ∈ A[[T ]]. The collection of f(T ) ∈ A[[T ]] that vanishes
to order n is a submodule of A[[T ]]. This submodule is the same as the kernel
of (4.3.3) when n = 0.

4.4 Sums and extensions

Let k be a commutative ring with a multiplicative identity element, let A be
a module over k, and let T be an indeterminate again. Also let fl(T ) =∑∞
j=0 fl,j T

j be an element of A[[T ]] for each l ∈ Z+, and let f(T ) be an-
other element of A[[T ]]. Let us say that {fl(T )}∞l=1 eventually agrees with f(T )
termwise if for each nonnegative integer j there is a positive integer Lj such
that

fl,j = fj(4.4.1)

for every l ≥ Lj . This implies that fl(T )− f(T ) vanishes to order n ≥ 0 when
l ≥ max(L0, . . . , Ln). As in the previous section, A[[T ]] can be defined as the
space of A-valued functions on Z+ ∪ {0}, which is the same as the Cartesian
product of the family of copies of A indexed by Z+ ∪{0}. Consider the product
topology on A[[T ]] as a Cartesian product, using the discrete topology on A
in each factor. The condition that {fl(T )}∞l=1 eventually agree termwise with
f(T ) is equivalent to the convergence of {fl(T )}∞l=1 to f(T ) with respect to this
product topology.

Similarly, let us say that {fl(T )}∞l=1 is termwise eventually constant if for
each nonnegative integer j there is an Lj ∈ Z+ such that fl,j does not depend
on l when l ≥ Lj . In this case, we can define fj ∈ A for each j ≥ 0 by
putting fj = fl,j when l ≥ Lj . This defines f(T ) =

∑∞
j=0 fj T

j as an element
of A[[T ]], and we have that {fl(T )}∞l=1 eventually agrees termwise with f(T ).
Conversely, if {fl(T )}∞l=1 eventually agrees termwise with some f(T ) ∈ A[[T ]],
then {fl(T )}∞l=1 is termwise eventually constant.

If {fl(T )}∞l=1 eventually agrees termwise with some f(T ) ∈ A[[T ]] and α ∈ k,
then {α fl(T )}∞l=1 eventually agrees termwise with α f(T ). In this situation, we
also have that {fl(T )T r}∞l=1 eventually agrees termwise with f(T )T r for every
nonnegative integer r. If {gl(T )}∞l=1 is another sequence of elements of A[[T ]]
that eventually agrees termwise with g(T ) ∈ A[[T ]], then {fl(T ) + gl(T )}∞l=1

eventually agrees termwise with f(T ) + g(T ).

Let al(T ) =
∑∞
j=0 al,j T

j be a formal power series in T with coefficients in
A for each l ∈ Z+. Suppose that {al(T )}∞l=1 eventually agrees termwise with 0,
so that for each j ≥ 0 there is an Lj ∈ Z+ such that al,j = 0 for every l ≥ Lj
It follows that the coefficient of T j in

n∑
l=1

al(T )(4.4.2)
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does not depend on n when n ≥ Lj − 1, so that the sequence of these sums is
termwise eventually constant. Under these conditions, we can define

∞∑
l=1

al(T )(4.4.3)

as a formal power series in T with coefficients in A, by taking the coefficient of
T j in (4.4.3) to be the coefficient of T j in (4.4.2) when l ≥ L(n)− 1, as before.
By construction, the sequence of partial sums (4.4.2) eventually agrees termwise
with (4.4.3).

If α ∈ k, then {αal(T )}∞l=1 eventually agrees termwise with 0 too, and

∞∑
l=1

αal(T ) = α

∞∑
l=1

al(T ).(4.4.4)

If r is a nonnegative integer, then {al(T )T r}∞l=1 eventually agrees termwise with
0 as well, and

∞∑
l=1

al(T )T
r =

( ∞∑
l=1

al(T )
)
T r.(4.4.5)

If {bl(T )}∞l=1 is another sequence of elements of A[[T ]] that eventually agrees
termwise with 0, then {al(T )+bl(T )}∞l=1 eventually agrees termwise with 0, and

∞∑
l=1

(al(T ) + bl(T )) =

∞∑
l=1

al(T ) +

∞∑
l=1

bl(T ).(4.4.6)

Of course, one can deal with sequences and series that start with l = 0 in the
same way.

Let B be another module over k, so that B[[T ]] is a module over k too,
as before. Also let ϕ be a module homomorphism from A into B[[T ]]. Note
that a module homomorphism from A into B may be considered as a module
homomorphism from A into B[[T ]], by considering B as a submodule of B[[T ]].
If f(T ) =

∑∞
l=0 fl T

l ∈ A[[T ]], then ϕ(fl) ∈ B[[T ]] for each l ≥ 0, and ϕ(fl)T
l

automatically vanishes to order l−1 for every l ≥ 1. In particular, {ϕ(fl)T l}∞l=0

eventually agrees termwise with 0, and we put

ϕ(f(T )) =

∞∑
l=0

ϕ(fl)T
l,(4.4.7)

where the sum is defined as an element of B[[T ]] as in (4.4.3). This defines a
module homomorphism from A[[T ]] into B[[T ]], which agrees with the initial
homomorphism from A into B[[T ]] when A is considered as a submodule of
A[[T ]]. If we start with a module homomorphism ϕ from A into B[T ], and if
f(T ) ∈ A[T ], then (4.4.7) reduces to a finite sum in B[T ].

If f(T ) ∈ A[[T ]] vanishes to order n for some nonnegative integer n, then it
is easy to see that ϕ(f(T )) vanishes to order n as well. More precisely, one can
check that

ϕ(f(T )T r) = ϕ(f(T ))T r(4.4.8)
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for every f(T ) ∈ A[[T ]] and nonnegative integer r. If f(T ) =
∑∞
l=0 fl T

l ∈ A[[T ]]
and j is a nonnegative integer, then the total coefficient of T j in (4.4.7) is
the sum of the coefficients of T j−l in ϕ(fl) for l = 0, . . . , j, and in particular
depends only on ϕ(fl) for l ≤ j. If {fr(T )}∞r=1 is a sequence of elements of A[[T ]]
that eventually agrees termwise with f(T ), then it follows that {ϕ(fr(T ))}∞r=1

eventually agrees termwise with ϕ(f(T )).

4.5 Extending bilinear mappings

Let k be a commutative ring with a multiplicative identity element, let A, B,
and C be modules over k, and let T be an indeterminate. As before, C[[T ]] is a
module over k, and we let β be a mapping from A×B into C[[T ]] that is bilinear
over k. There is a natural way to extend β to a mapping from A[[T ]] × B[[T ]]
into C[[T ]], as follows. Let f(T ) =

∑∞
j=0 fj T

j and g(T ) =
∑∞
l=0 gl T

l be formal
power series in T with coefficients in A and B, respectively. Put

hn(T ) =

n∑
j=0

β(fj , gn−j)(4.5.1)

for each nonnegative integer n, which is an element of C[[T ]]. Thus hn(T )T
n

automatically vanishes to order n− 1 for every n ≥ 1, so that

h(T ) =

∞∑
n=0

hn(T )T
n(4.5.2)

defines an element of C[[T ]] too, as in the previous section. Put

β(f(T ), g(T )) = h(T ).(4.5.3)

This defines a mapping from A[[T ]] × B[[T ]] into C[[T ]] that is bilinear over
k and agrees with the initial mapping from A × B into C[[T ]], with A and B
considered as submodules of A[[T ]] and B[[T ]], respectively.

If f(T ) ∈ A[T ] and g(T ) ∈ B[T ], then (4.5.1) is equal to 0 for all but finitely
many n, so that (4.5.2) reduces to a finite sum. If the inital mapping β sends
A×B into C[T ], then (4.5.1) is in C[T ] for every n ≥ 0. In this case, it follows
that (4.5.2) is an element of C[T ] when f(T ) ∈ A[T ] and g(T ) ∈ B[T ].

If f(T ) ∈ A[[T ]] and g(T ) ∈ B[[T ]] vanish to order r1 and r2, respectively,
for some nonnegative integers r1, r2, then (4.5.1) is equal to 0 when n ≤ r1+r2,
so that (4.5.2) vanishes to order r1 + r2. More precisely, one can verify that

β(f(T )T r, g(T )Tm) = β(f(T ), g(T ))T r+m(4.5.4)

for every f(T ) ∈ A[[T ]], g(T ) ∈ B[[T ]], and nonnegative integers r, m. If f(T ) =∑∞
j=0 fj T

j ∈ A[[T ]], g(T ) =
∑∞
l=0 gl T

l ∈ B[[T ]], and r is a nonnegative integer,

then the total coefficient of T r in (4.5.2) is the sum of the coefficients of T r−n in
(4.5.1) for n = 0, . . . , r. In particular, this only involves (4.5.1) for n ≤ r, and
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hence depends only on fj and gl for j, l ≤ r. If {fm(T )}∞m=1 and {gm(T )}∞m=1

are sequences of elements of A[[T ]] and B[[T ]] that eventually agree termwise
with f(T ) and g(T ), respectively, then it follows that {β(fm(T ), gm(T ))}∞m=1

eventually agrees termwise with β(f(T ), g(T )).
Let {am(T )}∞m=0 and {br(T )}∞r=0 be sequences of elements of A[[T ]] and

B[[T ]], respectively, that eventually agree termwise with 0. Thus
∑∞
m=0 am(T )

and
∑∞
r=0 br(T ) can be defined as elements of A[[T ]] and B[[T ]], respectively,

as in the previous section. Using the extension of β to A[[T ]] × B[[T ]] defined
earlier, we get that β(am(T ), br(T )) is defined as an element of C[[T ]] for all
m, r ≥ 0. Put

cN (T ) =

N∑
m=0

β(am(T ), bN−m(T ))(4.5.5)

for every nonnegative integer N , which is an element of C[[T ]]. Note that
β(am(T ), br(T )) vanishes to arbitrarily large order when m or r is sufficiently
large in this situation, by the remarks in the preceding paragraph. This im-
plies that {cN (T )}∞N=0 eventually agrees termwise with 0, so that

∑∞
N=0 cN (T )

defines an element of C[[T ]], as in the previous section. One can check that

∞∑
N=0

cN (T ) = β
( ∞∑
m=0

am(T ),

∞∑
r=0

br(T )
)

(4.5.6)

as elements of C[[T ]], as in Section 4.2. More precisely, this means that for
each nonnegative integer j, the coefficients of T j on both sides of (4.5.6) are the
same. This reduces to an analogous statement for finite sums for each j ≥ 0 in
this situation.

Observe that (4.5.1) is the same as

n∑
l=0

β(fn−l, gl).(4.5.7)

Suppose now that A = B. If the initial mapping β from A × A into C[[T ]] is
symmetric or antisymmetric, then it is easy to see that the extension of β to
A[[T ]]×A[[T ]] has the same property, using the fact that (4.5.1) is the same as
(4.5.7). Suppose that the initial mapping β on A×A satisfies

β(a, a) = 0(4.5.8)

for every a ∈ A, and let us check that the extension of β to A[[T ]] × A[[T ]]
satisfies

β(f(T ), f(T )) = 0(4.5.9)

for every f(T ) =
∑∞
j=0 fj T

j ∈ A[[T ]]. To do this, it suffices to verify that

n∑
j=0

β(fj , fn−j) = 0(4.5.10)
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for every nonnegative integer n. Remember that (4.5.8) implies that β is anti-
symmetric on A×A, as in Section 2.1. If n is odd, then (4.5.10) reduces to the
antisymmetry of β on A× A. If n is even, then one can use the antisymmetry
of β on A×A to reduce (4.5.10) to the condition that β(fn/2, fn/2) = 0, which
follows from (4.5.8).

4.6 Formal power series and algebras

Let k be a commutative ring with a multiplicative identity element again, and let
T be an indeterminate. Suppose that A is an algebra over k in the strict sense,
where multiplication of a, b ∈ A is expressed as a b. Let f(T ) =

∑∞
j=0 fj T

j and

g(T ) =
∑∞
l=0 gl T

l be formal power series in T with coefficients in A, and put

hn =

n∑
j=0

fj gn−j(4.6.1)

for each nonnegative integer n. Thus h(T ) =
∑∞
n=0 hn T

n is a formal power
series in T with coefficients in A too, and we put

f(T ) g(T ) = h(T ).(4.6.2)

This defines a mapping from A[[T ]] × A[[T ]] into A[[T ]], which is the same
as the mapping obtained from multiplication on A as in the previous section.
Using this definition of multiplication on A[[T ]], we get that A[[T ]] is an algebra
over k in the strict sense. Note that A[T ] is a subalgebra of A[[T ]], and that
A corresponds to a subalgebra of A[T ], using the identification mentioned in
Section 4.3. The mapping f(T ) 7→ f0 mentioned in Section 4.3 defines an algebra
homomorphism from A[[T ]] onto A. If multiplication on A is commutative,
then multiplication on A[[T ]] is commutative as well, as in the remark about
symmetry of β in the previous section. Similarly, if multiplication on A is
associative, then one can check that multiplication on A[[T ]] is associative too.
If A has a multiplicative identity element e, then the corresponding formal
polynomial in T is the multiplicative identity element in A[[T ]].

In particular, we can take A = k, considered as an algebra over itself. Thus
k[[T ]] is a commutative associative algebra over k with a multiplicative identity
element, and k[T ] is a subalgebra of k[[T ]]. We can identify k with a subalge-
bra of k[T ], where the multiplicative identity element in k corresponds to the
multiplicative identity element in k[[T ]].

If A is any module over k, then A[[T ]] may be considered as a module over
k[[T ]]. More precisely, if f(T ) ∈ k[[T ]] and g(T ) ∈ A[[T ]], then f(T ) g(T ) can
be defined as a formal power series in T with coefficients in A as in (4.6.2),
where the terms in the sum on the right side of (4.6.1) are defined using scalar
multiplication on A. Equivalently, scalar multiplication on A corresponds to a
mapping from k ×A into A that is bilinear over k, which can be extended to a
mapping from k[[T ]] × A[[T ]] into A[[T ]] as in the previous section. Similarly,
A[T ] may be considered as a module over k[T ].
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Let A and B be modules over k, and let ϕ be a module homomorphism from
A into B[[T ]], as modules over k. As in Section 4.4, there is a natural way
to extend ϕ to a mapping from A[[T ]] into B[[T ]]. It is easy to see that this
mapping is a module homomorphism from A[[T ]] into B[[T ]], as modules over
k[[T ]]. If the initial mapping sends A into B[T ], then the restricton to A[T ] of
the extension to A[[T ]] is a module homomorphism into B[T ], as modules over
k[T ]. Let C be another module over k, and let β be a mapping from A × B
into C[[T ]] that is bilinear over k. One can check that the extension of β to
a mapping from A[[T ]] × B[[T ]] into C[[T ]] defined in the previous section is
bilinear over k[[T ]]. If the initial mapping sends A × B into C[T ], then the
restriction to A[T ] × B[T ] of the extension to A[[T ]] × B[[T ]] is bilinear over
k[T ] as a mapping into C[T ]. If A is an algebra over k in the strict sense, then
A[[T ]] may be considered as an algebra over k[[T ]] in the strict sense, and A[T ]
may be considered as an algebra over k[T ] in the strict sense.

Suppose that (A, [·, ·]A) is a Lie algebra over k, and let f(T ) and g(T ) be
formal power series in T with coefficients in A again. In this situation, (4.6.1)
should be expressed as

hn =

n∑
j=0

[fj , gn−j ]A(4.6.3)

for each n ≥ 0, and we put

[f(T ), g(T )]A[[T ]] = h(T ) =

∞∑
n=0

hn T
n.(4.6.4)

One can verify that A[[T ]] is a Lie algebra over k with respect to (4.6.4). More
precisely, one can use the fact that [a, a]A = 0 for every a ∈ A to get that
[f(T ), f(T )]A[[T ]] = 0 for every f(T ) ∈ A[[T ]], as in the previous section. One
can also get the Jacobi identity for [·, ·]A[[T ]] from the Jacobi identity for [·, ·]A.
As before, A[T ] is a Lie subalgebra of A[[T ]], as a Lie algebra over k. One can
consider A[[T ]] as a Lie algebra over k[[T ]], and A[T ] as a Lie algebra over k[T ].

4.7 Invertibility in A[[T ]]

Let k be a commutative ring with a multiplicative identity element, and let A be
an associative algebra over k with a multiplicative identity element e. Also let T
be an indeterminate, so that A[[T ]] may be considered as an associative algebra
over k[[T ]] as in the previous section. Let us identify e with the corresponding
formal power series in T with coefficients in A, which is the multiplicative iden-
tity element in A[[T ]]. If a(T ) ∈ A[[T ]], then a(T )l can be defined as an element
of A[[T ]] for every l ∈ Z+ using multiplication on A[[T ]], and we interpret a(T )l

as being equal to e when l = 0. Observe that

(e− a(T ))

n∑
l=0

a(T )l =
( n∑
l=0

a(t)l
)
(e− a(T )) = e− a(T )n+1(4.7.1)
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for every nonnegative integer n, by a standard computation.
Suppose that a(T ) vanishes to order 0, as in Section 4.3, so that the coeffi-

cient of T 0 in a(T ) is equal to 0. This implies that a(T )l vanishes to order l− 1
for every l ∈ Z+. It follows that the coefficient of T j in

n∑
l=0

a(T )l(4.7.2)

is the same for n ≥ j. As in Section 4.4, we define

∞∑
l=0

a(T )l(4.7.3)

as a formal power series in T with coefficients in A by taking the coefficient of
T j in (4.7.3) to be the same as the coefficient of T j in (4.7.2) when n ≥ j. In
particular, {a(T )l}∞l=0 eventually agrees termwise with 0, as in Section 4.4, and
the sequence of partial sums (4.7.2) eventually agrees termwise with (4.7.3).

Using (4.7.1), one can check that

(e− a(T ))

∞∑
l=0

a(T )l =
( ∞∑
l=0

a(T )l
)
(e− a(T )) = e.(4.7.4)

More precisely, for each nonnegative integer j, the coefficient of T j in each of
the three expressions in (4.7.4) is the same as in the corresponding expression
in (4.7.1) when n ≥ j. It follows that (4.7.3) is the multiplicative inverse of
e− a(T ) in A[[T ]].

Let f(T ) =
∑∞
j=0 fj T

j be a formal power series in T with coefficients in A.
If f0 is invertible as an element of A, then f(T ) can be expressed as f0 (e−a(T )),
where a(T ) ∈ A[[T ]] vanishes to order 0. This implies that f(T ) is invertible
in A[[T ]], because e− a(T ) is invertible in A[[T ]], as in the previous paragraph.
Conversely, if f(T ) is invertible in A[[T ]], then f0 is invertible in A, because
f(T ) 7→ f0 is an algebra homomorphism from A[[T ]] onto A.

Of course, the collection of invertible elements of A[[T ]] is a group with
respect to multiplication of formal power series. The collection of f(T ) ∈ A[[T ]]
with f0 = e is a subgroup of this group.

4.8 Homomorphisms over k[T ]

Let k be a commutative ring with a multiplicative identity element, let A, B be
modules over k, and let T be an indeterminate. Also let ϕ be a homomorphism
from A[T ] into B[T ], as modules over k. Suppose that

ϕ(f(T )T ) = ϕ(f(T ))T(4.8.1)

for every f(T ) ∈ A[T ]. This implies that

ϕ(f(T )T r) = ϕ(f(T ))T r(4.8.2)
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for every f(T ) ∈ A[T ] and r ∈ Z+, by applying (4.8.1) repeatedly. Of course,
(4.8.2) holds trivially when r = 0. It follows that ϕ is a homomorphism from
A[T ] into B[T ] as modules over k[T ] under these conditions. Conversely, if
ϕ is a homomorphism from A[T ] into B[T ] as modules over k[T ], then ϕ is a
homomorphism from A[T ] into B[T ] as modules over k that satisfies (4.8.1).

Let ϕ be a homomorphism from A[T ] into B[T ] as modules over k[T ] again.
It is easy to see that ϕ is uniquely determined on A[T ] by its restriction to
A, considered as a submodule of A[T ] as a module over k, as in Section 4.3.
Remember that every homomorphism from A into B[T ], as modules over k, can
be extended to a homomorphism from A[T ] into B[T ] as modules over k[T ], as in
Sections 4.4 and 4.6. This gives a natural isomorphism between Homk(A,B[T ])
and Homk[T ](A[T ], B[T ]), as modules over k.

In fact, Homk(A,B[T ]) may be considered as a module over k[T ]. More pre-
cisely, Homk(A,B[T ]) is a submodule of the space of all B[T ]-valued functions
on A, as a module over k[T ]. The isomorphism between Homk(A,B[T ]) and
Homk[T ](A[T ], B[T ]) mentioned in the preceding paragraph is linear over k[T ].

Now let ϕ be a homomorphism from A[[T ]] into B[[T ]], as modules over k,
that satisfies (4.8.1) for every f(T ) ∈ A[[T ]]. This implies that (4.8.2) holds
for every f(T ) ∈ A[[T ]] and nonnegative integer r, as before. If f(T ) ∈ A[[T ]]
vanishes to order n for some nonnegative integer n, then we get that ϕ(f(T ))
vanishes to order n as well, by expressing f(T ) as an element of A[[T ]] times
Tn+1. Using this, one can check that ϕ is a homomorphism from A[[T ]] into
B[[T ]], as modules over k[[T ]]. Conversely, if ϕ is a homomorphism from A[[T ]]
into B[[T ]] as modules over k[[T ]], then ϕ is a homomorphism from A[[T ]] into
B[[T ]] as modules over k[T ], and hence ϕ is a homomorphism from A[[T ]] into
B[[T ]] as modules over k that satisfies (4.8.1) for every f(T ) ∈ A[[T ]].

Let ϕ be a homomorphism from A[[T ]] into B[[T ]] as modules over k that
satisfies (4.8.1) for every f(T ) ∈ A[[T ]] again. If f(T ) =

∑∞
l=0 fl T

l ∈ A[[T ]]
and j is a nonnegative integer, then

ϕ
( ∞∑
l=j+1

fl T
l
)

(4.8.3)

vanishes to order j, as before. This implies that the total coefficient of T j in
ϕ(f(T )) is the same as for

ϕ
( j∑
l=0

fl T
l
)
=

j∑
l=0

ϕ(fl)T
l.(4.8.4)

It follows that ϕ is uniquely determined on A[[T ]] by its restriction to A, con-
sidered as a submodule of A[[T ]] as a module over k. We have also seen that
every homomorphism from A into B[[T ]], as modules over k, can be extended to
a homomorphism from A[[T ]] into B[[T ]] as modules over k[[T ]], as in Sections
4.4 and 4.6.

This gives a natural isomorphism between Homk(A,B[[T ]]) and

Homk[[T ]](A[[T ]], B[[T ]]),(4.8.5)
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as modules over k. We may also consider Homk(A,B[[T ]]) as a module over
k[[T ]], because it is a submodule of the space of all B[[T ]]-valued functions on
A, as a module over k[[T ]]. It is easy to see that the isomorphism between
Homk(A,B[[T ]]) and (4.8.5) is linear over k[[T ]].

Let C be another module over k, and let β be a mapping from A[T ]×B[T ]
into C[T ]. If β is bilinear over k and

β(f(T )T, g(T )) = β(f(T ), g(T )T ) = β(f(T ), g(T ))T(4.8.6)

for every f(T ) ∈ A[T ] and g(T ) ∈ B[T ], then

β(f(T )T r, g(T )Tm) = β(f(T ), g(T ))T r+m(4.8.7)

for all f(T ) ∈ A[T ], g(T ) ∈ B[T ], and nonnegative integers r, m, and hence β
is bilinear over k[T ]. Conversely, if β is bilinear over k[T ], then β is bilinear
over k and satisfies (4.8.6). It is easy to see that β is uniquely determined on
A[T ] × B[T ] by its restriction to A × B in this situation. We have seen that
every mapping from A×B into C[T ] that is bilinear over k can be extended to
a mapping from A[T ]×B[T ] into C[T ] that is bilinear over k[T ], as in Sections
4.5 and 4.6.

Let β be a mapping from A[[T ]]×B[[T ]] into C[[T ]]. Suppose that β is bilin-
ear over k and satisfies (4.8.6) for every f(T ) ∈ A[[T ]] and g(T ) ∈ B[[T ]], which
implies that (4.8.7) holds for all f(T ) ∈ A[[T ]], g(T ) ∈ B[[T ]], and nonnegative
integers r, m. If f(T ) ∈ A[[T ]], g(T ) ∈ B[[T ]] vanish to orders r1, r2 for some
nonnegative integers r1, r2, respectively, then it follows that β(f(T ), g(T )) van-
ishes to order r1 + r2. One can use this to verify that β is bilinear over k[[T ]].
Conversely, if β is bilinear over k[[T ]], then β is bilinear over k[T ], and hence β
is bilinear over k and satisfies (4.8.6) for every f(T ) ∈ A[[T ]] and g(T ) ∈ B[[T ]].

Suppose that β is bilinear over k and satisfies (4.8.6) for every f(T ) ∈ A[[T ]]
and g(T ) ∈ B[[T ]] again. Let f(T ) =

∑∞
j=0 fj T

j ∈ A[[T ]], and g(T ) =∑∞
l=0 gl T

l ∈ B[[T ]] be given. If r is any nonnegative integer, then the total
coefficient of T r in β(f(T ), g(T )) is the same as for

β
( r∑
j=0

fj T
j ,

r∑
l=0

gl T
l
)
.(4.8.8)

This implies that β is uniquely determined on A[[T ]]×B[[T ]] by its restriction
to A × B. We have seen that every mapping from A × B into C[[T ]] that is
bilinear over k can be extended to a mapping from A[[T ]] × B[[T ]] into C[[T ]]
that is bilinear over k[[T ]], as in Sections 4.5 and 4.6.

4.9 Formal power series and homomorphisms

Let k be a commutative ring with a multiplicative identity element again, let A,
B be modules over k, and let T be an indeterminate. Remember that the space
Homk(A,B) of module homomorphisms from A into B is a module over k with
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respect to pointwise addition and scalar multiplication, as in Section 2.1. Thus
the corresponding spaces (Homk(A,B))[T ] and (Homk(A,B))[[T ]] of formal
polynomials and power series in T with coefficients in Homk(A,B) can be de-
fined as in Section 4.3. More precisely, (Homk(A,B))[T ] and (Homk(A,B))[[T ]]
may be considered as modules over k[T ] and k[[T ]], respectively, as in Section
4.6. Let us see how elements of these modules are related to homomorphisms
from A into B[T ] and B[[T ]], respectively.

Let

ϕ(T ) =

∞∑
j=0

ϕj T
j(4.9.1)

be a formal power series in T with coefficients in Homk(A,B), so that ϕj is a
homomorphism from A into B for every j ≥ 0. If a ∈ A, then

(ϕ(T ))(a) =

∞∑
j=0

ϕj(a)T
j(4.9.2)

defines a formal power series in T with coefficients in B, and the mapping
from a ∈ A to (4.9.2) is a homomorphism from A into B[[T ]], as modules over
k. Conversely, every homomorphism from A into B[[T ]] as modules over k
corresponds to a sequence {ϕj}∞j=0 of homomorphisms from A into B in this
way, and hence to an element of (Homk(A,B))[[T ]]. This defines a natural
isomorphism between Homk(A,B[[T ]]) and (Homk(A,B))[[T ]], as modules over
k. This isomorphism is linear over k[[T ]] as well, where Homk(A,B[[T ]]) is
considered as a module over k[[T ]], as in the previous section.

Similarly, if

ϕ(T ) =

n∑
j=0

ϕj T
j(4.9.3)

is a formal polynomial in T with coefficients in Homk(A,B), then

(ϕ(T ))(a) =

n∑
j=0

ϕj(a)T
j(4.9.4)

is a formal polynomial in T with coefficients in B for every a ∈ A, and the map-
ping from a ∈ A to (4.9.4) is a homomorphism from A into B[T ], as modules
over k. In the other direction, a homomorphism from A into B[T ] as modules
over k may be considered as a homomorphism from A into B[[T ]], and corre-
sponds to a sequence {ϕj}∞j=0 of homomorphisms from A into B as in (4.9.2).
The condition that this mapping sends A into B[T ] means that for each a ∈ A,
we have that ϕj(a) = 0 for all but finitely many j. In particular, this holds
when ϕj = 0 for all but finitely many j, as mappings from A into B. If for every
a ∈ A we have that ϕj(a) = 0 for all but finitely many j, and if A is finitely
generated as a module over k, then ϕj = 0 for all but finitely many j.

Consider the mapping from (4.9.3) to (4.9.4), as a module homomorphism
from A into B[T ]. This defines a natural homomorphism from (Homk(A,B))[T ]
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into Homk(A,B[T ]), as modules over k. It is easy to see that this mapping
is injective. This mapping is also linear over k[T ], where Homk(A,B[T ]) is
considered as a module over k[T ], as in the previous section. If A is finitely
generated as a module over k, then this mapping is surjective, as in the preceding
paragraph.

4.10 Extensions and compositions

Let us continue with the same notation and hypotheses as in the preceding
section. Let a(T ) =

∑∞
m=0 am T

m be a formal power series in T with coefficients
in A. If ϕ(T ) is a formal power series in T with coefficients in Homk(A,B) as
in (4.9.1), then

(ϕ(T ))(am) =

∞∑
j=0

ϕj(am)T j(4.10.1)

defines a formal power series in T with coefficients in B for every nonnegative
integer m, as in (4.9.2). Using this, we can define

(ϕ(T ))(a(T )) =

∞∑
m=0

(ϕ(T ))(am)Tm(4.10.2)

as a formal power series in T with coefficients in B, as in Section 4.4. This
corresponds to extending the homomorphism from A into B[[T ]] associated to
ϕ(T ) to a homomorphism from A[[T ]] into B[[T ]], as modules over k[[T ]], as
before. Of course, if a(T ) and ϕ(T ) are formal polynomials in T with coefficients
in A and Homk(A,B), respectively, then (4.10.1) is a formal polynomial in T
with coefficients in B for each m ≥ 0, and (4.10.2) is a formal polynomial in T
with coefficients in B too. This corresponds to extending the homomorphism
from A into B[T ] associated to ϕ(T ) to a homomorphism from A[T ] into B[T ],
as modules over k[T ].

Alternatively, put
E(ϕ, a) = ϕ(a)(4.10.3)

for every ϕ ∈ Homk(A,B) and a ∈ A, which is the natural evaluation mapping

from Homk(A,B)×A into B.(4.10.4)

This mapping is bilinear over k, and can be extended to a mapping

from (Homk(A,B))[[T ]]×A[[T ]] into B[[T ]],(4.10.5)

as in Section 4.5. More precisely, let ϕ(T ) ∈ (Homk(A,B))[[T ]] and a(T ) in
A[[T ]] be given as before, and put

En(ϕ(T ), a(T )) =

n∑
j=0

ϕj(an−j)(4.10.6)
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for each nonnegative integer n. This is an element of B for every n ≥ 0, so that

E(ϕ(T ), a(T )) =

∞∑
n=0

En(ϕ(T ), a(T ))T
n(4.10.7)

is an element of B[[T ]]. It is easy to see that this is the same as (4.10.2). If
ϕ(T ) ∈ (Homk(A,B))[T ] and a(T ) ∈ A[T ], then (4.10.6) is equal to 0 for all but
finitely many n ≥ 0, so that (4.10.6) is an element of B[T ]. This corresponds to
extending (4.10.3) to a mapping

from (Homk(A,B))[T ]×A[T ] into B[T ],(4.10.8)

as before.
Let C be another module over k, let ϕ(T ) be a formal power series in T with

coefficients in Homk(A,B) as in (4.9.1), and let

ψ(T ) =

∞∑
l=0

ψl T
l(4.10.9)

be a formal power series in T with coefficients in Homk(B,C). Note that the
composition ψl ◦ ϕj of ϕj and ψl defines a module homomorphism from A into
C for all j, l ≥ 0. Thus

(ψ(T ) ◦ ϕ(T ))n =

n∑
l=0

ψl ◦ ϕn−l(4.10.10)

is an element of Homk(A,C) for every nonnegative integer n. Put

ψ(T ) ◦ ϕ(T ) =
∞∑
n=0

(ψ(T ) ◦ ϕ(T ))n Tn,(4.10.11)

which defines a formal power series in T with coefficients in Homk(A,C). If
ϕ(T ) and ψ(T ) are formal polynomials in T , then (4.10.10) is equal to 0 for all
but finitely many n ≥ 0, so that (4.10.11) is a formal polynomial in T as well.

The composition of module homomorphisms from A into B and from B into
C defines a mapping

from Homk(A,B)×Homk(B,C) into Homk(A,C)(4.10.12)

that is bilinear over k. The definition of (4.10.11) corresponds to the extension
of this bilinear mapping to mappings

from (Homk(A,B))[[T ]]× (Homk(B,C))[[T ]](4.10.13)

into (Homk(A,C))[[T ]]

and

from (Homk(A,B))[T ]× (Homk(B,C))[T ](4.10.14)

into (Homk(A,C))[T ],
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as in Section 4.5.
As before, ϕ(T ) ∈ (Homk(A,B))[[T ]] corresponds to a homomorphism from

A into B[[T ]] as modules over k, which can be extended to a homomorphism
from A[[T ]] into B[[T ]] as modules over k[[T ]]. Similarly, ψ(T ) corresponds to
a homomorphism from B[[T ]] into C[[T ]] as modules over k[[T ]], and (4.10.11)
corresponds to a homomorphism from A[[T ]] into C[[T ]] as modules over k[[T ]].
One can check that the homomorphism corresponding to (4.10.11) is the same
as the composition of the homomorphisms corresponding to ϕ(T ) and ψ(T ).
If ϕ(T ) ∈ (Homk(A,B))[T ] and ψ(T ) ∈ (Homk(B,C))[T ], then (4.10.11) is
an element of (Homk(A,C))[T ], as before. In this case, (4.10.11) corresponds
to a homomorphism from A[T ] into C[T ], as modules over k[T ], which is the
composition of the homomorphisms from A[T ] into B[T ] and from B[T ] into
C[T ] corresponding to ϕ(T ) and ψ(T ), respectively.

4.11 Two-step extensions

Let k be a commutative ring with a multiplicative identity element, let A, B, C
be modules over k, and let T be an indeterminate. If β is a mapping from A×B
into C[[T ]] that is bilinear over k, then β can be extended to a mapping from
A[[T ]]×B[[T ]] into C[[T ]] that is bilinear over k[[T ]], as in Sections 4.5 and 4.6.
One can also look at this in terms of extending module homomorphisms, as in
Sections 4.4 and 4.6, in two steps. More precisely, if a ∈ A, then β(a, b) defines
a mapping from B into C[[T ]], as a function of b, that is linear over k. This can
be extended to a mapping from B[[T ]] into C[[T ]] that is linear over k[[T ]], as
before. If b(T ) ∈ B[[T ]], then we can use the extension just mentioned to get
β(a, b(T )) as a function of a ∈ A with values in C[[T ]] that is linear over k. This
can be extended to a mapping from A[[T ]] into C[[T ]] that is linear over k[[T ]],
which extends β to a mapping from A[[T ]] × B[[T ]] into C[[T ]] that is bilinear
over k[[T ]]. Similarly, if β is a mapping from A × B into C[T ] that is bilinear
over k, then β can be extended to a mapping from A[T ]×B[T ] into C[T ] that
is bilinear over k[T ] in two steps.

Let β be a mapping from A×B into C[[T ]] that is bilinear over k again, and
put

ρa(b) = β(a, b)(4.11.1)

for every a ∈ A and b ∈ B. If a ∈ A, then ρa defines a mapping from B into
C[[T ]] that is linear over k, which is to say that ρa ∈ Homk(B,C[[T ]]). Thus

a 7→ ρa(4.11.2)

defines a mapping from A into Homk(B,C[[T ]]), which is linear over k. Remem-
ber that there are natural isomorphisms between Homk(B,C[[T ]]) and each of
Homk[[T ]](B[[T ]], C[[T ]]) and (Homk(B,C))[[T ]], as modules over k[[T ]], as in
Sections 4.8 and 4.9. The isomorphism with Homk[[T ]](B[[T ]], C[[T ]]) gives the
extension of ρa to B[[T ]], and the isomorphism with (Homk(B,C))[[T ]] can be
used to extend (4.11.2) to A[[T ]].
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Now let β be a mapping from A×B into C[T ] that is bilinear over k. If a ∈ A,
then (4.11.1) defines ρa as a mapping from B into C[T ] that is linear over k, and
hence an element of Homk(B,C[T ]). Similarly, (4.11.2) defines a mapping from
A into Homk(B,C[T ]) that is linear over k. There is a natural isomorphism
between Homk(B,C[T ]) and Homk[T ](B[T ], C[T ]), as modules over k[T ], as in
Section 4.8. This permits one to identify ρa with a homomorphism from B[T ]
into C[T ], as modules over k[T ].

As in Section 4.9, there is a natural injection from (Homk(B,C))[T ] into
Homk(B,C[T ]) that is linear over k[T ]. If (4.11.2) corresponds to a mapping
from A into (Homk(B,C))[T ] that is linear over k, then this mapping can be
extended to one from A[T ] into (Homk(B,C))[T ] that is linear over k[T ] in
the usual way. Otherwise, (4.11.2) can still be extended to a mapping from
A[T ] into Homk(B,C[T ]) or equivalently Homk[T ](B[T ], C[T ]) that is linear
over k[T ]. This basically just uses the fact that Homk(B,C[T ]) or equivalently
Homk[T ](B[T ], C[T ]) is a module over k[T ]. Of course, one can also look at this
in terms of extending (4.11.1) in a for b fixed, as mentioned at the beginning of
the section.

4.12 Extending algebra homomorphisms

Let k be a commutative ring with a multiplicative identity element, let T be
an indeterminate, and let A, B be algebras over k in the strict sense. As in
Section 4.6, multiplication on A and B can be extended to A[[T ]] and B[[T ]],
respectively, so that they become algebras over k[[T ]] in the strict sense. In
particular, A[[T ]] and B[[T ]] may be considered as algebras over k.

Let ϕ be a homomorphism from A into B[[T ]], as modules over k. Thus ϕ
can be expressed as

ϕ(a) =

∞∑
j=0

ϕj(a)T
j(4.12.1)

for each a ∈ A, where ϕj is a homomorphism from A into B, as modules over
k, for every nonnegative integer j. In order for ϕ to be a homomorphism from
A into B[[T ]], as algebras over k, we need to have that

ϕ(a a′) = ϕ(a)ϕ(a′)(4.12.2)

for every a, a′ ∈ A. Of course,

ϕ(a a′) =

∞∑
n=0

ϕn(a a
′)Tn,(4.12.3)

and

ϕ(a)ϕ(a′) =
( ∞∑
j=0

ϕj(a)T
j
)( ∞∑

l=0

ϕl(a
′)T l

)
(4.12.4)

=

∞∑
n=0

( n∑
j=0

ϕj(a)ϕn−j(a
′)
)
Tn.
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It follows that (4.12.2) holds if and only if

ϕn(a a
′) =

n∑
j=0

ϕj(a)ϕn−j(a
′)(4.12.5)

for every nonnegative integer n.
As in Section 4.4, we can extend ϕ to a module homomorphism from A[[T ]]

into B[[T ]] by putting

ϕ(f(T )) =

∞∑
j=0

ϕ(fj)T
j(4.12.6)

for every f(T ) =
∑∞
j=0 fj T

j ∈ A[[T ]]. If g(T ) =
∑∞
l=0 gl T

l is another element

of A[[T ]], then h(T ) = f(T ) g(T ) is defined by putting h(T ) =
∑∞
n=0 hn T

n,
where

hn =

n∑
j=0

fj gn−j(4.12.7)

for every n ≥ 0, as in Section 4.6. Thus

ϕ(f(T ) g(T )) = ϕ(h(T )) =

∞∑
n=0

ϕ(hn)T
n,(4.12.8)

where the sum on the right is defined as an element of B[[T ]] as in Section 4.4
again. If ϕ is an algebra homomorphism from A into B[[T ]], then

ϕ(hn) =

n∑
j=0

ϕ(fj gn−j) =

n∑
j=0

ϕ(fj)ϕ(gn−j)(4.12.9)

for each n ≥ 0. This implies that

ϕ(f(T ) g(T )) =

∞∑
n=0

( n∑
j=0

ϕ(fj)ϕ(gn−j)
)
Tn = ϕ(f(T ))ϕ(g(T )).(4.12.10)

More precisely, this follows from the definition of multiplication on B[[T ]] when
ϕ maps A into B. Otherwise, if ϕ(fj) and ϕ(gl) are elements of B[[T ]], then
the second step in (4.12.10) can be obtained as in (4.5.6). This shows that the
extension of ϕ to a module homomorphism from A[[T ]] into B[[T ]] defined in
(4.12.6) is an algebra homomorphism in this case.

Similarly, multiplication on A and B can be extended to A[T ] and B[T ],
respectively, so that they become algebras in the strict sense over k[T ], as in
Section 4.6. If ϕ is a homomorphism from A into B[T ], as modules over k, then
we can extend ϕ to a module homomorphism from A[T ] into B[T ] as in (4.12.6).
If ϕ is an algebra homomorphism from A into B[T ], then this extension is an
algebra homomorphism from A[T ] into B[T ], as before. Of course, there are
analogous statements for opposite algebra homomorphisms.
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4.13 Some remarks about commutators

Let k be a commutative ring with a multiplicative identity element, and let
A be an associative algebra over k with a multiplicative identity element e.
Also let T be an indeterminate, and let us identify e with the corresponding
formal power series in T with coefficients in A in the usual way, which is the
multiplicative identity element in A[[T ]]. Suppose that a(T ) =

∑∞
j=0 aj T

j and

b(T ) =
∑∞
j=0 bj T

j are elements of A[[T ]] with a0 = b0 = e. Note that a(T ) and
b(T ) are invertible in A[[T ]], as in Section 4.7.

Put α(T ) = a(T ) − e =
∑∞
j=1 aj T

j and β(T ) = b(T ) − e =
∑∞
j=1 bj T

j , so
that a(T ) = e+ α(T ) and b(T ) = e+ β(T ). Thus

a(T ) b(T ) = e+ α(T ) + β(T ) + α(T )β(T ).(4.13.1)

As in Section 4.7,

a(T )−1 =

∞∑
l=0

(−α(T ))l = e+

∞∑
l=1

(−α(T ))l(4.13.2)

and

b(T )−1 =

∞∑
l=0

(−β(T ))l = e+

∞∑
l=1

(−β(T ))l.(4.13.3)

If n ∈ Z+, then we let O(Tn) refer to any element of A[[T ]] that vanishes to
order n− 1, which means that it can be expressed as an element of A[[T ]] times
Tn. Observe that

a(T ) b(T ) a(T )−1 b(T )−1 = e+O(T ),(4.13.4)

because a(T ), b(T ), a(T )−1, b(T )−1 = e+O(T ). More precisely,

a(T ) b(T ) a(T )−1 b(T )−1 = e+O(T 2),(4.13.5)

because
a(T ) = e+ a1 T +O(T 2), b(T ) = e+ b1 T +O(T 2),(4.13.6)

and
a(T )−1 = e− a1 T +O(T 2), b(T )−1 = e− b1 T +O(T 2).(4.13.7)

We also have that

a(T ) = e+ a1 T + a2 T
2 +O(T 3), b(T ) = e+ b1 T + b2 T

2 +O(T 3),(4.13.8)

and

a(T ) b(T ) = e+ a1 T + b1 T + a2 T
2 + b2 T

2 + a1 b1 T
2 +O(T 3).(4.13.9)

Using (4.13.2), we get that

a(T )−1 = e− α(T ) + α(T )2 +O(T 3)(4.13.10)

= e− a1 T − a2 T
2 + a21 T

2 +O(T 3).
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Similarly,

b(T )−1 = e− b1 T − b2 T
2 + b21 T

2 +O(T 3).(4.13.11)

It follows that

a(T )−1 b(T )−1 = e− a1 T − b1 T − a2 T
2 − b2 T

2(4.13.12)

+a21 T
2 + b22 T

2 + a1 b1 T
2 +O(T 3).

Combining (4.13.9) and (4.13.12), it is not difficult to verify that

a(T ) b(T ) a(T )−1 b(T )−1 = e+ a1 b1 T
2 − b1 a1 T

2 +O(T 3)

= e+ α(T )β(T )− β(T )α(T ) +O(T 3).(4.13.13)

4.14 Formal power series and involutions

Let k be a commutative ring with a multiplicative identity element, and let T
be an indeterminate. Also let A be an algebra over k in the strict sense, and
let x 7→ x∗ be an opposite algebra automorphism on A. If k = C, then we may
wish to consider opposite algebra automorphisms that are conjugate-linear, as
usual. If a(T ) =

∑∞
j=0 aj T

j ∈ A[[T ]], then

a(T )∗ =

∞∑
j=0

a∗j T
j(4.14.1)

defines an element of A[[T ]], which is in A[T ] when a(T ) ∈ A[T ]. Of course,

a(T ) 7→ a(T )∗(4.14.2)

defines an opposite algebra automorphism on A[[T ]]. Note that a(T ) is self-
adjoint with respect to (4.14.2) if and only if aj is self-adjoint for every j ≥ 0,
and similarly a(T ) is anti-self-adjoint with respect to (4.14.2) if and only if aj is
anti-self-adjoint for every j ≥ 0. If x 7→ x∗ is an involution on A, then (4.14.2)
is an involution on A[[T ]].

Suppose now that A is an associative algebra over k with a multiplicative
identity element e. Remember that e∗ = e, as in Section 2.6. Let y be an
element of A, and put y0 = y − e, so that y = e+ y0, y

∗ = e+ y∗0 , and

y∗ y = (e+ y∗0) (e+ y0) = e+ y0 + y∗0 + y∗0 y0.(4.14.3)

Suppose that y1, y2 ∈ A satisfy

y0 = y1 + y2, y∗1 = y1, y∗2 = −y2, and y1 y2 = y2 y1.(4.14.4)

Under these conditions, y∗0 = y1 − y2, and

y∗ y = e+ 2 · y1 + (y1 − y2) (y1 + y2) = e+ 2 · y1 + y21 − y22 .(4.14.5)
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Let a(T ) =
∑∞
j=0 aj T

j be an element of A[[T ]] with a0 = e, and put α(T ) =
a(T )− e. As in (4.14.3), we have that

a(T )∗ a(T ) = e+ α(T ) + α(T )∗ + α(T )∗ α(T ).(4.14.6)

In particular, a necessary condition for

a(T )∗ a(T ) = e(4.14.7)

to hold is that
a∗1 = −a1.(4.14.8)

More precisely, (4.14.8) is equivalent to a(T )∗ a(T ) = e+O(T 2), in the notation
of the previous section. Of course, (4.14.7) is the same as saying that

a(T )∗ = a(T )−1,(4.14.9)

which also implies that a(T ) commutes with a(T )∗.
Suppose that β(T ) =

∑∞
j=0 βj T

j , γ(T ) =
∑∞
j=0 γj T

j ∈ A[[T ]] satisfy β0 =
γ0 = 0, α(T ) = β(T ) + γ(T ),

β(T )∗ = β(T ), γ(T )∗ = −γ(T ), and β(T ) γ(T ) = γ(T )β(T ).(4.14.10)

Under these conditions, we have that

a(T )∗ a(T ) = e+ 2 · β(T ) + β(T )2 − γ(T )2,(4.14.11)

as in (4.14.5). In this situation, (4.14.7) holds exactly when

2 · β(T ) = −β(T )2 + γ(T )2.(4.14.12)

Let us suppose from now on in this section that 1+1 has a multiplicative inverse
in k. It is easy to see that β(T ) is uniquely determined by γ(T ) and (4.14.12).

More precisely, if γ(T ) ∈ A[[T ]] satisfies γ0 = 0, then there is a unique
β(T ) ∈ A[[T ]] that satisfies β0 = 0 and (4.14.12). Indeed, for each j ∈ Z+, one
can use (4.14.12) to get βj from βl with l < j and the coefficients of γ(T ). One
can in fact approximate β in terms of polynomials in γ(T )2 with coefficients in
k, using (4.14.12). This implies that β(T ) commutes with γ(T ), which could
also be verified more directly. If γ(T )∗ = −γ(T ), as in (4.14.10), then

(γ(T )2)∗ = (γ(T )∗)2 = (−γ(T ))2 = γ(T )2.(4.14.13)

In this case, one can check that β(T )∗ = β(T ). If we take α(T ) = β(T ) + γ(T )
and a(T ) = e+α(T ), as before, then (4.14.11) holds, which implies (4.14.7), by
(4.14.12).
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Some related notions

5.1 Adjoining nilpotent elements

Let k be a commutative ring with a multiplicative identity element, and let A
be a module over k. If n ∈ Z+, then we would like to define A[ϵn] as a module
over k, where ϵn is an additional element that is considered to satisfy

ϵn+1
n = 0.(5.1.1)

The elements of A[ϵn] may be expressed as formal sums of the form

a = a0 + a1 ϵn + · · ·+ an ϵ
n
n,(5.1.2)

where a0, a1, . . . , an ∈ A. Addition and scalar multiplication on A[ϵn] are de-
fined termwise, so that A[ϵn] becomes a module over k that contains A as a
submodule. More precisely, A[ϵn] is isomorphic to the direct sum of n+1 copies
of A, as a module over k. If a ∈ A[ϵn] is as in (5.1.2), then

a ϵn = a0 ϵn + · · ·+ an−1 ϵ
n
n(5.1.3)

defines an element of A[ϵn] as well. This defines

a 7→ a ϵn(5.1.4)

as a module homomorphism from A[ϵn] into itself. It is sometimes convenient
to consider the a0 term on the right side of (5.1.2) as being a0 ϵ

0
n, so that

multiplication by ϵ0n corresponds to the identity mapping on A[ϵn].
Let B be another module over k, so that B[ϵn] can be defined as in the

previous paragraph. Also let ϕ be a homomorphism from A into B[ϵn], as
modules over k. If a ∈ A[ϵn] is as in (5.1.2), then

ϕ(a) = ϕ(a0) + ϕ(a1) ϵn + · · ·+ ϕ(an) ϵ
n
n(5.1.5)

defines an element of B[ϵn]. This defines an extension of ϕ to a homomorphism
from A[ϵn] into B[ϵn], as modules over k. It is easy to see that

ϕ(a ϵn) = ϕ(a) ϵn(5.1.6)

100
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for every a ∈ A[ϵn], and that this extension of ϕ to A[ϵn] is uniquely determined
by these properties.

Let C be another module over k, so that C[ϵn] can be defined as before.
Also let β be a mapping from A×B into C[ϵn] that is bilinear over k. We can
extend β to a mapping from A[ϵn]×B[ϵn] into C[ϵn], as follows. Let a ∈ A[ϵn]
be as in (5.1.2), and let

b = b0 + b1 ϵn + · · ·+ bn ϵ
n
n(5.1.7)

be an element of B[ϵn], with b0, b1, . . . , bn ∈ B. Thus

β(a, b) =

n∑
j=0

n∑
l=0

β(aj , bl) ϵ
j+l
n(5.1.8)

defines an element of C[ϵn], which extends β to a mapping from A[ϵn] × B[ϵn]
into C[ϵn] that is bilinear over k. One can check that

β(a ϵn, b) = β(a, b ϵn) = β(a, b) ϵn(5.1.9)

for every a ∈ A[ϵn] and b ∈ B[ϵn], and that this extension of β to A[ϵn]×B[ϵn]
is uniquely determined by the properties. One can also look at this in terms of
extending β in each variable separately, as in the previous paragraph.

Suppose now that A = B, so that we start with a mapping β from A × A
into C[ϵn]. If β is symmetric or antisymmetric on A×A, then the extension of β
to A[ϵn]×A[ϵn] into C[ϵn] as in the preceding paragraph has the same property.
Similarly, if

β(a, a) = 0(5.1.10)

for every a ∈ A, then (5.1.10) holds for every a ∈ A[ϵn]. To see this, let a ∈ A[ϵn]
be given as in (5.1.2), so that

β(a, a) =

n∑
j=0

n∑
l=0

β(aj , al) ϵ
j+l
n ,(5.1.11)

as in (5.1.8). By hypothesis, β(aj , aj) = 0 for each j. Remember that β is
antisymmetric on A×A, as in Section 2.1. This implies that

β(aj , al) + β(al, aj) = 0(5.1.12)

when j ̸= l, which can be used to get that (5.1.11) is equal to 0.

5.2 Adjoining nilpotent elements to algebras

Let k be a commutative ring with a multiplicative identity element, and let
A be an algebra over k in the strict sense, where multiplication of a, b ∈ A is
expressed as a b. Also let n be a positive integer, and let ϵn be as in the previous
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section, so that A[ϵn] can be defined as a module over k as before. If a, b ∈ A[ϵn]
are as in (5.1.2) and (5.1.7), respectively, then

a b =

n∑
j=0

n∑
l=0

aj bl ϵ
j+l
n(5.2.1)

defines an element of A[ϵn] too. This extends multiplication on A to a mapping
from A[ϵn]×A[ϵn] into A[ϵn] that is bilinear over k, as in the previous section.
Thus A[ϵn] becomes an algebra over k in the strict sense as well.

If multiplication on A is commutative, then this extension of multiplication
to A[ϵn] is commutative too. If multiplication on A is associative, then one can
verify that multiplication on A[ϵn] is associative as well. If A has a multiplicative
identity element e, then e is also the multiplicative identity element in A[ϵn].
We can apply this to A = k, to get k[ϵn] as a commutative associative algebra
over k with a multiplicative identity element.

Let A be a module over k, so that A[ϵk] can be defined as a module over k
as in the previous section. In fact, A[ϵn] may be considered as a module over
k[ϵn]. More precisely, let a ∈ k[ϵn] be as in (5.1.2), with a0, a1, . . . , an ∈ k, and
let b ∈ A[ϵn] be as in (5.1.7), with b0, b1, . . . , bn ∈ A. Under these conditions,
a b can be defined as an element of A[ϵn] as in (5.2.1), where aj bl is defined as
an element of A using scalar multiplication with respect to k. This is the same
as extending scalar multiplication on A as a bilinear mapping from k×A into A
to a bilinear mapping from k[ϵn]×A[ϵn] into A[ϵn], as in the previous section.

Let B be another module over k, so that B[ϵn] can be defined as before. It
is easy to see that a mapping ϕ from A[ϵn] into B[ϵn] is linear over k[ϵn] if and
only if ϕ is linear over k and (5.1.6) holds for every a ∈ A[ϵn]. Similarly, let C
be a module over k, and let C[ϵn] be as before. One can check that a mapping
β from A[ϵn]×B[ϵn] into C[ϵn] is bilinear over k[ϵn] if and only if β is bilinear
over k and satisfies (5.1.9) for ever a ∈ A[ϵn] and b ∈ B[ϵn]. If A is an algebra
over k in the strict sense, then A[ϵn] may be considered as an algebra over k[ϵn]
in the strict sense.

If (A, [·, ·]A) is a Lie algebra over k, then [·, ·]A can be extended to A[ϵn] as
before. More precisely, if a, b ∈ A[ϵn] are as in (5.1.2) and (5.1.7), respectively,
then

[a, b]A[ϵn] =

n∑
j=0

n∑
l=0

[aj , bl]A ϵ
j+l
n(5.2.2)

defines an element of A[ϵn] as well. As in the previous section, [a, a]A[ϵn] = 0
for every a ∈ A[ϵn], because of the analogous property of [·, ·]A on A. One can
verify that (5.2.2) satisfies the Jacobi identity on A[ϵn], using the Jacobi identity
for [·, ·]A on A. Thus A[ϵn] is a Lie algebra over k with respect to (5.2.2), which
may be considered as a Lie algebra over k[ϵn].

Let A be a module over k again, and let T be an indeterminate, so that the
space A[[T ]] of formal power series in T with coefficients in A can be defined as
in Section 4.3. If f(T ) =

∑∞
j=0 fj T

j is an element of A[[T ]], then

f0 + f1 ϵn + · · ·+ fn ϵ
n
n(5.2.3)
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defines an element of A[ϵ]. This defines a homomorphism from A[[T ]] onto A[ϵn],
as modules over k. This homomorphism also maps the space A[T ] of formal
polynomials in T with coefficients in A onto A[ϵn]. Note that multiplication by
T on A[[T ]] corresponds to multiplication by ϵn on A[ϵn] with respect to this
homomorphism.

If A is an algebra over k in the strict sense, then one can check that the
mapping from f(T ) in A[[T ]] to (5.2.3) defines a homomorphism from A[[T ]]
onto A[ϵn] as algebras over k. In particular, we can apply this to A = k.

5.3 Invertibility in A[ϵn]

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element e. Also
let n be a positive integer, and let A[ϵn] be as in the previous two sections.
Remember that a ∈ A[ϵn] can be expressed as

a = a0 + a1 ϵn + · · ·+ an ϵ
n
n,(5.3.1)

where a0, a1, . . . , an ∈ A. The mapping

a 7→ a0(5.3.2)

defines an algebra homomorphism from A[ϵn] onto A. If a is invertible in A[ϵn],
then it follows that a0 is invertible in A.

Note that

(e− a)

n∑
l=0

al =
( n∑
l=0

al
)
(e− a) = e− an+1(5.3.3)

for every a ∈ A[ϵn], where a
l is interpreted as being equal to e when l = 0, as

usual. If a0 = 0, then an+1 = 0, so that (5.3.3) reduces to

(e− a)

n∑
l=0

al =
( n∑
l=0

al
)
(e− a) = e.(5.3.4)

This means that e− a is invertible in A[ϵn], with

(e− a)−1 =

n∑
l=0

al.(5.3.5)

If
b = b0 + b1 ϵn + · · ·+ bn ϵn(5.3.6)

is an element of A[ϵn], where b0 is an invertible element of A, then b can be
expressed as b0 (e− a), where a ∈ A[ϵn] is as in (5.3.1), with a0 = 0. It follows
that b is invertible in A[ϵn], because e− a is invertible.
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Suppose now that a, b ∈ A[ϵn] are as in (5.3.1) and (5.3.6), respectively, with
a0 = b0 = e. Put α = a− e and β = b− e, so that a = e+ α, b = e+ β,

a b = e+ α+ β + αβ,(5.3.7)

and α, β are multiples of ϵn. As in the preceding paragraph, a and b are
invertible elements of A[ϵn], with

a−1 =

n∑
l=0

(−α)l = e+

n∑
l=1

(−α)l(5.3.8)

and

b−1 =

n∑
l=0

(−β)l = e+

n∑
l=1

(−β)l.(5.3.9)

We also have that

a b a−1 b−1 = e+ a1 b1 ϵ
2
n − b1 a1 ϵ

2
n +O(ϵ3n)(5.3.10)

= e+ αβ − β α+O(ϵ3n),

where O(ϵ3n) refers to any element of A[ϵn] that is a multiple of ϵ3n. This can be
verified in the same way as in Section 4.13, or reduced to that situation, using
the homomorphism from A[[T ]] onto A[[ϵn]] mentioned in the previous section.

If n = 1, then α = a1 ϵ1, β = b1 ϵ1, and (5.3.7) reduces to

a b = e+ α+ β = e+ a1 ϵ1 + b1 ϵ1.(5.3.11)

In this case, (5.3.8) and (5.3.9) reduce to

a−1 = e− α = e− a1 ϵ1(5.3.12)

and
b−1 = e− β = e− b1 ϵ1.(5.3.13)

Note that a and b commute in this situation, so that a b a−1 b−1 = e.
If n = 2, then α = a1 ϵ2 + a2 ϵ

2
2, β = b1 ϵ2 + b2 ϵ

2
2, and (5.3.7) reduces to

a b = e+ a1 ϵ2 + a2 ϵ
2
2 + b1 ϵ2 + b2 ϵ

2
2 + a1 b1 ϵ

2
2.(5.3.14)

Similarly, (5.3.10) reduces to

a b a−1 b−1 = e+ a1 b1 ϵ
2
2 − b1 a1 ϵ

2
2.(5.3.15)

5.4 Adjoining two nilpotent elements

Let k be a commutative ring with a multiplicative identity element, and let A
be a module over k. We would like to define A[ϵ1, η1] as a module over k, where
ϵ1 and η1 are additional elements that are considered to satisfy

ϵ21 = η21 = 0, ϵ1 η1 = η1 ϵ1.(5.4.1)
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The elements of A[ϵ1, η1] can be expressed as formal sums of the form

a = a0,0 + a1,0 ϵ1 + a0,1 η1 + a1,1 ϵ1 η1,(5.4.2)

where a0,0, a1,0, a0,1, a1,1 ∈ A. Addition and scalar multiplication on A[ϵ1, η1]
are defined termwise, so that A[ϵ1, η1] becomes a module over k, which is isomor-
phic to the direct sum of four copies of A. By construction, A[ϵ1, η1] contains
a copy of A, and in fact A[ϵ1, η1] contains copies of A[ϵ1] and A[η1], which are
defined as in Section 5.1. If a ∈ A[ϵ1, η1] is as in (5.4.2), then

a ϵ1 = a0,0 ϵ1 + a0,1 ϵ1 η1, a η1 = a0,0 η1 + a1,0 ϵ1 η1(5.4.3)

define elements of A[ϵ1, η1]. This defines

a 7→ a ϵ1, a 7→ a η1(5.4.4)

as module homomorphisms from A[ϵ1, η1] into itself. One can also look at
A[ϵ1, η1] in terms of adjoining ϵ1 and η1 separately, as before.

Let B be another module over k, and let ϕ be a homomorphism from A
into B[ϵ1, η1], as modules over k, where B[ϵ1, η1] is defined as in the previous
paragraph. If a ∈ A[ϵ1, η1] is as in (5.4.2), then

ϕ(a) = ϕ(a0,0) + ϕ(a1,0) ϵ1 + ϕ(a0,1) η1 + ϕ(a1,1) ϵ1 η1(5.4.5)

defines an element ofB[ϵ1, η1]. This extends ϕ to a homomorphism from A[ϵ1, η1]
into B[ϵ1, η1], as modules over k. This extension satisfies

ϕ(a ϵ1) = ϕ(a) ϵ1, ϕ(a η1) = ϕ(a) η1(5.4.6)

for every a ∈ A[ϵ1, η1], and is uniquely determined by these properties.
Similarly, let C be another module over k, and let β be a mapping from

A×B into C[ϵ1, η1] that is bilinear over k, where C[ϵ1, η1] is defined as before.
One can extend β to a mapping from A[ϵ1, η1] × B[ϵ1, η1] into C[ϵ1, η1] that is
bilinear over k and satisfies

β(a ϵ1, b) = β(a, b ϵ1) = β(a, b) ϵ1(5.4.7)

and
β(a η1, b) = β(a, b η1) = β(a, b) η1(5.4.8)

for every a ∈ A[ϵ1, η1] and b ∈ B[ϵ1, η1].
Now let A be an algebra over k in the strict sense. Multiplication on A can be

extended to a mapping from A[ϵ1, η1]×A[ϵ1, η1] into A[ϵ1, η1] that is bilinear over
k, as in the preceding paragraph, so that A[ϵ1, η1] becomes an algebra over k in
the strict sense too. If multiplication on A is commutative, then multiplication
onA[ϵ1, η1] is commutative as well. If multiplication onA is associative, then one
can check that multiplication on A[ϵ1, η1] is associative. If A has a multiplicative
identity element e, then e is the multiplicative identity element in A[ϵ1, η1] too.
One can look at A[ϵ1, η1] as an algebra in terms adjoining ϵ1 and η1 separately,
as before. Thus these and other properties of A[ϵ1, η1] can be obtained from the
remarks in Sections 5.1 and 5.2.
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5.5 Invertibility in A[ϵ1, η1]

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element e. Thus
A[ϵ1, η1] is an associative algebra that contains A as a subalgebra, as in the
previous section, and e is the multiplicative identity element of A[ϵ1, η1]. As
before, a ∈ A[ϵ1, η1] as in (5.4.2), with a0,0, a1,0, a0,1, a1,1 ∈ A. The mapping

a 7→ a0,0(5.5.1)

defines an algebra homomorphism from A[ϵ1, η1] onto A. If a is invertible in
A[ϵ1, η1], then a0,0 is invertible in A.

As usual,

(e− a)

2∑
l=0

al =
( 2∑
l=0

al
)
(e− a) = e− a3(5.5.2)

for every a ∈ A[ϵ1, η1], where a
l is interpreted as being e when l = 0. If a is as

in (5.4.2), with a0,0 = 0, then a3 = 0, and hence

(e− a)

2∑
l=0

al =
( 2∑
l=0

al
)
(e− a) = e.(5.5.3)

It follows that e− a is invertible in A[ϵ1, η1], with

(e− a)−1 =

2∑
l=0

al = e+ a+ a2.(5.5.4)

If
b = b0,0 + b1,0 ϵ1 + b0,1 η1 + b1,1 ϵ1 η1(5.5.5)

is an element of A[ϵ1, η1], where b0,0 is an invertible element of A, then b can be
expressed as b0,0 (e− a), where a ∈ A[ϵ1, η1] is as in (5.4.2), with a0,0 = 0. This
implies that b is invertible in A[ϵ1, η1], because e− a is invertible.

Suppose that a, b ∈ A[ϵ1, η1] are as in (5.4.2) and (5.5.5), respectively, with
a0,0 = b0,0 = e. Put

α = a− e = a1,0 ϵ1 + a0,1 η1 + a1,1 ϵ1 η1(5.5.6)

and
β = b− e = b1,0 ϵ1 + b0,1 η1 + b1,1 ϵ1 η1.(5.5.7)

Thus a = e+ α, b = e+ β, and

a b = e+ α+ β + αβ = e+ α+ β + a1,0 b0,1 ϵ1 η1 + a0,1 b1,0 ϵ1 η1.(5.5.8)

We also have that a and b are invertible elements of A[ϵ1, η1], as in the preceding
paragraph, with

a−1 =

2∑
l=0

(−α)l = e− α+ α2 = e− α+ 2 · a1,0 a0,1 ϵ1 η1(5.5.9)
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and

b−1 =

2∑
l=0

(−β)l = e− β + β2 = e− β + 2 · b1,0 b0,1 ϵ1 η1.(5.5.10)

Here 2 · x denotes x+ x for any element x of A or A[ϵ1, η1].
Suppose now that a0,1 = a1,1 = b1,0 = b1,1 = 0, so that

a = e+ a1,0 ϵ1, b = e+ b0,1 η1(5.5.11)

and α = a1,0 ϵ1, β = b0,1 η1. In this case, (5.5.8) reduces to

a b = e+ a1,0 ϵ1 + b0,1 η1 + a1,0 b0,1 ϵ1 η1.(5.5.12)

Similarly, (5.5.9) and (5.5.10) reduce to

a−1 = e− a1,0 ϵ1, b−1 = e− b0,1 η1.(5.5.13)

Thus
a−1 b−1 = e− a1,0 ϵ1 − b0,1 η1 + a1,0 b0,1 ϵ1 η1.(5.5.14)

Combining (5.5.12) and (5.5.14), one can verify that

a b a−1 b−1 = e+ a1,0 b0,1 ϵ1 η1 − b0,1 a1,0 ϵ1 η1.(5.5.15)

5.6 Differentiation

Let k be a commutative ring with a multiplicative identity element, and let T
be an indeterminate. Also let A be a module over k, so that the spaces A[T ]
and A[[T ]] of formal polynomials and power series in T with coefficients in A
can be defined as in Section 4.3. If f(T ) =

∑∞
j=0 fj T

j ∈ A[[T ]], then the formal
derivative of f(T ) is defined by

f ′(T ) =

∞∑
j=1

j · fj T j−1 =

∞∑
j=0

(j + 1) · fj+1 T
j ,(5.6.1)

where j · a is the sum of j a’s in A for every j ∈ Z+ and a ∈ A. Thus
f ′(T ) ∈ A[[T ]] too, and

f(T ) 7→ f ′(T )(5.6.2)

is a homomorphism from A[[T ]] into itself, as a module over k. If f(T ) ∈ A[T ],
then f ′(T ) ∈ A[T ] as well.

Let B and C be two more modules over k, and let β be a mapping from
A × B into C that is bilinear over k. Let f(T ) ∈ A[[T ]] be given as before, as
well as g(T ) =

∑∞
l=0 gl T

l ∈ B[[T ]]. Put

hn =

n∑
j=0

β(fj , gn−j)(5.6.3)
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for every nonnegative integer n, and

β(f(T ), g(T )) = h(T ) =

∞∑
n=0

hn T
n,(5.6.4)

as in Section 4.5. We would like to verify that

h′(T ) = β(f ′(T ), g(T )) + β(f(T ), g′(T )).(5.6.5)

This is the same as saying that

(n+ 1) · hn+1 =

n∑
j=0

β((j + 1) · fj+1, gn−j)(5.6.6)

+

n∑
j=0

β(fj , (n− j + 1) · gn−j+1)

for every n ≥ 0. By the definition (5.6.3) of hn, we have that

(n+ 1) · hn+1 =

n+1∑
j=0

(n+ 1) · β(fj , gn+1−j)

=

n+1∑
j=0

j · β(fj , gn+1−j) +

n+1∑
j=0

(n+ 1− j) · β(fj , gn+1−j)(5.6.7)

=

n+1∑
j=1

j · β(fj , gn+1−j) +

n∑
j=0

(n+ 1− j) · β(fj , gn+1−j)

=

n∑
j=0

(j + 1) · β(fj+1, gn−j) +

n∑
j=0

(n− j + 1) · β(fj , gn−j+1)

for each n ≥ 0. This implies (5.6.6), as desired.
Let A be an algebra over k in the strict sense, where multiplication of a, b ∈ A

is expressed as a b. As in Section 4.6, multiplication on A can be extended to
A[[T ]], so that A[[T ]] becomes an algebra over k in the strict sense too. If f(T )
and g(T ) are elements of A[[T ]] and h(T ) = f(T ) g(T ), then

h′(T ) = f ′(T ) g(T ) + f(T ) g′(T ),(5.6.8)

as in (5.6.5). Thus (5.6.2) defines a derivation on A[[T ]], as an algebra over k.
Similarly, the restriction of (5.6.2) to A[T ] defines a derivation on A[T ], as an
algebra over k.

Let A be a module over k again, and remember that A[[T ]] may be considered
as a module over k[[T ]], as in Section 4.6. Let f(T ) ∈ k[[T ]] and g(T ) ∈ A[[T ]]
be given, so that h(T ) = f(T ) g(T ) defines an element of A[[T ]] as well. Under
these conditions, f ′(T ) ∈ k[[T ]], g′(T ), h′(T ) ∈ A[[T ]], and (5.6.8) holds in
A[[T ]]. This may be considered as another instance of (5.6.5). More precisely,
this uses scalar multiplication on A as a bilinear mapping from k × A into A,
and its extension to k[[T ]]×A[[T ]].
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5.7 Polynomial functions

Let k be a commutative ring with multiplicative identity element, let A be a
module over k, and let T be an indeterminate. Also let f(T ) =

∑n
j=0 fj T

j be
a formal polynomial in T with coefficients in A, as in Section 4.3. If t ∈ k, then

f(t) =

n∑
j=0

fj t
j(5.7.1)

defines an element of A, where fj t
j is defined using scalar multiplication on A,

and tj is interpreted as being the multiplicative identity element 1 in k when
j = 0. The mapping

f(T ) 7→ f(t)(5.7.2)

defines a homomorphism from A[T ] into A, as modules over k.

Let B and C be modules over k as well, and let β be a mapping from A×B
into C that is bilinear over k. If f(T ) ∈ A[T ] and g(T ) ∈ B[T ], then

h(T ) = β(f(T ), g(T ))(5.7.3)

can be defined as an element of C[T ] as in Section 4.5. Under these conditions,
one can check that

h(t) = β(f(t), g(t))(5.7.4)

for every t ∈ k.

Now let A be an algebra over k in the strict sense, where multiplication of
a, b ∈ A is expressed as a b. Remember that multiplication on A can be extended
to A[T ], so that A[T ] becomes an algebra over k in the strict sense, as in Section
4.6. If f(T ), g(T ) ∈ A[T ] and h(T ) = f(T ) g(T ), then

h(t) = f(t) g(t)(5.7.5)

for every t ∈ k, as in (5.7.4). Thus (5.7.2) defines a homomorphism from A[T ]
into A, as algebras over k.

Let A be a module over k again, so that A[T ] may be considered as a module
over k[T ], as in Section 4.6. Let f(T ) ∈ k[T ] and g(T ) ∈ A[T ] be given, and let
h(T ) = f(T ) g(T ) be their product in A[T ]. If t ∈ k, then f(t) is defined as an
element of k, g(t) and h(t) are defined as elements of A, and (5.7.5) holds, as in
(5.7.4).

Let t ∈ k be given, and suppose that ϵ ∈ k satisfies

ϵ2 = 0.(5.7.6)

Noe that

(t+ ϵ)j = tj + j · tj−1 ϵ(5.7.7)
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for every positive integer j. If f(T ) =
∑n
j=0 fj T

j ∈ A[T ], then

f(t+ ϵ) =

n∑
j=0

fj (t+ ϵ)j(5.7.8)

=

n∑
j=0

fj t
j +

n∑
j=1

j · fj tj−1 ϵ = f(t) + f ′(t) ϵ.

Here f ′(T ) ∈ A[T ] is as defined in the previous section, so that f ′(t) is defined
as an element of A as before.

Let A be an associative algebra over k with a multiplicative identity element
e. If f(T ) =

∑n
j=0 fj t

j ∈ k[T ] and a ∈ A, then

f(a) =

n∑
j=0

fj a
j(5.7.9)

is defined as an element of A, where aj is interpreted as being equal to e when
j = 0. Let g(T ) be another element of k[T ], so that h(T ) = f(T ) g(T ) is defined
as an element of k[T ] too. It is easy to see that

h(a) = f(a) g(a),(5.7.10)

so that
f(T ) 7→ f(a)(5.7.11)

defines a homomorphism from k[T ] into A, as algebras over k.
Suppose that a, ϵ ∈ A satisfy

a ϵ = ϵ a(5.7.12)

and ϵ2 = 0. As in (5.7.7), we have that

(a+ ϵ)j = aj + j · aj−1 ϵ(5.7.13)

for every j ∈ Z+. Using this, we get that

f(a+ ϵ) = f(a) + f ′(a) ϵ,(5.7.14)

as in (5.7.8).

5.8 Several commuting indeterminates

Let k be a commutative ring with a multiplicative identity element, and let A
be a module over k. Also let n be a positive integer, and let T1, . . . , Tn be n
commuting indeterminates. As usual, a multi-index of length n is an n-tuple
α = (α1, . . . , αn) of nonnegative integers, and we put

|α| = α1 + · · ·+ αn.(5.8.1)
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The corresponding formal monomial

Tα = Tα1
1 · · ·Tαn

n(5.8.2)

in T1, . . . , Tn has degree |α|. A formal power series in T1, . . . , Tn with coefficients
in A can be expressed as

f(T ) = f(T1, . . . , Tn) =
∑

α∈(Z+∪{0})n
fα T

α,(5.8.3)

where fα ∈ A for every multi-index α. The space A[[T1, . . . , Tn]] of all such
formal power series can be defined as the space of all A-valued functions on the
set (Z+ ∪ {0})n of all multi-indices of length n. This is a module over k with
respect to pointwise addition and scalar multiplication of A-valued functions on
(Z+∪{0})n, which corresponds to termwise addition and scalar multiplication of
formal power series as in (5.8.3). As a module over k, A[[T1, . . . , Tn]] corresponds
to the direct product of copies of A indexed by (Z+ ∪ {0})n.

A formal polynomial in T1, . . . , Tn with coefficients in A can be expressed as

f(T ) = f(T1, . . . , Tn) =
∑

|α|≤N

fα T
α,(5.8.4)

where the sum is taken over multi-indices α with |α| ≤ N for some nonnegative
integer N , and fα ∈ A for each such α. Of course, we can take fα = 0 when
|α| > N , so that (5.8.4) may be considered as a formal power series in T1, . . . , Tn
with coefficients in A. The space A[T1, . . . , Tn] of all such formal polynomials
can be defined as the space of all A-valued functions on (Z+ ∪ {0})n that are
equal to 0 for all but finitely many α, which is a submodule of A[[T1, . . . , Tn]].
As a module over k, A[T1, . . . , Tn] corresponds to the direct sum of copies of A
indexed by (Z+∪{0})n. We can identify A with the submodule of A[T1, . . . , Tn]
consisting of f(T ) as in (5.8.4) with N = 0.

Suppose that A is an algebra over k in the strict sense, where multiplication
of a, b ∈ A is expressed as a b. Let f(T ) ∈ A[[T1, . . . , Tn]] be as in (5.8.3), and
let

g(T ) =
∑

β∈(Z+∪{0})n
gβ T

β(5.8.5)

be another element of A[[T1, . . . , Tn]]. If α and β are multi-indices of length
n, then α + β can be defined as a multi-index of length n by coordinatewise
addition, and we have that

|α+ β| = |α|+ |β|.(5.8.6)

Put
hγ =

∑
α+β=γ

fα gβ(5.8.7)

for every multi-index γ of length n, where the sum is taken over all pairs of
multi-indices α, β such that α+β = γ. There are only finitely many such pairs,



112 CHAPTER 5. SOME RELATED NOTIONS

so that the sum on the right side of (5.8.7) is a finite sum of elements of A.
Thus

h(T ) =
∑

γ∈(Z+∪{0})n
hγ T

γ(5.8.8)

defines an element of A[[T1, . . . , Tn]], and we put

f(T ) g(T ) = h(T ).(5.8.9)

This extends multiplication on A to A[[T1, . . . , Tn]], so that the latter becomes
an algebra over k in the strict sense too. It is easy to see that A[T1, . . . , Tn] is
a subalgebra of A[[T1, . . . , Tn]] with respect to this definition of multiplication.
If multiplication on A is commutative or associative, then one can check that
multiplication on A[[T1, . . . , Tn]] has the same property. If A has a multiplicative
identity element e, then the corresponding formal polynomial in T1, . . . , Tn is the
multiplicative identity element in A[[T1, . . . , Tn]]. In particular, k[[T1, . . . , Tn]]
is a commutative associative algebra over k.

Let A be a module over k again, let f(T ) ∈ k[[T1, . . . , Tn]] be as in (5.8.3),
and let g(T ) ∈ A[[T1, . . . , Tn]] be as in(5.8.5). Thus fα gβ is defined as an element
of A for all multi-indices α, β, using scalar multiplication on A. If γ is a multi-
index of length n, then hγ can be defined as an element of A as in (5.8.7).
This permits us to define h(T ) as an element of A[[T1, . . . , Tn]] as in (5.8.8),
which can be used to define f(T ) g(T ). One can verify that A[[T1, . . . , Tn]] is a
module over k[[T1, . . . , Tn]] in this way. Similarly, if f(T ) ∈ k[T1, . . . , Tn] and
g(T ) ∈ A[T1, . . . , Tn], then h(T ) ∈ A[T1, . . . , Tn]. Using this definition of scalar
multiplication, A[T1, . . . , Tn] becomes a module over k[T1, . . . , Tn].

Let l and m be positive integers, and let X1, . . . , Xl, Y1, . . . , Ym be commut-
ing indeterminates. If β and γ are multi-indices of length l and m, respectively,
then let us identify (β, γ) with a multi-index of length l+m. This corresponds
to identifying (Z+ ∪{0})l× (Z+ ∪{0})m with (Z+ ∪{0})l+m. We may consider

Xβ Y γ = Xβ1

1 · · ·Xβl

l Y γ11 · · ·Y γmm(5.8.10)

as a formal monomial in the variables X1, . . . , Xl, Y1, . . . , Ym of degree |β|+ |γ|.
As before, A[[X1, . . . , Xl]] is a module over k, so that

(A[[X1, . . . , Xl]])[[Y1, . . . , Ym]](5.8.11)

can be defined as a module over k as well. There is a simple one-to-one corre-
spondence between the elements of (5.8.11) and

A[[X1, . . . , Xl, Y1, . . . , Ym]],(5.8.12)

which defines an isomorphism between these modules over k. This correspon-
dence takes

(A[X1, . . . , Xl])[Y1, . . . , Ym](5.8.13)

onto
A[X1, . . . , Xl, Y1, . . . , Ym].(5.8.14)
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If A is an algebra over k in the strict sense, then we get an isomorphism between
(5.8.11) and (5.8.12) as algebras over k. In particular, we get an isomorphism
between

(k[[X1, . . . , Xl]])[[Y1, . . . , Ym]](5.8.15)

and
k[[X1, . . . , Xl, Y1, . . . , Ym]](5.8.16)

as algebras over k. Similarly, if A is a module over k, then scalar multiplica-
tion on (5.8.11) by elements of (5.8.15) corresponds to scalar multiplication on
(5.8.12) by elements of (5.8.16).

5.9 Polynomial functions in several variables

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. As usual, we let kn be the space of n-tuples of elements of
k. If t = (t1, . . . , tn) ∈ kn and α is a multi-index of length n, then tα is defined
as an element of k by

tα = tα1
1 · · · tαn

n .(5.9.1)

Here t
αj

j is interpreted as being the multiplicative identity element 1 in k when
αj = 0, as before. If β is another multi-index of length n, then

tα+β = tα tβ .(5.9.2)

Let A be a module over k, and let T1, . . . , Tn be n commuting indeterminates.
Also let f(T ) be a formal polynomial in T1, . . . , Tn with coefficients in A, as in
(5.8.4). If t ∈ kn, then

f(t) =
∑

|α|≤N

fα t
α(5.9.3)

defines an element of A, where fα t
α is defined using scalar multiplication on A

for each multi-index α. The mapping

f(T ) 7→ f(t)(5.9.4)

defines a homomorphism from A[T1, . . . , Tn] into A, as modules over k.
Let A be an algebra over k in the strict sense, where multiplication of a, b ∈ A

is expressed as a b. Remember that multiplication on A can be extended to
A[T1, . . . , Tn], as in the previous section. Let f(T ), g(T ) ∈ A[T1, . . . , Tn] be
given, and put h(T ) = f(T ) g(T ). If t ∈ kn, then one can check that

h(t) = f(t) g(t).(5.9.5)

This means that (5.9.4) defines a homomorphism from A[T1, . . . , Tn] into A, as
algebras over k.

Let A be a module over k again, and remember that A[T1, . . . , Tn] may be
considered as a module over k[T1, . . . , Tn], as in the previous section. Let f(T )
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in k[T1, . . . , Tn] and g(T ) ∈ A[T1, . . . , Tn] be given, so that h(T ) = f(T ) g(T ) is
defined as an element of A[T1, . . . , Tn] as well. If t ∈ kn, then f(t) ∈ k, g(t) and
h(t) are elements of A, and one can verify that (5.9.5) holds.

Let A be an associative algebra over k with a multiplicative identity element
e, and let An be the space of n-tuples of elements of A. Suppose that a =
(a1, . . . , an) ∈ An has commuting coordinates, so that

aj al = al aj(5.9.6)

for all j, l = 1, . . . , n. Of course, this condition holds trivially when n = 1. If α
is a multi-index of length n, then aα is defined as an element of A by

aα = aα1
1 · · · aαn

n ,(5.9.7)

where a
αj

j is interpreted as being equal to e when αj = 0. Note that

aα+β = aα aβ(5.9.8)

for all multi-indices α, β under these conditions. Let f(T ) be a formal polyno-
mial in T1, . . . , Tn with coefficients in k, as in (5.8.4) again. As before, f(a) is
defined as an element of A by

f(a) =
∑

|α|≤N

fα a
α,(5.9.9)

where fα a
α is defined using scalar multiplication on A. If g(T ) ∈ k[T1, . . . , Tn]

too and h(T ) = f(T ) g(T ), then one can verify that

h(a) = f(a) g(a).(5.9.10)

It follows that f(T ) 7→ f(a) is a homomorphism from k[T1, . . . , Tn] into A, as
algebras over k, since this mapping is clearly linear over k.

5.10 Partial derivatives

Let n be a positive integer, let α be a multi-index of length n, and let l be a
positive integer with l ≤ n. The multi-index α(l) of length n is defined by

αj(l) = αj when j ̸= l(5.10.1)

and

αl(l) = αl − 1 when αl ≥ 1(5.10.2)

= 0 when αl = 0.

Similarly, let α+(l) be the multi-index of length n defined by

α+
j (l) = αj when j ̸= l(5.10.3)

= αl + 1 when j = l.
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Let k be a commutative ring with a multiplicative identity element, let A be
a module over k, and let T1, . . . , Tn be n commuting indeterminates. Also let
f(T ) be a formal power series in T1, . . . , Tn with coefficients in A, as in (5.8.3).
The formal partial derivative of f(T ) in Tl can be defined as a formal power
series in T1, . . . , Tn with coefficients in A by

∂lf(T ) =
∂

∂Tl
f(T ) =

∑
α∈(Z+∪{0})n

(αl + 1) · fα+(l) T
α.(5.10.4)

This is basically the same as∑
α∈(Z+∪{0})n

αl · fα Tα(l) =
∑
αl≥1

αl · fα Tα(l),(5.10.5)

where the second sum is taken over all multi-indices α with αl ≥ 1. Note that

f(T ) 7→ ∂lf(T )(5.10.6)

defines a homomorphism from A[[T1, . . . , Tn]] into itself, as a module over k. Of
course, if f(T ) ∈ A[T1, . . . , Tn], then the previous sums reduce to finite sums,
and ∂lf(T ) ∈ A[T1, . . . , Tn]. One can check that

∂l(∂mf(T )) = ∂m(∂lf(T ))(5.10.7)

for every l,m = 1, . . . , n and f(T ) ∈ A[[T1, . . . , Tn]].
If n = 1, then (5.10.4) reduces to the definition of the derivative in Section

5.6. If n > 1, then we can identify f(T ) ∈ A[[T1, . . . , Tn]] with a formal power
series in Tl whose coefficients are formal power series in the other variables Tj ,
j ̸= l, with coefficients in A, as in Section 5.8. The derivative of this formal
power series in Tl can be defined as in Section 5.6, as a formal power series
in Tl whose coefficients are formal power series in the other variables. This
differentiated formal power series can be identified with a formal power series
in T1, . . . , Tn, as before, which is the same as (5.10.4).

Suppose that A is an algebra over k in the strict sense, so that A[[T1, . . . , Tn]]
is an algebra over k in the strict sense as well, as in Section 5.8. Under these
conditions, (5.10.6) defines a derivation on A[[T1, . . . , Tn]]. This can be reduced
to the analogous statement for polynomials in one variable in Section 5.6, as in
the preceding paragraph, or verified directly as in the n = 1 case.

Let A be a module over k again, and remember that A[[T1, . . . , Tn]] may
be considered as a module over k[[T1, . . . , Tn]], as in Section 5.8. If f(T ) is an
element of k[[T1, . . . , Tn]] and g(T ) ∈ A[[T1, . . . , Tn]], then

∂l(f(T ) g(T )) = (∂lf(T )) g(T ) + f(T ) (∂lg(T )),(5.10.8)

as elements of A[[T1, . . . , Tn]]. This can be reduced to the analogous statement
for polynomials in one variable in Section 5.6, as before, or verified directly in
a similar way.
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Let t ∈ kn be given, and suppose that u ∈ kn satisfies

uj ul = 0(5.10.9)

for all j, l = 1, . . . , n. Of course, t + u is defined as an element of kn, using
coordinatewise addition. Let α be a multi-index of length n, so that tα and
(t+ u)α are defined as elements of k, as in (5.9.1). As in (5.7.7),

(tl + ul)
αl = tαl

l + αl · tαl−1
l ul(5.10.10)

for each l = 1, . . . , n when αl ≥ 1, because u2l = 0. If αl = 0, then (tl + ul)
αl =

tαl

l = 1. Thus

(tl + ul)
αl = tαl

l + αl · tαl(l)
l ul(5.10.11)

for every l = 1, . . . , n. Using this, one can check that

(t+ u)α = tα +

n∑
l=1

αl · tα(l) ul.(5.10.12)

If f(T ) ∈ A[T1, . . . , Tn], then it follows that

f(t+ u) = f(t) +

n∑
l=1

(∂lf)(t)ul.(5.10.13)

Let A be an associative algebra over k with a multiplicative identity element
e, and suppose that a ∈ An has commuting coordinates, as in the previous
section. Also let u be an element of An that satisfies (5.10.9), and whose coor-
dinates commute with the coordinates of a, so that

aj ul = ul aj(5.10.14)

for all j, l = 1, . . . , n. Note that u has commuting coordinates, and hence a+ u
has commuting coordinates. Let α be a multi-index of length n again, so that
aα and (a+ u)α are defined as elements of A as before. As in (5.10.11),

(al + ul)
αl = aαl

l + αl · aαl(l)
l ul(5.10.15)

for every l = 1, . . . , n. This implies that

(a+ u)α = aα +

n∑
l=1

αl · aα(l) ul,(5.10.16)

as before. If f(T ) ∈ k[T1, . . . , Tn], then we get that

f(a+ u) = f(a) +

n∑
l=1

(∂lf)(a)ul.(5.10.17)
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5.11 Formal differential operators

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. Also let ∂1, . . . , ∂n be commuting formal symbols, which
may be used to represent partial derivatives, as in the previous section. If α is
a multi-index of length n, then let

∂α = ∂α1
1 · · · ∂αn

n(5.11.1)

be the corresponding formal product of ∂l’s.
Let T1, . . . , Tn be n commuting indeterminates, as before. A formal differ-

ential operator in ∂1, . . . , ∂n with coefficients in k[[T1, . . . , Tn]] can be expressed
as ∑

|α|≤N

aα(T ) ∂α,(5.11.2)

where N is a nonnegative integer, the sum is taken over all multi-indices α of
length n with |α| ≤ N , and aα(T ) ∈ k[[T1, . . . , Tn]] for each such α. As usual,
we can take aα(T ) = 0 when |α| > N , so that aα(T ) is defined for every multi-
index α. The space of these formal differential operators can be defined as the
space of functions α 7→ aα(T ) from (Z+ ∪ {0})n into k[[T1, . . . , Tn]] such that
aα(T ) = 0 for all but finitely many α. This is a module over k with respect
to pointwise addition and scalar multiplication, which corresponds to termwise
addition and scalar multiplication of sums as in (5.11.2). As a module over
k, this corresponds to the direct sum of copies of k[[T1, . . . , Tn]] indexed by
(Z+ ∪ {0})n. We can identify elements of k[[T1, . . . , Tn]] with sums of the form
(5.11.2) with N = 0.

Multiplication on k[[T1, . . . , Tn]] can be extended to these formal differential
operators, with

∂l(b
β(T ) ∂β) = (∂l b

β(T )) ∂β + bβ(T ) ∂l ∂
β(5.11.3)

for every l = 1, . . . , n, multi-index β, and bβ(T ) ∈ k[[T1, . . . , Tn]]. Note that

∂l ∂
β = ∂β

+(l),(5.11.4)

in the notation of the previous section. The space of these formal differential op-
erators is an associative algebra over k in this way, which contains k[[T1, . . . , Tn]]
as a subalgebra. The multiplicative identity element of k is also the multiplica-
tive identity element in the space of these formal differential operators, when
considered as an element of k[[T1, . . . , Tn]] and hence a formal differential oper-
ator, as before.

A formal differential operator in ∂1, . . . , ∂n with coefficients in k[T1, . . . , Tn]
can be expressed as in (5.11.2), with aα(T ) ∈ k[T1, . . . , Tn] for each α. The
space of these formal differential operators is a subalgebra of the space of formal
differential operators in ∂1, . . . , ∂n with coefficients in k[[T1, . . . , Tn]]. The space
of formal differential operators in ∂1, . . . , ∂n with coefficients in k[T1, . . . , Tn]
contains k[T1, . . . , Tn] as a subalgebra, as before.
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Let A be a module over k. If α is a multi-index of length n and f(T ) is a
formal power series in T1, . . . , Tn with coefficients in A, then

∂αf(T ) = ∂α1
1 · · · ∂αn

n f(T )(5.11.5)

defines an element of A[[T1, . . . , Tn]] as well, where partial derivatives are defined
on A[[T1, . . . , Tn]] as in the previous section. This is interpreted as being equal
to f(T ) when α = 0. Similarly, if (5.11.2) is a formal differential operator in
∂1, . . . , ∂n with coefficients in k[[T1, . . . , Tn]], then( ∑

|α|≤N

aα(T ) ∂α
)
f(T ) =

∑
|α|≤N

aα(T ) ∂αf(T )(5.11.6)

defines an element of A[[T1, . . . , Tn]]. Thus (5.11.2) induces a mapping from
A[[T1, . . . , Tn]] into itself, which is linear over k. If the coefficients aα(T ) of
(5.11.2) are elements of k[T1, . . . , Tn] and f(T ) ∈ A[T1, . . . , Tn], then (5.11.6) is
in A[T1, . . . , Tn] too.

Remember that the space

Homk(A[[T1, . . . , Tn]], A[[T1, . . . , Tn]])(5.11.7)

of homomorphisms from A[[T1, . . . , Tn]] into itself, as a module over k, is an as-
sociative algebra over k with respect to composition of mappings. The remarks
in the preceding paragraph define a mapping from the space of formal differ-
ential operators in ∂1, . . . , ∂n with coefficients in k[[T1, . . . , Tn]] into (5.11.7).
One can check that this mapping is an algebra homomorphism, with respect to
multiplication of formal differential operators, as mentioned earlier.

Suppose now that A = k, as a module over itself. Let us also suppose for
the moment that if m is a positive integer, t ∈ k, and m · t = 0 in k, then
t = 0. In particular, this holds when k = Z, or k is a field of characteristic
0, or at least an algebra over Q. In this case, one can verify that a formal
differential operator (5.11.2) in ∂1, . . . , ∂n with coefficients in k[[T1, . . . , Tn]] is
uniquely determined by the corresponding mapping from k[[T1, . . . , Tn]] into
itself. More precisely, (5.11.2) is uniquely determined by the restriction of this
mapping to k[T1, . . . , Tn]. This uses the fact that

∂αT β = 0(5.11.8)

when α, β are multi-indices such that αj > βj for some j = 1, . . . , n. This also
uses the fact that

∂α Tα =

n∏
j=1

(αj !)(5.11.9)

for every multi-index α.

5.12 First-order differential operators

Let k be a commutative ring with a multiplicative identity element, let n be
a positive integer, and let ∂1, . . . , ∂n be commuting formal symbols, as in the
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previous section. Also let T1, . . . , Tn be commuting indeterminates, and let

a(T ) = (a1(T ), . . . , an(T ))(5.12.1)

be an n-tuple of formal power series in T1, . . . , Tn with coefficients in k. Put

Da(T ) =

n∑
j=1

aj(T ) ∂j ,(5.12.2)

which defines a formal partial differential operator in ∂1, . . . , ∂n with coefficients
in k[[T1, . . . , Tn]], as in the previous section.

Let b(T ) = (b1(T ), . . . , bn(T )) be another n-tuple of formal power series in
T1, . . . , Tn with coefficients in k, so that Db(T ) can be defined as before. The
products Da(T )Db(T ) and Db(T )Da(T ) can be defined as formal differential op-
erators in ∂1, . . . , ∂n with coefficients in k[[T1, . . . , Tn]] as well, as in the previous
section. It is easy to see that

Da(T )Db(T ) −Db(T )Da(T )(5.12.3)

=

n∑
j=1

n∑
l=1

(aj(T ) ∂jb
l(T )− bj(T ) ∂ja

l(T )) ∂l,

using (5.11.3). Put c(T ) = (c1(T ), . . . , cn(T )), where

cl(T ) =

n∑
j=1

(aj(T ) ∂jb
l(T )− bj(T ) ∂ja

l(T ))(5.12.4)

for each l = 1, . . . , n. Thus c(T ) is another n-tuple of elements of k[[T1, . . . , Tn]],
and

Da(T )Db(T ) −Db(T )Da(T ) = Dc(T ).(5.12.5)

If f(T ) ∈ k[[T1, . . . , Tn]], then

Da(T )f(T ) =

n∑
j=1

aj(T ) ∂jf(T )(5.12.6)

defines an element of k[[T1, . . . , Tn]] too, as in the previous section. One can
check that this defines a derivation on k[[T1, . . . , Tn]], because partial derivatives
define derivations on k[[T1, . . . , Tn]].

If aj(T ) ∈ k[T1, . . . , Tn] for each j = 1, . . . , n, and f(T ) ∈ k[T1, . . . , Tn], then
(5.12.6) defines an element of k[T1, . . . , Tn], as before. In this case, we get a
derivation on k[T1, . . . , Tn]. If bj(T ) ∈ k[T1, . . . , Tn] for each j = 1, . . . , n as
well, then (5.12.4) is an element of k[T1, . . . , Tn] for every l = 1, . . . , n.

Let δ be any derivation on k[T1, . . . , Tn], as an algebra over k. Note that Tj
may be considered as an element of k[T1, . . . , Tn] for each j = 1, . . . , n, where
more precisely the coefficient of Tj is the multiplicative identity element in k.
Thus

aj(T ) = δ(Tj)(5.12.7)
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defines an element of k[T1, . . . , Tn] for each j = 1, . . . , n. This permits us to
define a(T ) as an n-tuple of elements of k[T1, . . . , Tn] as in (5.12.1), so that
Da(T ) can be defined as in (5.12.2). If f(T ) ∈ k[T1, . . . , Tn], then one can verify
that

δ(f(T )) = Da(T )f(T ),(5.12.8)

where the right side is defined as in (5.12.6).
Now let δ be a derivation on k[[T1, . . . , Tn]], as an algebra over k. In this case,

(5.12.7) defines an element of k[[T1, . . . , Tn]] for each j = 1, . . . , n, so that we can
define a(T ) as an n-tuple of elements of k[[T1, . . . , Tn]] as in (5.12.1). ThusDa(T )

can be defined as in (5.12.2), and (5.12.8) holds for every f(T ) ∈ k[T1, . . . , Tn],
as in the preceding paragraph. Of course, we would like to extend this to
f(T ) ∈ k[[T1, . . . , Tn]].

Let us say that f(T ) ∈
∑
α∈(Z+∪{0})n fα T

α ∈ k[[T1, . . . , Tn]] vanishes to
order L for some nonnegative integer L if fα = 0 for every multi-index α with
|α| ≤ L. If g(T ) ∈ k[[T1, . . . , Tn]], then

g(T )T β(5.12.9)

vanishes to order |β| − 1 for every nonzero multi-index β. If f(T ) vanishes to
order L for some L ≥ 0, then f(T ) can be expressed as a finite sum of elements
of k[[T1, . . . , Tn]] of the form (5.12.9), with |β| = L+ 1.

If f(T ) vanishes to order L for some L ≥ 1, then δ(f(T )) vanishes to order
L−1. This can be verified directly when f(T ) is of the form (5.12.9) with |β| =
L+1, and otherwise one can reduce to that case, as in the preceding paragraph.
One can use this to get that (5.12.8) holds for every f(T ) ∈ k[[T1, . . . , Tn]], as
desired.

5.13 Homogeneous formal polynomials

Let k be a commutative ring with a multiplicative identity element, let T1, . . . , Tn
be n commuting indeterminates for some positive integer n, and let A be a mod-
ule over k. A formal polynomial f(T ) in T1, . . . , Tn with coefficients in A is said
to be homogeneous of degree d for some nonnegative integer d if f(T ) can be
expressed as

f(T ) =
∑
|α|=d

fα T
α,(5.13.1)

where the sum is taken over all multi-indices α of length n with |α| = d, and fα
is an element of A for all such α. Equivalently, this means that the coefficient
fα of Tα in f(T ) is equal to 0 when |α| ̸= d. The space Ad[T1, . . . , Tn] of these
formal polynomials is a submodule of A[T1, . . . , Tn], as a module over k. Note
that Ad[T1, . . . , Tn] corresponds to a direct sum of copies of A indexed by multi-
indices α with |α| = d, and that A[T1, . . . , Tn] can be viewed as the direct sum
of Ad[T1, . . . , Tn] over all nonnegative integers d. Similarly, A[[T1, . . . , Tn]] can
be viewed as the direct product of Ad[T1, . . . , Tn] over all nonnegative integers
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d. If f(T ) ∈ Ad[T1, . . . , Tn] for some d ≥ 1, then it is easy to see that ∂lf(T ) is
homogeneous of degree d− 1 for every l = 1, . . . , n.

Suppose that A is an algebra over k in the strict sense. If f(T ), g(T ) are
homogeneous formal polynomials in T1, . . . , Tn with coefficients in A for some
nonnegative integers d1, d2, respectively, then one can check that f(T ) g(T ) is
homogeneous of degree d1 + d2.

Let us now take A = k, and let

aj(T ) =

n∑
l=1

ajl Tl(5.13.2)

be elements of k1[T1, . . . , Tn] for j = 1, . . . , n, so that ajl ∈ k for all j, l = 1, . . . , n.

Thus ∂la
j(T ) = ajl for every j, l = 1, . . . , n. Put a(T ) = (a1(T ), . . . , an(T )), and

let ∂1, . . . , ∂n be commuting formal symbols, as in the previous two sections.
Consider the corresponding formal differential operator Da(T ) in ∂1, . . . , ∂n, as
before. If f(T ) is a formal polynomial in T1, . . . , Tn with coefficients in k, then
Da(T )f(T ) is defined as an element of k[T1, . . . , Tn] too. More precisely, if f(T )
is homogeneous of degree d, then Da(T )f(T ) is homogeneous of degree d as well.
In particular, if

f(T ) =

n∑
j=1

fj Tj(5.13.3)

is homogeneous of degree 1, so that fj ∈ k for j = 1, . . . , n, then

Da(T )f(T ) =

n∑
j=1

aj(T ) ∂jf(T ) =

n∑
j=1

n∑
l=1

ajl fj Tl.(5.13.4)

Let

bj(T ) =

n∑
l=1

bjl Tl(5.13.5)

be elements of k1[T1, . . . , Tn] for j = 1, . . . , n, and put b(T ) = (b1(T ), . . . , bn(T )).
Put

cj(T ) =

n∑
l=1

(al(T ) bjl − bl(T ) ajl ) =

n∑
l=1

n∑
m=1

(alm b
j
l − blm a

j
l )Tm(5.13.6)

for each j = 1, . . . , n, and c(T ) = (c1(T ), . . . , cn(T )). Note that cj(T ) is an
element of k1[T1, . . . , Tn] for j = 1, . . . , n. If Db(T ) and Dc(T ) are the formal
differential operators in ∂1, . . . , ∂n corresponding to b(T ) and c(T ), respectively,
then

Da(T )Db(T ) −Db(T )Da(T ) = Dc(T ),(5.13.7)

as in (5.12.5).



122 CHAPTER 5. SOME RELATED NOTIONS

5.14 Homogeneous differential operators

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. Also let T1, . . . , Tn be commuting indeterminates, and let
∂1, . . . , ∂n be commuting formal symbols, as in Section 5.11. Consider a formal
differential operator

L =
∑

|α|≤N

aα(T ) ∂α(5.14.1)

in ∂1, . . . , ∂n with coefficients in k[T1, . . . , Tn]. Let us say that L is homogeneous
of degree d for some integer d if the following conditions hold. If α is a multi-
index such that d ≥ −|α|, then aα(T ) should be homogeneous of degree d+ |α|
as a formal polynomial in T1, . . . , Tn with coefficients in k. Otherwise, if d is
strictly less than −|α|, then aα(T ) = 0. The space of these formal differential
operators that are homogeneous of degree d is a submodule of the space of all
formal differential operators in ∂1, . . . , ∂n with coefficients in k[T1, . . . , Tn], as a
module over k.

Let L1 and L2 be formal differential operators in ∂1, . . . , ∂n with coefficients
in k[T1, . . . , Tn], so that their product L1 L2 can be defined as a formal differen-
tial operator with coefficients in k[T1, . . . , Tn] as well. If L1, L2 are homogeneous
of degrees d1, d2 ∈ Z, respectively, then one can check that L1 L2 is homoge-
neous of degree d1 + d2. More precisely, one can start with the case where
L1 = ∂j for some j = 1, . . . , n, so that d1 = −1. Using this, one can obtain the
analogous statement for L1 = ∂α for some multi-index α, so that d1 = −|α|.
One can use this to obtain the analogous statement when L1 is homogeneous of
any degree d1.

Let L1 be a formal differential operator in ∂1, . . . , ∂n with coefficients in
k[T1, . . . , Tn] again, and let A be a module over k. Also let f(T ) be a formal
polynomial in T1, . . . , Tn with coefficients in A, so that L1f(T ) is defined as an
element of A[T1, . . . , Tn] too. Suppose that L1 is homogeneous of degree d1 ∈ Z,
and that f(T ) is homogeneous of degree d for some nonnegative integer d. One
can verify that L1f(T ) is homogeneous of degree d1 + d when d1 ≥ −d, and
that L1f(T ) = 0 otherwise. Indeed, if L1 = ∂j for some j = 1, . . . , n, then this
was mentioned in the previous section. As before, one can use this to obtain
the analogous statement when L1 = ∂α for some multi-index α. The analogous
statement for any L1 follows easily from this.

Remember that the space of formal differential operators in ∂1, . . . , ∂n with
coefficients in k[T1, . . . , Tn] is an algebra over k. The collection of such formal
differential operators that are homogeneous of degree 0 is a subalgebra of this
algebra. This subalgebra is generated as an an algebra over k by homogeneous
differential operators of degree 0 as in (5.14.1) with N = 1. To see this, one can
start with a homogeneous differential operator of degree 0 of the form Tα ∂β ,
where α, β are multi-indices with |α| = |β| ≥ 2. This can be approximated by
a product of |α| = |β| operators of the form Tj ∂l for some j, l = 1, . . . , n. More
precisely, one can choose the approximation so that the difference is a formal
differential operator of lower order. One can repeat the process to express any
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homogeneous differential operator of degree 0 as a finite sum of products of
homogeneous differential operators of degree 0 and order less than or equal to
1, as desired.

5.15 Some algebras of differential operators

Let k be a commutative ring with a multiplicative identity element, let n be a
positive integer, let T1, . . . , Tn be commuting indeterminates, and let ∂1, . . . , ∂n
be commuting formal symbols, as before. Remember that

the space of formal differential operators in ∂1, . . . , ∂n(5.15.1)

with coefficients in k[[T1, . . . , Tn]]

is an associative algebra over k, as in Section 5.11. Similarly,

the space of formal differential operators in ∂1, . . . , ∂n(5.15.2)

with coefficients in k[T1, . . . , Tn]

is a subalgebra of (5.15.1). We also have that

the space of formal differential operators in ∂1, . . . , ∂n(5.15.3)

with coefficients in k[T1, . . . , Tn] that are homogeneous

of degree 0

is a subalgebra of (5.15.2), as in the previous section.
If a(T ) = (a1(T ), . . . , an(T )) is an element of the space (k[[T1, . . . , Tn]])

n

of n-tuples of formal power series in T1, . . . , Tn with coefficients in k, then put
Da(T ) =

∑n
j=1 a

j(T ) ∂j , as in Section 5.12. Note that

{Da(T ) : a(T ) ∈ (k[[T1, . . . , Tn]])
n}(5.15.4)

is a submodule of (5.15.1), as a module over k. Remember that the commutator
of two elements of (5.15.4) is an element of (5.15.4) too, as in Section 5.12. Thus
(5.15.4) is a Lie subalgebra of (5.15.1), as a Lie algebra over k with respect to
the commutator bracket. Similarly,

{Da(T ) : a(T ) ∈ (k[T1, . . . , Tn])
n}(5.15.5)

is a submodule of (5.15.2), as a module over k, and a Lie subalgebra of (5.15.2),
as a Lie algebra over k with respect to the commutator bracket.

Remember that k1[T1, . . . , Tn] is the space of homogeneous formal polyno-
mials in T1, . . . , Tn of degree one with coefficients in k, as in Section 5.13. Put

gn(k) = {Da(T ) : a(T ) ∈ (k1[T1, . . . , Tn])
n},(5.15.6)

which is a submodule of (5.15.3), as a module over k. In fact, (5.15.6) is a Lie
subalgebra of (5.15.3), as a Lie algebra over k with respect to the commutator
bracket.
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Of course, a(T ) ∈ (k1[T1, . . . , Tn])
n can be expressed as aj(T ) =

∑n
l=1 a

j
l Tl

for j = 1, . . . , n, where ajl ∈ k for every j, l = 1, . . . , n. Thus the elements of
(k1[T1, . . . , Tn])

n correspond to n × n matrices with entries in k in an obvious
way. Using this, it is easy to see that gn(k) is isomorphic to gln(k) as a Lie
algebra over k, as in Section 5.13.

Put

sn(k) =

{
Da(T ) : a(T ) ∈ (k1[T1, . . . , Tn])

n,

n∑
j=1

ajj = 0

}
,(5.15.7)

where ajl , 1 ≤ j, l ≤ n, corresponds to a(T ) ∈ (k1[T1, . . . , Tn])
n as in the pre-

ceding paragraph. This is a Lie subalgebra of gn(k), as a Lie algebra over k,
which corresponds to sln(k) under the isomorphism between gn(k) and gln(k)
mentioned before. More precisely,

[gn(k), gn(k)] ⊆ sn(k),(5.15.8)

as in Section 2.9.
If a(T ) ∈ (k1[T1, . . . , Tn])

n, thenDa(T ) defines a mapping from k1[T1, . . . , Tn]
into itself that is linear over k, as in the previous two sections. Multiplication of
differential operators corresponds to composition of the associated linear map-
pings on k1[T1, . . . , Tn], so that commutators of differential operators correspond
to commutators of the associated linear mappings on k1[T1, . . . , Tn]. Of course,
k1[T1, . . . , Tn] is freely generated by T1, . . . , Tn, as a module over k. The linear
mapping on k1[T1, . . . , Tn] associated to Da(T ) corresponds to an n× n matrix
whose entries are determined by the coefficients of the components of a(T ), as
before.

Remember that formal polynomials in T1, . . . , Tn with coefficients in k de-
termine k-valued polynomial functions on kn, as in Section 5.9. In particular,
elements of k1[T1, . . . , Tn] correspond exactly to mappings from kn into k that
are linear over k. Similarly, elements of (k1[T1, . . . , Tn])

n correspond exactly to
mappings from kn into itself that are linear over k.

Of course, mappings from kn into itself that are linear over k correspond to
n × n matrices with entries in k in the usual way. Using this, matrix multipli-
cation corresponds to composition of mappings on kn. Thus commutators of
matrices correspond to commutators of linear mappings on kn.

If a(T ) ∈ (k1[T1, . . . , Tn])
n, then we get a linear mapping from kn into itself,

and an n×nmatrix with entries in k, as in the previous two paragraphs. One can
check that the n×n matrix associated to Da(T ) as mentioned earlier is the same
as the transpose of the matrix associated to the linear mapping from kn into
itself. This means that commutators of these differential operators correspond
to −1 times the commutators of the linear mappings on kn associated to the
same elements of (k1[T1, . . . , Tn])

n.



Chapter 6

Bilinear actions and
representations

6.1 Bilinear actions

Let k be a commutative ring with a multiplicative identity element, and let A,
V be modules over k. Also let β be a mapping from A × V into V that is
bilinear over k. This may be described as a bilinear action of A on V over k,
or more precisely as a bilinear action of A on V on the left. It is sometimes
convenient to consider a mapping from V ×A into V that is bilinear over k as a
bilinear action of A on V on the right. If A is an associative algebra over k, or
a Lie algebra over k, then we may be interested in bilinear actions that satisfy
additional conditions, as in Sections 6.4 and 6.5.

Alternatively, we may use the notation

ρa(v) = β(a, v),(6.1.1)

where a ∈ A and v ∈ V . The bilinearity of β means that ρa is a module homo-
morphism from V into itself for each a ∈ A, and that a 7→ ρa defines a module
homomorphism from A into the space Homk(V, V ) of module homomorphisms
from V into itself. We may use ρ to denote a module homomorphism from A
into Homk(V, V ) in this way, which defines a bilinear action of A on V as in
(6.1.1). We may also use the notation

a · v = β(a, v)(6.1.2)

for a ∈ A and v ∈ V . A bilinear action of A on V on the right may be expressed
by v · a for a ∈ A and v ∈ V .

Let T be an indeterminate, and remember that k[T ], A[T ], and V [T ] are
the corresponding spaces of formal polynomials in T with coefficients in k, A,
and V , respectively. A bilinear action of A on V over k can be extended to a
bilinear action of A[T ] on V [T ] over k[T ]. More precisely, one could start with a

125
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mapping from A× V into V [T ] that is bilinear over k. This can be extended to
a mapping from A[T ]× V [T ] into V [T ] that is bilinear over k[T ], as in Sections
4.5 and 4.6.

Remember that k[[T ]], A[[T ]], and V [[T ]] are the corresponding spaces of
formal power series in T with coefficients in k, A, and T , respectively. A bilinear
action of A on V over k can be extended to a bilinear action of A[[T ]] on V [[T ]]
over k[[T ]]. As before, one could start with a mapping from A× V into V [[T ]]
that is bilinear over k, which can be extended to a mapping from A[[T ]]×V [[T ]]
into V [[T ]] that is bilinear over k[[T ]].

Suppose now that k is a field with an absolute value function | · |, and that A,
V are vector spaces over k with seminorms NA, NV , respectively, with respect
to | · | on V . Remember that a bilinear mapping β from A × V into V is said
to be bounded with respect to these seminorms if there is a nonnegative real
number C such that

NV (β(a, v)) ≤ C NA(a)NV (v)(6.1.3)

for every a ∈ A and v ∈ V , as in Section 1.13. Let ρa be as in (6.1.1), so that
(6.1.3) can be reformulated as saying that

NV (ρa(v)) ≤ C NA(a)NV (v)(6.1.4)

for every a ∈ A and v ∈ V . This is the same as saying that for each a ∈ A, ρa
is bounded as a linear mapping from V into itself with respect to NV , with

∥ρa∥op,V V ≤ C NA(a).(6.1.5)

This can also be reformulated as saying that a 7→ ρa is bounded as a linear
mapping from A into the space BL(V ) of bounded linear mappings from V into
itself with respect to NV , with the corresponding operator seminorm of this
mapping being less than or equal to C.

6.2 Subactions and homomorphisms

Let k be a commutative ring with a multiplicative identity element, let A and
V be modules over k, and let β be a mapping from A×V into V that is bilinear
over k. Also let W be a submodule of V , as a module over k, and suppose that

β(a,w) ∈W(6.2.1)

for every a ∈ A and w ∈ W . This means that the restriction of β to A ×W
defines a mapping into W that is bilinear over k, and hence a bilinear action of
A on W . Equivalently, if ρa is as in (6.1.1), then (6.2.1) says that

ρa(W ) ⊆W(6.2.2)

for every a ∈ A. Thus the restriction of ρa to W defines a module homo-
morphism from W into itself for every a ∈ A, and the mapping from a ∈ A
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to the restriction of ρa to W defines a module homomorphism from A into
Homk(W,W ). If the bilinear action of A on V is expressed as in (6.1.2), then
(6.2.1) can be reformulated as saying that

a · w ∈W(6.2.3)

for every a ∈ A and w ∈W . If A acts on V on the right, then the corresponding
condition is that

w · a ∈W(6.2.4)

for every a ∈ A and w ∈W . In this case, A acts on W on the right, as before.
As a basic class of examples, suppose that A is an algebra over k in the

strict sense, where multiplication of a b ∈ A is expressed as a b. We can use
multiplication on A to define bilinear actions of A on itself, on the left and on
the right. Let A0 be a submodule of A, as a module over k. The condition that
A0 be a left ideal in A says exactly that the action of A on itself on the left
maps A0 into itself. Similarly, the condition that A0 be a right ideal in A says
that the action of A on itself on the right maps A0 into itself.

Let A and V be modules over k again, and let βV be a mapping from A×V
into V that is bilinear over k. Let Z be another module over k, let βZ be a
mapping from A×Z into Z that is bilinear over k, and let ϕ be a homomorphism
from V into Z, as modules over k. If

ϕ(βV (a, v)) = βZ(a, ϕ(v))(6.2.5)

for every a ∈ A and v ∈ V , then we say that ϕ intertwines the actions of
A on V and Z. Equivalently, if a ∈ A, then let ρVa and ρZa be the module
homomorphisms from V and Z into themselves, respectively, associated to βV

and βZ as in (6.1.1). It is easy to see that (6.2.5) is the same as saying that

ϕ ◦ ρVa = ρZa ◦ ϕ(6.2.6)

for every a ∈ A, as mappings from V into Z. If these bilinear actions of A on
V and Z are expressed as in (6.1.2), then (6.2.5) can be reexpressed as

ϕ(a · v) = a · ϕ(v)(6.2.7)

for every a ∈ A and v ∈ V . If A acts on V and Z on the right, then ϕ intertwines
these actions when

ϕ(v · a) = ϕ(v) · a(6.2.8)

for every a ∈ A and v ∈ V .

6.3 Quotient actions

Let k be a commutative ring with a multiplicative identity element, let V be a
module over k, and let W be a submodule of V . Remember that the quotient
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V/W can be defined as a module over k too, as in Section 2.11. Let q be the
corresponding quotient mapping from V onto V/W .

Suppose that ϕ is a homomorphism from V into itself, as a module over k,
such that

ϕ(W ) ⊆W.(6.3.1)

Thus q ◦ ϕ is a homomorphism from V into V/W , as modules over k, whose
kernel contains W . Under these conditions, there is a unique mapping ψ from
V/W into itself such that

ψ ◦ q = q ◦ ϕ(6.3.2)

as mappings from V into W , by standard arguments. Equivalently, this means
that

ψ(q(v)) = q(ϕ(v))(6.3.3)

for every v ∈ V . Of course, ψ is a homomorphism from V/W into itself, as a
module over k.

Let A be another module over k, and let βV be a mapping from A× V into
V that is bilinear over k. Suppose that the action of A on V mapsW into itself,
as in (6.2.1), with β = βV . This implies that q(βV (a,w)) = 0 for every a ∈ A
and w ∈ W . It follows that for a ∈ A and v ∈ V , q(βV (a, v)) actually depends
only on a and q(v). This permits us to define a mapping βV/W from A× (V/W )
into V/W that is bilinear over k and satisfies

βV/W (a, q(v)) = q(βV (a, v))(6.3.4)

for every a ∈ A and v ∈ V . Equivalently, if a ∈ A, then let ρVa be the module
homomorphism from V into itself associated to βV as in (6.1.1). There is a

unique mapping ρ
V/W
a from V/W into itself such that

ρV/Wa ◦ q = q ◦ ρVa ,(6.3.5)

as in (6.3.2). More precisely, ρVWa is a module homomorphism from V/W into

itself, as before, and one can check that a 7→ ρ
V/W
a is a module homomorphism

from A into Homk(V/W, V/W ). If the bilinear action of A on V is expressed as
in (6.1.2), then the induced bilinear action of A on V/W can be expressed in
the same way, with

a · q(v) = q(a · v)(6.3.6)

for every a ∈ A and v ∈ V . Similarly, if A acts on V on the right, then we get
a bilinear action of A on V/W on the right, with

q(v) · a = q(v · a)(6.3.7)

for every a ∈ A and v ∈ V . Note that q intertwines the actions of A on V and
V/W , by construction.

Let A be an algebra over k in the strict sense, so that multiplication on A
defines bilinear actions of A on itself, on the left and on the right, as in the
previous section. If A0 is a left ideal in A, then the action of A on itself on the
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left maps A0 into itself, and we get a bilinear action of A on the quotient A/A0

on the left, as in the preceding paragraph. Similarly, if A0 is a right ideal in
A, then the action of A on itself on the right maps A0 into itself, and we get a
bilinear action of A on A/A0 on the right. This was mentioned earlier in Section
2.11, in terms of bilinear mappings.

6.4 Representations of associative algebras

Let k be a commutative ring with a multiplicative identity element, let A be an
associative algebra over k, and let V be a module over k. Remember that the
space Homk(V, V ) of module homomorphisms from V into itself is an associative
algebra over k with respect to composition of mappings. A representation of A
on V is an algebra homomorphism from A into Homk(V, V ). If A has a multi-
plicative identity element e, then one may also require that the representation
send e to the identity mapping on V . In this case, if a ∈ A has a multiplicative
inverse in A, then the representation sends a to an invertible mapping on V .

A representation of A on V may be denoted ρ, where for each a ∈ A, ρa
denotes the corresponding module homomorphism from V into itself. Thus
ρa(v) is the image of v ∈ V under ρa. Note that ρa(v) is linear over k in a
and v, because the representation is linear over k as a mapping from A into
Homk(V, V ), and elements of Homk(V, V ) are linear over k by definition. The
multiplicative property of an algebra homomorphism can be expressed as

ρa ◦ ρb = ρa b(6.4.1)

for every a, b ∈ A, which is the same as saying that

ρa(ρb(v)) = ρa b(v)(6.4.2)

for every a, b ∈ A and v ∈ V . If A has a multiplicative identity element e, then
one may require that ρe be the identity mapping on V , as before, so that

ρe(v) = v(6.4.3)

for every v ∈ V .
It is sometimes convenient to express a representation ρ of A on V by

ρa(v) = a · v(6.4.4)

for every a ∈ A and v ∈ V . As before, a · v should be linear over k in a and v,
so that a · v corresponds to a mapping from A× V into V that is bilinear over
k. The multiplicative property (6.4.2) can be reexpressed in this notation as

a · (b · v) = (a b) · v(6.4.5)

for every a, b ∈ A and v ∈ V . If A has a multiplicative identity element e, then
(6.4.3) can be reexpressed as

e · v = v(6.4.6)
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for every v ∈ V . We may also call V a (left) module over A, as an associative
algebra over k, with respect to this representation.

Suppose now that we have an action of A on V on the right, so that for each
a ∈ A and v ∈ V , v · a is defined as an element of V . Suppose that v · a is linear
over k in a and v, so that v · a corresponds to a mapping from V × A into V
that is bilinear over k. If we also have that

(v · a) · b = v · (a b)(6.4.7)

for every a, b ∈ A and v ∈ V , then V is said to be a right module over A, as
an associative algebra over k. If A has a multiplicative identity element e, then
one may require that

v · e = v(6.4.8)

for every v ∈ V , as usual.
If V is a right module over A, as in the preceding paragraph, then

ρa(v) = v · a(6.4.9)

defines a module homomorphism from V into itself for each a ∈ A, because v ·a
is linear over k in v. The mapping from a ∈ A to ρa ∈ Homk(V, V ) is linear
over k, because v · a is linear over k in a. The multiplicativity condition (6.4.7)
is the same as saying that

ρb(ρa(v)) = ρa b(v)(6.4.10)

for every a, b ∈ A and v ∈ V , which means that

ρb ◦ ρa = ρa b(6.4.11)

for every a, b ∈ A. Thus a 7→ ρa is an opposite algebra homomorphism from A
into Homk(V, V ). If A has a multiplicative identity element e, then (6.4.8) says
that ρe is the identity mapping on V .

Remember that A is a module over k in particular. We may also consider
A as both a right and left module over itself, where the actions of A on itself
as a module over k on the left and the right are given by multiplication on
A. The linearity conditions for these actions correspond to the definition of an
algebra over k in the strict sense. Similarly, the conditions (6.4.5) and (6.4.7)
correspond in this situation to associativity of multiplication on A. If A has a
multiplicative identity element e, then (6.4.6) and (6.4.8) hold automatically.

Equivalently, the representation of A on itself as in (6.4.4) corresponds to
the multiplication operators discussed in Section 2.2. Similarly, if V = A, then
(6.4.9) corresponds to the right multiplication operators discussed in Section
2.7.

6.5 Representations of Lie algebras

Let k be a commutative ring with a multiplicative identity element, let (A, [·, ·]A)
be a Lie algebra over k, and let V be a module over k. The space Homk(V, V ) of
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module homomorphisms from V into itself is an associative algebra over k with
respect to compositions of mappings, and hence a Lie algebra over k with respect
to the corresponding commutator bracket. A Lie algebra homomorphism from
A into Homk(V, V ), as a Lie algebra over k, is also known as a Lie algebra
representation of A on V .

As before, a Lie algebra representation of A on V may be denoted ρ, where
ρa is the module homomorphism from V into itself corresponding to a ∈ A, and
ρa(v) is the image of v ∈ V under ρa. Thus ρa(v) is linear over k in a and v,
and

ρ[a,b]A = ρa ◦ ρb − ρb ◦ ρa(6.5.1)

for every a, b ∈ A. Equivalently, this means that

ρ[a,b]A(v) = ρa(ρb(v))− ρb(ρa(v))(6.5.2)

for every a, b ∈ A and v ∈ V .

Let ρ be a Lie algebra representation of A on V , and put

ρa(v) = a · v(6.5.3)

for every a ∈ A and v ∈ V . This is linear over k in a and v, so that it corresponds
to a mapping from A × V into V that is bilinear over k. Using this notation,
(6.5.2) can be reexpressed as saying that

([a, b]A) · v = a · (b · v)− b · (a · v)(6.5.4)

for every a, b ∈ A and v ∈ V . We may also call V a module over A, as a Lie
algebra over k, with respect to this representation.

Suppose for the moment that A is an associative algebra over k, where
multiplication of a, b ∈ A is expressed as a b. Thus A may be considered as
a Lie algebra over k with respect to the corresponding commutator bracket
[a, b] = a b − b a. If ρ is a representation of A on V , where A is considered as
an associative algebra over k, then ρ is a Lie algebra representation of A on V
too. Equivalently, if V is a left module over A as an associative algebra over k,
then V is a module over A as a Lie algebra over k as well. Suppose now that
V is a right module over A as an associative algebra over k, and let ρ be as in
(6.4.9). This means that a 7→ ρa is an opposite algebra homomorphism from A
into Homk(V, V ), as before. If a, b ∈ A, then

ρ[a,b] = ρa b − ρb a = ρb ◦ ρa − ρa ◦ ρb.(6.5.5)

It follows that −ρa defines a Lie algebra representation of A on V in this case.

Let A be any Lie algebra over k, and remember that the corresponding
adjoint representation was defined in Section 2.4. This defines a representation
of A on itself, as a module over k.



132 CHAPTER 6. BILINEAR ACTIONS AND REPRESENTATIONS

6.6 Subrepresentations

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k. Also let ρ be a representation of A on a module
V over k. Suppose that W is a submodule of V such that

ρa(W ) ⊆W(6.6.1)

for every a ∈ A. Thus, for each a ∈ A, the restriction of ρa to W defines a
module homomorphism from W into itself. This defines a representation of A
on W , which is a subrepresentation of ρ on V .

As before, V may be considered as a left module over A, with a · v = ρa(v)
for every a ∈ A and v ∈ V . Using this notation, (6.6.1) is the same as saying
that

a · w ∈W(6.6.2)

for every a ∈ A and w ∈ W . Under these conditions, we may also say that W
is a (left) submodule of V , as a left module over A.

Similarly, suppose that V is a right module over A. If W is a submodule of
V as a module over k, and if

w · a ∈W(6.6.3)

for every a ∈ A and w ∈ W , then we say that W is a (right) submodule of V ,
as a right module over A.

As a basic class of examples, let V be a module over k, and let A be a
subalgebra of Homk(V, V ), as an associative algebra over k with respect to
composition of mappings. There is an obvious representation of A on V , because
the elements of A are already module homomorphisms from V into itself. Let
W be a submodule of V , as a module over k, such that

a(W ) ⊆W(6.6.4)

for every a ∈ A. The restrictions of the elements of A to W defines a subrepre-
sentation of the obvious representation of A on V just mentioned. Equivalently,
V is a left module over A in an obvious way, and W is a left submodule of V
as a left module over A.

As another basic class of examples, let A be any associative algebra over k.
We may consider A as both a left and right module over itself, using multipli-
cation on the left and on the right, as in Section 6.4. A left ideal in A is the
same as a left submodule of A as a left module over itself, and similarly a right
ideal in A is the same as a right submodule of A as a right module over itself.

Now let (A, [·, ·]A) be a Lie algebra over k, and let ρ be a representation of A
as a Lie algebra on a module V over k. Suppose thatW is a submodule of V , as
a module over k, such that (6.6.1) holds for every a ∈ A. Hence the restriction
of ρa to W defines a homomorphism from W into itself, as a module over k, for
every a ∈ A. This defines a representation of A as a Lie algebra on W , which is
a subrepresentation of ρ on V .
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As usual, V may be considered as a module over A as a Lie algebra, with
a · v = ρa(v) for every a ∈ A and v ∈ V . The condition (6.6.1) on W can be
reexpressed in this notation as (6.6.2), as before. In this case, W may be called
a submodule of V , as a module over A, as a Lie algebra over k.

Let V be a module over k, and let A be a Lie subalgebra of Homk(V, V ), as a
Lie algebra with respect to the usual commutator bracket. As before, there is an
obvious representation of A as a Lie algebra over k on V , because the elements
of A are already homomorphisms from V into itself, as a module over k. If W
is a submodule of V , as a module over k, that satisfies (6.6.4) for every a ∈ A,
then the restrictions of the elements of A to W defines a subrepresentation of
this representation of A as a Lie algebra over k on V . This is the same as saying
that V is a module over A as a Lie algebra over k in an obvious way, and that
W is a submodule of V as a module over A.

If A is any Lie algebra over k, then subrepresentations of the adjoint repre-
sentation of A correspond exactly to ideals in A.

6.7 Homomorphisms between representations

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k again. Also let V , W be modules over k, and
let ρV , ρW be representations of A on V , W , respectively. Suppose that ϕ is a
homomorphism from V into W , as modules over k, such that

ϕ ◦ ρVa = ρWa ◦ ϕ(6.7.1)

for every a ∈ A, which is the same as saying that

ϕ(ρVa (v)) = ρWa (ϕ(v))(6.7.2)

for every a ∈ A and v ∈ V . In this case, we say that ϕ intertwines the represen-
tations ρV and ρW , or that ϕ is a homomorphism between these representations.
If ϕ is a one-to-one mapping from V ontoW , then ϕ−1 intertwines ρW and ρV as
a mapping from W onto V , and we say that ϕ defines an isomorphism between
ρV and ρW .

Let us consider V and W as left modules over A, with

a · v = ρVa (v), a · w = ρWa (w)(6.7.3)

for every a ∈ A, v ∈ V , and w ∈W . Thus (6.7.2) may be reexpressed as

ϕ(a · v) = a · ϕ(v)(6.7.4)

for every a ∈ A and v ∈ V . We may also say that ϕ defines a homomorphism
from V into W as left modules over A in this situation. If ϕ is a one-to-one
mapping from V onto W , then it follows that ϕ−1 is a homomorphism from
W into V , as left modules over A. Under these conditions, ϕ is said to be an
isomorphism from V onto W , as left modules over A.
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Suppose now that V and W are right modules over A, so that v · a and w · a
are defined as elements of V and W , respectively, for every a ∈ A, v ∈ V , and
w ∈W . Let ϕ be a homomorphism from V into W , as modules over k. If

ϕ(v · a) = ϕ(v) · a(6.7.5)

for every a ∈ A and v ∈ V , then ϕ is said to be a homomorphism from V into
W , as right modules over A. If ϕ is also a one-to-one mapping from V onto
W , then ϕ−1 is a homomorphism from W into V , as right modules over A. As
before, ϕ is said to be an isomorphism from V onto W , as right modules over
A, under these conditions.

Let (A, [·, ·]A) be a Lie algebra over k, and let ρV , ρW be representations
of A as a Lie algebra on modules V , W over k, respectively. Also let ϕ be a
homomorphism from V into W , as modules over k. If ϕ satisfies (6.7.1) for
every a ∈ A, then ϕ is said to intertwine ρV and ρW , or equivalently be a
homomorphism between these representations. We may consider V and W as
modules over A as a Lie algebra over k, as in (6.7.3). Using this notation, we
can reexpress (6.7.2) as (6.7.4), and we say that ϕ is a homomorphism from V
into W as modules over A, as a Lie algebra over k. If ϕ is a one-to-one mapping
from V onto W , then ϕ−1 is a homomorphism from W into V , as modules over
A. In this case, ϕ is an isomorphism between these representations of A, or
equivalently an isomorphism from V onto W , as modules over A.

6.8 Quotient representations

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k. Also let V be a module over k, and let ρV be
a representation of A on V . Suppose that

ρVa (W ) ⊆W(6.8.1)

for every a ∈ A, as in Section 6.6. This implies that for each a ∈ A there is a

unique mapping ρ
V/W
a from V/W into itself such that

ρV/Wa ◦ q = q ◦ ρVa(6.8.2)

as mappings from V into V/W , as in Section 6.3. One can check that this
defines ρV/W as a representation of A on V/W .

Equivalently, suppose that V is a left module over A, and that W is a left
submodule of V . If a ∈ A and v ∈ V , then q(a · v) defines an element of V/W
that is equal to 0 when v ∈ W . This permits us to define an action of A on
V/W on the left, with

a · q(v) = q(a · v)(6.8.3)

for every a ∈ A and v ∈ V . This defines V/W as a left module over A, as before.
If A0 is a left ideal in A, then note that the quotient A/A0 is a left module over
A.
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Similarly, suppose that V is a right module over A, and that W is a right
submodule of V . If a ∈ A and v ∈ V , then q(v · a) is an element of V/W that
is equal to 0 when v ∈W . Using this, we can define an action of A on V/W on
the right, with

q(v) · a = q(v · a)(6.8.4)

for every a ∈ A and v ∈ V . One can verify that this defines V/W as a right
module over A. If A0 is a right ideal in A, then the quotient A/A0 is a right
module over A.

Suppose now that A is a Lie algebra over k, and that ρV is a representation
of A on V . If W satisfies (6.8.1) for every a ∈ A, then one can define ρV/W on
V/W as in (6.8.2). One can check that ρV/W is a representation of A on V/W .
Equivalently, if V is a module over A, and ifW is a submodule of V as a module
over A, then we can define the action of A on V/W as in (6.8.3). This makes
V/W a module over A, as a Lie algebra over k, as before.

In each of these situations, the quotient mapping q intertwines the actions
of A on V and V/W , by construction.

6.9 Sums of representations

Let k be a commutative ring with a multiplicative identity element, and let I
be a nonempty set. Also let Vj be a module over k for every j ∈ I. Thus the
direct product

∏
j∈I Vj of the Vj ’s defines a module over k, and the direct sum⊕

j∈I Vj is a submodule of
∏
j∈I Vj , as in Section 4.1. If v ∈

∏
j∈I Vj and j ∈ I,

then vj denotes the jth coordinate of v in Vj , as before.
Let A be a module over k, and suppose that for each j ∈ I, βVj is a mapping

from A × Vj into Vj that is bilinear over k. If a ∈ A and v ∈
∏
j∈I Vj , then

β(a, v) can be defined as an element of
∏
j∈I Vj by putting

(β(a, v))j = βVj (a, vj)(6.9.1)

for every j ∈ I. It is easy to see that this defines β as a mapping from A×
∏
j∈I Vj

into
∏
j∈I Vj that is bilinear over k. If v ∈

⊕
j∈I Vj , then

β(a, v) ∈
⊕
j∈I

Vj(6.9.2)

for every a ∈ A.
Equivalently, if the bilinear action of A on Vj is given by ρVj for each j ∈ I,

as in Section 6.1, then the corresponding bilinear action ρ of A on
∏
j∈I Vj is

defined by
(ρa(v))j = ρVj

a (vj).(6.9.3)

Similarly, if the bilinear action of A on Vj is expressed as a · vj for every a ∈ A,
vj ∈ Vj , and j ∈ I, then the corresponding bilinear action of A on

∏
j∈I Vj can

be expressed by a · v for every a ∈ A and v ∈
∏
j∈I Vj , where

(a · v)j = a · vj(6.9.4)
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for each j ∈ I. If A acts on Vj on the right for each j ∈ I, so that the bilinear
action is expressed as vj · a for every a ∈ A, vj ∈ Vj , and j ∈ I, then the
corresponding bilinear action of A on

∏
j∈I Vj on the right can be expressed as

v · a for every a ∈ A and v ∈
∏
j∈I Vj , where

(v · a)j = vj · a(6.9.5)

for each j ∈ I.
Let A be an associative algebra over k. If ρVj is a representation of A on Vj

for each j ∈ I, then one can check that (6.9.3) defines ρ as a representation of
A on

∏
j∈I Vj . Equivalently, if Vj is a left module over A for every j ∈ I, then∏

j∈I Vj is a left module over A with respect to (6.9.4). Note that
⊕

j∈I Vj is a
left submodule of

∏
j∈I Vj , as a left module over A, as in (6.9.2). Similarly, if

Vj is a right module over A for every j ∈ I, then
∏
j∈I Vj a right module over

A with respect to (6.9.5), and
⊕

j∈I Vj is a right submodule of
∏
j∈I Vj , as a

right module over A.
Now let A be a Lie algebra over k. If ρVj is a representation of A on Vj for

every j ∈ I, then one can verify that (6.9.3) defines ρ as a representation of A
on

∏
j∈I Vj . Equivalently, if Vj is a module over A for every j ∈ I, then

∏
j∈I Vj

is a module over A with respect to (6.9.4). As before,
⊕

j∈I Vj is a submodule
of

∏
j∈I Vj , as a module over A.

Let V be a module over k, and let V1, V2 be submodules of V . Observe that

V1 + V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2}(6.9.6)

is a submodule of V too. The direct sum V1⊕V2 of V1 and V2 can be defined as
a module over k as in Section 4.1, with I = {1, 2}. More precisely, V1 ⊕ V2 can
be defined as a set as the Cartesian product V1 × V2 of V1 and V2, consisting
of all ordered pairs (v1, v2) with v1 ∈ V1 and v2 ∈ V2. Addition and scalar
multiplication can be defined on V1⊕V2 coordinatewise, as usual. Observe that

(v1, v2) 7→ v1 + v2(6.9.7)

defines a homomorphism from V1 ⊕ V2 onto V1 + V2, as modules over k. If

V1 ∩ V2 = {0},(6.9.8)

then (6.9.7) is injective as a mapping from V1 ⊕ V2 into V .
Let A be a module over k again, and suppose that we have a bilinear action

of A on V . If this action maps V1 and V2 into themselves, then it maps V1 + V2
into itself as well. In this case, we also get a corresponding bilinear action of A
on V1 ⊕V2, as before. Of course, (6.9.7) intertwines the bilinear actions of A on
V1 ⊕ V2 and V1 + V2.

6.10 Compatible bilinear mappings

Let k be a commutative ring with a multiplicative identity element, and let A
and V be modules over k. Also let ρ be a bilinear action of A on V , so that
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ρa is a module homomorphism from V into itself for every a ∈ A, and a 7→ ρa
is a module homomorphism from A into Homk(V, V ), as in Section 6.1. Let W
be another module over k, and let µ be a mapping from V × V into W that is
bilinear over k. Suppose that for every a ∈ A there is an ã ∈ A such that

µ(ρa(u), v) = µ(u, ρ
ã
(v))(6.10.1)

for every u, v ∈ V . If k = C, then one may consider a sesquilinear form µ on V .
Let V0 be a submodule of V , and put

(V0)
⊥ = (V0)

⊥,µ = {u ∈ V : for every v ∈ V0, µ(u, v) = 0}.(6.10.2)

Suppose that ρ satisfies the compatibility condition with µ in the preceding
paragraph, and that

ρa(V0) ⊆ V0(6.10.3)

for every a ∈ A. Let a ∈ A, u ∈ (V0)
⊥, and v ∈ V0 be given, and let ã ∈ A be

as in (6.10.1). Observe that

µ(ρa(u), v) = µ(u, ρ
ã
(v)) = 0,(6.10.4)

because ρ
ã
(v) ∈ V0, by (6.10.3). This means that ρa(u) ∈ (V0)

⊥, so that

ρa((V0)
⊥) ⊆ (V0)

⊥.(6.10.5)

Now let A be an associative algebra over k, and suppose that ρ is a repre-
sentation of A on V . Also let a 7→ a∗ be an opposite algebra automorphism on
A. One way that (6.10.1) can hold is with ã = a∗, so that

µ(ρa(u), v) = µ(u, ρa∗(v))(6.10.6)

for every a ∈ A and u, v ∈ V . If k = C and µ is a sesquilinear form on V , then
one may consider a conjugate-linear opposite algebra automorphism on A.

If ρ satisfies (6.10.6), then

µ(ρa(u), ρa(v)) = µ(u, ρa∗(ρa(v))) = µ(u, ρa∗ a(v))(6.10.7)

for every a ∈ A and u, v ∈ V . Suppose that A has a multiplicative identity
element e, and that ρe is the identity mapping on V . If a ∈ A satisfies a∗ a = e,
then (6.10.7) implies that ρa preserves µ.

In some situations there may be an opposite algebra automorphism T 7→ T ⋆

on the algebra Homk(V, V ) of module homomorphisms from V into itself such
that

µ(T (u), v) = µ(u, T ⋆(v))(6.10.8)

for every u, v ∈ V and T ∈ Homk(V, V ). In this case, one can ask that ρ be
compatible with these opposite algebra automorphisms on A and Homk(V, V ),
in the sense that

(ρa)
⋆ = ρa∗(6.10.9)
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for every a ∈ A. Note that (6.10.6) follows from (6.10.8) and (6.10.9). More
precisely, one might have an opposite algebra automorphism on a subalgebra
of Homk(V, V ) that satisfies (6.10.8), and a representation ρ of A on V with
values in this subalgebra of Homk(V, V ). If k = C, then one may consider
conjugate-linear opposite algebra automorphisms and a sesquilinear form on V
again.

Suppose now that (A, [·, ·]A) is a Lie algebra over k, and that ρ is a repre-
sentation of A as a Lie algebra on V . A natural compatibility condition for ρ
with µ is that ρa be antisymmetric with respect to µ for every a ∈ A, so that

µ(ρa(u), v) = −µ(u, ρa(v))(6.10.10)

for every u, v ∈ V . This means that (6.10.1) holds with ã = −a.
Let us take V = A, as a module over k, and ρ to be the adjoint representation

on A. Thus, for each x ∈ A, ρx = adx = adx is the module homomorphism
from A into itself defined by

adx(z) = [x, z]A,(6.10.11)

as in Section 2.4. In this situation, (6.10.10) is the same as saying that

µ(adw(x), y) = −µ(x, adw(y))(6.10.12)

for every w, x, y ∈ A. Equivalently, this means that

µ([w, x]A, y) = −µ(x, [w, y]A)(6.10.13)

for every w, x, y ∈ A, which can also be expressed as

µ([x,w]A, y) = µ(x, [w, y]A).(6.10.14)

This property is sometimes described by saying that µ is associative on A×A,
as on p21 of [14].

6.11 Representations and formal power series

Let k be a commutative ring with a multiplicative identity element, let V be a
module over k, and let T be an indeterminate. Remember that there are natural
isomorphisms between Homk(V, V [[T ]]),

Homk[[T ]](V [[T ]], V [[T ]]),(6.11.1)

and
(Homk(V, V ))[[T ]],(6.11.2)

as modules over k[[T ]], as in Sections 4.8 and 4.9. Of course, Homk(V, V ) and
(6.11.1) are associative algebras over k and k[[T ]], respectively, with composition
of mappings as multiplication. Similarly, (6.11.2) is an associative algebra over
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k[[T ]], as in Section 4.6. In fact, the natural isomorphism between (6.11.2) and
(6.11.1) preserves multiplication, as in Section 4.10.

As before, there is also a natural isomorphism between Homk(V, V [T ]) and

Homk[T ](V [T ], V [T ]),(6.11.3)

and a natural injective homomorphism from

(Homk(V, V ))[T ](6.11.4)

into (6.11.3), as modules over k[T ]. Note that (6.11.3) is an associative alge-
bra over k[T ] with respect to composition of mappings, and that (6.11.4) is an
associative algebra over k[T ] too, as in Section 4.6. The natural injective ho-
momorphism from (6.11.4) into (6.11.3) preserves multiplication, as in Section
4.10.

Let A be an associative algebra over k, so that A[[T ]] and A[T ] are associative
algebras over k[[T ]] and k[T ], respectively, as in Section 4.6. Remember that
a representation of A on V corresponds to an algebra homomorphism from
A into Homk(V, V ), as in Section 6.4. This can be extended to an algebra
homomorphism from A[[T ]] into (6.11.2), as algebras over k[[T ]], as in Section
4.12. This corresponds to an algebra homomorphism from A[[T ]] into (6.11.1),
which is to say a representation of A[[T ]] on V [[T ]]. Similarly, we get an algebra
homomorphism from A[T ] into (6.11.4), as algebras over k[T ], as in Section 4.12.
This leads to an algebra homomorphism from A[T ] into (6.11.3), which gives a
representation of A[T ] on V [T ]. If V is a right module over A, then we can get
V [[T ]] as a right module over A[[T ]], and V [T ] as a right module over A[T ], in
the same way.

Remember that an associative algebra is automatically a Lie algebra with
respect to the corresponding commutator bracket. The natural algebra isomor-
phism between (6.11.2) and (6.11.1) mentioned earlier automatically preserves
commutator brackets. Similarly, the natural injective algebra homomorphism
from (6.11.4) into (6.11.3) automatically preserves commutator brackets. Let
A be a Lie algebra over k, so that A[[T ]] and A[T ] are Lie algebras over k[[T ]]
and k[T ], as in Section 4.6. A representation of A on V is the same as a ho-
momorphism from A into Homk(V, V ), as a Lie algebra over k with respect to
the commutator bracket. This can be extended to a Lie algebra homomorphism
from A[[T ]] into (6.11.2), as in Section 4.12. This corresponds to a Lie algebra
homomorphism from A[[T ]] into (6.11.1), which is a representation of A[[T ]] as
a Lie algebra over k[[T ]] on V [[T ]]. We also get a Lie algebra homomorphism
from A[T ] into (6.11.4), as in Section 4.12. This leads to a Lie algebra homo-
morphism from A[T ] into (6.11.3), and hence a representation of A[T ] as a Lie
algebra over k[T ] on V [T ].

6.12 Opposite algebras

Let k be a commutative ring with a multiplicative identity element, and let
A be an algebra over k in the strict sense, where multiplication of a, b ∈ A is
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expressed as a b. The corresponding opposite algebra Aop is defined as an algebra
over k in the strict sense as follows. As a module over k, Aop is the same as
A. The product of a, b ∈ Aop is defined to be the product b a of b and a in A.
Thus multiplication in Aop is the same as multiplication in A exactly when A
is commutative. If A has a multiplicative identity element e, then e is also the
multiplicative identity element in Aop. If A is associative, then it is easy to see
that Aop is associative as well. By construction, the identity mapping on A is
an opposite algebra isomorphism between A and Aop.

Let B be another algebra over k in the strict sense. An algebra homomor-
phism from A into B may also be considered as an algebra homomorphism from
Aop into Bop. An opposite algebra homomorphism from A into B corresponds
to an algebra homomorphism from Aop into B, or from A into Bop.

Suppose that A is an associative algebra over k, and let V be a module over
k. A bilinear action of A on V makes V into a left module over A exactly when
it makes V into a right module over Aop. Similarly, a bilinear action of A on V
makes V into a right module over A exactly when it makes V into a left module
over Aop. Equivalently, this corresponds to a representation of Aop on V .

Let n be a positive integer, and letMn(A) andMn(A
op) be the corresponding

spaces of n × n matrices with entries in A and Aop, respectively, as in Section
2.8. ThusMn(A) andMn(A

op) are the same as modules over k, using entrywise
addition and scalar multiplication. Remember that Mn(A) and Mn(A

op) are
algebras over k with respect to matrix multiplication. Let a, b be n×n matrices
with entries in A, which can also be considered as n × n matrices with entries
in Aop. The product c of a and b in Mn(A) is given by

cj,r =

n∑
l=1

aj,l bl,r(6.12.1)

for every j, r = 1, . . . , n, as usual. Let c̃ be the product of a and b in Mn(A
op).

This means that

c̃j,r =

n∑
l=1

bl,r aj,l(6.12.2)

for every j, r = 1, . . . , n, where the terms in the sum on the right use multipli-
cation in A.

Let at, bt, and ct be the transposes of a, b, and c, respectively, as in Section
2.8. Thus

ctj,r = cr,j =

n∑
l=1

ar,l bl,j(6.12.3)

for every j, r = 1, . . . , n. This is the same as the product of bt and at inMn(A
op).

This means that
a 7→ at(6.12.4)

is an opposite algebra homomorphism from Mn(A) into Mn(A
op). More pre-

cisely, (6.12.4) is an opposite algebra isomorphism from Mn(A) onto Mn(A
op),

because (6.12.4) is a one-to-one mapping from Mn(A) onto Mn(A
op).
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6.13 Matrices and associative algebras

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k. Also let n be a positive integer, and let An be
the space of n-tuples of elements of A, as usual. Of course, An is a module over
k with respect to coordinatewise addition and scalar multiplication. Similarly,
An may be considered as both a left and right module over A, with respect to
coordinatewise multiplication. More precisely, if a ∈ A and x = (x1, . . . , xn) is
an element of An, then a · x and x · a are defined as elements of An by

a · x = (a x1, . . . , a xn)(6.13.1)

and
x · a = (x1 a, . . . , xn a),(6.13.2)

respectively. If A is commutative, then (6.13.1) and (6.13.2) are the same. Note
that

(a · x) · b = a · (x · b)(6.13.3)

for every a, b ∈ A and x ∈ An.
Let α = (αj,l) be an n × n matrix with entries in A, which is to say an

element of Mn(A). If x ∈ An, then let TLα (x) be the element of An whose jth
coordinate is given by

(TLα (x))j =

n∑
l=1

αj,l xl(6.13.4)

for every j = 1, . . . , n. Similarly, let TRα (x) be the element of An whose jth
coordinate is given by

(TRα (x))j =

n∑
l=1

xl αj,l(6.13.5)

for every j = 1, . . . , n. If A is commutative, then (6.13.4) and (6.13.5) are the
same. It is easy to see that TLα and TRα are homomorphisms from An into itself,
as a module over k. Observe that

(TLα (x)) · a = TLα (x · a)(6.13.6)

and
a · (TRα (x)) = TRα (a · x)(6.13.7)

for every a ∈ A and x ∈ An. Thus TLα is a homomorphism from An into itself
as a right module over A, and TRα is a homomorphism from An into itself as a
left module over A.

If t ∈ k, then t α = (t αj,l) ∈Mn(A), as in Section 2.8. Clearly

TLtα(x) = t TLα (x)(6.13.8)

and
TRtα(x) = t TRα (x)(6.13.9)
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for every x ∈ An. Let β = (βj,l) be another n× n matrix with entries in A, so
that α+ β ∈Mn(A) too. Of course,

TLα+β(x) = TLα (x) + TLβ (x)(6.13.10)

and

TRα+β(x) = TRα (x) + TRβ (x)(6.13.11)

for every x ∈ An. One can check that

TLα (T
L
β (x)) = TLαβ(x)(6.13.12)

for every x ∈ An, where αβ ∈Mn(A) is defined using matrix multiplication, as
in Section 2.8. Let γ be the product of α and β as elements of Mn(A

op), where
Aop is the opposite algebra associated to A, as in the previous section. One can
verify that

TRα (TRβ (x)) = TRγ (x)(6.13.13)

for every x ∈ An.

Suppose that A has a multiplicative identity element e. Remember that the
corresponding identity matrix in Mn(A) has diagonal entries equal to e and all
other entries equal to 0, as in Section 2.8. If α is the identity matrix, then TLα
and TRα are equal to the identity mapping on An. Let u1, . . . , un be the elements
of An with ulj = e when j = l and ulj = 0 when j ̸= l. Thus

x =

n∑
l=1

xl · ul =
n∑
l=1

ul · xl(6.13.14)

for every x ∈ An.

If T is any homomorphism from An into itself, as a right module over A,
then

T (x) = T
( n∑
l=1

ul · xl
)
=

n∑
l=1

T (ul) · xl(6.13.15)

for every x ∈ An. This means that T can be represented in a unique way as TLα ,
with α ∈ Mn(A). More precisely, αj,l is the jth coordinate of T (ul) for each
j, l = 1, . . . , n. Similarly, if T is a homomorphism from An into itself, as a left
module over A, then

T (x) = T
( n∑
l=1

xl · ul
)
=

n∑
l=1

xl · T (ul)(6.13.16)

for every x ∈ An. This implies that T can be represented in a unique way as
TRα , where αj,l is the jth coordinate of T (ul) for every j, l = 1, . . . , n.
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6.14 Irreducibility

Let k be a commutative ring with a multiplicative identity element, let A, V
be modules over k, and let ρ be a bilinear action of A on V . Thus ρa is
a homomorphism from V into itself, as a module over k, for every a ∈ A,
and a 7→ ρa is a homomorphism from A into the space Homk(V, V ) of module
homomorphisms from V into itself, as modules over k, as in Section 6.1. Suppose
that there is no submodule W of V , as a module over k, such that W ̸= {0}, V
and

ρa(W ) ⊆W(6.14.1)

for every a ∈ A. In this case, one may say that ρ is irreducible on V , or
equivalently that V is simple with respect to the action of ρ. The condition
that V ̸= {0} is typically included in the definition of irreducibility or simplicity
as well.

Let V1, V2 be modules over k, and let ρ1, ρ2 be bilinear actions of A on
V1, V2, respectively. Suppose that ϕ is a homomorphism from V1 into V2, as
modules over k, that intertwines ρ1 and ρ2, as in Section 6.2. If v1 ∈ V1 is in
the kernel of ϕ and a ∈ A, then

ϕ(ρ1a(v1)) = ρ2a(ϕ(v1)) = 0,(6.14.2)

so that ρ1a(v1) is in the kernel of ϕ too. If ρ1 is irreducible on V1, then it follows
that the kernel of ϕ is either trivial or equal to V1, so that ϕ is either injective
or equal to 0 on V1. This is part of Schur’s lemma.

Similarly,

ρ2a(ϕ(V1)) = ϕ(ρ1a(V1)) ⊆ ϕ(V1)(6.14.3)

for every a ∈ A. If ρ2 is irreducible on V2, then it follows that ϕ(V1) = {0} or
V2, so that either ϕ = 0 on V1 or ϕ is surjective. This is another part of Schur’s
lemma.. If ρ1 and ρ2 are both irreducible, then either ϕ = 0 or ϕ is a bijection.

Let V be a module over k again, and let ρ be a bilinear action of A on V .
Remember that Homk(V, V ) is an associative algebra over k with respect to com-
position of mappings. Consider the space Homk,ρ(V, V ) of ϕ ∈ Homk(V, V ) that
intertwine ρ. It is easy to see that Homk,ρ(V, V ) is a subalgebra of Homk(V, V ),
and that Homk,ρ(V, V ) contains the identity mapping on V . If ρ is irreducible,
then every nonzero element of Homk,ρ(V, V ) is invertible, as in the preceding
paragraph.

Suppose that k is an algebraically closed field, and that V has positive finite
dimension as a vector space over k. If ϕ is any linear mapping from V into
itself, then it is well known that there is a λ ∈ k such that ϕ has a nonzero
eigenvector in V with eigenvalue λ. Let Eλ be the corresponding eigenspace of
eigenvectors of ϕ in V with eigenvalue λ. Let ρ be a bilinear action of A on V
again, and suppose that ϕ intertwines ρ. If a ∈ A, then ρa maps Eλ into itself,
by a standard argument. If ρ is irreducible on V , then it follows that Eλ = V .
This is another part of Schur’s lemma.
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6.15 Representations and differential operators

Let k be a commutative ring with a multiplicative identity element, let A be a
module over k, and let n be a positive integer. Also let T1, . . . , Tn be n com-
muting indeterminates, and let let ∂1, . . . , ∂n be n commuting formal symbols,
which may be used to represent partial derivatives, as before. Remember that
the space A[[T1, . . . , Tn]] of formal power series in T1, . . . , Tn with coefficients in
A is a module over k, with respect to termwise addition and scalar multiplica-
tion, as in Section 5.8.

The space of formal differential operators in ∂1, . . . , ∂n with coefficients in
k[[T1, . . . , Tn]] is an associative algebra over k, as in Section 5.11. These formal
differential operators determine mappings from A[[T1, . . . , Tn]] into itself that
are linear over k, as before. This defines a representation of the algebra of
formal differential operators in ∂1, . . . , ∂n with coefficients in k[[T1, . . . , Tn]] on
A[[T1, . . . , Tn]].

The space of formal differential operators in ∂1, . . . , ∂n with coefficients in
k[T1, . . . , Tn] is a subalgebra of the algebra of formal differential operators in
∂1, . . . , ∂n with coefficients in k[[T1, . . . , Tn]]. Thus A[[T1, . . . , Tn]] may be con-
sidered as a left module over the algebra of formal differential operators in
∂1, . . . , ∂n with coefficients in k[T1, . . . , Tn]. The mappings from A[[T1, . . . , Tn]]
into itself corresponding to formal differential operators in ∂1, . . . , ∂n with co-
efficients in k[T1, . . . , Tn] map the space A[T1, . . . , Tn] of formal polynomials in
T1, . . . , Tn with coefficients in A into itself, as in Section 5.11. This means that

A[T1, . . . , Tn] is a submodule of A[[T1, . . . , Tn]],(6.15.1)

as a left module over the algebra of formal differential operators in ∂1, . . . , ∂n
with coefficients in k[T1, . . . , Tn].

Similarly, the space of formal differential operators in ∂1, . . . , ∂n with co-
efficients in k[T1, . . . , Tn] that are homogeneous of degree 0 is a subalgebra of
the algebra of formal differential operators in ∂1, . . . , ∂n with coefficients in
k[T1, . . . , Tn], as in Section 5.14. This permits us to consider A[T1, . . . , Tn]
as a left module over the algebra of formal differential operators in ∂1, . . . , ∂n
with coefficients in k[T1, . . . , Tn] that are homogeneous of degree 0. If d is
a nonnegative integer, then the space Ad[T1, . . . , Tn] of formal polynomials in
T1, . . . , Tn with coefficients in A that are homogeneous of degree d is a submod-
ule of A[T1, . . . , Tn], as a module over k, as in Section 5.13. In fact,

Ad[T1, . . . , Tn] is a submodule of A[T1, . . . , Tn],(6.15.2)

as a left module over the algebra of formal differential operators in ∂1, . . . , ∂n
with coefficients in k[T1, . . . , Tn] that are homogeneous of degree 0, as in Section
5.14.

If a(T ) = (a1(T ), . . . , an(T )) is in the space (k[[T1, . . . , Tn]])
n of n-tuples

of elements of k[[T1, . . . , Tn]], then put Da(T ) =
∑n
j=1 a

j(T ) ∂j , as in Section
5.12. The space of these formal differential operators is a Lie subalgebra of
the space of all formal differential operators in ∂1, . . . , ∂n with coefficients in
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k[[T1, . . . , Tn]], as a Lie algebra over k with respect to the commutator bracket,
as in Section 5.15. Thus we may consider A[[T1, . . . , Tn]] as a module over the
Lie algebra consisting of Da(T ), a(T ) ∈ (k[[T1, . . . , Tn]])

n.
Similarly, the space of Da(T ), a(T ) ∈ (k[T1, . . . , Tn])

n, is a Lie subalgebra of
the Lie algebra consisting of Da(T ), a(T ) ∈ (k[[T1, . . . , Tn]])

n. This permits us
to consider A[[T1, . . . , Tn]] as a module over the Lie algebra consisting of Da(T ),
a(T ) ∈ (k[T1, . . . , Tn])

n. We may also consider A[T1, . . . , Tn] as a submodule
of A[[T1, . . . , Tn]], as a module over the Lie algebra consisting of Da(T ), with
a(T ) ∈ (k[T1, . . . , Tn])

n.
The space gn(k) consisting of Da(T ), a(T ) ∈ (k1[T1, . . . , Tn])

n, is a Lie sub-
algebra of the Lie algebra of Da(T ), a(T ) ∈ (k[T1, . . . , Tn]), as in Section 5.15.
Thus

we may consider A[T1, . . . , Tn] as a module over gn(k),(6.15.3)

as a Lie algebra over k. If d is a nonnegative integer, then

Ad[T1, . . . , Tn] is a submodule of A[T1, . . . , Tn],(6.15.4)

as a module over gn(k).

Remember that sn(k) is the Lie subalgebra of gn(k) consisting of Da(T )

where the matrix of coefficients of the components of a(T ) ∈ (k1[T1, . . . , Tn])
n

has trace 0. We may consider Ad[T1, . . . , Tn] as a module over sn(k) too, as a
Lie algebra over k, for each d ≥ 0.



Chapter 7

Representations and
multilinear mappings

7.1 Some remarks about subalgebras

Let k be a commutative ring with a multiplicative identity element, and let A1,
A2 be algebras over k in the strict sense. The direct sum A1 ⊕A2 of A1 and A2

can be defined as an algebra over k in the strict sense as in Section 4.1, with
I = {1, 2}. More precisely, A1 ⊕ A2 can be defined as a set as the Cartesian
product of A1 and A2, consisting of all ordered pairs (a1, a2) with a1 ∈ A1 and
a2 ∈ A2. Addition, scalar multiplication, and multiplication on A1 ⊕ A2 are
defined coordinatewise, as usual. In particular, if multiplication of a1, b1 ∈ A1

and a2, b2 ∈ A2 are expressed as a1 b1 and a2 b2, respectively, then

(a1, 0) (0, a2) = 0(7.1.1)

in A1 ⊕A2 for every a1 ∈ A1 and a2 ∈ A2.
If A is a module over k and A1, A2 ⊆ A are submodules of A, then

A1 +A2 = {a1 + a2 : a1 ∈ A1, a2 ∈ A2}(7.1.2)

is a submodule of A, as before. Suppose that A is an algebra over k in the strict
sense. If A1, A2 are left ideals in A, then (7.1.2) is a left ideal in A. Similarly,
if A1, A2 are right ideals in A, then (7.1.2) is a right ideal in A. If A1, A2 are
two-sided ideals in A, then it follows that (7.1.2) is a two-sided ideal in A.

Let A1, A2 be subalgebras of A. If

a1 a2 = a2 a1 = 0(7.1.3)

for every a1 ∈ A1 and a2 ∈ A2, then it is easy to see that (7.1.2) is a subalgebra
of A. In this situation,

(a1, a2) 7→ a1 + a2(7.1.4)

146
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defines a homomorphism from A1 ⊕ A2 into A, as algebras over k in the strict
sense. If (A, [·, ·]A) is a Lie algebra over k, then (7.1.3) is the same as saying
that

[a1, a2]A = 0(7.1.5)

for every a1 ∈ A1 and a2 ∈ A2.
Let A and B be algebras over k in the strict sense, and let ϕ, ψ be algebra

homomorphisms from A into B. Suppose that

ϕ(x)ψ(y) = ψ(y)ϕ(x) = 0(7.1.6)

for every x, y ∈ A. This implies that

(ϕ(x) + ψ(x)) (ϕ(y) + ψ(y))(7.1.7)

= ϕ(x)ϕ(y) + ϕ(x)ψ(y) + ψ(x)ϕ(y) + ψ(x)ψ(y)

= ϕ(x)ϕ(y) + ψ(x)ψ(y) = ϕ(x y) + ψ(x y)

for every x, y ∈ A, so that ϕ+ψ defines an algebra homomorphism from A into
B as well. If (B, [·, ·]B) is a Lie algebra over k, then (7.1.6) is the same as saying
that

[ϕ(x), ψ(y)]B = 0(7.1.8)

for every x, y ∈ A.
Let A be a Lie algebra over k, and let ρ1, ρ2 be Lie algebra representations

of A on a module V over k. Let us say that that ρ1 and ρ2 are commuting
representations of A on V if

ρ1a ◦ ρ2b = ρ2b ◦ ρ1a(7.1.9)

for every a, b ∈ A. Under these conditions,

(ρ1 + ρ2)a = ρ1a + ρ2a(7.1.10)

defines a Lie algebra representation of A on V too, as in the preceding paragraph.

7.2 Representations on linear mappings

Let k be a commutative ring with a multiplicative identity element, and let
V , W be modules over k. Remember that the space Homk(V,W ) of module
homomorphisms from V intoW is a module over k too, with respect to pointwise
addition and scalar multiplication. Let T be a module homomorphism from V
into itself, and let ϕ be a module homomorphism from V into W . Thus

T̃ (ϕ) = ϕ ◦ T(7.2.1)

defines another module homomorphism from V into W . This defines T̃ as a
homomorphism from Homk(V,W ) into itself, as a module over k.



148CHAPTER 7. REPRESENTATIONS AND MULTILINEAR MAPPINGS

Let R be another module homomorphism from V into itself, so that the
composition T ◦ R is a module homomorphism from V into itself as well. In

particular, R̃ and ˜(T ◦R) can be defined as homomorphisms from Homk(V,W ),
as a module over k, as in the preceding paragraph. If ϕ is a module homomor-
phism from V into W , then

˜(T ◦R)(ϕ) = ϕ ◦ (T ◦R) = (ϕ ◦ T ) ◦R = R̃(T̃ (ϕ)).(7.2.2)

This means that ˜(T ◦R) = R̃ ◦ T̃(7.2.3)

as mappings from Homk(V,W ). Note that

T 7→ T̃(7.2.4)

is linear over k, as a mapping from Homk(V, V ) into the space of mappings
from Homk(V,W ) into itself. More precisely, this defines an opposite algebra
homomorphism from Homk(V, V ) into the algebra of module homomorphisms

from Homk(V,W ) into itself. If T is the identity mapping on V , then T̃ is the
identity mapping on Homk(V,W ).

Let A be an associative algebra over k, and let ρ be a representation of A on
V . If a ∈ A, then ρa is a module homomorphism from V into itself, so that ρ̃a can
be defined as before, as a module homomorphism from Homk(V,W ) into itself.
By hypothesis, a 7→ ρa is an algebra homomorphism from A into Homk(V, V ),
which implies that ρ̃a is an opposite algebra homomorphism from A into the
algebra of module homomorphisms from Homk(V,W ) into itself. Similarly, if
a 7→ ρa is an opposite algebra homomorphism from A into Homk(V, V ), then
a 7→ ρ̃a is an algebra homomorphism from A into the algebra of module homo-
morphisms from Homk(V,W ) into itself. Equivalently, if V is a left module over
A, then Homk(V,W ) becomes a right module over A in this way, and if V is a
right module over A, then Homk(V,W ) becomes a left module over A.

Now let A be a Lie algebra over k, and let ρ be a representation of A on
V . As before, ρ̃a is defined as a module homomorphism from V into W for
every a ∈ A. Under these conditions, one can check that a 7→ −ρ̃a defines a
representation of A as a Lie algebra on Homk(V,W ).

7.3 Multilinear mappings

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. Also let V1, . . . , Vn be n modules over k, and let W be
another module over k. A mapping µ from V1 × · · · × Vn into W is said to be
multilinear over k if µ is linear over k in each variable separately. This reduces
to ordinary linearity over k when n = 1, and to bilinearity over k when n = 2.

The space of mappings µ from
∏n
j=1 Vj into W that are multilinear over

k may be denoted L(V1, . . . , Vn;W ), or Lk(V1, . . . , Vn;W ) to indicate the role
of k. It is easy to see that Lk(V1, . . . , Vn;W ) is a module over k with respect
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to pointwise addition and scalar multiplication of mappings from
∏n
j=1 Vj into

W . More precisely, Lk(V1, . . . , Vn;W ) may be considered as a submodule of
the module of all W -valued functions on

∏n
j=1 Vj . Of course, Lk(V1, . . . , Vn;W )

reduces to Homk(V1,W ) when n = 1.
Suppose for the moment that V1, . . . , Vn are the same module V over k, and

that n ≥ 2. Let us say that µ ∈ Lk(V1, . . . , Vn;W ) is symmetric if µ(v1, . . . , vn)
is invariant under permutations of the variables v1, . . . , vn. This reduces to the
earlier notion of symmetry for bilinear mappings when n = 2. Similarly, let us
say that µ ∈ Lk(V1, . . . , Vn;W ) is antisymmetric if

µ(v1, . . . , vj−1, vl, vj+1, . . . , vl−1, vj , vl+1, . . . , vn)(7.3.1)

= −µ(v1, . . . , vj−1, vj , vj+1, . . . , vl−1, vl, vl+1, . . . , vn)

for every v1, . . . , vn ∈ V and 1 ≤ j < l ≤ n, which is to say that interchanging
two of the variables corresponds to taking the additive inverse of the value of µ.
This reduces to the earlier notion of antisymmetry for bilinear mappings when
n = 2. As usual, it is sometimes better to ask that

µ(v1, . . . , vn) = 0(7.3.2)

whenever vj = vl for some j ̸= l. This implies that µ is antisymmetric, by the
same type of argument as for bilinear mappings. If 1+ 1 is invertible in k, then
this condition holds when µ is antisymmetric, as before.

Let V1, . . . , Vn be n modules over k for some n ≥ 1 again, and let j be an
integer with 1 ≤ j ≤ n. Also let Aj be a module homomorphism from Vj into
itself, and let µ be a mapping from

∏n
j=1 Vj into W that is multilinear over k.

If v1 ∈ V1, . . . , vn ∈ Vn, then put

(Ãj(µ))(v1, . . . , vn) = µ(v1, . . . , vj−1, Aj(vj), vj+1, . . . , vn).(7.3.3)

This defines a mapping Ãj(µ) from
∏n
j=1 Vj into W , which corresponds to com-

posing µ with Aj in the jth variable. Note that Ãj(µ) is multilinear over k,

because Aj is linear over k. It is easy to see that Ãj is linear over k, as a
mapping from L(V1, . . . , Vn;W ) into itself. The mapping

Aj 7→ Ãj(7.3.4)

is linear over k as well, as a mapping from Homk(Vj , Vj) into the space of module
homomorphisms from L(V1, . . . , Vn;W ) into itself.

Let Bj be another module homomorphism from Vj into itself, and let µ be a
mapping from

∏n
j=1 Vj intoW that is multilinear over k again. The composition

Bj ◦Aj of Aj and Bj is a module homomorphism from Vj into itself too, so that˜(Bj ◦Aj)(µ) can be defined as a multilinear mapping from
∏n
j=1 Vj into W as

before. More precisely, if v1 ∈ V1, . . . , vn ∈ Vn, then

( ˜(Bj ◦Aj)(µ))(v1, . . . , vn)(7.3.5)

= µ(v1, . . . , vj−1, (Bj ◦Aj)(vj), vj+1, . . . , vn)

= µ(v1, . . . , vj−1, Bj(Aj(vj)), vj+1, . . . , vn).
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This is the same as

(B̃j(µ))(v1, . . . , vj−1, Aj(vj), vj+1, . . . , vn)(7.3.6)

= (Ãj(B̃j(µ)))(v1, . . . , vn),

so that ˜(Bj ◦Aj) = Ãj ◦ B̃j(7.3.7)

as mappings from L(V1, . . . , Vn;W ) into itself. Of course, this was mentioned
in Section 7.2 when n = 1.

7.4 Boundedness and multilinearity

Let k be a field with an absolute value function | · |, let n be a positive integer,
and let V1, . . . , Vn and W be vector spaces over k. Also let NV1

, . . . , NVn
and

NW be seminorms on V1, . . . , Vn and W , respectively, and with respect to | · |
on k. A multilinear mapping µ from V1 × · · · × Vn into W is said to be bounded
with respect to NV1

, . . . , NVn
and NW if there is a nonnegative real number C

such that
NW (µ(v1, . . . , vn)) ≤ C NV1

(v1) · · ·NVn
(vn)(7.4.1)

for every v1 ∈ V1, . . . , vn ∈ Vn. This reduces to the earlier definitions of bound-
edness for linear and bilinear mappings when n = 1 and n = 2, respectively, as
in Sections 1.9 and 1.13.

Let BL(V1, . . . , Vn;W ) be the space of bounded multilinear mappings from∏n
j=1 Vj into W , with respect to NV1

, . . . , NVn
and NW . It is easy to see that

this is a linear subspace of the space of all multilinear mappings from
∏n
j=1 Vj

into W . If µ ∈ BL(V1, . . . , Vn;W ), then put

∥µ∥ = ∥µ∥V1,...,Vn;W = inf{C ≥ 0 : (7.4.1) holds},(7.4.2)

where more precisely the infimum is taken over all nonnegative real numbers C
such that (7.4.1) holds for every v1 ∈ V1, . . . , vn ∈ Vn. This reduces to the op-
erator seminorm of a bounded linear mapping when n = 1, as in (1.9.3). As be-
fore, the infimum in (7.4.2) is automatically attained, so that (7.4.1) holds with
C = ∥µ∥. One can check that (7.4.2) defines a seminorm on BL(V1, . . . , Vn;W )
with respect to | · |, and that (7.4.2) is a norm on BL(V1, . . . , Vn;W ) when NW
is a norm on W . Similarly, if NW is a semi-ultranorm on W , then (7.4.2) is a
semi-ultranorm on BL(V1, . . . , Vn;W ).

Suppose for the moment that n ≥ 2, and let µ be a multilinear mapping
from

∏n
j=1 Vj into W . If vn ∈ Vn, then

µvn(v1, . . . , vn−1) = µ(v1, . . . , vn−1, vn)(7.4.3)

defines a multilinear mapping from V1 × · · · × Vn−1 into W . In addition,

Tµ(vn) = µvn(7.4.4)
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defines a linear mapping from Vn into L(V1, . . . , Vn−1;W ). Note that every
linear mapping from Vn into L(V1, . . . , Vn−1;W ) corresponds to a multilinear
mapping from

∏n
j=1 Vj into W in this way. If µ is also bounded as a multilinear

mapping, then

NW (µvn(v1, . . . , vn−1)) = NW (µ(v1, . . . , vn))

≤ ∥µ∥V1,...,Vn;W NV1(v1) · · ·NVn−1(vn−1)NVn(vn)(7.4.5)

for every v1 ∈ V1, . . . , vn−1 ∈ Vn−1, vn ∈ Vn. This implies that µvn is bounded
as a multilinear mapping for each vn ∈ Vn, with

∥µvn∥V1,...,Vn−1;W ≤ ∥µ∥V1,...,Vn;W NVn
(vn).(7.4.6)

Using ∥ · ∥V1,...,Vn−1;W on BL(V1, . . . , Vn−1;W ), we get that (7.4.4) is bounded
as a linear mapping from Vn into BL(V1, . . . , Vn−1;W ), with

∥Tµ∥op ≤ ∥µ∥V1,...,Vn;W .(7.4.7)

Conversely, suppose that (7.4.4) is a bounded linear mapping from Vn into
BL(V1, . . . , Vn−1;W ). If vn ∈ V , then µvn ∈ BL(V1, . . . , Vn−1;W ), with

∥µvn∥V1,...,Vn−1;W ≤ ∥Tµ∥opNVn(vn).(7.4.8)

If v1 ∈ V1, . . . , vn−1 ∈ Vn−1, then we get that

NW (µ(v1, . . . , vn−1, vn)) = NW (µvn(v1, . . . , vn−1))

≤ ∥µvn∥V1,...,Vn−1;W NV1(v1) · · ·NVn−1(vn−1)(7.4.9)

≤ ∥Tµ∥opNV1(v1) · · ·NVn−1(vn−1)NVn(vn).

This implies that µ ∈ BL(V1, . . . , Vn;W ), with

∥µ∥V1,...,Vn;W ≤ ∥Tµ∥op.(7.4.10)

It follows that
∥Tµ∥op = ∥µ∥V1,...,Vn;W ,(7.4.11)

by (7.4.7).
Suppose now that n ≥ 1, 1 ≤ j ≤ n, and that Aj is a bounded linear

mapping from Vj into itself, with respect to NVj
on Vj . Let µ be a bounded

multilinear mapping from
∏n
j=1 Vj into W , and let Ãj(µ) be the multilinear

mapping from
∏n
j=1 Vj into W corresponding to µ and Aj as in the previous

section. If v1 ∈ V1, . . . , vn ∈ Vn, then

NW ((Ãj(µ))(v1, . . . , vn))(7.4.12)

= NW (µ(v1, . . . , vj−1, Aj(vj), vj+1, vn))

≤ ∥µ∥V1,...,Vn;W NV1
(v1) · · ·NVj−1

(vj−1)NVj
(Aj(vj))

NVj+1
(vj+1) · · ·NVn

(vn)

≤ ∥Aj∥op,VjVj
∥µ∥V1,...,Vn;W NV1

(v1) · · ·NVn
(vn),
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where ∥Aj∥op,VjVj is the usual operator seminorm of Aj associated to NVj on

Vj . This shows that Ãj(µ) is also bounded as a multilinear mapping, with

∥Ãj(µ)∥V1,...,Vn;W ≤ ∥Aj∥op,VjVj ∥µ∥V1,...,Vn;W .(7.4.13)

Similarly, let A be a bounded linear mapping fromW into itself, with respect to
NW onW . It is easy to see that the composition A◦µ of µ with A is multilinear
over k, as a mapping from

∏n
j=1 Vj into W . If v1 ∈ V1, . . . , vn ∈ Vn, then

NW (A(µ(v1, . . . , vn))) ≤ ∥A∥op,WW NW (µ(v1, . . . , vn))

≤ ∥A∥op,WW ∥µ∥V1,...,Vn;W NV1
(v1) · · ·NVn

(vn),(7.4.14)

where ∥A∥op,WW is the operator seminorm of A associated to NW on W . Thus
A ◦ µ is bounded as a multilinear mapping too, with

∥A ◦ µ∥V1,...,Vn;W ≤ ∥A∥op,WW ∥µ∥V1,...,Vn;W .(7.4.15)

7.5 Representations on multilinear mappings

Let k be a commutative ring with a multiplicative identity element, and let
V1, . . . , Vn and W be modules over k. The space Lk(V1, . . . , Vn;W ) of mappings
from

∏n
j=1 Vj intoW that are multilinear over k is a module over k with respect

to pointwise addition and scalar multiplication of mappings, as in Section 7.3.
Let A be an associative algebra over k, and suppose for the moment that W is
a left module over A. If a ∈ A and µ ∈ L(V1, . . . , Vn;W ), then

a · (µ(v1, . . . , vn))(7.5.1)

defines a multilinear mapping from
∏n
j=1 Vj into W as well. It is easy to see

that this makes L(V1, . . . , Vn;W ) into a left module over A.
Suppose that Vj is a left module over A for some j, 1 ≤ j ≤ n. If a ∈ A and

µ ∈ L(V1, . . . , Vn;W ), then

µ(v1, . . . , vj−1, a · vj , vj+1, . . . , vn)(7.5.2)

defines another multilinear mapping from
∏n
j=1 Vj into W . This defines an

opposite algebra homomorphism from A into the algebra of module homo-
morphisms from L(V1, . . . , Vn;W ) into itself, as in Section 7.3. Equivalently,
L(V1, . . . , vn;W ) may be considered as a right module over A in this way. This
was mentioned in Section 7.2 when n = 1.

Suppose from now on in this section that A is a Lie algebra over k. If W
is a module over A as a Lie algebra over k, a ∈ A, and µ ∈ L(V1, . . . , Vn;W ),
then (7.5.1) defines an element of L(V1, . . . , Vn;W ), as before. This makes
L(V1, . . . , Vn;W ) into a module over A as a Lie algebra over k. Similarly, if
Vj is a module over A as a Lie algebra over k for some j, a ∈ A, and µ is in
L(V1, . . . , Vn;W ), then (7.5.2) is an element of L(V1, . . . , Vn;W ), and hence

−µ(v1, . . . , vj−1, a · vj , vj+1, . . . , vn)(7.5.3)
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is an element of L(V1, . . . , Vn;W ). One can check that L(V1, . . . , Vn;W ) is
a module over A as a Lie algebra over k with respect to (7.5.3), which was
mentioned in Section 7.2 when n = 1.

Suppose that V1, . . . , Vn and W are all modules over A as a Lie algebra. Let
a ∈ A and µ ∈ Lk(V1, . . . , Vn;W ) be given, and let us define a · µ as a mapping
from

∏n
j=1 Vj into W , as follows. If vj ∈ Vj for each j = 1, . . . , n, then we put

(a · µ)(v1, . . . , vn) = a · (µ(v1, . . . , vn))

+

n∑
j=1

(−µ(v1, . . . , vj−1, a · vj , vj+1, . . . , vn)).(7.5.4)

It is easy to see that (7.5.4) is multilinear over k as a mapping from
∏n
j=1 Vj

into W , and that (7.5.4) is linear in a over k. One can verify that this makes
L(V1, . . . , Vn;W ) into a module over A as a Lie algebra over k, using the remarks
in the preceding paragraph. More precisely, each term on the right side of (7.5.4)
defines a Lie algebra representation of A on L(V1, . . . , Vn;W ), as before. One
can check directly that these n + 1 representations of A on L(V1, . . . , Vn;W )
commute with each other. Hence their sum defines a Lie algebra representation
of A on L(V1, . . . , Vn;W ) too, as in Section 6.5.

Suppose that V1, . . . , Vn are the same module V over k, with the same Lie
algebra representation of A. Let a ∈ A and µ ∈ L(V1, . . . , Vn;W ) be given
again. If µ is a symmetric multilinear mapping, then (7.5.4) is symmetric as
well. If µ is antisymmetric, then one can verify that (7.5.4) is antisymmetric
too. If

µ(v1, . . . , vn) = 0(7.5.5)

whenever vj = vl for some j ̸= l, then one can check that (7.5.4) satisfies the
same condition. More precisely, if vj = vl for some j ̸= l, then this uses the
antisymmetry of µ for the two terms on the right side of (7.5.4) that involve
a · vj and a · vl. Otherwise, one can apply the hypothesis on µ directly to the
other terms on the right side of (7.5.4).

7.6 Centralizers and invariant elements

Let k be a commutative ring with a multiplicative identity element, and let A be
an algebra over k in the strict sense, where multiplication of a, b ∈ A is denoted
a b. The centralizer of a set E ⊆ A in A is the set of a ∈ A that commute with
every x ∈ E, which is to say that

a x = x a(7.6.1)

for every x ∈ E. This is a submodule of A as a module over k, and a subalgebra
of A when A is associative. The center of A is the centralizer of A in itself.

Now let (A, [·, ·]A) be a Lie algebra over k. The centralizer of a set E ⊆ A
in A as a Lie algebra is given by

CA(E) = {a ∈ A : [a, x]A = 0 for every x ∈ E}.(7.6.2)
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It is easy to see that this is a Lie subalgebra of A, using the Jacobi identity.
The center of A as a Lie algebra is given by

Z(A) = CA(A) = {a ∈ A : [a, x]A = 0 for every x ∈ A},(7.6.3)

which is automatically an ideal in A.
Note that (7.6.2) is contained in the centralizer of A as an algebra in the

strict sense, and that (7.6.3) is contained in the center of A as an algebra in the
strict sense. If 1+1 is invertible in k, then (7.6.2) is the same as the centralizer
of E in A as an algebra in the strict sense, and (7.6.3) is the same as the center
of A as an algebra in the strict sense.

If A is an associative algebra over k, then A is a Lie algebra over k with
respect to the corresponding commutator bracket [x, y] = x y − y x. Of course,
(7.6.1) is the same as saying that [a, x] = 0. In this case, the centralizer of
E ⊆ A in A as an associative algebra is the same as the centralizer of E in A as
a Lie algebra with respect to the commutator bracket. In particular, the center
of A as an associative algebra is the same as the center of A as a Lie algebra.

Let (A, [·, ·]A) be a Lie algebra over k again, and let ρ be a representation of
A as a Lie algebra over k on a module V over k. An element v of V is said to
be invariant under ρ if

ρa(v) = 0(7.6.4)

for every a ∈ A, as on p31 of [25]. As usual, V may be considered as a module
over A as a Lie algebra over k, with a · v = ρa(v) for every a ∈ A and v ∈ V .
Thus (7.6.4) can be reexpressed as saying that

a · v = 0(7.6.5)

for every a ∈ A.
If every v ∈ V is invariant under ρ, then ρ is said to act trivially on V . It is

easy to see that the collection of v ∈ V that are invariant under ρ is a submodule
of V , as a module over k. This defines a subrepresentation of ρ on V , on which
ρ acts trivially.

If A0 is any Lie subalgebra of A, then the restriction of ρa to a ∈ A0 defines
a representation of A0 on V , as a Lie algebra over k. If v is any element of V ,
then the collection of a ∈ A such that (7.6.4) or equivalently (7.6.5) holds is a
Lie subalgebra of A.

Remember that the adjoint representation of A is a representation of A as
a Lie algebra on itself, as a module over k. The collection of elements of A that
are invariant under the adjoint representation is the same as the center of A as
a Lie algebra.

7.7 Invariant multilinear mappings

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Also let V , W be modules over k, and let
ρV , ρW be representations of A as a Lie algebra over k on V , W , respectively.
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Remember that the space Homk(V,W ) of homomorphisms from V into W as
modules over k is a module over k too, with respect to pointwise addition and
scalar multiplication of mappings. If a ∈ A, then ρVa and ρWa are homomor-
phisms from V and W into themselves, as modules over k. If ϕ ∈ Homk(V,W ),
then it follows that ϕ ◦ ρVa and ρWa ◦ ϕ are homomorphisms from V into W as
well, as modules over k. The mappings

ϕ 7→ ρWa ◦ ϕ(7.7.1)

and
ϕ 7→ −ϕ ◦ ρVa(7.7.2)

define homomorphisms from Homk(V,W ) into itself, as a module over k. These
define representations of A as a Lie algebra over k on Homk(V,W ), as in Section
7.5. We also saw that

ρa(ϕ) = ρWa ◦ ϕ− ϕ ◦ ρVa(7.7.3)

defines a representation of A as a Lie algebra over k on Homk(V,W ). Remember
that ϕ ∈ Homk(V,W ) is said to be invariant under ρ when (7.7.3) is equal to
0 for every a ∈ A, as in the previous section. This happens exactly when
ϕ intertwines the representations ρV , ρW of A on V , W , respectively, as in
Section 6.7.

Let V , W be modules over k again, and let ρV be a respresentation of A as
a Lie algebra over k on V . Remember that the space Lk(V, V ;W ) of mappings
from V × V into W that are bilinear over k is a module over k with respect to
pointwise addition and scalar multiplication. If a ∈ A and β ∈ Lk(V, V ;W ),
then ρVa is a homomorphism from V into itself, as a module over k, and

β(ρVa (u), v), β(u, ρVa (v))(7.7.4)

define elements of Lk(V, V ;W ). The mappings

β(u, v) 7→ −β(ρVa (u), v)(7.7.5)

and
β(u, v) 7→ −β(u, ρVa (v))(7.7.6)

define homomorphisms from Lk(V, V ;W ) into itself, as a module over k. These
define representations of A as a Lie algebra over k on Lk(V, V ;W ), as in Section
7.5, and

(ρa(β))(u, v) = −β(ρVa (u), v)− β(u, ρVa (v))(7.7.7)

defines a representation of A as a Lie algebra over k on Lk(V, V ;W ) too. The
condition that

ρa(β) = 0(7.7.8)

as an element of Lk(V, V ;W ) is the same as saying that (7.7.7) is equal to 0
for every u, v ∈ V , which means that ρVa is antisymmetric on V with respect
to β. Thus β is invariant under the representation (7.7.7) of A on Lk(V, V ;W )
exactly when ρVa is antisymmetric on V with respect to β for every a ∈ A.
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Let V1, . . . , Vn and W be modules over k, and let µ be a mapping from∏n
j=1 Vj into W that is multilinear over k. Also let l ∈ {1, . . . , n} be given, and

let V µl be the set of vl ∈ Vl such that

µ(v1, . . . , vl−1, vl, vl+1, . . . , vn) = 0(7.7.9)

for every vj ∈ Vj with 1 ≤ j ≤ n and j ̸= l. Note that V µl is a submodule of Vl,
as a module over k. Let A be a Lie algebra over k, and suppose that V1, . . . , Vn
and W are modules over A. Thus, for each a ∈ A, a · µ can be defined as a
mapping from

∏n
j=1 Vj into W that is multilinear over k, as in Section 7.5. If

a · µ = 0 as a mapping on
∏n
j=1 Vj , and if vl ∈ V µl , then it is easy to see that

a · vl ∈ V µl too. This means that V µl is a submodule of Vl, as a module over A,
when a · µ = 0 for every a ∈ A.

Let V be a module over k, and let β be a mapping from V × V into V that
is bilinear over k. Thus V is an algebra in the strict sense over k, with respect
to β. Let A be a Lie algebra over k, and suppose that V is a module over A.
If a ∈ A, then a · β is defined as a mapping from V × V into V that is bilinear
over k by

(a · β)(v, w) = a · (β(v, w))− β(a · v, w)− β(v, a · w)(7.7.10)

for every v, w ∈ V , as in Section 7.5. Observe that a · β = 0 as a mapping on
V × V exactly when δa(v) = a · v defines a derivation on V with respect to β.

7.8 Traces of linear mappings

Let k be a commutative ring with a multiplicative identity element, let A0 be a
commutative associative algebra over k, and let n be a positive integer. Remem-
ber that the space Mn(A0) of n×n matrices with entries in A0 is an associative
algebra over k, using entrywise addition and scalar multiplication, and matrix
multiplication. The trace of an element of Mn(A0) defines a homomorphism
from Mn(A0) into A0 as modules over k, which satisfies

tr(a b) = tr(b a)(7.8.1)

for every a, b ∈Mn(A0). Put

B0(a, b) = tr(a b)(7.8.2)

for every a, b ∈Mn(A0), which defines a mapping from Mn(A0)×Mn(A0) into
A0. This mapping is bilinear over k, and symmetric in a, b.

Let a, b, x ∈Mn(A0) be given, and observe that

B0(a x, b) = tr((a x) b) = tr(a (x b)) = B0(a, x b).(7.8.3)

We also have that

B0(x a, b) = tr((x a) b) = tr(x (a b))(7.8.4)

= tr((a b)x) = tr(a (b x)) = B0(a, b x).
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Of course,
a 7→ a x, a 7→ x a(7.8.5)

define homomorphisms from Mn(A0) into itself, as a module over k. Similarly,

Cx(a) = [x, a] = x a− a x(7.8.6)

defines Cx as a homomorphism from Mn(A0) into itself, as a module over k. It
is easy to see that

B0(Cx(a), b) = −B0(a,Cx(b)),(7.8.7)

using (7.8.3) and (7.8.4).
Let kn be the space of n-tuples of elements of k, which is a (free) module over

k with respect to coordinatewise addition and scalar multiplication. If a = (aj,l)
is an n× n matrix with entries in k, then

(Ta(v))j =

n∑
l=1

aj,l vl(7.8.8)

defines a module homomorphism from kn into itself, as usual. The mapping
a 7→ Ta defines an isomorphism from Mn(k) onto Homk(k

n, kn), as associative
algebras over k. The trace of Ta is defined as an element of k to be the trace
of a, which defines the trace as a homomorphism from Homk(k

n, kn) into k, as
modules over k. If R, T ∈ Homk(k

n, kn), then we have that

tr(R ◦ T ) = tr(T ◦R),(7.8.9)

as in (7.8.1).
Let V be a module over k that is isomorphic to kn as a module over k, so that

Homk(V, V ) is isomorphic to Homk(k
n, kn) as associative algebras over k. The

trace can be defined as a homomorphism from Homk(V, V ) into k, as modules
over k, as before. One can check that this definition of the trace does not depend
on the module isomorphism between V and kn, because of (7.8.9). Of course,
if k is a field, then an n-dimensional vector space V over k is isomorphic to kn

as a vector space over k. This corresponds to choosing a basis for V , and the
trace of a linear mapping from V into itself does not depend on the choice of
the basis.

Put
B(T1, T2) = tr(T1 ◦ T2)(7.8.10)

for every T1, T2 ∈ Homk(V, V ), which defines a symmetric bilinear form on
Homk(V, V ). If R ∈ Homk(V, V ), then

CR(T ) = [R, T ] = R ◦ T − T ◦R(7.8.11)

defines a homomorphism from Homk(V, V ) into itself, as a module over k. As
in (7.8.7), we have that

B(CR(T1), T2) = −B(T1, CR(T2))(7.8.12)

for every T1, T2 ∈ Homk(V, V ), so that CR is antisymmetric on Homk(V, V )
with respect to (7.8.10).
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7.9 The Killing form

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Also let V be a module over k, and let ρ be
a representation of A as a Lie algebra on k. Suppose that V is isomorphic to kn

as a module over k for some positive integer n. If T is a homomorphism from V
into itself, as a module over k, then the trace trT = trV T of T can be defined
as an element of k as in the previous section. Put

Bρ(x, y) = trV (ρx ◦ ρy)(7.9.1)

for every x, y ∈ A, which is the trace of ρx ◦ ρy as a module homomorphism
from V into itself. This defines a mapping from A × A into k that is bilinear
over k. Note that (7.9.1) is symmetric in x and y.

Let w, x, y ∈ A be given, and observe that

Bρ([w, x]A, y) = trV (ρ[w,x]A ◦ ρy) = trV ([ρw, ρx] ◦ ρy).(7.9.2)

The right side is equal to

−trV (ρx ◦ [ρw, ρy]),(7.9.3)

as in the previous section. It follows that

Bρ([w, x]A, y) = −Bρ(x, [w, y]A).(7.9.4)

If x ∈ A, then adx = adx is defined as a module homomorphism from A into
itself by

adx(z) = [x, z]A(7.9.5)

for every z ∈ A, as in Section 2.4. Thus (7.9.4) can be reformulated as saying
that

Bρ(adw(x), y) = −Bρ(x, adw(y))(7.9.6)

for every w, x, y ∈ A.
Remember that the space of bilinear forms on A may be considered as a

module over A, with respect to the adjoint representation on A and the trivial
representation of A on k, as in Section 7.5. Using this, (7.9.6) is the same as
saying that (7.9.1) is invariant under this action of A on bilinear forms on A,
as in Section 7.7. This corresponds to Proposition 1.1 on p32 of [25], which was
formulated for a field k. Equivalently, (7.9.4) means that (7.9.1) is associative
as a bilinear mapping on A×A, as in Section 6.10. See also p27 of [14].

If A is isomorphic to kn as a module over k for some positive integer n, then
we can take V = A and ρx = adx in the previous paragraphs. In this case,
(7.9.1) becomes

b(x, y) = trA(adx ◦ ady)(7.9.7)

for x, y ∈ A. This is known as the Killing form on A, as on p21 of [14], and
Definition 1.2 on p32 of [25].
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7.10 Invariant subspaces and traces

Let k be a commutative ring with a multiplicative identity element, and let V
be a module over k. Remember that the collection Homk(V, V ) of all homomor-
phisms from V into itself, as a module over k, is an associative algebra over k
with respect to composition of mappings. Let W be a submodule of V , and let
AW be the collection of all T ∈ Homk(V, V ) such that

T (W ) ⊆W.(7.10.1)

Note that AW is a subalgebra of Homk(V, V ). If T ∈ AW , then let TW be
the restriction of T to W , which defines a module homomorphism from W into
itself. Of course,

T 7→ TW(7.10.2)

defines an algebra homomorphism from AW into the algebra Homk(W,W ) of
all module homomorphisms from W into itself. Let q be the canonical quotient
mapping from V onto the quotient module V/W . If T ∈ AW , then there is a
unique module homomorphism TV/W from V/W into itself such that

TV/W ◦ q = q ◦ T.(7.10.3)

It is easy to see that
T 7→ TV/W(7.10.4)

defines an algebra homomorphism from AW into the algebra Homk(V/W, V/W )
of all module homomorphisms from V/W into itself.

Suppose that V/W is isomorphic to kn as a module over k for some positive
integer n, so that V/W is a free module over k of rank n. This means that there
are n elements z1, . . . , zn of V such that every element of V/W can be expressed
in a unique way as a linear combination of q(z1), . . . , q(zn) with coefficients in
k. Let Z be the submodule of V consisting of linear combinations of z1, . . . , zn
with coefficients in k. More precisely, every element of Z can be expressed in a
unique way as a linear combination of z1, . . . , zn with coefficients in k, because
of the analogous property of q(z1), . . . , q(zn) in V/W . Note that the restriction
of q to Z defines an isomorphism from Z onto V/W , as modules over k. It is
easy to see that every element of V can be expressed in a unique way as the
sum of elements of W and Z, so that V may be identified with the direct sum
of W and Z, as a module over k. Suppose that W is isomorphic to km as a
module over k for some positive integer m as well. Under these conditions, V
is isomorphic to km+n as a module over k.

If T ∈ AW , then the traces of T , TW , and TV/W on V , W , and V/W ,
respectively, can be defined as elements of k, as in Section 7.8. Observe that

trV T = trWTW + trV/WTV/W ,(7.10.5)

where the subscripts indicate the spaces on which the traces are taken. In
particular, if

T (V ) ⊆W,(7.10.6)
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then TV/W = 0, and
trV T = trWTW .(7.10.7)

If T1, T2 ∈ Homk(V, V ), then put

BV (T1, T2) = trV (T1 ◦ T2),(7.10.8)

as in Section 7.8. Let BW (·, ·) and BV/W (·, ·) be the analogous bilinear forms on
Homk(W,W ) and Homk(V/W, V/W ), respectively. Suppose that T1, T2 ∈ AW ,
and let T1,W , T2,W ∈ Homk(W,W ) and T1,V/W , T2,V/W ∈ Homk(V/W, V/W ) be
as before. Note that

(T1 ◦ T2)W = T1,W ◦ T2,W , (T1 ◦ T2)V/W = T1,V/W ◦ T2,V/W ,(7.10.9)

because (7.10.2) and (7.10.4) are algebra homomorphisms. It follows that

BV (T1, T2) = BW (T1,W , T2,W ) +BV/W (T1,V/W , T2,V/W ),(7.10.10)

by applying (7.10.5) to T = T1 ◦ T2.
Let (A, [·, ·]) be a Lie algebra over k, and let B be an ideal in A, so that the

quotient A/B is defined as a Lie algebra over k too. If x ∈ A, then adx = adA,x
is defined as a module homomorphism from A into itself by

adx(z) = adA,x(z) = [x, z](7.10.11)

for every z ∈ A, as in Section 2.4. Let (adx)B be the restriction of adx to B,
which maps B into itself, because B is an ideal in A. Similarly, let (adx)A/B be
the mapping from A/B into itself which is induced by adx on A. Suppose that
B and A/B are isomorphic as modules over k to km and kn, respectively, for
some positive integers m and n. This implies that A is isomorphic to km+n as
a module over k, as before. If x, y ∈ A, then

trA(adx ◦ ady) = trB((adx)B ◦ (ady)B)(7.10.12)

+trA/B((adx)A/B ◦ (ady)A/B),

as in (7.10.10).

7.11 Radicals of bilinear mappings

Let k be a commutative ring with a multiplicative identity element, and let V ,
W be modules over k. Also let β be a mapping from V × V into W that is
bilinear over k. Note that

V β = {u ∈ V : β(u, v) = 0 for every v ∈ V }(7.11.1)

is a submodule of V . This may be called the radical of β in V , as on p22 of [14].
Let (A, [·, ·]) be a Lie algebra over k, and let β be a mapping from A × A

intoW that is bilinear over k. Thus we take V = A in the preceding paragraph,
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as a module over k. If x ∈ A, then adx = adA,x is the module homomorphism
from A into itself defined by (7.10.11), as before. Suppose that

β(adw(x), y) = −β(x, adw(y))(7.11.2)

for every w, x, y ∈ A, which is the same as saying that

β([x,w], y) = β(x, [w, y])(7.11.3)

for every w, x, y ∈ A, as in Section 6.10. In this case, we may say that β
is associative as a bilinear form on A, as in Section 6.10. Equivalently, β is
invariant with respect to the representation on the space of bilinear mappings
from A × A into W corresponding to the adjoint representation on A and the
trivial representation on W , as in Section 7.7. It is easy that the radical Aβ of
β in A is an ideal in A as a Lie algebra over k, as on p22 of [14], and p44 of
[25]. This may be considered as a particular case of statements in Sections 6.10
and 7.7.

Suppose that A is isomorphic to kr as a module over k for some positive
integer r. If x, y ∈ A, then

β(x, y) = trA(adx ◦ ady)(7.11.4)

is defined as an element of k, as in Section 7.8. This defines a symmetric bilinear
mapping from A × A into k that satisfies (7.11.2), as in Section 7.9. Thus the
radical Aβ of (7.11.4) in A is an ideal in A as a Lie algebra over k, as in the
preceding paragraph.

Let B be an ideal in A as a Lie algebra over k, so that the quotient A/B is a
Lie algebra over k as well. Suppose that B and A/B are isomorphic to km and
kn, respectively, as modules over k for some positive integers m and n. This
implies that A is isomorphic to km+n as a module over k, as in the previous
section. If x, y ∈ A, then let (adx)B , (ady)B be the restrictions of adx, ady to
B, and let (adx)A/B , (ady)A/B be the mappings from A/B into itself induced
by adx, ady, as before. If x ∈ B, then adx maps A into B, so that the induced
mapping (adx)A/B is equal to 0. This implies that the second term on the right
side of (7.10.12) is equal to 0 for every y ∈ A. It follows that

trA(adx ◦ ady) = trB((adx)B ◦ (ady)B)(7.11.5)

for every x ∈ B and y ∈ A.
If x ∈ B and B is commutative as a Lie algebra, then (adx)B is equal to 0.

This implies that the right side of (7.11.5) is equal to 0 for every y ∈ A. Under
these conditions, we get that

β(x, y) = trA(adx ◦ ady) = 0(7.11.6)

for every x ∈ B and y ∈ A. This means that

B ⊆ Aβ(7.11.7)

in this situation.
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7.12 Tensor products

Let k be a commutative ring with a multiplicative identity element, let n ≥ 2
be an integer, and let V1, . . . , Vn be n modules over k. The tensor product

n⊗
j=1

Vj = V1
⊗

· · ·
⊗

Vn(7.12.1)

of these modules over k is a module over k with the following two properties.
First, the tensor product comes equipped with a mapping from

∏n
j=1 Vj into⊗n

j=1 Vj that is multilinear over k. The image of (v1, . . . , vn) ∈
∏n
j=1 Vj in⊗n

j=1 Vj under this mapping is often expressed as v1 ⊗ · · · ⊗ vn. Second, let W

be any module over k, and let µ be any mapping from
∏n
j=1 Vj into W that is

multilinear over k. Under these conditions, µ can be expressed in a unique way
as the composition of the mapping from

∏n
j=1 Vj into

⊗n
j=1 Vj just mentioned

with a homomorphism from
⊗n

j=1 Vj into W , as modules over k. Equivalently,

this means that there is a unique module homomorphism µ̃ from
⊗n

j=1 Vj into
W such that

µ̃(v1 ⊗ · · · ⊗ vn) = µ(v1, . . . , vn)(7.12.2)

for every (v1, . . . , vn) ∈
∏n
j=1 Vj . The tensor product is unique up to a suitable

isomorphic equivalence.
Note that

⊗n
j=1 Vj is generated as a module over k by the associated image

of
∏n
j=1 Vj . This means that every element of

⊗n
j=1 Vj can be expressed as a

finite sum of terms of the form v1⊗· · ·⊗vn, where vj ∈ Vj for each j = 1, . . . , n.
This is clear from the standard construction of the tensor product, and it can
also be obtained from the uniqueness of the tensor product.

Let W1, . . . ,Wn another collection of n modules over k, and suppose that
ϕj is a homomorphism from Vj into Wj for each j = 1, . . . , n, as modules over
k. Consider the mapping from

∏n
j=1 Vj into

⊗n
j=1Wj that sends (v1, . . . , vn)

in
∏n
j=1 Vj to

ϕ1(v1)⊗ · · · ⊗ ϕn(vn).(7.12.3)

It is easy to see that this mapping is multilinear over k. This leads to a unique
module homomorphism ϕ from

⊗n
j=1 Vj into

⊗n
j=1Wj such that

ϕ(v1 ⊗ · · · ⊗ vn)(7.12.4)

is equal to (7.12.3) for every (v1, . . . , vn) ∈
∏n
j=1 Vj .

Let Z1, . . . , Zn be another collection of n modules over k, and let ψj be a
homomorphism from Wj into Zj for each j = 1, . . . , n, as modules over k. This
leads to a module homomorphism ψ from

⊗n
j=1Wj into

⊗n
j=1 Zj , as in the

preceding paragraph. Note that ψj ◦ ϕj is a module homomorphism from Vj
into Zj for each j = 1, . . . , n. One can check that ψ◦ϕ is the same as the module
homomorphism from

⊗n
j=1 Vj into

⊗n
j=1 Zj obtained from ψj ◦ ϕj , 1 ≤ j ≤ n,

as in the previous paragraph.
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Let A be an associative algebra over k, and suppose that Vl is also a left or
right module over A for some l ∈ {1, . . . , n}. One can define an action of A on⊗n

j=1 Vj on the left or the right, as appropriate, so that
⊗n

j=1 Vj becomes a left
or right module over A too. More precisely, if a ∈ A, then the corresponding
module homomorphism from Vl into itself leads to a module homomorphism
from

⊗n
j=1 Vj into itself as before, using the identity mapping on Vj when

j ̸= l.
Similarly, let A be a Lie algebra over k, and suppose that Vl is a module

over A for some l ∈ {1, . . . , n}. One can define an action of A on
⊗n

j=1 Vj in the

same way as in the preceding paragraph, so that
⊗n

j=1 Vj becomes a module
over A.

Suppose now that Vl is a module over A as a Lie algebra for each l = 1, . . . , n,
which leads to an action of A on

⊗n
j=1 Vj for each l = 1, . . . , n, as in the previous

paragraph. It is easy to see that these actions commute with each other on⊗n
j=1 Vj . It follows that

⊗n
j=1 Vj is a module over A with respect to the sum

of these actions, as in Section 7.1.

7.13 Functions on sets

Let k be a commutative ring with a multiplicative identity element, and let W
be a module over k. Also let X be a nonempty set, and let c(X,W ) be the space
of W -valued functions on X. It is easy to see that c(X,W ) is a module over k
with respect to pointwise addition and scalar multiplication of functions. This
is the same as the direct product of the family of copies of W indexed by X.

If f is a W -valued function on X, then the support of f on X is defined to
be the set of x ∈ X such that f(x) ̸= 0. Let c00(X,W ) be the subset of c(X,W )
consisting of functions with finite support. This is a submodule of c(X,W ), as
a module over k, which corresponds to the direct sum of the family of copies
of W indexed by X. Of course, c00(X,W ) is the same as c(X,W ) when X has
only finitely many elements.

In particular, we can take W = k, considered as a module over itself. If
x ∈ X, then let δx be the k-valued function on X equal to 1 at x and to 0
elsewhere. Every element of c00(X, k) can be expressed in a unique way as a
linear combination of finitely many δx’s with coefficients in k.

Let Z be another module over k. If ϕ is a homomorphism from c00(X, k)
into Z, as modules over k, then f(x) = ϕ(δx) defines a mapping from X into Z.
It is easy to see that ϕ is uniquely determined by f , and that every Z-valued
function f on X corresponds to a module homomorphism ϕ from c00(X, k)
into Z in this way. The mapping ϕ 7→ f defines an isomorphism from the
space Homk(c00(X, k), Z) of module homomorphisms from c00(X, k) into Z onto
c(X,Z), as modules over k.

Similarly, let ϕ be a homomorphism from c00(X,W ) into Z, as modules over
k. If x ∈ X and w ∈W , then δx w ∈ c00(X,W ), so that

ϕx(w) = ϕ(δx w)(7.13.1)
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defines an element of Z. This defines ϕx as a module homomorphism from W
into Z, so that x 7→ ϕx is an element of c(X,Homk(W,Z)). One can check
that ϕ is uniquely determined by x 7→ ϕx, and that every mapping from X into
Homk(W,Z) corresponds to a module homomorphism ϕ from c00(X,W ) into Z
in this way. This defines an isomorphism between the space Homk(c00(X,W ), Z)
of module homomorhisms from c00(X,W ) into Z and c(X,Homk(W,Z)), as
modules over k.

If f ∈ c(X, k) and w ∈ W , then f(x)w defines a W -valued function on X.
This defines a mapping from c(X, k)×W into c(X,W ) that is bilinear over k.
The restriction of this mapping to c00(X, k)×W maps into c00(X,W ).

Let µ be a mapping from c00(X, k) ×W into Z that is bilinear over k. If
x ∈ X, then put

µx(w) = µ(δx, w)(7.13.2)

for every w ∈ W , which defines a module homomorphism from W into Z. If
f ∈ c00(X,W ), then ∑

x∈X
µx(f(x))(7.13.3)

defines an element of Z, where all but finitely many terms in the sum are equal
to 0. This defines a homomorphism from c00(X,W ) into Z, as modules over
k. One can use this to check that c00(X,W ) satisfies the requirements of the
tensor product of c00(X, k) and W , as modules over k.

Let V be another module over k, and suppose that ϕ is a homomorphism
from V into c(X,Z), as modules over k. If x ∈ X and v ∈ V , then let ϕx(v) be
the value of ϕ(v) at x, as a Z-valued function on X. This defines ϕx as a module
homomorphism from V into Z for each x ∈ X, so that x 7→ ϕx is an element
of c(X,Homk(V, Z)). Clearly ϕ is uniquely determined by x 7→ ϕx, and every
mapping from X into Homk(V, Z) corresponds to a module homomorphism ϕ
from V into c(X,Z) in this way. This defines an isomorphism between the
space Homk(V, c(X,Z)) of module homomorphisms from V into c(X,Z) and
c(X,Homk(V, Z)), as modules over k.

7.14 Some remarks about sums, products

Let k be a commutative ring with a multiplicative identity element, and let W
be a module over k. Of course, k may be considered as a module over itself, and

(t, w) 7→ t w(7.14.1)

defines a mapping from k×W intoW that is bilinear over k. Using this mapping,
one can check that W satisfies the requirements of k

⊗
W .

Let I be a nonempty set, and let Vj be a module over k for every j ∈ I.
Thus

⊕
j∈I Vj is a module over k, and one can verify that(⊕

j∈I
Vj

)⊗
W =

⊕
j∈I

(Vj
⊗

W )(7.14.2)
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in a natural way. Of course, there is an analogous statement for tensor products
with a direct sum in any factor.

If Z is a module over k, then

Homk(k, Z) = Z(7.14.3)

in a natural way, because a mapping from k into Z that is linear over k corre-
sponds to multiplication by an element of Z. If I and Vj , j ∈ I, are as in the
previous paragraph, then

Homk

(⊕
j∈I

Vj , Z
)
=

∏
j∈I

Homk(Vj , Z)(7.14.4)

in a natural way. More precisely, any module homomorphism from
⊕

j∈I Vj into
Z leads to a module homomorphism from Vl into Z for every l ∈ I, using the
natural inclusion of Vl into

⊕
j∈I Vj . Conversely, if one has a module homomor-

phism from Vl into Z for every l ∈ I, then one can get a module homomorphism
from

⊕
j∈I Vj into Z using the given homomorphisms on each coordinate of an

element of
⊕

j∈I Vj , and adding the results in Z.
Similarly, let V be a module over k, and let Zj be a module over k for every

j ∈ I. It is easy to see that

Homk

(
V,

∏
j∈I

Zj

)
=

∏
j∈I

Homk(V, Zj)(7.14.5)

in a natural way.

7.15 Some natural isomorphisms

Let k be a commutative ring with a multiplicative identity element, and let
V1, . . . , Vn be modules over k for some integer n ≥ 2. Also let σ be a permuta-
tion on {1, . . . , n}, which is to say a one-to-one mapping from {1, . . . , n} onto
itself. Thus the tensor products

⊗n
j=1 Vj and

⊗n
j=1 Vσ(j) can be defined as

modules over k as in Section 7.12. There is a unique module homomorphism
from

⊗n
j=1 Vj into

⊗n
j=1 Vσ(j) with

v1 ⊗ · · · ⊗ vn 7→ vσ(1) ⊗ · · · ⊗ vσ(n)(7.15.1)

for every (v1, . . . , vn) ∈
∏n
j=1 Vj . More precisely, one can start with the mapping

from
∏n
j=1 Vj into

⊗n
j=1 Vσ(j) defined by

(v1, . . . , vn) 7→ vσ(1) ⊗ · · · ⊗ vσ(n),(7.15.2)

which is multilinear over k.
Let τ be another permutation on {1, . . . , n}, which leads to a unique module

homomorphism from
⊗n

j=1 Vσ(j) into
⊗n

j=1 Vτ(σ(j)) with

vσ(1) ⊗ · · · ⊗ vσ(n) 7→ vτ(σ(1)) ⊗ · · · ⊗ vτ(σ(n))(7.15.3)
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for every (v1, . . . , vn) ∈
∏n
j=1 Vj , as before. The composition of this module

homomorphism with the previous one that satisfies (7.15.1) is a module homo-
morphism from

⊗n
j=1 Vj into

⊗n
j=1 Vτ(σ(j)) with

v1 ⊗ · · · ⊗ vn 7→ vτ(σ(1)) ⊗ · · · ⊗ vτ(σ(n))(7.15.4)

for every (v1, . . . , vn) ∈
∏n
j=1 Vj . This is the same as the homomorphism asso-

ciated to τ ◦ σ, by uniqueness. In particular, if τ ◦ σ is the identity mapping on
{1, . . . , n}, then we get the identity mapping on

⊗n
j=1 Vj . It follows that the

module homomorphism from
⊗n

j=1 Vj into
⊗n

j=1 Vσ(j) that satisfies (7.15.1) is

an isomorphism, whose inverse is the analogous homomorphism from
⊗n

j=1 Vσ(j)
into

⊗n
j=1 Vj associated to the inverse of σ.

Now let n1 and n2 be positive integers with n1 + n2 = n. The tensor
products

⊗n1

j=1 Vj and
⊗n2

l=1 Vn1+l can be defined as before when n1, n2 ≥ 2,
and otherwise they may be interpreted as being the given module over k when
n1 or n2 is equal to 1. Thus the tensor product( n1⊗

j=1

Vj

)⊗( n2⊗
l=1

Vn1+l

)
(7.15.5)

is defined as a module over k as well. It is well known that there is a natural
isomorphism between

⊗n
j=1 Vj and (7.15.5), as modules over k. More precisely,

if (v1, . . . , vn) ∈
∏n
j=1 Vj , then v1 ⊗ · · · ⊗ vn corresponds to

(v1 ⊗ · · · ⊗ vn1
)⊗ (vn1+1 ⊗ · · · ⊗ vn)(7.15.6)

under this isomorphism.
Let V be a module over k, and suppose that Vj = V for each j = 1, . . . , n.

In this case,

TnV =

n⊗
j=1

Vj(7.15.7)

is called the nth tensor power of V . We can interpret T 1V as being equal to
V , as in the preceding paragraph. If σ is a permutation on {1, . . . , n}, then we
get a module automorphism on TnV , as before. The elements of TnV that are
invariant under the module automorphisms associated to all permutations on
{1, . . . , n} are said to be symmetric, and form a submodule of TnV , as a module
over k.

If V1, V2, V3 are modules over k, then (V1
⊗
V2)

⊗
V3 and V1

⊗
(V2

⊗
V3) are

both isomorphic to V1
⊗
V2

⊗
V3, as modules over k, as before. This leads to a

natural isomorphism between (V1
⊗
V2)

⊗
V3 and V1

⊗
(V2

⊗
V3), as modules

over k. More precisely, if v1 ∈ V1, v2 ∈ V2, and v3 ∈ V3, then (v1 ⊗ v2) ⊗ v3
corresponds to v1 ⊗ (v2 ⊗ v3) under this isomorphism.



Chapter 8

Formal series and ordered
rings

8.1 Poles of finite order

Let k be a commutative ring with a multiplicative identity element, let A be a
module over k, and let T be an indeterminate. Consider the space A((T )) of
formal series of the form

f(T ) =

∞∑
j=j0

fj T
j ,(8.1.1)

where j0 ∈ Z and fj ∈ A for each j ≥ j0. More precisely, A((T )) may be defined
as the space of A-valued functions on Z that are equal to 0 for all but finitely
many negative integers. Thus (8.1.1) corresponds to j 7→ fj as an A-valued
function on Z, where fj = 0 when j < j0. As in [4], elements of A((T )) may
also be expressed as

f(T ) =
∑

j>>−∞
fj T

j ,(8.1.2)

to indicate that fj = 0 for all but finitely many j < 0.

Note that A((T )) is a module over k with respect to termwise addition
and scalar multiplication of these formal series, which corresponds to pointwise
addition and scalar multiplication of the associated A-valued functions on Z.
The space A[[T ]] of formal power series in T with coefficients in A can be
identified with the submodule of A((T )) consisting of formal series f(T ) such
that fj = 0 for all j < 0. In particular, A can be identified with the submodule
of A((T )) consisting of formal series f(T ) with fj = 0 when j ̸= 0.

If f(T ) ∈ A((T )) and l ∈ Z, then

f(T )T l =
∑

j>>−∞
fj T

j+l =
∑

j>>−∞
fj−l T

j(8.1.3)

167
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defines an element of A((T )) as well. This is the same as f(T ) when l = 0, and
agrees with the analogous definition on A[[T ]] in Section 4.3 when l ≥ 0. In
this situation, f(T ) 7→ f(T )T l is a module automorphism on A((T )) for every
l ∈ Z.

Let n ∈ Z be given, and let (A[[T ]])Tn be the subset of A((T )) of formal
series of the form g(T )Tn, where g(T ) ∈ A[[T ]] is identified with an element
of A[[T ]] as before. Equivalently, this is the set of f(T ) ∈ A((T )) that can be
expressed as in (8.1.1), with j0 ≥ n. If n ≥ 1, then the elements of (A[[T ]])Tn

correspond to formal power series in T with coefficients in A that vanish to
order n− 1, as in Section 4.3. Clearly (A[[T ]])Tn is a submodule of A((T )) for
every n ∈ Z, with

(A[[T ]])Tn ⊆ (A[[T ]])Tn+1(8.1.4)

and

A((T )) =

∞∪
n=−∞

(A[[T ]])Tn.(8.1.5)

Let us say that the elements of a subset E of A((T )) have poles of bounded
order if E ⊆ (A[[T ]])Tn for some n ∈ Z. Of course, if E has only finitely many
elements, then the elements of E have poles of bounded order. Suppose that
E is a submodule of A((T )), as a module over k. If E is finitely generated, as
a module over k, then it is easy to see that the elements of E have poles of
bounded order.

8.2 Sequences and series

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let l0 ∈ Z be given, and let

fl(T ) =
∑

j>>−∞
fl,j T

j(8.2.1)

be an element of A((T )) for each integer l ≥ l0. As in Section 4.4, let us say that
the sequence {fl(T )}∞l=l0 is termwise eventually constant if for each j ∈ Z there
is an integer Lj ≥ l0 such that fl,j does not depend on l when l ≥ Lj . Similarly,
let us say that {fl(T )}∞l=l0 eventually agrees with f(T ) ∈ A((T )) termwise if for
every j ∈ Z there is an integer L ≥ l0 such that

fl,j = fj(8.2.2)

for every l ≥ Lj . Of course, this implies that {fl(T )}∞l=l0 is termwise eventually
constant. If {fl(T )}∞l=l0 is termwise eventually constant, and if the fl(T )’s have
poles of bounded order, then {fl(T )}∞l=l0 eventually agrees with an element of
A((T )) termwise. However, a sequence of elements of A((T )) may eventually
agree termwise with an element of A((T )) without having poles of bounded
order.



8.2. SEQUENCES AND SERIES 169

Let α ∈ k and r ∈ Z be given, as well as another sequence {gl(T )}∞l=l0
of elements of A((T )). If {fl(T )}∞l=l0 and {gl(T )}∞l=l0 are termwise eventually
constant, then so are {α fl(T )}∞l=l0 , {fl(T )T

r}∞l=l0 , and {fl(T ) + gl(T )}∞l=l0 . If
the fl(T )’s and gl(T )’s have poles of bounded order, then the α fl(T )’s and
fl(T ) + gl(T )’s have the same property. In this case, if r0 ∈ Z, then the
fl(T )T

r’s have poles of bounded order for l ≥ l0 and r ≥ r0. If {fl(T )}∞l=l0
and {gl(T )}∞l=l0 eventually agree with f(T ), g(T ) ∈ A((T )) termwise, respec-
tively, then {α fl(T )}∞l=l0 , {fl(T )T r}∞l=l0 , and {fl(T ) + gl(T )}∞l=l0 eventually
agree with α f(T ), f(T )T r, and f(T ) + g(T ) termwise, respectively.

Let
al(T ) =

∑
j>>−∞

al,j T
j(8.2.3)

be an element of A((T )) for every integer l ≥ l0. Suppose that {al(T )}∞l=l0 even-
tually agrees with 0 termwise, and that the poles of the al(T )’s have bounded
order. Under these conditions, the partial sums

n∑
l=l0

al(T )(8.2.4)

are termwise eventually constant and have poles of bounded order. This im-
plies that the partial sums (8.2.4) eventually agree termwise with an element of
A((T )), as before. Let us denote this element of A((T )) by

∞∑
l=l0

al(T ).(8.2.5)

If α ∈ k, then {αal(T )}∞l=l0 eventually agrees with 0 termwise, the αal(T )’s
have poles of bounded order, and

∞∑
l=l0

αal(T ) = α

∞∑
l=l0

al(T ).(8.2.6)

Similarly, if r ∈ Z, then {al(T )T r}∞l=l0 eventually agrees with 0 termwise, the
al(T )T

r’s have poles of bounded order (in l), and

∞∑
l=l0

al(T )T
r =

( ∞∑
l=l0

al(T )
)
T r.(8.2.7)

Let {bl(T )}∞l=l0 be another sequence of elements of A((T )) that eventually agrees
termwise with 0, and whose terms have poles of bounded order. This implies
that {al(T ) + bl(T )}∞l=l0 eventually agrees termwise with 0 too, and that the
al(T ) + bl(T )’s have poles of bounded order. It is easy to see that

∞∑
l=l0

(al(T ) + bl(T )) =

∞∑
l=l0

al(T ) +

∞∑
l=l0

bl(T )(8.2.8)

in this situation.
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8.3 Formal series and module homomorphisms

Let k be a commutative ring with a multiplicative identity element, let A, B
be modules over k, and let T be an indeterminate. Thus B((T )) can be defined
as a module over k as in Section 8.1. Let ϕ be a homomorphism from A into
B((T )), as modules over k. If a ∈ A, then ϕ(a) can be expressed as

ϕ(a) =

∞∑
j=−∞

ϕj(a)T
j ,(8.3.1)

where ϕj(a) ∈ B for every j ∈ Z, and ϕj(a) = 0 for all but finitely many j < 0.
More precisely, for each j ∈ Z, ϕj is a homomorphism from A into B, as modules
over k. Conversely, let ϕj be a module homomorphism from A into B for every
j ∈ Z, and suppose that for each a ∈ A, ϕj(a) = 0 for all but finitely many
j < 0. Under these conditions, (8.3.1) defines an element of B((T )) for every
a ∈ A, and this defines ϕ as a homomorphism from A into B((T )), as modules
over k.

Let ϕ be a module homomorphism from A into B((T )) again. Let us say
that ϕ has poles of bounded order if the set of ϕ(a) with a ∈ A has poles of
bounded order, as a subset of B((T )). Equivalently, this means that there is
an integer n(ϕ) such that ϕj(a) = 0 for every a ∈ A and j < n(ϕ). This is the
same as saying that ϕj = 0 for all but finitely many j < 0, as homomorphisms
from A into B. If A is finitely generated as a module over k, then this follows
automatically from the fact that ϕ(a) ∈ B((T )) for every a ∈ A.

Remember that the space Homk(A,B) of module homomorphisms from A
into B is a module over k too, with respect to pointwise addition and scalar mul-
tiplication of mappings. Thus (Homk(A,B))((T )) can be defined as a module
over k as before. Let

ϕ(T ) =

∞∑
l=l0

ϕl T
l(8.3.2)

be an element of (Homk(A,B))((T )), so that l0 ∈ Z and ϕl ∈ Homk(A,B) for
every l ≥ l0. If a ∈ A, then

(ϕ(T ))(a) =

∞∑
l=l0

ϕl(a)T
l(8.3.3)

defines an element of B((T )), and the mapping from a ∈ A to (8.3.3) is a
homomorphism from A into B((T )), as modules over k. This homomorphism
has poles of finite order, and every module homomorphism from A into B((T ))
with poles of finite order corresponds to an element of (Homk(A,B))((T )) in
this way.

The space Homk(A,B((T ))) of module homomorphisms from A into B((T ))
is a module over k as well. It is easy to see that the collection of module ho-
momorphisms from A into B((T )) with poles of finite order is a submodule
of Homk(A,B((T ))). The mapping from (8.3.2) to (8.3.3) defines an injec-
tive module homomorphism from (Homk(A,B))((T )) onto this submodule of
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Homk(A,B((T ))). If ϕ(T ) ∈ (Homk(A,B))((T )) and r ∈ Z, then ϕ(T )T r de-
fines an element of (Homk(A,B))((T )) too, as in Section 8.1. Note that for
every a ∈ A,

(ϕ(T )T r)(a) = (ϕ(T ))(a)T r,(8.3.4)

as elements of B((T )).

8.4 Extending module homomorphisms

Let us continue with the notation and hypotheses in the previous section. Let
ϕ(T ) be an element of (Homk(A,B))((T )) as in (8.3.2) again, and let

a(T ) =

∞∑
m=m0

am T
m(8.4.1)

be an element of A((T )), where m0 ∈ Z. Thus

(ϕ(T ))(am) =

∞∑
l=l0

ϕl(am)T l(8.4.2)

defines an element of B((T )) for every m ∈ Z, as in (8.3.3). Put

(ϕ(T ))(a(T )) =

∞∑
m=m0

(ϕ(T ))(am)Tm,(8.4.3)

where the series on the right can be defined as an element of B((T )) as in Section
8.2. This defines a homomorphism from A((T )) into B((T )), as modules over
k, associated to ϕ(T ).

It is easy to see that

(ϕ(T ))(a(T )T r) = (ϕ(T ))(a(T ))T r(8.4.4)

for every a(T ) ∈ A((T )) and r ∈ Z. We also have that

(ϕ(T ))((A[[T ]])Tn) ⊆ (B[[T ]])Tn+l0(8.4.5)

for every n ∈ Z. Note that (8.4.3) is linear over k in ϕ(T ). If r ∈ Z, then
ϕ(T )T r defines an element of (Homk(A,B))((T )), as before. One can verify
that

(ϕ(T )T r)(a(T )) = (ϕ(T ))(a(T ))T r(8.4.6)

as elements of B((T )) for every a(T ) ∈ A((T )).
Let a(T ) ∈ A((T )) be given as in (8.4.1) again. As before, we take ϕl = 0

when l < l0, and am = 0 when m < m0. Let n ∈ Z be given, and observe that

ϕl(an−l) = 0(8.4.7)
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when l < l0 and when n− l < m0, which is to say that n−m0 < l. In particular,
(8.4.7) holds for all but finitely many l ∈ Z, so that

((ϕ(T ))(a(T )))n =

∞∑
l=−∞

ϕl(an−l)(8.4.8)

defines an element of B. If n < l0 +m0, then (8.4.7) holds for every l ∈ Z, so
that (8.4.8) is equal to 0. Consider

(ϕ(T ))(a(T )) =

∞∑
n=l0+m0

((ϕ(T ))(a(T )))n T
n(8.4.9)

as an element of B((T )). One can check that this is equivalent to (8.4.3).
Let C be a third module over k, and let

ψ(T ) =

∞∑
r=r0

ψr T
r(8.4.10)

be an element of (Homk(B,C))((T )), where r0 ∈ Z. As usual, we take ψr = 0
when r < r0. The composition ψr ◦ ϕl is defined as a module homomorphism
from A into C for every l, r ∈ Z. Let n ∈ Z be given, and note that

ψr ◦ ϕn−r = 0(8.4.11)

when r < r0 and when n− r < l0, which means that n− l0 < r. It follows that
(8.4.11) holds for all but finitely many r ∈ Z, so that

(ψ(T ) ◦ ϕ(T ))n =

∞∑
r=−∞

ψr ◦ ϕn−r(8.4.12)

defines a module homomorphism from A into C. If n < l0 + r0, then (8.4.11)
holds for every r ∈ Z, and (8.4.12) is equal to 0. Put

ψ(T ) ◦ ϕ(T ) =
∞∑

n=l0+r0

(ψ(T ) ◦ ϕ(T ))n Tn,(8.4.13)

which defines an element of (Homk(A,C))((T )). One can verify that the module
homomorphism from A((T )) into C((T )) corresponding to (8.4.13) as before is
the same as the composition of the homomorphisms from A((T )) into B((T ))
and from B((T )) into C((T )) corresponding to ϕ(T ) and ψ(T ), respectively.

8.5 Homomorphisms from A((T )) into B((T ))

Let k be a commutative ring with a multiplicative identity element again, let
A, B be modules over k, and let T be an indeterminate. Also let ϕ be a
homomorphism from A((T )) into B((T )), as modules over k, and suppose that

ϕ(f(T )T ) = ϕ(f(T ))T(8.5.1)
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for every f(T ) ∈ A((T )). This implies that

ϕ(f(T )T r) = ϕ(f(T ))T r(8.5.2)

for every f(T ) ∈ A((T )) and r ∈ Z. Remember that A[[T ]] can be identified
with the set of f(T ) ∈ A((T )) such that fj = 0 for every j < 0. Using (8.5.2),
we get that ϕ is uniquely determined by its restriction to this subset of A((T ))
corresponding to A[[T ]].

Suppose in addition that there is an integer l0(ϕ) such that

ϕ((A[[T ]])Tn) ⊆ (B[[T ]])Tn+l0(ϕ)(8.5.3)

for every n ∈ Z. Note that this condition holds automatically when ϕ is obtained
from an element of (Homk(A,B))((T )) as in the previous section. In order to
verify this condition for any ϕ as in the preceding paragraph, it suffices to
consider the case where n = 0, because of (8.5.2). The case where n = 0 can be
reformulated as saying that if f(T ) corresponds to an element of A[[T ]], then
ϕ(f(T ))T−l0(ϕ) corresponds to an element of B[[T ]]. This means that

ϕ̃(f(T )) = ϕ(f(T ))T−l0(ϕ)(8.5.4)

maps the subset of A((T )) corresponding to A[[T ]] into the subset of B((T ))
corresponding to B[[T ]]. Equivalently, the n = 0 case says that the collection
of ϕ(f(T )) with f(T ) ∈ A[[T ]] has poles of bounded order in B((T )). Thus we
may simply say that ϕ has poles of bounded order on A[[T ]] in this situation.

Under these conditions, one can check that ϕ is uniquely determined by
its restriction to the subset of A((T )) corresponding to A. This can also be
obtained from the analogous statement in Section 4.8, applied to the mapping
from the subset of A((T )) corresponding to A[[T ]] into the subset of B((T ))
corresponding to B[[T ]] given by (8.5.4). In this situation, the restriction of
ϕ to the subset of A((T )) corresponding to A has poles of bounded order, as
in Section 8.3, and hence corresponds to an element of (Homk(A,B))((T )), as
before. This element of (Homk(A,B))((T )) determines a homomorphism from
A((T )) into B((T )), as in Section 8.4. In fact, ϕ is equal to this homomorphism
on all of A((T )).

Let {al(T )}∞l=l0 be a sequence of elements of A((T )) starting at some l0 ∈ Z,
and suppose that the set of al(T )’s, l ≥ l0, has poles of bounded order in A((T )).
This implies that the set of ϕ(al(T ))’s, l ≥ l0, has poles of finite order in B((T )),
by (8.5.3). Suppose that {al(T )}∞l=l0 also eventually agrees with some a(T ) in
A((T )) termwise, as in Section 8.2. Under these conditions, one can check
that {ϕ(al(T ))}∞l=l0 eventually agrees with ϕ(a(T )) termwise. In particular, if
{al(T )}∞l=l0 eventually agrees termwise with 0, then {ϕ(al(T ))}∞l=l0 eventually
agrees termwise with 0. In this situation,

∑∞
l=l0

al(T ) and
∑∞
l=l0

ϕ(al(T )) can
be defined as elements of A((T )) and B((T )), respectively, as in Section 8.2. It
is easy to see that

ϕ
( ∞∑
l=l0

al(T )
)
=

∞∑
l=l0

ϕ(al(T )),(8.5.5)

using the previous statement for the partial sums of these series.
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8.6 Formal series and bilinear mappings

Let k be a commutative ring with a multiplicative identity element, let A, B, C
be modules over k, and let T be an indeterminate. Thus C((T )) can be defined
as a module over k as in Section 8.1, and we let β be a mapping from A × B
into C((T )) that is bilinear over k. If a ∈ A and b ∈ B, then β(a, b) can be
expressed as

β(a, b) =

∞∑
r=−∞

βr(a, b)T
r,(8.6.1)

where βr(a, b) ∈ C for every r ∈ Z, and

βr(a, b) = 0(8.6.2)

for all but finitely many r < 0. This defines βr as a mapping from A × B into
C that is bilinear over k for every r ∈ Z. Conversely, if βr is a mapping from
A×B into C that is bilinear over k for every r ∈ Z, and if for every a ∈ A and
b ∈ B we have that (8.6.2) holds for all but finitely many r < 0, then (8.6.1)
defines an element of C((T )) for every a ∈ A and b ∈ B, and this defines a
mapping from A×B into C((T )) that is bilinear over k.

Let β be a mapping from A × B into C((T )) that is bilinear over k again.
Let us say that β has poles of bounded order if the set of β(a, b) with a ∈ A and
b ∈ B has poles of bounded order in C((T )). This means that there is an integer
r(β) such that (8.6.2) holds for every a ∈ A, b ∈ B, and r < r(β). One can check
that this holds automatically when A and B are finitely generated as modules
over k. If β has poles of bounded order, then β corresponds to a formal series in
T with poles of finite order whose coefficients are bilinear mappings from A×B
into C.

Let β be a mapping from A×B into C((T )) that is bilinear over k and has
poles of bounded order, so that there is an r(β) ∈ Z such that (8.6.2) holds for
every a ∈ A, b ∈ B, and r < r(β). Also let f(T ) =

∑∞
j=j0

fj T
j ∈ A((T )) and

g(T ) =
∑∞
l=l0

gl T
l ∈ B((T )) be given, where j0, l0 ∈ Z. As before, we take

fj = 0 when j < j0, and gl = 0 when l < l0. Let n ∈ Z be given, and observe
that

β(fj , gn−j) = 0(8.6.3)

when j < j0, and when n− j < l0, which means that n− l0 < j. In particular,
(8.6.3) holds for all but finitely many j ∈ Z, so that

hn =

∞∑
j=−∞

β(fj , gn−j)(8.6.4)

defines an element of C((T )). Equivalently,

β(fn−l, gl) = 0(8.6.5)
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when l < l0 and when n − l < j0, which means that n − j0 < l. Thus (8.6.5)
holds for all but finitely many l ∈ Z, and (8.6.4) is the same as

hn =

∞∑
l=−∞

β(fn−l, gl).(8.6.6)

If n < j0 + l0, then (8.6.3) holds for every j ∈ Z, which is the same as saying
that (8.6.5) holds for every l ∈ Z, so that hn = 0. Note that the coefficient of
T r in hn is equal to 0 when r < r(β), because of the corresponding hypothesis
on β. Put

h(T ) =

∞∑
n=j0+l0

hn T
n,(8.6.7)

where the series on the right defines an element of C((T )) as in Section 8.2.
Put

β(f(T ), g(T )) = h(T ),(8.6.8)

which defines a mapping from A((T ))×B((T )) into C((T )) that is bilinear over
k. This mapping agrees with the initial mapping from A×B into C((T )), when
A and B are identified with submodules of A((T )) and B((T )), respectively, as
in Section 8.1. One can verify that

β(f(T )Tm1 , g(T )Tm2) = β(f(T ), g(T ))Tm1+m2(8.6.9)

for every f(T ) ∈ A((T )), g(T ) ∈ B((T )), and m1,m2 ∈ Z. The coefficient of T r

in (8.6.7) is equal to 0 when

r < j0 + l0 + r(β),(8.6.10)

because of the analogous statement for hn. Equivalently, if f(T ) ∈ (A[[T ]])Tm1

and g(T ) ∈ (B[[T ]])Tm2 for some m1,m2 ∈ Z, then

β(f(T ), g(T )) ∈ (C[[T ]])Tm1+m2+r(β).(8.6.11)

Suppose that A = B. If the initial mapping β from A × A into C((T ))
is symmetric or antisymmetric, then the extension of β to A((T )) × A((T ))
just defined has the same property, because (8.6.4) and (8.6.6) are the same.
Similarly, if β(a, a) = 0 for every a ∈ A, then

β(f(T ), f(T )) = 0(8.6.12)

for every f(T ) ∈ A((T )). To see this, it suffices to verify that

∞∑
j=−∞

β(fj , fn−j) = 0(8.6.13)

for every n ∈ Z. Remember that β is antisymmetric on A×A in this situation,
as in Section 2.1. If n is odd, then (8.6.13) follows from the antisymmetry of β
on A × A. If n is even, then (8.6.13) follows from the antisymmetry of β and
the fact that β(fn/2, fn/2) = 0, by hypothesis.
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8.7 Bilinear mappings on A((T ))×B((T ))

Let k be a commutative ring with a multiplicative identity element again, let
A, B, and C be modules over k, and let T be an indeterminate. Suppose that
β is a mapping from A((T )) × B((T )) into C((T )) that is bilinear over k and
satisfies

β(f(T )T, g(T )) = β(f(T ), g(T )T ) = β(f(T ), g(T ))T(8.7.1)

for every f(T ) ∈ A((T )) and g(T ) ∈ B((T )). This implies that

β(f(T )Tm1 , g(T )Tm2) = β(f(T ), g(T ))Tm1+m2(8.7.2)

for every f(T ) ∈ A((T )), g(T ) ∈ B((T )), and m1,m2 ∈ Z. It is easy to see that
β is uniquely determined by its restriction to the subset of A((T )) × B((T ))
corresponding to A[[T ]]×B[[T ]], using (8.7.2).

As before, let us ask in addition that there be an integer r(β) such that if
f(T ) ∈ (A[[T ]])Tm1 and g(T ) ∈ (B[[T ]])Tm2 for some m1,m2 ∈ Z, then

β(f(T ), g(T )) ∈ (C[[T ]])Tm1+m2+r(β).(8.7.3)

Remember that this condition holds when β is obtained from a bilinear mapping
from A×B into C((T )) with poles of bounded order as in the previous section.
To verify this condition for any β as in the preceding paragraph, it is enough
to consider the case where m1 = m2 = 0, because of (8.7.2). This case can be
reformulated as saying that if f(T ) and g(T ) correspond to elements of A[[T ]]
and B[[T ]], respectively, then β(f(T ), g(T ))T−r(β) corresponds to an element
of C[[T ]]. Equivalently, this means that

β̃(f(T ), g(T )) = β(f(T ), g(T ))T−r(β)(8.7.4)

maps the subset of A((T )) × B((T )) corresponding to A[[T ]] × B[[T ]] into the
subset of C((T )) corresponding to C[[T ]]. The m1 = m2 = 0 case of (8.7.3) is
the same as saying that the collection of β(f(T ), g(T )) with f(T ) ∈ A[[T ]] and
g(T ) ∈ B[[T ]] has poles of bounded order in C((T )). In this situation, we may
simply say that β has poles of bounded order on A[[T ]]×B[[T ]].

One can check that β is uniquely determined by its restriction to the subset
of A((T ))×B((T )) that corresponds to A×B under these conditions. This can
also be seen using the analogous statement in Section 4.8 for mappings from
A[[T ]]×B[[T ]] into C[[T ]], applied to the mapping that corresponds to (8.7.4).
Of course, the restriction of β to A× B has poles of bounded order on A× B.
Thus the restriction of β to A × B can be extended to A((T )) × B((T )) as in
the previous section. This extension agrees with β on all of A((T ))×B((T )) in
this situation.

Let {am(T )}∞m=m0
and {br(T )}∞r=r0 be sequences of elements of A((T )) and

B((T )), respectively. Suppose that the sets of am(T )’s, m ≥ m0, and br(T )’s,
r ≥ r0, have poles of bounded order in A((T )) and B((T )), respectively. This
implies that the set of β(am(T ), br(T ))’s, m ≥ m0, r ≥ r0, has poles of bounded
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order in C((T )), by (8.7.3). Suppose that {am(T )}∞m=m0
and {br(T )}∞r=r0 even-

tually agree with some a(T ) ∈ A((T )) and b(T ) ∈ B((T )) termwise, respectively,
as in Section 8.2. One can verify that {β(ar(T ), br(T ))}∞r=max(m0,r0)

eventually

agrees termwise with β(a(T ), b(T )).
Suppose now that {am(T )}∞m=m0

and {br(T )}∞r=r0 eventually agree termwise
with 0 inA((T )) andB((T )), respectively, in addition to having poles of bounded
order. This implies that

∑∞
m=m0

am(T ) and
∑∞
r=r0

br(T ) define elements of
A((T )) and B((T )), respectively, as in Section 8.2. If N is an integer with
N ≥ m0 + r0, then put

cN (T ) =

N−r0∑
m=m0

β(am(T ), bN−m(T )),(8.7.5)

which is an element of C((T )). Equivalently, this is the sum of

β(am(T ), br(T ))(8.7.6)

over m ≥ m0 and r ≥ r0 with m + r = N . Note that the set of cN (T )’s,
N ≥ m0 + r0, has poles of bounded order in C((T )), because of the analogous
statement for (8.7.6) in the preceding paragraph. One can check that (8.7.6)
vanishes to arbitrarily large order in T when m or r is sufficiently large, because
of (8.7.3). In particular, {cN (T )}∞N=m0+r0

eventually agrees termwise with 0.
Thus

∑∞
N=m0+r0

cN (T ) defines an element of C((T )), as in Section 8.2. One
can verify that

∞∑
N=m0+r0

cN (T ) = β
( ∞∑
m=m0

am(T ),

∞∑
r=r0

br(T )
)
,(8.7.7)

as in Section 4.2.

8.8 Algebras and modules over k((T ))

Let k be a commutative ring with a multiplicative identity element, and let
A be an algebra over k in the strict sense, where multiplication of a, b ∈ A is
expressed as a b. Also let T be an indeterminate, and let f(T ) =

∑∞
j=j0

fj T
j

and g(T ) =
∑∞
l=l0

gl T
l be elements of A((T )), where j0, l0 ∈ Z. As usual, we

take fj = 0 when j < j0, and gl = 0 when l < l0. Let n ∈ Z be given, and
observe that

fj gn−j = 0(8.8.1)

when j < j0 and when n− j < l0, which means that n− l0 < j. In particular,
(8.8.1) holds for all but finitely many j ∈ Z, so that

hn =

∞∑
j=−∞

fj gn−j(8.8.2)
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reduces to a finite sum in A. Equivalently,

fn−l gl = 0(8.8.3)

when l < l0 and when n − l < j0, which means that n − j0 < l. Thus (8.8.3)
holds for all but finitely many l ∈ Z, and (8.8.2) is the same as

hn =

∞∑
l=−∞

fn−l gl.(8.8.4)

If n < j0 + l0, then (8.8.1) holds for every j ∈ Z, which is the same as saying
that (8.8.3) holds for every l ∈ Z, so that hn = 0. Put

f(T ) g(T ) = h(T ) =

∞∑
n=j0+l0

hn T
n,(8.8.5)

which defines another element of A((T )). Of course, this is the same as in
(8.6.7), with the bilinear mapping β given by multiplication on A. As before,
one can check that

(f(T )Tm1) (g(T )Tm2) = (f(T ) g(T ))Tm1+m2(8.8.6)

for every m1,m2 ∈ Z. If f(T ) ∈ (A[[T ]])Tm1 and g(T ) ∈ (A[[T ]])Tm2 for some
m1,m2 ∈ Z, then

f(T ) g(T ) ∈ (A[[T ]])Tm1+m2 .(8.8.7)

This extends multiplication on A to a mapping from A((T )) × A((T )) into
A((T )) that is bilinear over k, which makes A((T )) into an algebra over k in
the strict sense. In particular, this agrees with the extension of multiplication
on A to A[[T ]] discussed in Section 4.6, so that A[[T ]] may be considered as
a subalgebra of A((T )). If A is a commutative algebra over k, then A((T ))
is commutative as well, by the remark about symmetry of β in the previous
section. Similarly, if A is an associative algebra over k, then one can verify that
A((T )) is an associative algebra. If A has a multiplicative identity element e,
then e corresponds to the multiplicative identity element in A((T )) too.

Suppose that A is an associative algebra over k with a multiplicative identity
element e, and let f(T ) =

∑∞
j=j0

fj T
j be an element of A((T )). Thus f(T )T−j0

corresponds to an element of A[[T ]]. If fj0 is invertible in A, then f(T )T−j0

is invertible in A[[T ]], as in Section 4.7. This implies that f(T ) is invertible in
A((T )).

Applying the earlier remarks to k as a commutative associative algebra over
itself, we get that k((T )) is a commutative associative algebra over k with a
multiplicative identity element. Let A be a module over k, and let f(T ) ∈ k((T ))
and g(T ) ∈ A((T )) be given. Under these conditions, f(T ) g(T ) can be defined
as an element of A((T )) as in (8.8.5), where the terms on the right side of (8.8.2)
are defined using scalar multiplication on A. This is the same as extending scalar
multiplication on A, as a mapping from k ×A into A that is bilinear over k, to
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a mapping from k((T )) × A((T )) into A((T )), as in the previous section. One
can check that this makes A((T )) into a module over k((T )). Note that (8.8.6)
holds for every m1,m2 ∈ Z in this situation. Similarly, if f(T ) ∈ (k[[T ]])Tm1

and g(T ) ∈ (A[[T ]])Tm2 for some m1,m2 ∈ Z, then (8.8.7) holds.
Let B be another module over k, and let ϕ(T ) ∈ (Homk(A,B))((T )) be

given. This leads to a homomorphism from A((T )) into B((T )) as modules over
k, as in Section 8.4. More precisely, one can verify that this is a homomorphism
from A((T )) into B((T )) as modules over k((T )). One can also look at this in
terms of k-linear mappings satisfying (8.5.1) and (8.5.3).

Similarly, let C be a third module over k, and let β be a mapping from A×B
into C((T )) that is bilinear over k and has poles of bounded order. One can
check that the extension of β to a mapping from A((T ))× B((T )) into C((T ))
defined in Section 8.6 is bilinear over k((T )). One can also look at this in terms
of mappings from A((T )) × B((T )) into C((T )) that are bilinear over k and
satisfy (8.7.1) and (8.7.3). In particular, if A is an algebra over k in the strict
sense, then A((T )) may be considered as an algebra over k((T )) in the strict
sense.

Let (A, [·, ·]A) be a Lie algebra over k. If f(T ), g(T ) ∈ A((T )), then (8.8.2)
should be expressed as

hn =

∞∑
j=−∞

[fj , gn−j ]A(8.8.8)

for each n ∈ Z, so that (8.8.5) corresponds to

[f(T ), g(T )]A((T )) = h(T ) =

∞∑
n=−∞

hn T
n.(8.8.9)

As in Section 8.6, [f(T ), f(T )]A((T )) = 0 for every f(T ) ∈ A((T )), because
[a, a]A = 0 for every a ∈ A. One can also check that [·, ·]A((T )) satisfies the
Jacobi identity on A((T )), using the Jacobi identity for [·, ·]A on A. Thus
A((T )) is a Lie algebra with respect to (8.8.9) over k, and in fact over k((T )).

8.9 Absolute values on k((T ))

Let k be a field, and let T be an indeterminate. If f(T ) is a nonzero element
of k((T )), then f(T ) is invertible in k((T )), because nonzero elements of k are
invertible in k, and using the remark about invertibility in the previous section.
Thus k((T )) is a field. Let f(T ) =

∑
j>>−∞ fj T

j ∈ k((T )) be given. If f(T ) ̸=
0, then there is a unique minimal integer j0(f(T )) such that fj0(f(T )) ̸= 0, which
is to say that fj = 0 when j < j0(f(T )). If f(T ) = 0, then it is convenient to
put j0(f) = +∞. Observe that

j0(f(T ) + g(T )) ≥ min(j0(f(T )), j0(g(T )))(8.9.1)

and
j0(f(T ) g(T )) = j0(f(T )) + j0(g(T ))(8.9.2)
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for every f(T ), g(T ) ∈ k((T )), with suitable interpretations when any of these
terms is +∞.

Let r be a positive real number with r ≤ 1. If f(T ) ∈ k((T )), then put

|f(T )|r = rj0(f(T ))(8.9.3)

when f(T ) ̸= 0, and |f(T )|r = 0 when f(T ) = 0. Using (8.9.1) and (8.9.2), we
get that

|f(T ) + g(T )|r ≤ max(|f(T )|r, |g(T )|r)(8.9.4)

and

|f(T ) g(T )|r = |f(T )|r |g(T )|r(8.9.5)

for every f(T ), g(T ) ∈ k((T )). Thus |f(T )|r defines an ultrametric absolute
value function on k((T )), which is the same as the trivial absolute value function
on k((T )) when r = 1. If a is a positive real number, then 0 < ra ≤ 1, and

|f(T )|ar = |f(T )|ra(8.9.6)

for every f(T ) ∈ k((T )).
It follows that

dr(f(T ), g(T )) = |f(T )− g(T )|r(8.9.7)

is an ultrametric on k((T )), which is the discrete metric when r = 1. Let us
suppose from now on in this section that r < 1. If l ∈ Z, then the closed ball in
k((T )) centered at 0 with radius rl with respect to (8.9.7) is given by

B(0, rl) = {f(T ) ∈ k((T )) : |f(T )|r ≤ rl}(8.9.8)

= {f(T ) ∈ k((T )) : j0(f(T )) ≥ l} = (k[[T ]])T l.

Let l ∈ Z be given, so that (8.9.8) can be identified with the space of k-
valued functions on the set of integers j ≥ l. This may be considered as the
Cartesian product of copies of k indexed by integers j ≥ l. One can check that
the topology determined on (8.9.8) by the restriction of the ultrametric (8.9.7)
to (8.9.8) corresponds to the product topology on the Cartesian product just
mentioned, using the discrete topology on k.

One can verify that k((T )) is complete with respect to the ultrametric (8.9.7),
as follows. Any Cauchy sequence in k((T )) with respect to (8.9.7) is contained
in (8.9.8) for some l ∈ Z, because a Cauchy sequence in any metric space is
bounded. It is easy to see that for each j ∈ Z, the corresponding sequence of
coefficients of T j in the terms of the Cauchy sequence is eventually constant,
as a sequence of elements of k. This leads to an element of (8.9.8), for which
the coefficient of T j is the eventual constant value of the sequence in k just
mentioned, for each j ∈ Z. The given Cauchy sequence in k((T )) converges to
this element of (8.9.8) with respect to the ultrametric (8.9.7), by the description
of the topology determined on (8.9.8) by the restriction of the ultrametric (8.9.7)
in the preceding paragraph.
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8.10 Formal series and algebra homomorphisms

Let k be a commutative ring with a multiplicative identity element, and let T
be an indeterminate. Also let A, B be algebras over k in the strict sense, where
multiplication of x, y is expressed as x y. Remember that multiplication on A
and B can be extended to A((T )) and B((T )), respectively, so that A((T )) and
B((T )) become algebras in the strict sense over k((T )), as in Section 8.8. In
particular, they may be considered as algebras over k.

Let ϕ be a homomorphism from A into B((T )), as modules over k for the
moment. As in Section 8.3, ϕ can be expressed as

ϕ(a) =

∞∑
j=−∞

ϕj(a)T
j(8.10.1)

for each a ∈ A, where ϕj is a module homomorphism from A into B for every
j ∈ Z, and for every a ∈ A we have that ϕj(a) = 0 for all but finitely many
j < 0. Of course, ϕ is a homomorphism from A into B((T )) as algebras over k
when

ϕ(a a′) = ϕ(a)ϕ(a′)(8.10.2)

for every a, a′ ∈ A. Let a, a′ ∈ A be given, so that

ϕ(a a′) =

∞∑
n=−∞

ϕn(a a
′)Tn,(8.10.3)

as in (8.10.1), where ϕn(a a
′) = 0 for all but finitely many n < 0. We also have

that

ϕ(a)ϕ(a′) =
( ∞∑
j=−∞

ϕj(a)T
j
)( ∞∑

l=−∞

ϕl(a
′)T l

)
(8.10.4)

=

∞∑
n=−∞

( ∞∑
j=−∞

ϕj(a)ϕn−j(a
′)
)
Tn,

as in Section 8.8. Remember that for each n ∈ Z, ϕj(a)ϕn−j(a
′) = 0 for all but

finitely many j ∈ Z, and that for all but finitely many n < 0, this condition
holds for every j ∈ Z. Comparing (8.10.3) and (8.10.4), we get that (8.10.2)
holds if and only if

ϕn(a a
′) =

∞∑
j=−∞

ϕj(a)ϕn−j(a
′)(8.10.5)

for every n ∈ Z.
Suppose that ϕ has poles of bounded order on A, so that there is an in-

teger r(ϕ) such that ϕj = 0 on A when j < r(ϕ). Let f(T ) =
∑∞
j=j0

fj T
j

be an element of A((T )). As in Section 8.4, ϕ can be extended to a module
homomorphism from A((T )) into B((T )), by putting

ϕ(f(T )) =

∞∑
j=j0

ϕ(fj)T
j ,(8.10.6)
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where the sum on the right is defined as an element of B((T )) as in Section 8.2.
Let g(T ) =

∑∞
l=l0

gl T
l be another element of A((T )), so that

ϕ(g(T )) =

∞∑
l=l0

ϕ(gl)T
l.(8.10.7)

Remember that f(T ) g(T ) = h(T ) =
∑∞
n=j0+l0

hn T
n is defined in A((T )) by

putting

hn =

∞∑
j=−∞

fj gn−j(8.10.8)

for each n, which reduces to a finite sum in A. Thus

ϕ(f(T ) g(T )) = ϕ(h(T )) =

∞∑
n=j0+l0

ϕ(hn)T
n,(8.10.9)

where the sum on the right is defined as an element of B((T )) as in Section 8.2
again. If ϕ is an algebra homomorphism from A into B((T )), then

ϕ(hn) =

∞∑
j=−∞

ϕ(fj gn−j) =

∞∑
j=−∞

ϕ(fj)ϕ(gn−j)(8.10.10)

for each n, where the sums reduce to finite sums in B((T )). We would like to
say that

∞∑
n=j0+l0

( ∞∑
j=−∞

ϕ(fj)ϕ(gn−j)
)
Tn =

( ∞∑
j=j0

ϕ(fj)T
j
)( ∞∑

l=l0

ϕ(gl)T
l
)
,(8.10.11)

as elements of B((T )). If ϕ maps A into B, then this follows from the definition
of the extension of multiplication on B to B((T )), as in Section 8.8. Otherwise,
the ϕ(fj)’s, j ≥ j0, and ϕ(gl)’s, l ≥ l0, are elements of B((T )) with poles of
bounded order, and (8.10.11) can be obtained from (8.7.7). It follows that

ϕ(f(T ) g(T )) = ϕ(f(T ))ϕ(g(T )),(8.10.12)

so that the extension of ϕ to A((T )) is an algebra homomorphism as well.
There are analogous statements for opposite algebra homomorphisms, as

usual.

8.11 Involutions and formal series

Let k be a commutative ring with a multiplicative identity element, and let T
be an indeterminate. Also let A, B be modules over k, and let ϕ be a module
homomorphism from A into B. If f(T ) =

∑
j>>−∞ fj T

j ∈ A((T )), then

ϕ(f(T )) =
∑

j>>−∞
ϕ(fj)T

j(8.11.1)
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defines an element of B((T )). This defines a homomorphism from A((T ))
into B((T )), as modules over k((T )). This may be seen as a simple case of
the situation discussed in Section 8.4, by identifying ϕ with an element of
(Homk(A,B))((T )). In particular, we have that

ϕ(f(T )T r) = ϕ(f(T ))T r(8.11.2)

for every f(T ) ∈ A((T )) and r ∈ Z. Of course, if f(T ) corresponds to an element
of A[T ] or A[[T ]], then ϕ(f(T )) corresponds to an element of B[T ] or B[[T ]], as
appropriate. If ϕ is a one-to-one mapping from A onto B, then (8.11.1) defines
a one-to-one mapping from A((T )) onto B((T )).

Now let A, B be algebras over k in the strict sense, where multiplication of
x, y is expressed as x y. If ϕ is an algebra homomorphism from A into B, then
(8.11.1) defines an algebra homomorphism from A((T )) into B((T )), as in the
previous section. Similarly, if ϕ is an opposite algebra homomorphism from A
into B, then (8.11.1) defines an opposite algebra homomorphism from A((T ))
into B((T )).

Let x 7→ x∗ be an algebra involution on A, and put

f(T )∗ =
∑

j>>−∞
f∗j T

j(8.11.3)

for every f(T ) ∈ A((T )). This defines an algebra involution on A((T )), as
before. Clearly f(T ) ∈ A((T )) is self-adjoint with respect to this involution if
and only if fj is self-adjoint in A for every j. Similarly, f(T ) is anti-self-adjoint
with respect to this involution if and only if fj is anti-self-adjoint in A for every
j.

If k is the field C of complex numbers, then there are analogous statements
for conjugate-linear mappings. More precisely, if A and B are vector spaces over
C, then A((T )) and B((T )) may be considered as vector spaces over C too. If ϕ
is a conjugate-linear mapping from A into B, then (8.11.1) defines a conjugate-
linear mapping from A((T )) into B((T )), as vector spaces over C. Remember
that complex vector spaces may be considered as real vector spaces, and that
conjugate-linear mappings between complex vector spaces may be considered
as real-linear mappings between the corresponding real vector spaces. This can
be used to reduce statements about conjugate-linear mappings to the analogous
statements for real-linear mappings, as before.

In particular, if a(T ) =
∑
j>>−∞ aj T

j ∈ C((T )), then

a(T ) =
∑

j>>−∞
aj T

j(8.11.4)

defines an element of C((T )) too, and this defines a conjugate-linear automor-
phism of C((T )) as an algebra over C. If a(T ) corresponds to an element of
C[T ] or C[[T ]], then a(T ) corresponds to an element of C[T ] or C[[T ]], as ap-
propriate. One can use this to define conjugate-linearity over C[T ], C[[T ]], and
C((T )). These conjugate-linearity conditions amount to ordinary conjugate-
linearity over C, together with the appropriate “real” linearity condition over
R[T ], R[[T ]], or R((T )), respectively.
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8.12 Ordered rings

Let R be a ring with a nonzero multiplicative identity element e. Of course,
R may be considered as an associative algebra over Z, and in particular as
a module over Z. Suppose that certain nonzero elements x of R have been
designated as positive, which may be expressed by

x > 0.(8.12.1)

We say that R is an ordered ring if the following conditions are satisfied. First,
if x and y are positive elements of R, then

x+ y > 0, x y > 0.(8.12.2)

Second, if x is any nonzero element of R, then either x or −x is positive. This
corresponds to the definition on p261 of [19].

Let R be an ordered ring. If x, y are nonzero elements of R, then x y ̸= 0.
More precisely,

x y = (−x) (−y) > 0(8.12.3)

when x, y > 0, and when −x,−y > 0. Similarly,

−x y = (−x) y = x (−y) > 0(8.12.4)

when −x, y > 0, and when x,−y > 0.
If R is commutative, then it follows that R is an integral domain. This cor-

responds to the definition of an ordered integral domain on p9 of [3]. Similarly,
an ordered field is an ordered ring that is also a field, as in [3, 19].

Let R be an ordered ring again. Note that x ∈ R and −x cannot both be
positive, because that would imply that x+ (−x) = 0 is positive. If x ∈ R and
x ̸= 0, then

x2 > 0,(8.12.5)

because x or −x is positive, and x2 = (−x)2. Of course, this corresponds to
(8.12.3), with y = x. In particular,

e = e2 > 0(8.12.6)

in R. If x, y ∈ R, then put
x < y(8.12.7)

when y − x > 0. This defines a linear ordering on R, which is invariant under
translations on R.

Alternatively, one might start with a translation-invariant linear ordering on
R, and define x ∈ R to be positive when x > 0 with respect to this ordering.
One can check that the sum of positive elements of R is positive in this situation.
If products of positive elements of R are positive too, then R is an ordered ring.
This is how ordered fields are defined on p7 in [20].

Clearly Z is an ordered ring with respect to the standard ordering. In fact,
this is the only ordering on Z for which Z is an ordered ring. More precisely,
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if Z is an ordered ring with respect to some ordering, then 1 has to be positive
in Z with respect to that ordering, by (8.12.6). This implies that all sums of
1 have to be positive with respect to this ordering on Z. One can check that
these are the only elements of Z that can be positive, so that this ordering on
Z is the same as the usual one.

Let R be an ordered ring, and let R0 be a subring of R that contains e. It
is easy to see that R0 is an ordered ring too, with respect to the restriction of
the restriction of the ordering on R to R0.

8.13 Some additional features

Let R be a ring, with multiplicative identity element e. If n is a positive integer,
then n · e is the sum of n e’s in R, as usual. We can extend this to integers
n ≤ 0 in the obvious way, by putting 0 · e = 0 in R, and n · e = −((−n) · e) when
n < 0. This defines a ring homomorphism from Z into R.

Suppose that R is an ordered ring. If n ∈ Z+, then

n · e > 0(8.13.1)

in R, by (8.12.6). Of course, this implies that

−(n · e) = (−n) · e > 0(8.13.2)

when −n ∈ Z+. Thus n 7→ n · e is an injective order-preserving mapping from
Z into R, with respect to the standard ordering on Z.

If x ∈ R, x > 0, and x has a multiplicative inverse x−1 in R, then

x−1 > 0.(8.13.3)

Otherwise, if −x−1 > 0, then −e = x (−x−1) > 0, contradicting (8.12.6).
If x ∈ R, then the absolute value |x| of x may be defined as an element of R

by

|x| = x when x ≥ 0(8.13.4)

= −x when − x ≥ 0,

as on p10 of [3], and p264 of [19]. Note that |x| ≥ 0 and

−|x| ≤ x ≤ |x|(8.13.5)

for every x ∈ R. One can check that

|x y| = |x| |y|(8.13.6)

and
|x+ y| ≤ |x|+ |y|(8.13.7)

for every x, y ∈ R. More precisely, (8.13.6) is basically the same as (8.12.3) and
(8.12.4). To get (8.13.7), and one can use (8.13.5) and its analogue for y.
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Let T be an indeterminate, and let R((T )) be as before. More precisely, R
may be considered as an associative algebra over Z, so that R((T )) is an asso-
ciative algebra over Z too. If f(T ) ∈ R((T )) can be expressed as

∑∞
j=j0

fj T
j ,

where fj0 > 0 in R, then let us say that f(T ) is positive as an element of R((T )).
Let us check that this makes R((T )) into an ordered ring, as in the discussion
on p284-5 in [19]. Note that the elements of R((T )) are called extended formal
power series in [19].

Let f(T ) be as in the preceding paragraph, and let g(T ) =
∑∞
l=l0

gl T
l be

another positive element of R((T )), with gl0 > 0. Put h(T ) = f(T ) g(T ), so
that h(T ) =

∑∞
n=j0+l0

hn T
n, with

hj0+l0 = fj0 gl0 .(8.13.8)

This implies that hj0+l0 > 0 in R, so that h(T ) > 0 in R((T )).

One can verify that

f(T ) + g(T ) > 0(8.13.9)

in R((T )), directly from the definitions. More precisely, if l0 > j0, then (8.13.9)
holds when fj0 > 0 in R, without additional conditions on g(T ). Similarly, if
j0 > l0, then (8.13.9) holds when gl0 > 0 in R, without additional conditions on
f(T ).

If a(T ) is any nonzero element of R((T )), then a(T ) can be expressed as∑∞
r=r0

ar T
r, where ar0 ̸= 0. Because R is an ordered ring, either ar0 > 0

or −ar0 > 0 in R. This implies that a(T ) > 0 or −a(T ) > 0 in R((T )), as
appropriate.

8.14 Ordered fields

Note that Q is an ordered field with respect to the standard ordering. One can
check that this is the only ordering on Q for which Q is an ordered field. Indeed,
if Q is an ordered field with respect to some ordering, then every n ∈ Z+ is
positive with respect to this ordering on Q, as before. This implies that 1/n
is positive with respect to this ordering on Q, as in the previous section, and
hence that quotients of elements of Z+ are positive with respect to this ordering
on Q. One can verify that these are the only elements of Q that can be positive,
so that this ordering on Q is the standard ordering.

Let k be an ordered field. Note that k has characteristic 0, because sums
of 1 are positive in k. The usual homomorphism from Z into k extends to
a field isomorphism from Q onto a subfield of k. This isomorphism is also
compatible with the standard ordering on Q, as in the preceding paragraph.
This corresponds to the corollary on p266 of [19].

The classical version of the archimedean property can be stated for k as
follows: if x, y are positive elements of k, then there is a positive integer n such
that

n · x > y.(8.14.1)
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Of course, R has the archimedean property with respect to the standard or-
dering. If k has the archimedean property, then every subfield of k has the
archimedean property.

Let k1 and k2 be ordered fields. To say that k1 and k2 are isomorphic as
ordered fields means that there is a field isomorphism from k1 onto k2 that
preserves order as well. Clearly the archimedean property is invariant under
order-preserving field isomorphisms.

Suppose that k1 is an ordered field with the archimedean property. It is well
known that k1 is isomorphic as an ordered field to a subfield of R, with the
ordering induced by the standard ordering on R. This corresponds to Exercise
10 on p286 of [19].

Let k be an ordered field again, and let T be an indeterminate. Thus
k((T )) is an ordered field with respect to the ordering obtained from the one
on k described in the previous section. It is easy to see that k((T )) does not
have the archimedean property with respect to this ordering, even if k has the
archimedean property, as on p285 of [19]. More precisely, T is a positive element
of k((T )), because 1 > 0 in k. However,

n · T < 1(8.14.2)

for every positive integer n.
Some topics related to inner products on vector spaces over ordered fields

will be discussed in Section 11.9.
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Chapter 9

Solvability and nilpotence

9.1 Some basic isomorphism theorems

Let k be a commutative ring with a multiplicative identity element, and let A
be an algebra over k in the strict sense. If A0 is a two-sided ideal in A, then
the quotient A/A0 can be defined as an algebra over k in the strict sense too, as
in Section 2.11. Let q0 be the canonical quotient mapping from A onto A/A0,
which is an algebra homomorphism.

Suppose that B is another algebra over k in the strict sense, and that ϕ is
an algebra homomorphism from A into B. The kernel kerϕ of ϕ is a two-sided
ideal in A, as mentioned in Section 2.11. If A0 ⊆ kerϕ, then there is a unique
algebra homomorphism ψ from A/A0 onto ϕ(A) ⊆ B such that

ψ ◦ q0 = ϕ.(9.1.1)

If A0 = kerϕ, then ψ is injective.
Let A1, A2 be two-sided ideals in A such that A1 ⊆ A2, and let q1, q2 be

the canonical quotient mappings from A onto A/A1, A/A2, respectively. There
is a natural algebra homomorphism Ψ from A/A1 onto A/A2 such that

Ψ ◦ q1 = q2,(9.1.2)

as in the preceding paragraph.
Note that A1 may be considered as a two-sided ideal in A2, so that A2/A1

can be defined as an algebra over k in the strict sense. Of course, A2/A1 is
essentially the same as q1(A2) ⊆ A/A1. It is easy to see that q1(A2) is a two-
sided ideal in A/A1, because A2 is a two-sided ideal in A.

The kernel of Ψ is equal to q1(A2), by construction. Thus Ψ can be identified
with the quotient mapping from A/A1 onto (A/A1)/q1(A2), which is the same
as (A/A1)/(A2/A1). This leads to a natural algebra isomorphism between this
quotient and A/A2.

Let A3, A4 be two-sided ideals in A, and observe that A3∩A4 is a two-sided
ideal in A as well. Remember that A3 +A4 is a two-sided ideal in A too, as in

189
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Section 7.1. Let q4 be the canonical quotient mapping from A onto A/A4. The
restriction of q4 to A3 + A4 is essentially the same as the canonical quotient
mapping from A3 +A4 onto (A3 +A4)/A4, as before.

Observe that q4(A3) = q4(A3+A4). The kernel of the restriction of q4 to A3

is equal to A3 ∩ A4. The restriction of q4 to A3, as an algebra homomorphism
from A3 onto q4(A3), can be identified with the quotient mapping from A3

onto A3/(A3 ∩ A4). This leads to a natural algebra isomorphism between this
quotient and q4(A3 +A4), which is essentially the same as (A3 +A4)/A4.

These isomorphism theorems are stated for Lie algebras (over fields) on p7-8
of [14].

9.2 Products of ideals

Let k be a commutative ring with a multiplicative identity element, and let
A be an algebra over k in the strict sense, where multiplication of a, b ∈ A is
expressed as a b. Also let A1 and A2 be submodules of A, as a module over k.
The product A1 ·A2 of A1 and A2 is defined to be the subset of A consisting of
all finite sums of elements of A of the form a1 a2, where a1 ∈ A1 and a2 ∈ A2.
It is easy to see that A1 ·A2 is a submodule of A as well, as a module over k. If
multiplication on A is commutative or anti-commutative, then

A1 ·A2 = A2 ·A1.(9.2.1)

If A1 is a right ideal in A, then

A1 ·A2 ⊆ A1.(9.2.2)

Similarly, if A2 is a left ideal in A, then

A1 ·A2 ⊆ A2.(9.2.3)

Suppose for the moment that A is an associative algebra over k. If A1 is a
left ideal in A, then A1 · A2 is a left ideal in A too. If A2 is a right ideal in A,
then A1 ·A2 is a right ideal in A.

Let B be a subalgebra of A, as an algebra over k in the strict sense. If B1 and
B2 are submodules of B, as a module over k, then B1 and B2 are submodules
of A too, so that [B1, B2] can be defined as a submodule of A as before. This is
the same as defining [B1, B2] as a submodule of B in the analogous way.

Let C be another algebra over k in the strict sense, and let ϕ be an algebra
homomorphism from A into C. If A1 and A2 are submodules of A, as a module
over k, then ϕ(A1) and ϕ(A2) are submodules of C, so that ϕ(A1) · ϕ(A2) can
be defined as a submodule of C as before. Observe that

ϕ(A1 ·A2) = ϕ(A1) · ϕ(A2).(9.2.4)

Suppose now that (A, [·, ·]A) is a Lie algebra over k. In this situation, A1 ·A2

may be denoted [A1, A2], and consists of finite sums of elements of A of the
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form [a1, a2]A, where a1 ∈ A1 and a2 ∈ A2, as before. Note that

[A1, A2] = [A2, A1],(9.2.5)

as in (9.2.1), because of anticommutativity of the Lie bracket on A. If A1 and
A2 are ideals in A, then it is easy to see that [A1, A2] is an ideal in A, using the
Jacobi identity.

In particular, we can apply this to A1 = A2 = A, to get that [A,A] is an ideal
in A. This is known as the derived algebra associated to A. By construction,
A/[A,A] is commutative as a Lie algebra over k.

Let A0 be an ideal in A, and suppose that A/A0 is commutative as a Lie
algebra over k. If a1, a2 ∈ A, then the image of [a1, a2]A in A/A0 is the same as
the Lie bracket of the images of a1 and a2 in A/A0, which is equal to 0. This
means that [a1, a2] ∈ A0, so that

[A,A] ⊆ A0.(9.2.6)

Equivalently, if ϕ is a homomorphism from A into a commutative Lie algebra
over k, then one can take A0 to be the kernel of ϕ.

Let B be a Lie subalgebra of A, so that B may be considered as a Lie algebra
over k too. If B1, B2 are ideals in B, then [B1, B2] is an ideal in B, as before.
In particular, [B,B] is an ideal in B, and

[B,B] ⊆ [A,A].(9.2.7)

9.3 Solvable Lie algebras

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. If j is a nonnegative integer, then A(j) is
defined inductively by putting A(0) = A, A(1) = [A,A], and

A(j+1) = [A(j), A(j)](9.3.1)

for each j ≥ 0, where the right side is as defined in the preceding section. It
is easy to see that A(j) is an ideal in A for every j ≥ 0, using induction and
a remark in the previous section. This sequence of ideals is called the derived
series of A. Here we use the notation on p10 of [14], while on p35 of [25] the
notation Dj A is used for A(j−1) when j ≥ 1.

Observe that
A(j+1) ⊆ A(j)(9.3.2)

for every j ≥ 0. Of course, A(1) = {0} exactly when A is commutative as a Lie
algebra. If A(j) = {0} for some j ≥ 0, then A is said to be solvable as a Lie
algebra.

If B is a Lie subalgebra of A, then B(j) can be defined as an ideal in B for
each j ≥ 0 as before. One can check that

B(j) ⊆ A(j)(9.3.3)
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for every j ≥ 0, using (9.2.7) and induction. In particular, if A is solvable, then
B is solvable.

By construction,
A(j+l) = (A(j))(l)(9.3.4)

for every j, l ≥ 0. If A(j) is solvable for some j ≥ 0, then it follows that A is
solvable.

Let C be another Lie algebra over k, and let ϕ be a Lie algebra homomor-
phism from A onto C. One can verify that

ϕ(A(j)) = C(j)(9.3.5)

for every j ≥ 0, using (9.2.4) and induction. If A is solvable, then it follows that
C is solvable.

Suppose that C is solvable, so that C(n) = {0} for some nonnegative integer
n. This implies that

ϕ(A(n)) = C(n) = {0},(9.3.6)

as in (9.3.5), which means that

A(n) ⊆ kerϕ.(9.3.7)

Suppose that the kernel of ϕ is solvable as a Lie algebra over k as well, so that
(kerϕ)(l) = {0} for some nonnegative integer l. Under these conditions, we get
that

A(n+l) = (A(n))(l) ⊆ (kerϕ)(l) = {0},(9.3.8)

and hence that A is solvable.
These properties correspond to parts (a) and (b) of the proposition on p11

of [14], and to part of Exercise 1 on p43 of [25]. Alternatively, let A0, A1, . . . , An
be finitely many Lie subalgebras of A, with A0 = A, and Aj+1 an ideal in Aj
for j = 0, . . . , n− 1. Suppose that Aj/Aj+1 is commutative as a Lie algebra for
each j = 0, . . . , n− 1, which is the same as saying that

[Aj , Aj ] ⊆ Aj+1(9.3.9)

for every j = 0, . . . , n− 1. This implies that

A(j) ⊆ Aj(9.3.10)

for each j = 0, 1, . . . , n, by induction. In particular, if An = {0}, then it follows
that A is solvable. Conversely, if A is solvable, then A(n) = {0} for some n ≥ 0,
and one can simply take Aj = A(j) for j = 0, 1, . . . , n. This characterization of
solvability is mentioned on p35-6 of [25], and in Exercise 2 on p14 of [14].

9.4 The solvable radical

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Also let A1 and A2 be ideals in A, so that
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A1 ∩ A2 and A1 + A2 are ideals in A as well. If A1 and A2 are solvable as Lie
algebras over k, then it is well known that A1 +A2 is solvable as a Lie algebra
too. To see this, it suffices to check that (A1 + A2)/A2 is solvable as a Lie
algebra over k, because A2 is solvable, as in the previous section. Remember
that (A1 +A2)/A2 is isomorphic to A1/(A1 ∩A2), as in Section 9.1. Of course,
A1/(A1 ∩ A2) is solvable as a Lie algebra, because A1 is solvable, as in the
previous section. Thus (A1 +A2)/A2 is solvable, as desired. This is part (c) of
the proposition on p11 of [14], which is mentioned on p44 of [25].

One often considers Lie algebras A over a field, with finite dimension as a
vector space over the field. In this case, it is easy to see that there is a maximal
solvable ideal in A, by taking a solvable ideal in A of maximal dimension, as
a linear subspace of A. The remarks in the previous paragraph imply that a
maximal solvable ideal in A is unique, and in fact contains every other solvable
ideal in A. This maximal solvable ideal is called the (solvable) radical of A, and
may be denoted RadA.

Let A be a Lie algebra over a commutative ring k with a multiplicative
identity element again. It may still happen that A has a maximal solvable ideal,
which can still be called the radical of A, and denoted RadA. In particular, A
has a maximal solvable ideal when solvable ideals in A satisfy an ascending chain
condition. If a maximal solvable ideal exists, then it is unique, and contains all
other solvable ideals in A, as before. If

RadA = {0},(9.4.1)

then A may be called semisimple as a Lie algebra. More precisely, let us say
that A is semisimple as a Lie algebra if {0} is the only solvable ideal in A, in
which case it is automatically maximal. Equivalently, A is not semisimple when
A contains a nonzero solvable ideal, without asking for a maximal solvable ideal.

Suppose that A is not semisimple, and let B be a nonzero solvable ideal in
A. Note that the derived subalgebra B(j) is an ideal in A for every nonnegative
integer j. This follows from a remark in Section 9.2 when j = 1, and can
be verified using induction otherwise. Because B ̸= {0} is solvable, there is a
nonnegative integer j0 such that B(j0) ̸= {0} and B(j0+1) = {0}. This means
that B(j0) is commutative as a Lie algebra, since [B(j0), B(j0)] = B(j0+1) = {0}.
Of course, if A has a nonzero ideal that is commutative as a Lie algebra, then
A is not semisimple, because commutative Lie algebras are solvable. Thus A is
not semisimple exactly when A has a nonzero ideal that is commutative as a
Lie algebra, as on p22 of [14] and p44 of [25].

Suppose that the radical of A exists, so that the quotient A/RadA can be
defined as a Lie algebra over k, and let q be the canonical quotient mapping
from A onto A/RadA. In this situation, A/RadA is automatically semisimple,
as on p11 of [14]. Indeed, if C is any ideal in A/RadA, then q−1(C) is an ideal
in A. If C is solvable as a Lie algebra over k, then q−1(C) is solvable as a Lie
algebra too, because RadA is solvable, as in the previous section. This implies
that q−1(C) = RadA, so that C = {0}, as desired.
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9.5 Nilpotent Lie algebras

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. If j is a nonnegative integer, then Aj is
defined inductively by putting A0 = A, A1 = [A,A], and

Aj+1 = [A,Aj ](9.5.1)

for every j ≥ 0, where the right side is as defined in Section 9.2. One can
check that Aj is an ideal in A for every j ≥ 0, using induction and a remark
in Section 9.2. This sequence of ideals is called the descending central series
or lower central series in A. This uses the notation on p11 in [14], and the
notation CjA is used on p32 of [25] for Aj−1 when j ≥ 1.

The fact that Aj is an ideal in A says exactly that

Aj+1 ⊆ Aj(9.5.2)

for every j ≥ 0. If Aj = {0} for some j ≥ 0, then A is said to be nilpotent as a
Lie algebra.

Observe that
A(j) ⊆ Aj(9.5.3)

for every j ≥ 0, with equality when j = 0, 1. It follows that nilpotent Lie
algebras are solvable. If A is a commutative Lie algebra, then A1 = A(1) = {0},
and hence A is nilpotent.

If B is a Lie subalgebra of A, then Bj can be defined as an ideal in B in the
same way as before, so that B0 = B and

Bj+1 = [B,Bj ](9.5.4)

for every j ≥ 0. It is easy to see that

Bj ⊆ Aj(9.5.5)

for every j ≥ 0, by induction. If A is nilpotent, then it follows that B is
nilpotent.

Let ϕ be a Lie algebra homomorphism from A onto another Lie algebra C
over k. One can check that

ϕ(Aj) = Cj(9.5.6)

for every j ≥ 0, using (9.2.4) and induction. If A is nilpotent, then it follows
that C is nilpotent as well.

Remember that Z(A) is the center of A as a Lie algebra, as in Section 7.6.
If B is a submodule of A, as a module over k, then

B ⊆ Z(A)(9.5.7)

if and only if
[A,B] = {0}.(9.5.8)
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If
Aj ⊆ Z(A)(9.5.9)

for some j ≥ 0, then it follows that

Aj+1 = [A,Aj ] = {0},(9.5.10)

so that A is nilpotent as a Lie algebra. If A/Z(A) is nilpotent as a Lie algebra,
then (9.5.9) holds for some j ≥ 0, because of (9.5.6). This implies that A is
nilpotent as a Lie algebra, as before.

Let B be a submodule of A again, as a module over k, and let B0 be an ideal
in A. It is easy to see that

[A,B] ⊆ B0(9.5.11)

if and only if the image of B in A/B0 is contained in the center of A/B0, as a
Lie algebra.

Let A0, A1, . . . , An be finitely many ideals in A, with A0 = A, and

Aj+1 ⊆ Aj(9.5.12)

for each j = 0, . . . , n − 1. Suppose that Aj/Aj+1 is contained in the center of
A/Aj+1 for each j = 0, . . . , n− 1, which is the same as saying that

[A,Aj ] ⊆ Aj+1(9.5.13)

for every j = 0, . . . , n−1, as in the preceding paragraph. Under these conditions,
we get that

Aj ⊆ Aj(9.5.14)

for each j = 0, . . . , n, by induction. If An = {0}, then it follows that A is
nilpotent as a Lie algebra. Conversely, if A is nilpotent as a Lie algebra, then
An = {0} for some nonnegative integer n, and one can take Aj = Aj for
j = 0, . . . , n.

These basic properties of nilpotent Lie algebras correspond to parts (a) and
(b) of the proposition on p12 of [14], part of Theorem 2.1 on p32 in [25], and
part of Exercise 1 on p43 of [25].

Suppose that A is nilpotent as a Lie algebra, and that A ̸= {0}. Let j be the
largest nonnegative integer such that Aj ̸= {0}, which means that Aj+1 = {0}.
This implies that Aj ⊆ Z(A), and in particular that Z(A) ̸= {0}. This is part
(c) of the proposition on p12 of [14].

9.6 Two-dimensional Lie algebras

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. If A is generated, as a module over k, by a
single element, then it is easy to see that A is commutative as a Lie algebra.
Suppose now that A is generated by a0, b0 ∈ A, as a module over k, so that
every element of A can be expressed as

αa0 + β b0(9.6.1)
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for some α, β ∈ k. This implies that A(1) = [A,A] consists of elements of A of
the form

γ [a0, b0]A,(9.6.2)

where γ ∈ k. It follows that A(2) = [A(1), A(1)] = {0}, and in particular that A
is solvable.

By hypothesis,
[a0, b0]A = α0 a0 + β0 b0(9.6.3)

for some α0, β0 ∈ k. Of course, if [a0, b0]A = 0, then A is commutative as a
Lie algebra. Suppose that [a0, b0]A ̸= 0, and that (9.6.1) is not equal to 0 in A
when α, β ∈ k satisfy α ̸= 0 or β ̸= 0. If k has no nonzero nilpotent elements,
then one can check that A is not nilpotent as a Lie algebra. This corresponds
to the first part of Exercise 5 on p14 of [14], and part of Exercise 2 on p43 of
[25]. Suppose for the moment that k is a field, so that A is a two-dimensional
vector space over k. One can choose a basis a, b for A such that

[a, b]A = a,(9.6.4)

as on p5 of [14], and the other part of Exercise 2 on p43 of [25].
Let A be a module over k, and let [a, b]A be a mapping from A× A into A

that is bilinear over k and satisfies

[a, a]A = 0(9.6.5)

for every a ∈ A. In order for [·, ·]A to define a Lie bracket on A, one should
verify that the Jacobi identity holds for any triple of elements x, y, and z of A.
If x = y = z, then each of the three terms in the Jacobi identity is equal to 0,
because of (9.6.5). If any two of x, y, and z are the same element of A, then
one of the terms in the Jacobi identity is automatically equal to 0, by (9.6.5)
again. In this case, the Jacobi identity can be obtained using the antisymmetry
of [·, ·]A, which follows from (9.6.5), as usual.

Suppose that A is generated as a module over k by a0, b0 ∈ A, so that every
element of A can be expressed as in (9.6.1). In order to show that [·, ·]A satisfies
the Jacobi identity on A, it suffices to consider triples of elements x, y, and z
of A where each of x, y, and z is equal to either a0 or b0, because of bilinearity.
This means that at least two of the elements x, y, and z are the same. In this
situation, the Jacobi identity can be obtained from (9.6.5), as in the preceding
paragraph.

9.7 Nilpotency conditions

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Remember that if x ∈ A, then adx = adx is
the homomorphism from A into itself, as a module over k, defined by

adx(y) = [x, y]A(9.7.1)
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for every y ∈ A, as in Section 2.4. Let n be a positive integer, and let x1, . . . , xn
be n elements of A. Thus adxj is a module homomorphism from A into itself
for each j = 1, . . . , n, so that compositions of the adxj

’s are defined as module
homomorphisms from A into itself. If y ∈ A, then

(adx1
◦ adx2

◦ · · · ◦ adxn
)(y) = [x1, [x2, [. . . , [xn, y]A . . .]A]A]A.(9.7.2)

This is an element of the ideal An defined in Section 9.5. If An = {0}, then
(9.7.2) is equal to 0 for every y ∈ A, so that

adx1
◦ adx2

◦ · · · ◦ adxn
= 0(9.7.3)

as a mapping from A into itself. Conversely, if (9.7.3) holds for every x1, . . . , xn
in A, then (9.7.2) is equal to 0 for all x1, . . . , xn, y ∈ A, and which implies that
An = {0}. This corresponds to part of Theorem 2.1 on p32 of [25], and is also
mentioned on p12 of [14].

Let B be an associative algebra over k, where multiplication of b, b′ ∈ B is
expressed as b b′. An element b of B is said to be nilpotent if bl = 0 for some
positive integer l. If b1 and b2 are commuting nilpotent elements of B, then it
is easy to see that b1 + b2 is nilpotent as well. More precisely, if bl11 = 0 and
bl22 = 0 for some positive integers l1 and l2, then

(b1 + b2)
l1+l2−1 = 0.(9.7.4)

Indeed, the left side of (9.7.4) can be expressed as a sum of terms of the form
bj11 bj22 , where j1 and j2 are nonnegative integers with j1+ j2 = l1+ l2−1, which
implies that either j1 ≥ l1 or j2 ≥ l2.

Let BLie be B as a Lie algebra over k, with respect to the commutator
bracket [b, b′]B = b b′ − b′ b corresponding to multiplication on B. Let n be a
positive integer, and suppose that

b1 b2 · · · bn bn+1 = 0(9.7.5)

for every b1, b2, . . . , bn, bn+1 ∈ B. This implies that

[b1, [b2, [. . . , [bn, bn+1]B . . .]B ]B ]B = 0(9.7.6)

for every b1, b2, . . . , bn, bn+1 ∈ B, because the left side of (9.7.6) can be expanded
into a sum of products of n+1 elements of B. It follows that BnLie = {0}, where
BnLie is defined as in Section 9.5. In particular, this means that BLie is nilpotent
as a Lie algebra.

Let A be a Lie algebra over k again. An element x of A is said to be
ad-nilpotent if adx is nilpotent as an element of the algebra of module homo-
morphisms from A into itself, as on p12 of [14]. If An = {0} for some positive
integer n, then (adx)

n = 0 as a module homomorphism from A into itself for
every x ∈ A, as in (9.7.3). In particular, if A is nilpotent as a Lie algebra, then
every element of A is ad-nilpotent.
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Let B be an associative algebra over k again, with corresponding Lie algebra
BLie. If b ∈ B, then adb is defined as a module homomorphism from B into
itself, by

adb(c) = [b, c]B = b c− c b(9.7.7)

for every c ∈ B. Equivalently,

adb =Mb − M̃b,(9.7.8)

where Mb and M̃b are the operators of left and right multiplication by b on B,
respectively, as in Sections 2.2 and 2.7. Remember thatMb and M̃b commute as
module homomorphisms from B into itself. If bl = 0 for some positive integer l,
then (Mb)

l = Mbl = 0 and (M̃b)
l = M̃bl = 0, as module homomorphisms from

B into itself. This implies that (adb)
2 l−1 = 0, as a module homomorphism from

B into itself, as in (9.7.4). Thus b is ad-nilpotent as an element of BLie when b
is nilpotent in B. This corresponds to the lemma on p12 of [14], and Step 2 on
p34 of [25].

9.8 Maximal Lie subalgebras

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. If x ∈ A, then

{αx : α ∈ k}(9.8.1)

is a Lie subalgebra of A that contains x as an element. If x ̸= 0 and k is a field,
then (9.8.1) is one-dimensional as a linear subspace of A.

Let B be a Lie subalgebra of A that is proper, so that B ̸= A. As usual, B
is said to be maximal as a proper Lie subalgebra of A with respect to inclusion
if any proper Lie subalgebra of A that contains B is equal to B. If B0 is any
proper Lie subalgebra of A, then in some situations one can get the existence
of a maximal proper Lie subalgebra B of A that contains B0. In particular, if k
is a field and A is finite-dimensional as a vector space over k, then one can take
B to be a Lie subalgebra of A that contains B0 and whose dimension is strictly
less than the dimension of A and maximal. One can also get such maximal
proper Lie subalgebras of A when Lie subalgebras of A satisfy an ascending
chain condition.

Let B0 be a submodule of A, as a module over k. The normalizer NA(B0)
of B0 in A is defined to be the set of x ∈ A such that

[x, y]A ∈ B0(9.8.2)

for every y ∈ B0. It is easy to see that NA(B0) is a submodule of A, as a module
over k, because B0 is a submodule of A. One can check that NA(B0) is a Lie
subalgebra of A, using the Jacobi identity. If B0 is a Lie subalgebra of A, then

B0 ⊆ NA(B0),(9.8.3)
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and in fact B0 is an ideal in NA(B0), as a Lie algebra over k. In this case,
NA(B0) may be described as the largest Lie subalgebra of A that contains A as
an ideal, as on p7 of [14]. If B0 = NA(B0), then B0 is said to be self-normalizing
in A. If B0 is a maximal Lie subalgebra of A, then it follows that B0 is either
self-normalizing in A, or B0 is an ideal in A.

Let B be an ideal in A. If x ∈ A, then it is easy to see that

{αx+ y : α ∈ k, y ∈ B}(9.8.4)

is a Lie subalgebra of A. Of course, (9.8.4) contains B and x. If B is a maximal
proper Lie subalgebra of A, and x ∈ A \B, then (9.8.4) is equal to A.

Suppose that A ̸= {0}, and that {0} is maximal as a proper Lie subalgebra
of A. Let x be a nonzero element of A, so that (9.8.1) is equal to A. Observe
that

{α ∈ k : αx = 0}(9.8.5)

is a proper ideal in k, because x ̸= 0. One can check that (9.8.5) is a maximal
ideal in k in this situation. This uses the fact that ideals in k correspond to
submodules of (9.8.1), which are Lie subalgebras of A.

9.9 Nilpotent linear mappings

Let k be a field, and let V be a vector space over k of positive finite dimension.
Remember that the space L(V ) of linear mappings from V into itself is an asso-
ciative algebra over k with respect to composition of mappings. In particular,
a linear mapping T from V into itself is said to be nilpotent if Tn = 0 for some
positive integer n, which is to say that T is nilpotent as an element of L(V ).
As in Section 2.10, we may use gl(V ) to denote the space of linear mappings
from V into itself as a Lie algebra over k, with respect to the corresponding
commutator bracket. Let A be a Lie subalgebra of gl(V ), and suppose that
every element of A is nilpotent as an element of L(V ). Under these conditions,
it is well known that there is a v ∈ V such that v ̸= 0 and

a(v) = 0(9.9.1)

for every a ∈ A. This is the theorem stated at the bottom of p12 in [14], which
corresponds to Theorem 3.2’ on p33 in [25], as in Step 1 on p34 in [25].

Note that A is a finite-dimensional vector space over k. The theorem is
proved using induction on the dimension of A. Of course, the theorem is trivial
when A = {0}. If the dimension of A is equal to 1, then the theorem reduces
to the fact that a nilpotent linear mapping from V into itself has a nontrivial
kernel.

Suppose now that A has positive dimension, and that the theorem holds for
Lie algebras over k of smaller dimension. Let B be a proper Lie subalgebra of
A, which has dimension less than the dimension of A.

If x ∈ gl(V ), then let adx be the linear mapping from gl(V ) into itself defined
by

adx(y) = [x, y](9.9.2)
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for every y ∈ gl(V ), as in Section 2.4. If x is nilpotent as an element of L(V ),
then adx is nilpotent as a linear mapping from gl(V ) into itself, as in Section
9.7. If x ∈ A, then adx maps A into itself, because A is a Lie subalgebra of
gl(V ), by hypothesis. More precisely, adx is nilpotent as a linear mapping from
A into itself, because x is nilpotent as an element of L(V ), by hypothesis.

If x ∈ B, then adx maps B into itself, because B is a Lie subalgebra of A. In
particular, B is a linear subspace of A, so that the quotient A/B can be defined
as a vector space over k. Let q be the canonical quotient mapping from A onto
A/B. If T is a linear mapping from A into itself that maps B into itself, then
q◦T is a linear mapping from A into A/B whose kernel contains B. This means
that for a ∈ A, q(T (a)) only depends on q(a), so that there is a unique linear
mapping TA/B from A/B into itself such that

TA/B ◦ q = q ◦ T.(9.9.3)

Note that TA/B is nilpotent on A/B when T is nilpotent on A. Of course,
A/B ̸= {0}, because B ̸= A, by hypothesis.

If x ∈ B, then we can apply this to T = adx, to get a linear mapping adA/Bx

from A/B into itself. More precisely, adA/Bx is nilpotent on A/B, because adx
is nilpotent on A, as before. Let C be the collection of adA/Bx , with x ∈ B. This
is a Lie subalgebra of gl(A/B). The dimension of C, as a vector space over k,
is less than or equal to the dimension of B.

Hence the dimension of C is strictly less than the dimension of A. The
induction hypothesis permits us to apply the theorem to C, to get that there is
a nonzero element q(a0) of A/B, a0 ∈ A, such that

adA/Bx (q(a0)) = 0(9.9.4)

for every x ∈ B. Equivalently, this means that q(adx(a0)) = 0 for every x ∈ B,
which is the same as saying that

[x, a0] = adx(a0) ∈ B(9.9.5)

for every x ∈ B. This shows that a0 is an element of the normalizer NA(B) of
B in A. Note that a0 ̸∈ B, because q(a0) ̸= 0 in A/B.

Let us now take B to be a maximal proper Lie subalgebra of A. In this case,
we get that B is an ideal in A, as in the previous section. Put

W = {v ∈ V : x(v) = 0 for every x ∈ B},(9.9.6)

which is a linear subspace of V . Using the induction hypothesis again, we get
that W ̸= 0. Let us check that

a(W ) ⊆W(9.9.7)

for every a ∈ A. If x ∈ B and v ∈W , then

x(a(v)) = a(x(v))− ([a, x])(v) = 0,(9.9.8)
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because [a, x] ∈ B, as before. This implies that a(v) ∈W , as desired.
Let a1 be any element of A \ B. The restriction of a1 to W is a nilpotent

linear mapping fromW into itself, and hence there is a v1 ∈W such that v1 ̸= 0
and a1(v1) = 0. If a is any element of A, then a can be expressed as the sum
of an element of B and a scalar multiple of a1, as in the previous section. It
follows that a(v1) = 0, because v1 ∈W . Thus (9.9.1) holds, as desired.

9.10 Engel’s theorem

Let k be a field, and let V be a vector space over k of positive finite dimension
n. A finite sequence F = {Vj}nj=0 of n linear subspaces in V is said to be a flag
in V if V0 = {0}, Vn = V , Vj ⊆ Vj+1 for j = 0, . . . , n− 1, and the dimension of
Vj is equal to j for each j = 0, . . . , n. If l is a nonnegative integer with l ≤ n,
then let Ul(F) be the collection of linear mappings T from V into itself such
that

T (Vj) ⊆ Vj−l(9.10.1)

for each j = l, . . . , n. This is a subalgebra of the algebra L(V ) of all linear
mappings from V into itself, as an associative algebra over k with respect to
composition of mappings. Note that U0(F) contains the identity mapping I =
IV on V , Un(F) = 0, and

Ul2(F) ⊆ Ul1(F)(9.10.2)

when l1 ≤ l2.
More precisely, if l1, l2 are nonnegative integers with l1+l2 ≤ n, T1 ∈ Ul1(F),

and T2 ∈ Ul2(F), then
T1 ◦ T2 ∈ Ul1+l2(F).(9.10.3)

In particular, Ul(F) is an ideal in U0(F) for each l. If T1, T2, . . . , Tn ∈ U1(F),
then

T1 ◦ T2 ◦ · · · ◦ Tn = 0,(9.10.4)

because the n-fold composition on the left is an element of Un(F). We may
consider Ul(F) as a Lie subalgebra of the Lie algebra gl(V ) of linear mappings
from V into itself with respect to the commutator bracket for each l = 0, 1, . . . , n.
It follows from (9.10.4) that U1(F) is nilpotent as a Lie algebra over k, with
respect to the commutator bracket, as in Section 9.7.

Let A be a Lie subalgebra of gl(V ), and suppose that every element of A
is nilpotent as a linear mapping on V , as in the previous section. Under these
conditions, it is well known that there is a flag F in V such that

A ⊆ U1(F).(9.10.5)

This is the corollary stated on p13 of [14], which corresponds to Theorem 3.2
on p33 of [25]. If V ̸= {0}, then one can first get a one-dimensional linear
subspace V1 of V on which the elements of A vanish, as in the previous section.
In order to repeat the process, one can look at the induced linear mappings on
the quotient V/V1.
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Now let A be any finite-dimensional Lie algebra over k. If every element of
A is ad-nilpotent, as in Section 9.7, then it is well known that A is nilpotent as
a Lie algebra. This is the theorem stated on the middle of p12 in [14], which
corresponds to Theorem 3.1 on p33 of [25]. In the argument on the bottom
of p34 of [25], one applies the theorem mentioned in the preceding paragraph
to the image of A under the adjoint representation, as a Lie algebra of linear
mappings from A into itself. This leads to a flag of linear subspaces of A, which
are in fact ideals in A, and which can be used to show that A is nilpotent as a
Lie algebra, as in Section 9.5. Alternatively, one can use the previous theorem
to get that the image of A under the adjoint representation is nilpotent as a
Lie algebra. This implies that A is nilpotent as a Lie algebra, because the
kernel of the adjoint representation is the center Z(A) of A, as a Lie algebra.
The proof on the middle of p13 in [14] applies the theorem mentioned in the
previous section to the image of the adjoint representation of A when A ̸= {0}
to get that Z(A) ̸= {0}. One can repeat the process on A/Z(A) to get that A
is nilpotent.

Let A be a finite-dimensional nipotent Lie algebra over k, and let B be an
ideal in A with B ̸= {0}. If x ∈ A, then adx is a linear mapping from A into
itself that maps B into itself, because B is an ideal in A. Consider the collection
AB of linear mappings from B into itself obtained by restricting adx to B for
each x ∈ A. This is a Lie subalgebra of gl(B), because of the usual properties
of the adjoint representation on A, as in Section 2.4. Remember that adx is
nilpotent as a Lie mapping from A into itself for each x ∈ A, because A is
nilpotent as a Lie algebra, as in Section 9.7. This implies that the elements of
AB are nilpotent as linear mappings from B into itself. It follows that there is
a y ∈ B such that y ̸= 0 and adx(y) = 0 for every x ∈ A, as in the previous
section. Equivalently, this means that B ∩Z(A) ̸= {0}, as in the lemma on p13
of [14].

9.11 Flags and matrices

Let k be a field, let V be a vector space of positive finite dimension n, and let
F = {Vj}nj=0 be a flag in V . If T is an element of the algebra U0(F) defined
in the previous section, then T induces a linear mapping from Vj/Vj−1 into
itself for each j = 1, . . . , n. This linear mapping corresponds to multiplication
by an element ϕj(T ) of k, because Vj/Vj−1 is a one-dimensional vector space
over k. This defines an algebra homomorphism ϕj from U0(F) into k for each
j = 1, . . . , n. Let us consider kn as a commutative associative algebra over
k, with respect to coordinatewise addition and multiplication. Thus we get
an algebra homomorphism ϕ from U0(F) into kn, whose jth coordinate is the
algebra homomorphism ϕj from U0(F) into k just mentioned. The kernel of ϕ
is the ideal U1(F) of U0(F) defined in the previous section. In particular, if
T1, T2 ∈ U0(F), then

T1 ◦ T2 − T2 ◦ T1 ∈ U1(F).(9.11.1)
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Remember that U0(F) is a Lie subalgebra of gl(V ), so that U0(F) may be
considered as a Lie algebra over k with respect to the commutator bracket
associated to composition of linear mappings on V . Using (9.11.1), we get that

[U0(F),U0(F)] ⊆ U1(F).(9.11.2)

This implies that U0(F) is solvable as a Lie algebra, because U1(F) is nilpotent
as a Lie algebra.

Now let k be a commutative ring with a multiplicative identity element,
let n be a positive integer, and let A be an associative algebra over k, where
multiplication of x, y ∈ A is expressed as x y. Remember that the space Mn(A)
of n×n matrices with entries in A is an associative algebra over k with respect
to matrix multiplication, as in Section 2.8. If r is a nonnegative integer with
r ≤ n, then let Tn,r(A) be the collection of a = (aj,l) ∈Mn(A) such that

aj,l = 0(9.11.3)

when l ≤ j+r−1. Equivalently, this means that aj,l may be nonzero only when
l ≥ j + r. Thus Tn,0(A) consists of upper-triangular matrices, Tn,1(A) consists
of strictly upper-triangular matrices, and Tn,n(A) = {0}. Clearly

Tn,r2(A) ⊆ Tn,r1(A)(9.11.4)

when r1 ≤ r2. If a ∈ Tn,r1(A) and b ∈ Tn,r2(A) for some nonnegative integers
r1, r2 with r1 + r2 ≤ n, then

a b ∈ Tn,r1+r2(A).(9.11.5)

In particular, Tn,0(A) is a subalgebra of Mn(A), Tn,r(A) is an ideal in Tn,0(A)
for each 0 ≤ r ≤ n, and the product of n elements of Tn,1(A) is equal to 0.

If j is a positive integer with j ≤ n and a ∈ Tn,0(A), then put ψj(a) = aj,j ,
which defines an algebra homomorphism from Tn,0(A) onto A. Let ψ be the
mapping from Tn,0(A) into An such that the jth coordinate of ψ(a) is equal
to ψj(a) for every j = 1, . . . , n and a ∈ Tn,0(A). This defines an algebra
homomorphism from Tn,0(A) onto A

n, where An is considered as an associative
algebra over k with respect to coordinatewise addition and multiplication. The
kernel of ψ is equal to Tn,1(A). If A is a commutative algebra over k, then

a b− b a ∈ Tn,1(A)(9.11.6)

for every a, b ∈ Tn,0(A).
Remember that gln(A) is the same asMn(A), but considered as a Lie algebra

over k with respect to the commutator bracket. Similarly, we may use tn,r(A)
for Tn,r(A), considered as a Lie subalgebra of gln(A). As in Section 9.7, tn,1(A)
is nilpotent as a Lie algebra, because the product of n elements of Tn,1(A) is
equal to 0. If A is commutative, then

[tn,0(A), tn,0(A)] ⊆ tn,1(A),(9.11.7)
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by (9.11.6). This implies that tn,0(A) is solvable as a Lie algebra, because
tn,1(A) is nilpotent.

Let k be a field again, and let V be a vector space over k of dimension
n ∈ Z+. If v1, . . . , vn is a basis for V , then we can get a flag F = {Vj}nj=0 in V
by taking Vj to be the linear span of v1, . . . , vj for each j = 1, . . . , n. Of course,
every flag in V corresponds to a basis for V in this way. Using this basis for
V , elements of Mn(k) correspond to linear mappings from V into itself, as in
Section 2.10. Similarly, Tn,r(k) corresponds to Ur(F) for each r = 0, 1, . . . , n.

9.12 A useful lemma

Let k be a field of characteristic 0, let (A, [·, ·]) be a Lie algebra over k, and let
B be an ideal in A. Also let V be a finite-dimensional vector space over k, and
suppose that V is a module over A, as a Lie algebra over k. Let v be a nonzero
element of V , and suppose that χ is a mapping from B into k such that

b · v = χ(b) v(9.12.1)

for every b ∈ B. If a ∈ A and b ∈ B, then [a, b] ∈ B, and in fact

χ([a, b]) = 0.(9.12.2)

This is the Main Lemma stated on p36 of [25], which corresponds to part of the
proof of Step (3) on p16 of [14].

Equivalently, let ρ be the representation of A on V , which makes V into a
module over A as a Lie algebra over k. The hypothesis (9.12.1) says that for
each b ∈ B, v is an eigenvector of ρb, with eigenvalue χ(b). The conclusion
(9.12.2) says that

([a, b]) · v = ρ[a,b](v) = 0(9.12.3)

for every a ∈ A and b ∈ B. One could also reduce to the case where A is a Lie
subalgebra of gl(V ), by considering the Lie algebra of linear mappings from V
into itself of the form ρa for some a ∈ A. In particular, the discussion in [14] is
given in this setting.

Let a ∈ A be given, and put V0 = {0}. If j is a positive integer, then let Vj
be the linear span of

v, ρa(v), . . . , (ρa)
j−1(v)(9.12.4)

in V . Thus Vj is a linear subspace of V for every j ≥ 0, with Vj ⊆ Vj+1. Let n
be the smallest positive integer such that

Vn = Vn+1.(9.12.5)

This uses the finite-dimensionality of V , to get that this condition holds for
some positive integer. Note that Vn has dimension equal to n as a vector space
over k, and that

ρa(Vn) ⊆ Vn+1 = Vn.(9.12.6)
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In particular, n is less than or equal to the dimension of V .

If b ∈ B, then we would like to show that

ρb((ρa)
j(v)) = χ(b) (ρa)

j(v) modulo Vj(9.12.7)

for each j ≥ 0, using induction on j. This is the same as (9.12.1) when j = 0.
If j ≥ 1, then

ρb((ρa)
j(v)) = ρb(ρa((ρa)

j−1(v)))(9.12.8)

= ρa(ρb((ρa)
j−1(v)))− ([ρa, ρb])((ρa)

j−1(v))

= ρa(ρb((ρa)
j−1(v)))− ρ[a,b]((ρa)

j−1(v)).

Of course,

ρb((ρa)
j−1(v)) = χ(b) (ρa)

j−1(v) modulo Vj−1,(9.12.9)

by the induction hypothesis. This implies that

ρa(ρb((ρa)
j−1(v))) = χ(b) (ρa)

j(v) modulo Vj ,(9.12.10)

because ρa(Vj−1) ⊆ Vj by construction. Similarly,

ρ[a,b]((ρa)
j−1(v)) = χ([a, b]) (ρa)

j−1(v) modulo Vj−1,(9.12.11)

by the induction hypothesis, because [a, b] ∈ B. It follows that the left side of
(9.12.11) is an element of Vj . Combining this with (9.12.8) and (9.12.10), we
get that (9.12.7) holds, as desired.

In particular, (9.12.7) implies that ρb maps Vn into itself when b ∈ B. Ob-
serve that

trVnρb = n · χ(b)(9.12.12)

for every b ∈ B, by (9.12.7), where more precisely the left side is the trace of
the restriction of ρb to Vn. We also have that

trVn
ρ[a,b] = trVn

([ρa, ρb]) = 0(9.12.13)

for every b ∈ B, using the fact that ρa and ρb both map Vn into itself in the
second step. Thus

n · χ([a, b]) = 0(9.12.14)

for every b ∈ B, by (9.12.12) applied to [a, b]. This implies (9.12.2), because k is
supposed to have characteristic 0. Note that this also works when k has positive
characteristic and the dimension of V is strictly less than the characteristic of
k, because n is less than or equal to the dimension of V . This is related to
Exercise 2 on p20 of [14].



206 CHAPTER 9. SOLVABILITY AND NILPOTENCE

9.13 Lie’s theorem

Let k be an algebraically closed field of characteristic 0, let (A, [·, ·]) be a solvable
Lie algebra over k, and let ρ be a representation of A as a Lie algebra on a finite-
dimensional vector space V over k. If V ̸= {0}, then there exists a v ∈ V such
that v ̸= 0 and v is an eigenvector for ρa for every a ∈ A. This corresponds
to Theorem 5.1’ on p36 of [25], and the theorem on p15 of [14]. As before, one
can reduce to the case where A is a Lie subalgebra of gl(V ), by considering the
Lie algebra of linear mappings from V into itself of the form ρa for some a ∈ A.
The theorem on p15 of [14] is stated in this way, so that A is finite-dimensional
as a vector space over k in particular. The finite-dimensionality of A is implicit
in Theorem 5.1’ in [25], as mentioned at the beginning of Chapter 5 in [25]. Let
us suppose now that A is finite-dimensional as a vector space over k too.

The proof uses induction on the dimension of A, as a vector space over k.
Of course, if A = {0}, then the statement is trivial. Suppose now that A ̸= {0},
and note that [A,A] ̸= A, because A is solvable. Let B be a linear subspace
of V of codimension 1 that contains [A,A], which implies that B is an ideal in
A. The induction hypothesis implies that there is a v ∈ V with v ̸= 0 and a
mapping χ from B into k such that

ρb(v) = χ(b) v(9.13.1)

for every b ∈ B. Put

W = {w ∈ V : ρb(w) = χ(b)w for every b ∈ B},(9.13.2)

which is a linear subspace of V with v ∈ W , so that W ̸= {0}. We would like
to verify that

ρa(W ) ⊆W(9.13.3)

for every a ∈ A. If a ∈ A, b ∈ B, and w ∈W , then

ρb(ρa(w)) = ρa(ρb(w))− ρ[a,b](w) = χ(b) ρa(w)− χ([a, b])w,(9.13.4)

using the fact that [a, b] ∈ B in the second step. Combining this with (9.12.2),
we obtain that

ρb(ρa(w)) = χ(b) ρa(w),(9.13.5)

as desired.
Let a0 be any element of A not in B. Because k is algebraically closed, there

is a w0 ∈ W such that w0 ̸= 0 and w0 is an eigenvector for ρa0 . If a is any
element of A, then a can be expressed as the sum of a multiple of a0 and an
element b of B, because B has codimension 1 in A. It follows that w0 is an
eigenvector for ρa, as desired, because w0 is an eigenvector for ρb, by definition
ofW . Note that this also works when k has positive characteristic strictly larger
than the dimension of V , as in Exercise 2 on p20 of [14].

Under these conditions, Lie’s theorem states that there is a flag F = {Vj}nj=0

in V such that ρa(Vj) ⊆ Vj for every a ∈ A and j = 0, 1, . . . , n. This is Theorem
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5.1 on p36 of [25], which corresponds to Corollary A on p16 of [14]. More
precisely, one can get V1 as in the previous paragraphs. One can repeat the
process, by considering the induced linear mappings on V/V1.

In particular, if A is a solvable Lie algebra over k that is finite-dimensional
as a vector space over k, then there is a flag in A consisting of ideals in A. This
is Corollary 5.2 on p37 of [25], and Corollary B on p16 of [14]. This follows from
the statement in the preceding paragraph, applied to the adjoint representation
of A.

9.14 Structure constants

Let k be a commutative ring with a multiplicative identity element, and let
n be a positive integer. Remember that the space kn of n-tuples of elements
of k is a (free) module over k with respect to coordinatewise addition and
scalar multiplication. Let u1, . . . , un be the “standard basis” elements of kn, so
that the jth coordinate of ul is equal to 1 when j = l and to 0 otherwise. If
x = (x1, . . . , xn) ∈ kn, then

x =

n∑
l=1

xl ul.(9.14.1)

Of course, if k is a field and V is an n-dimensional vector space over k, then V
can be identified with kn by choosing a basis for V .

Let [·, ·]kn be a mapping from kn × kn into kn that is bilinear over k. We
can express [uj , ul]kn as

[uj , ul]kn =

n∑
r=1

crj,l ur(9.14.2)

for each j, l = 1, . . . , n, where crj,l are elements of k for every j, l, r = 1, . . . , n.
This implies that

([x, y]kn)r =

n∑
j=1

n∑
l=1

crj,l xj yl(9.14.3)

for every x, y ∈ kn and r = 1, . . . , n, where the left side is the rth coordinate of
[x, y]kn . More precisely, this uses (9.14.1) and the bilinearity of [·, ·]kn over k.
Conversely, if crj,l ∈ k for every j, l, r = 1, . . . , n, then (9.14.3) defines a mapping
from kn × kn into kn that is bilinear over k.

Clearly

[x, y]kn = −[y, x]kn(9.14.4)

for every x, y ∈ kn if and only if

crj,l = −crl,j(9.14.5)

for every j, l, r = 1, . . . , n. One can check that

[x, x]kn = 0(9.14.6)
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for every x ∈ kn if and only if (9.14.5) holds and

crj,j = 0(9.14.7)

for every j, r = 1, . . . , n. If 1 + 1 has a multiplicative inverse in k, then (9.14.4)
implies (9.14.6), and (9.14.5) implies (9.14.7), as usual. The Jacobi identity for
[·, ·]kn holds if and only if

n∑
h=1

(chj,l c
r
h,m + chl,m c

r
h,j + chm,j c

r
h,l) = 0(9.14.8)

for every j, l,m, r = 1, . . . , n, as on p5 of [14]. Let us suppose from now on in
this section that the crj,l’s satisfy these conditions, so that [·, ·]kn defines a Lie
bracket on kn.

Let A be a commutative associative algebra over k. Note that the space An

of n-tuples of elements of A is a module over k with respect to coordinatewise
addition and scalar multiplication. If a, b ∈ An, then define [a, b]An as an
element of An by

([a, b]An)r =

n∑
j=1

n∑
l=1

crj,l aj bl(9.14.9)

for each r = 1, . . . , n, where the left side is the rth coordinate of [a, b]An . The
conditions on the crj,l’s in the preceding paragraph imply that An is a Lie algebra
over k with respect to (9.14.9). If kn is solvable or nilpotent as a Lie algebra
with respect to [·, ·]kn , then one can check that An has the same property with
respect to [·, ·]An .

Suppose that A has a multiplicative identity element e. In this case, An may
be considered as a module over A with respect to coordinatewise addition and
scalar multiplication, and as a Lie algebra over A with respect to (9.14.9). Of
course,

t 7→ t e(9.14.10)

defines a ring homomorphism from k into A, which leads to a Lie algebra ho-
momorphism from kn into An, as Lie algebras over k. Suppose that (9.14.10)
is injective, which implies that the corresponding Lie algebra homomorphism
from kn into An is injective. If An is solvable or nilpotent as a Lie algebra, then
it follows that kn has the same property.

9.15 Another corollary

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]) be a Lie algebra over k. If x ∈ A, then we may use adA x = adA,x to
denote the usual mapping

(adAx)(y) = adA,x(y) = [x, y](9.15.1)
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from A into itself. Similarly, if B is a Lie subalgebra of A and x ∈ B, then
adB x = adB,x is a module homomorphism from B into itself. In this situation,
adB,x is the same as the restriction of (9.15.1) to y ∈ B.

Suppose that k is an algebraically closed field of characteristic 0, and that
(A, [·, ·]) be a solvable Lie algebra over k that is finite-dimensional as a vector
space over k. Under these conditions, [A,A] is nilpotent as a Lie algebra over
k. This is Corollary C on p16 of [14], and part of Corollary 5.3 on p37 of [25].
Remember that there is a flag of ideals in A, as a consequence of Lie’s theorem
in Section 9.13. If x ∈ A, then adA,x maps these ideals into themselves. If
x ∈ [A,A], then adA,x maps the nonzero ideals in the flag into the next smaller
one, as in Section 9.11. This implies that adA,x is nilpotent as a mapping from
A into itself. It follows that ad[A,A],x is nilpotent as a mapping from [A,A] into
itself, because this mapping is the same as the restriction of adA,x to [A,A],
as in the preceding paragraph. This implies that [A,A] is nilpotent as a Lie
algebra, as in Section 9.10.

Alternatively, one can use the same type of argument to get that the image
of [A,A] under the adjoint representation of A is nilpotent as a Lie algebra over
k. One can use this to get that [A,A] is nipotent as a Lie algebra, because the
kernel of the adjoint representation of A is the center of A.

Suppose now that k is a field of characteristic 0, and that A is a finite-
dimensional solvable Lie algebra over k. Corollary 5.3 on p37 of [25] states
that [A,A] is still nilpotent as a Lie algebra over k, without asking k to be
algebraically closed. To see this, let k1 be an algebraically closed field that
contains k. The statement is trivial when A = {0}, and so we may suppose that
the dimension n of A as a vector space over k is positive. Thus A is isomorphic
to kn as a vector space over k, and we may as well suppose that A = kn with
some Lie bracket. This leads to a Lie bracket on kn1 , as in the previous section.
If kn is solvable as a Lie algebra, then kn1 is solvable as a Lie algebra too, as
before. This implies that [kn1 , k

n
1 ] is nilpotent as a Lie algebra, by the earlier

arguments for algebraically closed fields. Note that [kn, kn] may be considered
as a Lie subalgebra of [kn1 , k

n
1 ], as a Lie algebra over k. It follows that [kn, kn]

is solvable as a Lie algebra over k, as desired.



Chapter 10

Matrices and traces

10.1 Some remarks about gln(k)

Let k be a commutative ring with a multiplicative identity element, and let
n be a positive integer. The space kn of n-tuples of elements of k is a (free)
module over k with respect to coordinatewise addition and scalar multiplication,
as usual. If a = (aj,l) is an n × n matrix with entries in k and x ∈ kn, then
Ta(x) is defined as the element of kn whose jth coordinate is given by

(Ta(x))j =

n∑
l=1

aj,l xl(10.1.1)

for each j = 1, . . . , n. This defines a module homomorphism from kn into
itself, and a 7→ Ta is an algebra isomorphism from the algebra Mn(k) of n × n
matrices with entries in k with respect to matrix multiplication onto the algebra
Homk(k

n, kn) of module homomorphisms from kn into itself with respect to
composition of mappings.

Let u1, . . . , un be the n “standard basis” elements of kn, so that the lth
coordinate of ur is equal to 1 when l = r, and to 0 otherwise. Thus

x =

n∑
r=1

xr ur(10.1.2)

for every x = (x1, . . . , xn) ∈ kn. If a ∈Mn(k), then

(Ta(ur))j = aj,r(10.1.3)

for every j, r = 1, . . . , n.
Similarly, if h,m ∈ {1, . . . , n}, then let eh,m be the element of Mn(k) whose

(h,m) entry is equal to 1, and all of whose other entries are equal to 0. If
a = (aj,l) is any element of Mn(k), then a can be expressed as

a =

n∑
h=1

n∑
m=1

ah,m eh,m.(10.1.4)

210
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It is sometimes convenient to let Th,m be the module homomorphism from kn

into itself associated to eh,m as in (10.1.1) for each h,m = 1, . . . , n, so that

Th,m = Teh,m
.(10.1.5)

If a = (aj,l) ∈Mn(k), then Ta can be expressed as

Ta =

n∑
h=1

n∑
m=1

ah,m Th,m.(10.1.6)

If q, r ∈ {1, . . . , n}, then let δq,r ∈ k be equal to 1 when q = r, and to 0
otherwise, as usual. Observe that

Th,m(ur) = δm,r uh(10.1.7)

for every h,m, r = 1, . . . , n. We also have that

eh,m eq,r = δm,q eh,r(10.1.8)

for every h,m, q, r = 1, . . . , n. Equivalently,

Th,m ◦ Tq,r = δm,q Th,r(10.1.9)

for every h,m, q, r = 1, . . . , n. It follows from (10.1.8) that

[eh,m, eq,r] = eh,m eq,r − eq,r eh,m = δm,q eh,r − δr,h eq,m(10.1.10)

for every h,m, q, r = 1, . . . , n. In particular, if h ̸= r and m ̸= q, then

[eh,m, eq,r] = 0,(10.1.11)

because each of the two terms on the right side of (10.1.10) is equal to 0. Oth-
erwise,

[eh,m, em,r] = eh,r(10.1.12)

when h ̸= r, and
[eh,m, eq,h] = −eq,m(10.1.13)

when m ̸= q. Of course, these two cases are equivalent, because of the antisym-
metry of the commutator bracket. Similarly,

[eh,m, em,h] = eh,h − em,m(10.1.14)

for every h,m = 1, . . . , n.
Remember that gln(k) is the same as Mn(k) as a module over k, but con-

sidered as a Lie algebra over k with respect to the corresponding commutator
bracket, as in Section 2.9. Similarly, sln(k) is the ideal in gln(k) consisting of
matrices with trace 0, as before. In fact,

[gln(k), gln(k)] = sln(k),(10.1.15)
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where the left side is as defined in Section 9.2. More precisely, the inclusion of
the left side of (10.1.15) in the right side follows from basic properties of the
trace, as in Section 2.9. The opposite inclusion can be obtained from (10.1.12)
and (10.1.14). This corresponds to Exercise 2 on p9 of [14]. One can also verify
that

[gln(k), sln(k)] = sln(k),(10.1.16)

using the same argument.

10.2 Some basic properties of sl2(k)

Let k be a commutative ring with a multiplicative identity element, and remem-
ber that sl2(k) is the space of 2× 2 matrices with entries in k and trace 0. This
is a Lie algebra over k with respect to the usual commutator bracket. Consider
the elements of sl2(k) given by

x =

(
0 1

0 0

)
, y =

(
0 0

1 0

)
, and h =

(
1 0

0 − 1

)
.(10.2.1)

It is easy to see that every element of sl2(k) can be expressed in a unique way
as a linear combination of x, y, and h with coefficients in k. Thus sl2(k) is
isomorphic to the free module k3 of rank 3 over k, as a module over k.

Equivalently, using the notation in the previous section, with n = 2, we have
that

x = e1,2, y = e2,1, and h = e1,1 − e2,2.(10.2.2)

One can check that

[x, y] = h, [h, x] = 2 · x, [h, y] = −2 · y,(10.2.3)

as on p6 of [14]. Here 2 · a = a+ a for each a ∈ sl2(k), as usual. If 1 + 1 = 0 in
k, then h is the same as the identity matrix, so that

[h, x] = [h, y] = 0,(10.2.4)

as in (10.2.3). In this case, it follows that sl2(k) is nilpotent as a Lie algebra
over k, as in Exercise 3 on p14 of [14].

Suppose for the moment that k is a field with characteristic 2. Elements of
sl2(k) correspond to linear mappings from k2 into itself, as a two-dimensional
vector space over k, as before. It is well known and not difficult to check that
the linear mappings on k2 corresponding to elements of sl2(k) do not have a
(nonzero) simultaneous eigenvector. This shows that the results discussed in
Section 9.13 can fail in positive characteristic, as mentioned on p37 of [25].

If 1 + 1 has a multiplicative inverse in k, then we get that

[sl2(k), sl2(k)] = sl2(k),(10.2.5)

where the left side is as defined in Section 9.2. This corresponds to part of
Exercise 9 on p5 of [14]. Similarly, if 2j · 1 = 0 in k for some j ∈ Z+, then one
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can check that sl2(k) is nilpotent as a Lie algebra over k. However, if for each
j ∈ Z+, 2

j · 1 ̸= 0 in k, then sl2(k) is not solvable as a Lie algebra over k.
If n is any positive integer with n ≥ 3, then

[sln(k), sln(k)] = sln(k).(10.2.6)

This corresponds to part of Exercise 9 on p5 of [14] again. Of course, the left
side of (10.2.6) is contained in the right side, as in (10.1.15). To get the opposite
inclusion, one can verify that

eh,r ∈ [sln(k), sln(k)](10.2.7)

for every h, r ∈ {1, . . . , n} with h ̸= r, using (10.1.12) with m ̸= h, r. We also
have that

eh,h − em,m ∈ [sln(k), sln(k)](10.2.8)

for every h,m = 1, . . . , n with h ̸= m, by (10.1.14).

10.3 Scalar and diagonal matrices

Let k be a commutative ring with a multiplicative identity element, let n be a
positive integer, and let A be an associative algebra over k, where multiplication
of x, y ∈ A is expressed as x y. As usual, an n×n matrix a = (aj,l) with entries
in A is said to be a diagonal matrix if aj,l = 0 when j ̸= l. Let Dn(A) be the
space of these diagonal matrices, which is a subalgebra of the algebra Mn(A) of
n× n matrices with entries in A, as an associative algebra over k with respect
to matrix multiplication. If multiplication on A is commutative, then matrix
multiplication is commutative on Dn(A).

An element a ofDn(A) is said to be a scalar matrix if the diagonal entries aj,j
of a are all equal to each other. Let Sn(A) be the space of these scalar matrices,
which is a subalgebra of Dn(A). If multiplication on A is commutative, then
the elements of Sn(A) commute with all other elements of Mn(A), with respect
to matrix multiplication.

As before, gln(A) is the same as Mn(A), but considered as a Lie algebra
over k with respect to the corresponding commutator bracket. Similarly, let
dn(A) and sn(A) be the same as Dn(A) and Sn(A), respectively, considered as
Lie subalgebras of gln(A).

Let us now simply take A = k. Remember that the identity matrix I in
Mn(k) is the diagonal matrix with diagonal entries equal to the multiplicative
identity element 1 in k, which is the multiplicative identity element in Mn(k).
The scalar matrices in Mn(k) are the same as scalar multiples of I by elements
of k.

Using the notation in Section 10.1, we have that

eh,m ∈ sln(k)(10.3.1)

for every h,m = 1, . . . , n with h ̸= m, and

eh,h − em,m ∈ sln(k)(10.3.2)
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for every h,m = 1, . . . , n. As on p2 of [14], we may consider the eh,m’s with
h ̸= m, together with the matrices eh,h − eh+1,h+1 for h = 1, . . . , n − 1 when
n ≥ 2, as the “standard basis elements” of sln(k). One can check that every
element of sln(k) can be expressed in a unique way as a linear combination
of these standard basis elements with coefficients in k. Note that there are
(n2 − n) + (n − 1) = n2 − 1 of these standard basis elements in sln(k). Thus

sln(k) is isomorphic to the free module kn
2−1 of rank n2−1 over k, as a module

over k.
Of course, every element of gln(k) can be expressed in a unique way as a

linear combination of the eh,m’s, h,m = 1, . . . , n, with coefficients in k, so that

gln(k) is isomorphic to the free module kn
2

of rank n2 over k, as a module over
k. Alternatively, one can verify that every element of gln(k) can be expressed in
a unique way as a linear combination of the standard basis elements for sln(k)
mentioned in the preceding paragraph together with e1,1, with coefficients in
k. In particular, every element of gln(k) can be expressed in a unique way as
the sum of an element of sln(k) and a multiple of e1,1 by an element of k, so
that gln(k) is isomorphic to the direct sum of sln(k) and k, as modules over k.
Indeed, if a ∈ gln(k), then

a− (tr a) e1,1 ∈ sln(k),(10.3.3)

because tr e1,1 = 1. Thus a can be expressed as the sum of (10.3.3) and
(tr a) e1,1, and one can use the trace again to see that this is unique.

Note that tr I = n · 1, as an element of k. If n · 1 = 0 in k, then n× n scalar
matrices with entries in k have trace equal to 0. Suppose for the moment that
n · 1 has a multiplicative inverse in k. If a ∈ gln(k), then

a− tr a

n · 1
I ∈ sln(k),(10.3.4)

and tr a/(n · 1) is the unique element of k with this property. This implies that
every element of gln(k) can be expressed in a unique way as the sum of elements
of sln(k) and sn(k), as in Exercise 7 on p5 in [14].

10.4 Centrality in gln(k), sln(k)

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. Remember that a = (aj,l) ∈ gln(k) can be expressed as

a =

n∑
h=1

n∑
m=1

ah,m eh,m,(10.4.1)

as in (10.1.4). If q, r ∈ {1, . . . , n}, then

[a, eq,r] =

n∑
h=1

n∑
m=1

ah,m [eh,m, eq,r]

=
∑
h̸=r

ah,q eh,r −
∑
m ̸=q

ar,m eq,m + ar,q (er,r − eq,q),(10.4.2)



10.5. SOLVABILITY AND TRACES 215

by (10.1.11), (10.1.12) with m = q, (10.1.13) with h = r, and (10.1.14) with
h = r and m = q. More precisely, the two sums on the right side of (10.4.2) are
taken over h,m = 1, . . . , n with h ̸= r and m ̸= q, respectively. If q ̸= r, then
we get that

[a, eq,r] =
∑
h ̸=q,r

ah,q eh,r −
∑
m̸=q,r

ar,m eq,m + (aq,q − ar,r) eq,r

+ ar,q (er,r − eq,q),(10.4.3)

where the sums are taken over h,m = 1, . . . , n with h,m ̸= q, r, respectively.
Suppose that [a, eq,r] = 0 for every q, r ∈ {1, . . . , n} with q ̸= r. In this case,

one can use (10.4.3) to get that a is a diagonal matrix whose diagonal entries
are equal to each other, so that a is a scalar matrix. In particular, the center
of gln(k) as a Lie algebra over k is the Lie subalgebra sn(k) of scalar matrices.
This corresponds to the first part of Exercise 3 on p10 of [14].

Similarly, the center Z(sln(k)) of sln(k) as a Lie algebra over k is the inter-
section of sn(k) with sln(k). This consists of matrices of the form t I, where t ∈ k
satisfies n · t = 0. If n ·1 has a multiplicative inverse in k, then Z(sln(k)) = {0}.
If n · 1 = 0 in k, then Z(sln(k)) = sn(k). This corresponds to the second part
of Exercise 3 on p10 of [14].

If r ∈ {1, . . . , n}, then

[a, er,r] =
∑
h̸=r

ah,r eh,r −
∑
m ̸=r

ar,m er,m,(10.4.4)

by (10.4.2) with q = r. Let dn(k) be the Lie subalgebra of gln(k) consisting
of diagonal matrices, as in the previous section. Remember that a ∈ gln(k) is
in the normalizer of dn(k) in gln(k) if [a, b] ∈ dn(k) for every b ∈ dn(k), as in
Section 9.8. In this case, it is easy to see that a ∈ dn(k), using (10.4.4). This
corresponds to part of Exercise 7 on p10 of [14].

If a ∈ dn(k), then

[a, eq,r] = (aq,q − ar,r) eq,r(10.4.5)

for every q, r ∈ {1, . . . , n} with q ̸= r, by (10.4.3). This also works when q = r,
in which the right side is equal to 0, by (10.4.4). This corresponds to Exercise
6 on p5 of [14].

10.5 Solvability and traces

Let k be a field of characteristic 0, and let V be a vector space over k of positive
finite dimension n. Remember that the space gl(V ) of linear mappings from V
into itself is a Lie algebra over k, with respect to the usual commutator bracket.
Let A be a Lie subalgebra of gl(V ), and suppose that A is solvable as a Lie
algebra over k. If T ∈ A and R ∈ [A,A], then

tr(T ◦R) = 0,(10.5.1)
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as in Theorem 7.1 on p42 of [25]. Here [A,A] is the derived algebra of A, as in
Section 9.2, as usual.

Suppose for the moment that k is algebraically closed. Lie’s theorem implies
that there is a flag F = {Vj}nj=0 in V such that T (Vj) ⊆ Vj for every T ∈ A
and j = 0, 1, . . . , n, as in Section 9.13. If R ∈ [A,A], then R(Vj) ⊆ Vj−1 for
j = 1, . . . , n, as in Section 9.11. This implies (10.5.1), using a basis for V that
is compatible with F . This corresponds to Exercise 7 on p21 of [14].

Now let k be any field of characteristic 0. Of course, V is isomorphic to kn

as a vector space over k, and we may as well take V = kn. We can reformulate
(10.5.1) in terms of matrices, as follows. If A0 is a Lie subalgebra of gln(k) that
is solvable as a Lie algebra over k, then

tr(T0R0) = 0(10.5.2)

for every T0 ∈ A0 and R0 ∈ [A0, A0]. More precisely, this uses matrix multi-
plication and the trace on the space Mn(k) of n × n matrices with entries in
k.

Let k1 be an algebraically closed field that contains k as a subfield, so that
gln(k) is contained in gln(k1). Let A1 be the linear span of A0 in gln(k1), as a
vector space over k1. It is easy to see that A1 is a Lie subalgebra of gln(k1), as
a Lie algebra over k1, because A0 is a Lie subalgebra of gln(k). Similarly, one
can check that A1 is solvable as a Lie algebra over k1, because A0 is solvable as
a Lie algebra over k. It follows that

tr(T1R1) = 0(10.5.3)

for every T1 ∈ A1 and R1 ∈ [A1, A1], by the earlier argument for algebraically
closed fields. This uses matrix multiplication and the trace on Mn(k1), which
contains Mn(k). This implies (10.5.2), because A0 ⊆ A1, and hence [A0, A0] is
contained in [A1, A1].

Let k be a commutative ring with a multiplicative identity element, and
remember that [gl2(k), gl2(k)] = sl2(k), as in Section 10.1. Suppose that 1+1 =
0 in k, so that the identity matrix in gl2(k) is in sl2(k). Remember that sl2(k)
is nilpotent as a Lie algebra over k in this case, as in Section 10.2, so that gl2(k)
is solvable as a Lie algebra over k. In this situation, (10.5.2) would say that
every element of gl2(k) has trace 0, which is of course not the case.

10.6 Diagonalizable linear mappings

Let k be a field, let V be a vector space over k, and let T be a linear mapping
from V into itself. If λ ∈ k, then put

Eλ(T ) = {v ∈ V : T (v) = λ(v)},(10.6.1)

which is a linear subspace of V . As usual, λ is said to be an eigenvalue of T when
Eλ(T ) ̸= {0}, in which case the elements of Eλ(T ) are said to be eigenvectors
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of T corresponding to λ. If R is another linear mapping from V into itself that
commutes with T and v ∈ Eλ(T ), then

T (R(v)) = R(T (v)) = λR(v).(10.6.2)

This means that R(v) ∈ Eλ(T ), so that

R(Eλ(T )) ⊆ Eλ(T ).(10.6.3)

Suppose that λ1, . . . , λl are finitely many distinct elements of k, and let
r ∈ {1, . . . , n} be given. Consider the linear mapping∏

j ̸=r

(T − λj I)(10.6.4)

on V , where more precisely I is the identity mapping on V , and the product is
the composition of Tj − λj I for j = 1, . . . , n and j ̸= r. This linear mapping is
equal to 0 on Eλj

(T ) when j ̸= r, and it is equal to∏
j ̸=r

(λr − λj)(10.6.5)

times the identity mapping on Eλr
(T ). As before, (10.6.5) is the product of

λr−λj for j = 1, . . . , n and j ̸= r, which is a nonzero element of k. If vj ∈ Eλj
(T )

for each j = 1, . . . , l and
l∑

j=1

vj = 0,(10.6.6)

then it is easy to see that vr = 0 for every r = 1, . . . , l, by applying (10.6.4) to
the sum on the left.

Suppose from now on in this section that V has positive finite dimension,
as a vector space over k. Note that T can have only finitely many distinct
eigenvalues, and that the sum of the dimensions of the nontrivial eigenspaces
of T is less than or equal to the dimension of V , by the remark at the end of
the preceding paragraph. If every element of V can be expressed as a sum of
eigenvectors of T , then T is said to be diagonalizable on V . This means that V
is the direct sum of the nontrivial eigenspaces of T , and hence that there is a
basis for V consisting of eigenvectors for T .

Suppose that T is diagonalizable on V , with distinct eigenvalues λ1, . . . , λl.
If r ∈ {1, . . . , n}, then (10.6.4) maps V onto Eλr (T ). LetW be a linear subspace
of V such that

T (W ) ⊆W.(10.6.7)

Observe that (10.6.4) maps W into itself for each r = 1, . . . , n. Of course, every
w ∈ W can be expressed as a sum of eigenvectors of T , by hypothesis. In
this situation, these eigenvectors of T are also elements of W , because (10.6.4)
maps W into itself for each r. This implies that the restriction of T to W is
diagonalizable.
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Let R be another linear mapping from V into itself that commutes with T
again. Thus R maps Eλj (T ) into itself for each j = 1, . . . , n, as in (10.6.3). If
R is diagonalizable on V , then the restriction of R to Eλj

(T ) is diagonalizable
for every r = 1, . . . , n, as in the previous paragraph. This implies that R and T
are simultaneously diagonalizable on V , which is to say that there is a basis of
V consisting of vectors that are eigenvectors for both R and T . In particular,
it follows that R+ T and R ◦ T are diagonalized by the same basis for V .

10.7 Nilpotent vectors

Let k be a field, and let A be an associative algebra over k with a multiplicative
identity element e, where multiplication of a, b ∈ A is expressed as a b. If a ∈ A
is nilpotent, λ ∈ k, and λ ̸= 0, then λ e + a has a multiplicative inverse in A.
This follows from a remark in Section 3.1 when λ = 1, and otherwise one can
reduce to that case.

Let V be a vector space over k, and let T be a linear mapping from V into
itself. Remember that

(I − T )

n∑
j=0

T j =
( n∑
j=0

T j
)
(I − T ) = I − Tn+1(10.7.1)

for every nonnegative integer n, as in Section 3.1, where I is the identity mapping
on V . Suppose for the moment that for each v ∈ V we have that T l(v) = 0
for some nonnegative integer l, which implies that T j(v) = 0 when j ≥ l. This
permits us to define

∞∑
j=0

T j(v)(10.7.2)

as an element of V for every v ∈ V , so that
∑∞
j=0 T

j is defined as a linear
mapping from V into itself. One can check that

(I − T )

∞∑
j=0

T j =
( ∞∑
j=0

T j
)
(I − T ) = I,(10.7.3)

using (10.7.1). This implies that I − T is invertible on V , with

(I − T )−1 =

∞∑
j=0

T j .(10.7.4)

If λ ∈ k and λ ̸= 0, then λ I−T = λ (I−(1/λ)T ) is invertible on V too, because
(1/λ)T satisfies the same condition on V .

Let T be any linear mapping from V into itself again, and put

E0(T ) = {v ∈ V : T l(v) = 0 for some l ∈ Z+}.(10.7.5)

This is a linear subspace of V that contains the kernel of T . If v ∈ E0(T ) and
v ̸= 0, and if j is the smallest positive integer such that T j(v) = 0, then T j−1(v)
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is a nonzero element of the kernel of T . Thus E0(T ) ̸= {0} if and only if the
kernel of T is nontrivial. Note that T maps E0(T ) into itself. If λ ∈ k and λ ̸= 0,
then λ I − T is invertible as a linear mapping on E0(T ), by the remarks in the
previous paragraph. If R is a linear mapping from V into itself that commutes
with T and v ∈ E0(T ), then

T l(R(v)) = R(T l(v)) = 0(10.7.6)

for some l ∈ Z+. This means that R(v) ∈ E0(T ), and hence

R(E0(T )) ⊆ E0(T ).(10.7.7)

Let λ ∈ k be given, and put

Eλ(T ) = E0(T − λ I) = {v ∈ V : (T − λ I)l(v) = 0 for some l ∈ Z+}.(10.7.8)

This is a linear subspace of V , which reduces to (10.7.5) when λ = 0. Of course,

Eλ(T ) ⊆ Eλ(T ),(10.7.9)

where Eλ(T ) is as in (10.6.1). As before, Eλ(T ) ̸= {0} if and only if the kernel
of T − λ I is nontrivial, which means that λ is an eigenvalue of T . If R is a
linear mapping from V into itself that commutes with T , then

R(Eλ(T )) ⊆ Eλ(T ),(10.7.10)

as in (10.7.7). In particular, T maps Eλ(T ) into itself. If µ ∈ k and µ ̸= λ, then

µ I − T = (µ− λ) I − (T − λ I)(10.7.11)

is invertible as a linear mapping from Eλ(T ) into itself, by the analogous state-
ment in the preceding paragraph.

Let λ1, . . . , λm be finitely many distinct eigenvalues of T , and let vj ∈ Eλj
(T )

be given for j = 1, . . . ,m. If
m∑
j=1

vj = 0,(10.7.12)

then vr = 0 for each r = 1, . . . ,m. To see this, one can apply suitable powers
of T −λj I to the sum on the left side of (10.7.12) for j ̸= r, to get a product of
powers of T − λj I with j ̸= r applied to vr. This can only be 0 when vr = 0,
because of the invertibility of T − λj I on Eλr (T ) when j ̸= r.

10.8 Jordan–Chevalley decompositions

Let k be a field, and let V be a vector space over k of positive finite dimension.
If T is a linear mapping from V into itself, then one may wish to be able to
express T as

T = T1 + T2,(10.8.1)
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where T1 is a diagonalizable linear mapping from V into itself, T2 is a nilpotent
linear mapping from V into itself, and T1, T2 commute with each other, and
hence with T . Suppose that this is possible, so that V corresponds to the direct
sum of the eigenspaces of T1, as in Section 10.6, and T2 maps each of these
eigenspaces into itself, because T1 and T2 commute. Let λ be an eigenvalue of
T1, and let Eλ(T1) be the corresponding eigenspace of T1, as before. On Eλ(T1),
T − λ I = T2, so that T − λ I is nilpotent on Eλ(T ). This implies that

Eλ(T1) ⊆ Eλ(T ),(10.8.2)

where the right side is as in (10.7.8). In particular, λ is an eigenvalue of T as
well.

Let λ1, . . . , λm be a list of all of the distinct eigenvalues of T1, so that ev-
ery element of V can be expressed as a sum of elements of the corresponding
eigenspaces Eλj

(T1), j = 1, . . . ,m. An element of V can be expressed in at most
one way as a sum of elements of the Eλj

(T )’s, j = 1, . . . ,m, as in the previous
section. Using this and (10.8.2), we get that

Eλj
(T1) = Eλj

(T )(10.8.3)

for each j = 1, . . . ,m. One can also verify that λ1, . . . , λm are all of the eigen-
values of T . If one already knows that every element of V can be expressed as a
sum of elements of the Eλ(T )’s, where λ is an eigenvalue of T , then one can get
T1 and T2 using the remarks in the previous section. It is well known that this
holds when the characteristic polynomial of T can be factored into a product of
linear factors. In particular, this happens when k is algebraically closed.

Note that T1 and T2 can be expressed as polynomials in T with coefficients
in k and no constant term, as in part (b) of the proposition on p17 of [14],
and Lemma 6.1 on p40 of [25]. Equivalently, this means that T1 and T2 can be
expressed as linear combinations of positive powers of T . In particular, if R is
any linear mapping from V into itself that commutes with T , then R commutes
with T1 and T2. Alternatively, if R commutes with T , then one can check that R
commutes with T1, using (10.7.10) and (10.8.3). This implies that R commutes
with T2 as well, by (10.8.1).

Suppose that T3 and T4 are commuting linear mappings from V into itself
such that

T = T3 + T4,(10.8.4)

T3 is diagonalizable on V , and T4 is nilpotent on V . Note that T3 and T4
commute with T , and hence with T1 and T2, as in the preceding paragraph. Of
course,

T1 − T3 = T4 − T2,(10.8.5)

by (10.8.1) and (10.8.4). In this situation, T1 − T3 is diagonalizable on V , as
in Section 10.6. We also have that T4 − T2 is nilpotent on V , as in Section
9.7. The only linear mapping from V into itself that is both diagonalizable
and nilpotent is equal to 0 on V , so that T1 = T3 and T2 = T4. This is the
uniqueness statement in [14, 25]. One could obtain T1 = T3 from (10.8.3) too.
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Suppose that W0 and W are linear subspaces of V with

T (W ) ⊆W0 ⊆W.(10.8.6)

Under these conditions,
T1(W ), T2(W ) ⊆W0,(10.8.7)

as in part (c) of the proposition on p17 of [14], and Consequence 6.2 on p40 of
[25]. This follows from the expressions for T1 and T2 in terms of polynomials in
T mentioned earlier.

10.9 Some related situations

Let k be a field, and let V be a vector space over k of positive finite dimension.
If A and B are linear mappings from V into itself, then put

adA(B) = [A,B] = A ◦B −B ◦A,(10.9.1)

as before. This defines adA as a linear mapping from L(V ) into itself, where
L(V ) is the space of linear mappings from V into itself. If A is diagonalizable
on V , then adA is diagonalizable on L(V ). This can be seen using a basis for
V consisting of eigenvectors for A, to reduce to the analogous statement for
matrices, as in Section 10.4. Similarly, if A is nilpotent on V , then adA is
nilpotent on L(V ), as in Section 9.7. Let T , T1, and T2 be as in (10.8.1), so that

adT = adT1 + adT2 .(10.9.2)

Note that adT1
is diagonalizable on L(V ), and that adT2

is nilpotent on L(V ),
by the corresponding properties of T1 and T2 on V , and the previous remarks.
We also have that

[adT1 , adT2 ] = ad[T1,T2] = 0,(10.9.3)

so that adT1
and adT2

commute on L(V ), because T1 and T2 commute on V .
Thus (10.9.2) is the analogue of (10.8.1) for adT , as in Lemma A on p18 of [14].
This also corresponds to Lemma 6.3 on p41 of [25], with p = q = 1.

Let A be an algebra over k in the strict sense, where multiplication of a, b ∈ A
is expressed as a b. Also let δ be a derivation on A. If a, b ∈ A are eigenvectors
of δ with eigenvalues λ, µ ∈ k, respectively, then

δ(a b) = δ(a) b+ a δ(b) = (λa) b+ a (µ b) = (λ+ µ) (a b),(10.9.4)

so that a b is an eigenvector of A with eigenvalue λ+ µ when a b ̸= 0. It follows
that the linear span in A of the eigenvectors of δ forms a subalgebra of A. This
is stated in Exercise 12 on p6 of [14] for derivations on Lie algebras that come
from the adjoint representation.

If λ ∈ k, then put

Eλ(δ) = {a ∈ A : (δ − λ I)l(a) = 0 for some l ∈ Z+},(10.9.5)
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as in Section 10.7, where I is the identity mapping on A. This is a linear
subspace of A which is nontrivial exactly when λ is an eigenvalue of δ on A, as
before. Let a, b ∈ A and λ, µ ∈ k be given, and observe that

(δ − (λ+ µ) I)(a b) = δ(a) b+ a δ(b)− λa b− µa b(10.9.6)

= ((δ − λ I)(a)) b+ a ((δ − µ I)(b)).

If a ∈ Eλ(δ) and b ∈ Eµ(δ), then one can use this repeatedly to get that

(δ − (λ+ µ) I)j(a b) = 0(10.9.7)

when j is sufficiently large, so that a b ∈ Eλ+µ(δ). If a b ̸= 0, then Eλ+µ(δ) ̸= {0},
which implies that λ+ µ is an eigenvalue of δ, as before.

Suppose that k is algebraically closed, and that A has positive finite di-
mension as a vector space over k. As in the previous section, there are linear
mappings δ1, δ2 from A into itself such that

δ = δ1 + δ2,(10.9.8)

δ1 is diagonalizable on A, δ2 is nilpotent on A, and δ1, δ2 commute on A. More
precisely,

Eλ(δ1) = Eλ(δ)(10.9.9)

for every λ ∈ k, and in particular the eigenvalues of δ and δ1 are the same. If
a ∈ Eλ(δ1) = Eλ(δ) and b ∈ Eµ(δ1) = Eµ(δ) for some λ, µ ∈ k, then a b is an
element of Eλ+µ(δ) = Eλ+µ(δ1), as in the preceding paragraph. Note that a b
may be equal to 0, in which case λ + µ need not be an eigenvalue of δ, δ1. In
this situation,

δ1(a b) = (λ+ µ) a b = (λa) b+ a (µ b) = δ1(a) b+ a δ1(b).(10.9.10)

One can use this to get that δ1 is a derivation on A, because A is spanned by
the eigenspaces of δ1. It follows that δ2 is a derivation on A as well, by (10.9.8).
This corresponds to Lemma B on p18-19 of [14].

10.10 Replicas

Let k be a field, let V be a vector space over k of positive finite dimension n, and
let A be a diagonalizable linear mapping from V into itself. Thus V corresponds
to the direct sum of the nontrivial eigenspaces of A. If ϕ is a k-valued function
on the set of eigenvalues of A, then ϕ(A) can be defined as a linear mapping
from V into itself by putting ϕ(A) = λ I on Eλ(A) for each eigenvalue λ ∈ k of
A. This corresponds to Definition 6.4 on p41 of [25], but with fewer conditions
on ϕ for the moment, as in a remark just after Definition 6.4 in [25]. Note
that ϕ(A) can be expressed as a polynomial in A with coefficients in k, using a
polynomial whose values at the eigenvalues of A are the same as the values of
ϕ.
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Equivalently, let v1, . . . , vn be a basis of V consisting of eigenvectors of A
with eigenvalues a1, . . . , an ∈ k, so that

A(vj) = aj vj(10.10.1)

for every j = 1, . . . , n. Using this basis, ϕ(A) can be characterized by

(ϕ(A))(vj) = ϕ(aj) vj(10.10.2)

for each j = 1, . . . , n. If h,m ∈ {1, . . . , n}, then let Eh,m be the linear mapping
from V into itself such that

Eh,m(vj) = δm,j vh(10.10.3)

for every j = 1, . . . , n, where δm,j is as in Section 10.1. The Eh,m’s form a basis
for the space L(V ) of linear mappings from V into itself, as a vector space over
k. Let adA be the linear mapping from L(V ) into itself corresponding to A as
in (10.9.1). One can check that

adA(Eh,m) = (ah − am)Eh,m(10.10.4)

for every h,m = 1, . . . , n, as in (10.4.5). Similarly,

adϕ(A)(Eh,m) = (ϕ(ah)− ϕ(am))Eh,m(10.10.5)

for every h,m = 1, . . . , n.
Suppose now that ϕ is defined on a subgroup of k, as a commutative group

with respect to addition, that contains the eigenvalues of A. Suppose also that
ϕ is a group homomorphism from this subgroup of k into k, with respect to
addition. Under these conditions, (10.10.5) implies that

adϕ(A)(Eh,m) = ϕ(ah − am)Eh,m(10.10.6)

for every h,m = 1, . . . , n. This means that

adϕ(A) = ϕ(adA),(10.10.7)

where the right side is obtained from adA as a diagonalizable linear mapping
from L(V ) into itself in the same way as before. This corresponds to Lemma
6.5 on p41 of [25], with p = q = 1, using a remark near the top of p41 in [25].

If 0 is not an eigenvalue of A, then ϕ(A) can be expressed as a polynomial in
A with coefficients in k and constant term equal to 0, using a polynomial whose
values at the eigenvalues of A are the same as the values of ϕ, and whose value
at 0 is equal to 0. We can also do this when 0 is an eigenvalue of A, as long as
ϕ(0) = 0. Of course, ϕ(0) = 0 automatically when ϕ is a homomorphism from
an additive subgroup of k into k, as in the preceding paragraph. In this case,
we can apply the same argument to (10.10.7) on L(V ), to get that (10.10.7) can
be expressed as a polynomial in adA with coefficients in k and constant term
equal to 0.
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If k has characteristic 0, then k may be considered as a vector space over
the field Q rational numbers. In this case, we may consider mappings from the
linear span of the set of eigenvalues of A in k, as a vector space over Q, into
k that are linear over Q, as in the proof of the lemma on p19 of [14]. In [25],
one simply considers mappings ϕ from k into itself that are linear over Q. The
corresponding linear mappings ϕ(A) are called replicas of A by Chevalley, as
mentioned on p42 of [25].

10.11 Two lemmas about traces

Let k be an algebraically closed field of characteristic 0, and let V be a vector
space over k of positive finite dimension n. Also let T be a linear mapping from
V into itself, and let T1, T2 be the corresponding linear mappings from V into
itself discussed in Section 10.8, so that

T = T1 + T2,(10.11.1)

T1 is diagonalizable on V , T2 is nilpotent on V , and T1, T2 commute. If ϕ is a
mapping from the linear span of the eigenvalues of T1 in k, as a vector space over
Q, into k that is linear over Q, then ϕ(T1) can be defined as a linear mapping
from V into itself, as in the previous section. If

tr(T ◦ ϕ(T1)) = 0(10.11.2)

for all such ϕ, then T1 = 0, so that T = T2 is nilpotent on V . This corresponds
to Lemma 6.7 on p42 of [25], rephrased a bit in the way that it is used in the
proof of the lemma on p19 of [14].

Remember that T2 maps the eigenspaces of T1 into themselves, because T1
and T2 commute. If ϕ is as in the preceding paragraph, then it follows that
T2 commutes with ϕ(T1), by definition of ϕ(T1). In particular, T2 ◦ ϕ(T1) is
nilpotent, and

tr(T2 ◦ ϕ(T1)) = 0.(10.11.3)

Thus (10.11.2) is the same as saying that

tr(T1 ◦ ϕ(T1)) = 0.(10.11.4)

Let λ1, . . . , λl ∈ k be a list of the eigenvalues of T1, and let m1, . . . ,ml ∈ Z+ be
the dimensions of the corresponding eigenspaces of T1 in V . Using (10.11.4) we
get that

l∑
j=1

mj · λj ϕ(λj) = 0,(10.11.5)

because ϕ(T1) = ϕ(λj) I on Eλj
(T1) for each j = 1, . . . , l, by construction. If

we also ask that ϕ(λj) be in the subfield of k corresponding to Q for each
j = 1, . . . , l, then we can apply ϕ to (10.11.5), to obtain that

l∑
j=1

mj · ϕ(λj)2 = 0.(10.11.6)
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This means that ϕ(λj) = 0 for each j = 1, . . . , n, because ϕ(λj) is in the
subfield of k corresponding to Q. This implies that 0 is the only eigenvalue
of T1, because the previous statement holds for all mappings ϕ from the linear
span of the eigenvalues of T1 in k as a vector space over Q into the subfield of
k corresponding to Q that are linear over Q. Thus T1 = 0 on V , because T1 is
diagonalizable on V , by hypothesis, as desired.

If k is the field C of complex numbers, then a variant of this argument was
remarked by Bergman, as mentioned on p42 of [25]. Namely, if (10.11.5) holds
with ϕ equal to complex conjugation on C, then

l∑
j=1

mj |λj |2 = 0.(10.11.7)

This implies directly that 0 is the only eigenvalue of T1, as desired.
Let A and B be linear subspaces of the space L(V ) of all linear mappings

from V into itself, with
A ⊆ B.(10.11.8)

Put
M = {T ∈ L(V ) : [T,B] ∈ A for every B ∈ B}.(10.11.9)

If T ∈ M satisfies
tr(T ◦R) = 0(10.11.10)

for every R ∈ M, then T is nilpotent on V . This is the lemma stated on p19 of
[14].

Let T ∈ M be given, and let T1, T2 ∈ L(V ) be as in (10.11.1) again. Also let
ϕ be a mapping from the linear span of the eigenvalues of T1 in k, as a vector
space over Q, into k that is linear over Q, as before. Thus ϕ(T1) can be defined
as a linear mapping from V into itself as in the previous section, and we would
like to check that

ϕ(T1) ∈ M.(10.11.11)

This means that (10.11.2) follows from (10.11.10), so that we can reduce to the
previous statement.

If A is a linear mapping from V into itself, then adA denotes the corre-
sponding linear mapping from L(V ) into itself, as in (10.9.1). The condition
that T ∈ M means exactly that

adT (B) ⊆ A.(10.11.12)

Remember that
adT = adT1 + adT2(10.11.13)

is the analogue of (10.11.1) for adT as a linear mapping from V into itself, as in
Section 10.9. This implies that adT1

can be expressed as a polynomial in adT
with coefficients in k and constant term equal to 0, as in Section 10.8. It follows
from this and (10.11.12) that

adT1
(B) ⊆ A,(10.11.14)
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so that T1 ∈ M.
We also have that

adϕ(T1) = ϕ(adT1
),(10.11.15)

as in (10.10.7). Remember that (10.11.15) can be expressed as a polynomial
in adT1

with coefficients in k and constant term equal to 0, as in the previous
section. This implies that

adϕ(T1)(B) ⊆ A,(10.11.16)

because of (10.11.14). Thus (10.11.11) holds, as desired.

10.12 Cartan’s criterion

Let k be a field of characteristic 0, and let V be a vector space over k of positive
finite dimension n. Also let A be a Lie subalgebra of gl(V ), and suppose that

tr(T ◦R) = 0(10.12.1)

for every T ∈ A and R ∈ [A,A]. Under these conditions, A is solvable as a
Lie algebra over k. This is part of Theorem 7.1 on p42 of [25]. Note that the
converse was discussed in Section 10.5.

Suppose first that k is algebraically closed, which corresponds to the theorem
on p20 in [14]. In order to show that A is solvable as a Lie algebra, it suffices
to show that [A,A] is nilpotent as a Lie algebra over k. To do this, it is enough
to show that every element of [A,A] is nilpotent as a linear mapping on V , as
in Section 9.10.

Put
M = {Z ∈ gl(V ) : [Z, T ] ∈ [A,A] for every T ∈ A},(10.12.2)

and observe that A ⊆ M. We would like to show that

tr(R ◦ Z) = 0(10.12.3)

for every R ∈ [A,A] and Z ∈ M. This will imply that every R ∈ [A,A] is
nilpotent as a linear mapping on V , as in the previous section.

In order to get (10.12.3), it is enough to check that

tr(([T1, T2]) ◦ Z) = 0(10.12.4)

for every T1, T2 ∈ A and Z ∈ M. Remember that

tr(([T1, T2]) ◦ Z) = − tr(T2 ◦ ([T1, Z])),(10.12.5)

as in Section 7.8. If T1 ∈ A and Z ∈ M, then [T1, Z] ∈ [A,A], by the definition
(10.12.2) of M. If we also have that T2 ∈ A, then it follows that the right side
of (10.12.5) is equal to 0, by (10.12.1). This implies (10.12.4), as desired.

Now let k be any field of characteristic 0. We may as well take V = kn,
because V is isomorphic to kn as a vector space over k. The earlier statement
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can be reformulated in terms of matrices as saying that if A0 is a Lie subalgebra
of gln(k) such that

tr(T0R0) = 0(10.12.6)

for every T0 ∈ A0 and R0 ∈ [A0, A0], then A0 is solvable as a Lie algebra over
k. This uses matrix multiplication and the trace on the space Mn(k) of n × n
matrices with entries in k.

Let k1 be an algebraically closed field that contains k as a subfield, so that
gln(k) may be considered as a subset of gln(k1). If A1 is the linear span of A0

in gln(k1), as a vector space over k1, then A1 is a Lie subalgebra of gln(k1), as
a Lie algebra over k1, as mentioned in Section 10.5. Note that [A0, A0] is an
ideal in A0 as a Lie algebra over k, and that [A1, A1] is defined analogously as
an ideal in A1, as a Lie algebra over k1, as in Section 9.2. One can check that
[A1, A1] is the same as the linear span of [A0, A0] in A1, as a vector space over
k1.

It follows that
tr(T1R1) = 0(10.12.7)

for every T1 ∈ A1 and R1 ∈ [A1, A1], because of (10.12.6). This uses matrix
multiplication and the trace on Mn(k1). Thus A1 is solvable as a Lie algebra
over k1, by the earlier argument for algebraically closed fields of characteristic
0. This implies that A0 is solvable as a Lie algebra over k, as desired.

10.13 Comparing radicals

Let k be a field, and let (A, [·, ·]) be a Lie algebra over k. If x ∈ A, then
adx = adA,x is the linear mapping from A into itself defined by

adx(z) = adA,x(z) = [x, z](10.13.1)

for every z ∈ A, as in Section 2.4. Suppose that A has positive finite dimension
as a vector space over k, so that the Killing form

β(x, y) = trA(adx ◦ ady)(10.13.2)

is defined as an element of k for every x, y ∈ A. Remember that the radical

Aβ = {x ∈ A : β(x, y) = 0 for every y ∈ A}(10.13.3)

of (10.13.2) in A is an ideal in A as a Lie algebra over k, as in Section 7.11.
Of course, the space of linear mappings from A into itself, as a vector space

over k, is an associative algebra over k with respect to composition of mappings,
and hence a Lie algebra over k with respect to the corresponding commutator
bracket. Let A0 be a Lie subalgebra of A. The image

{adx : x ∈ A0}(10.13.4)

of A0 under the adjoint representation of A is a Lie subalgebra of the Lie algebra
of all linear mappings from A into itself. Suppose that β(x, y) = 0 for every
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x ∈ [A0, A0] and y ∈ A0. If k has characteristic 0, then Cartan’s criterion
implies that (10.13.4) is solvable as a Lie algebra over k. It follows that A0 is
solvable as a Lie algebra over k, because the kernel of the adjoint representation
on A is the center of A. This corresponds to the corollary on p20 of [14] when
A0 = A.

The radical (10.13.3) of β in A automatically satisfies the conditions on A0

mentioned in the preceding paragraph. If k has characteristic 0, then we get
that Aβ is solvable as a Lie algebra over k. Let RadA be the solvable radical
of A, as in Section 9.4. It follows that

Aβ ⊆ RadA(10.13.5)

when k has characteristic 0, because Aβ is an ideal in A as a Lie algebra.
Remember that A is said to be semisimple as a Lie algebra when RadA =

{0}. If A is semisimple and k has characteristic 0, then Aβ = {0}, by (10.13.5),
which means that the Killing form (10.13.2) on A is nondegenerate. This cor-
responds to parts of the theorem on p22 of [14] and Theorem 2.1 on p44 of
[25].

If B is an ideal in A and B is commutative as a Lie algebra over k, then B
is contained in the radical (10.13.3) of β in A, as in Section 7.11. If the Killing
form on A is nondegenerate, then it follows that B = {0}. Remember that A is
semisimple as a Lie algebra when {0} is the only ideal in A that is commutative
as a Lie algebra, as in Section 9.4. This means that A is semisimple as a Lie
algebra when the Killing form on A is nondegenerate. This corresponds to the
other parts of the theorem on p22 of [14] and Theorem 2.1 on p44 of [25].

10.14 Complementary ideals

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]) be a Lie algebra over k. Suppose that A is isomorphic to kr as a module
over k for some positive integer r, so that the Killing form β can be defined on
A as in (10.13.2). Remember that β has the associativity or invariance property

β([x,w], y) = β(x, [w, y])(10.14.1)

for every w, x, y ∈ A, as in Section 7.11. If B is a submodule of A, as a module
over k, then put

B⊥ = B⊥,β = {x ∈ A : β(x, y) = 0 for every y ∈ B}.(10.14.2)

This is a submodule of A, as a module over k, which is the same as the radical
of β in A when B = A. If B is an ideal in A as a Lie algebra over k, then it
is easy to see that (10.14.2) is an ideal in A, using (10.14.1). This can also be
obtained from statements in Sections 6.10 and 7.7.

Let us suppose from now on in this section that k is a field, and that A has
positive finite dimension as a vector space over k. Let B be a linear subspace of
A, so that (10.14.2) is a linear subspace of A too, as before. If the Killing form
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β is nondegenerate as a bilinear form on A, then the sum of the dimensions of
B and B⊥ is equal to the dimension of A, by standard arguments.

Now let B be an ideal in A as a Lie algebra over k, so that (10.14.2) is an
ideal in A too, as before. Thus

A0 = B ∩B⊥(10.14.3)

is an ideal in A as well, and β(x, y) = 0 for every x, y ∈ A0, by construction. If
k has characteristic 0, then it follows that A0 is solvable as a Lie algebra over
k, as in the previous section. If A is semisimple as a Lie algebra over k, then
we get that A0 = {0}. This implies that

[x, y] = 0(10.14.4)

for every x ∈ B and y ∈ B⊥, because [x, y] ∈ B ∩B⊥.
If k has characteristic 0 and A is semisimple as a Lie algebra over k, then

the Killing form β is nondegenerate on A, as in the previous section. Under
these conditions, we have that

B +B⊥ = {x+ y : x ∈ B, y ∈ B⊥} = A.(10.14.5)

More precisely, the dimension of B +B⊥ is equal to the sum of the dimensions
of B and B⊥, because B ∩B⊥ = {0}, as in the preceding paragraph. We have
also seen that the sum of the dimensions of B and B⊥ is equal to the dimension
of A, because β is nondegenerate on A. This implies (10.14.5), and hence that
A is isomorphic to the direct sum of B and B⊥ as a Lie algebra over k, because
of (10.14.4).

This corresponds to the first step in the proof of the theorem on p23 in [14],
and to Theorem 2.2 on p44 of [25]. Note that ideals in B and B⊥ are ideals in
A in this situation, because of (10.14.4) and (10.14.5). This implies that B and
B⊥ are semisimple as Lie algebras over k, because A is semisimple. It follows
that A/B is semisimple as a Lie algebra over k, because it is isomorphic to B⊥.

10.15 Simple Lie algebras

Let k be a field. A Lie algebra (A, [·, ·]) over k is said to be simple if A is not
commutative as a Lie algebra, and if the only ideals in A are A itself and {0}.
See p6 of [14], and Definition 2.3 on p44 of [25]. Note that the trivial Lie algebra
{0} is not considered to be simple, nor is the one-dimensional Lie algebra k with
respect to the trivial Lie bracket. If A is a simple Lie algebra over k, then the
center Z(A) of A as a Lie algebra is trivial, because Z(A) is an ideal in A, and
A is not commutative as a Lie algebra. Similarly, if A is simple and [A,A] is
as in Section 9.2, then [A,A] = A, because [A,A] is an ideal in A, and A is not
commutative. In particular, this means that A is not solvable as a Lie algebra,
and in fact that A is semisimple as a Lie algebra.

Let (A, [·, ·]) be a Lie algebra over A again, and let A1, . . . , An be finitely
many ideals in A. Suppose that every element of A can be expressed in a unique
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way as the sum of elements of A1, . . . , An, so that A corresponds to the direct
sum of A1, . . . , An, as a vector space over k. Let j, l ∈ {1, . . . , n} be given, with
j ̸= l, so that Aj ∩ Al = {0}. If aj ∈ Aj and al ∈ Al, then [aj , al] ∈ Aj ∩ Al,
because Aj and Al are ideals in A. This implies that

[aj , al] = 0,(10.15.1)

because Aj ∩ Al = {0}. This means that A corresponds to the direct sum of
A1, . . . , An as a Lie algebra over k, as remarked on p22 of [14]. Note that ideals
in any Aj as a Lie algebra over k are ideals in A, because of (10.15.1).

Suppose from now on in this section that k has characteristic 0, and that
A is a semisimple Lie algebra over k with positive finite dimension as a vector
space over k. Under these conditions, there are finitely many ideals A1, . . . , An
in A such that A corresponds to the direct sum of the Aj ’s, as in the preceding
paragraph, and Aj is simple as a Lie algebra over k for each j = 1, . . . , n. Of
course, if A is already simple as a Lie algebra over k, then this holds with n = 1.
Otherwise, A corresponds to the direct sum of two proper ideals, each of which
is semisimple as a Lie algebra over k, as in the previous section. One can repeat
the process as needed until all of the ideals are simple as Lie algebras over k.
At each step, any ideal in any of the ideals already obtained in A is an ideal in
A too, as in the previous paragraph. This corresponds to the first part of the
first theorem on p23 of [14], and to Corollary 1 on p45 of [25].

Remember that [Aj , Aj ] = Aj for each j = 1, . . . , n, because the Aj ’s are
simple Lie algebras. This implies that [A,A] = A, as in the corollary on p32 in
[14], and Corollary 2 on p45 of [25].

Let C be a simple Lie algebra over k, and suppose that ϕ is a Lie algebra
homomorphism from A onto C. Note that ϕ(Aj) is an ideal in C for each
j = 1, . . . , n, because Aj is an ideal in A and ϕ(A) = C. It follows that for each
j = 1, . . . , n, ϕ(Aj) is either trivial or equal to C, because C is simple. Clearly
ϕ(Aj1) ̸= {0} for some j1 ∈ {1, . . . , n}, because ϕ(A) = C. This can happen for
at most one element of {1, . . . , n}, by (10.15.1) and the noncommutativity of C.
The restriction of ϕ to Aj1 is injective, because Aj1 is simple as a Lie algebra
over k. This is the uniqueness property discussed on p45 of [25].

Let B0 be a simple ideal in A. Note that the center Z(A) of A is trivial,
because A is semisimple. This implies that [A,B0] ̸= {0}, because B0 ̸= {0}. It
follows that [Aj0 , B0] ̸= {0} for some j0 ∈ {1, . . . , n}. Remember that [Aj0 , B0]
is an ideal in A that is contained in Aj0 and B0, because Aj0 and B0 are ideals
in A, as in Section 9.2. Thus Aj0 = [Aj0 , B0] = B0, because Aj0 and B0 are
simple. This is the uniqueness part of the first theorem on p23 of [14]. See also
Theorem 4’ on p6 of [24].

If B is a nontrivial proper ideal in A, then one can start the process for
expressing A as a direct sum of simple ideals using B, as before. Thus B is also
expressed as a direct sum of some of these ideals, as in the corollary on p23 of
[14], and Corollary 3 on p45 of [25].



Chapter 11

Some examples and related
properties

11.1 Simplicity and solvability

Let k be a field, and remember that x =
(
0 1
0 0

)
, y =

(
0 0
1 0

)
, and h =

(
1 0
0 −1

)
form a basis for sl2(k), as a vector space over k. We also have that [x, y] = h,
[h, x] = 2 · x, and [h, y] = −2 · y, as in Section 10.2. It is not difficult to check
directly that sl2(k) is simple as a Lie algebra over k when the characteristic of
k is different from 2, as on p6-7 of [14]. More precisely, suppose that A is a
nonzero ideal in sl2(k). Let

a x+ b y + c h(11.1.1)

be a nonzero element of A, where a, b, c ∈ k. One can take the commutator of
(11.1.1) with x twice to get that −2 · b x ∈ A, and similarly one can take the
commutator of (11.1.1) with y twice to get that −2 · a y ∈ A. This implies that
x ∈ A when b ̸= 0, and that y ∈ A when a ̸= 0, because the characteristic of A
is not 2. Otherwise, if a = b = 0, then c ̸= 0, and it follows that h ∈ A. Thus
A contains at least one of x, y, or h. One can use this to get that A contains
each of x, y, and h, because the characteristic of k is not 2. This means that
A = sl2(k), as desired.

Let k be any field, and let (A, [·, ·]A) be a Lie algebra over k. Suppose that
the dimension of A is 3, as a vector space over k, and that [A,A] = A, where
[A,A] is as in Section 9.2. Under these conditions, A is simple as a Lie algebra
over k, as in Exercise 5 on p10 of [14]. To see this, let A0 be an ideal in A, so
that the quotient A/A0 is a Lie algebra over k too. It is easy to see that

[A/A0, A/A0] = A/A0(11.1.2)

in this situation, as in Section 9.3. However, if A/A0 has dimension 1 as a
vector space over k, then the left side of (11.1.2) is {0}. Similarly, if A/A0 has
dimension 2 as a vector space over k, then the left side of (11.1.2) has dimension
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less than or equal to 1. It follows that A/A0 has dimension 0 or 3, which is to
say that A0 = {0} or A, as desired.

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k again. Suppose that the derived subalgebra
A(1) = [A,A] is generated by two elements a, b as a module over k, so that
every element of A(1) can be expressed as a linear combination of a and b, with
coefficients in k. This implies that A(2) = [A(1), A(1)] consists of multiples of
[a, b]A, with coefficients in k. It follows that A(3) = {0}, so that A is solvable
as a Lie algebra. Of course, if A(1) consists of the multiples of a single element
of A with coefficients in k, then A(2) = {0}.

Suppose that k is a field, and that A has dimension 3 as a vector space over
k. If [A,A] is a proper subset of A, then [A,A] has dimension less than or equal
to 2, as a vector space over k. This implies that A is solvable as a Lie algebra,
as in the preceding paragraph.

11.2 Traces on Mn(k)

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. Remember that the space Mn(k) of n × n matrices with
entries in k is an associative algebra over k with respect to matrix multiplication,
as in Section 2.8. If a, x ∈Mn(k), then

La(x) = a x(11.2.1)

is defined as an element of Mn(k) using matrix multiplication. This defines La
as a homomorphism from Mn(k) into itself, as a module over k. If b ∈ Mn(k)
too, then

La ◦ Lb = La b,(11.2.2)

as in Section 2.8. It is not difficult to see that

trMn(k)La = n · tr a(11.2.3)

for every a ∈ Mn(k), where tr a is the ordinary trace of a, as an n × n matrix
with entries in k. The left side of (11.2.3) is the trace of La as a module
homomorphism from Mn(k) into itself, as in Section 7.8. More precisely, the

definition of trMn(k) uses the fact that Mn(k) is isomorphic to kn
2

, as a module
over k. It follows that

trMn(k)(La ◦ Lb) = trMn(k)La b = n · tr(a b)(11.2.4)

for every a, b ∈Mn(k), using (11.2.2) in the first step.
Similarly, if a ∈Mn(k), then

Ra(x) = x a(11.2.5)

defines Ra as a module homomorphism from Mn(k) into itself. If b ∈ Mn(k)
too, then

Ra ◦Rb = Rb a,(11.2.6)



11.2. TRACES ON MN (K) 233

as in Section 2.7. One can check that

trMn(k)Ra = n · tr a(11.2.7)

for every a ∈Mn(k). This implies that

trMn(k)(Ra ◦Rb) = trMn(k)(Rb a) = n · tr(b a) = n · tr(a b)(11.2.8)

for every a, b ∈Mn(k), using (11.2.6) in the first step.
Remember that La and Rb commute with each other on Mn(k) for every

a, b ∈Mn(k), as in Section 2.7. One can verify that

trMn(k)(La ◦Rb) = (tr a) (tr b)(11.2.9)

for every a, b ∈Mn(k).
If a ∈Mn(k), then

ada(x) = [a, x] = a x− x a = La(x)−Ra(x)(11.2.10)

defines a module homomorphism from Mn(k) into itself, as usual. Equivalently,

ada = La −Ra.(11.2.11)

If b ∈Mn(k) too, then

ada ◦ adb = (La −Ra) ◦ (Lb −Rb)(11.2.12)

= La ◦ Lb − La ◦Rb − Lb ◦Ra +Ra ◦Rb
= La b − La ◦Rb − Lb ◦Ra +Rb a.

It follows that

trMn(k)(ada ◦ adb) = trMn(k)La b − trMn(k)(La ◦Rb)
−trMn(k)(Lb ◦Ra) + trMn(k)Rb a(11.2.13)

= n · tr(a b)− 2 · (tr a) (tr b) + n · tr(b a)
= 2n · tr(a b)− 2 · (tr a) (tr b).

Note that the right side is automatically equal to 0 when either a or b is a
multiple of the identity matrix.

Of course, gln(k) is the same as Mn(k) as a module over k, so that traces
over gln(k) are the same as traces over Mn(k). If a ∈ sln(k), then let adsln(k),a
be the mapping from sln(k) into itself defined in the usual way, which is the
same as the restriction of ada to sln(k). Remember that sln(k) is isomorphic

to kn
2−1 as a module over k, and that gln(k) is isomorphic to the direct sum

of sln(k) and k, as modules over k, as in Section 10.3. If a, b ∈ sln(k), then we
have that

trsln(k)(adsln(k),a ◦ adsln(k),b) = trMn(k)(ada ◦ adb),(11.2.14)

as in Section 7.10. This implies that

trsln(k)(adsln(k),a ◦ adsln(k),b) = 2n · tr(a b),(11.2.15)

by (11.2.13).
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11.3 A nice criterion

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Of course, the center Z(A) of A as a Lie
algebra is a solvable ideal in A. If every solvable ideal in A is contained in Z(A),
then A is said to be reductive as a Lie algebra over k, as in Exercise 5 on p30
and p102 of [14]. This means that the solvable radical RadA of A is equal to
Z(A), as in Section 9.4. In particular, this holds when A is commutative or
semisimple as a Lie algebra.

Now let k be an algebraically closed field of characteristic 0, and let V be a
vector space over k of positive finite dimension. Also let A be a Lie subsalgebra
of the Lie algebra gl(V ) of linear mappings from V into itself. Thus V may
be considered as a module over A, as a Lie algebra over k. Suppose that V is
irreducible as a module over A. Under these conditions, A is reductive as a Lie
algebra over k, and every element of the center Z(A) of A is a scalar multiple
of the identity mapping I = IV on V . In particular, the dimension of Z(A) as a
vector space over k is less than or equal to 1. If A ⊆ sl(V ), then A is semisimple
as a Lie algebra over k. This corresponds to part (b) of the proposition on p102
of [14], and is related to Theorem 5.1 on p50 of [25].

Remember that the solvable radical RadA of A is the maximal solvable ideal
in A, as in Section 9.4. Lie’s theorem implies that there is a v0 ∈ V such that
v0 ̸= 0 and v0 is an eigenvector of every element of RadA, as in Section 9.13.
This means that there is a linear functional λ on RadA such that

T (v0) = λ(T ) v0(11.3.1)

for every T ∈ RadA.
If R ∈ A and T ∈ RadA, then [R, T ] = R ◦ T − T ◦ R ∈ RadA, because

RadA is an ideal in A. Under these conditions,

λ([R, T ]) = 0,(11.3.2)

as in Section 9.12.
Put

Vλ = {v ∈ V : T (v) = λ(T ) v for every T ∈ RadA}.(11.3.3)

This is a linear subspace of V that contains v0. Let R ∈ A, T ∈ RadA, and
v ∈ Vλ be given, and observe that

T (R(v)) = R(T (v))− ([R, T ])(v) = R(λ(T ) v)− λ([R, T ]) v(11.3.4)

= λ(T )R(v).

This uses the fact that [R, T ] ∈ RadA in the second step, and (11.3.2) in the
third step. It follows that R(v) ∈ Vλ, so that R(Vλ) ⊆ Vλ.

Because V is irreducible as a module over A, we get that Vλ = V . This
means that every T ∈ RadA is equal to λ(T ) I. In particular, RadA ⊆ Z(A),
which implies that RadA = Z(A), as desired.

A basic property of reductive Lie algebras will be discussed in Section 13.9.
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11.4 Ideals and structure constants

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. Thus the space kn of n-tuples of elements of k is a (free)
module over k with respect to coordinatewise addition and scalar multiplication.
Let crj,l be an element of k for every j, l, r = 1, . . . , n. If x, y ∈ kn, then let [x, y]kn

be the element of kn whose rth coordinate is given by

([x, y]kn)r =

n∑
j=1

n∑
l=1

crj,lxj yl(11.4.1)

for every r = 1, . . . , n. This defines a mapping from kn × kn into kn that is
bilinear over k. Suppose that

crj,l = −crl,j and crj,j = 0(11.4.2)

for every j, l, r = 1, . . . , n, so that [x, x]kn = 0 for every x ∈ kn. Suppose also
that the crj,l’s satisfy (9.14.8), so that (11.4.1) satisfies the Jacobi identity, as
before. This means that kn is a Lie algebra over k with respect to (11.4.1).

Let m < n be a positive integer, and let us use km×{0} to denote the space
of x ∈ kn such that xj = 0 when j ≥ m+1. Suppose that for every r = 1, . . . , n,

crj,l = 0 when j ≥ m+ 1 or l ≥ m+ 1.(11.4.3)

This implies that km×{0} is an ideal in kn, as a Lie algebra over k with respect
to (11.4.1). Note that this condition is necessary for km × {0} to be an ideal in
kn with respect to (11.4.1).

Let K be a commutative associative algebra over k, and note that the space
Kn of n-tuples of elements of K may be considered as a module over k with
respect to coordinatewise addition and scalar multiplication. If a, a′ ∈ Kn, then
let [a, a′]Kn be the element of Kn whose rth coordinate is equal to

([a, a′]Kn)r =

n∑
j=1

n∑
l=1

crj,l aj a
′
l(11.4.4)

for each r = 1, . . . , n. As in Section 9.14, Kn is a Lie algebra over k with
respect to (11.4.4). We also have that Km × {0} is an ideal in Kn with respect
to (11.4.4), because of (11.4.3). If km × {0} is solvable as a Lie algebra over k,
then Km × {0} is solvable as a Lie algebra over k too, as before.

Suppose that K has a multiplicative identity element e, so that Kn may be
considered as a module over K, and as a Lie algebra over K with respect to
(11.4.4). Remember that t 7→ t e defines a ring homomorphism from k into K,
which leads to a homomorphism from kn into Kn, as Lie algebras over k. If
t 7→ t e is injective as a mapping from k into K, then the corresponding mapping
from kn into Kn is injective.

Now let k be a field, and let (A, [·, ·]A) be a Lie algebra over k of positive
finite dimension n, as a vector space over k. Any choice of basis for A, as a vector
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space over k, leads to an isomorphism between A and kn, as vector spaces over
k. As in Section 9.14, there are structure constants crj,l ∈ k such that (11.4.1)
corresponds to [·, ·]A with respect to this isomorphism.

Let K be a field that contains k as a subfield. Using the structure constants
crj,l just mentioned, Kn becomes a Lie algebra over K with respect to (11.4.4).
Any other choice of basis for A will lead to isomorphic Lie algebra structures
on kn and Kn.

Suppose that A0 is a proper nonzero ideal in A, of dimension m. We can
choose a basis for A that contains a basis for A0, so that A0 corresponds to
km × {0} in kn. If A0 is solvable as a Lie algebra over k, then km × {0} is
solvable as a Lie algebra over k, and Km ×{0} is solvable as a Lie algebra over
K.

IfKn is semisimple as a Lie algebra overK, then it follows that A is semisim-
ple as a Lie algebra over k. Similarly, if Kn is simple as a Lie algebra over K,
then A is simple as a Lie algebra over k. This corresponds to part of Theorem
9 on p9 of [24] and the remark following it when k = R and K = C.

11.5 Nondegeneracy and bilinear forms

Let k be a field, and let V be a vector space over k of finite positive dimension
n. If v1, . . . , vn is a basis for V and l ∈ {1, . . . , n}, then there is a unique linear
functional λl on V such that λl(vj) is equal to 1 when j = l and to 0 when
j ̸= l. If µ is any linear functional on V , then it is easy to see that

µ =

n∑
l=1

µ(vl)λl.(11.5.1)

In fact, λ1, . . . , λn forms a basis for the dual space V ′ of all linear functionals
on V , as a vector space over k.

Let β be a bilinear form on V , so that

βw(v) = β(v, w)(11.5.2)

is a linear functional on V for each w ∈W . Observe that

βvl =

n∑
j=1

βvl(vj)λj =

n∑
j=1

β(vj , vl)λj(11.5.3)

for each l = 1, . . . , n, using (11.5.1) in the first step. Of course, w 7→ βw defines
a linear mapping from V into V ′, and (11.5.3) expresses this linear mapping in
terms of a matrix. In particular, β is nondegenerate as a bilinear form on V if
and only if (β(vj , vl)) is invertible as an n× n matrix with entries in k.

Now let (A, [·, ·]A) be a Lie algebra over k with finite positive dimension n
as a vector space over k. Using a basis for A, we get an isomorphism between
A and kn, as vector spaces over k. As before, there are structure constants
crj,l ∈ k for j, l, r = 1, . . . , n that satisfy (11.4.2) and (9.14.8) such that (11.4.1)
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corresponds to [·, ·]A with respect to the isomorphism just mentioned. If x ∈ kn,
then

adkn,x(z) = [x, z]kn(11.5.4)

defines a linear mapping from kn into itself, as in Section 2.4. The Killing form
on kn is defined by

bkn(x, y) = trkn(adkn,x ◦ adkn,y)(11.5.5)

for every x, y ∈ kn, as in Section 7.9.
Let K be a field that contains k as a subfield, so that Kn becomes a Lie

algebra over K with respect to (11.4.4). As before,

adKn,x = [x, z]Kn(11.5.6)

defines a linear mapping from Kn into itself for each x ∈ Kn, and the Killing
form on Kn is defined by

bKn(x, y) = trKn(adKn,x ◦ adKn,y)(11.5.7)

for every x, y ∈ Kn. If x ∈ kn, then (11.5.4) and (11.5.6) are the same on kn,
because (11.4.1) and (11.4.4) are the same on kn. This implies that (11.5.5) and
(11.5.7) are the same when x, y ∈ kn.

Let u1, . . . , un be the standard basis elements of kn, so that the jth coordi-
nate of ul is equal to 1 when j = l and to 0 when j ̸= l. Note that u1, . . . , un
form a basis for Kn as well, as a vector space over K. As in the preceding
paragraph,

bkn(uj , ul) = bKn(uj , ul)(11.5.8)

for every j, l = 1, . . . , n. It follows that (11.5.5) is nondegenerate as a bilinear
form on kn if and only if (11.5.7) is nondegenerate as a bilinear form on Kn.
More precisely, this happens exactly when the determinant of (11.5.8), as an
n× n matrix with entries in k, is not 0. Remember that nondegeneracy of the
Killing form is equivalent to semisimplicity of a finite-dimensional Lie algebra
over a field of characteristic 0, as in Section 10.13. If k has characteristic 0, then
K has characteristic 0, and we get that kn is semisimple as a Lie algebra over
k if and only if Kn is semisimple as a Lie algebra over K. This corresponds to
part of Theorem 9 on p9 of [24] when k = R and K = C.

11.6 Bilinear forms and adjoints

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. The space kn of n-tuples of elements of k is a module over
k with respect to coordinatewise addition and scalar multiplication, as usual.
Let β(·, ·) be a bilinear form on kn, which is to say a mapping from kn×kn into
k that is bilinear over k. Remember that there is a unique n × n matrix (βj,l)
with entries in k such that

β(x, y) =

n∑
j=1

n∑
l=1

βj,l xj yl(11.6.1)
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for every x, y ∈ kn, as in Section 3.12. It is easy to see that β(·, ·) is symmetric
or antisymmetric as a bilinear form on kn if and only if (βj,l) is symmetric
or antisymmetric as a matrix, respectively, as before. Similarly, β(x, x) = 0
for every x ∈ kn if and only if (βj,l) is antisymmetric and βj,j = 0 for every
j = 1, . . . , n. If 1 + 1 has a multiplicative inverse in k, then this is equivalent to
the antisymmetry of β(·, ·) or (βj,l).

Remember that Mn(k) is the space of n × n matrices with entries in k,
which is an associative algebra over k with respect to matrix multiplication. If
a ∈ Mn(k), then at denotes the transpose of a, as usual. Let us also use β
to denote (βj,l) as an element of Mn(k), and let us suppose for the rest of the
section that β is invertible in Mn(k). Put

a∗ = (β−1 a β)t = βt at (βt)−1(11.6.2)

for each a ∈ Mn(k). It is easy to see that a 7→ a∗ defines an opposite algebra
automorphism on Mn(k), because of the same property of a 7→ at.

If a = (aj,l) ∈Mn(k), then

(Ta(x))j =

n∑
l=1

aj,l xl(11.6.3)

defines a module homomorphism Ta from kn into itself, as before. Remember
that a 7→ Ta defines an isomorphism from the space Mn(k) of n × n matrices
with entries in k onto the space of module homomorphisms from kn into itself,
as algebras over k. By construction,

β(Ta(x), y) = β(x, Ta∗(y))(11.6.4)

for every a ∈ Mn(k) and x, y ∈ kn, as in Section 3.12. More precisely, a∗ is
uniquely determined by this property, and we may call (Ta)

∗ = Ta∗ the adjoint
of Ta with respect to β. This defines an opposite algebra automorphism on the
space of module homomorphisms from kn into itself.

Observe that

(a∗)∗ = βt (a∗)t (βt)−1 = βt (βt at (βt)−1)t (βt)−1(11.6.5)

= βt ((β)t)−1)t (at)t (βt)t (βt)−1

= βt β−1 a β (βt)−1

for every a ∈ Mn(k). If β is either symmetric or antisymmetric, then we get
that

(a∗)∗ = a(11.6.6)

for every a ∈Mn(k), and (11.6.2) is the same as

a∗ = β at β−1.(11.6.7)

Thus a 7→ a∗ defines an algebra involution on Mn(k) in each of these two
cases. Equivalently, T 7→ T ∗ is an algebra involution on the space of module
homomorphisms from kn into itself in both cases. This may be considered as
an instance of a remark in Section 3.14 as well.
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11.7 Bilinear forms and symmetry conditions

Let us continue with the same notation and hypotheses as in the previous sec-
tion, so that β = (βj,l) is an invertible element of Mn(k), and β(·, ·) is the
corresponding bilinear form on kn, as in (11.6.1). Remember that a ∈Mn(k) is
invertible exactly when the determinant det a of a is invertible in k, and that
the determinant of the transpose of a is the same as det a. If a is antisymmetric,
then

det a = det at = det(−a) = (−1)n det a.(11.7.1)

If a is invertible too, then it follows that (−1)n = 1 in k. This implies that
−1 = 1 in k when n is odd.

Let a ∈Mn(k) be given, and let Ta be the corresponding module homomor-
phism from kn into itself, as in (11.6.3). Observe that

β(Ta(x), y)(11.7.2)

defines another bilinear form on kn. One can check that every bilinear form on
kn corresponds to a unique a ∈Mn(k) in this way, because β is supposed to be
invertible. This defines an isomorphism betweenMn(k) and the space of bilinear
forms on kn, as modules over k. Equivalently, this defines an isomorphism
between the space of module homomorphisms from kn into itself and the space
of bilinear forms on kn, as modules over k.

Remember that Ta is said to be symmetric with respect to β when

β(Ta(x), y) = β(x, Ta(y))(11.7.3)

for every x, y ∈ kn. This is equivalent to asking that a be self-adjoint with
respect to (11.6.2), which is to say that a∗ = a. If β(·, ·) is symmetric as a
bilinear form on kn, then (11.7.3) holds if and only if

β(Ta(x), y) = β(Ta(y), x)(11.7.4)

for every x, y ∈ kn, which means that (11.7.2) is symmetric as a bilinear form
on kn. If β(·, ·) is antisymmetric as a bilinear form on kn, then (11.7.3) holds if
and only if

β(Ta(x), y) = −β(Ta(y), x)(11.7.5)

for every x, y ∈ kn, which means that (11.7.2) is antisymmetric as a bilinear
form on kn.

Similarly, Ta is antisymmetric with respect to β when

β(Ta(x), y) = −β(x, Ta(y))(11.7.6)

for every x, y ∈ kn. This is equivalent to asking that a be anti-self-adjoint
with respect to (11.6.2), so that a∗ = −a. If β(·, ·) is symmetric as a bilinear
form on kn, then (11.7.6) holds if and only if (11.7.5) holds, so that (11.7.2) is
antisymmetric as a bilinear form on kn. If β(·, ·) is antisymmetric as a bilinear
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form on kn, then (11.7.6) holds if and only if (11.7.4) holds, so that (11.7.2) is
symmetric as a bilinear form on kn.

Of course, if γ = (γj,l) ∈Mn(k), then

γ(x, y) =

n∑
j=1

n∑
l=1

γj,l xj yl(11.7.7)

defines a bilinear form on kn. As usual, γ(·, ·) is symmetric or antisymmetric
as a bilinear form on kn exactly when γ is symmetric or antisymmetric as a
matrix, respectively. Note that (11.7.2) corresponds to (11.7.7) with

γ = β a.(11.7.8)

Thus (11.7.2) is symmetric or antisymmetric as a bilinear form on kn exactly
when (11.7.8) is symmetric or antisymmetric as a matrix, respectively.

11.8 Traces and involutions

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. Also let a 7→ a∗ be an algebra involution on the algebra
Mn(k) of n× n matrices with entries in k. Suppose that

tr a∗ = tr a(11.8.1)

for every a ∈ Mn(k) too, where tr a ∈ k is the usual trace of a. Note that
this condition holds automatically when a∗ is as in (11.6.2). Remember that
a 7→ a∗ is an involution on Mn(k) in that situation when β is symmetric or
antisymmetric.

Put
(a, b)Mn(k) = tr(a b∗)(11.8.2)

for every a, b ∈Mn(k), which defines a bilinear form on Mn(k). Observe that

(a, b)Mn(k) = tr(a b∗)∗ = tr((b∗)∗ a∗) = tr(b a∗) = (b, a)Mn(k)(11.8.3)

for every a, b ∈Mn(k), using (11.8.1) in the first step. If c ∈Mn(k), then let

Lc(a) = c a and Rc(a) = a c(11.8.4)

be the corresponding operators of left and right multiplication on Mn(k) by c,
respectively. Thus

(Lc(a), b)Mn(k) = tr(c a b∗) = tr(a b∗ c)

= tr(a (c∗ b)∗) = (a, Lc∗(b))Mn(k)(11.8.5)

for every a, b ∈Mn(k). Similarly,

(Rc(a), b)Mn(k) = tr(a c b∗) = tr(a (b c∗)∗) = (a,Rc∗(b))Mn(k)(11.8.6)
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for every a, b ∈Mn(k).
Let a and b be elements of Mn(k) again. If b is self-adjoint with respect to

the given involution on Mn(k), so that b∗ = b, then

(a, b)Mn(k) = tr(a b).(11.8.7)

If a is self-adjoint and b is arbitrary, then

(a, b)Mn(k) = (b, a)Mn(k) = tr(b a) = tr(a b).(11.8.8)

If a is arbitrary and b is anti-self-adjoint, so that b∗ = −b, then

(a, b)Mn(k) = − tr(a b).(11.8.9)

If a is anti-self-adjoint and b is arbitrary, then

(a, b)Mn(k) = (b, a)Mn(k) = − tr(b a) = − tr(a b).(11.8.10)

If c ∈Mn(k), then put

Cc(a) = [c, a] = c a− a c = Lc(a)−Rc(a)(11.8.11)

for every a ∈ Mn(k), so that Cc is a homomorphism from Mn(k) into itself, as
a module over k. Note that

(Cc(a), b)Mn(k) = (a,Cc∗(b))Mn(k)(11.8.12)

for every a, b ∈Mn(k), by (11.8.5) and (11.8.6). Of course,

(Cc(a))
∗ = ([c, a])∗ = −[c∗, a∗] = −Cc∗(a∗)(11.8.13)

for every a ∈Mn(k).
Suppose that 1 + 1 has a multiplicative inverse in k. If a ∈ Mn(k) is self-

adjoint and b ∈Mn(k) is anti-self-adjoint, then

(a, b)Mn(k) = 0,(11.8.14)

by (11.8.8) and (11.8.9). This also holds when a is anti-self-adjoint and b is
self-adjoint, by (11.8.3).

11.9 Inner products over ordered fields

Let k be an ordered field, as in Section 8.12, and let V be a vector space over k.
Also let ⟨v, w⟩V be an inner product on V , which is to say a symmetric bilinear
form on V that is positive definite, in the sense that

⟨v, v⟩V > 0(11.9.1)

for every v ∈ V with v ̸= 0. As usual, v, w ∈ V are said to be orthogonal with
respect to ⟨·, ·⟩V when

⟨v, w⟩V = 0.(11.9.2)
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Suppose that e1, . . . , en are finitely many nonzero vectors in V that are
pairwise orthogonal, so that

⟨ej , el⟩V = 0(11.9.3)

when j ̸= l. If v ∈ V , then put

w =

n∑
j=1

⟨v, ej⟩V
⟨ej , ej⟩V

ej ,(11.9.4)

which is an element of the linear span of e1, . . . , en. Observe that

⟨w, el⟩V = ⟨v, el⟩V(11.9.5)

for every l = 1, . . . , n. Equivalently, ⟨w − v, el⟩V = 0 for each l = 1, . . . , n, so
that

⟨w − v, u⟩V = 0(11.9.6)

for every u in the linear span of e1, . . . , en in V . If v is in the linear span of
e1, . . . , en in V , then we get that

v = w,(11.9.7)

because w is in the linear span of e1, . . . , en in V , by construction.
Suppose from now on in this section that V has positive finite dimension

n, as a vector space over k. In this case, there are nonzero pairwise-orthogonal
vectors e1, . . . , en in V whose linear span is equal to V , so that they form a basis
for V as a vector space over k. This can be obtained from the Gram–Schmidt
process, using the remarks in the preceding paragraph. If v ∈ V , then we get
that

v =

n∑
j=1

⟨v, ej⟩V
⟨ej , ej⟩V

ej ,(11.9.8)

as before. Of course, if k = R, then we can take the ej ’s to be orthonormal in
V , so that ⟨ej , ej⟩V = 1 for every j = 1, . . . , n.

Remember that L(V ) denotes the algebra of linear mappings from V into
itself. If T ∈ L(V ), then there is a unique adjoint mapping T ∗ ∈ L(V ) such
that

⟨T (v), w⟩V = ⟨v, T ∗(w)⟩V(11.9.9)

for every v, w ∈ V , as usual. We have also seen that T 7→ T ∗ is an algebra
involution on L(V ). Observe that

T (el) =

n∑
j=1

⟨T (el), ej⟩V
⟨ej , ej⟩V

ej(11.9.10)

for each l = 1, . . . , n, so that

trV T =

n∑
j=1

⟨T (ej), ej⟩V
⟨ej , ej⟩V

.(11.9.11)
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This implies that

trV T
∗ =

n∑
j=1

⟨T ∗(ej), ej⟩V
⟨ej , ej⟩V

=

n∑
j=1

⟨ej , T (ej)⟩V
⟨ej , ej⟩V

= trV T.(11.9.12)

If T1, T2 ∈ L(V ), then put

⟨T1, T2⟩L(V ) = trV (T1 ◦ T ∗
2 ) = trV (T

∗
2 ◦ T1),(11.9.13)

which defines a bilinear form on L(V ). Using (11.9.12), we get that

⟨T1, T2⟩L(V ) = trV (T1 ◦ T ∗
2 )

∗ = trV (T2 ◦ T ∗
1 ) = ⟨T2, T1⟩L(V ),(11.9.14)

as in the previous section. Observe that

⟨T, T ⟩L(V ) = trV (T
∗ ◦ T ) =

n∑
j=1

⟨(T ∗(T (ej)), ej⟩V
⟨ej , ej⟩V

(11.9.15)

=
n∑
j=1

⟨T (ej), T (ej)⟩V
⟨ej , ej⟩V

for every T ∈ L(V ). If T ̸= 0, then it follows that

⟨T, T ⟩L(V ) > 0,(11.9.16)

because each of the terms on the right side of (11.9.15) is greater than or equal
to 0 in k, and at least one term is strictly positive. Thus (11.9.13) defines an
inner product on L(V ), as a vector space over k.

Suppose that T1 ∈ L(V ) is self-adjoint and T2 ∈ L(V ) is anti-self-adjoint, so
that T ∗

1 = T1 and T ∗
2 = −T2. Under these conditions, we have that

⟨T1, T2⟩L(V ) = −trV (T2 ◦ T1) = −⟨T2, T1⟩L(V ).(11.9.17)

This means that
⟨T1, T2⟩L(V ) = 0.(11.9.18)

If A ∈ L(V ), then put

LA(T ) = A ◦ T and RA(T ) = T ◦A(11.9.19)

for every T ∈ L(V ), as before. Observe that

⟨LA(T1), T2⟩L(V ) = trV (A ◦ T1 ◦ T ∗
2 ) = trV (T1 ◦ T ∗

2 ◦A)
= trV (T1 ◦ (A∗ ◦ T2)∗) = ⟨T1, LA∗(T2)⟩L(V )(11.9.20)

and

⟨RA(T1), T2⟩L(V ) = trV (T1 ◦A ◦ T ∗
2 ) = trV (T1 ◦ (T2 ◦A∗)∗)

= ⟨T1, RA∗(T2)⟩L(V )(11.9.21)
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for every T1, T2 ∈ L(V ). Put

CA(T ) = [A, T ] = A ◦ T − T ◦A = LA(T )−RA(T )(11.9.22)

for every T ∈ L(V ). Thus

⟨CA(T1), T2⟩L(V ) = ⟨T1, CA∗(T2)⟩L(V )(11.9.23)

for every T1, T2 ∈ L(V ), by (11.9.21) and (11.9.22).

11.10 Self-adjoint Lie subalgebras

Let us continue with the same notation and hypotheses as in the previous sec-
tion. As before, we use gl(V ) to denote L(V ), considered as a Lie algebra over
k with respect to the corresponding commutator bracket. If R ∈ gl(V ), then
put

CR(T ) = [R, T ] = R ◦ T − T ◦R(11.10.1)

for every T ∈ gl(V ), as in (11.9.22), which is the same as adgl(V ),R(T ). Remem-
ber that

⟨CR(T1), T2⟩L(V ) = ⟨T1, CR∗(T2)⟩L(V )(11.10.2)

for every T1, T2 ∈ gl(V ), as in (11.9.23). This means that CR∗ is the adjoint of
CR as a linear mapping from gl(V ) = L(V ) into itself, with respect to the inner
product (11.9.13).

Let A be a Lie subalgebra of gl(V ), as a Lie algebra over k.. If R ∈ A, then
CR maps A into itself, and the restriction of CR to A is the same as adA,R. If
R1, R2 ∈ A, then

trA(adA,R1
◦ adA,R2

) = trA(CR1
◦ CR2

)(11.10.3)

is the same as the Killing form on A evaluated at R1, R2. This is the trace of
adA,R1

◦ adA,R2
as a linear mapping from A into itself, where A is considered

as a finite-dimensional vector space over k. In the right side of (11.10.3), one
should use the restrictions of CR1 and CR2 to A, as indicated by taking the
trace is taken over A.

If A is any subset of L(V ), then put

A∗ = {T ∗ : T ∈ A},(11.10.4)

which is a subset of L(V ) as well. Let us say that A is self-adjoint as a subset
of L(V ) when A∗ = A. Let A be a Lie subalgebra of gl(V ) again, and suppose
that A is self-adjoint as a subset of L(V ). If R ∈ A, then R∗ ∈ A, so that CR
and CR∗ both map A into itself. The restriction of CR∗ to A is the same as the
adjoint of the restriction of CR to A, with respect to the restriction of the inner
product (11.9.13) on L(V ) to A.

Let L(A) be the space of all linear mappings from A into itself, as usual.
The restriction of the inner product (11.9.13) on L(V ) to A defines an inner
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product on A, as a vector space over k. If Z ∈ L(A), then let ZA,∗ ∈ L(A) be
the adjoint of Z with respect to the inner product on A just mentioned. Put

⟨Z1, Z2⟩L(A) = trA(Z1 ◦ ZA,∗
2 )(11.10.5)

for every Z1, Z1 ∈ L(A). This defines an inner product on L(A), as a vector
space over k, as in the previous section.

Let R1, R2 ∈ A be given, and remember that adA,R∗
2
is the same as the

adjoint of adA,R2
with respect to the inner product on A mentioned in the

preceding paragraph. It follows that

trA(adA,R1
◦ adA,R2

) = ⟨adA,R1
, adA,R∗

2
⟩L(A),(11.10.6)

where the right side is as in (11.10.5). In particular,

trA(adA,R ◦ adA,R∗) = ⟨adA,R, adA,R⟩L(A)(11.10.7)

for every R ∈ A. The right side is automatically greater than or equal to 0 in
k, because (11.10.5) is an inner product on L(A). More precisely, the right side
of (11.10.7) is equal to 0 exactly when adA,R = 0 as a linear mapping from A
into itself.

11.11 Comparing involutions

Let A be a commutative group, where the group operations are expressed ad-
ditively, and let

x 7→ x∗,1(11.11.1)

and

x 7→ x∗,2(11.11.2)

be group homomorphisms from A into itself. Suppose for the moment that these
two group homomorphisms commute on A, so that

(x∗,1)∗,2 = (x∗,2)∗,1(11.11.3)

for every x ∈ A. Of course, one can define self-adjointness and anti-self-
adjointness of elements of A with respect to (11.11.1) and (11.11.2) in the usual
way. If x ∈ A is self-adjoint with respect to (11.11.2), then it follows that x∗,1

is self-adjoint with respect to (11.11.2) as well. Similarly, if x is anti-self-adjoint
with respect to (11.11.2), then x∗,1 is anti-self-adjoint with respect to (11.11.2).

Now let k be a commutative ring with a multiplicative identity element, and
let A be an associative algebra over k with a multiplicative identity element e,
where multiplication of a, b ∈ A is expressed as a b. Suppose that (11.11.1) is
an algebra involution on A, and let c be an invertible element of A. Put

x∗,2 = c−1 x∗,1 c(11.11.4)
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for every x ∈ A. This defines (11.11.2) as an opposite algebra automorphism
on A. Let us suppose from now on in this section that

c∗,1 = c(11.11.5)

or
c∗,1 = −c.(11.11.6)

In either case, (11.11.2) is an algebra involution on A as well, as in Section 3.14.
Note that

c∗,2 = c(11.11.7)

when (11.11.5) holds, and that

c∗,2 = −c(11.11.8)

when (11.11.6) holds.
If x ∈ A, then

(x∗,1)∗,2 = c−1 (x∗,1)∗,1 c = c−1 x c(11.11.9)

and

(x∗,2)∗,1 = (c−1 x∗,1 c)∗,1 = c∗,1 (x∗,1)∗,1 (c∗,1)−1 = c∗,1 x (c∗,1)−1.(11.11.10)

This reduces to
(x∗,2)∗,1 = c x c−1(11.11.11)

when c satisfies (11.11.5) or (11.11.6). If

c2 = t e(11.11.12)

for some t ∈ k with a multiplicative inverse in k, then we get that (11.11.3)
holds. If k = C, then (11.11.1) may be conjugate-linear, as usual.

Let A1 be a subalgebra of A, and suppose that (11.11.1) maps A1 into itself.
There are some situations where c is not necessarily in A1, but c

−1 x c ∈ A1 for
every x ∈ A1. If x ∈ A1, then it follows that (11.11.4) is an element of A1 as
well.

11.12 Some projections

Let k be a field, let V be a vector space over k, and let b(v, w) be a bilinear form
on V . Also let V0 be a finite-dimensional linear subspace of V , and suppose that
the restriction of b(v, w) to v, w ∈ V0 is nondegenerate on V0. If z ∈ V , then
put

λz(v) = b(v, z)(11.12.1)

for every v ∈ V0, which defines a linear functional on V0. Because b(·, ·) is
nondegenerate on V0, there is a unique element P0(z) of V0 such that

λz(v) = b(v, P0(z))(11.12.2)
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for every v ∈ V0. Equivalently, this means that

b(v, z − P0(z)) = 0(11.12.3)

for every v ∈ V . It is easy to see that P0 defines a linear mapping from V into
V0. More precisely,

P0(z) = z(11.12.4)

when z ∈ V0, so that P0 maps V onto V0. It follows that

P0 ◦ P0 = P0(11.12.5)

on V , so that P0 is a projection on V .
Let Z0 be the kernel of P0, which is a linear subspace of V . Note that

V0 ∩ Z0 = {0},(11.12.6)

by (11.12.4). If z ∈ V , then

z − P0(z) ∈ Z0,(11.12.7)

by (11.12.5). Thus z ∈ V0 + Z0, so that V = V0 + Z0. This shows that V
corresponds to the direct sum of V0 and Z0, as a vector space over k. If z ∈ Z0,
then

b(v, z) = 0(11.12.8)

for every v ∈ V0, by (11.12.3). This is equivalent to (11.12.3), because of
(11.12.7).

Suppose that b(·, ·) is either symmetric or antisymmetric on V . This implies
that

b(z, v) = 0(11.12.9)

for every v ∈ V0 and z ∈ Z0, by (11.12.8). If u,w ∈ V , then P0(u), P0(w) ∈ V0,
u− P0(u), w − P0(w) ∈ Z0, and hence

b(P0(u), w − P0(w)) = b(u− P0(u), P0(w)) = 0,(11.12.10)

by (11.12.8) and (11.12.9). It follows that

b(u,w) = b(P0(u), P0(w)) + b(u− P0(u), w − P0(w)).(11.12.11)

Thus b(·, ·) corresponds, as a bilinear form on V , to the bilinear form on the
direct sum of V0 and Z0 obtained from the restrictions of b(·, ·) to V0 and Z0.

Suppose for the moment that

b(w,w) = 0(11.12.12)

for every v ∈ V . Remember that this implies that b(·, ·) is antisymmetric on V ,
and that the converse holds when the characteristic of k is different from 2, as
in Section 2.1. Let x, y be elements of V such that

b(x, y) ̸= 0.(11.12.13)
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This implies that x and y are linearly independent in V , because of (11.12.12).
Thus the linear span V0 of x and y in V is a two-dimensional linear subspace
of V . It is easy to see that the restriction of b(·, ·) to V0 is nondegenerate on
V0. It follows that there is a complementary linear subspace Z0 of V0 with the
properties discussed in the previous paragraphs.

Suppose that V has finite dimension as a vector space over k. If b(·, ·) ̸≡ 0 on
V , then there are x, y ∈ V as in the preceding paragraph. Repeating the process,
we get that V corresponds to the direct sum of finitely many two-dimensional
linear subspaces on which b(·, ·) is nondegenerate, and possibly an additional
linear subspace on which b(·, ·) ≡ 0. This additional linear subspace is not
needed when b(·, ·) is nondegenerate on V . By construction, b(·, ·) corresponds
to the bilinear form on this direct sum obtained from the restrictions of b(·, ·)
to these linear subspaces.

Let V be any vector space over k again, and suppose that b(·, ·) is symmetric
on V . Let x be an element of V such that

b(x, x) ̸= 0,(11.12.14)

and let V0 be the linear span of x in V . Clearly V0 is a one-dimensional linear
subspace of V , and the restriction of b(·, ·) to V0 is nondegenerate on V0. This
leads to a complementary subspace Z0 of V0 in V as before, so that b(·, ·)
corresponds to the bilinear form on the direct sum of V0 and Z0 obtained from
the restrictions of b(·, ·) to V0 and Z0.

Suppose that V has finite dimension as a vector space over k again. Repeat-
ing the argument from the preceding pagraph, we get that V can be expressed
as the direct sum of finitely many one-dimensional linear subspaces on which
b(·, ·) ̸≡ 0, and possibly an additional linear subspace W such that (11.12.12)
holds for every w ∈W . As before, b(·, ·) corresponds to the bilinear form on the
direct sum obtained from the restrictions of b(·, ·) to these linear subspaces. If
the characteristic of k is different from 2, then b(·, ·) ≡ 0 on W , because b(·, ·) is
both symmetric and antisymmetric on W . In this case, the additional subspace
W is not needed when b(·, ·) is nondegenerate on V .

11.13 Antisymmetric bilinear forms

Let k be a field with characteristic different from 2, and let V be a vector
space over k of positive finite dimension. Also let β(·, ·) be a nondegenerate
antisymmetric bilinear form on V . Under these conditions, there is a basis for
V consisting of vectors x1, . . . , xn, y1, . . . , yn for some positive integer n with
the following properties. First,

β(xj , xl) = β(yj , yl) = 0(11.13.1)

for every j, l = 1, . . . , n, and

β(xj , yl) = 0(11.13.2)
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when j ̸= l. Second, for each j = 1, . . . , n,

β(xj , yj) ̸= 0.(11.13.3)

This well-known representation for β(·, ·) follows from some of the remarks in
the previous section. More precisely, we may ask that

β(xj , yj) = 1(11.13.4)

for every j = 1, . . . , n, by multiplying the xj ’s or yj ’s by suitable nonzero ele-
ments of k, if necessary.

If v ∈ V , then v can be expressed in a unique way as

v =

n∑
j=1

vxj
xj +

n∑
j=1

vyj yj ,(11.13.5)

where vxj , vyj ∈ k for every j = 1, . . . , n. Put

⟨v, w⟩V =

n∑
j=1

vxj
wxj

+

n∑
j=1

vyj wyj(11.13.6)

for every v, w ∈ V , where wxj
, wyj ∈ k correspond to w as in (11.13.5). This

defines a symmetric bilinear form on V , with

⟨v, v⟩V =

n∑
j=1

v2xj
+

n∑
j=1

v2yj(11.13.7)

for every v ∈ V . If k is an ordered field, then (11.13.7) is strictly positive
when v ̸= 0, and hence (11.13.6) defines an inner product on V . Of course,
x1, . . . , xn, y1, . . . , yn is an orthonormal basis for V with respect to (11.13.6).

Let B be the unique linear mapping from V into itself that satisfies

B(xj) = yj , B(yj) = −xj(11.13.8)

for every j = 1, . . . , n. It is easy to see that

B2 = −IV ,(11.13.9)

where IV is the identity mapping on V . One can check that

β(v, w) = ⟨B(v), w⟩V(11.13.10)

for every v, w ∈ V , by reducing to the cases where v = xj or yj and w = xl or
yl, 1 ≤ j, l ≤ n. We also have that

B∗ = −B,(11.13.11)

where B∗ is the adjoint of B with respect to (11.13.6). This corresponds to the
antisymmetry of β(·, ·) on V , because of (11.13.10).
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If T is a linear mapping from V into itself, then the adjoint T ∗,β of T with
respect to β(·, ·) is the unique linear mapping from V into itself such that

β(T (v), w) = β(v, T ∗,β(w))(11.13.12)

for every v, w ∈ V . This is the same as saying that

⟨B(T (v)), w⟩V = ⟨B(v), T ∗,β(w)⟩V(11.13.13)

for every v, w ∈ V , by (11.13.10). This is equivalent to

⟨B(T (v)), w⟩V = −⟨v,B(T ∗,β(w))⟩V(11.13.14)

for every v, w ∈ V , because of (11.13.11). This means that

(B ◦ T )∗ = −B ◦ T ∗,β ,(11.13.15)

where the left side is the adjoint of B ◦ T with respect to the inner product
(11.13.6). Thus

T ∗,β = −B−1 ◦ (B ◦ T )∗ = −B−1 ◦ T ∗ ◦B∗ = B−1 ◦ T ∗ ◦B.(11.13.16)

11.14 Symmetric bilinear forms

Let k be an ordered field, and let V be a vector space over k of positive finite
dimension n. In this section, we consider a nondegenerate symmetric bilinear
form β(·, ·) on V . It is well known that there is a basis e1, . . . , en for V such
that

β(ej , el) = 0(11.14.1)

when j ̸= l, and for each j = 1, . . . , n,

β(ej , ej) ̸= 0,(11.14.2)

as in Section 11.12. Remember that the absolute value |t| of t ∈ k can be defined
as an element of k, as in Section 8.13. If k = R, then one can choose the ej ’s
so that β(ej , ej) = ±1 for each j = 1, . . . , n.

If v ∈ V , then let

v =

n∑
j=1

vj ej(11.14.3)

be the unique representation of v as a linear combination of the ej ’s with coef-
ficients vj ∈ k. Put

⟨v, w⟩V =

n∑
j=1

|β(ej , ej)| vj wj(11.14.4)

for every v, w ∈ V , where wj ∈ k corresponds to w as in (11.14.3). This defines
a symmetric bilinear form on V , and

⟨v, v⟩V =

n∑
j=1

|β(ej , ej)| v2j(11.14.5)
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for every v ∈ V . If v ̸= 0, then (11.14.5) is strictly positive in k, so that
(11.14.4) is an inner product on V . Note that the ej ’s are pairwise orthogonal
with respect to (11.14.4).

Let B be the unique linear mapping from V into itself that satisfies

B(ej) = ej when β(ej , ej) > 0(11.14.6)

= −ej when − β(ej , ej) > 0.

Clearly
B2 = IV ,(11.14.7)

where IV is the identity mapping on V . It is easy to see that

B∗ = B,(11.14.8)

where B∗ is the adjoint of B with respect to the inner product (11.14.4). Of
course,

⟨B(v), w⟩V =
n∑
j=1

β(ej , ej) vj wj(11.14.9)

for every v, w ∈ V , by construction. One can check that

β(v, w) = ⟨B(v), w⟩V(11.14.10)

for every v, w ∈ V , by reducing to the case where v = ej and w = el, 1 ≤ j, l ≤ n.
If T is a linear mapping from V into itself, then the adjoint T ∗,β of T with

respect to β is the unique linear mapping from V into itself such that

β(T (v), w) = β(v, T ∗,β(w))(11.14.11)

for every v, w ∈ V , as before. This means that

⟨B(T (v)), w⟩V = ⟨B(v), T ∗,β(w)⟩V(11.14.12)

for every v, w ∈ V , because of (11.14.10). This is the same as saying that

⟨B(T (v)), w⟩V = ⟨v,B(T ∗,β(w))⟩V(11.14.13)

for every v, w ∈ V , by (11.14.8). This is equivalent to asking that

(B ◦ T )∗ = B ◦ T ∗,β ,(11.14.14)

where the left side is the adjoint of B ◦ T with respect to the inner product
(11.14.4). This shows that

T ∗,β = B−1 ◦ (B ◦ T )∗ = B−1 ◦ T ∗ ◦B∗ = B−1 ◦ T ∗ ◦B.(11.14.15)



Chapter 12

Some complex versions

12.1 Complexifying ordered fields

Let k be a ordered ring, as in Section 8.12, and suppose that k is commutative
and has a multiplicative identity element 1 = 1k. Also let a be an element of k
such that a > 0. Thus, for each x ∈ k, we have that x2 ̸= −a, because x2 ≥ 0.
As usual, we can get a commutative ring k[

√
−a] by adjoining a square root√

−a of −a to k. More precisely, we can define k[
√
−a] to be the space k2 of

ordered pairs of elements of k. An element of k[
√
−a] may be expressed in a

unique way as
z = x+ y

√
−a,(12.1.1)

with x, y ∈ k, which corresponds to (x, y) ∈ k2. Let us identify x ∈ k with
x+ 0

√
−a in k[

√
−a], so that k corresponds to a subset of k[

√
−a]. Let

w = u+ v
√
−a(12.1.2)

be another element of k[
√
−a], with u, v ∈ k. Addition and multiplication on k

can be extended to k[
√
−a] by putting

z + w = (x+ u) + (y + v)
√
−a(12.1.3)

and
z w = (xu− y v a) + (x v + y u)

√
−a,(12.1.4)

as usual. One can verify that k[
√
−a] is a commutative ring, and that k cor-

responds to a subring of k[
√
−a]. The multiplicative identity element 1 in

k corresponds to the multiplicative identity element in k[
√
−a]. Of course,

(
√
−a)2 = −a in k[

√
−a], by construction.

If z ∈ k[
√
−a] is as in (12.1.1), then the conjugate z of z in k[

√
−a] is defined

as usual by
z = x− y

√
−a.(12.1.5)

One can verify that
z + w = z + w(12.1.6)

252
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and
z w = z w(12.1.7)

for every z, w ∈ k[
√
−a]. Clearly

(z) = z(12.1.8)

for every z ∈ k[
√
−a], and z = z exactly when z corresponds to an element of

k. If z ∈ k[
√
−a] is as in (12.1.1) again, then

z + z = 2 · x(12.1.9)

and
z z = x2 + a y2(12.1.10)

correspond to elements of k. Note that

z z > 0(12.1.11)

in k when z ̸= 0.
Suppose now that k is an ordered field. If z ∈ k[

√
−a] and z ̸= 0, then z z

corresponds to a nonzero element of k, which has a multiplicative inverse in k.
This implies that z has a multiplicative inverse in k[

√
−a], which is z (1/(z z)).

Thus k[
√
−a] is a field in this case as well. If k is a subfield of R, then we can

take
√
−a to be i

√
a ∈ C, so that k[

√
−a] corresponds to a subfield of C.

Let k be an ordered field again, let a be a positive element of k, and let
k[
√
−a] be as before. Also let V and W be vector spaces over k[

√
−a], which

may be considered as vector spaces over k too. A linear mapping T from V
into W , as vector spaces over k[

√
−a], may be called k[

√
−a]-linear, or linear

over k[
√
−a], as usual. Similarly, if T is a linear mapping from V into W as

vector spaces over k, the we may say that T is k-linear, or linear over k. Thus
a mapping T from V into W is k[

√
−a]-linear if and only if T is k-linear and

T (
√
−a v) =

√
−a T (v)(12.1.12)

for every v ∈ V . A k-linear mapping T from V into W is said to be conjugate-
linear if

T (
√
−a v) = −

√
−a T (v)(12.1.13)

for every v ∈ V . This implies that

T (t v) = t T (v)(12.1.14)

for every t ∈ k[
√
−a] and v ∈ V .

12.2 Sesquilinearity over k[
√
−a]

Let k be an ordered field, let a be a positive element of k, and let k[
√
−a] be

as in the previous section. Also let V be a vector space over k, and let b(v, w)
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be a function defined for v, w ∈ V with values in k[
√
−a]. We say that b(·, ·)

is sesquilinear if b(v, w) is k[
√
−a]-linear in v for every w ∈ V , and conjugate-

linear in w for every v ∈ V . In particular, this means that b(·, ·) is bilinear over
k, where V and k[

√
−a] are considered as vector spaces over k. As before, b(·, ·)

is said to be Hermitian-symmetric on V if

b(w, v) = b(v, w)(12.2.1)

for every v, w ∈ V .
Let b(·, ·) be a sesquilinear form on V , and let T be a k[

√
−a]-linear mapping

from V into itself. As before, we say that T is self-adjoint with respect to b(·, ·)
if

b(T (v), w) = b(v, T (w))(12.2.2)

for every v, w ∈ V , and we say that T is anti-self-adjoint with respect to b(·, ·)
if

b(T (v), w) = −b(v, T (w))(12.2.3)

for every v, w ∈ V . It is easy to see that T is anti-self-adjoint with respect to
b(·, ·) if and only if

√
−a T is self-adjoint with respect to b(·, ·). Remember that

the space L(V ) of k[
√
−a]-linear mappings from V into itself is a vector space

over k[
√
−a], and thus may be considered as a vector space over k too. The

spaces of self-adjoint and anti-self-adjoint linear mappings from V into itself with
respect to b(·, ·) are k-linear subspaces of L(V ), which is to say that they are
linear subspaces of L(V ), as a vector space over k. If T1, T2 ∈ L(V ) are anti-self-
adjoint with respect to b(·, ·), then their commutator [T1, T2] = T1 ◦T2 −T2 ◦T1
with respect to composition is anti-self-adjoint with respect to b(·, ·) as well.
This means that the space of anti-self-adjoint linear mappings from V into itself
with respect to b(·, ·) is a Lie subalgebra of gl(V ) as a Lie algebra over k with
respect to the commutator bracket.

Suppose from now on in this section that V has finite dimension as a vector
space over k[

√
−a]. If w ∈ V , then

bw(v) = b(v, w)(12.2.4)

defines a linear functional on V , and w 7→ bw is a conjugate-linear mapping
from V into its dual space V ′. The image

{bw : w ∈ V }(12.2.5)

of this mapping is a linear subspace of V ′, as a vector space over k[
√
−a]. As

before, one can verify that (12.2.5) is equal to V ′ exactly when w 7→ bw is
injective, because V and V ′ have the same dimension as vector spaces over
k[
√
−a].
We say that b(·, ·) is nondegenerate as a sesquilinear form on V if for every

v ∈ V with v ̸= 0 there is a w ∈ V such that b(v, w) ̸= 0. Equivalently,
this means that the intersections of the kernels of the bw’s, w ∈ V , is the trivial
subspace of V . This holds exactly when (12.2.5) is equal to V ′, as in the complex
case.
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Let b(·, ·) be a nondegenerate sesquilinear form on V , let T be a k[
√
−a]-

linear mapping from V into itself, and let w ∈ V be given. Thus b(T (v), w)
defines a linear functional on V , as a function of v, so that there is a unique
element T ∗(w) of V such that

b(T (v), w) = b(v, T ∗(w))(12.2.6)

for every v ∈ V . One can check that T ∗ is a k[
√
−a]-linear mapping from V into

itself, which is called the adjoint of T with respect to b(·, ·). However, T 7→ T ∗

is conjugate-linear as a mapping from L(V ) into itself, as a vector space over
k[
√
−a]. Note that T is self-adjoint with respect to b(·, ·) when T ∗ = T , and that

T is anti-self-adjoint with respect to b(·, ·) when T ∗ = −T . If T1, T2 ∈ L(V ),
then one can check that

(T2 ◦ T1)∗ = T ∗
1 ◦ T ∗

2 ,(12.2.7)

as usual. If b(·, ·) is Hermitian-symmetric on V , then one can verify that

(T ∗)∗ = T(12.2.8)

for every T ∈ L(V ), as in Section 2.15.

12.3 Inner products over k[
√
−a]

Let k be an ordered field again, let a be a positive element of k, and let k[
√
−a]

be as in Section 12.1. Also let V be a vector space over k[
√
−a], and let ⟨·, ·⟩V

be a Hermitian form on V , which is to say a Hermitian-symmetric sesquilinear
form on V . Note that

⟨v, v⟩V ∈ k(12.3.1)

for every v ∈ V , because ⟨v, v⟩V = ⟨v, v⟩V , by Hermitian symmetry. Suppose
that

⟨v, v⟩V > 0(12.3.2)

for every v ∈ V with v ̸= 0, in which case ⟨·, ·⟩V is said to be an inner product
on V . If v, w ∈ V satisfy

⟨v, w⟩V = 0,(12.3.3)

then v and w are said to be orthogonal with respect to ⟨·, ·⟩V , as usual.
Let e1, . . . , en be finitely many pairwise-orthogonal nonzero vectors in V ,

and let v ∈ V be given. Thus

w =

n∑
j=1

⟨v, ej⟩V
⟨ej , ej⟩V

ej(12.3.4)

is an element of the linear span of e1, . . . , en in V , and

⟨w, el⟩V = ⟨v, el⟩V(12.3.5)
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for every l = 1, . . . , n. This means that ⟨w − v, el⟩V = 0 for each l = 1, . . . , n,
so that

⟨w − v, u⟩V = 0(12.3.6)

for every element u of the linear span of e1, . . . , en in V . If v is an element of
the linear span of e1, . . . , en in V , then it follows that v = w.

Let us suppose from now on in this section that V has positive finite dimen-
sion n, as a vector space over k[

√
−a]. Using the Gram–Schmidt process, one

can get nonzero pairwise-orthogonal vectors e1, . . . , en in V that form a basis
for V . If v ∈ V , then

v =

n∑
j=1

⟨v, ej⟩V
⟨ej , ej⟩V

ej ,(12.3.7)

as in the preceding paragraph. Let T be a linear mapping from V into itself, so
that there is a unique T ∗ ∈ L(V ) such that

⟨T (v), w⟩V = ⟨v, T ∗(w)⟩V(12.3.8)

for every v, w ∈ V , as before. Of course,

T (el) =

n∑
j=1

⟨T (el), ej⟩V
⟨ej , ej⟩V

ej(12.3.9)

for every l = 1, . . . , n, as in (12.3.7). This implies that

trV T =

n∑
j=1

⟨T (ej), ej⟩V
⟨ej , ej⟩V

.(12.3.10)

Thus

trV T
∗ =

n∑
j=1

⟨T ∗(ej), ej⟩V
⟨ej , ej⟩V

=

n∑
j=1

⟨ej , T (ej)⟩V
⟨ej , ej⟩V

(12.3.11)

=

n∑
j=1

⟨T (ej), ej⟩V
⟨ej , ej⟩V

= trV T .

Put

⟨T1, T2⟩L(V ) = trV (T1 ◦ T ∗
2 ) = trV (T

∗
2 ◦ T1)(12.3.12)

for every T1, T2 ∈ L(V ). This defines a sesquilinear form on L(V ), because
T 7→ T ∗ is conjugate-linear on L(V ). Observe that

⟨T1, T2⟩L(V ) = trV (T1 ◦ T ∗
2 ) = trV (T1 ◦ T ∗

2 )
∗

= trV (T2 ◦ T ∗
1 ) = ⟨T2, T1⟩L(V )(12.3.13)
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for every T1, T2 ∈ L(V ), using (12.3.11) in the second step. Thus (12.3.12) is
Hermitian-symmetric on L(V ). If T ∈ L(V ), then

⟨T, T ⟩L(V ) = trV (T
∗ ◦ T ) =

n∑
j=1

⟨T ∗(T (ej))⟩V
⟨ej , ej⟩V

(12.3.14)

=

n∑
j=1

⟨T (ej), T (ej)⟩V
⟨ej , ej⟩V

.

This implies that ⟨T, T ⟩L(V ) > 0 when T ̸= 0, because each of the terms on the
right side of (12.3.14) is greater than or equal to 0 in k, and at least one term
is strictly positive. It follows that (12.3.12) defines an inner product on L(V ),
as a vector space over k[

√
−a].

Let A ∈ L(V ) be given, and put

LA(T ) = A ◦ T, RA(T ) = T ◦A(12.3.15)

for every T ∈ L(V ), as before. As in Sections 11.8 and 11.9, we have that

⟨LA(T1), T2⟩L(V ) = trV (A ◦ T1 ◦ T ∗
2 ) = trV (T1 ◦ T ∗

2 ◦A)
= trV (T1 ◦ (A∗ ◦ T2)∗) = ⟨T1, LA∗(T2)⟩L(V )(12.3.16)

and

⟨RA(T1), T2⟩L(V ) = trV (T1 ◦A ◦ T ∗
2 ) = trV (T1 ◦ (T2 ◦A∗)∗)

= ⟨T1, RA∗(T2)⟩L(V )(12.3.17)

for every T1, T2 ∈ L(V ). If we put

CA(T ) = [A, T ] = LA(T )−RA(T )(12.3.18)

for each T ∈ L(V ), then we get that

⟨CA(T1), T2⟩L(V ) = ⟨T1, CA∗(T2)⟩L(V )(12.3.19)

for every T1, T2 ∈ L(V ), as before.

12.4 Self-adjointness in gl(V )

Let us continue with the same notation and hypotheses as in the previous sec-
tion. We would like to consider the analogues of the remarks in Section 11.10 in
this situation. Remember that gl(V ) is the same as L(V ), considered as a Lie
algebra over k[

√
−a] with respect to the corresponding commutator bracket. If

R, T ∈ gl(V ), then
CR(T ) = [R, T ] = R ◦ T − T ◦R(12.4.1)

is the same as adgl(V ),R(T ). As before,

⟨CR(T1), T2⟩L(V ) = ⟨T1, CR∗(T2)⟩L(V )(12.4.2)
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for every R, T1, T2 ∈ gl(V ).

Let A be a Lie subalgebra of gl(V ), as a Lie algebra over k[
√
−a]. Thus, for

each R ∈ A, CR maps A into itself, and the restriction of CR to A is the same
as adA,R. Let R1, R2 ∈ A be given, so that

trA(adA,R1
◦ adA,R2

) = trA(CR1
◦ CR2

)(12.4.3)

is the same as the Killing form on A evaluated at R1, R2, as before. This
uses the trace on A, as a finite-dimensional vector space over k[

√
−a]. More

precisely, one should use the restrictions of CR1 and CR2 to A on the right side
of (12.4.3).

If A is any subset of L(V ), then let A∗ be the subset of L(V ) defined by

A∗ = {T ∗ : T ∈ A},(12.4.4)

as before. Let us say that A is self-adjoint in L(V ) when A∗ = A. Let A be a
Lie subalgebra of gl(V ) again, as a Lie algebra over k[

√
−a], and suppose that

A is self-adjoint in L(V ). Let R ∈ A be given, so that R∗ ∈ A too, and CR and
CR∗ both map A into itself. The restriction of CR∗ to A is the adjoint of the
restriction of CR to A, as an inner product space over k[

√
−a] with respect to

the restriction of the inner product (12.3.12) on L(V ) to A.

Let L(A) be the space of all linear mappings from A into itself, which is
in particular a vector space over k[

√
−a]. The restriction of the inner product

(12.3.12) on L(V ) to A defines an inner product on A as a vector space over
k[
√
−a], as before. If Z ∈ L(A), then let ZA,∗ ∈ L(A) be the adjoint of Z with

respect to this inner product. If Z1, Z2 ∈ L(A), then put

⟨Z1, Z2⟩L(A) = trA(Z1 ◦ ZA,∗
2 ).(12.4.5)

This defines an inner product on L(A), as a vector space over k[
√
−a], as in the

previous section.

Let R1, R2 ∈ A be given, so that R∗
2 ∈ A as well, and adA,R∗

2
is the same as

the adjoint of adA,R2
with respect to the inner product on A mentioned in the

preceding paragraph. This implies that

trA(adA,R1
◦ adA,R2

) = ⟨adA,R1
, adA,R∗

2
⟩L(A),(12.4.6)

where the right side is as in (12.4.5). If R ∈ A, then we can take R1 = R and
R2 = R∗, to get that

trA(adA,R ◦ adA,R∗) = ⟨adA,R, adA,R⟩L(A).(12.4.7)

The right side is automatically greater than or equal to 0 in k, because (12.4.5)
is an inner product on L(A). Similarly, the right side is strictly positive when
adA,R ̸= 0 on A.
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12.5 Projections and sesquilinear forms

Let k be an ordered field, let a be a positive element of k again, and let k[
√
−a]

be as in Section 12.1. Also let V be a vector space over the complex numbers,
and let b(v, w) be a sesquilinear form on V , as in Section 12.2. Suppose that V0
is a finite-dimensional linear subspace of V , and that the restriction of b(v, w)
to v, w ∈ V0 is nondegenerate on V0. Let z ∈ V be given, and put

λz(v) = b(v, z)(12.5.1)

for every v ∈ V0, so that λz defines a linear functional on V0. As in Section
11.12, there is a unique element P0(z) of V0 such that

λz(v) = b(v, P0(z))(12.5.2)

for every v ∈ V0, because b(·, ·) is nondegenerate on V0. Equivalently,

b(v, z − P0(z)) = 0(12.5.3)

for every v ∈ V . Of course,
P0(z) = z(12.5.4)

when z ∈ V0. One can check that P0 defines a linear mapping from V onto V0,
as before. Note that P0 ◦ P0 = P0, so that P0 is a projection on V .

Let Z0 be the kernel of P0, and observe that

V0 ∩ Z0 = {0},(12.5.5)

by (12.5.4). We also have that z − P0(z) ∈ Z0 for every z ∈ V , so that

V = V0 + Z0.(12.5.6)

Thus V corresponds to the direct sum of V0 and Z0, as a vector space over
k[
√
−a]. Note that Z0 is the same as the set of z ∈ V such that

b(v, z) = 0(12.5.7)

for every v ∈ V0.
Suppose from now on in this section that b(·, ·) is Hermitian-symmetric on

V . Using this and (12.5.7), we get that

b(z, v) = 0(12.5.8)

for every v ∈ V0 and z ∈ Z0. Let u,w ∈ V be given, so that P0(u), P0(w) ∈ V0,
u− P0(u), w − P0(w) ∈ Z0, and

b(P0(u), w − P0(w)) = b(u− P0(u), P0(w)) = 0.(12.5.9)

Thus
b(u,w) = b(P0(u), P0(w)) + b(u− P0(u), w − P0(w)).(12.5.10)
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This means that b(·, ·) corresponds to the sesquilinear form on the direct sum
of V0 and Z0 obtained from the restrictions of b(·, ·) to V0 and Z0.

Suppose that x ∈ V satisfies

b(x, x) ̸= 0,(12.5.11)

and let V0 be the linear span of x in V . Thus V0 is a one-dimensional linear
subspace of V , and the restriction of b(·, ·) to V0 is nondegenerate on V0. It
follows that V corresponds to the direct sum of V0 and another linear subspace
Z0, in such a way that b(·, ·) corresponds to the sesquilinear form on the direct
sum obtained from the restrictions of b(·, ·) to V0 and Z0.

Suppose now that V has finite dimension as a vector space over k[
√
−a].

Repeating the previous argument, we can express V as the direct sum of finitely
many one-dimensional subspaces on which b(·, ·) ̸≡ 0, and perhaps an additional
linear subspace W such that

b(w,w) = 0(12.5.12)

for every w ∈ W . We also have that b(·, ·) corresponds to the sesquilinear
form on the direct sum obtained from the restrictions of b(·, ·) to these linear
subspaces. One can check that b(·, ·) ≡ 0 on W , using polarization arguments.
If b(·, ·) is nondegenerate on V , then this additional subspace W is not needed.

12.6 Nondegenerate Hermitian forms

Let k be an ordered field, let a be a positive element of k, and let k[
√
−a] be as

in Section 12.1 again. Also let V be a vector space over k[
√
−a] of positive finite

dimension n, and let β(·, ·) be a nondegenerate Hermitian form on V . Under
these conditions, there is a basis e1, . . . , en for V such that

β(ej , el) = 0(12.6.1)

when j ̸= l, and for each j = 1, . . . , n,

β(ej , ej) ̸= 0,(12.6.2)

as in the previous section. Note that

β(ej , ej) ∈ k(12.6.3)

for each j = 1, . . . , n, by Hermitian symmetry. If k = R, then one choose the
ej ’s so that β(ej , ej) = ±1 for each j = 1, . . . , n.

Each v ∈ V can be expressed in a unique way as

v =

n∑
j=1

vj ej ,(12.6.4)
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where vj ∈ k[
√
−a] for every j = 1, . . . , n. Remember that the absolute value

|t| of t ∈ k is defined as an element of k as in Section 8.13. If v, w ∈ V , then put

⟨v, w⟩V =

n∑
j=1

|β(ej , ej)| vj wj ,(12.6.5)

where wj ∈ k[
√
−a] corresponds to w as in (12.6.4). This defines a Hermitian

form on V , as a vector space over k[
√
−a]. In particular,

⟨v, v⟩V =

n∑
j=1

|β(ej , ej)| vj vj(12.6.6)

is an element of k for each v ∈ V . If v ̸= 0, then it is easy to see that (12.6.6)
is positive in k. Thus (12.6.5) defines an inner product on V , as a vector space
over k[

√
−a]. Of course, the ej ’s are orthogonal with respect to (12.6.5), by

construction.
Let B be the unique linear mapping from V into itself such that

B(ej) = ej when β(ej , ej) > 0(12.6.7)

= −ej when − β(ej , ej) > 0.

Note that B2 is the identity mapping I = IV on V . One can check that B is
self-adjoint with respect to (12.6.5). It is easy to see that

β(v, w) = ⟨B(v), w⟩V(12.6.8)

when v = ej and w = el, 1 ≤ j, l ≤ n. This implies that (12.6.8) holds for every
v, w ∈ V .

Let T be a linear mapping from V into itself, and remember that the adjoint
T ∗,β ∈ L(V ) of T with respect to β(·, ·) is characterized by the condition that

β(T (v), w) = β(v, T ∗,β(w))(12.6.9)

for every v, w ∈ V . This is the same as saying that

⟨B(T (v)), w⟩V = ⟨B(v), T ∗,β(w)⟩V(12.6.10)

for every v, w ∈ V , by (12.6.8). Equivalently, this means that

⟨B(T (v)), w⟩V = ⟨v,B(T ∗,β(w))⟩V(12.6.11)

for every v, w ∈ V , because B is self-adjoint with respect to (12.6.5). This is
the same as asking that

(B ◦ T )∗ = B ◦ T ∗,β ,(12.6.12)

where the left side is the adjoint of B ◦ T with respect to the inner product
(12.6.5). Thus

T ∗,β = B−1 ◦ (B ◦ T )∗ = B−1 ◦ T ∗ ◦B∗ = B−1 ◦ T ∗ ◦B.(12.6.13)
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12.7 Real parts

Let k be an ordered field, let a be a positive element of k, and let k[
√
−a] be as

in Section 12.1, as before. If z = x + y
√
−a ∈ k[

√
−a], with x, y ∈ k, then let

us call
Rek[

√
−a] z = x = (1/2) (z + z)(12.7.1)

the real part of z. Note that

Rek[
√
−a](

√
−a z) = −a y = (

√
−a/2) (z − z).(12.7.2)

Let V = Vk[
√
−a] be a finite-dimensional vector space over k[

√
−a], and let

⟨·, ·⟩V
k[
√

−a]
be an inner product on V . We shall use Vk to denote V considered

as a vector space over k. It is easy to see that

⟨v, w⟩Vk
= Rek[

√
−a] (⟨v, w⟩Vk[

√
−a]

)(12.7.3)

defines an inner product on Vk, as a vector space over k.
Let L(V ) = Lk[√−a](Vk[

√
−a]) be the algebra of k[

√
−a]-linear mappings from

V into itself, as usual, and let Lk(Vk) be the algebra of k-linear mappings from V
into itself. If T ∈ Lk[√−a](Vk[

√
−a]), then its adjoint with respect to ⟨·, ·⟩V

k[
√

−a]

is the unique k[
√
−a]-linear mapping T

∗,V
k[
√

−a] from V into itself such that

⟨T (v), w⟩V
k[
√

−a]
= ⟨v, T ∗,V

k[
√

−a](w)⟩V
k[
√

−a]
(12.7.4)

for every v, w ∈ V . Similarly, if T ∈ Lk(Vk), then its adjoint with respect to
(12.7.3) is the unique k-linear mapping T ∗,Vk from V into itself such that

⟨T (v), w⟩Vk
= ⟨v, T ∗,Vk(w)⟩Vk

(12.7.5)

for every v, w ∈ V . If T ∈ Lk[√−a](Vk[
√
−a]), then T may be considered as an

element of Lk(Vk), and
T ∗,Vk = T

∗,V
k[
√

−a] .(12.7.6)

Put
Ja(v) =

√
−a v(12.7.7)

for every v ∈ V , which defines a k[
√
−a]-linear mapping from V into itself. By

construction,
J2
a = −a I,(12.7.8)

where I is the identity mapping on V , and

⟨Ja(v), w⟩Vk
= Rek[

√
−a] (

√
−a ⟨v, w⟩V

k[
√

−a]
)(12.7.9)

for every v, w ∈ V . One can check that

J∗,Vk
a = J

∗,V
k[
√

−a]

a = −Ja.(12.7.10)
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This means that (12.7.9) is an antisymmetric bilinear form on Vk. Remember
that a k-linear mapping from V into itself is linear over k[

√
−a] exactly when

it commutes with Ja.
Let βV

k[
√

−a]
(·, ·) be a sesquilinear form on Vk[

√
−a], and put

βVk
(v, w) = Rek[

√
−a] (βVk[

√
−a]

(v, w))(12.7.11)

for every v, w ∈ V . This defines a bilinear form on Vk, which is to say a k-valued
function on V × V that is bilinear over k. Observe that

βVk
(Ja(v), w) = −βVk

(v, Ja(w)) = Rek[
√
−a] (

√
−a βVC

(v, w))(12.7.12)

for every v, w ∈ V . If βV
k[
√

−a]
(·, ·) is Hermitian-symmetric on VC, then (12.7.11)

is symmetric on VR, and (12.7.12) is antisymmetric on VR. Of course, (12.7.11)
and (12.7.12) correspond to (12.7.3) and (12.7.9) when βVC

(·, ·) = ⟨·, ·⟩VC
.

Suppose now that βV
k[
√

−a]
(·, ·) is nondegenerate as a sesquilinear form on

Vk[
√
−a], which implies that (12.7.11) and (12.7.12) are nondegenerate as bilinear

forms on Vk. If T ∈ Lk[√−a](Vk[
√
−a]), then there is a unique T

∗,βV
k[
√

−a] in
Lk[√−a](Vk[

√
−a]) such that

βV
k[
√

−a]
(T (v), w) = βV

k[
√

−a]
(v, T

∗,βV
k[
√

−a] (w))(12.7.13)

for every v, w ∈ V , as usual. Similarly, if T ∈ Lk(Vk), then there is a unique
T ∗,βVk ∈ Lk(Vk) such that

βVk
(T (v), w) = βVk

(v, T ∗,βVk (w))(12.7.14)

for every v, w ∈ V . If T ∈ Lk[√−a](Vk[
√
−a]), then T ∈ Lk(Vk), and

T ∗,βVR = T ∗,βVC ,(12.7.15)

as before. In particular, J
∗,βVk
a = J

∗,βV
k[
√

−a]

a = −Ja.
Let αVk

(·, ·) be a bilinear form on Vk such that

αVk
(Ja(v), w) = −αVk

(v, Ja(w))(12.7.16)

for every v, w ∈ V . Put

αV
k[
√

−a]
(v, w) = αVk

(v, w) + (1/
√
−a)αVk

(Ja(v), w)(12.7.17)

for every v, w ∈ V . One can check that this defines a sesquilinear form on
Vk[

√
−a]. If αVk

(·, ·) is symmetric on Vk, then (12.7.16) is antisymmetric on Vk,
and (12.7.17) is Hermitian-symmetric on Vk[

√
−a]. If αVk

(·, ·) is nondegenerate
on Vk, then (12.7.16) is nondegenerate on Vk, and (12.7.17) is nondegenerate on
Vk[

√
−a]. If αVk

(·, ·) is an inner product on Vk, then (12.7.17) is an inner product
on Vk[

√
−a]. If αVk

(·, ·) is equal to (12.7.11), then (12.7.17) is equal to βVC
(·, ·),

by (12.7.12).
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12.8 Bilinear forms over k[
√
−a]

Let k be an ordered field, let a be a positive element of k, and let k[
√
−a] be

as in Section 12.1, as usual. Also let V = Vk[
√
−a] be a finite-dimensional vector

space over k[
√
−a] again, and let γV

k[
√

−a]
(·, ·) be a bilinear form on Vk[

√
−a],

which is to say a k[
√
−a]-valued function on V ×V that is bilinear over k[

√
−a].

It follows that
γVk

(v, w) = Rek[
√
−a] (γVk[

√
−a]

(v, w))(12.8.1)

defines a bilinear form on Vk, which is to say a k-valued function on V × V
that is bilinear over k. Put Ja(v) =

√
−a v for every v ∈ V , as in the previous

section. Observe that

γVk
(Ja(v), w) = γVk

(v, Ja(w)) = Rek[
√
−a] (

√
−a γV

k[
√

−a]
(v, w))(12.8.2)

for every v, w ∈ V . If γV
k[
√

−a]
(·, ·) is symmetric or antisymmetric on Vk[

√
−a],

then (12.8.1) and (12.8.2) have the same property on Vk. If γV
k[
√

−a]
(·, ·) is

nondegenerate as a bilinear form on Vk[
√
−a], then (12.8.1) and (12.8.2) are

nondegenerate as bilinear forms on Vk.
Let αVk

(·, ·) be a bilinear form on Vk such that

αVk
(Ja(v), w) = αVk

(v, Ja(w))(12.8.3)

for every v, w ∈ V . Put

αV
k[
√

−a]
(v, w) = αVk

(v, w) + (1/
√
−a)αVk

(Ja(v), w)(12.8.4)

for every v, w ∈ V . One can check that this defines a bilinear form on Vk[
√
−a].

If αVk
(·, ·) is symmetric or antisymmetric, then (12.8.3) and (12.8.4) have the

same property. Similarly, if αVk
(·, ·) is nondegenerate, then (12.8.3) and (12.8.4)

are nondegenerate.
Suppose for the moment that γV

k[
√

−a]
(·, ·) is nondegenerate on Vk[

√
−a], so

that γVk
(·, ·) is nondegenerate on Vk. If T ∈ Lk[√−a](Vk[

√
−a]), then there is a

unique T
∗,γV

k[
√

−a] ∈ Lk[√−a](Vk[
√
−a]) such that

γV
k[
√

−a]
(T (v), w) = γV

k[
√

−a]
(v, T

∗,γV
k[
√

−a] (w))(12.8.5)

for every v, w ∈ V . Similarly, if T ∈ Lk(Vk), then there is a unique T ∗,γVk in
Lk(Vk) such that

γVk
(T (v), w) = γVk

(v, T ∗,γVk (w))(12.8.6)

for every v, w ∈ V . If T ∈ Lk[√−a](Vk[
√
−a]), then T ∈ Lk(Vk), and

T ∗,γVk = T
∗,γV

k[
√

−a] .(12.8.7)

Note that

J
∗,γVk
a = J

∗,γV
k[
√

−a]

a = Ja.(12.8.8)
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Let ⟨·, ·⟩V
k[
√

−a]
be an inner product on Vk[

√
−a]. If w ∈ V , then there is a

unique element C(w) of V such that

γV
k[
√

−a]
(v, w) = ⟨v, C(w)⟩V

k[
√

−a]
(12.8.9)

for every v ∈ V , by standard arguments. More precisely, the left side may be
considered as a linear functional on Vk[

√
−a] as a function of v, which can be

represented in terms of the inner product as on the right side. It is easy to
see that C is conjugate-linear as a mapping from V into itself, because the left
side of (12.8.9) is linear over k[

√
−a] in w, and the inner product ⟨·, ·⟩V

k[
√

−a]
is

conjugate-linear in the second variable.
Suppose that γV

k[
√

−a]
(·, ·) is nondegenerate on Vk[

√
−a] again, which implies

that C is a one-to-one mapping from V onto itself. If T is a k[
√
−a]-linear

mapping from V into itself, then

⟨T (v), C(w)⟩V
k[
√

−a]
= ⟨v, C(T

∗,γV
k[
√

−a] (w))⟩V
k[
√

−a]
(12.8.10)

for every v, w ∈ V , by (12.8.5) and (12.8.9). We also have that

⟨T (v), C(w)⟩V
k[
√

−a]
= ⟨v, T ∗,V

k[
√

−a](C(w))⟩V
k[
√

−a]
(12.8.11)

for every v, w ∈ V , where T
∗,V

k[
√

−a] is the adjoint of T with respect to the inner
product ⟨·, ·⟩V

k[
√

−a]
on Vk[

√
−a]. It follows that

C ◦ T
∗,γV

k[
√

−a] = T
∗,V

k[
√

−a] ◦ C.(12.8.12)

12.9 Conjugate-linearity and adjoints

Let k be an ordered field, let a be a positive element of k, and let k[
√
−a] be

as in Section 12.1. Also let V = Vk[
√
−a] be a finite-dimensional vector space

over k[
√
−a], and let Vk be V considered as a vector space over k, as before.

Note that the composition of two conjugate-linear mappings from V into itself
is linear over k[

√
−a]. Similarly, the composition of a conjugate-linear mapping

from V into itself with a k[
√
−a]-linear mapping from V into itself, in either

order, is conjugate-linear.
Let ⟨·, ·⟩V

k[
√

−a]
be an inner product on Vk[

√
−a], and let ⟨·, ·⟩Vk

be its real

part, as in (12.7.3). Thus ⟨·, ·⟩Vk
is an inner product on Vk as a vector space

over k, as before. Let C be a conjugate-linear mapping from V into itself, which
is linear over k in particular. The adjoint C∗,Vk of C with respect to ⟨·, ·⟩Vk

is
defined as a k-linear mapping from V into itself in the usual way. Remember
that Ja is the mapping from V into itself defined by multiplication by

√
−a, as

in (12.7.7). Conjugate-linearity of C means that

C ◦ Ja = −Ja ◦ C,(12.9.1)
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as in Section 12.1. This implies that

C∗,Vk ◦ Ja = −Ja ◦ C∗,Vk ,(12.9.2)

because J∗,Vk
a = −Ja, as in (12.7.10). This shows that C∗,Vk is conjugate-linear

on V as well.
Observe that

⟨v, C(w)⟩Vk
= ⟨C∗,Vk(v), w⟩Vk

= ⟨w,C∗,Vk(v)⟩Vk
(12.9.3)

for every v, w ∈ V , by definition of the adjoint. In fact, we have that

⟨v, C(w)⟩V
k[
√

−a]
= ⟨w,C∗,Vk(v)⟩V

k[
√

−a]
(12.9.4)

for every v, w ∈ V . More precisely, the real parts of both sides are the same,
by (12.9.3). One can get (12.9.4) using this and the fact that both sides are
k[
√
−a]-linear in w. This gives another way to see the conjugate-linearity of

C∗,Vk on V too.
Put

γV
k[
√

−a]
(v, w) = ⟨v, C(w)⟩V

k[
√

−a]
(12.9.5)

for every v, w ∈ V . This defines a bilinear form on Vk[
√
−a], because C is

conjugate-linear, and ⟨·, ·⟩V
k[
√

−a]
is sesquilinear. Similarly, put

γVk
(v, w) = ⟨v, C(w)⟩Vk

(12.9.6)

for every v, w ∈ V , which is the same as the real part of (12.9.5). Thus

γV
k[
√

−a]
(v, w) = ⟨w,C∗,V (v)⟩V

k[
√

−a]
(12.9.7)

and
γVk

(v, w) = ⟨w,C∗,Vk(v)⟩Vk
(12.9.8)

for every v, w ∈ V . It follows that the self-adjointness or anti-self-adjointness
of C with respect to ⟨·, ·⟩Vk

is equivalent to the symmetry or anti-symmetry of
(12.9.5), (12.9.6), as appropriate.

12.10 Antisymmetric forms over k[
√
−a]

Let k be an ordered field, let a be a positive element of k, and let k[
√
−a] be

as in Section 12.1. Also let V be a vector space over k[
√
−a] of positive finite

dimension, and let γ(·, ·) be a nondegenerate antisymmetric bilinear form on
V . As in Section 11.13, there is a basis for V consisting of vectors x1, . . . , xn,
y1, . . . , yn for some positive integer n such that

γ(xj , xl) = γ(yj , yl) = 0(12.10.1)

for every j, l = 1, . . . , n,
γ(xj , yl) = 0(12.10.2)
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when j ̸= l, and

γ(xj , yj) = 1(12.10.3)

for every j = 1, . . . , n. It is easy to define an inner product on V , as a vector
space over k[

√
−a], for which x1, . . . , xn, y1, . . . , yn are orthonormal, as in the

next paragraph. Using this, we can express γ(·, ·) in terms of a conjugate-linear
mapping C from V into itself, as in the previous sections.

Each v ∈ V can be expressed in a unique way as

v =

n∑
j=1

vxj
xj +

n∑
j=1

vyj yj ,(12.10.4)

where vxj
, vyj ∈ k[

√
−a] for every j = 1, . . . , n. Similarly, if w ∈ V , then let

wxj , wyj ∈ k[
√
−a] be as in (12.10.4). Put

⟨v, w⟩V =

n∑
j=1

vxj
wxj

+

n∑
j=1

vyj wyj(12.10.5)

for every v, w ∈ V . It is easy to see that this defines an inner product on V , as
a vector space over k[

√
−a]. Note that x1, . . . , xn, y1, . . . , yn are orthonormal

in V with respect to (12.10.5), by construction.
Let C be the unique conjugate-linear mapping from V into itself such that

C(xj) = −yj , C(yj) = xj(12.10.6)

for each j = 1, . . . , n. Thus, if v ∈ V is as in (12.10.4), then

C(v) = −
n∑
j=1

vj yj +

n∑
j=1

wj xj .(12.10.7)

One can verify that

γ(v, w) = ⟨v, C(w)⟩V(12.10.8)

for every v, w ∈ V . More precisely, one can first check that this holds when v, w
are among the basis vectors x1, . . . , xn, y1, . . . , yn. This implies that (12.10.8)
holds for all v, w ∈ V , because both sides of (12.10.8) are k[

√
−a]-linear in v

and w.
Observe that

C2 = −IV ,(12.10.9)

where IV is the identity mapping on V . Let Vk be V considered as a vector
space over k, as before. Also let ⟨v, w⟩Vk

be the real part of (12.10.5), which
defines an inner product on Vk. One can check that C is anti-self-adjoint as a
k-linear mapping from V into itself with respect to ⟨·, ·⟩Vk

. This corresponds
to the antisymmetry of (12.10.8) as a bilinear form on V , as in the previous
section.
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12.11 Symmetric forms over k[
√
−a]

Let k be an ordered field, let a be a positive element of k, and let k[
√
−a] be

as in Section 12.1 again. Also let V be a vector space over k[
√
−a] of positive

finite dimension n, and let e1, . . . , en be a basis for V . Suppose that γ(·, ·) is a
bilinear form on V such that

γ(ej , el) = 0(12.11.1)

when j ̸= l, and for each j = 1, . . . , n,

γ(ej , ej) ̸= 0(12.11.2)

and
γ(ej , ej) ∈ k.(12.11.3)

Note that γ(·, ·) is symmetric and nondegenerate on V , because of (12.11.1) and
(12.11.2). Conversely, it is well known that for any nondegenerate symmetric
bilinear form on V , there is a basis for V for which (12.11.1) and (12.11.2) hold,
as in Sections 11.12 and 11.14. Because of (12.11.3), we can reduce further to
the case where

γ(ej , ej) > 0(12.11.4)

for every j = 1, . . . , n, using scalar multiplication by
√
−a, when needed. If

k = R, so that k[
√
−a] = C, then we can reduce directly to the case where

γ(ej , ej) = 1(12.11.5)

for every j = 1, . . . , n, without asking that (12.11.3) hold.
Every v ∈ V can be expressed in a unique way as

v =

n∑
j=1

vj ej ,(12.11.6)

where vj ∈ k[
√
−a] for each j = 1, . . . , n. If v, w ∈ V , then put

⟨v, w⟩V =

n∑
j=1

|γ(ej , ej)| vj wj ,(12.11.7)

where wj ∈ k[
√
−a] corresponds to w as in (12.11.6). Remember that the

absolute value |γ(ej , ej)| of γ(ej , ej) is defined as an element of k as in Section
8.13. Of course, this is the same as γ(ej , ej) when (12.11.4) holds. It is easy to
see that (12.11.7) defines an inner product on V , for which the ej ’s are pairwise
orthogonal.

Let C be the unique conjugate-linear mapping from V into itself such that

C(ej) = ej when γ(ej , ej) > 0(12.11.8)

= −ej when − γ(ej , ej) > 0.
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If (12.11.4) holds, then C(ej) = ej for every j = 1, . . . , n, so that

C(v) =

n∑
j=1

vj ej(12.11.9)

for every v ∈ V as in (12.11.6). Observe that

⟨v, C(w)⟩V =

n∑
j=1

γ(ej , ej) vj wj(12.11.10)

for every v, w ∈ V . Using this, one can check that

γ(v, w) = ⟨v, C(w)⟩V(12.11.11)

for every v, w ∈ V . One can also verify that

C2 = IV ,(12.11.12)

where IV is the identity mapping on V .
Let Vk be V considered as a vector space over k, as usual. The real part

⟨v, w⟩Vk
of (12.11.7) defines an inner product on Vk, as before. One can check

that C is self-adjoint with respect to ⟨·, ·⟩Vk
, as a k-linear mapping from V into

itself. This corresponds to the fact that (12.11.11) is symmetric on V , as in
Section 12.9.

12.12 Nonnegative self-adjoint operators

Let (V, ⟨·, ·⟩V ) and (W, ⟨·, ·⟩W ) be finite-dimensional inner product spaces, both
defined over the real numbers or both defined over the complex numbers, and
let ∥ · ∥V , ∥ · ∥W be the corresponding norms on V , W , respectively. Also let T
be a linear mapping from V into W , and let T ∗ be the corresponding adjoint
mapping from W into V . Thus T ∗ ◦ T maps V into itself, and it is easy to see
that T ∗ ◦ T is self-adjoint. Observe that

⟨(T ∗ ◦ T )(v), v⟩V = ⟨T (v), T (v)⟩W = ∥T (v)∥2W(12.12.1)

for every v ∈ V . Of course, one could consider infinite-dimensional Hilbert
spaces as well.

Let A be a linear mapping from V into itself that is self-adjoint with respect
to the inner product ⟨·, ·⟩, so that

⟨A(v), w⟩ = ⟨v,A(w)⟩(12.12.2)

for every v, w ∈ V . In the complex case, (12.12.2) implies that

⟨A(v), v⟩ = ⟨v,A(v)⟩ = ⟨A(v), v⟩(12.12.3)
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for every v ∈ V , so that ⟨A(v), v⟩ ∈ R for every v ∈ V . In both the real and
complex cases, A is said to be nonnegative on V if

⟨A(v), v⟩ ≥ 0(12.12.4)

for every v ∈ V . Similarly, A is said to be strictly positive on V if

⟨A(v), v⟩V > 0(12.12.5)

for every v ∈ V with v ̸= 0. In particular, this implies that the kernel of A
is trivial. If T is a linear mapping from V into W , as before, then T ∗ ◦ T
is automatically nonnegative, by (12.12.1). More precisely, T ∗ ◦ T is strictly
positive exactly when the kernel of T is trivial.

If A is any self-adjoint linear mapping from V into itself, then there is an
orthonormal basis for V consisting of eigenvectors for A, because V has finite
dimension. Note that the eigenvalues of A are real, even in the complex case.
It is easy to see that A is nonnegative on V if and only if the eigenvalues of A
are nonnegative real numbers. Similarly, A is strictly positive on V if and only
if the eigenvalues of A are positive real numbers. If A is nonnegative on V and
the kernel of A is trivial, then it follows that A is strictly positive on V .

If A is nonnegative on V , then there is a nonnegative self-adjoint linear
mapping B from V into itself such that B2 = A. This can be obtained using a
diagonalization for A, as in the preceding paragraph. If A is strictly positive on
V , then B is strictly positive on V as well. Note that B automatically commutes
with A in this situation. More precisely, B commutes with any linear mapping
C from V into itself that commutes with A. Indeed, if C commutes with A,
then C maps the eigenspaces of A into themselves. On each eigenspace of A, B
is equal to a nonnegative multiple of the identity, by construction.

Let B1 be any nonnegative self-adjoint linear mapping from V into itself such
that B2

1 = A. Thus B1 commutes with A, so that B1 maps the eigenspaces of
A into themselves. One can check that the restriction of B1 to each eigenspace
of A is a nonnegative multiple of the identity. This can be obtained using a
diagonalization of B1 with respect to an orthonormal basis for each eigenspace
of A. It follows that B1 is uniquely determined by A under these conditions.

12.13 Polar decompositions

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let T be a linear mapping from V into W again, so that T ∗ ◦ T is a
nonnegative self-adjoint linear mapping from V into itself. It follows that there
is a unique nonnegative self-adjoint linear mapping R from V into itself such
that

R2 = T ∗ ◦ T,(12.13.1)

as in the previous section. If u, v ∈ V , then

⟨(T ∗ ◦ T )(u), v⟩V = ⟨T (u), T (v)⟩W(12.13.2)
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and
⟨R2(u), v⟩V = ⟨R(u), R(v)⟩V .(12.13.3)

This implies that
⟨R(u), R(v)⟩V = ⟨T (u), T (v)⟩W ,(12.13.4)

by (12.13.1). In particular,

∥R(v)∥V = ∥T (v)∥W(12.13.5)

for every v ∈ V , by taking u = v in (12.13.4). Let us suppose from now on in
this section that the kernel of T is trivial. This implies that the kernel of R is
trivial too, by (12.13.5). Thus R is invertible as a mapping from V into itself,
because V has finite dimension.

Put
U = T ◦R−1,(12.13.6)

which defines a linear mapping from V into W . If v, v′ ∈ V , then

⟨U(R(v)), U(R(v′))⟩V = ⟨T (v), T (v′)⟩W = ⟨R(v), R(v′)⟩V ,(12.13.7)

using the definition of U in the first step, and (12.13.4) in the second step. This
means that

⟨U(v), U(v′)⟩W = ⟨v, v′⟩V(12.13.8)

for every v, v′ ∈ V , because R is invertible on V . It follows that

∥U(v)∥W = ∥v∥V(12.13.9)

for every v ∈ V , by taking v′ = v in (12.13.8). Let us suppose from now on in
this section that V = W . This implies that T maps V onto itself, because V
has finite dimension. Thus U is a one-to-one mapping from V onto itself. More
precisely,

U−1 = U∗,(12.13.10)

because of (12.13.8), as in Section 3.8.
Suppose that T is normal on V , in the sense that T commutes with T ∗. Of

course, this implies that T commutes with T ∗ ◦ T . It follows that R commutes
with T , as in the previous section. This means that U commutes with R and
T , by the definition of U .

Suppose for the moment that T is self-adjoint on V , which implies that T is
normal in particular. In this case, we get that

U2 = T 2 ◦R−2 = I,(12.13.11)

the identity operator on V . Equivalently, one can check that U is self-adjoint
in this situation.

Similarly, if T is anti-self-adjoint on V , then T is normal, and T ∗ ◦T = −T 2.
This implies that

U2 = T 2 ◦R−2 = −I.(12.13.12)

Alternatively, one can verify directly that U is anti-self-adjoint in this case.
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12.14 Bilinear forms and inner products

Let (V, ⟨·, ·⟩) be a finite-dimensional inner product space over the real numbers.
If B is a linear mapping from V into itself, then

β(v, w) = ⟨B(v), w⟩(12.14.1)

defines a bilinear form on V . Every bilinear form on V corresponds to a unique
linear mapping on V in this way. Note that β is symmetric or antisymmetric on
V exactly when B is self-adjoint or anti-self-adjoint on V with respect to ⟨·, ·⟩,
as appropriate. Let us suppose from now on that B is invertible on V , so that
β is nondegenerate on V .

Of course, the adjoint B∗ of B with respect to ⟨·, ·⟩ is invertible on V too,
because B is invertible. Note that B ◦B∗ is a strictly positive self-adjoint linear
mapping from V into itself, which corresponds to taking T = B∗ in the previous
section. As before, there is a unique nonnegative self-adjoint linear mapping A
from V into itself such that

A2 = B ◦B∗.(12.14.2)

More precisely, A is invertible on V , so that A is strictly positive on V . Put

B0 = A−1 ◦B,(12.14.3)

which is invertible on V as well. By construction,

B0 ◦B∗
0 = A−1 ◦B ◦B∗ ◦A−1 = I,(12.14.4)

so that

B−1
0 = B∗

0 .(12.14.5)

If we take T = B∗ in the previous section, then A corresponds to R, and B0

corresponds to U∗.
If B is normal on V , then A commutes with B, and hence B0 commutes

with A and B, as before. If B is self-adjoint on V , and normal in particular,
then

B2
0 = A−2 ◦B2 = I.(12.14.6)

Equivalently, one can check that B0 is self-adjoint on V . Similarly, if B is
anti-self-adjoint on V , then B is normal, and

B2
0 = A−2 ◦B2 = −I.(12.14.7)

Alternatively, one can verify that B0 is anti-self-adjoint in this case.
Clearly

B = A ◦B0,(12.14.8)

by (12.14.3). Put

⟨v, w⟩A = ⟨A(v), w⟩(12.14.9)



12.15. COMPLEX BILINEAR FORMS 273

for every v, w ∈ V . This defines an inner product on V , because A is strictly
positive and self-adjoint on V . Observe that

β(v, w) = ⟨B0(v), w⟩A(12.14.10)

for every v, w ∈ V . If B is normal with respect to ⟨·, ·⟩ on V , then

⟨B0(v), w⟩A = ⟨A(B0(v)), w⟩ = ⟨B0(A(v)), w⟩
= ⟨A(v), B∗

0(w)⟩ = ⟨v,B∗
0(w)⟩A(12.14.11)

for every v, w ∈ V , because B0 commutes with A.
Now let (V, ⟨·, ·⟩) be a finite-dimensional inner product space over the com-

plex numbers. If B is a linear mapping from V into itself, then (12.14.1) defines
a sesquilinear form β on V , and every sesquilinear form on V corresponds to a
unique linear mapping from V into itself in this way. One can check that β is
Hermitian-symmetric on V exactly when B is self-adjoint on V with respect to
⟨·, ·⟩. Suppose from now on in this section that B is invertible on V , so that β
is nondegenerate on V . This implies that the adjoint B∗ of B with respect to
⟨·, ·⟩ is invertible on V as well.

As before, B◦B∗ is a strictly positive self-adjoint linear mapping from V into
itself. Hence there is a unique nonnegative self-adjoint linear mapping A from
V into itself that satisfies (12.14.2). In fact, A is invertible on V , and strictly
positive. Let B0 be as in (12.14.3), which is invertible on V , with inverse equal
to B∗

0 , as in (12.14.5). If B is normal on V , then A commutes with B, and B0

commutes with A and B. If B is self-adjoint on V , then B is normal, and

B2
0 = I.(12.14.12)

Alternatively, one can check directly that B0 is self-adjoint in this case.
Let ⟨v, w⟩A be defined for v, w ∈ V as in (12.14.9), which defines an in-

ner product on V , because A is strictly positive and self-adjoint on V . Thus
(12.14.10) holds for every v, w ∈ V again, by construction. If B is normal on V
with respect to ⟨·, ·⟩, then the adjoint of B0 with respect to ⟨·, ·⟩A is the same
as the adjoint with respect to ⟨·, ·⟩, as in (12.14.11).

12.15 Complex bilinear forms

Let (V, ⟨·, ·⟩) be a finite-dimensional inner product space over the complex num-
bers again. If C is a conjugate-linear mapping from V into itself, then

γ(v, w) = ⟨v, C(w)⟩(12.15.1)

is a bilinear form on V , as before. Every bilinear form on V corresponds to a
conjugate-linear mapping C on V in this way, as in Section 12.8.

Let VR be V considered as a vector space over the real numbers, and let
⟨·, ·⟩VR

be the real part of ⟨·, ·⟩, which is an inner product on VR. Also let C
be a conjugate-linear mapping from V into itself, and let C∗,VR be the adjoint
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of C, as a real-linear mapping from V into itself, with respect to ⟨·, ·⟩VR
. Thus

C∗,VR is conjugate-linear on V too, as in Section 12.9. It follows that C ◦C∗,VR

is a complex-linear mapping from V into itself, as before.
Note that C ◦ C∗,VR is nonnegative and self-adjoint with respect to ⟨·, ·⟩VR

.
This implies that there is a unique real-linear mapping A from V into itself that
is nonnegative and self-adjoint with respect ⟨·, ·⟩VR

and satisfies

A2 = C ◦ C∗,VR .(12.15.2)

Remember that A commutes with any real-linear mapping from V into itself
that commutes with C ◦C∗,VR . In particular, A commutes with the mapping J
from V into itself that corresponds to multiplication by i, because C ◦C∗,VR is
complex linear. This means that A is complex linear on V as well, and one can
check that A is self-adjoint and nonnegative with respect to ⟨·, ·⟩.

Alternatively, C ◦C∗,VR is self-adjoint as a complex-linear mapping from V
into itself with respect to ⟨·, ·⟩, because C ◦ C∗,VR is complex linear and self-
adjoint as a real-linear mapping from V into itself with respect to ⟨·, ·⟩VR

, as in
Section 12.7. Similarly, it is easy to see that C ◦C∗,VR is nonnegative as a self-
adjoint complex-linear mapping from V into itself with respect to ⟨·, ·⟩, because
C ◦C∗,VR is nonnegative as a self-adjoint real-linear mapping from V into itself
with respect to ⟨·, ·⟩VR

. Thus one can take A to be the unique complex-linear
mapping from V into itself that is nonnegative and self-adjoint with respect to
⟨·, ·⟩ and satisfies (12.15.2).

Suppose from now on in this section that C is invertible on V , so that
(12.15.1) is nondegenerate as a bilinear form on V . This implies that C∗,VR is
invertible on V too, and that C ◦ C∗,VR is strictly positive on V with respect
to ⟨·, ·⟩VR

, and hence with respect to ⟨·, ·⟩. It follows that A is invertible on V ,
and strictly positive with respect to ⟨·, ·⟩VR

, ⟨·, ·⟩. Thus

⟨v, w⟩VR,A = ⟨A(v), w⟩VR
(12.15.3)

defines an inner product on VR, and

⟨v, w⟩A = ⟨A(v), w⟩(12.15.4)

defines an inner product on V . Of course,

⟨v, w⟩VR,A = Re ⟨v, w⟩A(12.15.5)

for every v, w ∈ V , by construction.
Put

C0 = A−1 ◦ C,(12.15.6)

which is invertible as a real-linear mapping on V . In fact, C0 is conjugate-
linear on V , because A is complex-linear and C is conjugate-linear. As before,
C0 ◦ C∗,VR

0 = I, so that

C−1
0 = C∗,VR

0 .(12.15.7)
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Of course, C = A ◦ C0, so that

γ(v, w) = ⟨v, C(w)⟩ = ⟨v,A(C0(w))⟩(12.15.8)

= ⟨A(v), C0(w)⟩ = ⟨v, C0(w)⟩A

for every v, w ∈ V .
Suppose for the moment that C is normal with respect to ⟨·, ·⟩VR

, so that
C commutes with C∗,VR . This implies that C commutes with C ◦ C∗,VR , and
hence that A commutes with C. It follows that C0 commutes with A and C in
this situation. Thus

⟨C0(v), w⟩VR,A = ⟨A(C0(v)), w⟩VR
= ⟨C0(A(v)), w⟩VR

= ⟨A(v), C∗,VR

0 (w)⟩VR
= ⟨v, C∗,VR

0 (w)⟩VR,A(12.15.9)

for every v, w ∈ V . This means that the adjoint of C0 with respect to ⟨·, ·⟩VR,A

is the same as C∗,VR

0 in this case.
If γ(·, ·) is symmetric or antisymmetric on V , then

γR(v, w) = Re γ(v, w) = ⟨v, C(w)⟩VR
(12.15.10)

has the analogous property as a bilinear form on VR. This means that C is self-
adjoint or antiself-adjoint with respect to ⟨·, ·⟩VR

. In both cases, C is normal
with respect to ⟨·, ·⟩VR

. If C is self-adjoint with respect to ⟨·, ·⟩VR
, then C0 is

self-adjoint with respect to ⟨·, ·⟩VR
, and

C2
0 = I,(12.15.11)

as in the previous section. Similarly, if C is anti-self-adjoint with respect to
⟨·, ·⟩VR

, then C0 is anti-self-adjoint with respect to ⟨·, ·⟩VR
, and

C2
0 = −I.(12.15.12)



Chapter 13

Semisimplicity

13.1 Semisimple modules

Let k be a commutative ring with a multiplicative identity element, let A, V
be modules over k, and let ρ be a bilinear action of A on V , as in Section 6.1.
Suppose that V corresponds to the direct sum of a family of submodules, as
a module over k, where each of these submodules is mapped into itself by the
action of ρ. Suppose also that the action of ρ on each of these submodules is
irreducible, or equivalently that each of these submodules is simple with respect
to the action of ρ, as in Section 6.14. Under these conditions, ρ is said to
be completely reducible on V , or equivalently V is said to be semisimple with
respect to the action of ρ.

In particular, these notions may be applied to representations of associa-
tive algebras over k, or to Lie algebras over k. Equivalently, one may consider
modules over associative algebras over k, or Lie algebras over k. One can al-
ways reduce to the case of a representation of an associative algebra, using the
algebra of homomorphisms from V into itself, as a module over k, generated
by the mappings on V defined by the bilinear action. Of course, one may in-
clude the identity mapping on V in this algebra, without affecting the invariant
submodules.

Let V0 be a submodule of V , as a module over k, that is mapped into itself
by the action of ρ on V . Consider the following condition on V0:

V corresponds to the direct sum of V0 and another(13.1.1)

submodule V1, as a module over k, where V1 is also

invariant under the action of ρ on V.

In fact, ρ is completely reducible on V exactly when this condition holds for
all such V0. This is Proposition 4.1 on p11 of [5] for modules over rings. This
corresponds to a remark at the bottom of p45 of [25] for representations of Lie
algebras as well.

276
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Indeed, suppose that V corresponds to the direct sum of a family {Vj}j∈I of
submodules, as a module over k, where for each j ∈ I, Vj is mapped into itself
by the action of ρ on V , and Vj is irreducible under the action of ρ. If I0 ⊆ I,
then let V (I0) be the submodule of V generated by Vj , j ∈ I0. Let W be a
submodule of V , as a module over k, that is mapped into itself by the action of
ρ on V . Under these conditions, there is an I1 ⊆ I such that

V (I1) ∩W = {0},(13.1.2)

and I1 is maximal with respect to inclusion. More precisely, one can find such
an I1 in a fairly straightforward way when I has only finitely or countably many
elements, and otherwise one can use Zorn’s lemma or Hausdorff’s maximality
principle.

If j ∈ I \ I1, then
V (I1 ∪ {j}) ∩W ̸= {0},(13.1.3)

by the maximality of I1. Thus there is a nonzero element of W that can be
expressed as the sum of elements of V (I1) and Vj , and this element of Vj has to
be nonzero, by (13.1.2). This means that there is a nonzero element of Vj that
can be expressed as a sum of elements of V (I1) and W , so that

Vj ∩ (V (I1) +W ) ̸= {0}.(13.1.4)

It follows that
Vj ⊆ V (I1) +W,(13.1.5)

because Vj ∩ (V (I1) + W ) is a submodule of V , as a module over k, that is
invariant under the action of ρ, and Vj is irreducible with respect to the action
of ρ. This implies that

V = V (I1) +W,(13.1.6)

so that V corresponds to the direct sum of V (I1) and W , as a module over k,
by (13.1.2).

Before considering the converse, note that (13.1.1) holds for a submodule V0
of V , as a module over k, that is mapped into itself by the action of ρ on V , if
and only if

there is a homomorphism ϕ0 from V onto V0, as modules(13.1.7)

over k, that intertwines the action of ρ on V, and is

equal to the identity mapping on V0.

Of course, if (13.1.1) holds, then one can take ϕ0 to be the corresponding pro-
jection from V onto V0. If (13.1.7) holds, then one can take V1 to be the kernel
of ϕ0 in (13.1.1).

Suppose now that (13.1.1) holds for every submodule V0 of V , as a module
over k, that is mapped into itself by the action of ρ on V , so that (13.1.7) holds
for every such V0. Let W be a submodule of V , and let W0 be a submodule
of W , as modules over k, such that W and W0 are mapped into themselves by
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the action of ρ on V . Using (13.1.7) with V0 = W0, we get a homomorphism
from V onto W0, as modules over k, that intertwines the action of ρ on V , and
is equal to the identity mapping on W0. The restriction of this homomorphism
to W is a homomorphism from W onto W0, as modules over k, that intertwines
the action of ρ on W , and is equal to the identity mapping on W0. This implies
that W corresponds to the direct sum of W0 and another submodule W1, as a
module over k, where W1 is also mapped into itself by the action of ρ, as before.

If k is a field, and V has finite dimension, as a vector space over k, then
it is easy to get that ρ is completely reducible on V , using the remarks in the
preceding paragraph. Otherwise, complete reducibility can be obtained as in
Proposition 4.1 on p11 of [5].

13.2 Complete reducibility

Let k be a field of characteristic 0, and let A be a Lie algebra over k with finite
dimension as a vector space over k. Suppose that A is semisimple as a Lie
algebra over k.

Remember that [A,A] = A, as in Section 10.15. This implies that any
representation of A on a one-dimensional vector space over k is trivial, as in the
lemma on p28 of [14], and remarked on p47 of [25].

A famous theorem going back to Weyl states that every finite-dimensional
representation of A is completely reducible, as on p28 of [14] and p46 of [25]. In
order to prove this, we shall begin with the following splitting principle. Weyl’s
theorem will be obtained from this in Section 13.7.

Let V be a finite-dimensional module over A, and suppose that W is a
submodule of V , as a module over A, such that W has codimension one in V as
a vector space over k. This means that the quotient space V/W has dimension
one as a vector space over k, so that the induced action of A on V/W is trivial,
as before. Equivalently, the action of A on V actually maps V into W . Under
these conditions, we would like to show that V corresponds to the direct sum
of W and a one-dimensional submodule of V , as a module over A.

The case where W is irreducible as a module over A will be discussed in
Section 13.6. This will use a suitable Casimir element, which will be discussed
in the next two sections.

To reduce to the case where W is irreducible, we use induction on the di-
mension of W . Suppose that W is not irreducible as a module over A, so that
there is a proper nonzero submodule Z of W , as a module over A. Under these
conditions, V/Z is an module over A too, W/Z is a submodule of V/Z, as a
module over A, and W/Z has codimension one in V/Z, as a vector space over
k. The dimension of W/Z is strictly less than the dimension of W , as vector
spaces over k. Using induction, we get that V/Z corresponds to the direct sum
of W/Z and a one-dimensional submodule of V/Z, as a module over A.

This one-dimensional submodule of V/Z can be expressed as U/Z, where U
is a linear subspace of V that contains Z as a codimension-one subspace, and
U is a submodule of V , as a module over A. Note that the dimension of Z
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is strictly less than the dimension of W , as vector spaces over k. Using the
induction hypothesis again, we get that U corresponds to the direct sum of Z
and a one-dimensional submodule of U , as a module over A. One can check that
V corresponds to the direct sum of W and this one-dimensional submodule of
U , as desired.

13.3 Casimir elements

Let k be a field, and let (A, [·, ·]A) be a Lie algebra over k. Suppose that A has
positive finite dimension n as a vector space over k, and let β be a nondegenerate
symmetric bilinear form on A. Suppose also that β is associative on A, or
equivalently that β is invariant with respect to the adjoint representation on A,
so that

β([x,w]A, y) = β(x, [w, y]A)(13.3.1)

for every w, x, y ∈ A, as in Sections 6.10 and 7.11. Let u1, . . . , un be a basis for
A, as a vector space over k. Under these conditions, there is a basis w1, . . . , wn
for A such that

β(uj , wl) = δj,l(13.3.2)

for every j, l = 1, . . . , n. Here δj,l ∈ k is equal to 1 when j = l, and to 0 when
j ̸= l, as usual. This is the dual basis for A with respect to β.

Let x ∈ A be given, and let (aj,l) and (bj,l) be the n×n matrices with entries
in k such that

[x, uj ]A =

n∑
l=1

aj,l ul(13.3.3)

and

[x,wj ]A =

n∑
l=1

bj,l wl(13.3.4)

for every j = 1, . . . , n. Observe that

β([x, uj ]A, wr) =

n∑
l=1

aj,l β(ul, wr) = aj,r(13.3.5)

for every j, r = 1, . . . , n, and similarly

β(uj , [x,wr]A) =

n∑
l=1

br,l β(uj , wl) = br,j(13.3.6)

for every j, r = 1, . . . , n. Using (13.3.1), we get that

aj,r = −br,j(13.3.7)

for every j, r = 1, . . . , n.
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Let V be a vector space over k, and let ρ be a representation of A on V . Put

cρ(β) =

n∑
j=1

ρuj ◦ ρwj ,(13.3.8)

which defines a linear mapping from V into itself. This is the Casimir element
of the space L(V ) of linear mappings from V into itself associated to β and ρ.
If x ∈ A is as in the preceding paragraph, then

[ρx, cρ(β)] =

n∑
j=1

[ρx, ρuj
◦ ρwj

],(13.3.9)

using the commutator bracket on L(V ) corresponding to composition of linear
mappings on V . It follows that

[ρx, cρ(β)] =

n∑
j=1

[ρx, ρuj
] ◦ ρwj

+

n∑
j=1

ρuj
◦ [ρx, ρwj

],(13.3.10)

as in Section 2.5. Because ρ is a Lie algebra representation, we get that

[ρx, cρ(β)] =

n∑
j=1

ρ[x,uj ]A ◦ ρwj +

n∑
j=1

ρuj ◦ ρ[x,wj ]A

=

n∑
j=1

n∑
l=1

aj,l ρul
◦ ρwj +

n∑
j=1

n∑
l=1

bj,l ρuj ◦ ρwl
= 0,(13.3.11)

using (13.3.3) and (13.3.4) in the second step, and (13.3.7) in the third step.
This corresponds to part of the discussion on p27 of [14].

Let u′1, . . . , u
′
n and w′

1, . . . , w
′
n be bases for A as a vector space over k. We

can express these bases in terms of the uj ’s and wl’s, so that

u′h =

n∑
j=1

µh,j uj(13.3.12)

for every h = 1, . . . , n and

w′
r =

n∑
l=1

νr,l wl(13.3.13)

for every r = 1, . . . , n, where µ = (µh,j) and ν = (νr,l) are invertible n × n
matrices with entries in k. Thus

β(u′h, w
′
r) =

n∑
j=1

n∑
l=1

µh,j νr,l β(uj , wl)(13.3.14)

=

n∑
j=1

n∑
l=1

µh,j νr,l δj,l =

n∑
j=1

µh,j νr,j
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for every h, r = 1, . . . , n, using (13.3.2) in the second step. It follows that

β(u′h, w
′
r) = δh,r(13.3.15)

for every h, r = 1, . . . , n if and only if

n∑
j=1

µh,j νr,j = δh,r(13.3.16)

for every h, r = 1, . . . , n. Of course, (13.3.16) is the same as saying that µ times
the transpose of ν is the identity matrix. This is equivalent to the condition
that the transpose of ν times µ be the identity matrix, which means that

n∑
h=1

νh,l µh,j = δl,j(13.3.17)

for every j, l = 1, . . . , n. If ρ is as in the previous paragraph, then

n∑
h=1

ρu′
h
◦ ρw′

h
=

n∑
h=1

n∑
j=1

n∑
l=1

µh,j νh,l ρuj ◦ ρwl
.(13.3.18)

If (13.3.17) holds, then we get that

n∑
h=1

ρu′
h
◦ ρw′

h
=

n∑
j=1

n∑
l=1

δl,j ρuj
◦ ρwl

=

n∑
j=1

ρuj
◦ ρwj

,(13.3.19)

which is the same as (13.3.8).
The hypothesis that β be symmetric on A does not seem to have been used

so far, but it does give some additional properties. If β is symmetric on A, then
the conditions on u1, . . . , un and w1, . . . , wn are symmetric in these two bases
for A.

13.4 Another perspective

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let A′ be the space of linear functionals on A, as a vector space over
k. Remember that the tensor products A

⊗
A and A

⊗
A′ can be defined as

vector spaces over k, as in Section 7.12. The product of an element of A and a
linear functional on A defines a linear mapping from A into itself. This defines
a bilinear mapping from A×A′ into the space L(A) of linear mappings from A
into itself, as a vector space over k. This leads to a linear mapping from A

⊗
A′

into L(A), which is an isomorphism in this case, because A has finite dimension
as a vector space over k. If z ∈ A, then

βz(x) = β(x, z)(13.4.1)
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defines a linear functional on A, and z 7→ βz is a linear mapping from A into A′.
More precisely, z 7→ βz is a one-to-one linear mapping from A onto A′, because
β is nondegenerate on A. This leads to a one-to-one linear mapping from A

⊗
A

onto A
⊗
A′.

The condition (13.3.2) on the bases u1, . . . , un and w1, . . . , wn for A is the
same as saying that

n∑
j=1

uj β(x,wj) = x(13.4.2)

for every x ∈ A. Consider
n∑
j=1

uj ⊗ wj ,(13.4.3)

as an element of A
⊗
A. This corresponds to the identity mapping on A under

the isomorphisms mentioned in the preceding paragraph, because of (13.4.2).
Remember that A may be considered as a module over itself, as a Lie algebra
over k, using the adjoint representation. It follows that A′, A, and the related
tensor products may be considered as modules over A too, in the usual way.
The invariance condition on β implies that z 7→ βz is a homomorphism from A
into A′, as modules over A. One can use this to get that (13.4.3) is invariant
under the corresponding representation of A on A

⊗
A, because the identity

mapping on A is invariant under the respresentation of A on L(A). This can
also be verified using (13.3.3), (13.3.4), and (13.3.7), as before.

The image of (13.4.3) in the universal eveloping algebra of A is called the
Casimir element associated to β, as on p46 of [25]. One can get (13.3.8) from
(13.4.3) using the action of the universal enveloping algebra on V associated
to the representation ρ, as in [25]. This amounts to using ρ to get a bilinear
mapping from A × A into L(V ), and thus a linear mapping from A

⊗
A into

L(V ). Related matters are discussed on p118-9 of [14].
Let u′1, . . . , u

′
n and w′

1, . . . , w
′
n be bases for A again, which can be expressed

in terms of the uj ’s and wl’s as in (13.3.12) and (13.3.13), respectively. Thus

n∑
h=1

u′h ⊗ w′
h =

n∑
h=1

n∑
j=1

n∑
l=1

µh,j νh,l uj ⊗ wl.(13.4.4)

If (13.3.17) holds, then it follows that

n∑
h=1

u′h ⊗ w′
h =

n∑
j=1

n∑
l=1

δl,j uj ⊗ wl =

n∑
j=1

uj ⊗ wj .(13.4.5)

This can also be obtained from the fact that (13.4.3) corresponds to the identity
mapping on A under the isomorphisms mentioned earlier.

If β is symmetric on A, then (13.4.3) is symmetric as an element of A
⊗
A,

as in Section 7.15. This follows from (13.4.5), because (13.3.2) is symmetric in
u1, . . . , un and w1, . . . , wn in this case.
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13.5 A more particular situation

Let k be a field of characteristic 0, and let (A, [·, ·]A) be a Lie algebra over
k with positive finite dimension n as a vector space over k. Also let V be a
finite-dimensional vector space over k, and let ρ be a representation of A on V .
Put

βρ(x, y) = trV (ρx ◦ ρy)(13.5.1)

for every x, y ∈ A, which defines a symmetric bilinear form on A. Remember
that (13.5.1) satisfies the associativity or invariance condition (13.3.1), as in
Section 7.9. Suppose from now on in this section that A is semisimple as a Lie
algebra over k, and that ρ is injective as a Lie algebra homomorphism from A
into gl(V ).

Remember that the radical of (13.5.1) in A is defined by

Aβρ = {x ∈ A : βρ(x, y) = 0 for every y ∈ A},(13.5.2)

as in Section 7.11. This is an ideal in A, because (13.5.1) is associative on A,
as before. The image

{ρx : x ∈ Aβρ}(13.5.3)

of Aβρ under ρ is a Lie subalgebra of gl(V ). Using Cartan’s criterion, we get that
(13.5.3) is solvable as a Lie algebra over k. This implies that (13.5.2) is solvable,
because ρ is injective. It follows that Aβρ = {0}, because A is semisimple. This
shows that (13.5.1) is nondegenerate on A under these conditions.

Let u1, . . . , un be a basis for A, as a vector space over k. As in Section
13.3, there is a basis w1, . . . , wn for A that satisfies (13.3.2), with β = βρ. This
leads to a Casimir element cρ = cρ(βρ) of L(V ) associated to ρ as in (13.3.8).
Observe that

trV cρ =

n∑
j=1

trV (ρuj ◦ ρwj ) =

n∑
j=1

βρ(uj , wj) = n.(13.5.4)

In particular, this means that cρ ̸= 0, because we are assuming for convenience
that A ̸= {0}.

Remember that cρ commutes with the action of ρ on V , as in (13.3.11). If ρ
is irreducible on V , then it follows that cρ is a one-to-one mapping from V onto
itself, by Schur’s lemma, as in Section 6.14. Otherwise, ifW is a linear subspace
of V that is invariant under the action of ρ, then cρ maps W into itself as well.
This corresponds to parts of the discussions on p27 of [14] and p46 of [25].

13.6 A splitting theorem

Let k be a field of characteristic 0, and let A be a finite-dimensional semisimple
Lie algebra over k. Also let V be a finite-dimensional vector space over k, and let
ρV be a representation of A on V . Suppose that W is a codimension-one linear
subspace of V , and that the action of ρV on V maps W into itself. We would
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like to show that V is the direct sum of W and a one-dimensional subspace that
is mapped to itself by ρV , as in Section 13.2. Remember that the induced action
of ρV on V/W is trivial, as before.

Let ρW be the representation of A on W obtained by restricting ρV from V
to W . In this section, we consider the case where W is irreducible with respect
to ρW . This corresponds to arguments on p28-9 of [14], and p47 of [25]. These
arguments focus on V and W , respectively, as we shall see. Note that the roles
of V and W are exchanged in the notation used on p47 of [25].

If x, y ∈ A, then put

βρV (x, y) = trV (ρ
V
x ◦ ρVy )(13.6.1)

and

βρW (x, y) = trW (ρWx ◦ ρWy ),(13.6.2)

as in (13.5.1). In this situation, (13.6.1) and (13.6.2) are the same, because the
action induced on V/W by ρV is trivial. This also uses the remarks in Section
7.10.

Let us begin with the argument in [14]. Without loss of generality, we may
suppose that ρV is injective as a Lie algebra homomorphism from A into gl(V ).
Otherwise, we can replace A with its quotient by the kernel of ρV . This quotient
of A is semisimple as a Lie algebra over k too, as in Section 10.14. We may
suppose that A ̸= {0} as well, since otherwise the problem is very easy.

Let cρV be the Casimir element of L(V ) associated to ρV as in the previous
section. Thus cρV maps W into itself, because W is invariant under ρV , by
hypothesis. The kernel of cρV in V is invariant under the action of ρV , because
cρV commutes with the action of ρV on V , as in (13.3.11).

Because cρV (W ) ⊆ W , cρV induces a linear mapping from V/W into itself.
This induced mapping is equal to 0, because of the corresponding statement for
ρV , and the definition of cρV . If cρV ≡ 0 on W , then it follows that trV cρV = 0,
as in Section 7.10. This contradicts (13.5.4), because A ̸= {0}.

Thus cρV ̸≡ 0 on W , so that the restriction of cρV to W is a one-to-one
mapping onto W , by Schur’s lemma, as in Section 6.14. However, cρV is not
invertible on V , because the induced mapping on V/W is equal to 0. Hence the
kernel of cρV is a one-dimensional linear subspace of V whose intersection with
W is trivial. This gives an invariant complement of W in V , as desired.

Now let us consider the argument in [25]. Let A0 be the kernel of ρW , as
a Lie algebra homomorphism from A into gl(W ). Thus A0 is an ideal in A. If
x ∈ A0, then ρ

V
x = ρWx = 0 on W , and ρVx (V ) ⊆ W , because the mapping on

V/W induced by ρVx is equal to 0. If y ∈ [A0, A0], then it follows that ρVy = 0
on V . Remember that A0 is semisimple as a Lie algebra over k, because A is
semisimple, as in Section 10.14. This implies that A0 = [A0, A0], as in Section
10.15. It follows that ρVy = 0 on V for every y ∈ A0. Note that A/A0 is
semisimple as a Lie algebra over k, as in Section 10.14 again. This permits us to
reduce to the case where ρW is injective as a Lie algebra homomorphism from
A into gl(W ), since otherwise we could replace A with A/A0.
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We may suppose that A ̸= {0} too, as before. Because ρW is injective as
a Lie algebra homomorphism from A into gl(W ), (13.6.2) is nondegenerate on
A, as in the previous section. Let cρV (βρW ) be the Casimir element of L(V )
that corresponds to ρV and (13.6.2), as in Section 13.3. Note that cρV (βρW )
maps V into W , because of the corresponding property of ρV . The restriction
of cρV (βρW ) to W is the same as the Casimir element cρW = cρW (βρW ) of L(W )
that corresponds to ρW and (13.6.2), by the definitions of cρV (βρW ) and ρW .
The trace of cρW on W is equal to the dimension of A, as in (13.5.4). Thus
cρW ̸= 0, because A ̸= {0}. This implies that cρW is invertible on W , by Schur’s
lemma, because ρW is irreducible on W . It follows that the kernel of cρV (βρW )
is a one-dimensional subspace of V complementary to W , as before.

More precisely, the argument in [25] is formulated in terms of the Casimir
element of the universal enveloping algebra of A associated to (13.6.2), as in
Section 13.3. This is used again in the remarks following the proof, with the
roles of V and W interchanged in the notation of [25], as before.

13.7 Weyl’s theorem

Let k be a field of characteristic 0 again, let A be a finite-dimensional semisimple
Lie algebra over k, and let V be a module over A that is finite-dimensional as a
vector space over k. Also letW be a nonzero proper submodule of V . We would
like to show that V corresponds to a direct sum of W and another submodule
of V . This will imply Weyl’s theorem, as in Section 13.2.

Remember that the space L(V,W ) of all linear mappings from V into W
may be considered as a module over A too, as in Section 7.5. More precisely, if
a ∈ A and T ∈ L(V,W ), then a · T is defined as a linear mapping from V into
W by putting

(a · T )(v) = a · (T (v))− T (a · v)(13.7.1)

for every v ∈ V . This uses the action of A on V in both terms on the right, and
the fact that this action sends W into itself, by hypothesis.

Let Z be the collection of linear mappings T from V into W for which there
is an α(T ) ∈ k such that

T (w) = α(T )w(13.7.2)

for every w ∈ W . It is easy to see that Z is a linear subspace of L(V,W ), and
that α defines a linear mapping from Z onto k. If a ∈ A, T ∈ Z, and w ∈ W ,
then

(a · T )(w) = a · (T (w))− T (a · w) = a · (α(T )w)− α(T ) (a · w) = 0.(13.7.3)

This implies that a · T ∈ Z, with α(a · T ) = 0. In particular, Z is a submodule
of L(V,W ), as a module over A.

Let Z0 be the collection of linear mappings T from V intoW such that T ≡ 0
on W . Equivalently, this means that T ∈ Z, with α(T ) = 0. Note that Z0 is a
submodule of Z, as a module over A. More precisely, if a ∈ A and T ∈ Z, then
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a · T ∈ Z0, as in the preceding paragraph. The codimension of Z0 in Z is equal
to one, because Z0 is the kernel of α on Z.

The splitting theorem discussed in Section 13.2 and the previous section
implies that there is a one-dimensional submodule of Z, as a module over A,
that is complementary to Z0. LetR be a nonzero element of this one-dimensional
complementary submodule. Note that α(R) ̸= 0, since otherwise R ∈ Z0, which
would imply that R = 0. We may as well suppose that α(R) = 1, by multiplying
R by 1/α(R). If a ∈ A, then a ·R ∈ Z0, as before, which implies that a ·R = 0,
because a ·R is in the submodule of Z complementary to Z0. This means that
R commutes with the actions of A on V and W . Thus the kernel of R is a
submodule of V , as a module over A. The kernel of R is also complementary to
W in V , as desired.

13.8 Symmetric forms and tensors

Let k be a field, let A be a finite-dimensional vector space over k, and let β(·, ·)
be a bilinear form on A. Thus

βz(x) = β(x, z)(13.8.1)

defines a linear functional on A for each z ∈ A, and z 7→ βz defines a linear
mapping from A into the dual space A′ of all linear functionals on A. Let
y, z ∈ A be given, and put

Ty,z(x) = βz(x) y = β(x, z) y(13.8.2)

for every x ∈ A, which defines Ty,z as a linear mapping from A into itself.
Observe that

β(Ty,z(x), w) = β(x, z)β(y, w)(13.8.3)

and

β(x, Tz,y(w)) = β(x, z)β(w, y)(13.8.4)

for every w, x, y, z ∈ A. If β(·, ·) is symmetric as a bilinear form on A, then we
get that

β(Ty,z(x), w) = β(x, Tz,y(w))(13.8.5)

for every w, x, y, z ∈ A.
Let us suppose from now on in this section that β(·, ·) is nondegenerate on

A. If T is any linear mapping from A into itself, then there is a unique adjoint
linear mapping T ∗ from A into itself such that

β(T (x), w) = β(x, T ∗(w))(13.8.6)

for every w, x ∈ A, as in Section 2.14. If β(·, ·) is symmetric on A, then

(Ty,z)
∗ = Tz,y(13.8.7)
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for every y, z ∈ A, by (13.8.5). Remember that A
⊗
A and A

⊗
A′ are defined

as vector spaces over k, as in Section 7.12. Clearly

(y, z) 7→ Ty,z(13.8.8)

defines a mapping from A × A into the space L(A) of linear mappings from A
into itself that is bilinear over k. This leads to a linear mapping from A

⊗
A

into L(A), with
y ⊗ z 7→ Ty,z(13.8.9)

for every y, z ∈ A. More precisely, we have seen that there is a natural iso-
morphism from A

⊗
A′ onto L(A), as vector spaces over k, as in Section 13.4.

Because β(·, ·) is nondegenerate on A, z 7→ βz is an isomorphism from A onto
A′, as vector spaces over k. This leads to an isomorphism from A

⊗
A onto

A
⊗
A′, as vector spaces over k, as before. We can compose these mappings to

get an isomorphism from A
⊗
A onto L(A), as vector spaces over k. This is the

same as the mapping determined by (13.8.9), by construction.
There is a natural automorphism on A

⊗
A, as a vector space over k, with

y ⊗ z 7→ z ⊗ y(13.8.10)

for every y, z ∈ A, as in Section 7.15. Let us suppose from now on in this section
that β(·, ·) is symmetric on A. Of course,

(y, z) 7→ Tz,y = (Ty,z)
∗(13.8.11)

defines a mapping from A × A into L(A), which is bilinear over k. This leads
to a linear mapping from A

⊗
A into L(A), with

y ⊗ z 7→ Tz,y = (Ty,z)
∗(13.8.12)

for every y, z ∈ A. This is the same as the composition of the mapping from
A
⊗
A into L(A) determined by (13.8.9) with T 7→ T ∗, as a linear mapping from

L(A) onto itself. This is also the same as the composition of the automorphism
on A

⊗
A determined by (13.8.10) with the linear mapping from A

⊗
A into

L(A) determined by (13.8.9). More precisely, these linear mappings from A
⊗
A

into L(A) are the same, because they correspond to the same bilinear mapping
from A×A into L(A).

An element of T 2A = A
⊗
A is said to be symmetric if it is invariant un-

der the automorphism determined by (13.8.10), as in Section 7.15. Symmetric
elements of A

⊗
A correspond exactly to linear mappings from A into itself

that are self-adjoint with respect to β(·, ·), under the vector space isomorphism
from A

⊗
A onto L(A) determined by (13.8.9), as in the preceding paragraph.

Note that the identity mapping on A is automatically self-adjoint with respect
to β(·, ·). Thus the element of A

⊗
A that corresponds to the identity map-

ping on A under the isomorphism just mentioned is symmetric in A
⊗
A under

these conditions. This gives another way to look at the symmetry condition
mentioned at the end of Section 13.4.
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13.9 Reductive Lie algebras

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Remember that A may be considered as a
module over itself, using the adjoint representation. The kernel of the adjoint
representation, as a Lie algebra homomorphism from A into gl(A), is the same
as the center Z(A) of A as a Lie algebra. Of course, the quotient A/Z(A) may
be considered as a Lie algebra over k too, because Z(A) is an ideal in A. Thus
A may be considered as a module over A/Z(A), as a Lie algebra over k.

An ideal in A as a Lie algebra is the same as a submodule of A, as a module
over itself with respect to the adjoint representation. Similarly, ideals in A as a
Lie algebra are the same as submodules of A as a module over A/Z(A).

Now let k be a field of characteristic 0, and suppose that A is a finite-
dimensional Lie algebra over k. Suppose also that A is reductive as a Lie
algebra, as in Section 11.3. Thus Z(A) is the same as the solvable radical of A.
In this case, A/Z(A) is semisimple as a Lie algebra over k, as in Section 9.4.

Of course, Z(A) is a submodule of A, as a module over A/Z(A). Because
A/Z(A) is semisimple as a Lie algebra over k, there is a submodule B of A, as
a module over A/Z(A), such that A corresponds to the direct sum of Z(A) and
B, as in Section 13.7. This means that

Z(A) ∩B = {0}, Z(A) +B = A,(13.9.1)

and that B is an ideal in A, as before.
Observe that

[A,A] = [B,B] ⊆ B.(13.9.2)

We also have that
[A/Z(A), A/Z(A)] = A/Z(A),(13.9.3)

because A/Z(A) is semisimple as a Lie algebra over k, as in Section 10.15. The
canonical quotient mapping q from A onto A/Z(A) maps [A,A] onto the left side
of (13.9.3). In this situation, the restriction of q to B is a one-to-one mapping
from B onto A/Z(A). It follows that

B = [A,A],(13.9.4)

and that [A,A] is semisimple as a Lie algebra over k. This shows that A corre-
sponds to the direct sum of Z(A) and [A,A] as a Lie algebra over k, by definition
of Z(A). This corresponds to the second part of part (a) of Exercise 5 on p30
of [14], and to part (a) of the proposition on p102 of [14]. This also seems to
correspond to a comment at the bottom of p50 in [25].

13.10 Semisimple ideals

Let k be a field of characteristic 0, and let (B, [·, ·]B) be a Lie algebra over k
with finite dimension as a vector space over k. Suppose that A is an ideal in B
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that is semisimple as a Lie algebra over k. Under these conditions, there is a
unique ideal B0 in B such that B corresponds to the direct sum of A and B0,
as a Lie algebra over k. This is Corollary 1 on p47 of [25].

Of course, B may be considered as a module over itself, using the adjoint
representation. We can restrict the action of B on itself to an action of A on B,
so that B becomes a module over A, as a Lie algebra over k. Note that A may
be considered as a submodule of B, as a module over A. As in Section 13.7,
there is a submodule B0 of B, as a module over A, such that B corresponds to
the direct sum of A and B0, as a module over A. In particular, B corresponds
to the direct sum of A and B0, as a vector space over k, so that

A ∩B0 = {0} and A+B0 = B.(13.10.1)

Let us check that
[A,B0] = {0},(13.10.2)

where the left side is defined as in Section 9.2, as usual. Clearly

[A,B0] ⊆ [A,B] ⊆ A,(13.10.3)

because A is an ideal in B. We also have that [A,B0] ⊆ B0, because B0 is a
submodule of B, as a module over A. Thus [A,B0] ⊆ A∩B0 = {0}, as desired.

Suppose that y ∈ B satisfies [a, y]B = 0 for every a ∈ A. Because A+B0 =
B, there are x ∈ A and z ∈ B0 such that y = x + z. We already know that
[a, z]B = 0, by (13.10.2), and so we get that [a, x]B = 0 for every a ∈ A. This
implies that x = 0, because x ∈ A and A is semisimple, so that the center
of A is trivial. It follows that y = z ∈ B0. This shows that B0 is exactly
the set of y ∈ B such that [a, y]B = 0 for every a ∈ A. Thus B0 is uniquely
determined by the properties of being a submodule of B, as a module over A,
that is complementary to A.

Equivalently, B0 is the centralizer of A in B, as in Section 7.6. It is easy to
see that B0 is an ideal in B, as a Lie algebra over k, because A is an ideal in B.
More precisely, if a ∈ A, w ∈ B, and y ∈ B0, then one can verify that

[a, [w, y]B ]B = 0,(13.10.4)

using the Jacobi identity and the fact that [a,w]B ∈ A, because A is an ideal
in B. We also have that B corresponds to the direct sum of A and B0, as a Lie
algebra over k, because of (13.10.2).

13.11 Another approach

Let us mention another approach to the statement in the previous section, using
an argument like the one in the proof of the second theorem on p23 of [14]. Let
k be a field, and let (B, [·, ·]B) be a finite-dimensional Lie algebra over k. If
x ∈ B, then

adB,x(z) = [x, z]B(13.11.1)
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defines a linear mapping from B into itself, as in Section 2.4. Put

b(x, y) = trB(adB,x ◦ adB,y)(13.11.2)

for every x, y ∈ B, which is the Killing form on B, as in Section 7.9. Remember
that

b([x,w]B , y) = b(x, [w, y]B)(13.11.3)

for every w, x, y ∈ B, which is to say that (13.11.2) is associative as a bilinear
form on B, or equivalently that (13.11.2) is invariant with respect to the adjoint
representation on B.

Let A be an ideal in B, as a Lie algebra over k. If x ∈ A, then let adA,x
be the restriction of (13.11.1) to z ∈ A, which defines a linear mapping from A
into itself. Put

bA(x, y) = trA(adA,x ◦ adA,y)(13.11.4)

for every x, y ∈ A, which is the Killing form on A, as a Lie algebra over k. If
x, y ∈ A, then

bA(x, y) = b(x, y),(13.11.5)

as in Section 7.10, because A is an ideal in B.
Put

A⊥ = {x ∈ B : b(x, y) = 0 for every y ∈ A}.(13.11.6)

It is easy to see that this is an ideal in B, using (13.11.3) and the hypothesis
that A is an ideal in B, as in Section 10.14. Let us suppose from now on in this
section that (13.11.4) is nondegenerate on A. Remember that this holds when
A is semisimple as a Lie algebra and k has characteristic 0, as in Section 10.13.
It follows that

A ∩A⊥ = {0}(13.11.7)

in this situation. Note that [A,A⊥] ⊆ A ∩A⊥, because A and A⊥ are ideals in
A. Hence

[A,A⊥] = {0},(13.11.8)

by (13.11.7).
If x ∈ B and y ∈ A, then put

λx(y) = b(x, y),(13.11.9)

which defines λx as a linear functional on A. Using the nondegeneracy of
(13.11.4), we get that there is a w ∈ A such that

λx(y) = bA(w, y)(13.11.10)

for every y ∈ A. This means that

b(x, y) = bA(w, y) = b(w, y)(13.11.11)

for every y ∈ A, so that x− w ∈ A⊥. Thus

A+A⊥ = B.(13.11.12)
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This shows that B corresponds to the direct sum of A and A⊥, as a Lie algebra
over k.

One can check that A⊥ is the same as the centralizer of A in B, as in the
previous section. More precisely, A⊥ is contained in the centralizer of A, by
(13.11.8). The nondegeneracy of (13.11.4) on A implies that the center of A is
trivial, and in fact that A is semisimple as a Lie algebra, as in Section 10.13.
One can use this and (13.11.12) to get that A⊥ is the centralizer of A, as before.

13.12 Inner derivations

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. If x ∈ A, then let adx be the mapping
from A into itself that sends y ∈ A to [x, y]A, as usual. Remember that the
space Der(A) of derivations on A is a Lie algebra over k with respect to the
commutator bracket associated to composition of mappings, as in Section 2.5.
If x ∈ A, then adx ∈ Der(A), and x 7→ adx is a Lie algebra homomorphism
from A into Der(A), as in Section 2.4. Let

adA = {adx : x ∈ A}(13.12.1)

be the image of this mapping, whose elements are said to be inner derivations
on A.

Let x, y ∈ A and δ ∈ Der(A) be given, and observe that

([δ, adx])(y) = δ((adx)(y))− (adx)(δ(y))

= δ([x, y]A)− [x, δ(y)]A = [δ(x), y]A = (ad δ(x))(y).(13.12.2)

This means that
[δ, adx] = ad δ(x),(13.12.3)

which implies that adA is an ideal in Der(A). This corresponds to Exercise 2.1
on p9 of [14], and some remarks on p23 of [14]. This also comes up in the proof
of Corollary 2 on p48 of [25].

Suppose from now on in this section that k is a field, and that A is a finite-
dimensional semisimple Lie algebra over k. Remember that the kernel of the
adjoint representation of A is the center of A, which is trivial, because A is
semisimple. Thus the adjoint representation is a Lie algebra isomorphism from
A onto adA, so that adA is semisimple as a Lie algebra over k in particular. If
k has characteristic 0, then it follows that Der(A) corresponds to the direct sum
of adA and the centralizer of adA in Der(A), as in Section 13.10. If x ∈ A and
δ ∈ Der(A) is in the centralizer of adA in Der(A), then ad δ(x) = 0, by (13.12.3).
This implies that δ(x) = 0, because the kernel of the adjoint representation of
A is trivial. This means that δ = 0, so that every derivation on A is an element
of adA. This corresponds to Corollary 2 on p48 of [25].

This also corresponds to the second theorem on p23 of [14]. The proof given
there uses the argument in the previous section instead of the one in Section
13.10. This could be used when the Killing form on A is nondegenerate, without
asking that k have characteristic 0.



Chapter 14

Nilpotence and
diagonalizability

14.1 A duality argument

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. If x ∈ A, then put adx(y) = [x, y]A for
every y ∈ A, as usual. Let β(·, ·) be a bilinear form on A that is associative or
invariant under the adjoint representation on A, so that

β(adx(w), z) = −β(w, adx(z))(14.1.1)

for every w, x, z ∈ A. In particular,

β(adx(w), z) = 0(14.1.2)

when [x, z]A = 0. This corresponds to part of part (a) of Exercise 2 on p54 of
[25].

Suppose now that k is a field, that A has finite dimension as a vector space
over k, and that β(·, ·) is also nondegenerate as a bilinear form on A. Let x ∈ A
be given, and note that the image

{adx(w) : w ∈ A}(14.1.3)

of adx is a linear subspace of A. If z ∈ A, then (14.1.2) holds for every w ∈ A
if and only if

β(w, adx(z)) = 0(14.1.4)

for every w ∈ A, by (14.1.1). Because β(·, ·) is nondegenerate on A, (14.1.4)
holds for every w ∈ A if and only if adx(z) = 0. Thus (14.1.2) holds for every
w ∈ A if and only if adx(z) = 0.

Consider

{y ∈ A : β(y, z) = 0 for every z ∈ A such that [x, z]A = 0},(14.1.5)

292
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which is a linear subspace of A. Of course, (14.1.3) is contained in (14.1.5),
because (14.1.2) holds for every w ∈ A when [x, z]A = 0, as in the preceding
paragraph. In fact, (14.1.3) is equal to (14.1.5) in this situation, because β(·, ·)
is nondegenerate on A. More precisely, this uses the fact that if z ∈ A satisfies
(14.1.2) for every w ∈ A, then [x, z]A = 0, and hence β(y, z) = 0 for every y in
(14.1.5). This corresponds to the second part of part (a) of Exercise 2 on p54
of [25].

Let us now take β(·, ·) to be the Killing form on A, so that

β(u, v) = trA(adu ◦ adv)(14.1.6)

for every u, v ∈ A. Remember that this satisfies (14.1.1), as in Section 7.9.
Suppose that x, z ∈ A commute, in the sense that [x, z]A = 0. This implies
that adx and adz commute as linear mappings from A into itself, because the
adjoint representation of A is a representation of A as a Lie algebra over k. If
adx is also nilpotent as a linear mapping from A into itself, then it follows that
adx ◦ adz is nilpotent as a linear mapping from A into itself, as in Section 9.7.
In this case, we get that

β(x, z) = trA(adx ◦ adz) = 0,(14.1.7)

by standard arguments. If the Killing form is nondegenerate on A, then the
previous arguments imply that there is a w ∈ A such that

adx(w) = x.(14.1.8)

This corresponds to part of part (b) of Exercise 2 on p54 of [25].

14.2 A criterion for nilpotence

Let k be a field of characteristic 0, and let A be an associative algebra over k,
where multiplication of a, b ∈ A is expressed as a b. Also let δ be a derivation
on A, and suppose that b ∈ A is an eigenvector of δ with eigenvalue λ ∈ k, so
that

δ(b) = λ b.(14.2.1)

In particular, this means that b commutes with δ(b). If j is an integer with
j ≥ 2, then

δ(bj) = j · bj−1 δ(b) = j · λ bj ,(14.2.2)

so that bj is an eigenvector of δ with eigenvalue j · λ. If λ ̸= 0, then the
eigenvalues j · λ with j ∈ Z+ are all distinct, because k has characteristic 0. If,
for each j ∈ Z+, b

j ̸= 0, then it follows that the bj ’s are linearly independent in
A, as a vector space over k. If A has finite dimension as a vector space over k,
then bj = 0 for some j ≥ 1.

Remember that
δa(x) = [a, x] = a x− x a(14.2.3)
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defines a derivation on A for every a ∈ A. Suppose that b ∈ A is an eigenvector
of δa with eigenvalue λ ∈ k, which is to say that

δa(b) = [a, b] = λ b.(14.2.4)

If λ ̸= 0 and A has finite dimension as a vector space over k, then b is nilpotent
in A, as in the preceding paragraph.

Now let (A, [·, ·]A) be a Lie algebra over k, and suppose that u, x ∈ A satisfy

[u, x]A = x.(14.2.5)

Let V be a vector space over k, and let ρ be a representation of A as a Lie
algebra on V . Thus

ρ[u,x]A = [ρu, ρx] = ρu ◦ ρx − ρx ◦ ρu(14.2.6)

on V . This means that
[ρu, ρx] = ρx,(14.2.7)

by (14.2.5). Suppose that V has finite dimension, so that the algebra L(V ) of
linear mappings from V into itself has finite dimension as a vector space over
k too. Under these conditions, we get that ρx is nilpotent as a linear mapping
from V into itself. This corresponds to part of part (b) of Exercise 2 on p54 of
[25].

Suppose that A has finite dimension as a vector space over k. Let x be an
ad-nilpotent element of A, so that adx is nilpotent on A. If A is semisimple as
a Lie algebra over k, then the Killing form on A is nondegenerate, as in Section
10.13. In this case, there is a u ∈ A such that (14.2.5) holds, as in the previous
section. This is another part of part (b) of Exercise 2 on p54 in [25].

14.3 ad-Diagonalizability

Let k be a field, let V be a finite-dimensional vector space over k, and let
T be a linear mapping from V into itself. If k is algebraically closed and T
is diagonalizable on V , then one may say that T is semisimple as a linear
mapping on V , as on p17 of [14] and p40 of [25]. Otherwise, one may say that T
is semisimple on V when T becomes diagonalizable after passing to an algebraic
closure of k, as in Remark 1 after Theorem 5.1 on p50 of [25].

Let (A, [·, ·]A) be a Lie algebra over k, with finite dimension as a vector space
over k. If x ∈ A, then we put adx(y) = [x, y]A for every y ∈ A, as usual. If
adx is diagonalizable as a linear mapping from A into itself, then x is said to be
ad-diagonalizable as an element of A. Similarly, x is said to be ad-semisimple
as an element of A when adx is semisimple as a linear mapping from A into
itself, as on p24 of [14], and Definition 5.5 on p52 of [25].

Suppose that k is an algebraically closed field of characteristic 0, and that
A is semisimple as a Lie algebra over k. Let x ∈ A be given, so that adx is
a linear mapping from A into itself. Remember that adx can be expressed in
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a unique way as a sum of two commuting linear mappings from A into itself,
where one of these linear mappings is diagonalizable and the other is nilpotent,
as in Section 10.8. We have also seen that adx is a derivation on A, as a Lie
algebra over k. The diagonalizable and nilpotent parts of adx are derivations on
A as well, as in Section 10.9. Because k has characteristic 0 and A is semisimple,
every derivation on A is an inner derivation, as in Section 13.12. This means
that there are x1, x2 ∈ A such that the diagonalizable and nilpotent parts of
adx are given by adx1 and adx2 , respectively. Of course, x1 and x2 are uniquely
determined by adx1

and adx2
, respectively, because the center of A is trivial, by

semisimplicity. Similarly,
[x1, x2]A = 0,(14.3.1)

because adx1 and adx2 commute as linear mappings on A. By construction, x1
is ad-diagonalizable on A, and x2 is ad-nilpotent on A. Note that x1 and x2 are
uniquely determined by these properties, because of the analogous uniqueness
property for the diagonalizable and nilpotent parts of adx. This corresponds to
remarks on p24 of [14], and Theorem 5.6 on p52 of [25]. In particular, this is
called the abstract Jordan decomposition of x in A in [14].

Let V be a finite-dimensional vector space over k again, and suppose that
A is a Lie subalgebra of gl(V ). Let x ∈ A be given, so that x is a linear
mapping from V into itself. As before, x can be expressed in a unique way as
y1+y2, where y1 and y2 are commuting linear mappings from V into itself, y1 is
diagonalizable on V , and y2 is nilpotent on V . Of course, one would like to have
y1, y2 ∈ A, as on p24 of [14]. It is easy to get this when A = sl(V ), as in [14].
Indeed, y2 has trace 0 on V , because y2 is nilpotent on V . This implies that
y1 ∈ sl(V ) in this case, because x ∈ A by hypothesis. Some other situations
will be discussed in the next section.

If w, z ∈ gl(V ), then put

adgl(V ),w(z) = [w, z] = w ◦ z − z ◦ w,(14.3.2)

as usual. Let y ∈ gl(V ) be given, so that y can be expressed in a unique way as
y1 + y2, where y1 and y2 are commuting linear mappings from V into itself, y1
is diagonalizable on V , and y2 is nilpotent on V , as before. It follows that

adgl(V ),y = adgl(V ),y1 + adgl(V ),y2 ,(14.3.3)

adgl(V ),y1 commutes with adgl(V ),y2 as linear mappings on gl(V ), adgl(V ),y1 is
diagonalizable on gl(V ), and adgl(V ),y2 is nilpotent on gl(V ), as in Section 10.9.
Let A be a Lie subalgebra of gl(V ). If w ∈ A, then adgl(V ),w maps A into
itself, and the restriction of adgl(V ),w to A is the same as adA,w. If y1 ∈ A,
then it follows that adA,y1 is diagonalizable as a linear mapping from A into
itself. Similarly, if y2 ∈ A, then adA,y2 is nilpotent as a linear mapping from
A into itself. Of course, adA,y1 commutes with adA,y2 on A, because adgl(V ),y1

commutes with adgl(V ),y2 on gl(V ). Under these conditions, we also have that
y ∈ A, and

adA,y = adA,y1 + adA,y2 .(14.3.4)

This corresponds to some more of the remarks on p24 of [14].
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14.4 Semisimple subalgebras of gl(V )

Let k be an algebraically closed field of characteristic 0, and let V be a finite-
dimensional vector space over k. Also let A be a Lie subalgebra of gl(V ), and
suppose that A is semisimple as a Lie algebra over k. Let x ∈ A be given, and
remember that x can be expressed in a unique way as y1 + y2, where y1 and y2
are commuting linear mappings from V into itself, y1 is diagonalizable on V ,
and y2 is nilpotent on V . Under these conditions, y1, y2 ∈ A, as in the theorem
on p29 of [14], and Corollary 5.4 on p52 of [25]. We shall follow the argument
in [14] here, with some help from Section 13.10.

If w ∈ gl(V ), then let adgl(V ),w be as in (14.3.2). Thus adgl(V ),x maps
A into itself, because x ∈ A. Remember that adgl(V ),y1 and adgl(V ),y2 are
the corresponding diagonalizable and nilpotent parts of adgl(V ),x, as a linear
mapping from gl(V ) into itself, as in Section 10.9. It follows that adgl(V ),y1 and
adgl(V ),y2 map A into itself as well, as in Section 10.8. Let N = Ngl(V )(A) be
the normalizer of A in gl(V ), as in Section 9.8. The previous statement says
that

y1, y2 ∈ N.(14.4.1)

If N were equal to A, then the proof would be finished, but this does not work,
because constant multiples of the identity mapping on V are automatically in
N . Thus we need some additional conditions on y1, y2.

Note that V may be considered as a module over A, as a Lie algebra over k.
LetW be an A-submodule of V , which is to say a linear subspace of V such that
every element of A maps W into itself. Let BW be the collection of z ∈ gl(V )
such that z(W ) ⊆ W , and the restriction of z to W has trace equal to 0, as a
linear mapping from W into itself. Let us check that

A ⊆ BW .(14.4.2)

If z ∈ A, then z(W ) ⊆ W , by our hypothesis about W . Remember that
A = [A,A], because A is semisimple and k has characteristic 0, as in Section
10.15. One can use this to show that the trace of the restriction of z to W is
0, as desired. Note that BW is a Lie subalgebra of gl(V ). In particular, we can
take W = V , for which we get BV = sl(V ).

Let us check that
y1, y2 ∈ BW(14.4.3)

for every A-submodule W of V . Remember that x maps W into itself, because
x ∈ A. This implies that y1 and y2 map W into itself, as in Section 10.8. The
restriction of y2 to W is nilpotent on W , because y2 is nilpotent on V . Hence
the trace of the restriction of y2 to W is equal to 0. The trace of the restriction
of x to W is equal to 0 too, as in the preceding paragraph. It follows that the
trace of the restriction of y1 to W is equal to 0 as well. This gives (14.4.3), as
desired.

Let B be the intersection of N with all the subalgebras BW , over all A-
submodules W of V . Thus B is a Lie subalgebra of gl(V ), and

A ⊆ B,(14.4.4)
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by (14.4.2). More precisely, A is an ideal in B, as a Lie algebra over k, because
B ⊆ N , by construction. We also have that

y1, y2 ∈ B,(14.4.5)

by (14.4.1) and (14.4.3). We would like to show that A = B.
Note that there is a unique ideal B0 in B such that B corresponds to the

direct sum of A and B0, as in Section 13.10. In particular, [A,B0] = {0}, as
before.

Let W be an irreducible A-submodule of V . If z ∈ B0, then z maps W
into itself, and z commutes with every element of A. Because k is algebraically
closed, Schur’s lemma implies that z is equal to a constant multiple of the
identity mapping on W , as in Section 6.14. However, we also have that the
trace of the restriction of z to W is equal to 0, because z ∈ B. This implies
that z ≡ 0 on W , because k has characteristic 0.

By Weyl’s theorem, V can be expressed as the direct sum of irreducible A-
submodules, as in Section 6.14. If z ∈ B0, then it follows that z ≡ 0 on V , using
the remarks in the preceding paragraph. This means that B0 = {0}, so that
A = B, as desired.

14.5 Tensors

Let k be a field, and let V be a vector space over k of positive finite dimension
n. If p is a positive integer, then T pV is the pth tensor power of V , as in Section
7.15, which is to say the tensor product of p copies of V . This is a vector space
over k of dimension np. More precisely, if v1, . . . , vn is a basis for V , then we
can get a basis for T pV using elements of the form

vj1 ⊗ · · · ⊗ vjp ,(14.5.1)

where j1, . . . , jp ∈ {1, . . . , n}. If p = 0, then one can interpret T pV as being k,
as a one-dimensional vector space over itself.

The dual space V ′ of V is a vector space over k of dimension n as well. If
q is a nonnegative integer, then T q V ′ is defined as a vector space over k of
dimension nq, as before. Let λ1, . . . , λq be q linear functionals on V for some
q ∈ Z+, and consider

q∏
j=1

λj(uj)(14.5.2)

as a k-valued function of (u1, . . . , uq) in the Cartesian product of q copies of V .
This defines a multilinear mapping from the Cartesian product of q copies of V
into k, which is to say a q-linear form on V . Of course, the space of q-linear
forms on V is a vector space over k with respect to pointwise addition and
scalar multiplication of functions. The mapping from (λ1, . . . , λq) to (14.5.2) is
multilinear over k as a mapping from the Cartesian product of q copies of V ′ into
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the space of q-linear forms on V . This leads to a linear mapping from T qV ′ into
the space of q-linear forms on V , which is in fact a vector space isomorphism.

If p and q are nonnegative integers, then put

T p,qV = T pV
⊗

T qV ′,(14.5.3)

which may also be denoted Vp,q, as on p40 of [25]. This reduces to T qV ′ when
p = 0, and to T pV when q = 0. Note that there is a natural isomorphism from
T 1,1V = V

⊗
V ′ onto the space L(V ) of linear mappings from V into itself, as

vector spaces over k, as in Section 13.4. Let v1, . . . , vn be a basis for V again,
and let µ1, . . . , µn be the corresponding dual basis for V ′, so that µj(vl) is equal
to 1 when j = l and to 0 when j ̸= l. We can get a basis for T p,qV , as a vector
space over k, using elements of the form

(vj1 ⊗ · · · ⊗ vjp)⊗ (µl1 ⊗ · · · ⊗ µlq ),(14.5.4)

where j1, . . . , jp, l1, . . . , lq ∈ {1, . . . , n}.
Let A be a Lie algebra over k, and let ρV be a representation of A on V . If

a ∈ A and λ ∈ V ′, then put

ρV
′

a (λ) = −λ ◦ ρVa ,(14.5.5)

which is a linear functional on V . This defines ρV
′
as a representation of A

on V ′, as in Section 7.2, with W = k. Equivalently, if a ∈ A, then ρVa is a
linear mapping from V into itself, which leads to a dual linear mapping from V ′

into itself, as in Section 2.13. By construction, ρV
′

a is −1 times this dual linear
mapping on V ′.

Using ρV and ρV
′
, we can make T p,qV into a module over A, as in Section

7.12. More precisely, we have p+ q actions of A on T p,qV , using the actions of
A on the individual factors on V and V ′ in T p,qV . These p+ q actions of A on
T p,qV commute with each other, and T p,qV is considered as a module over A as
a Lie algebra with respect to the sum of these p+ q actions, as before. If p = 0,
then T p,qV = T qV ′ can be identified with the space of q-linear forms on V , as
mentioned earlier. In this case, the action of A corresponds to making the space
of q-linear forms on V a module over A as a Lie algebra as in Section 7.5, using
the trivial action of A on k, and combining the q actions of A corresponding to
the q variables of a q-linear form on V .

14.6 Induced linear mappings

Let k be a field again, and let V be a finite-dimensional vector space over k
of dimension n ≥ 1. Also let p and q be nonnegative integers, at least one of
which is positive. Of course, V may be considered as a module over gl(V ), as
a Lie algebra over k. As in the previous section, T p,qV may be considered as a
module over gl(V ) as well, by summing the actions on the various factors of V
and V ′. More precisely, let A be a linear mapping from V into itself, and let A′
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be the corresponding dual linear mapping from the dual space V ′ into itself, as
in Section 2.13. Let w1, . . . , wp ∈ V and λ1, . . . , λq ∈ V ′ be given, so that

(w1 ⊗ · · · ⊗ wp)⊗ (λ1 ⊗ · · · ⊗ λq)(14.6.1)

is an element of T p,qV . If 1 ≤ h ≤ p, then the action of A on the hth factor of
V in T p,qV sends (14.6.1) to

(w1 ⊗ · · · ⊗ wh−1 ⊗A(wh)⊗ wh+1 ⊗ · · · ⊗ wp)⊗ (λ1 ⊗ · · · ⊗ λq).(14.6.2)

Similarly, if 1 ≤ i ≤ q, then A′ acts on the ith factor of V ′ in T p,qV , sending
(14.6.1) to

(w1 ⊗ · · · ⊗ wp)⊗ (λ1 ⊗ · · · ⊗ λi−1 ⊗A′(λi)⊗ λi+1 ⊗ · · · ⊗ λq).(14.6.3)

If we consider T p,qV as a module over gl(V ) as in the previous section, then A
corresponds to a linear mapping Ap,q from T p,qV into itself, as on p40 of [25].
By construction, Ap,q sends (14.6.1) to the sum of (14.6.2) over h = 1, . . . , p,
minus the sum of (14.6.3) over i = 1, . . . , q.

Suppose for the moment that A is diagonalizable on V , and let v1, . . . , vn be
a basis of V consisting of eigenvectors of A. If µ1, . . . , µn is the corresponding
dual basis for V ′, then one can check that µj is an eigenvector for A′ for each
j = 1, . . . , n. Under these conditions, the collection of elements of T p,qV of the
form (14.5.4) is a basis for T p,qV , as in the previous section. It is easy to see
that each of these elements (14.5.4) is an eigenvector for Ap,q, so that Ap,q is
diagonalizable on T p,qV . This corresponds to part of the proof of Lemma 6.3
on p41 of [25].

Suppose now that A is nilpotent on A, and observe that A′ is nilpotent on V ′.
It is easy to see that each of the p+q linear mappings on T p,qV corresponding to
A as in (14.6.2) and (14.6.3) are nilpotent on T p,qV . These p+q linear mappings
on T p,qV corresponding to A also commute with each other. It follows that Ap,q
is nilpotent on T p,q too, because Ap,q is defined by adding and subtracting the
p + q linear mappings on T p,qV , as appropriate. This corresponds to another
part of the proof of Lemma 6.3 on p41 of [25].

As in the previous section, T p,qV is a module over gl(V ), as a Lie algebra
over k, with respect to this action of gl(V ) on T p,qV . Equivalently, the mapping
from A ∈ gl(V ) to Ap,q ∈ gl(T p,qV ) is a Lie algebra homomorphism. This means
that A 7→ Ap,q is a linear mapping from gl(V ) into gl(T p,qV ), and that

[Ap,q, Bp,q] = ([A,B])p,q(14.6.4)

for every A,B ∈ gl(V ). In particular, if A and B commute as linear mappings on
V , then Ap,q and Bp,q commute as linear mappings on T p,qV . This corresponds
to part of the proof of Lemma 6.3 on p41 of [25] again.

Remember that there is a natural isomorphism from T 1,1V = V
⊗
V ′ onto

the space L(V ) of linear mappings from V into itself, as vector spaces over k, as
in the previous section. One can check that A1,1 corresponds to adA on L(V ),
as in Section 10.9.
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14.7 Invariant tensors

Let k be a field, and let V be a finite-dimensional vector space over k again.
Also let p and q be nonnegative integers, at least one of which is positive, and
let t be an element of T p,qV . Consider

{A ∈ gl(V ) : Ap,q(t) = 0},(14.7.1)

where Ap,q is as in the previous section. It is easy to see that (14.7.1) is a Lie
subalgebra of gl(V ), because A 7→ Ap,q is a Lie algebra homomorphism from
gl(V ) into gl(T p,qV ).

Suppose from now on in this section that k is algebraically closed. Let A be
a linear mapping from V into itself, and let A1, A2 be as in Section 10.8. Thus
A1 and A2 are commuting linear mappings from V into itself, A = A1 +A2, A1

is diagonalizable on V , and A2 is nilpotent on V . Let Ap,q, (A1)p,q, and (A2)p,q
be the corresponding linear mappings from T p,qV into itself, as in the previous
section. It follows that (A1)p,q and (A2)p,q commute on T p,qV ,

Ap,q = (A1)p,q + (A2)p,q,(14.7.2)

(A1)p,q is diagonalizable on T
p,qV , and (A2)p,q is nilpotent on T

p,qV , as before.
This means that (A1)p,q and (A2)p,q are the diagonalizable and nilpotent parts
(Ap,q)1 and (Ap,q)2 of Ap,q, respectively, as linear mappings from T p,qV into
itself, by uniqueness. This corresponds to Lemma 6.3 on p41 of [25].

In particular, (A1)p,q = (Ap,q)1 and (A2)p,q = (Ap,q)2 can be expressed as
polynomials in Ap,q with no constant term, as before. If Ap,q(t) = 0, then it
follows that

(A1)p,q(t) = (A2)p,q(t) = 0.(14.7.3)

Equivalently, if A is an element of (14.7.1), then A1 and A2 are elements of
(14.7.1) as well. This argument is used in the proof of Corollary 5.4 on p52 of
[25].

Let A be a Lie subalgebra of gl(V ), and suppose that A is semisimple as a
Lie algebra over k. If k has characteristic 0, then Theorem 5.2 on p51 of [25]
says that A can be characterized by its tensor invariants. This means that A
can be expressed as the intersection of subalgebras of gl(V ) of the form (14.7.1).
Corollary 5.4 on p52 of [25] says that under these conditions, A contains the
semisimple and nilpotent parts of its elements. Remember that another ap-
proach to the latter was discussed in Section 14.4.

Now let A be any finite-dimensional semisimple Lie algebra over k. The
abstract Jordan decomposition for elements of A is given in Theorem 5.6 on
p52 of [25]. This is obtained from Corollary 5.4 in [25], applied to the image of
A under the adjoint representation.

14.8 Diagonalizability and quotients

Let k be a field, let V be a vector space over k, and let W be a linear subspace
of V . Consider the collection LW (V ) of all linear mappings T from V into itself
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such that

T (W ) ⊆W.(14.8.1)

This is a subalgebra of the algebra L(V ) of all linear mappings from V into
itself. Let q be the canonical quotient mapping from V onto the quotient vector
space V/W . If T ∈ LW (V ), then there is a unique linear mapping TV/W from
V/W into itself such that

TV/W (q(v)) = q(T (v))(14.8.2)

for every v ∈ V , as usual. It is easy to see that T 7→ TV/W is an algebra homo-
morphism from LW (V ) into L(V/W ), with respect to composition of mappings.
More precisely, this homomorphism maps LW (V ) onto L(V/W ). We shall nor-
mally be concerned with finite-dimensional vector spaces here, in which case the
previous statement is more elementary.

In particular, if T ∈ LW (V ) is nilpotent as a linear mapping on V , then
TV/W is nilpotent as a linear mapping on V/W . If R, T ∈ LW (V ) commute
as linear mappings on V , then RV/W , TV/W commute as linear mappings on
V/W .

Let T be an element of LW (V ), and suppose that v ∈ V is an eigenvector of
T , with eigenvalue λ. Observe that

TV/W (q(v)) = q(T (v)) = q(λ v) = λ q(v),(14.8.3)

so that q(v) is an eigenvector of TV/W with eigenvalue λ as well. If V is spanned
by the eigenvectors of T , then it follows that V/W is spanned by the images
under q of the eigenvectors of T , which are eigenvectors of TV/W .

Let (A, [·, ·]A) and (B, [·, ·]B) be Lie algebras over k. Put

adA,x(y) = [x, y]A, adB,w(z) = [w, z]B(14.8.4)

for every x, y ∈ A and w, z ∈ B, as usual. Suppose that ϕ is a Lie algebra
homomorphism from A into B. This implies that

ϕ(adA,x(y)) = ϕ([x, y]A) = [ϕ(x), ϕ(y)]B = adB,ϕ(x)(ϕ(y))(14.8.5)

for every x, y ∈ A. Suppose for the moment that ϕ maps A onto B. If x ∈ A
and adA,x is nilpotent as a linear mapping from A into itself, then it follows
that adB,ϕ(x) is nilpotent as a linear mapping from B into itself. Equivalently,
if x ∈ A is ad-nilpotent in A, then ϕ(x) is ad-nilpotent in B.

If x, y ∈ A and y is an eigenvector of adA,x, then ϕ(y) is an eigenvector of
adB,ϕ(x), by (14.8.5). If A is spanned by the eigenvectors of adA,x and ϕ maps A
onto B, then it follows that B is spanned by the eigenvectors of adB,ϕ(x). These
remarks correspond to part of the proof of the corollary on p30 of [14]. This
also corresponds to Theorem 5.7 on p52 of [25], in the simpler case of surjective
Lie algebra homomorphisms.



302 CHAPTER 14. NILPOTENCE AND DIAGONALIZABILITY

14.9 Diagonalizability and representations

Let k be an algebraically closed field of characteristic 0, and let V be a finite-
dimensional vector space over k. Also let B be a Lie subalgebra of gl(V ), and
suppose that B is semisimple as a Lie algebra over k. Let x ∈ B be given, and
remember that there are unique commuting linear mappings y1 and y2 on V
such that x = y1 + y2, y1 is diagonalizable on V , and y2 is nilpotent on V , as
in Section 10.8. In fact, y1, y2 ∈ B, because B is semisimple as a Lie algebra,
as in Sections 14.4 and 14.7. Remember that y1 is ad-diagonalizable on gl(V ),
and y2 is ad-nilpotent on gl(V ), as in Section 10.9. Using this, one can check
that y1 is ad-diagonalizable on B, and that y2 is ad-nilpotent on B, because B
is a Lie subalgebra of gl(V ). More precisely, if y ∈ B, then adB,y is the same as
the restriction of adgl(V ),y to B, because B is a Lie subalgebra of gl(V ). This
means that y1 and y2 are the same as the ad-diagonalizable and ad-nilpotent
parts of the abstract Jordan decomposition of x in B, by the uniqueness of the
abstract Jordan decomposition, as in Section 14.3. This is the second part of
the theorem on p29 of [14].

Let (A, [·, ·]A) be a finite-dimensional semisimple Lie algebra over k, and let
ϕ be a Lie algebra homomorphism from A into gl(V ). Put B = ϕ(A), which
is a Lie subalgebra of gl(V ). Note that B is semisimple as a Lie algebra over
k too, as in Section 10.14. Let w ∈ A be given, and let w = w1 + w2 be
the abstract Jordan decomposition of w in A, as in Section 14.3. Thus w1 is
ad-diagonalizable on A, w2 is ad-nilpotent on A, and [w1, w2]A = 0, as before.
It follows that ϕ(w) = ϕ(w1) + ϕ(w2), where ϕ(w1) is ad-diagonalizable on B
and ϕ(w2) is ad-nilpotent on B, as in the previous section. Note that ϕ(w1)
and ϕ(w2) commute as linear mappings on V , because [w1, w2]A = 0 and ϕ
is a Lie algebra homomorphism. This means that ϕ(w1) and ϕ(w2) satisfy the
requirements of the abstract Jordan decomposition of ϕ(w) in B. Put x = ϕ(w),
and let y1, y2 ∈ B be as in the preceding paragraph. It follows that

ϕ(w1) = y1, ϕ(w2) = y2,(14.9.1)

by uniqueness of the abstract Jordan decomposition of x in B. This corresponds
to the corollary on p30 of [14], and to Theorem 7 on p7 of [24].

Let (A2, [·, ·]A2
) be a finite-dimensional semisimple Lie algebra over k, and let

A1 be a Lie subalgebra of A2 that is semisimple as a Lie algebra over k as well.
If x, y ∈ A2, then put adA2,x(y) = [x, y]A2 , as usual. If x ∈ A1, then adA1,x is
the same as the restriction of adA2,x to A1, because A1 is a Lie subalgebra of A2.
Of course, A2 is a finite-dimensional vector space over k in particular, so that
gl(A2) is a Lie algebra over k with respect to the commutator bracket associated
to composition of linear mappings. If x ∈ A1, then put ϕ(x) = adA2,x, which
defines a Lie algebra homomorphism from A1 into gl(A2). Let w ∈ A1 be given,
and let w = w′ + w′′ be the abstract Jordan decomposition of w in A1. Thus

adA2,w = adA2,w′ + adA2,w′′(14.9.2)

corresponds to the ordinary Jordan decomposition of adA2,w, as a linear map-
ping from A2 into itself, as before. This means that w = w′+w′′ also corresponds
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to the abstract Jordan decomposition of w in A2, by uniqueness. This is the
same as Exercise 9 on p31 of [14].

Let B1, B2 be finite-dimensional semisimple Lie algebras over k, and let
ψ be a Lie algebra homomorphism from B1 into B2. Theorem 5.7 on p52 of
[25] basically says that ψ maps abstract Jordan decompositions in B1 to the
corresponding abstract Jordan decompositions in B2. Of course, this includes
the case of subalgebras, as in the preceding paragraph. If ψ maps B1 onto B2,
then this can be verified directly, as in the previous section. Otherwise, one can
use this to reduce to the case of subalgebras.

14.10 Exponentiating nilpotents

Let T1 and T2 be commuting indeterminates, and remember that Z[T1, T2] is
the space of formal polynomials in T1 and T2 with coefficients in Z, as in Section
5.8. This is a commutative associative algebra over Z with respect to formal
multiplication of polynomials, as before. If n is a nonnegative integer, then

(T1 + T2)
n =

n∑
j=0

(
n

j

)
T j1 T

n−j
2 ,(14.10.1)

where
(
n
j

)
= n!/j! (n − j)! is the usual binomial coefficient, as in the binomial

theorem. Thus

(T1 + T2)
n+1 =

n+1∑
j=0

(
n+ 1

j

)
T j1 T

n+1−j
2(14.10.2)

is the same as

(T1 + T2)
n (T1 + T2) =

n∑
j=0

(
n

j

)
T j+1
1 Tn−j2 +

n∑
j=0

(
n

j

)
T j1 T

n−j+1
2

=

n+1∑
j=1

(
n

j − 1

)
T j1 T

n+1−j
2 +

n∑
j=0

(
n

j

)
T j1 T

n+1−j
2 .(14.10.3)

This implies the well-known identity(
n+ 1

j

)
=

(
n

j − 1

)
+

(
n

j

)
(14.10.4)

for j = 1, . . . , n.

Let k be a field of characteristic 0. Alternatively, one can consider commuta-
tive rings k with multiplicative identity elements which are algebras over Q. In
this case, a module or algebra over k could also be considered as a vector space
over Q. Let A be an associative algebra over k with a multiplicative identity
element e. Suppose that x ∈ A is nilpotent, so that xl = 0 for some positive
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integer l. Under these conditions, the exponential of x is defined as an element
of A by

expx =

∞∑
j=0

(1/j!)xj ,(14.10.5)

as usual. More precisely, xj = 0 for all sufficiently large j, so that the infinite
series reduces to a finite sum, and thus defines an element of A. Of course, xj

is interpreted as being equal to e when j = 0.
Let y be another nilpotent element of A, and suppose that x commutes with

y. This implies that x+ y is nilpotent in A, so that exp(x+ y) can be defined
as before. Observe that

exp(x+ y) =

∞∑
n=0

(1/n!) (x+ y)n =

∞∑
n=0

(1/n!)

n∑
j=0

(
n

j

)
xj yn−j

=

∞∑
n=0

n∑
j=0

((1/j!)xj) ((1/(n− j)!) yn−j) = (expx) (exp y).(14.10.6)

More precisely, the double sum is the same as the Cauchy product of the series
defining expx and exp y, as in Section 4.2. The nilpotency conditions on x and
y ensure that all of these sums reduce to finite sums. In particular, we can take
y = −x, to get that

(expx) exp(−x) = exp(−x) (expx) = exp 0 = e.(14.10.7)

This means that expx is invertible in A, with

(expx)−1 = exp(−x).(14.10.8)

Let V be a module over k, and let T be a mapping from V into itself that
is linear over k. Suppose that T is nilpotent on V , so that the lth power T l

of T with respect to composition is equal to 0 on V for some positive integer
l. Thus the exponential expT of T can be defined as a linear mapping from V
into itself, using the algebra of linear mappings from V into itself with respect
to composition of mappings in the previous remarks. Let W be a submodule
of V , and suppose that T maps W into itself. It follows that T j(W ) ⊆ W for
every nonnegative integer j, so that

(expT )(W ) ⊆W.(14.10.9)

More precisely, we have that

(expT )(W ) =W(14.10.10)

in this situation. This can be obtained from (14.10.9) and the analogous state-
ment for −T . Alternatively, the restriction of expT to W is the same as the
exponential of the restriction of T to W , which is invertible on W .
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Let k be a commutative ring with a multiplicative identity element, and let
A be an algebra over k in the strict sense, where multiplication of a, b ∈ A is
expressed as a b. If δ is a derivation on A, then it is well known that

δn(a b) =

n∑
j=0

(
n

j

)
· δj(a) δn−j(b)(14.10.11)

for every nonnegative integer n and a, b ∈ A. More precisely, if this holds for
some n ≥ 0, then

δn+1(a b) = δ(δn(a b)) =

n∑
j=0

(
n

j

)
(δj+1(a) δn−j(b) + δj(a) δn−j+1(b))

=

n+1∑
j=1

(
n

j − 1

)
δj(a) δn+1−j(b) +

n∑
j=0

(
n

j

)
δj(a) δn+1−j(b).(14.10.12)

This implies the analogue of (14.10.11) for n + 1, by (14.10.4). It follows that
(14.10.11) holds for all n ≥ 0, by induction.

14.11 Nilpotent derivations

Let k be a commutative ring with a multiplicative identity element that is an
algebra over Q, or simply a field of characteristic 0, as in the previous section.
Also let A be an algebra over k in the strict sense again, and let δ be a derivation
on A that is nilpotent as a mapping from A into itself, so that δl = 0 for some
positive integer l. Thus exp δ can be defined as a mapping from A into itself
that is linear over k, as in the previous section. If a, b ∈ A, then

(exp δ)(a b) =

∞∑
n=0

(1/n!) δn(a b) =

∞∑
n=0

(1/n!)

n∑
j=0

(
n

j

)
δj(a) δn−j(b)

=
∞∑
n=0

n∑
j=0

((1/j!) δj(a)) ((1/(n− j)!) δn−j(b))(14.11.1)

= ((exp δ)(a)) ((exp δ)(b)).

More precisely, the double sum is the same as the Cauchy product of the series
defining (exp δ)(a) and (exp δ)(b), and the nilpotency condition on δ ensures
that all of these sums reduce to finite sums. Note that exp δ is invertible as a
linear mapping from A into itself, as in the previous section. Thus (14.11.1)
implies that exp δ is an algebra automorphism on A, as on p9 of [14].

Let (A, [·, ·]A) be a Lie algebra over k, and put adx(y) = [x, y]A for every x,
y in A, as usual. Remember that adx is a derivation on A, as in Section 2.5. If
x ∈ A is ad-nilpotent, then exp adx defines a Lie algebra automorphism on A,
as in the preceding paragraph. Let IntA be the subgroup of the group of all Lie
algebra automorphisms of A generated by these automorphisms. The elements
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of IntA are called inner automorphisms of A, as on p9 of [14]. If ϕ is any Lie
algebra automorphism on A, then it is easy to see that

ϕ ◦ adx ◦ ϕ−1 = adϕ(x)(14.11.2)

for every x ∈ A. In particular, if x ∈ A is ad-nilpotent, then ϕ(x) is ad-nilpotent
as well. In this case, we get that

ϕ ◦ (exp adx) ◦ ϕ−1 = exp adϕ(x),(14.11.3)

by (14.11.2). This implies that IntA is a normal subgroup of the group of all
Lie algebra automorphisms on A, as on p9 of [14].

Let B be a Lie subalgebra of A, and let x be an element of the normalizer of
B in A, so that adx maps B into itself. If x is ad-nilpotent on A, then exp adx
can be defined as a linear mapping from A into itself as before. In fact, we have
that

(exp adx)(B) = B,(14.11.4)

as in (14.10.10). In particular, this holds when x ∈ B, in which case the
restriction of adx to B is the same as adB,x.

Now let A be an associative algebra over k with a multiplicative identity
element e, where multiplication of a, b ∈ A is expressed as a b again. If a ∈ A,
then let La and Ra be the usual operators of left and right multiplication by a
on A, so that La(x) = a x and Ra(x) = x a for every a ∈ A. Note that

(La)
j = Laj , (Ra)

j = Raj(14.11.5)

for every nonnegative integer j. Suppose that a is nilpotent in A, which implies
that La and Ra are nilpotent as linear mappings from A into itself. It is easy
to see that

expLa = Lexp a, expRa = Rexp a(14.11.6)

under these conditions.
Remember that A may be considered as a Lie algebra over k with respect

to the corresponding commutator bracket [a, b] = a b− b a. If a ∈ A, then

ada = La −Ra = La +R−a,(14.11.7)

as a linear mapping from A into itself. Suppose that a is nilpotent in A again,
and remember that La and R−a commute as linear mappings from A into itself.
This implies that ada is nilpotent on A, and that

exp ada = exp(La +R−a) = (expLa) ◦ (expR−a)(14.11.8)

= Lexp a ◦Rexp(−a) = Lexp a ◦R(exp a)−1 .

Equivalently,
(exp ada)(x) = (exp a)x (exp a)−1(14.11.9)

for every x ∈ A, as on p9 of [14].
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14.12 Exponentials and homomorphisms

Let k be a commutative ring with a multiplicative identity element that is an
algebra over Q, or simply a field of characteristic 0, as before. Also let A and B
be associative algebras over k with multiplicative identity elements eA and eB,
respectively. Suppose that ϕ is an algebra homomorphism from A into B such
that ϕ(eA) = eB. Let x be a nilpotent element of A, which implies that ϕ(x) is
nilpotent in B. Under these conditions, it is easy to see that

ϕ(expA x) = expB ϕ(x),(14.12.1)

where expA x and expB ϕ(x) are the exponentials of x and ϕ(x) in A and B,
respectively.

Now let (A, [·, ·]A) and (B, [·, ·]B) be Lie algebras over k, and let ψ be a Lie
algebra homomorphism from A into B.. As usual, we put adA,x(y) = [x, y]A
and adB,w(z) = [w, z]B for every x, y ∈ A and w, z ∈ B. If x, y ∈ A, then

ψ(adA,x(y)) = adB,ψ(x)(ψ(y)),(14.12.2)

as in Section 14.8. It follows that

ψ((adA,x)
j(y)) = (adB,ψ(x))

j(ψ(y))(14.12.3)

for every positive integer j. Suppose that x is ad-nilpotent in A, and that ψ(x)
is ad-nilpotent in B. Thus exp adA,x and exp adB,ψ(x) can be defined as linear
mappings from A and B into themselves, as before. Using (14.12.3), we get that

ψ((exp adA,x)(y)) = (exp adB,ψ(x))(ψ(y))(14.12.4)

for every y ∈ A.
If x is ad-nilpotent in A, and ψ maps A onto B, then ψ(x) is ad-nilpotent in

B, by (14.12.3), as in Section 14.8. Similarly, if ψ(x) is ad-nilpotent in B, and
ψ is injective, then x is ad-nilpotent in A.

Let V be a module over k, and let ρ be a representation of A on V . If R and
T are mappings from V into itself that are linear over k, then put adR(T ) =
[R, T ] = R ◦ T − T ◦R, as usual. Suppose that x ∈ A has the property that ρx
is nilpotent as a linear mapping from V into itself. Thus exp ρx is defined as an
invertible linear mapping from V onto itself, as before. We also have that adρx
is nilpotent as a linear mapping on the space of linear mappings from V into
itself, so that exp adρx is defined as an invertible linear mapping on the space
of linear mappings from V into itself. In fact,

(exp adρx)(T ) = (exp ρx) ◦ T ◦ (exp ρx)−1(14.12.5)

for every linear mapping T from V into itself, as in the previous section. In
particular,

(exp adρx)(ρy) = (exp ρx) ◦ ρy ◦ (exp ρx)−1(14.12.6)

for every y ∈ A.
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Suppose that x is ad-nilpotent in A, in addition to ρx being nilpotent on V .
Thus exp adA,x is defined as a linear mapping from A into itself, and

ρ(exp adA,x)(y) = (exp adρx)(ρy)(14.12.7)

for every y ∈ A. This follows from (14.12.4), with B taken to be the space of lin-
ear mappings from V into itself, considered as a Lie algebra over k with respect
to the commutator bracket associated to composition of linear mappings, and
with ψ taken to be the Lie algebra homomorphism from A into B corresponding
to ρ. This implies that

ρ(exp adA,x)(y) = (exp ρx) ◦ ρy ◦ (exp ρx)−1(14.12.8)

for every y ∈ A.

14.13 Representations and structure constants

Let k be a commutative ring with a multiplicative identity element, and let
m and n be positive integers. The spaces km and kn of m and n-tuples of
elements of k are (free) modules over k with respect to coordinatewise addition
and scalar multiplication, as usual. Let ρ be a bilinear action of km on kn,
which corresponds to a mapping from km × kn into kn that is bilinear over k.
If x = (x1, . . . , xm) ∈ km and v = (v1, . . . , vn) ∈ kn, then ρx(v) ∈ kn can be
expressed as

(ρx(v))r =

m∑
j=1

n∑
l=1

arj,l xj vl,(14.13.1)

where the left side is the rth coordinate of ρx(v) for each r = 1, . . . , n. The
coefficients arj,l are elements of k for each j = 1, . . . ,m and l, r = 1, . . . , n, and
do not depend on x or v. It is easy to see that these coefficients are uniquely
determined by ρ. Conversely, any coefficients arj,l ∈ k determine a bilinear action
of km on kn in this way.

Let K be a commutative associative algebra over k, where multiplication of
y, z ∈ K is expressed as y z. The spaces Km and Kn of m and n-tuples of ele-
ments of K may be considered as modules over k with respect to coordinatewise
addition and scalar multiplication. If x ∈ Km and v ∈ Kn, then let ρKx (v) be
the element of Kn whose rth coordinate is equal to

(ρKx (v))r =

m∑
j=1

n∑
l=1

arj,l xj vl(14.13.2)

for each r = 1, . . . , n. This uses both multiplication on K and scalar multipli-
cation of elements of K by elements of k to define the terms of the sum on the
right. This defines ρK as a bilinear action of Km on Kn.

Suppose that km is a Lie algebra over k, with respect to a Lie bracket [·, ·]km .
Using the structure constants for [·, ·]km , we get a Lie bracket [·, ·]Km on Km,
as in Section 9.14.
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Suppose also that ρ is a representation of km, as a Lie algebra over k, on kn.
This means that

ρ[w,x]km (v) = ρw(ρx(v))− ρx(ρw(v))(14.13.3)

for every w, x ∈ km and v ∈ kn. This can be characterized by suitable conditions
on the coefficients arj,l associated to ρ and the structure constants for [·, ·]km . It
follows that

ρK[w,x]Km (v) = ρKw (ρKx (v))− ρKx (ρKw (v))(14.13.4)

for every w, x ∈ Km and v ∈ Kn. Thus ρK is a representation of Km, as a Lie
algebra over k, on Kn under these conditions.

If T is a homomorphism from kn into itself, as a module over k, then T
corresponds to an n × n matrix with entries in k in the usual way. Using the
same matrix, we get a homomorphism TK from Kn into itself, as a module over
k. This defines a homomorphism from Homk(k

n, kn) into Homk(K
n,Kn), as

associative algebras over k with respect to composition of mappings.
Suppose that K has a multiplicative identity element e, so that Km and

Kn may be considered as free modules over K with respect to coordinatewise
addition and scalar multiplication. In this case, Km may be considered as a Lie
algebra over K with respect to [·, ·]Km , as in Section 9.14. Similarly, ρK may
be considered as a representation of Km, as a Lie algebra over K, on Kn, as a
module over K. If T is a homomorphism from kn into itself as a module over
k, then TK is a homomorphism from Kn into itself as a module over K.

As before, t 7→ t e defines a ring homomorphism from k into K. This leads
to homomorphisms from km and kn into Km and Kn, as modules over k. More
precisely, this gives a homomorphism from km into Km as Lie algebras over k.
Similarly, if x ∈ km and v ∈ kn, then the image of ρx(v) in K

n is the same as
taking the images of x and v in Km and Kn, respectively, and then using ρK .
If T is a homomorphism from kn into itself, as a module over k, and v ∈ kn,
then the image of T (v) in Kn is the same as first taking the image of v in Kn,
and then taking the image of that under TK .

Suppose that t 7→ t e is injective as a mapping from k into K, so that the
corresponding mappings from km and kn into Km and Kn, respectively, are
injective as well. If T is a homomorphism from kn into itself, as a module over
k, and TK = 0 on Kn, then T = 0 on kn. Similarly, if TK is nilpotent on Kn,
then T is nilpotent on kn.

Let x ∈ km be given, and let xK be its image in Km. If T = ρx, then
TK = ρKxK

. In particular, if ρKxK
is nilpotent as a mapping from Kn into itself,

then ρx is nilpotent on kn.

14.14 Lie’s theorem and nilpotence

Let k be a field of characteristic 0, and let (A, [·, ·]A) be a solvable Lie algebra
over k with positive finite dimension m as a vector space over k. Also let V be a
vector space over k of positive finite dimension n, and let ρ be a representation
of A on V . Remember that [A,A] ⊆ A is as defined in Section 9.2.



310 CHAPTER 14. NILPOTENCE AND DIAGONALIZABILITY

Suppose for the moment that k is algebraically closed. Under these condi-
tions, there is a flag F = {Vj}nj=0 in V such that

ρa(Vj) ⊆ Vj(14.14.1)

for every a ∈ A and j = 0, 1, . . . , n, as in Section 9.13. If a ∈ [A,A], then it
follows that

ρa(Vj) ⊆ Vj−1(14.14.2)

for every j = 1, . . . , n, as in Section 9.11. In particular, this implies that

(ρa)
n = 0(14.14.3)

on V for every a ∈ [A,A].
Otherwise, letK be an algebraically closed field that contains k as a subfield.

We may as well suppose that A = km as a vector space over k, and that V = kn.
As in Section 9.14, [·, ·]A can be extended to a Lie bracket [·, ·]AK

on AK = Km,
so that AK becomes a solvable Lie algebra over K. Similarly, we can use ρ to
get a representation ρK of AK , as a Lie algebra over K, on Kn, as a vector
space over K, as in the previous section.

Of course, [AK , AK ] can be defined as a subset of AK as in Section 9.2 too.
If a ∈ [AK , AK ], then it follows that

(ρKa )n = 0(14.14.4)

on Kn, as before. In particular, this holds when a ∈ [A,A]. This implies that
(14.14.3) holds on V = kn when a ∈ [A,A].



Chapter 15

Complexifications and sl2(k)
modules

15.1 Basic properties of sl2(k) modules

Let k be a commutative ring with a multiplicative identity element. Remember
that sl2(k) is freely generated, as a module over k, by

x =

(
0 1

0 0

)
, y =

(
0 0

1 0

)
, and h =

(
1 0

0 − 1

)
,(15.1.1)

as in Section 10.2. Thus every element of sl2(k) can be expressed in a unique
way as a linear combination of x, y, and h, with coefficients in k. We also have
that

[h, x] = 2 · x, [h, y] = −2 · y, and [x, y] = h,(15.1.2)

as before, using the commutator bracket associated to matrix multiplication.
Let V be a module over k, and let ρ = ρV be a representation of sl2(k) on

V , as a Lie algebra over k. Thus ρx, ρy, and ρh are homomorphisms from V
into itself, as a module over k, such that

[ρh, ρx] = ρ[h,x] = 2 · ρx, [ρh, ρy] = ρ[h,y] = −2 · ρy,(15.1.3)

and [ρx, ρy] = ρ[x,y] = ρh.

Equivalently, we may consider V as a module over sl2(k), as a Lie algebra over
k, with

a · v = ρa(v)(15.1.4)

for every a ∈ sl2(k) and v ∈ V .
Let us now take k to be a field, so that V is a vector space over k. If λ ∈ k,

then put

Vλ = {v ∈ V : h · v = λ v},(15.1.5)

311
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which is the linear subspace of V consisting of eigenvectors of ρh with eigenvalue
λ. Thus Vλ ̸= {0} exactly when λ is an eigenvalue of ρh on V . In this case, λ
may be called a weight of h on V , and Vλ may be called a weight space, as on
p31 of [14]. An element of Vλ may be said to have weight λ, as on p17 of [24].

Suppose that v ∈ Vλ for some λ ∈ k. Observe that

h · (x · v) = ([h, x]) · v + x · (h · v)(15.1.6)

= (2 · x) · v + x · (λ v) = (λ+ 2) (x · v).

More precisely, λ+ 2 means λ+ 2 · 1 = λ+ 1+ 1 as an element of k, where 1 is
the multiplicative identity element in k. It follows that

x · v ∈ Vλ+2.(15.1.7)

Similarly,

h · (y · v) = ([h, y]) · v + y · (h · v)(15.1.8)

= (−2 · y) · v + y · (λ v) = (λ− 2) (y · v),

where λ− 2 = λ− 2 · 1 = λ− 1− 1, as an element of k. This means that

y · v ∈ Vλ−2.(15.1.9)

Of course, if k has characteristic 0, then k may be considered as containing the
rational numbers as a subfield.

Remember that nonzero eigenvectors of ρh with distinct eigenvalues are au-
tomatically linearly independent. If V has finite dimension as a vector space
over k, then it follows that there are only finitely many weights λ of h on V .

15.2 Maximal or primitive vectors

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Suppose for the moment that k is an algebraically closed field of char-
acteristic 0, and that V has positive finite dimension. This implies that ρh
is diagonalizable on V , as in Section 14.9. This also uses the fact that h is
ad-diagonalizable in sl2(k).

Under these conditions, there is a weight λ ∈ k of h on V , because V ̸= {0}.
In fact, there is a weight λ of h on V such that Vλ+2 = {0}, because there are
only finitely many weights of h on V . In this case, if v ∈ Vλ, then

x · v = 0,(15.2.1)

by (15.1.7).
If v is a nonzero element of Vλ for some λ ∈ k that satisfies (15.2.1), then v

may be called a maximal vector of weight λ, as on p32 of [14]. In this situation,
v may also be said to be primitive of weight λ, as in Definition 1 on p18 of [24].
Note that V does not need to have finite dimension for this definition.



15.3. RELATED SUBMODULES 313

If k is an algebraically closed field of characteristic 0 and V has positive
finite dimension, then one can get a maximal vector of some weight λ ∈ k by
choosing λ so that Vλ+2 = {0}, as before. Alternatively, if v ∈ V is a nonzero
eigenvector of ρh with eigenvalue λ ∈ k, then

ρh((ρx)
j(v)) = (λ+ 2 j) (ρx)

j(v)(15.2.2)

for every nonnegative integer j, as before. We also have that (ρx)
j(v) = 0 for

some positive integer j, because V has finite dimension. Let j0 be the largest
nonnegative integer such that (ρx)

j0(v) ̸= 0, so that (ρx)
j0+1(v) = 0. This

means that (ρx)
j0(v) is a maximal vector of weight λ+ 2 j0, as in the alternate

proof of Proposition 3 on p18 of [24].
Let B be the linear subspace of sl2(k) spanned by x and h. This is a Lie

subalgebra of sl2(k), which is solvable as a Lie algebra over k. Let v be a nonzero
element of V , so that

{t v : t ∈ k}(15.2.3)

is a one-dimensional linear subspace of V . If v is primitive, then (15.2.3) is
mapped into itself by ρh and ρx. Equivalently, this means that (15.2.3) is a
submodule of V , as a module over B, as a Lie algebra over k.

Conversely, suppose that (15.2.3) is a submodule of V , as a module over B.
This is the same as saying that v is an eigenvector of both ρh and ρx. It follows
that

2 · ρx(v) = ([ρh, ρx])(v) = 0.(15.2.4)

If k does not have characteristic 2, then we get that ρx(v) = 0, so that v is
primitive. This corresponds to Proposition 2 on p18 of [24].

Suppose that k is an algebraically closed field of characteristic 0 again, and
that V has positive finite dimension. Because B is solvable, there is a v ∈ V
such that v ̸= 0 and v is an eigenvector of ρb for every b ∈ B, as in Section
9.13. This implies that v is primitive, as in the preceding paragraph. This
corresponds to the proof of Proposition 3 on p18 of [24], and to Exercise 1 on
p34 of [14].

15.3 Related submodules

Let k be a field of characteristic 0, and let V be a vector space over k. Also
let ρ = ρV be a representation of sl2(k) on V , as a Lie algebra over k, so that
V may be considered as a module over sl2(k). Suppose that v is a primitive
element of V of weight λ ∈ k. Put

vj = (1/j!) (ρy)
j(v)(15.3.1)

for every positive integer j, as on p32 of [14], and Theorem 3 on p18 of [24].
More precisely, (ρy)

j is the jth power of ρy with respect to composition, as a
linear mapping from V into itself. We can define vj as in (15.3.1) when j = 0
too, with the usual interpretations, so that v0 = v. It is convenient to put
v−1 = 0 as well.
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Under these conditions, we have that

h · vj = (λ− 2 j) vj(15.3.2)

for every j ≥ 0, which is to say that vj ∈ Vλ−2 j . This follows by using (15.1.9)
repeatedly, or using induction. We also have that

y · vj = (j + 1) · vj+1(15.3.3)

for every j ≥ −1, by definition of vj . Let us check that

x · vj = (λ− j + 1) vj−1(15.3.4)

for every j ≥ 0. If j = 0, then this uses the hypothesis that v0 = v be primitive,
so that x · v = 0. Otherwise, if j ≥ 1, then we can use (15.3.3) to get that

j x · vj = x · (y · vj−1) = ([x, y]) · vj−1 + y · (x · vj−1).(15.3.5)

Using induction, we may suppose that the analogue of (15.3.4) for j − 1 holds,
so that

j x · vj = h · vj−1 + (λ− (j − 1) + 1) y · vj−2.(15.3.6)

It follows that

j x · vj = (λ− 2 (j − 1)) vj−1 + (λ− j + 2) ((j − 2) + 1) vj−1,(15.3.7)

by (15.3.2) and (15.3.3). This reduces to

j x · vj = ((λ− 2 j + 2) + (λ− j + 2) (j − 1)) vj−1(15.3.8)

= (λ+ (λ− j) (j − 1)) vj−1 = j (λ− j + 1) vj−1.

This implies (15.3.4), as desired. This corresponds to the lemma on p32 of [14],
and Theorem 3 on p18 of [24].

Remember that v0 = v ̸= 0, because v is primitive, by hypothesis. As in
Corollary 1 on p19 of [24], there are two cases to consider. In the first case,

for each j ≥ 0, we have that vj ̸= 0.(15.3.9)

This means that the vj ’s are linearly independent in V , because they are eigen-
vectors for ρh with distinct eigenvalues, by (15.3.2). In particular, this implies
that V has infinite dimension as a vector space over k.

In the second case,
vl = 0 for some l ≥ 1.(15.3.10)

This implies that vj = 0 for every j ≥ l, by the definition of vj . In this case,
let m be the largest nonnegative integer such that vm ̸= 0. Thus vj ̸= 0 when
j ≤ m, and vj = 0 when j > m. Observe that

x · vm+1 = (λ−m) vm,(15.3.11)
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by (15.3.4) with j = m+ 1. It follows that

λ = m,(15.3.12)

because vm ̸= 0 and vm+1 = 0. This is also related to some of the remarks on
p32 of [14].

In this second case, let W be the linear span of v0, v1, . . . , vm in V . It is
easy to see that W is a submodule of V , as a module over sl2(k), by (15.3.2),
(15.3.3), and (15.3.4). Let W0 be a nontrivial linear subspace of W such that
ρh(W0) ⊆ W0. Because ρh is diagonalizable on W , we get that the restriction
of ρh to W0 is diagonalizable as well. In particular, W0 contains a nonzero
eigenvector of ρh. In this situation, this means that vj0 ∈ W0 for some j0,
0 ≤ j0 ≤ m, because the corresponding eigenvalues for ρh on W are distinct. If
W0 is a submodule of W , as a module over sl2(k), then it follows that vj ∈W0

for every j = 0, 1, . . . ,m, by (15.3.3) and (15.3.4). This implies that W0 = W ,
so that W is irreducible as a module over sl2(k). This corresponds to Corollary
2 on p19 of [24], as well as some of the remarks on p32-3 and part of Exercise
3 on p34 of [14].

15.4 Constructing modules W (m)

Let k be a commutative ring with a multiplicative identity element, and let m
be a nonnegative integer. Also let W (m) be a module over k freely generated
by m+1 nonzero distinct elements v0, v1, . . . , vm. This corresponds to V (m) on
p33 of [14], and to Wm on p19 of [24]. More precisely, one can take W (m) to
be the space km+1 of (m+ 1)-tuples of elements of k, as a module over k with
coordinatewise addition and scalar multiplication, and v0, v1, . . . , vm to be the
standard basis vectors in km+1. It will be convenient to put v−1 = vm+1 = 0,
as elements of W (m).

Put

H(vj) = (m− 2 j) · vj ,(15.4.1)

Y (vj) = (j + 1) · vj+1,(15.4.2)

X(vj) = (m− j + 1) · vj−1(15.4.3)

for j = 0, 1, . . . ,m. More precisely, there are unique module homomorphisms
H, Y , and X from W (m) into itself that satisfy these conditions. Note that
(15.4.1) holds trivially when j = −1 or m+1. Similarly, (15.4.2) holds trivially
when j = −1, and (15.4.3) holds trivially when j = m+ 1.

Observe that

H(X(vj))−X(H(vj)) = (m− j + 1) ·H(vj−1)− (m− 2 j) ·X(vj)

= (m− j + 1) (m− 2 (j − 1)) · vj−1(15.4.4)

−(m− 2 j) ·X(vj)

= ((m− 2 (j − 1))− (m− 2 j)) ·X(vj) = 2 ·X(vj)



316 CHAPTER 15. COMPLEXIFICATIONS AND SL2(K) MODULES

for each j = 0, 1, . . . ,m. Similarly,

H(Y (vj))− Y (H(vj)) = (j + 1) ·H(vj+1)− (m− 2 j) · Y (vj)

= (j + 1) (m− 2 (j + 1)) · vj+1 − (m− 2 j) · Y (vj)(15.4.5)

= ((m− 2 (j + 1))− (m− 2 j)) · Y (vj) = −2 · Y (vj)

for every j = 0, 1, · · · ,m. We also have that

X(Y (vj))− Y (X(vj)) = (j + 1) ·X(vj+1)− (m− j + 1) · Y (vj−1)

= (j + 1) (m− (j + 1) + 1) · vj(15.4.6)

−(m− j + 1) ((j − 1) + 1) · vj
= ((j + 1) (m− j)− (m− j + 1) j) · vj
= ((m− j)− j) · vj = H(vj)

for each j = 0, 1, . . . , n. This shows that

[H,X] = 2 ·X, [H,Y ] = −2 · Y, and [X,Y ] = H,(15.4.7)

using the commutator bracket associated to composition of module homomor-
phisms from W (m) into itself.

Let x, y, and h be the usual elements of sl2(k), as in (15.1.1). Thus every
element of sl2(k) can be expressed in a unique way as a linear combination of
x, y, and h with coefficients in k, as in Section 10.2. The Lie brackets of x, y,
and h in sl2(k) satisfy (15.1.2), as before. Put

ρx = X, ρy = Y, and ρh = H.(15.4.8)

If a ∈ sl2(k), then we can define ρa as a module homomorphism fromW (m) into
itself that satisfies (15.4.8) and is linear over k in a. This defines a representation
ρ = ρW (m) of sl2(k), as a Lie algebra over k, onW (m), because of (15.4.7). This
corresponds to the statement before Theorem 2 on p20 of [24], as well as remarks
on p33 and part of Exercise 3 on p34 of [14].

If m = 0, then ρ corresponds to the trivial representation of sl2(k) on k. If
m = 1, then ρ corresponds to the standard representation of sl2(k) on k2. If
m = 2, then one can check that ρ is isomorphic to the adjoint representation on
sl2(k). More precisely, if one takes v0 = x, v1 = −h, and v2 = y, then X, Y , and
H correspond to adx, ady, and adh on sl2(k), respectively. This corresponds to
the examples mentioned on p20 of [24], and some remarks on p33 of [14].

15.5 More on W (m)

Let k be a field of characteristic 0, and let m be a nonnegative integer. Also
let W (m) be as in the previous section, so that W (m) is a vector space over k
of dimension m + 1, and ρ = ρW (m) is a representation of sl2(k) on W (m). In
this situation, v0 is a primitive element of V = W (m) with weight λ = m, by
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construction. Of course, (15.3.2), (15.3.3), and (15.3.4) correspond to (15.4.1),
(15.4.2), and (15.4.3) here, respectively. Thus v1, . . . , vm in the previous section
correspond to the analogous vectors in Section 15.3, and vj = 0 when j > m
in the notation of Section 15.3. This means that we are in the second case
(15.3.10), and W (m) is the same as W in Section 15.3. In particular, W (m) is
irreducible as a module over sl2(k), as before. This corresponds to part (a) of
Theorem 2 on p20 of [24], as well as remarks on p33 and part of Exercise 3 on
p34 of [14].

Let V be a vector space over k, and let ρV be a representation of sl2(k) on
V . Suppose that v ∈ V is primitive of weight λ ∈ k, as in Section 15.3, and that
we are in the second case (15.3.10), which holds automatically when V has finite
dimension. If W ⊆ V and m ≥ 0 are as in Section 15.3, then W is isomorphic
to W (m) in the previous section, as modules over sl2(k). If V is irreducible as a
module over sl2(k), then V =W , so that V is isomorphic to W (m) as a module
over sl2(k).

Suppose now that k is algebraically closed, and that V has positive finite
dimension. Under these conditions, there is a v ∈ V that is primitive of some
weight λ ∈ k, as in Section 15.1. In this situation, we are automatically in the
second case (15.3.10), as in the preceding paragraph. This corresponds to part
(b) of Theorem 2 on p20 of [24], and the theorem on p33 of [14].

Let k be a field, and let W (m) be as in the previous section for each nonneg-
ative integer m again. Note that W (0) is automatically irreducible as a module
over sl2(k). Similarly, W (1) is irreducible as a module over sl2(k). Suppose
from now on in this section that k has positive characteristic, and that m ≥ 2.

Suppose for the moment that m is strictly less than the characteristic of k,
which is thus greater than 2. Under these conditions, W (m) is irreducible as
a module over sl2(k), as in Exercise 5 on p34 of [14]. To see this, let W0 be a
nontrivial linear subspace of W (m) such that H(W0) ⊆ W0. The restriction of
H to W0 is diagonalizable on W0, because H is diagonalizable on W (m). This
implies that W0 contains a nonzero eigenvector of H. One can check that the
eigenvalues of H on W (m) are distinct as elements of k in this situation. It
follows that vj0 ∈W0 for some j0, 0 ≤ j0 ≤ m.

Suppose that W0 is a submodule of W (m), as a module over sl2(k). One
can verify that vj ∈ W0 for every j = 0, 1, . . . ,m, using (15.4.2) and (15.4.3).
More precisely, this uses the fact that the relevant coefficients on the right sides
of (15.4.2) and (15.4.3) correspond to nonzero elements of k. This implies that
W0 =W (m), as desired.

If k has characteristic equal to m, then W (m) is reducible as a module over
sl2(k), as in Exercise 5 on p34 of [14]. To see this, consider the linear spanW1 of
v1, . . . , vm−1 in W (m). Clearly H(W1) ⊆W1, because the vj ’s are eigenvectors
for H. It is easy to see that Y (W1) ⊆ W1, because Y (vm−1) = 0 when the
characteristic of k is equal to m, by (15.4.2). Similarly, one can check that
X(W1) ⊆W1, because X(v1) = 0 when the characteristic of k is m, by (15.4.3).
This implies that W1 is a submodule of W (m), as a module over sl2(k). Of
course, W1 ̸= {0},W (m).
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15.6 Another construction

Let k be a commutative ring with a multiplicative identity element, and let
T1, T2 be commuting indeterminates. Remember that k[T1, T2] is the space
of formal polynomials in T1, T2 with coefficients in k, as in Section 5.8. This
is a commutative associative algebra over k with respect to the usual formal
multiplication of polynomials, as before. If d is a nonnegative integer, then the
space kd[T1, T2] of formal polynomials in T1, T2 with coefficients in k that are
homogeneous of degree d is a submodule of k[T1, T2], as a module over k, as
in Section 5.13. More precisely, k[T1, T2] corresponds to the direct sum of the
submodules kd[T1, T2] over d ≥ 0, as a module over k, as before.

We would like to make k[T1, T2] into a module over sl2(k), as a Lie algebra
over k, as in Exercise 4 on p34 of [14], and the remark on p20 of [24]. Thus, if
a ∈ sl2(k) and f(T ) ∈ k[T1, T2], then we need to define a · f(T ) as an element
of k[T1, T2]. More precisely, if f(T ) ∈ kd[T1, T2] for some d ≥ 0, then a · f(T )
will be an element of kd[T1, T2]. This means that kd[T1, T2] will be a submodule
of k[T1, T2], as a module over sl2(k), for each d ≥ 0. Indeed, k[T1, T2] will
correspond to the direct sum of kd[T1, T2] over d ≥ 0, as a module over sl2(k).

Of course, k0[T1, T2] corresponds to constant formal polynomials with co-
efficients in k, and is isomorphic to k in an obvious way. If a ∈ sl2(k) and
f(T ) ∈ k0[T1, T2], then we put a · f(T ) = 0.

An element of k1[T1, T2] can be expressed in a unique way as

f(T ) = f1 T1 + f2 T2,(15.6.1)

where f1, f2 ∈ k. In the notation of Section 5.8, f1 and f2 correspond to fα
with α = (1, 0) and (0, 1), respectively. If a ∈ sl2(k), then we can define a ·f(T )
as an element of k1[T1, T2] using the standard action of sl2(k) on (f1, f2) as an
element k2. In particular, if x, y, h ∈ sl2(k) are as in (15.1.1), as usual, then

x · f(T ) = f2 T1, y · f(T ) = f1 T2, and h · f(T ) = f1 T1 − f2 T2.(15.6.2)

This makes k1[T1, T2] into a module over sl2(k), as a Lie algebra over k.
If a ∈ sl2(k), then we would like to define the action of a on k[T1, T2] so that

it is a derivation, as in Exercise 4 on p34 of [14]. Thus we would like to have
that

a · (f(T ) g(T )) = (a · f(T )) g(T ) + f(T ) (a · g(T ))(15.6.3)

for every f(T ), f(T ) ∈ k[T1, T2]. If α = (α1, α2) is an ordered pair of nonnegative
integers, then we should have that

a · (Tα1
1 Tα2

2 ) = α1 · (a · T1)Tα1−1
1 Tα2

2 + α2 · (a · T2)Tα1
1 Tα2−1

2 .(15.6.4)

More precisely, if α1 or α2 is 0, then the corresponding term on the right should
be interpreted as being equal to 0. One can use this to define the left side of the
equation, using the definition of a · T1 and a · T2 from the preceding paragraph.
This can be used to define a ·f(T ) for every f(T ) ∈ k[T1, T2], by linearity. Using
this definition, one can check that (15.6.3) holds for every f(T ), g(T ) ∈ k[T1, T2].
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Let ρa be the action of a ∈ sl2(k) on k[T1, T2] defined in the previous para-
graph. Thus ρa is a derivation on k[T1, T2] for every a ∈ sl2(k), and it is easy
to see that ρa is linear over k in a. We also have that ρa maps kd[T1, T2] into
itself for every a ∈ sl2(k) and d ≥ 0, by construction. In order to show that
this defines a representation of sl2(k), as a Lie algebra over k, on k[T1, T2], we
should verify that

[ρa, ρb] = ρ[a,b](15.6.5)

for every a, b ∈ sl2(k). Note that the left side is a derivation on k[T1, T2] as well,
as in Section 2.5. We already have that ρ defines a representation of sl2(k) on
k0[T1, T2] and k1[T1, T2], so that (15.6.5) holds on these subspaces of k[T1, T2].
One can use this to check that (15.6.5) holds on all of k[T1, T2], because both
sides of (15.6.5) are derivations on k[T1, T2].

Let α = (α1, α2) be an ordered pair of nonnegative integers again. Observe
that

x · (Tα1
1 Tα2

2 ) = α2 · Tα1+1
1 Tα2−1

2 ,(15.6.6)

y · (Tα1
1 Tα2

2 ) = α1 · Tα1−1
1 Tα2+1

2 ,(15.6.7)

h · (Tα1
1 Tα2

2 ) = (α1 − α2) · Tα1
1 Tα2

2 .(15.6.8)

If a ∈ sl2(k), then ρa corresponds to the formal differential operator

(a · T1) ∂1 + (a · T2) ∂2 = (a · T1)
∂

∂T1
+ (a · T2)

∂

∂T2
(15.6.9)

on k[T1, T2], in the notation of Section 5.11. More precisely, this is a first-order
differential operator, as in Section 5.12, which is homogeneous of degree 0, as
in Section 5.14.

15.7 Some exponentials

Let k be a field of characteristic 0, or a commutative ring with a multiplicative
identity element that is an algebra over Q, for simplicity. As in (15.1.1), we put
x =

(
0 1
0 0

)
and y =

(
0 0
1 0

)
. Note that x2 = y2 = 0, so that x and y are nilpotent

as elements of the algebra M2(k) of 2× 2 matrices with entries in k. Thus the
exponentials of x and y are defined in M2(k) as in Section 14.10, with

expx = I + x =

(
1 1

0 1

)
, exp y = I + y =

(
1 0

1 1

)
,(15.7.1)

where I = I2 =
(
1 0
0 1

)
is the identity matrix in M2(k). Similarly,

exp(−y) = I − y =

(
1 0

−1 1

)
.(15.7.2)

Observe that

(expx) (exp−y) =
(
1 1

0 1

)(
1 0

−1 1

)
=

(
0 1

−1 1

)
,(15.7.3)
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and hence

(expx) (exp−y) (expx) =
(

0 1

−1 1

)(
1 1

0 1

)
=

(
0 1

−1 0

)
.(15.7.4)

Remember that [x, y] = h =
(
1 0
0 −1

)
, [h, x] = 2 · x, and [h, y] = −2 · y.

Put adx(z) = [x, z] and ady(z) = [y, z] for every z ∈ sl2(k), as usual. Thus
adx(x) = ady(y) = 0,

adx(y) = −ady(x) = h, adx(h) = −2 · x, ady(h) = 2 · y.(15.7.5)

This implies that

(adx)
2(h) = (ady)

2(h) = 0.(15.7.6)

Similarly,

(adx)
2(y) = adx(h) = −2 · x, (ady)

2(x) = ady(−h) = −2 · y.(15.7.7)

It follows that (adx)
3 = (ady)

3 = 0 as mappings from sl2(k) into itself, so that
x and y are ad-nilpotent in sl2(k).

This means that the exponentials of adx and ady are defined as linear map-
pings from sl2(k) into itself, as in Section 14.10. In this situation, we have
that

exp adx = I + adx + (1/2) (adx)
2,(15.7.8)

exp ady = I + ady + (1/2) (ady)
2,(15.7.9)

where I is the identity mapping on sl2(k). Similarly,

exp(−ady) = I − ady + (1/2) (ady)
2.(15.7.10)

Observe that

(exp adx)(x) = x, (exp adx)(h) = h− 2 · x,(15.7.11)

and (exp adx)(y) = y + h− x.

We also have that

(exp−ady)(y) = y, (exp−ady)(h) = h− 2 · y,(15.7.12)

and (exp−ady)(x) = x+ h− y.

Put

σ = (exp adx) ◦ (exp−ady) ◦ (exp adx),(15.7.13)

which defines a linear mapping from sl2(k) into itself. More precisely, this is an
inner automorphism of sl2(k), as in Section 14.11. Observe that

σ(x) = (exp adx)(x+ h− y) = x+ h− 2 · x− y − h+ x = −y.(15.7.14)
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Similarly,

σ(y) = (exp adx)((exp−ady)(y + h− x))

= (exp adx)(y + h− 2 · y − x− h+ y) = (exp adx)(−x) = −x.(15.7.15)

We also have that

σ(h) = (exp adx)((exp−ady)(h− 2 · x))(15.7.16)

= (exp adx)(h− 2 · y − 2 · x− 2 · h+ 2 · y)
= (exp adx)(−h− 2 · x) = −h+ 2 · x− 2 · x = −h.

It follows from (15.7.14), (15.7.15), and (15.7.16) that

σ(z) = −zt(15.7.17)

for every z ∈ sl2(k), where z
t is the transpose of z. This is the same as con-

jugating z ∈ sl2(k) by (15.7.4), as in Section 14.11. This corresponds to some
remarks on p9 and Exercise 10 on p10 of [14].

15.8 Exponentials and W (m)

Let k be a commutative ring with a multiplicative identity element that is an
algebra over Q, or simply a field of characteristic 0, and let m be a nonnegative
integer. Remember that W (m) is defined as a module over k as in Section 15.4,
with corresponding linear mappings X, Y , and H. Note that X and Y are
nilpotent as linear mappings on W (m), so that their exponentials are defined
as invertible linear mappings on W (m), as in Section 14.10. Put

θ = (expX) ◦ (exp−Y ) ◦ (expX),(15.8.1)

which is an invertible linear mapping from W (m) into itself.
Let ρ be the representation of sl2(k) on W (m) corresponding to X, Y , and

H as before. Thus ρx = X, ρy = Y , and ρh = H, where x, y, and h are the
usual elements of sl2(k). Remember that exp adx and exp ady are defined as
invertible linear mappings on sl2(k), because x and y are ad-nilpotent in sl2(k).
If z ∈ sl2(k), then

ρ(exp adx)(z) = (exp ρx) ◦ ρz ◦ (exp ρx)−1,(15.8.2)

as in Section 14.12. Similarly,

ρ(exp−ady)(z) = (exp−ρy) ◦ ρz ◦ (exp−ρy)−1(15.8.3)

for every z ∈ sl2(k).
If σ is as in (15.7.13), then we get that

ρσ(z) = θ ◦ ρz ◦ θ−1(15.8.4)
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for every z ∈ sl2(k). In particular,

−Y = ρσ(x) = θ ◦ ρx ◦ θ−1 = θ ◦X ◦ θ−1,(15.8.5)

using (15.7.14) in the first step. Similarly,

−X = ρσ(y) = θ ◦ ρy ◦ θ−1 = θ ◦ Y ◦ θ−1,(15.8.6)

using (15.7.15) in the first step. We also have that

−H = ρσ(h) = θ ◦ ρh ◦ θ−1 = θ ◦H ◦ θ−1,(15.8.7)

using (15.7.16) in the first step. This corresponds to remarks on p33-4 of [14],
and Remark 1 on p21 of [24].

15.9 Additional properties of sl2(k) modules

Let K be a field, and let k be a subfield of K. Also let n be a positive integer,
so that V = kn is an n-dimensional vector space over k, and VK = Kn is an
n-dimensional vector space over K. If T is a linear mapping from V into itself,
as a vector space over k, then there is a unique extension TK of T to a linear
mapping from VK into itself, as a vector space over K. If T is invertible on V ,
then TK is invertible on VK , with inverse equal to the extension of T−1 on V
to VK as before. If λ ∈ k is an eigenvalue of T on V , then λ is an eigenvalue of
TK on VK . However, if λ ∈ k is not an eigenvalue of T on V , then λ is not an
eigenvalue of TK on VK . More precisely, T −λ IV is invertible on V in this case,
where IV is the identity mapping on V . This implies that TK−λ IVK

is invertible
on VK , where IVK

is the identity mapping on VK . Thus the eigenvalues of T on
V are the same as the eigenvalues of TK on VK that are elements of k.

Let ρV be a representation of sl2(k), as a Lie algebra over k, on V = kn. This
leads to a representation ρVK of sl2(K), as a Lie algebra over K, on VK = Kn,
in a natural way. More precisely, if z ∈ sl2(k), then ρ

VK
z is the K-linear mapping

on Kn that corresponds to ρVz as a k-linear mapping on kn as in the preceding
paragraph. In particular, this can be applied to the usual elements x, y, and
h of sl2(k), as in (15.1.1). If z ∈ sl2(K), then z can be expressed as a linear
combination of x, y, and h with coefficients in K, and one can take ρVK

z to be
the corresponding linear combination of ρVK

x , ρVK
y , and ρVK

h .
Suppose now that k has characteristic 0, and that K is algebraically closed.

Of course, we may consider Q as a subfield of k, and thus as a subfield of
K. Remember that VK can be expressed as the direct sum of finitely many
irreducible sl2(K) modules, by Weyl’s theorem. Each of these irreducible sl2(K)
modules is isomorphic to the analogue of W (m) in Section 15.4 for K, and
for some nonnegative integer m, as in Section 15.5. It follows that ρVK

h is
diagonalizable on VK , with eigenvalues in Z.

In particular, ρVK

h has an eigenvalue λ in Z, which implies that λ is an
eigenvalue for ρVh on V , as before. One can use this to show that there is a
maximal or primitive vector in V of some weight, as in Section 15.2. If V is
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irreducible as an sl2(k) module, then it follows that V is isomorphic as an sl2(k)
module toW (m) for some nonnegative integerm, as in Section 15.5. Otherwise,
one can use Weyl’s theorem to reduce to this case. This corresponds to Exercise
2 on p62 of [25], with n = 2.

15.10 Complexifying real vector spaces

Let V1 be a vector space over the real numbers. The complexification of V1 may
be defined as a vector space V2 over the complex numbers as follows. We start
by taking V2 to be the direct sum V1 ⊕ V1 of V1 with itself, as a vector space
over the real numbers. Equivalently, V2 is the Cartesian product V1 × V1 of V1
with itself, where addition and scalar multiplication by real numbers is defined
coordinatewise. If (v, w) ∈ V1 × V1, then i (v, w) is defined as an element of
V1 × V1 by

i (v, w) = (−w, v).(15.10.1)

It is easy to see that this makes V2 into a vector space over the complex numbers.
We shall normally identify v ∈ V1 with (v, 0) ∈ V1×V1 = V2, so that V1 may be
considered as a subset of V2. Note that any basis for V1 as a vector space over
the real numbers may be considered as a basis for V2 as a vector space over the
complex numbers.

Let V be a vector space over the complex numbers, so that V may be
considered as a vector space over the real numbers too. Suppose that V0 is
a real-linear subspace of V , which is to say that V0 is a linear subspace of V as
a vector space over the real numbers. In this case,

i V0 = {i v : v ∈ V0}(15.10.2)

is a real-linear subspace of V as well. Note that V0 + i V0 is a complex-linear
subspace of V , which is to say a linear subspace of V as a vector space over the
complex numbers. Let us say that V0 is totally real in V if

V0 ∩ (i V0) = {0}.(15.10.3)

This means that V0 + i V0 is isomorphic to the direct sum of of V0 and i V0, as a
vector space over the real numbers. Under these conditions, there is a natural
isomorphism from the complexification of V0 onto V0 + i V0, as vector spaces
over the complex numbers, which is the identity mapping on V0.

Let V1 be a vector space over the real numbers again, and let W be a vector
space over the complex numbers. Thus W may be considered as a vector space
over the real numbers, and a linear mapping from V1 into W , as a vector space
over R, may be called a real-linear mapping. One can verify that a real-linear
mapping from V1 into W has a unique extension to a complex-linear mapping
from the complexification V2 of V1 into W .

Let W1 be a vector space over the real numbers, and let W2 be the complex-
ification of W1. If ϕ1 is a linear mapping from V1 into W1, as vector spaces over
the real numbers, then ϕ1 may be considered as a real-linear mapping from V1
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into W2, because W1 is identified with a real-linear subspace of W2. Thus ϕ2
has a unique extension to a complex-linear mapping ϕ2 from V2 into W2, as in
the preceding paragraph. If ϕ1 is injective as a mapping from V1 into W1, then
one can check that ϕ2 is injective as a mapping from V2 into W2. Similarly, if
ϕ1 maps V1 onto W1, then ϕ2 maps V2 onto W2.

Let W be a vector space over the complex numbers again, let ϕ1 be a real-
linear mapping from V1 into W , and let ϕ2 be the extension of ϕ1 to a complex-
linear mapping from V2 into W . If ϕ1 is injective as a mapping from V1 into W ,
and if ϕ1(V1) is totally real as a real-linear subspace of W , then one can verify
that ϕ2 is injective as a mapping from V2 into W .

Let W1 be a vector space over the real numbers again, and let Z1 be another
vector space over the real numbers. Also let ϕ1 be a linear mapping from V1
into W1, and let ψ1 be a linear mapping from W1 into Z1, as vector spaces over
R. As before, ϕ1 and ψ1 have unique complex-linear extensions ϕ2 from V2 into
W2 and ψ2 from W2 into the complexification Z2 of Z1, respectively. Of course,
ψ1 ◦ϕ1 is a linear mapping from V1 into Z1, as vector spaces over R. Note that
ψ2 ◦ ϕ2 is the unique extension of ψ1 ◦ ϕ1 to a complex-linear mapping from V2
into Z2.

Let Z be a vector space over the complex numbers again. A mapping from
V1 ×W1 into Z that is bilinear over R, where Z is considered as a vector space
over the real numbers, may be called a real-bilinear mapping. One can check
that such a mapping has a unique extension to a mapping from V2 ×W2 into
Z that is bilinear over C. If Z1 is a vector space over the real numbers, then
a mapping from V1 ×W1 into Z1 that is bilinear over R may be considered as
a real-bilinear mapping from V1 ×W1 into the complexification Z2 of Z1. This
can be extended to a mapping from V2 ×W2 into Z2 that is bilinear over C, as
before.

15.11 Spaces of linear mappings

Let V1 be a vector space over the real numbers, and let V2 be its complexification,
as in the previous section. If W is a vector space over the complex numbers,
then we let LR(V1,W ) be the space of real-linear mappings from V1 into W ,
and LC(V2,W ) be the space of complex-linear mappings from V2 into W . If
ϕ1 is a real-linear mapping from V1 into W , then there is a unique extension
ϕ2 of ϕ1 to a complex-linear mapping from V2 into W , as before. Conversely,
if ϕ2 is any complex-linear mapping from V2 into W , then the restriction of ϕ2
to V1, considered as a real-linear subspace of V2, is a real-linear mapping from
V1 into W . This defines a one-to-one correspondence between LR(V1,W ) and
LC(V2,W ).

Note that LR(V1,W ) may be considered as a vector space over the complex
numbers, with respect to pointwise addition and scalar multiplication by com-
plex numbers of mappings into W . It is easy to see that this corresponds to
pointwise addition and scalar multiplication by complex numbers on LC(V2,W ).
Thus the one-to-one correspondence between LR(V1,W ) and LC(V2,W ) men-
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tioned in the preceding paragraph is an isomorphism between complex vector
spaces.

LetW1 be another vector over the real numbers, and letW2 be its complexi-
fication, as before. The space L(V1,W1) of linear mappings from V1 intoW1 may
be considered as a real-linear subspace of the space LR(V1,W2) of real-linear
mappings from V1 into W2, because W1 is identified with a real-linear subspace
of W2. Similarly, iW1 may be considered as a real-linear subspace of W2, so
that the space L(V1, iW1) of linear mappings from V1 into iW1, as vector spaces
over R, may be considered as a real-linear subspace of LR(V1,W2). Observe
that

L(V1, iW1) = iL(V1,W1),(15.11.1)

as real-linear subspaces of LR(V1,W2). It is easy to see that

L(V1,W1) ∩ (iL(V1,W1)) = {0},(15.11.2)

because W1 ∩ (iW1) = {0} in W2. We also have that

L(V1,W1) + L(V1, iW1) = LR(V1,W2).(15.11.3)

More precisely, LR(V1,W2) corresponds to the direct sum of L(V1,W1) and
L(V1, iW1) as a vector space over R, because W2 corresponds to the direct sum
of W1 and iW1 as a vector space over R. Equivalently, this means that

L(V1,W1) + iL(V1,W1) = LR(V1,W2).(15.11.4)

Thus the complexification of L(V1,W2) can be identified with LR(V1,W2), as a
vector space over the complex numbers, as in the previous section.

Remember that there is a natural isomorphism between LR(V1,W2) and
LC(V2,W2), as before. This leads to a natural embedding of L(V1,W2) into
LC(V2,W2). More precisely, this embedding takes a linear mapping ϕ1 from
V1 into W1, and associates to it the unique extension ϕ2 of ϕ1 to a complex-
linear mapping from V2 into W2, where V1, W1 are identified with real-linear
subspaces of V2, W2, as usual. The image of L(V1,W1) in LC(V2,W2) consists
of the complex-linear mappings ϕ2 from V2 into W2 such that

ϕ2(V1) ⊆W1.(15.11.5)

Using this embedding, we get an isomorphism between the complexification of
L(V1,W1) and LC(V2,W2).

Let n be a positive integer, so thatRn is a vector space over the real numbers,
whose complexification can be identified with Cn. Remember that the space
L(Rn) of linear mappings from Rn into itself is isomorphic to the space Mn(R)
of n×nmatrices with entries inR in the usual way. Similarly, the space LC(C

n)
of complex-linear mappings fromCn into itself is isomorphic to the spaceMn(C)
of n×nmatrices with entries inC in essentially the same way. Of course,Mn(R)
may be considered as a real-linear subspace of Mn(C), and Mn(C) can be
identified with the complexification of Mn(R). This corresponds to identifying
a linear mapping from Rn into itself with a complex-linear mapping from Cn

into itself that takes Rn into itself, as in the preceding paragraph.
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15.12 Complexifying algebras over R

Let A1 be an algebra over the real numbers in the strict sense, and let A2 be
the complexification of A1 as a vector space over R, as in Section 15.10. The
algebra structure on A1 corresponds to a mapping from A1×A1 into A1 that is
bilinear over R, which has a unique extension to a mapping from A2 ×A2 into
A2 that is bilinear over C, as before. This makes A2 into an algebra over C in
the strict sense. If A1 is commutative, associative, or a Lie algebra, then one
can check that A2 has the analogous property, as an algebra over C. Similarly,
if A1 has a multiplicative identity element e, then e is the multiplicative identity
element in A2 as well.

Let B be an algebra over the complex numbers in the strict sense, which
may be considered as an algebra over the real numbers in the strict sense too.
If ϕ1 is a real-linear mapping from A1 into B, then there is a unique extension
of ϕ1 to a complex-linear mapping ϕ2 from A2 into B, as in Section 15.10. If ϕ1
is an algebra homomorphism from A1 into B, then it is easy to see that ϕ2 is an
algebra homomorphism from A2 into B. Similarly, if ϕ1 is an opposite algebra
homomorphism from A1 into B, then ϕ2 is an opposite algebra homomorphism
from A2 into B.

If B1 is an algebra over the real numbers in the strict sense, then its com-
plexification B2 is an algebra over the complex numbers in the strict sense, as
before. If ϕ1 is a linear mapping from A1 into B1, as vector spaces over the
real numbers, then ϕ1 may be considered as a real-linear mapping from A1 into
B2. Thus there is a unique extension of ϕ1 to a complex-linear mapping ϕ2
from A2 into B2, as before. If ϕ1 is an algebra homomorphism or an opposite
algebra homomorphism from A1 into B1, then ϕ2 has the analogous property
as a mapping from A2 into B2.

Let A be an algebra over the complex numbers in the strict sense, which
may also be considered as an algebra over the real numbers in the strict sense.
Suppose that A0 is a real-linear subspace of A that is totally real in A. This
implies that there is a natural isomorphism between the complexification of A0,
as a vector space over R, and A0+i A0, as in Section 15.10. If A0 is a subalgebra
of A too, as an algebra over R in the strict sense, then it is easy to see that
A0 + i A0 is a subalgebra of A, as an algebra over C in the strict sense. In this
case, A0 + i A0 is isomorphic to the complexification of A0, as an algebra over
R in the strict sense.

Let V1 be a vector space over the real numbers, with complexification V2,
as in Section 15.10. Remember that the space L(V1) of linear mappings from
V1 into itself is an associative algebra over R with respect to composition of
mappings. Similarly, the space LC(V2) of complex-linear mappings from V2 into
itself is an associative algebra over C with respect to composition of mappings.
We have also seen that LC(V2) can be identified with the complexification of
L(V1), as a vector space over R, as in the previous section. More precisely,
this uses the correspondence between linear mappings from V1 into itself and
complex-linear mappings from V2 into itself that map V1 into itself, where V1
is considered as a real-linear subspace of V2, as usual. This correspondence
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sends compositions of linear mappings on V1 to the analogous compositions of
complex-linear mappings on V2, as in Section 15.10. Thus L(V1) corresponds to
a subalgebra of LC(V2), as an algebra over R. It follows that LC(V2) can be
identified with the complexification of L(V1) as an algebra over R in the same
way, as in the preceding paragraph.

Similarly, gl(V1) is a Lie algebra over the real numbers, and the space
gl(V2) = glC(V2) of complex-linear mappings from V2 into itself is a Lie algebra
over C, with respect to the usual commutator brackets. As before, glC(V2) can
be identified with the complexification of gl(V1), as a vector space over R, and
in fact as a Lie algebra over R.

Suppose that V1 has finite dimension as a vector space over R, so that V2 has
the same dimension as a vector space over C. Let ϕ1 be a linear mapping from
V1 into itself, and let ϕ2 be the extension of ϕ1 to a complex-linear mapping
from V2 into itself. It is easy to see that

trV1
ϕ1 = trV2

ϕ2,(15.12.1)

where the left side is the trace of ϕ1 on V1, and the right side is the trace of
ϕ2 on V2. This uses the fact that a basis for V1 as a vector space over R may
be considered as a basis for V2 as a vector space over C. It follows that the
space sl(V2) = slC(V2) of complex-linear mappings from V2 into itself with trace
0 corresponds to the complexification of sl(V1) as a vector space over R, and
hence as a Lie algebra over R.

Let n be a positive integer, and remember that the spaces Mn(R), Mn(C)
of n × n matrices with entries in R, C, respectively, are associative algebras
over R, C with respect to matrix multiplication. As before, Mn(C) can be
identified with the complexification of Mn(R) as a vector space over R, and
more precisely as an algebra over R. Similarly, gln(C) can be identified with
the complexification of gln(R) as a Lie algebra over R. We can also identify
sln(C) with the complexification of sln(R) as a Lie algebra over R.

15.13 Conjugate-linear involutions

Let A be a vector space over the complex numbers, and let

a 7→ a∗(15.13.1)

be a conjugate-linear mapping from A into itself. Put

Asa = {a ∈ A : a∗ = a}(15.13.2)

and
Aasa = {a ∈ A : a∗ = −a},(15.13.3)

which are the collections of vectors in A that are self-adjoint and anti-self-
adjoint with respect to (15.13.1), respectively. Clearly Asa and Aasa are real-
linear subspaces of A, with

Aasa = i Asa.(15.13.4)
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We also have that
Asa ∩Aasa = {0},(15.13.5)

so that Asa and Aasa are totally real in A. Thus Asa+Aasa can be identified with
the complexifications of Asa and Aasa, as vector spaces over the real numbers,
as in Section 15.10.

Suppose that
(a∗)∗ = a(15.13.6)

for every a ∈ A, so that a 7→ a∗ is a conjugate-linear involution on A. If a ∈ A,
then

asa = (a+ a∗)/2 ∈ Asa, aasa = (a− a∗)/2 ∈ Aasa,(15.13.7)

and a = asa + aasa. This means that A = Asa + Aasa, so that A can be
identified with the complexifications of Asa and Aasa, as vector spaces over the
real numbers.

Suppose now that A is an associative algebra over the complex numbers,
and that (15.13.1) is a conjugate-linear algebra involution on A. Let ALie,C be
A considered as a Lie algebra over the complex numbers with respect to the
corresponding commutator bracket, and let ALie,R be ALie,C considered as a
Lie algebra over the real numbers. In this situation, Aasa is a Lie subalgebra of
ALie,R, and ALie,C can be identified with the complexification of Aasa, as a Lie
algebra over the real numbers.

Let V be a finite-dimensional vector space over the complex numbers, and
let β(·, ·) be a nondegenerate Hermitian form on V . If T is a linear mapping
from V into itself, then there is a unique adjoint linear mapping T ∗,β from V
into itself such that

β(T (v), w) = β(v, T ∗,β(w))(15.13.8)

for every v, w ∈ V . Under these conditions,

T 7→ T ∗,β(15.13.9)

defines a conjugate-linear algebra involution on the algebra L(V ) of all lin-
ear mappings from V into itself. Remember that gl(V ) is the same as L(V ),
considered as a Lie algebra over the complex numbers with respect to the corre-
sponding commutator bracket. Let uβ(V ) be the collection of linear mappings
T from V into itself that are anti-self-adjoint with respect to β. Thus uβ(V ) is
a real-linear subspace of gl(V ), and a Lie subalgebra of gl(V ), considered as a
Lie algebra over the real numbers. As in the preceding paragraph, gl(V ) can
be identified with the complexification of uβ(V ), as a Lie algebra over the real
numbers.

If T ∈ L(V ), then
trV T

∗,β = trV T ,(15.13.10)

where trV T denotes the trace of T on V . This can be seen by choosing a
basis for V to reduce to the case where V = Cn for some positive integer n, and
expressing β(·, ·) and T ∗,β in terms of matrices, as in Section 3.13. In particular,
this implies that sl(V ) is invariant under (15.13.9). Note that trV T is real when
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T is self-adjoint with respect to β, and imaginary when T is anti-self-adjoint
with respect to β, by (15.13.10). Put

suβ(V ) = sl(V ) ∩ uβ(V ),(15.13.11)

which is a real-linear subspace of sl(V ), and in fact a Lie subalgebra of sl(V ),
considered as a Lie algebra over the complex numbers. If T ∈ sl(V ), then
T ∗,β ∈ sl(V ), and hence the self-adjoint and anti-self-adjoint parts of T with
respect to β are contained in sl(V ) too. Thus sl(V ) can be identified with the
complexification of suβ(V ), as a Lie algebra over the real numbers.



Chapter 16

Module homomorphisms

16.1 Bilinear actions and homomorphisms

Let k be a commutative ring with a multiplicative identity element, and let V ,
W be modules over k. Remember that Hom(V,W ) = Homk(V,W ) is the space
of homomorphisms from V into W , as modules over k. This is a module over k
too, with respect to pointwise addition and scalar multiplication of mappings.
Let A be another module over k, and let ρV , ρW be bilinear actions of A on V
and W , as in Section 6.1. Also let ϕ be a homomorphism from V into W , as
modules over k. Remember that ϕ is said to intertwine ρV , ρW when

ϕ ◦ ρVa = ρWa ◦ ϕ(16.1.1)

for every a ∈ A, as in Section 6.2. In this case, we may say that ϕ is a homo-
morphism from V into W , with respect to the bilinear actions ρV , ρW . Let

HomA(V,W ) = HomA
k (V,W )(16.1.2)

be the space of these homomorphisms from V into W with respect to ρV , ρW .
It is easy to see that this is a submodule of Homk(V,W ), as a module over k.

Let Z be another module over k. If ϕ is a homomorphism from V into W ,
and ψ is a homomorphism from W into Z, as modules over k, then ψ ◦ ϕ is a
homomorphism from V into Z, as modules over k. Suppose that ρZ is a bilinear
action of A on Z. If ϕ is a homomorphism from V into W with respect to ρV ,
ρW , and if ψ is a homomorphism from W into Z with respect to ρW , ρZ , then
ψ ◦ ϕ is a homomorphism from V into Z with respect to ρV , ρZ . Indeed, if
a ∈ A, then

(ψ ◦ ϕ) ◦ ρVa = ψ ◦ (ρWa ◦ ϕ) = ρZa ◦ (ψ ◦ ϕ).(16.1.3)

Let us now take V = W , and remember that Homk(V, V ) is an associative
algebra over k, with respect to composition of mappings. More precisely, let us
use the same bilinear action ρV of A on V on both the domain and range of these
homomorphisms. Observe that HomA

k (V, V ) is a subalgebra of Homk(V, V ), as

330
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in the preceding paragraph. Of course, the identity mapping I = IV on V is a
homomorphism from V into itself, with respect to ρV . Similarly, if t ∈ k, then
t IV is an element of HomA

k (V, V ).
Suppose for the moment that k is a field, so that V is a vector space over

k, and the algebra of linear mappings from V into itself may be denoted L(V ).
Remember that Lρ(V ) may be used to denote the subalgebra of L(V ) consisting
of linear mappings from V into itself that are homomorphisms from V into itself
with respect to ρ, as in Section 6.14. If V is irreducible with respect to ρ, then
Schur’s lemma says that every nonzero element of Lρ(V ) is invertible in Lρ(V ).
If k is also algebraically closed, and V has finite dimension as a vector space
over k, then Lρ(V ) consists exactly of the multiples of IV by elements of k. This
is related to Exercises 4 and 5 on p54-5 of [25], for irreducible modules over a
Lie algebra over k.

Now let (A, [·, ·]A) be a Lie algebra over k, and let us consider A as a module
over itself, with respect to the adjoint representation. If x, y ∈ A, then put
adx(y) = [x, y]A, as usual. Let ϕ be a homomorphism from A into itself, as a
module over k. Thus ϕ is a homomorphism from A into itself, as a module over
itself with respect to the adjoint representation, if and only if

ϕ(adx(y)) = adx(ϕ(y))(16.1.4)

for every x, y ∈ A. This is the same as saying that

ϕ([x, y]A) = [x, ϕ(y)]A(16.1.5)

for every x, y ∈ A. If k is a field, then we may use Lad(A) to denote the
algebra of linear mappings from A into itself, as a vector space over k, that are
homomorphisms from A into itself, as a module over itself with respect to the
adjoint representation.

16.2 Homomorphisms and semisimplicity

Let k be a field, and let (A, [·, ·]A) be a Lie algebra over k. Also let A1, . . . , An
be ideals in A, and suppose that A corresponds to the direct sum of the Aj ’s.
This means that every z ∈ A can be expressed in a unique way as

z =

n∑
j=1

πj(z),(16.2.1)

where πj(z) ∈ Aj for each j = 1, . . . , n. In particular, this implies that Aj∩Al =
{0} when j ̸= l, so that [Aj , Al] = {0} when j ̸= l, as in Section 10.15. It follows
that πj is a Lie algebra homomorphism from A into Aj for each j = 1, . . . , n.
The restriction of πj to Aj is the same as the identity mapping on Aj for each
j = 1, . . . , n, so that πj maps A onto Aj . Observe that

πj([x, y]A) = [x, πj(y)]A(16.2.2)
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for every x, y ∈ A and j = 1, . . . , n. Thus πj may be considered as a homo-
morphism from A into itself, as a module over itself with respect to the adjoint
representation, for each j = 1, . . . , n.

Let ϕ be a linear mapping from A into itself, and suppose that ϕ is a homo-
morphism from A into itself, as a module over itself with respect to the adjoint
representation. Let x ∈ Aj and y ∈ Al be given, for some j, l ∈ {1, . . . , n} such
that j ̸= l. This implies that [x, y]A = 0, so that

[x, ϕ(y)]A = ϕ([x, y]A) = 0,(16.2.3)

using (16.1.5) in the first step. It follows that

[x, πj(ϕ(y))]A = 0,(16.2.4)

because [x, πr(ϕ(y))]A = 0 automatically when r ̸= j. Equivalently, this means
that πj(ϕ(y)) is an element of the center Z(Aj) of Aj , as a Lie algebra over k.
If Z(Aj) = {0}, then we get that

πj(ϕ(y)) = 0.(16.2.5)

If Z(Aj) = {0} for every j = 1, . . . , n, then

ϕ(Al) ⊆ Al(16.2.6)

for every l = 1, . . . , n. In this situation, one can check that the restriction of
ϕ to Al is a homomorphism from Al into itself, as a module over itself with
respect to the adjoint representation.

Suppose now that ϕl is a homomorphism from Al into itself, as a module over
itself with respect to the adjoint representation, for each l = 1, . . . , n. Under
these conditions, one can verify that

ϕ =

n∑
l=1

ϕl ◦ πl(16.2.7)

defines a homomorphism from A into itself, as a module over itself with respect
to the adjoint representations. If Z(Aj) = {0} for each j = 1, . . . , n, then we
get that Lad(A) corresponds to the direct sum of Lad(Al), 1 ≤ l ≤ n. This is
related to parts (a) and (b) of Exercise 5 on p55 of [25].

Suppose from now on in this section that Aj is simple as a Lie algebra over
k for each j = 1, . . . , n. In particular, this means that Z(Aj) = {0} for every
j = 1, . . . , n. We also get that Aj is irreducible as a module over itself with
respect to the adjoint representation for every j = 1, . . . , n. Suppose that k is
algebraically closed, and that Aj has positive finite dimension as a vector space
over k for each j = 1, . . . , n. Schur’s lemma implies that Lad(Aj) consists of
multiples of the identity mapping on Aj by elements of k for each j = 1, . . . , n,
as in the previous section. It follows that Lad(A) is isomorphic to the direct sum
of n copies of k, as an associative algebra over k, as in the preceding paragraph.
This corresponds to part (a) of Exercise 5 on p55 of [25].
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16.3 Linear mappings and dimensions

Let k be a field, and let n, r be positive integers. Thus the spaces kn, kr of n,
r-tuples of elements of k may be considered as vector spaces over k with respect
to coordinatewise addition and scalar multiplication, respectively. Let T be a
linear mapping from kn into kr, and let λl(v) be the lth component of T (v) ∈ kr

for each l = 1, . . . , r and v ∈ kn. Equivalently, λl is a linear functional on kn

for each l = 1, . . . , r, and any collection of r linear functionals λ1, . . . , λr on kn

determine a linear mapping T from kn into kr in this way. Let us suppose that
T ̸= 0, to avoid trivialities, so that λl ̸= 0 for some l. Let r0 be the maximal
number of λl’s that are linearly independent as linear functionals on kn. We can
rearrange the λl’s, if necessary, to get that λ1, . . . , λr0 are linearly independent
as linear functionals on kn, and that λl can be expressed as a linear combination
of λ1, . . . , λr0 when l > r0.

Similarly, let T0 the linear mapping from kn into kr0 that corresponds to
λ1, . . . , λr0 . By construction, the kernel of T0 is the same as the kernel of T . It
is well known that

T0(k
n) = kr0(16.3.1)

under these conditions, and in particular that r0 ≤ n. The dimension of the
kernel of T0 is n− r0, as a vector space over k.

Let k1 be a field that contains k as a subfield. Thus kn1 , k
r
1, and k

r0
1 may be

considered as vector spaces over k1, which contain kn, kr, and kr0 as subsets,
respectively. Let Tk1 be the natural extension of T to a mapping from kn1
into kr1 that is linear over k1, and let λl,k1 be the natural extension of λl to
a linear functional on kn1 for each l = 1, . . . , r. Thus λl,k1 corresponds to the
lth coordinate of Tk1 for each l = 1, . . . , r, as before. If l > r0, then λl,k1 can
be expressed as a linear combination of λ1,k1 , . . . , λr0,k1 with coefficients in k,
because of the analogous property of λl.

Let T0,k1 be the natural extension of T0 to a mapping from kn1 into kr01 that
is linear over k1. This corresponds to λ1,k1 , . . . , λr0,k1 in the usual way. The
kernel of T0,k1 in kn1 is the same as the kernel of Tk1 , because of the property of
λl,k1 when l > r0 mentioned in the preceding paragraph. It is easy to see that

T0,k1(k
n
1 ) = kr01 ,(16.3.2)

using (16.3.1). This implies that λ1,k1 , . . . , λr0,k1 are linearly independent as
linear functionals on kn1 , and that the dimension of the kernel of T0,k1 in kn1 is
n− r0, as a vector space over k1.

16.4 Homomorphisms and dimensions

Let k be a field, and let (A, [·, ·]) be a Lie algebra over k, with positive finite
dimension n as a vector space over k. We may as well take A = kn, by choosing
a basis for A as a vector space over k. As in Section 9.14, the Lie bracket on A
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can be given by

([x, y])r =

n∑
j=1

n∑
l=1

crj,l xj yl(16.4.1)

for every x, y ∈ kn, where the left side is the rth coordinate of [x, y] as an element
of kn, and the structure constants crj,l are elements of k for each j, l, r = 1, . . . , n.
More precisely, the structure constants satisfy (9.14.5), (9.14.7), and (9.14.8),
as before.

Let u1, . . . , un be the standard basis vectors in kn, so that the jth coordinate
of ul is equal to 1 when j = l, and to 0 when j ̸= l. Also let ϕ be a linear
mapping from kn into itself, as a vector space over k. It is easy to see that ϕ is
a homomorphism from A into itself, as a module over itself with respect to the
adjoint representation, if and only if

ϕ([uj , ul]) = [uj , ϕ(ul)](16.4.2)

for every j, l = 1, . . . , n. Of course, the space L(A) of linear mappings from A
into itself, as a vector space over k, corresponds to the space Mn(k) of n × n
matrices with entries in k in the usual way. The space Lad(A) of homomor-
phisms from A into itself, as a module over itself with respect to the adjoint
representation, corresponds to a linear subspace ofMn(k) that can be described
in terms of linear equations for the matrix entries, using (16.4.2).

Let k1 be a field that contains k as a subfield, so that kn ⊆ kn1 . Let us take
Ak1 to be kn1 , as a vector space over k1 with respect to coordinatewise addition
and scalar multiplication. If x, y ∈ Ak1 , then [x, y] can be defined as an element
of Ak1 as in (16.4.1), where the right side is now an element of k1 for each
r = 1, . . . , n. This makes Ak1 a Lie algebra over k1, as before.

Of course, u1, . . . , un may be considered as the standard basis vectors in kn1
as well. Let ϕ be a linear mapping from kn1 into itself, as a vector space over
k1. As before, ϕ is a homomorphism from Ak1 into itself, as a module over itself
with respect to the adjoint representation, if and only if (16.4.2) holds for every
j, l = 1, . . . , n. As usual, the space L(Ak1) of linear mappings from Ak1 into
itself, as a vector space overK, corresponds to the spaceMn(k1) of n×nmatrices
with netries in k1. The space Lad(Ak1) of homomorphisms from Ak1 into itself,
as a module over itself with respect to the adjoint representation, corresponds
to a linear subspace of Mn(k1) that can be described in terms of essentially the
same linear equations for the matrix entries as for k, using (16.4.2) again.

This brings us to the same type of situation as discussed in the previous
section. It follows that the dimension of Lad(Ak1), as a vector space over k1, is
the same as the dimension of Lad(A), as a vector space over k. This is related
to part of part (b) of Exercise 5 on p55 of [25].

16.5 Semisimplicity and dimensions

Let k be a field of characteristic 0, and let (A, [·, ·]) be a Lie algebra over k of
positive finite dimension n. As in the previous section, we may as well take
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A = kn, with Lie bracket as in (16.4.1). Let k1 be an algebraically closed field
that contains k as a subfield. As before, Ak1 = kn1 is a Lie algebra over k1, with
Lie bracket as in (16.4.1). In this section, we suppose that A is semisimple as
a Lie algebra over k, which is equivalent to asking that Ak1 be semisimple as a
Lie algebra over k1, as in Section 11.5.

As in Section 10.15, Ak1 is isomorphic to the direct sum of h simple Lie
algebras over k1, for some positive integer h. Remember that the space Lad(Ak1)
of module homomorphisms from Ak1 into itself, as a module over itself with
respect to the adjoint representation, is an associative algebra over k1 with
respect to composition of mappings. In this situation, Lad(Ak1) is isomorphic to
the direct sum of h copies of k1, as in Section 16.2. In particular, the dimension
of Lad(Ak1) is h, as a vector space over k1. We also get that Lad(Ak1) is
commutative as an algebra over k1.

Similarly, the space Lad(A) of module homomorphisms from A into itself, as
a module over itself with respect to the adjoint representation, is an associative
algebra over k with respect to composition of mappings. As in the previous
section, the dimension of Lad(A), as a vector space over k, is the same as the
dimension of Lad(Ak1) as a vector space over k1, which is equal to h. This
corresponds to the first part of part (b) of Exercise 5 on p55 of [25].

If ϕ is a linear mapping from A into itself, as a vector space over k, then
ϕ has a natural extension to a linear mapping from Ak1 into itself, as a vector
space over k1. If ϕ is a homomorphism from A into itself, as a module over
itself with respect to the adjoint representation, then the extension of ϕ to Ak1
is a homomorphism from Ak1 into itself, as a module over itself with respect
to the adjoint representation. This follows from the characterization of module
homomorphisms as linear mappings that satisfy (16.4.2) in both cases. Using
this, we get that Lad(A) is commutative as an algebra over k with respect to
composition of mappings, because Lad(Ak1) is commutative, as before. This is
related to the second part of part (b) of Exercise 5 on p55 of [25].

Suppose that A is simple as a Lie algebra over k, which implies that A is
irreducible as a module over itself, with respect to the adjoint representation.
In this case, nonzero elements of Lad(A) are invertible in Lad(A), by Schur’s
lemma, as in Section 16.1. This means that Lad(A) is a field, because Lad(A)
is commutative, as in the preceding paragraph. This corresponds to the second
part of part (b) of Exercise 5 on p55 of [25], with m = 1. Otherwise, A is
isomorphic to the direct sum of simple Lie algebras A1, . . . , Am over k for some
positive integer m, as in Section 10.15. This implies that Lad(A) is isomorphic
to the direct sum of Lad(A1), . . . ,Lad(Am) as an associative algebra over k, as
in Section 16.2. It follows that Lad(A) is isomorphic to the direct sum of m
fields, as in the second part of part (b) of Exercise 5 on p55 of [25].

16.6 Absolutely simple Lie algebras

Let k be a field, and let (A, [·, ·]) be a Lie algebra over k of positive finite
dimension n, as a vector space over k. As before, we may as well take A to be
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kn, with Lie bracket as in (16.4.1). Let k1 be an algebraically closed field that
contains k as a subfield, and take Ak1 = kn1 as a Lie algebra over k1, with Lie
bracket defined as in (16.4.1). If Ak1 is simple as a Lie algebra over k1, then A
is said to be absolutely simple as a Lie algebra over k, as in part (c) of Exercise
5 on p55 of [25]. This implies that A is simple as a Lie algebra over k, as in
Section 11.4.

Suppose that A is absolutely simple, so that Ak1 is simple as a Lie alge-
bra over k1. This implies that Ak1 is irreducible as a module over itself with
respect to the adjoint representation. Remember that Lad(Ak1) is the algebra
of homomorphisms from Ak1 into itself, as a module over itself with respect to
the adjoint representation. Under these conditions, Lad(Ak1) consists exactly of
multiples of the identity mapping on Ak1 by elements of k1, by Schur’s lemma,
as in Section 16.1. Equivalently, this means that the dimension of Lad(Ak1), as
a vector space over k1, is equal to one. It follows that the space Lad(A) of homo-
morphisms from A into itself, as a module over itself with respect to the adjoint
representation, is equal to one as a vector space over k, as in Section 16.4. Of
course, Lad(A) automatically contains all multiples of the identity mapping on
A by elements of k. This means that Lad(A) consists exactly of multiples of the
identity mapping on A by elements of k in this situation. This corresponds to
part of the first part of part (c) of Exercise 5 on p55 of [25].

Conversely, suppose that Lad(A) consists exactly of multiples of the identity
mapping on A by elements of k. This is the same as saying that Lad(A) has
dimension one as a vector space over k, as before. It follows that Lad(Ak1) has
dimension one as a vector space over k1, as in Section 16.4. Suppose that k has
characteristic 0, so that k1 has characteristic 0 too. If Ak1 is semisimple as a
Lie algebra over k1, then Ak1 is isomorphic to the direct sum of h simple Lie
algebras over k1 for some positive integer h, as in Section 10.15. This implies
that the dimension of Lad(Ak1) is equal to h as a vector space over k1, as in
the previous section. Under these conditions, we get that h = 1, so that Ak1 is
simple as a Lie algebra over k1. This corresponds to the other part of the first
part of part (c) of Exercise 5 on p55 of [25].

Suppose now that A is simple as a Lie algebra over k, and that k has char-
acteristic 0. In particular, this means that A is semisimple as a Lie algebra over
k. Put K = Lad(A), which is a field in this situation, as in the previous section.
By construction, the elements of K are linear mappings from A into itself, as
a vector space over k. We may consider A as a vector space over K, where
scalar multiplication by an element of K is defined by the corresponding linear
mapping on A. It is easy to see that the Lie bracket on A is bilinear over K, as
a mapping from A×A into A, because the elements of K are homomorphisms
from A into itself, as a module over itself as a Lie algebra over k, with respect
to the adjoint representation. Thus A may be considered as a Lie algebra over
K, with respect to the Lie bracket already defined on A as a Lie algebra over k.

Let us use AK to refer to A as a Lie algebra over K in this way. As before,
Lad(AK) denotes the space of linear mappings from AK into itself, as a vector
space over K, that are homomorphisms from AK into itself as a module over
itself, as a Lie algebra over K, and with respect to the adjoint representation.
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Of course, Lad(AK) contains the multiples of the identity mapping on A by
elements of K, which correspond to linear mappings from A into itself as a
vector space over k. Conversely, if ϕ is any element of Lad(AK), then ϕ is linear
as a mapping from A into itself, as a vector space over k. This follows from the
fact that K contains the multiples of the identity mapping on A by elements of
k, by construction. We also have that ϕ is a homomorphism from A into itself,
as a module over itself as a Lie algebra over k, and with respect to the adjoint
representation, because of the analogous property of ϕ as a mapping on AK .
This means that ϕ is an element of Lad(A) = K. Thus Lad(AK) consists exactly
of multiples of the identity mapping on A by elements of K. This implies that
AK is absolutely simple as a Lie algebra over K, as before. This is the second
part of part (c) of Exercise 5 on p55 of [25].

16.7 Algebras over subrings

Let k be a commutative ring with a multiplicative identity element, and let k0
be a subring of k that contains the multiplicative identity element. If A is a
module over k, then A may be considered as a module over k0 as well. Let A0

be A considered as a module over k0. If B is a submodule of A, as a module
over k, then B may be considered as a submodule of A0 too.

Similarly, if A is an algebra over k in the strict sense, then A may be con-
sidered as an algebra over k0 in the strict sense. Let A0 be A considered as an
algebra over k0 in the strict sense. If B is a subalgebra of A, as an algebra over
k in the strict sense, then B may be considered as a subalgebra of A0, as an
algebra over k0 in the strict sense. If B is a one or two-sided ideal in A, as an
algebra over k in the strict sense, then B has the analogous property in A0 as
well.

Now let (A, [·, ·]) be a Lie algebra over k. As before, let A0 be A, considered
as a Lie algebra over k0. It is easy to see that A is commutative, solvable, or
nilpotent as a Lie algebra over k if and only if A0 has the same property as a
Lie algebra over k0.

Let B be an ideal in A, as a Lie algebra over k. Thus B may be considered
as an ideal in A0, as a Lie algebra over k0. Let B0 be B, considered as an ideal
in A0, and as a Lie algebra over k0 in particular. If B is solvable, as a Lie
algebra over k, then B0 is solvable, as a Lie algebra over k0, as in the preceding
paragraph. If A0 is semisimple as a Lie algebra over k0, then it follows that A
is semisimple as a Lie algebra over k.

Of course, k may be considered as a module over k0. Let us suppose from
now on in this section that k is free as a module over k0, of rank n0 for some
positive integer n0. This means that k is isomorphic to kn0

0 as a module over
k0, where k

n0
0 is the space of n0-tuples of elements of k0, considered as a module

over k0 with respect to pointwise addition and scalar multiplication.
If x ∈ k, then Mx(y) = x y defines a homomorphism from k into itself, as a

module over k0. Let trk/k0 x be the trace of Mx, as a homomorphism from k
into itself, as a free module over k0 of rank n0. This defines a homomorphism
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from k into k0, as modules over k0. This uses the fact that x 7→ Mx is linear
over k0, as a mapping from k into the space homomorphisms from k into itself,
as a module over k0. If x ∈ k0, then

trk/k0x = n0 · x.(16.7.1)

Let n be a positive integer, so that V = kn is a free module over k with
respect to coordinatewise additional and scalar multiplication. We may also
consider V as a free module over k0 of rank n0 n, because k is a free module
over k0 of rank n0. If T is a homomorphism from V into itself as a module over
k, then T may be considered as a homomorphism from V into itself as a module
over k0 as well. Let trV,k T ∈ k be the trace of T as a homomorphism from V
into itself as a free module over k of rank n, and let trV,k0 T ∈ k0 be the trace of
T as a homomorphism from V into itself as a free module over k0 of rank n0 n.
One can check that

trV,k0T = trk/k0(trV,kT ).(16.7.2)

16.8 Lie algebras over subfields

Let k be a field, and let k0 be a subfield of k. Also let (A, [·, ·]) be a Lie algebra
over k, and let A0 be A considered as a Lie algebra over k0. Suppose that k
has finite dimension n0 as a vector space over k0, and that A has positive finite
dimension n as a vector space over k. Thus A0 has dimension n0 n as a vector
space over k0. If x ∈ A, then put adx(z) = [x, z] for every z ∈ A, as usual. This
defines adx as a linear mapping from A into itself, as a vector space over k. Of
course, adx may be considered as a linear mapping from A0 into itself as well,
as a vector space over k0.

The Killing form for A, as a Lie algebra over k, is defined by

b(x, y) = trA(adx ◦ ady) ∈ k(16.8.1)

for every x, y ∈ A, using the trace of adx ◦ ady on A as a vector space over k.
Similarly, the Killing form for A0 is defined by

b0(x, y) = trA0(adx ◦ ady) ∈ k0(16.8.2)

for every x, y ∈ A0, using the trace of adx ◦ ady on A0 as a vector space over
k. Let trk/k0 be the trace mapping from k into k0 mentioned in the previous
section. If x, y ∈ A, then

b0(x, y) = trk/k0b(x, y),(16.8.3)

as in (16.7.2).
Suppose that b(·, ·) is nondegenerate on A. Let x ∈ A with x ̸= 0 be given,

so that there is a y ∈ A such that b(x, y) ̸= 0. Put y1 = (1/b(x, y)) y, so that

b(x, y1) = 1.(16.8.4)
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This implies that
b0(x, y1) = trk/k01 = n0 · 1,(16.8.5)

using (16.8.3) in the first step, and (16.7.1) in the second step.
Suppose from now on in this section that k0 has characteristic 0, which is

the same as saying that k has characteristic 0. In this case, (16.8.5) implies
that b0(x, y1) ̸= 0 in k0. This means that b0(·, ·) is nondegenerate on A0 in this
situation.

Suppose that A is semisimple as a Lie algebra over k, so that b(·, ·) is non-
degenerate on A, as in Section 10.13. This implies that b0(·, ·) is nondegenerate
on A0, as in the preceding paragraphs. It follows that A0 is semisimple as a Lie
algebra over k0, as in Section 10.13 again.

As in Section 10.15, there are finitely many ideals A0,1, . . . , A0,r in A0, as a
Lie algebra over k0, such that A0,j is simple as a Lie algebra over k0 for each
j = 1, . . . , r, and A0 corresponds to the direct sum of A0,1, . . . , A0,r as a Lie
algebra over k0. If t ∈ k, then

ϕt(x) = t x(16.8.6)

defines a linear mapping from A0 into itself as a vector space over k0, and in
fact a homomorphism from A0 into itself as a module over itself, with respect
to the adjoint representation. It follows that

ϕt(A0,j) ⊆ A0,j(16.8.7)

for each j = 1, . . . , r, as in Section 16.2. This means that A0,j is a linear
subspace of A, as a vector space over k, for each j = 1, . . . , r. Thus A0,j is an
ideal in A, as a Lie algebra over k, for each j = 1, . . . , r.

In particular, A0,j is a Lie subalgebra of A, as a Lie algebra over k, for each
j = 1, . . . , r. It is easy to see that A0,j is simple as a Lie algebra over k for each
j = 1, . . . , r, because A0,j is simple as a Lie algebra over k0.

If A is simple as a Lie algebra over k, then A is semisimple. In this case, we
get that r = 1 in the previous argument, so that A0 = A0,1 is simple as a Lie
algebra over k0. This corresponds to part (d) of Exercise 5 on p55 of [25].
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Chapter 17

Subalgebras and
diagonalizability

17.1 Toral subalgebras

Let k be a field, and let (A, [·, ·]A) be a finite-dimensional Lie algebra over k.
Suppose that y, z are ad-diagonalizable elements of A such that

[y, z]A = 0.(17.1.1)

This implies that ady and adz commute as linear mappings from A into itself,
as in Section 2.4. It follows that ady +adz is diagonalizable as a linear mapping
from A into itself, as in Section 10.6. This means that y+z is ad-diagonalizable,
as an element of A.

If every element of A is ad-nilpotent, then A is nilpotent as a Lie algebra
over k, as in Section 9.10. Suppose that k is an algebraically closed field of
characteristic 0, and that A is semisimple as a Lie algebra over k. If A ̸= {0},
then A is not nilpotent, and hence there is an x ∈ A that is not ad-nilpotent.
Using the abstract Jordan decomposition, as in Section 14.3, we get that there
are x1, x2 ∈ A such that x = x1 + x2, x1 is ad-diagonalizable, and x2 is ad-
nilpotent. In particular, x1 ̸= 0, because x is not ad-nilpotent.

A Lie subalgebra B of A is said to be toral if every element of B is ad-
diagonalizable, as an element of A, at least when k is algebraically closed, as on
p35 of [14]. Under the conditions mentioned in the preceding paragraph, there
are nonzero toral subalgebras of A, as on p35 of [14]. More precisely, one can
take the linear span of a nonzero ad-diagonalizable element of A.

Let k be any field again, and let A be a finite-dimensional Lie algebra over
k. If B is a Lie subalgebra of A, and if every element of B is ad-diagonalizable
as an element of A, then B is commutative as a Lie algebra over k, as in the
lemma on p35 of [14]. To see this, let x ∈ B be given, and note that adx maps
B into itself, because B is a Lie subalgebra of A. The restriction of adx to B is
the same as adB,x. We would like to show that adB,x = 0.

341
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Of course, adx is diagonalizable as a linear mapping from A into itself, by
hypothesis. This implies that adB,x is diagonalizable as a linear mapping from
B into itself, as in Section 10.6. Let λ ∈ k be an eigenvalue of adB,x, so that
there is a y ∈ B such that y ̸= 0 and

adB,x(y) = [x, y]A = λ y.(17.1.2)

We would like to show that λ = 0.
Equivalently,

adB,y(x) = −λ y,(17.1.3)

by (17.1.2). Remember that y is ad-diagonalizable as an element of A, by
hypothesis. This implies that adB,y is diagonalizable as a linear mapping from
B into itself, as before. Thus x can be expressed as a sum of eigenvectors of
adB,y. It follows that adB,y(x) is a sum of eigenvectors of adB,y corresponding
to nonzero eigenvalues of adB,y, if there are any.

If adB,y(x) ̸= 0, then the previous statement implies that adB,y(adB,y(x)) ̸=
0. However,

adB,y(adB,y(x)) = −λ adB,y(y) = −λ [y, y]A = 0,(17.1.4)

using (17.1.3) in the first step. Thus adB,y(x) = 0, so that λ = 0, by (17.1.3).
This means that adB,x = 0, because adB,x is diagonalizable on B, and 0 is its
only eigenvalue. This shows that B is commutative as a Lie algebra, as desired.

Note that we only used the diagonalizability of adB,z on B for each z ∈ B,
rather than the diagonalizability of adz on A. This also corresponds to simply
taking A = B.

17.2 Simultaneous diagonalizability

Let k be a field, and let (A, [·, ·]A) be a finite-dimensional Lie algebra over k.
Also let B be a Lie subalgebra of A, and suppose that every element of B is
ad-diagonalizable as an element of A. Thus B is commutative as a Lie algebra
over k, as in the previous section. Let B′ be the dual of B, as a vector space
over k. Remember that B′ has the same dimension as B.

Suppose that x ∈ A is an eigenvector for adw for each w ∈ B, so that

adw(x) = [w, x]A = α(w)x(17.2.1)

for some α(w) ∈ k. If x ̸= 0, then α(w) is linear in w, and hence defines an
element of B′.

If α ∈ B′, then put

Aα = {x ∈ A : for each w ∈ B, adw(x) = [w, x]A = α(w)x}.(17.2.2)

This is a linear subspace of A, as a vector space over k. An element of Aα is
said to have weight α, as on p43 of [24].
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In particular, if we take α = 0, then we get

A0 = {x ∈ A : for each w ∈ B, adw(x) = [w, x]A = 0}.(17.2.3)

This is the same as the centralizer CA(B) of B in A, as in Section 7.6. Note
that

B ⊆ A0 = CA(B),(17.2.4)

because B is commutative as a Lie algebra, as before.
Let us suppose that B ̸= {0}, to avoid trivialities. This implies that A0 ̸=

{0}, by (17.2.4). Put

ΦB = {α ∈ B′ : α ̸= 0 and Aα ̸= {0}}.(17.2.5)

Thus ΦB ∪ {0} is the same as the set of α ∈ B′ such that Aα ̸= {0}.
If u, v ∈ B, then [u, v]A = 0, as before. This implies that adu and adv

commute as linear mappings from A into itself, as in Section 2.4. By hypothesis,
adu is diagonalizable as a linear mapping from A into itself for each u ∈ B. It
follows that the linear mappings adu, u ∈ B, are simultaneously diagonalizable
on A, by standard arguments.

This means that A corresponds to the direct sum of the subspaces Aα with
α ∈ ΦB ∪ {0}, as a vector space over k. In particular, the number of elements
of ΦB is strictly less than the dimension of A. This corresponds to some of the
remarks on p35 of [14], and to Theorem 1 on p43 of [24].

Let α, β ∈ B′ be given, and suppose that x ∈ Aα, y ∈ Aβ . If w ∈ B, then

[w, [x, y]A]A = [[w, x]A, y]A + [x, [w, y]A]A(17.2.6)

= α(w) [x, y]A + β(w) [x, y]A.

This uses the Jacobi identity in the first step, or, equivalently, the fact that adw
is a derivation on A. Thus

[x, y]A ∈ Aα+β(17.2.7)

under these conditions. This corresponds to the first part of the proposition
near the top of p36 in [14], and to the statement 2.1 on p45 of [24].

If α ∈ B′ and x ∈ Aα, then

adx(Aγ) ⊆ Aα+γ(17.2.8)

for every γ ∈ B′, by (17.2.7). This implies that

(adx)
n(Aγ) ⊆ An·α+γ(17.2.9)

for every positive integer n, where (adx)
n is the nth power of adx on A, with

respect to composition of mappings. If α ̸= 0 and k has characteristic 0, then
one can use this to get that x is ad-nilpotent as an element of A, as in the second
part of the proposition at the top of p36 in [14]. This could also be obtained as
in Section 14.2.

Similarly, if x ∈ Aα and y ∈ Aβ for some α, β ∈ B′, then

(adx ◦ ady)(Aγ) = adx(ady(Aγ)) ⊆ Aα+β+γ(17.2.10)

for every γ ∈ B′, by (17.2.8).
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17.3 Related bilinear forms

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let b(·, ·) be a bilinear form on A that is associative, or equivalently
invariant with respect to the adjoint representation on A. Thus

b([w, x]A, y) = −b(x, [w, y]A)(17.3.1)

for every w, x, y ∈ A, as in Sections 6.10 and 7.7. In particular, the Killing form

bA(x, y) = trA(adx ◦ ady)(17.3.2)

on A has this property, as in Section 7.9.
Let α, β ∈ B′, x ∈ Aα, y ∈ Aβ , and w ∈ B be given. Using (17.3.1), we get

that
α(w) b(x, y) = −β(w) b(x, y).(17.3.3)

If α+ β ̸= 0, then there is a w ∈ B such that α(w) ̸= −β(w), and hence

b(x, y) = 0.(17.3.4)

This corresponds to the third part of the proposition on the top of p36 in [14],
and the first part of Theorem 3 (i) on p44 of [24]. Alternatively, if b(·, ·) is the
Killing form (17.3.2) on A, then (17.3.4) follows from (17.2.10).

Let α ∈ B′ and w ∈ B be given again. If x ∈ Aα and y ∈ A, then

b(w, [x, y]A) = b([w, x]A, y) = α(w) b(x, y).(17.3.5)

Similarly, if x ∈ A and y ∈ A−α, then

b([x, y]A, w) = b(x, [y, w]A) = α(w) b(x, y).(17.3.6)

This corresponds to Theorem 3 (ii) on p44 of [24], and is related to part (c) of
the proposition on p37 of [14]. Note that

[x, y]A ∈ A0(17.3.7)

when x ∈ Aα and y ∈ A−α, as in (17.2.7).
Suppose now that b(·, ·) is also nondegenerate on A. In this case, the restric-

tion of b(·, ·) to A0 is nondegenerate on A0, because of (17.3.4). This corresponds
to the corollary on p36 of [14], and to the third part of Theorem 3 (i) on p44 of
[24].

Let α ∈ B′ with α ̸= 0 be given. If x ∈ Aα and x ̸= 0, then there is a y ∈ A
such that

b(x, y) ̸= 0,(17.3.8)

because b(·, ·) is nondegenerate on A. More precisely, we can take y ∈ A−α,
because of (17.3.4). In particular, this shows that A−α ̸= {0} when Aα ̸= {0}.
Equivalently, if α ∈ ΦB , then −α ∈ ΦB . This corresponds to part (b) of the
proposition on p37 of [14], and part of Theorem 2 (a) on p43 of [24]. Similarly,
the restriction of b(·, ·) to

Aα +A−α(17.3.9)

is nondegenerate. This corresponds to the second part of Theorem 3 (i) on p44
of [24].
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17.4 Maximal toral subalgebras

Let k be a field, and let V be a finite-dimensional vector space over k. Also let
R and T be commuting linear mappings from V into itself. If T is nilpotent on
V , then R ◦ T is nilpotent on V as well. In particular, this implies that

trV (R ◦ T ) = 0.(17.4.1)

This is the lemma on p36 of [14].
Let k be an algebraically closed field of characteristic 0, and let (A, [·, ·]A)

be a finite-dimensional semisimple Lie algebra over k. Suppose that B is a toral
subalgebra of A, as in Section 17.1, and that B is maximal with respect to
inclusion. Under these conditions,

CA(B) = B,(17.4.2)

where CA(B) is the centralizer of B in A, as in Section 7.6. This is the second
proposition on p36 of [14].

Remember that CA(B) is a Lie subalgebra of A, as in Section 7.6. In this
situation, B ⊆ CA(B), because B is commutative as a Lie algebra, as in (17.2.4).
Thus we would like to show that

CA(B) ⊆ B.(17.4.3)

Let x ∈ CA(B) be given, and let

x = x1 + x2(17.4.4)

be the abstract Jordan decomposition of x in A, as in Section 14.3. Thus
x1, x2 ∈ A,

adx = adx1 + adx2 ,(17.4.5)

and adx1
, adx2

are the diagonalizable and nilpotent parts of adx, as a linear
mapping from A into itself, as in Section 10.8. The condition that x ∈ CA(B)
means exactly that adx maps B into {0}. This implies that adx1

and adx2
map

B into {0} as well, as in Section 10.8. It follows that

x1, x2 ∈ CA(B),(17.4.6)

as in Step (1) of the proof on p36 of [14].
If x ∈ CA(B), then the linear span

B(x) = {w + t x : w ∈ B, t ∈ k}(17.4.7)

of B and x in A is a Lie subalgebra of A that is commutative as a Lie algebra.
More precisely, this uses the fact that B is commutative as a Lie algebra, and
that [w, x]A = 0 for every w ∈ B. If x is ad-diagonalizable as an element of A
too, then B(x) is a toral subalgebra of A, by the remark at the beginning of
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Section 17.1. This implies that B(x) = B, because B is supposed to be maximal
in A, so that

x ∈ B.(17.4.8)

This is Step (2) of the proof on p36 of [14].
Let bA(·, ·) be the Killing form on A, as in (17.3.2). Remember that bA(·, ·)

is nondegenerate on A, because A is semisimple and k has characteristic 0, as
in Section 10.13. This implies that the restriction of bA(·, ·) to A0 = CA(B) is
nondegenerate, as in the previous section. Step (3) of the proof on p36 of [14]
states that the restriction of bA(·, ·) to B is nondegenerate.

To see this, let x ∈ B be given, and suppose that

bA(x, y) = 0(17.4.9)

for every y ∈ B. We would like to show that x = 0. If (17.4.9) holds for every
y ∈ CA(B), then x = 0, because bA(·, ·) is nondegenerate on CA(B), as in the
preceding paragraph.

Let z ∈ CA(B) be given, and so that [x, z]A = 0, because x ∈ B. This
implies that adx and adz commute as linear mappings from A into itself, as in
Section 2.4. If adz is nilpotent on A, then it follows that

bA(x, z) = trA(adx ◦ adz) = 0,(17.4.10)

as in (17.4.1).
Let y ∈ CA(B) be given, and let y = y1 + y2 be the abstract Jordan de-

composition of y. Thus y1, y2 ∈ CA(B), as before. We also have that y1 ∈ B,
because y1 is ad-diagonalizable as an element of A. It follows that bA(x, y1) = 0,
by hypothesis. Observe that bA(x, y2) = 0, because y2 is ad-nilpotent as an ele-
ment of A, as in (17.4.10). Combining thise two staements, we get that (17.4.9)
holds. This implies that x = 0, because y is an arbitrary element of CA(B), as
desired.

Step (4) of the proof on p36 of [14] states that CA(B) is nilpotent as a Lie
algebra over k. Let x ∈ CA(B) be given. We would like to show that x is
ad-nilpotent as an element of CA(B), which is to say that adCA(B),x is nilpotent
as a linear mapping from CA(B) into itself. Let (17.4.4) be the abstract Jordan
decomposition of x in A again. Thus x1 ∈ B, by the first two steps, which
implies that adCA(B),x1

= 0. We also have that adCA(B),x2
is nilpotent on

CA(B), because adx2
is nilpotent on A by construction, and adCA(B),x2

is the
same as the restriction of adx2 to CA(B). This implies that

adCA(B),x = adCA(B),x2
(17.4.11)

is nilpotent on CA(B). It follows that CA(B) is nilpotent as a Lie algebra over
k, as in Section 9.10.

Step (5) of the continuation of the proof on p37 of [14] states that

B ∩ ([CA(B), CA(B)]) = {0}.(17.4.12)
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To see this, observe that

bA([x1, x2]A, y) = bA(x1, [x2, y]A) = 0(17.4.13)

for every x1, x2 ∈ CA(B) and y ∈ B. This uses the associativity of bA(·, ·) on
A in the first step, and the fact that [x2, y]A = 0 in the second step. It follows
that bA(x, y) = 0 for every x ∈ [CA(B), CA(B)] and y ∈ B. If x ∈ B as well,
then we get that x = 0, because bA(·, ·) is nondegenerate on B.

Step (6) of the proof on p37 of [14] states that CA(B) is commutative as a
Lie algebra over k. Suppose for the sake of a contradiction that

[CA(B), CA(B)] ̸= {0}.(17.4.14)

This implies that

([CA(B), CA(B)]) ∩ Z(CA(B)) ̸= {0},(17.4.15)

because [CA(B), CA(B)] is an ideal in CA(B), and CA(B) is nilpotent as a Lie
algebra, as in Section 9.10. Let z be an element of the left side of (17.4.15) with
z ̸= 0. Note that z ̸∈ B, by the previous step.

It follows that z is not ad-diagonalizable as an element of A, as before. Let
z = z1 + z2 be the abstract Jordan decomposition of z in A. Thus z2 is ad-
nilpotent as an element of A, z2 ∈ CA(B), as before, and z2 ̸= 0, because z
is not ad-diagonalizable. Because z ∈ Z(CA(B)), adz commutes with adx for
every x ∈ CA(B), as in Section 2.4. This implies that adz2 commutes with adx
for every x ∈ CA(B), as in Section 10.8. Hence

bA(x, z2) = trA(adx ◦ adz2) = 0(17.4.16)

for every x ∈ CA(B), as in (17.4.1), because adz2 is nilpotent on A. This means
that z2 = 0, because bA(·, ·) is nondegenerate on CA(B).

Step (7) of the proof on p37 of [14] states that (17.4.2) holds. Otherwise,
there is an element x of CA(B) not in B, and we can take x to be ad-nilpotent
as an element of A. If y ∈ CA(B), then [x, y]A = 0, by the previous step, so
that adx commutes with ady on A, as in Section 2.4. It follows that

bA(x, y) = trA(adx ◦ ady) = 0,(17.4.17)

as in (17.4.1), because adx is nilpotent on A. This implies that x = 0, because
bA(·, ·) is nondegenerate on CA(B).

If k = C, then Lie subalgebras B of A with the same types of properties are
given in Theorem 3 on p15 of [24].

17.5 Self-centralizability and diagonalizability

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Also let B be a Lie subalgebra of A that is
commutative as a Lie algebra. This implies that

B ⊆ CA(B),(17.5.1)
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where CA(B) is the centralizer of B in A, as in Section 7.6. If B1 is another Lie
subalgebra of A that is commutative as a Lie algebra, and if B ⊆ B1, then

B1 ⊆ CA(B1) ⊆ CA(B).(17.5.2)

If
CA(B) = B,(17.5.3)

then it follows that B1 ⊆ B. This means that B is maximal as a commutative
Lie subalgebra of A under these conditions. This corresponds to Corollary 1 on
p15 of [24].

Conversely, let x ∈ CA(B) be given, and let B(x) be the linear span of B
and x in A, as in (17.4.7). This is a commutative Lie subalgebra of A that
contains B, as in the previous section. If B is maximal as a commutative Lie
subalgebra of A, then x ∈ B, and hence (17.5.3) holds.

Suppose now that k is a field, and that A is a finite-dimensional Lie algebra
over k. Let B be a Lie subalgebra of A such that every element of B is ad-
diagonalizable as an element of A. This implies that B is commutative as a Lie
algebra, as in Section 17.1, so that (17.5.1) holds. If α is an element of the dual
B′ of B, then we let Aα be the set of x ∈ A such that

adw(x) = [w, x]A = α(w)x(17.5.4)

for every w ∈ B, as in Section 17.2. Let ΦB be the set of α ∈ B′ such that
α ̸= 0 and Aα ̸= {0}, as before.

Suppose that w ∈ B satisfies α(w) = 0 for every α ∈ ΦB . This implies that
[w, x]A = 0 for every x ∈ Aα when α ∈ ΦB , which holds automatically when
α = 0. It follows that [w, x]A = 0 for every x ∈ A, because A is spanned by the
Aα’s with α ∈ ΦB ∪ {0}. This means that w is an element of the center Z(A)
of A as a Lie algebra. Of course, if Z(A) = {0}, then w = 0. In this case, we
get that the linear span of ΦB in B′ is equal to B′. This corresponds to part
(a) of the proposition on p37 of [14], and to the statement 2.2 on p45 of [24].

Let b(·, ·) be a bilinear form on A that is associative, or equivalently invari-
ant under the adjoint representation on A, as in Section 17.3. Suppose that
b(·, ·) is nondegenerate on A, so that the restriction of b(·, ·) to A0 = CA(B)
is nondegenerate, as before. Let us suppose from now on in this section that
(17.5.3) holds, which means that the restriction of b(·, ·) to B is nondegenerate.
If α ∈ B′, then it follows that there is a unique tb,α ∈ B such that

α(w) = b(w, tb,α)(17.5.5)

for every w ∈ B.
Let α ∈ B′, x ∈ Aα, and y ∈ A−α be given, so that

[x, y]A ∈ A0 = CA(B) = B.(17.5.6)

Remember that
b(w, [x, y]A) = α(w) b(x, y)(17.5.7)
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for every w ∈ B, as in Section 17.3. It follows that

[x, y]A = b(x, y) tb,α,(17.5.8)

because of (17.5.5) and the nondegeneracy of b(·, ·) on B. This corresponds to
part (c) of the proposition on p37 of [14], and to Theorem 3 (iii) on p44 of [24].

Put
Bα = [Aα, A−α](17.5.9)

for each α ∈ B′, using the notation in Section 9.2 on the right side. If α ∈ ΦB ,
then there is an x ∈ Aα with x ̸= 0, and hence a y ∈ A−α such that b(x, y) ̸= 0,
as in Section 17.3. This implies that Bα is the same as the one-dimensional
linear subspace of B spanned by tb,α, because of (17.5.8). This corresponds to
part (d) of the proposition on p37 in [24], and to the part of Theorem 2 (b) on
p43 of [24] shown in statement 2.3 on p45 of [24].

17.6 Characteristic 0, Z(A) = {0}
Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let us also suppose in this section that k has characteristic 0, and that
Z(A) = {0} again. Let α ∈ ΦB be given, and let us show that

α(tb,α) = b(tb,α, tb,α) ̸= 0.(17.6.1)

This corresponds to part (e) of the proposition on p37 of [14], and to the proof
of statement 2.4 on p45 of [24].

Suppose for the sake of a contradiction that α(tb,α) = 0. This implies that

[tb,α, x]A = α(tb,α)x = 0(17.6.2)

for every x ∈ Aα, and that

[tb,α, y]A = −α(tb,α) y = 0(17.6.3)

for every y ∈ A−α. As before, there are x ∈ Aα and y ∈ A−α such that
b(x, y) ̸= 0, and we can choose them so that b(x, y) = 1. Thus

[x, y]A = tb,α,(17.6.4)

by (17.5.8).
Let C be the linear span of x, y, and tb,α in A. This is a Lie subalgebra of

A, which is nilpotent and hence solvable as a Lie algebra over k, by (17.6.2),
(17.6.3), and (17.6.4). The restriction of the adjoint representation on A to
C defines a representation of C, as a Lie algebra over k, on A, as a vector
space over k. Because tb,α ∈ [C,C], by (17.6.4), we get that adtb,α is nilpotent
as a linear mapping from A into itself, as in Section 14.14. However, adtb,α
is diagonalizable as a linear mapping from A into itself, because tb,α ∈ B. It
follows that adtb,α = 0, so that tb,α ∈ Z(A). This means that tb,α = 0, because
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Z(A) = {0}, by hypothesis. This contradicts the fact that α ̸= 0, by definition
of ΦB .

Let α ∈ ΦB be given again, and put

hα = 2 b(tb,α, tb,α)
−1 tb,α = 2α(tb,α)

−1 tb,α.(17.6.5)

Thus
α(hα) = 2α(tb,α)

−1 α(tb,α) = 2.(17.6.6)

Note that hα is uniquely determined as an element of (17.5.9) by (17.6.6), as in
Theorem 2 (b) on p43-4 of [24].

Let xα be a nonzero element of Aα. As before, there is a y ∈ A−α such that
b(xα, y) ̸= 0. More precisely, we can choose yα ∈ A−α such that

b(xα, yα) = 2 b(tb,α, tb,α)
−1.(17.6.7)

This implies that
[xα, yα]A = hα,(17.6.8)

by (17.5.8).
Observe that

[hα, xα]A = α(hα)xα = 2xα,(17.6.9)

using the facts that hα ∈ B and xα ∈ Aα in the first step. Similarly,

[hα, yα]A = −α(hα) yα = −2 yα,(17.6.10)

because yα ∈ A−α. This shows that the linear span of xα, yα, and hα in A is a
Lie subalgebra of A, which is isomorphic to sl2(k) as a Lie algebra over k. More
precisely, xα, yα, and hα correspond to the usual basis elements

(
0 1
0 0

)
,
(
0 0
1 0

)
, and(

1 0
0 −1

)
of sl2(k) under this isomorphism, as in Section 10.2. This corresponds

to part (f) of the proposition on p37 of [14], and to part of Theorem 2 (c) on
p44 of [24], as in statement 2.5 on p45 of [24].

It is easy to see that
tb,−α = −tb,α,(17.6.11)

by the definition (17.5.5) of tb,α. Remember that −α ∈ ΦB , because α ∈ ΦB ,
as in Section 17.3. Using (17.6.11), we get that

h−α = −hα,(17.6.12)

as in part (g) of the proposition on p37 of [14].

17.7 The dimension of Aα

Let us continue with the situation considered in the previous two sections. Thus
k is a field of characteristic 0, and (A, [·, ·]A) is a finite-dimensional Lie algebra
over k. Let B be a Lie subalgebra of A such that every element of B is ad-
diagonalizable as an element of A, so that B is commutative as a Lie algebra,
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as in Section 17.1. If α is an element of the dual B′ of B, then Aα is the set of
x ∈ A such that

adw(x) = [w, x]A = α(w)x(17.7.1)

for every w ∈ B, as before. In particular, A0 is the same as the centralizer
CA(B) of B in A. We suppose here that this is equal to B, so that

A0 = CA(B) = B,(17.7.2)

and that Z(A) = {0}. Remember that ΦB is the set of α ∈ B′ such that α ̸= 0
and Aα ̸= 0.

Suppose that b(·, ·) is a nondegenerate bilinear form on A that is associative,
or equivalently invariant under the adjoint representation on A. It follows that
b(·, ·) is nondegenerate on (17.7.2), as before. If α ∈ B′, then we take tb,α to be
the unique element of B such that

α(w) = b(w, tb,α)(17.7.3)

for every w ∈ B, as in Section 17.5.
Let α ∈ ΦB be given, so that −α ∈ ΦB too, and the restriction of b(·, ·) to

Aα +A−α is nondegenerate, as in Section 17.3. Remember that the restriction
of b(·, ·) to each of Aα and A−α is equal to 0. One can use this and the nonde-
generacy of b(·, ·) on Aα + A−α to get that the dimensions of Aα and A−α are
the same, as vector spaces over k.

Let hα be as in (17.6.5), let xα be a nonzero element of Aα, and let yα ∈ A−α
be as in (17.6.7). Suppose for the sake of a contradiction that the dimension of
Aα is strictly larger than 1, which means that the dimension of A−α is strictly
larger than 1 too. This implies that there is a y ∈ A−α such that y ̸= 0 and

b(xα, y) = 0.(17.7.4)

It follows that
[xα, y]A = 0,(17.7.5)

by (17.5.8). Note that

[hα, y]A = −α(hα) y = −2 y,(17.7.6)

because hα ∈ B, y ∈ Aα, and α(hα) = 2.
Remember that the linear span of xα, yα,, and hα in A is a Lie subalgebra of

A that is isomorphic to sl2(k) as a Lie algebra over k. Thus Amay be considered
as a module over sl2(k), using the restriction of the adjoint representation on
A to this Lie subalgebra of A, acting on A as a vector space over k. With
respect to this representation, y is a maximal or primitive vector of weight −2,
as in Section 15.2. This contradicts the fact that the weight of y should be
nonnegative, as in Section 15.3. This shows that Aα has dimension one as a
vector space over k, as in Theorem 2 (b) on p43 of [24], and statement 2.6 on
p45 of [24].
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Of course, this means that the dimension of A−α is one as well. Remember
that Bα = [Aα, A−α] is the same as the one-dimensional linear subspace of B
spanned by hα, as in the previous two sections. It follows that

Aα +A−α +Bα(17.7.7)

is the same as the linear span in A of xα, yα, and hα, which is a Lie subalgebra
of A isomorphic to sl2(k), as before. This corresponds to part of Theorem 2 (c)
on p44 of [24], and to statement 2.7 on p46 of [24]. Because A−α has dimension
one, yα ∈ A−α is uniquely determined by xα ∈ Aα and (17.6.7), as in Theorem
2 (c) on p44 of [24] and statement 2.8 on p46 of [24].

Now let us consider the argument given on the bottom of p38 of [14], which
can also be used to get some of the same properties as before. Let C be the
linear span in A of B and the linear subspaces of the form Ac α, where c ∈ k
and

c α ∈ ΦB ,(17.7.8)

which implies that c ̸= 0. This is a Lie subalgebra of A, because of (17.2.7). In
particular, C is a submodule of A, as a module over the Lie subalgebra spanned
by xα, yα, and hα, because xα, yα, hα ∈ C. Thus C may be considered as a
module over sl2(k).

Of course, [hα, w]A = 0 for every w ∈ B, because B is commutative as a Lie
algebra over k. If z ∈ Ac α for some c ∈ k, then

[hα, z]A = c α(hα) z = 2 c z,(17.7.9)

because α(hα) = 2. This means that the weights of hα on C consist of 0 and 2 c
for each c ∈ k satisfying (17.7.8), as in Section 15.1. In particular, the action of
hα on C is diagonalizable in this situation.

Remember that C corresponds to the direct sum of finitely many irreducible
submodules, as a module over sl2(k), by Weyl’s theorem, as in Section 13.2.
Any submodule of C, as a module over sl2(k), is mapped into itself by the
action of hα, and hence the action of hα on this submodule is diagonalizable, as
in Section 10.6. This implies that any nonzero submodule of C has a maximal
or primitive vector, as in Section 15.2. It follows that any nonzero irreducible
submodule of C is as in Section 15.3.

The weights of hα on any nonzero irreducible submodule of C correspond to
integers, under the usual embedding of Q into k, as in Section 15.3. This means
that the weights of hα on C correspond to integers. If c ∈ k satisfies (17.7.8),
then we get that 2 c corresponds to an integer.

If w ∈ B satisfies α(w) = 0, then [w, xα]A = α(w)xα = 0 and [w, yα]A =
−α(w) yα = 0. Of course, [w, hα]A = 0, because B is commutative as a Lie
algebra. Thus the linear span of xα, yα, and hα acts trivially on the kernel of
α in B.

Note that the linear span of xα, yα, and hα is a submodule of C. More
precisely, this is an irreducible submodule of C, because sl2(k) is simple as a
Lie algebra over k, as in Section 11.1.
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Of course, B is spanned by hα and the kernel of α in B, so that the linear
span in A of the kernel of α in B, xα, yα, and hα is the same as the linear span
of B, xα, and yα. This is a submodule of C, and the proof of Weyl’s theorem
shows that C corresponds to the direct sum of this submodule and finitely many
irreducible submodules of C, if necessary.

The elements of C of weight 0 with respect to hα are in B. Thus nonzero
elements of irreducible submodules of C complementary to the linear span of
B, xα, and yα cannot have weight 0 with respect to hα. This implies that the
weights of hα on these complementary irreducible submodules of C correspond
to odd integers, as in Section 15.3. It follows that the only even integers which
can correspond to weights of hα on C are 0 and ±2, which are the weights of
hα on B, xα, and yα.

In particular, 4 does not correspond to a weight of hα on C, which implies
that

2α ̸∈ ΦB .(17.7.10)

If α/2 were in ΦB , then we could apply the same argument to it, to get that
α ̸∈ ΦB . Thus

α/2 ̸∈ ΦB .(17.7.11)

This shows that 1 is not a weight of hα on C.

Suppose for the sake of a contradiction that C1 is a nonzero irreducible
submodule of C complementary to the linear span of B, xα, and yα. Thus C1

does not contain any nonzero elements with weight 0 or 1 with respect to hα,
as in the previous two paragraphs. This is a contradiction, as in Section 15.3.
This means that C is the same as the linear span of B, xα, and yα.

It follows in particular that Aα and A−α are spanned by xα and yα, respec-
tively, so that the dimensions of Aα and A−α are both equal to one, as vector
spaces over k. We also get that ±α are the only multiples of α by elements of k
in ΦB . This corresponds to parts (a) and (b) of the proposition on p39 of [14].
The second statement corresponds to the second part of Theorem 2 (a) on p43
of [24] as well.

17.8 Other elements of ΦB

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let α, β ∈ ΦB be given, and remember that hα ∈ B is as in (17.6.5). Let
xα be a nonzero element of Aα again, and let yα ∈ A−α be as in (17.6.7), so that
the linear span of xα, yα, and hα in A is a Lie subalgebra of A that is isomorphic
to sl2(k), as a Lie algebra over k. Thus A may be considered as a module over
the linear span of xα, yα, and hα, or over sl2(k). Weyl’s theorem implies that
A corresponds to the direct sum of finitely many irreducible submodules. Any
submodule of A is mapped into itself by adhα , and adhα is diagonalizable on the
submodule. This implies that any nonzero submodule of A has a maximal or
primitive vector, as in Section 15.2, and hence a nonzero irreducible submodule
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is as in Section 15.3. In particular, the eigenvalues of adhα on A correspond to
integers, with respect to the usual embedding of Q in k.

Let y be a nonzero element of Aβ , so that

adhα
(y) = [hα, y]A = β(hα) y.(17.8.1)

Thus β(hα) corresponds to an integer, with respect to the standard embedding
of Q in k, as in the preceding paragraph. This is part of statement 2.9 on p46
of [24].

Let n be the integer corresponding to β(hα), and put

z = (adyα)
n(y) when n ≥ 0(17.8.2)

= (adxα
)−n(y) when n ≤ 0.

One can check that z ̸= 0, because A corresponds to the direct sum of finitely
many irreducible submodules, each of which is as in Section 15.3. We also have
that

z ∈ Aβ−β(hα)α,(17.8.3)

because y ∈ Aβ , xα ∈ Aα, and yα ∈ A−α, and using (17.2.7). In particular,

Aβ−β(hα)α ̸= {0},(17.8.4)

because z ̸= 0.
Let us check that

β − β(hα)α ̸= 0.(17.8.5)

Otherwise, if β − β(hα)α = 0, then

0 = β(hα)− β(hα)α(hα) = β(hα)− 2β(hα) = −β(hα),(17.8.6)

because α(hα) = 2. In this case, we get that β = 0, contradicting the hypothesis
that β ∈ ΦB . Thus (17.8.5) holds, and hence

β − β(hα)α ∈ ΦB ,(17.8.7)

by (17.8.4). This corresponds to statement 2.9 on p46 of [24].
If β = α, then

β − β(hα)α = α− α(hα)α = α− 2α = −α,(17.8.8)

because α(hα) = 2, as before. Similarly, if β = −α, then

β − β(hα)α = −α− (−α(hα))α = −α+ 2α = α.(17.8.9)

This is part of statement 2.10 on p46 of [24].
Here is another proof of the fact that c ∈ k satisfies c α ∈ ΦB only when

c = ±1, as in statement 2.11 on p4 of [24]. If β = c α ∈ ΦB , then β(hα) =
c α(hα) = 2 c corresponds to an integer, as before. Similarly, we can interchange
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the roles of α and β, to get that 2/c corresponds to an integer. Thus the only
possibilities for c are ±1, ±1/2, and ±2.

It suffices to show that 2α ̸∈ ΦB , which is to say that c ̸= 2. This will imply
that α/2 ̸∈ ΦB , since otherwise we would have that α ̸∈ ΦB . Similarly, this will
show that c ̸= −1/2,−2, because −α ∈ ΦB , as in Section 17.3.

Suppose for the sake of a contradiction that 2α ∈ ΦB , and let y be a nonzero
element of A2α. Thus

[hα, y]A = 2α(hα) y = 4 y.(17.8.10)

Note that adxα
(y) ∈ A3α, by (17.2.7), and because xα ∈ Aα. However, A3α =

{0}, because 3α ̸∈ ΦB , as before. This means that

adxα(y) = 0.(17.8.11)

Observe that

adhα(y) = adxα(adyα(y))− adyα(adxα(y)) = adxα(adyα(y)),(17.8.12)

using (17.6.8) in the first step, and (17.8.11) in the second step. Using (17.2.7)
again, we get that adyα(y) ∈ Aα, because yα ∈ A−α and y ∈ A2α. This means
that adyα(y) is a multiple of xα, because Aα has dimension one as a vector space
over k, as in the previous section. It follows that

adxα
(adyα(y)) = 0,(17.8.13)

because adxα
(xα) = 0. This contradicts (17.8.10), because of (17.8.12) and the

fact that y ̸= 0.

17.9 Adding elements of ΦB

Let us continue with the same notation and hypotheses as in the previous two
sections. Let α, β ∈ ΦB be given again, and suppose that

β ̸= ±α.(17.9.1)

Thus, for each j ∈ Z,
β + j α ̸= 0,(17.9.2)

as in the previous sections. Let E be the linear span in A of the subspaces

Aβ+j α,(17.9.3)

where j ∈ Z. More precisely, we may restrict our attention to j ∈ Z such that

β + j α ∈ ΦB ,(17.9.4)

since otherwise (17.9.3) is equal to {0}.
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Remember that hα ∈ B is as in (17.6.5), and let xα be a nonzero element
of Aα again. Also let yα ∈ A−α be as in (17.6.7), so that the linear span of
xα, yα, and hα in A is a Lie subalgebra of A that is isomorphic to sl2(k), as a
Lie algebra over k. As before, A may be considered as a module over the linear
span of xα, yα, and hα, or over sl2(k). In fact, E is a submodule of A, because
of (17.2.7). The weights of hα on E are given by

β(hα) + j α(hα)(17.9.5)

for j ∈ Z such that (17.9.4) holds, as in Section 15.1. Of course, (17.9.5) is the
same as

β(hα) + 2 j,(17.9.6)

because α(hα) = 2. Note that j = 0 satisfies (17.9.4) automatically.
Weyl’s theorem implies that E corresponds to the direct sum of finitely many

irreducible submodules, as in Section 13.2. Any submodule of E is mapped into
itself by the action of hα, and the action of hα on this submodule is diagonaliz-
able, as in Section 10.6. Hence any nonzero submodule of E has a maximal or
primitive vector, as in Section 15.2. This implies that any nonzero irreducible
submodule of E is as in Section 15.3.

Remember that (17.9.3) has dimension one as a vector space over k when
(17.9.4) holds, as in Section 17.7. One can use this to check that E is irreducible
as a module over sl2(k). More precisely, note that at most one of 0 and 1 can
be of the form (17.9.6), as mentioned near the top of p39 of [14].

Thus there is a nonnegative integer m such that E is as in Section 15.3, as
a module over sl2(k). In particular, the dimension of E is m + 1, as a vector
space over k.

Let q and r be the largest integers such that (17.9.4) holds with j = q and
j = −r, respectively. Note that q, r ≥ 0, because (17.9.4) holds when j = 0.
The maximal and minimal weights of hα on E are

m = β(hα) + 2 q(17.9.7)

and
−m = β(hα)− 2 r,(17.9.8)

as in Section 15.3. In particular,

β(hα) = r − q.(17.9.9)

Suppose that j ∈ Z satisfies

−r ≤ j ≤ q,(17.9.10)

so that
β(hα)− 2 r ≤ β(hα) + 2 j ≤ β(hα) + 2 q.(17.9.11)

Under these conditions, β(hα) + 2 j is a weight of hα on E, as in Section 15.3.
This means that (17.9.4) holds, as in part (e) of the proposition on p39 of [14].



17.10. THE DUAL OF B 357

Similarly, if j ∈ Z satisfies

−r ≤ j ≤ q − 1,(17.9.12)

then the restriction of adxα
to Aβ+j α is a one-to-one mapping onto

Aβ+(j+1)α.(17.9.13)

This follows from Section 15.3 again. These properties of E, q, and r correspond
to statement 2.12 on p46 of [24].

The same type of arguments are discussed starting at the bottom of p38 and
continuing on p39 of [14], as before. In particular, these arguments can also be
used to get that β(hα) corresponds to an integer for which (17.8.7) holds, as in
part (c) of the proposition on p39 of [14].

Suppose now that α + β ∈ ΦB . This means that (17.9.4) holds with j = 1,
and in particular that q ≥ 1. Thus j = 0 satisfies (17.9.12), so that adxα

maps
Aβ onto Aβ+α, as before. This implies that

[Aα, Aβ ] = Aα+β ,(17.9.14)

as in Theorem 2 (d) on p44 of [24], and statement 2.13 on p47 of [24]. This
corresponds to part (d) of the proposition on p39 of [14] as well.

17.10 The dual of B

Let k be a field of characteristic 0 again, and let (A, [·, ·]A) be a finite-dimensional
Lie algebra over k. Also let B be a Lie subalgebra of A such that every element
of B is ad-diagonalizable as an element of A, so that B is commutative as a Lie
algebra, as in Section 17.1. If α is an element of the dual B′ of B, then put

Aα = {x ∈ A : for every w ∈ B, adw(x) = [w, x]A = α(w)x},(17.10.1)

as before. Thus A0 is the same as the centralizer CA(B) of B in A, and we
suppose again that this is equal to B, so that

A0 = CA(B) = B.(17.10.2)

We suppose that the center Z(A) of A as a Lie algebra is equal to {0} again
too.

Suppose that b(·, ·) is a nondegenerate bilinear form on A that is associative,
or equivalently invariant under the adjoint representation on A, as before. This
implies that that the restriction of b(·, ·) to (17.10.2) is nondegenerate, as in
Section 17.3. If α ∈ B′, then there is a unique tb,α ∈ B such that

α(w) = b(w, tb,α)(17.10.3)

for every w ∈ B, as in Section 17.5. Note that α 7→ tb,α is a one-to-one linear
mapping from B′ onto B.
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If α, β ∈ B′, then put

b′(α, β) = b(tb,α, tb,β).(17.10.4)

This defines a bilinear form on B′. Equivalently,

b′(α, β) = β(tb,α)(17.10.5)

for every α, β ∈ B′. Observe that (17.10.4) is nondegenerate on B′.
Let ΦB be the set of α ∈ B′ such that α ̸= 0 and Aα ̸= {0}, as before. If

α ∈ ΦB , then
b′(α, α) = b(tb,α, tb,α) ̸= 0,(17.10.6)

as in Section 17.6. In this case, we put

hα = 2 b(tb,α, tb,α)
−1 tb,α = 2 b′(α, α)−1 tb,α,(17.10.7)

as before, so that α(hα) = 2. If β ∈ B′, then

2 b′(α, β) b′(α, α)−1 = 2β(tb,α) b
′(α, α)−1 = β(hα).(17.10.8)

If β ∈ ΦB , then (17.10.8) corresponds to an integer, with respect to the standard
embedding of Q into k, as in Section 17.8.

Remember that the linear span of ΦB in B′ is equal to B′, as in Section
17.5. Let α1, . . . , αn be a basis for B′ consisting of elements of ΦB . Let β ∈ ΦB
be given, so that β can be expressed in a unique way as

β =

n∑
j=1

cj αj ,(17.10.9)

where cj ∈ k for each j = 1, . . . , n. We would like to show that cj corresponds to
an element of Q for every j = 1, . . . , n, with respect to the standard embedding
of Q into k, as discussed near the bottom of p39 of [14].

Of course,

b′(αl, β) =

n∑
j=1

cj b
′(αl, αj)(17.10.10)

for each l = 1, . . . , n. This implies that

2 b′(αl, β) b
′(αl, αl)

−1 =

n∑
j=1

2 b′(αl, αj) b
′(αl, αl)

−1 cj(17.10.11)

for every l = 1, . . . , n. The left side corresponds to an integer for every l =
1, . . . , n, because β ∈ ΦB , as before. Similarly,

2 b′(αl, αj) b
′(αl, αl)

−1(17.10.12)

corresponds to an integer for every j, l = 1, . . . , n.
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Note that (b′(αl, αj)) is invertible as an n × n matrix with entries in k,
because b′(·, ·) is nondegenerate as a bilinear form on B′. This implies that
the n × n matrix with entries (17.10.12) is invertible as well. Equivalently,
the determinant of this matrix is not 0. As in the preceding paragraph, this
corresponds to an n× n matrix of integers, whose determinant is not 0.

Thus the entries of the inverse of the matrix in (17.10.12) correspond to
rational numbers. This permits us to solve (17.10.11), to get that cj corresponds
to an element of Q for each j = 1, . . . , n, as desired.

17.11 Using the Killing form

Let us continue with the same notation and hypotheses as in the previous sec-
tion, with some additional conditions, as follows. Suppose that A is semisimple,
and let

bA(x, y) = trA(adx ◦ ady)(17.11.1)

be the Killing form on A. Thus bA is associative on A, or equivalently invariant
under the adjoint representation on A, and bA is nondegenerate on A, as in
Sections 7.9 and 10.13. In particular, we can take b = bA in the previous
section.

Remember that the restriction of bA to (17.10.2) is nondegenerate, as before.
If α ∈ B′, then there is a unique tα = tbA,α ∈ B such that

α(w) = bA(w, tα)(17.11.2)

for every w ∈ B, as in (17.10.3). Put

b′A(α, β) = bA(tα, tβ)(17.11.3)

for every α, β ∈ B′, as in (17.10.4). Equivalently,

b′A(α, β) = β(tα)(17.11.4)

for every α, β ∈ B′, as in (17.10.5).

If x, y ∈ B, then

bA(x, y) =
∑
α∈ΦB

α(x)α(y).(17.11.5)

To see this, remember that A corresponds to the direct sum of the subspaces
Aα, α ∈ ΦB ∪{0}, as a vector space over k, as in Section 17.2. These subspaces
are mapped into themselves by adx and ady, so that the trace of adx ◦ ady over
A is the same as the sum of the traces over Aα, α ∈ ΦB ∪ {0}. The trace over
A0 is equal to 0, because adx = ady = 0 on A0, and so it suffices to consider the
sum over α ∈ ΦB . By construction, adx and ady correspond to multiplication
by α(x) and α(y) on Aα. If α ∈ ΦB , then the dimension of Aα is equal to one,
as in Section 17.7. This implies (17.11.5).
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If λ, µ ∈ B′, then we get that

b′A(λ, µ) = bA(tλ, tµ) =
∑
α∈ΦB

α(tλ)α(tµ).(17.11.6)

It follows that
b′A(λ, µ) =

∑
α∈ΦB

b′A(λ, α) b
′
A(µ, α),(17.11.7)

by (17.11.4). In particular,

b′A(λ, λ) =
∑
α∈ΦB

b′A(λ, α)
2.(17.11.8)

Suppose that β ∈ Φ, so that b′A(β, β) ̸= 0, as in (17.10.6). Using (17.11.8)
with λ = β and multipliying both sides by 1/b′A(β, β)

2, we get that

1/b′A(β, β) =
∑
α∈ΦB

b′A(β, α)
2/b′A(β, β)

2.(17.11.9)

If α ∈ ΦB , then
2 b′A(β, α)/b

′
A(β, β)(17.11.10)

corresponds to an integer under the standard embedding of Q into k, as men-
tioned in the previous section. This implies that the right side of (17.11.9)
corresponds to a rational number. Thus b′A(β, β) corresponds to a rational
number. It follows that

b′A(β, α)(17.11.11)

corresponds to a rational number as well when α ∈ ΦB , because (17.11.10)
corresponds to an integer. This corresponds to some of the remarks near the
top of p40 of [14].

17.12 Vector spaces over Q

Let us return for the moment to the situation considered in Section 17.10. We
may consider the dual B′ of B as a vector space over the rational numbers,
using the standard embedding of Q into k. Let EQ be the linear subspace of
B′, as a vector space over Q, spanned by ΦB . Equivalently, EQ consists of linear
combinations of elements of ΦB whose coefficients in k correspond to rational
numbers. If α1, . . . , αn are elements of ΦB that form a basis for B′ as a vector
space over k, then α1, . . . , αn forms a basis for EQ as a vector space over Q, as
in Section 17.10. Of course, linear independence over k automatically implies
linear independence over Q. In particular, the dimension of EQ as a vector
space over Q is the same as the dimension of B′ as a vector space over k, which
is equal to the dimension of B as a vector space over k.

Suppose now that we are in the more particular situation considered in the
previous section. If α, β ∈ ΦB , then b

′
A(α, β) corresponds to a rational number
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with respect to the standard embedding of Q into k, as before. It follows that
b′A(α, β) corresponds to a rational number when α, β ∈ EQ. Let (α, β)EQ

be
the rational number that corresponds to b′A(α, β) when α, β ∈ EQ. This defines
a bilinear form on EQ, as a vector space over Q. If λ, µ ∈ EQ, then

(λ, µ)EQ
=

∑
α∈ΦB

(λ, α)EQ
(µ, α)EQ

,(17.12.1)

as in (17.11.7).

It follows that

(λ, λ)EQ
=

∑
α∈ΦB

(λ, α)2EQ
(17.12.2)

for every λ ∈ EQ. This implies that

(λ, λ)EQ
≥ 0(17.12.3)

for every λ ∈ EQ. More precisely, (λ, λ)EQ
= 0 if and only if

(λ, α)EQ
= 0 for every α ∈ ΦB .(17.12.4)

Let us check that this can only happen when λ = 0.

Of course, (17.12.4) is the same as saying that

b′A(λ, α) = 0(17.12.5)

for every α ∈ ΦB . This implies that (17.12.5) holds for every α ∈ B′, because
the linear span of ΦB in B′, as a vector space over k, is equal to B′. It follows
that λ = 0, because b′A is nondegenerate on B′. This corresponds to some more
of the remarks near the top of p40 in [14].

17.13 Vector spaces over R

Let us return again for the moment to the situation considered in Section 17.10,
and the beginning of the previous section. Thus EQ is the linear subspace of
B′, as a vector space over Q, spanned by ΦB . Let n be the dimension of B
and B′ as vector spaces over k, which is the same as the dimension of EQ as
a vector space over Q. Using any basis for EQ, we get that EQ is isomorphic
to Qn, as a vector space over Q. We can get a vector space ER over the real
numbers with the same basis, using formal linear combinations with coefficients
in R. This amounts to taking Rn as a vector space over R that contains Qn.
This does not depend on the choice of basis for EQ, up to suitable equivalence.
In particular, EQ corresponds to a subset of ER.

Suppose now, for the rest of the section, that we are in the more particular
situation considered in Section 17.11 again, and as in the previous section. Thus
(α, β)EQ

is defined as a bilinear form on EQ, as a vector space over Q, as before.
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This has a natural extension to a bilinear form (α, β)ER
on ER, as a vector space

over R. If λ, µ ∈ ER, then

(λ, µ)ER
=

∑
α∈ΦB

(λ, α)ER
(µ, α)ER

,(17.13.1)

as in (17.12.1). This implies that

(λ, λ)ER
=

∑
α∈ΦB

(λ, α)2ER
≥ 0(17.13.2)

for every λ ∈ ER.
Let us verify that λ ∈ ER satisfies (λ, λ)ER

= 0 only when λ = 0, so
that (·, ·)ER

defines an inner product on ER. One way to do this is to use an
orthogonal basis for EQ with respect to (·, ·)EQ

, which is an orthogonal basis
for ER with respect to (·, ·)ER

as well. If λ ∈ ER and λ ̸= 0, then one can get
that (λ, λ)ER

> 0 from the analogous condition for the basis vectors in EQ.
Alternatively, let α1, . . . , αn be elements of ΦB that form a basis for B′ as a

vector space over k, so that α1, . . . , αn forms a basis for EQ as a vector space
over Q too, as before. If µ ∈ EQ satisfies

(µ, αj)EQ
= 0(17.13.3)

for each j = 1, . . . , n, then
b′A(µ, αj) = 0(17.13.4)

for every j = 1, . . . , n. This implies that

b′A(µ, α) = 0(17.13.5)

for every α ∈ B′, and hence that µ = 0, because b′A is nondegenerate on B′. Of
course,

µ 7→ (µ, αj)EQ
(17.13.6)

defines a linear functional on EQ for each j = 1, . . . , n. Using these linear
functionals, we get a mapping from EQ into Qn that is linear over Q. The
kernel of this linear mapping is trivial, by the previous remarks. It follows that
this linear mapping sends EQ onto Qn, because EQ has dimension n as a vector
space over Q.

Similarly,
µ 7→ (µ, αj)ER

(17.13.7)

is a linear functional on ER for each j = 1, . . . , n. Using these linear functionals,
we get a mapping from ER into Rn that is linear over R. The image of this
linear mapping contains Qn, as in the preceding paragraph. This implies that
this linear mapping sends ER onto Rn, because the image is a linear subspace
of Rn, as a vector space over R. It follows that this linear mapping is injective,
because ER has dimension n, as a vector space over R. Thus, if λ ∈ ER satisfies

(λ, αj)ER
= 0(17.13.8)

for every j = 1, . . . , n, then λ = 0. If (λ, λ)ER
= 0, then (17.13.8) holds for

each j = 1, . . . , n, by (17.13.2), so that λ = 0. This corresponds to some of the
remarks near the top of p40 of [14] again.
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17.14 Normalizers and centralizers

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Also let B be a Lie subalgebra of A. Re-
member that the centralizer CA(B) of B in A consists of the x ∈ A such that
[x,w]A = 0 for every w ∈ B, as in Section 7.6. The normalizer NA(B) of B in
A is the set of x ∈ A such that [x,w]A ∈ B for every w ∈ B, as in Section 9.8.
Thus

B ⊆ NA(B),(17.14.1)

because B is a Lie subalgebra of A. Note that

CA(B) ⊆ NA(B).(17.14.2)

Both CA(B) and NA(B) are Lie subalgebras of A, as before. Of course, if B is
commutative as a Lie algebra over k, then B ⊆ CA(B).

Suppose from now on in this section that k is a field, and that A is a finite-
dimensional Lie algebra over k. Let B be a Lie subalgebra of A such that every
element of B is ad-diagonalizable as an element of A. Thus B is commutative
as a Lie algebra over k, as in Section 17.1. Let B′ be the dual of B, as a
vector space over k, and for each α ∈ B′, let Aα be the set of x ∈ A such that
adw(x) = [w, x]A = α(w)x for every w ∈ B, as usual. If α = 0, then this is the
same as CA(B), as before.

In particular, B ⊆ CA(B) = A0. Let us suppose that B ̸= {0}, to avoid
trivialities, so that A0 ̸= {0}. Let ΦB be the set of α ∈ B′ such that α ̸= 0
and Aα ̸= {0} again. Remember that A corresponds to the direct sum of Aα,
α ∈ ΦB ∪ {0}, as a vector space over k, as in Section 17.2.

Let us check that

A0 = NA(B)(17.14.3)

under these conditions. Of course, A0 ⊆ NA(B), as in (17.14.2). Let x ∈ A be
given, so that x can be expressed in a unique way as

x =
∑

α∈ΦB∪{0}

xα,(17.14.4)

where xα ∈ Aα for each α ∈ ΦB ∪ {0}. If w ∈ B, then

[w, x]A =
∑

α∈ΦB∪{0}

[w, xα]A =
∑
α∈ΦB

α(w)xα.(17.14.5)

This is in B, or even A0, only when it is equal to 0. If this happens for every
w ∈ B, then it follows that x ∈ A0 = CA(B). Equivalently, this means that
xα = 0 for every α ∈ ΦB . This shows that NA(B) ⊆ A0, so that (17.14.3) holds.

If CA(B) = B, then we get that NA(B) = B. This corresponds to Exercise
5 on p40 of [14].
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17.15 Semisimplicity and diagonalizability

Let k be a field, and let (A, [·, ·]A) be a Lie algebra over k with positive finite
dimension, as a vector space over k. Also let B be a Lie subalgebra of A such
that every element of B is ad-diagonalizable as an element of A. Thus B is
commutative as a Lie algebra over k, as in Section 17.1. Let B′ be the dual of
B, as a vector space over k, and for each α ∈ B′, let Aα be the set of x ∈ A such
that adw(x) = [w, x]A = α(w)x for every w ∈ B, as before. Remember that A0

is the same as the centralizer CA(B) of B in A, which contains B, because B is
commutative as a Lie algebra.

Suppose that
B = CA(B) = A0.(17.15.1)

This implies that B ̸= {0}, because A ̸= {0}, by hypothesis. Let ΦB be the
set of α ∈ B′ such that α ̸= 0 and Aα ̸= {0} again, so that A corresponds to
the direct sum of Aα, α ∈ ΦB ∪ {0}, as a vector space over k, as in Section
17.2. Note that the center Z(A) of A as a Lie algebra is contained in A0. Let
us suppose also that

Z(A) = {0}.(17.15.2)

Suppose in addition that for each α ∈ ΦB and xα ∈ Aα with xα ̸= 0 there
is a yα ∈ A−α with the following property. Put

zα = [xα, yα]A,(17.15.3)

so that zα ∈ A0, as in Section 17.2. This means that zα ∈ B, by (17.15.1), and
we ask that

α(zα) ̸= 0.(17.15.4)

We have seen that this holds under some additional conditions, as in Section
17.6.

We would like to show that A is semisimple as a Lie algebra over k in this
situation. This corresponds to Step (13) on p100 of [14], and to (k) on p55 of
[24]. Let C be an ideal in A such that C is commutative as a Lie algebra. It
suffices to show that C = {0}, as in Section 9.4.

If w ∈ B, then adw maps C into itself, because C is an ideal in A. The
restriction of adw to C is diagonalizable, as in Section 10.6, because adw is
diagonalizable on A, by hypothesis. Remember that the mappings adw, with
w ∈ B, commute on A, because B is commutative as a Lie algebra, as in Section
17.2. This implies that the linear mappings adw, w ∈ B, are simultaneously
diagonalizable on C, as before. If C ̸= {0}, then it follows that C is spanned by
its intersections with the subspaces Aα, with α ∈ ΦB ∪ {0}.

Suppose for the sake of a contradiction that there is an α ∈ ΦB such that
Aα ∩ C ̸= {0}. Let xα be a nonzero element of Aα ∩ C, and let yα ∈ A−α
and zα ∈ B be as before. Observe that zα ∈ C, because of (17.15.3) and the
hypothesis that C be an ideal in A. Remember that

[zα, yα]A = −α(zα) yα,(17.15.5)
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because yα ∈ A−α and zα ∈ B. This implies that yα ∈ C too, because of
(17.15.4). It follows that zα = 0, by (17.15.3) and the commutativity of C as a
Lie algebra. This contradicts (17.15.4), as desired.

This shows that Aα ∩ C = {0} for every α ∈ ΦB , so that

C ⊆ A0 = B.(17.15.6)

Let α ∈ ΦB and xα ∈ Aα be given, so that

[w, xα]A = α(w)xα(17.15.7)

for every w ∈ B. If w ∈ C, then [w, xα]A ∈ C, because C is an ideal in A.
Combining this with (17.15.7), we get that

[w, xα]A = 0,(17.15.8)

because A0 ∩ Aα = {0} when α ̸= 0. If x0 ∈ A0, then [w, x0]A = 0 for every
w ∈ B, and hence every w ∈ C, by (17.15.6). This implies that C is contained
in the center of A, because A is spanned by Aα, α ∈ ΦB ∪ {0}. It follows that
C = {0}, by (17.15.2), as desired.



Chapter 18

Cartan subalgebras

18.1 Subspaces related to adx

Let k be a field, and let (A, [·, ·]A) be a Lie algebra over k. Also let x ∈ A be
given, so that adx(w) = [x,w]A defines a linear mapping from A into itself, as
usual. If α ∈ k, then put

Ax,α = {y ∈ A : (adx − α I)l(y) = 0 for some l ∈ Z+},(18.1.1)

where I is the identity mapping on A. This is a linear subspace of A, as in
Section 10.7. Note that Ax,α ̸= {0} if and only if α is an eigenvalue of adx on
A, as before.

Let y, z ∈ A and α, β ∈ k be given. Remember that adx is a derivation on
A, as in Section 2.5. It follows that

(adx − (α+ β) I)([y, z]A) = [adx(y), z]A + [y, adx(z)]A − α [y, z]A − β [y, z]A

= [(adx − α I)(y), z]A + [y, (adx − β I)(z)]A,(18.1.2)

as in Section 10.9. If y ∈ Ax,α and z ∈ Ax,β , then one can use this repeatedly
to get that

(adx − (α+ β) I)j([y, z]A) = 0(18.1.3)

when j is sufficiently large. This means that

[y, z]A ∈ Ax,α+β ,(18.1.4)

as in Section 10.9. In particular, Ax,0 is a Lie subalgebra of A. This corresponds
to the first two assertions in the lemma at the bottom of p78 of [14], and to
parts (b) and (c) of Proposition 2 on p11 of [24].

Let α1 . . . , αn ∈ k be finitely many distinct eigenvalues of adx, and suppose
that yj ∈ Ax,αj for each j = 1, . . . , n. If

∑n
j=1 yj = 0, then yj = 0 for each

j = 1, . . . , n, as in Section 10.7.
Suppose from now on in this section that k is algebraically closed, and that A

has positive finite dimension as a vector space over k. In this case, A corresponds

366
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to the direct sum of the subspaces Ax,α with α ∈ k an eigenvalue of adx, as
a vector space over k. This is part (a) of Proposition 2 on p11 of [24], when
k = C, and is mentioned on p78 of [14].

Suppose that k has characteristic 0. If y ∈ Ax,α for some α ∈ k with α ̸= 0,
then one can check that y is ad-nilpotent as an element of A, using (18.1.4) and
the fact that there are only finitely many eigenvalues of adx on A. This is the
third assertion of the lemma on p78 of [14].

18.2 Some remarks about characteristic polyno-
mials

Let k be a field, and let V be a vector space over k of positive finite dimension.
Also let a be a linear mapping from V into itself, and let T be an indeterminate.
As usual, the characteristic polynomial of a is defined as a formal polynomial
in T with coefficients in k by

pa(T ) = det(a− T I),(18.2.1)

where I is the identity mapping on V . More precisely, one can choose a basis for
V , so that a corresponds to a matrix with entries in k, and a− T I corresponds
to a matrix with entries in the algebra k[T ] of formal polynomials in T with
coefficients in k. The determinant of this matrix is an element of k[T ], which
does not depend on the choice of basis for V .

Let V0 be a proper nontrivial linear subspace of V , and suppose that

a(V0) ⊆ V0.(18.2.2)

Let V1 be the quotient space V/V0, so that a induces a linear mapping a1 from
V1 into itself. If a0 is the restriction of a to V0, then

pa(T ) = pa0(T ) pa1(T ),(18.2.3)

where pa0(T ), pa1(T ) are the characteristic polynomials of a0, a1 as linear map-
pings on V0, V1, respectively. This can be seen using a basis for V that contains
a basis for V0. The basis vectors not in V0 can be mapped into V1 by the
canonical quotient mapping, to get a basis for V1.

Remember that

V0 = {v ∈ V : al(v) = 0 for some l ∈ Z+}(18.2.4)

is a linear subspace of V , as in Section 10.7. Clearly V0 satisfies (18.2.2). If
v ∈ V and a(v) ∈ V0, then it is easy to see that v ∈ V0 too. This implies that the
kernel of the induced mapping a1 on V1 = V/V0 is trivial. Note that V0 ̸= {0}
exactly when 0 is an eigenvalue of a on V , as in Section 10.7.

Let n0 be the dimension of V0, as a vector space over k. If n0 ≥ 1, then it is
well known that

pa0(T ) = (−1)n0 Tn0 .(18.2.5)
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Suppose for the moment that V0 ̸= V , so that V1 ̸= {0}. Of course, the constant
term in pa1(T ) is the same as the determinant of a1 on V . This is a nonzero
element of k, because a1 is invertible on V1, as in the preceding paragraph.

If V0 = V , then pa(T ) = pa0(T ) is as in (18.2.5). If V0 = {0}, then 0 is not
an eigenvalue of a on V , and the constant term in pa(T ) is nonzero.

18.3 Characteristic polynomials and adx

Let k be a field, and let (A, [·, ·]A) be a Lie algebra over k, with positive finite
dimension n as a vector space over k. Also let T be an indeterminate, so that
the characteristic polynomial of a linear mapping from A into itself is defined
as a formal polynomial in T with coefficients in k, as in the previous section. If
x ∈ A, then let

Qx(T ) = det(adx − T I)(18.3.1)

be the characteristic polynomial of adx, as a linear mapping from A into itself.
This is the same as (−1)n times the polynomial Px(T ) defined on p10 of [24].

Using a basis for A, we can identify A with the space kn of n-tuples of
elements of k, as a vector space over k. Of course, adx depends linearly on x,
and can be expressed in terms of the coordinates of x and the corresponding
structure constants for the Lie bracket on A. Similarly, (18.3.1) can be expressed
as

Qx(T ) =

n∑
j=0

qj(x)T
j ,(18.3.2)

where qj(x) corresponds to a homogeneous polynomial of degree n − j in the
coordinates of x for each j = 0, 1, . . . , n, as on p11 of [24]. More precisely, the
coefficients for qj can be given in terms of the structure constants for the Lie
bracket on A. By construction, qn(x) corresponds to the constant polynomial
(−1)n.

Suppose for the moment that A is nilpotent as a Lie algebra over k. In
this case, we can choose a basis for A such that adx is always corresponds to a
strictly upper-triangular matrix. This implies that the coefficients of qj(x) are
all equal to 0 when j < n.

Let x ∈ A be given, and let Ax,0 be as in (18.1.1). This is the same as
(18.2.4), with V = A and a = adx. Let n0(x) be the dimension of Ax,0. Note
that x ∈ Ax,0, and that Ax,0 = A when x = 0, so that n0(x) ≥ 1. We also have
that

qj(x) = 0 when j < n0(x),(18.3.3)

and
qn0(x)(x) ̸= 0,(18.3.4)

as in the previous section.
Of course, n0(x) = n exactly when adx is nilpotent on A. If this happens

for every x ∈ A, then A is nilpotent as a Lie algebra, as in Section 9.10. These
remarks correspond to some of those on p11 in [24].
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18.4 Engel subalgebras

Let k be a field, and let (A, [·, ·]A) be a Lie algebra over k. If x ∈ A, then

Ax,0 = {y ∈ A : (adx)
l(y) = 0 for some l ∈ Z+}(18.4.1)

is a Lie subalgebra of A, as in Section 18.1. A Lie subalgebra of A of this form
is called an Engel subalgebra, following Barnes, as on p79 of [14].

Let us suppose from now on in this section that A has positive finite dimen-
sion n as a vector space over k, and that the number of elements of k is strictly
larger than n, as in Exercise 5 on p81 of [14]. Let C be a Lie subalgebra of A,
and let z be an element of C such that Az,0 is minimal with respect to inclusion
among the Ax,0’s with x ∈ C. Of course, it suffices to choose z ∈ C so that the
dimension of Az,0, as a vector space over k, is minimal. If

C ⊆ Az,0,(18.4.2)

then
Az,0 ⊆ Ax,0(18.4.3)

for every x ∈ C. This is Lemma A on p79 of [14].
We may as well suppose that Az,0 ̸= {0}, since otherwise (18.4.3) is trivial.

We may as well suppose too that Az,0 ̸= A, because (18.4.3) would follow from
the minimality of Az,0 otherwise. Let r be the dimension of Az,0 as a vector
space over k, so that 1 ≤ r < n.

Let x ∈ C and c ∈ k be given, and observe that

z + c x ∈ C.(18.4.4)

Thus z+ c x ∈ Az,0, by (18.4.2). This implies that adz+c x maps Az,0 into itself,
because Az,0 is a Lie subalgebra of A. The quotient A/Az,0 is defined as a vector
space over k, and adz+c x induces a mapping from A/Az,0 into itself in the usual
way.

Note that Az,0 corresponds to (18.2.4) with V = A and a = adz. Thus the
mapping from A/Az,0 into itself induced by adz is injective, as before.

Let T be an indeterminate, and let h(T, c) be the characteristic polynomial
of adz+c x on A. As in Section 18.2, this can be expressed as

h(T, c) = f(T, c) g(T, c),(18.4.5)

where f(T, c) is the characteristic polynomial of the restriction of adz+c x to
Az,0, and g(T, c) is the characteristic polynomial of the linear mapping from
A/Az,0 into itself induced by adz+c x. These polynomials can be expressed as

f(T, c) = (−1)r T r + f1(c)T
r−1 + · · ·+ fr(c)(18.4.6)

and
g(T, c) = (−1)n−r Tn−r + g1(c)T

n−r−1 + · · ·+ gn−r(c),(18.4.7)
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as on p79 of [14]. More precisely, fj(c) and gj(c) can be given by polynomials
with coefficients in k, of degree less than or equal to j.

Observe that gn−r(0) ̸= 0, because the mapping induced on A/Az,0 by adz
is invertible. In particular, gn−r ̸≡ 0 on k, so that gn−r has at most n− r zeros
in k. Remember that k has at least n + 1 elements, by hypothesis. It follows
that there are r + 1 distinct elements c1, . . . , cr+1 of k such that

gn−r(cl) ̸= 0(18.4.8)

for each l = 1, . . . , r + 1.
By construction, gn−r(c) is the determinant of the linear mapping from

A/Az,0 into itself induced by adz+c x. Suppose for the moment that c ∈ k
has the property that gn−r(c) ̸= 0, so that the mapping from A/Az,0 into itself
induced by adz+c x is injective. Of course, this implies that all positive powers of
this mapping are injective. Remember that the positive powers of the mapping
from A/Az,0 induced by adz+c x correspond to the mappings from A/Az,0 into
itself induced by the positive powers of adz+c x. It follows that the kernels of
the positive powers of adz+c x on A are contained Az,0. This implies that

Az+c x,0 ⊆ Az,0.(18.4.9)

Under these conditions, we get that

Az+c x,0 = Az,0,(18.4.10)

because of the minimality condiiton on Az,0.
As before, Az+c x,0 corresponds to (18.2.4) with V = A and a = adz+c x. If

(18.4.10) holds, then the characteristic polynomial f(T, c) of the restriction of
adz+c x to (18.4.10) is equal to (−1)r T r. This means that

fj(c) = 0(18.4.11)

for each j = 1, . . . , r. In particular, this holds for r + 1 distinct elements of k,
as in (18.4.8). This implies that

fj ≡ 0(18.4.12)

on k for each j = 1, . . . , r, because fj is given by a polynomial of degree less
than or equal to j.

Equivalently,
f(T, c) = (−1)r T r(18.4.13)

for every c ∈ k. Let c ∈ k be given again, and consider

Az+c x,0 ∩Az,0,(18.4.14)

which is a linear subspace of Az,0. If V = Az,0 and a = adz+c x, then (18.4.14)
corresponds to (18.2.4). Using (18.4.13), we get that (18.4.14) is the same as
Az,0, as in Section 18.2. This means that

Az,0 ⊆ Az+c x,0(18.4.15)
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for every c ∈ k.
Remember that this holds for every x ∈ C. Thus we can replace x with x−z

and take c = 1 to get (18.4.3), as desired.

18.5 Self-normalizing subalgebras

Let k be a field again, and let (A, [·, ·]) be a Lie algebra over k. Also let C be
a Lie subalgebra of A, and remember that the normalizer NA(C) of C in A is
the set of w ∈ A such that [w, z]A ∈ C for every z ∈ C. This is the largest Lie
subalgebra of A that contains C as an ideal, as in Section 9.8. If NA(C) = C,
then C is said to be self-normalizing in A, as before.

Let x ∈ A be given, and let Ax,0 be the set of y ∈ A such that (adx)
l(y) = 0

for some positive integer l, as before. This is a Lie subalgebra of A, as in Section
18.1. Equivalently, if V = A and a = adx, then Ax,0 is the same as (18.2.4).
Remember that the mapping from A/Ax,0 into itself induced by adx is injective,
as in Section 18.2.

Let w be an element of the normalizer NA(Ax,0) of Ax,0 in A. Note that
x ∈ Ax,0, so that

[w, x]A ∈ Ax,0.(18.5.1)

This means that (adx)
l([w, x]A) = 0 for some positive integer l, and hence

(adx)
l+1(w) = 0. It follows that w ∈ Ax,0, so that

NA(Ax,0) = Ax,0.(18.5.2)

This corresponds to the last part of the proof of Theorem 1 on p12 of [24].
Suppose from now on in this section that the dimension of A is finite, as a

vector space over k. Thus the dimension of the quotient space A/Ax,0 is finite
too. It follows that the mapping on A/Ax,0 induced by adx is invertible, because
it is injective, as before.

Suppose that C is a Lie subalgebra of A with

Ax,0 ⊆ C.(18.5.3)

In particular, x ∈ C, because x ∈ Ax,0. Thus adx maps C into itself, so that
the mapping on A/Ax,0 induced by adx maps C/Ax,0 into itself. More precisely,
the mapping induced on A/Ax,0 maps C/Ax,0 onto itself, because this mapping
is injective, and the dimension of C/Ax,0 is finite.

The normalizer NA(C) of C in A is mapped into C by adx, because x ∈ C.
This implies that the mapping induced on A/Ax,0 by adx maps NA(C)/Ax,0
into C/Ax,0. It follows that

NA(C)/Ax,0 = C/Ax,0,(18.5.4)

because the mapping induced on A/Ax,0 by adx is injective and maps C/Ax,0
onto itself.
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This means that
NA(C) = C,(18.5.5)

because of (18.5.3) and the fact that C ⊆ NA(C). This corresponds to Lemma
B on p79 of [14].

18.6 Orthogonality conditions

Let k be a field, and let (A, [·, ·]A) be a Lie algebra over k. Also let b(·, ·) be a
bilinear form on A that is associative, or equivalently invariant under the adjoint
representation. This means that

b([w, y]A, z) = −b(y, [w, z]A)(18.6.1)

for every w, y, z ∈ A, as in Sections 6.10 and 7.7. Let x ∈ A be given, so that

b(adx(y), z) + b(y, adx(z)) = 0(18.6.2)

for every y, z ∈ A. If α, β ∈ k, then we get that

b((adx − α I)(y), z) + b(y, (adx − β I)(z)) = −(α+ β) b(y, z)(18.6.3)

for every y, z ∈ A.
Let l be a positive integer, and consider

(−1)l (α+ β)l b(y, z).(18.6.4)

If l1 and l2 are nonnegative integers, then consider

b((adx − α I)l1(y), (adx − β I)l2(z)).(18.6.5)

If l1 or l2 is equal to 0, then (adx−α I)l1 or (adx−β I)l2 is interpreted as being
the identity operator on A, as appropriate. We can express (18.6.4) as a sum
of terms of the form (18.6.5), using (18.6.3) repeatedly. More precisely, we have
that

l1 + l2 = l(18.6.6)

in each of the terms of the form (18.6.5).
Remember that Ax,α consists of the y ∈ A such that (adx−α I)j(y) = 0 for

all sufficiently large positive integers j, as in Section 18.1, and similarly for β.
If y ∈ Ax,α and z ∈ Ax,β , then (18.6.5) is equal to 0 when l1 or l2 is sufficiently
large. This implies that

(α+ β)l b(y, z) = 0(18.6.7)

when l is sufficiently large. It follows that

b(y, z) = 0(18.6.8)

when α + β ̸= 0. This corresponds to a remark in the proof of part (d) of
Theorem 3 on p15 of [24].
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Remember that Ax,α ̸= {0} exactly when α ∈ k is an eigenvalue of adx on
A. Suppose now that k is algebraically closed, and that A has positive finite
dimension as a vector space over k. In this case, A corresponds to the direct
sum of the nonzero subspaces Ax,α, as a vector space over k.

Suppose that b(·, ·) is also nondegenerate on A. Under these conditions, it is
easy to see that the restriction of b(·, ·) to Ax,0 is nondegenerate, using (18.6.8).
This corresponds to part (d) of Theorem 3 on p15 of [24].

18.7 Nilpotence and normalizing elements

Let k be a field, and let (A, [·, ·]A) be a finite-dimensional Lie algebra over k.
Also let C1, C2 be Lie subalgebras of A, with

C1 ⊆ C2.(18.7.1)

Thus the quotient C2/C1 is defined as a vector space over k, and we let q be
the canonical quotient mapping from C2 onto C2/C1.

If x ∈ C1, then adx maps C1 and C2 into themselves. This leads to a linear
mapping adC2/C1

x from C2/C1 into itself, with

adC2/C1
x ◦ q = q ◦ adx.(18.7.2)

It is easy to see that x 7→ adC2/C1
x defines a representation of C1, as a Lie algebra

over k, on C2/C1. In particular,

{adC2/C1
x : x ∈ C1}(18.7.3)

is a Lie subalgebra of the Lie algebra gl(C2/C1) of linear mappings from C2/C1

into itself, with respect to the usual commutator bracket.
Observe that

(adC2/C1
x )l = 0(18.7.4)

for some positive integer l if and only if

q ◦ (adx)l = 0.(18.7.5)

Equivalently, this means that

(adx)
l(C2) ⊆ C1.(18.7.6)

In this case, if adx is nilpotent on C1, then it follows that adx is nilpotent on
C2. Of course, if adx is nilpotent on C2, then adC2/C1

x is nilpotent on C2/C1.

Suppose that C1 ̸= C2, so that C2/C1 ̸= {0}, and that adC2/C1
x is nilpotent

on C2/C1 for each x ∈ C1. Under these conditions, there is a nonzero element

of C2/C1 that is mapped to 0 by adC2/C1
x for every x ∈ C1, as in Section 9.9.

This means that there is a y ∈ C2 such that y ̸∈ C1 and

adC2/C1
x (q(y)) = 0(18.7.7)
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for every x ∈ X1, and hence

q(adx(y)) = 0(18.7.8)

for every x ∈ C1. This is the same as saying that

adx(y) = [x, y]A ∈ C1(18.7.9)

for every x ∈ C1. Equivalently, this means that y is an element of the normalizer
NA(C1) of C1 in A, as in Section 9.8.

If C2 is nilpotent as a Lie algebra over k, then adx is nilpotent on C2 for
every x ∈ C2. In particular, this implies that adC2/C1

x is nilpotent on C2/C1 for
every x ∈ C1, as before. If C1 is a proper Lie subalgebra of C2, then it follows
that C1 is a proper subset of its normalizer NC2(C1) in C2, as in the preceding
paragraph. This corresponds to Exercise 7 on p14 of [14].

18.8 Minimal Engel subalgebras

Let k be a field, and let (A, [·, ·]A) be a Lie algebra over k. A Lie subalgebra C
of A is said to be a Cartan subalgebra if C is nilpotent as a Lie algebra over k,
and C is self-normalizing in A, as on p80 of [14], and Definition 1 on p10 of [24].
Remember that the normalizer NA(C) of C in A is the largest Lie subalgebra
of A that contains C as an ideal, and that C is self-normalizing in A when
NA(C) = C, as in Section 9.8.

Let us suppose from now on in this section that A has finite dimension as
a vector space over k, and that the number of elements of k is strictly larger
than the dimension of A as a vector space over k. If x ∈ A, then Ax,0 is the set
of y ∈ A such that (adx)

l(y) = 0 for some positive integer l, as in Section 18.1.
This is a Lie subalgebra of A, which is known as an Engel subalgebra of A, as
before. Remember that Engel subalgebras of A are self-normalizing in A, as in
Section 18.5.

Suppose that z ∈ A has the property that Az,0 is minimal with respect to
inclusion among Engel subalgebras of A. In particular, one could take Az,0 to
be an Engel subalgebra of minimal dimension, as a vector space over k. Under
these conditions, Az,0 is a Cartan subalgebra of A, as in the theorem on p80 of
[14]. This is related to Theorem 1 on p12 of [24] when k = C.

It suffices to show that Az,0 is nilpotent as a Lie algebra over k, because Az,0
is self-normalizing in A, as before. Note that C = Az,0 satisfies the conditions
in Section 18.4, because Az,0 is minimal, by hypothesis. If x ∈ Az,0, then we
get that

Az,0 ⊆ Ax,0,(18.8.1)

as before. Thus, for each y ∈ Az,0, we have that (adx)
l(y) = 0 for some positive

integer l. This implies that the restriction of adx to Az,0 is nilpotent as a linear
mapping from Az,0 into itself. Equivalently, this means that x is ad-nilpotent
as an element of Az,0, considered as a Lie algebra over k. It follows that Az,0 is
nilpotent as a Lie algebra over k, as in Section 9.10.
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Let C be a Lie subalgebra of A. If x ∈ C, then adC,x is the same as the
restriction of adx to C. Suppose that C is nilpotent as a Lie algebra over k, so
that adC,x is nilpotent on C for every x ∈ C. This implies that

C ⊆ Ax,0(18.8.2)

for every x ∈ C. In particular, if C is an Engel subalgebra of A, then it follows
that C is minimal among Engel subalgebras of A.

If C is a Cartan subalgebra of A, then the other part of the theorem on p80
of [14] states that C is a minimal Engel subalgebra of A. This corresponds to
Corollary 2 on p13 of [24] when k = C. Of course, (18.8.2) holds for every x ∈ C
in this case, because C is nilpotent. Suppose for the sake of a contradiction
that for each x ∈ C, C ̸= Ax,0. Let z be an element of C be such that Az,0 is
minimal with respect to inclusion. As usual, one can take z ∈ C such that Az,0
has minimal dimension, as a vector space over k. Note that

C ⊆ Az,0,(18.8.3)

by (18.8.2). Under these conditions, we get that (18.8.1) holds for every x ∈ C,
as in Section 18.4 again.

Let x ∈ C be given. Of course, adx maps C into itself, because C is a Lie
subalgebra of A. Observe that x ∈ Az,0, by (18.8.3). Thus adx maps Az,0 into
itself, because Az,0 is a Lie subalgebra of A too. The restriction of adx to Az,0
is nilpotent, because of (18.8.1).

Consider the quotient Az,0/C, as a finite-dimensional vector space over k.
If x ∈ C, then adx induces a linear mapping from Az,0/C into itself, by the
remarks in the preceding paragraph. This defines a representation of C, as
a Lie algebra over k, on Az,0/C. The mapping induced on Az,0/C by adx is
nilpotent for each x ∈ C, because adx is nilpotent on Az,0.

By hypothesis, C ̸= Az,0, so that Az,0/C ̸= {0}. It follows that there is
a nonzero element of Az,0/C that is mapped to 0 by the mapping induced by
adx for every x ∈ C, as in Section 9.9. Equivalently, this means that there is a
y ∈ Az,0 such that y ̸∈ C and

adx(y) = [x, y]A ∈ C(18.8.4)

for every x ∈ C. This means that y ∈ NA(C), which is a contradiction, because
C is supposed to be self-normalizing in A. This is another instance of the
argument in the previous section.

18.9 Nilpotent vectors and sums

Let k be a field, and let V be a vector space over k. If T is a linear mapping from
V into itself, then let E0(T ) be the set of v ∈ V such that T l(v) = 0 for some
positive integer l, as in Section 10.7. Remember that this is a linear subspace of
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V , as before. Let R be another linear mapping from V into itself, and suppose
that R commutes with T . Under these conditions, one can check that

E0(R) ∩ E0(T ) ⊆ E0(R+ T ).(18.9.1)

More precisely, if v ∈ V and l ∈ Z+, then

(R+ T )l(v)(18.9.2)

can be expressed as a sum of terms of the form

Rl1(T l2(v)) = T l2(Rl1(v)),(18.9.3)

where l1, l2 are nonnegative integers such that l1 + l2 = l. If v is an element of
the left side of (18.9.1), then (18.9.3) is equal to 0 when l1 or l2 is sufficiently
large. This implies that (18.9.2) is equal to 0 when l is sufficiently large, as
desired.

Suppose for the moment that

E0(R) = V,(18.9.4)

so that
E0(T ) ⊆ E0(R+ T ),(18.9.5)

by (18.9.1). Similarly,
E0(R+ T ) ⊆ E0(T ),(18.9.6)

by considering T as (R+ T ) + (−R). Thus

E0(T ) = E0(T +R)(18.9.7)

under these conditions. If T is diagonalizable on V , then one can check that
E0(T ) is the same as the kernel of T .

Let (A, [·, ·]A) be a Lie algebra over k. If x ∈ A, then

Ax,0 = E0(adx)(18.9.8)

in the notation of Section 18.1, with V = A as a vector space over k on the right
side. Suppose that y ∈ A satisfies [x, y]A = 0, so that adx and ady commute on
A, as in Section 2.4. This implies that

Ax,0 ∩Ay,0 ⊆ Ax+y,0,(18.9.9)

as in (18.9.1). If Ay,0 = A, then we get that

Ax,0 = Ax+y,0,(18.9.10)

as in (18.9.7). If adx is diagonalizable on A, then Ax,0 is the same as the kernel
of adx on A, as before. This means that

Ax,0 = CA(x) = CA({x})(18.9.11)
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is the centralizer of x in A, as in Section 7.6.
Suppose that k is an algebraically closed field of characteristic 0, and that

A is a finite-dimensional semisimple Lie algebra over k. Let x ∈ A be given,
and let x = x1 + x2 be the abstract Jordan decomposition of x in A, as in
Section 14.3. Thus x1 ∈ A is ad-diagonalizable, x2 ∈ A is ad-nilpotent, and
[x1, x2]A = 0. It follows that

Ax,0 = Ax1,0 = CA(x1),(18.9.12)

as in (18.9.10) and (18.9.11). This corresponds to some of the arguments in the
proof of the corollary on p80 in [14].

18.10 Cartan subalgebras and semisimplicity

Let k be an algebraically closed field of characteristic 0, and let (A, [·, ·]A) be
a finite-dimensional semisimple Lie algebra over k. If B is a maximal toral
subalgebra of A, then B is commutative as a Lie algebra, and the centralizer
CA(B) of B in A is equal to B, as in Sections 17.1 and 17.4. The normalizer
NA(B) of B in A is equal to B too, as in Section 17.14. It follows that B is a
Cartan subalgebra of A, as mentioned at the top of p80 of [14].

Conversely, let C be any Cartan subalgebra of A. In particular, C is an
Engel subalgebra of A, as in Section 18.8. Thus there is an x ∈ A such that

C = Ax,0,(18.10.1)

and one can take x to be ad-diagonalizable, as in the previous section. This
means that the linear span of x in A is a toral subalgebra of A. Let B be a
maximal toral subalgebra of A that contains x, which can be obtained by taking
B to have maximal dimension. Observe that

B ⊆ CA(x) = C,(18.10.2)

because B is commutative as a Lie algebra, as in Section 17.1. However, B is
a Cartan subalgebra of A, as in the preceding paragraph, and hence an Engel
subagebra of A, as in Section 18.8. It follows that

B = C,(18.10.3)

because C is a minimal Engel subalgebra of A, as in Section 18.8. This is the
corollary on p80 of [14].

Alternatively, suppose for the moment that k is any field of characteristic 0,
and that A is a finite-dimensional semisimple Lie algebra over k. Suppose also
that (18.10.1) is a Cartan subalgebra of A for some x ∈ A. Remember that the
Killing form on A is nondegenerate, as in Section 10.13. This implies that the
restriction of the Killing form on A to C is nondegenerate, as in Section 18.6,
and part (d) of Theorem 3 on p15 of [24].



378 CHAPTER 18. CARTAN SUBALGEBRAS

Remember that the collection of linear mappings on A of the form adw,
w ∈ A, is a Lie subalgebra of the Lie algebra gl(A) of all linear mappings from
A into itself, with respect to the usual commutator bracket. This is the same
as the image of A under the adjoint representation. Similarly,

{adw : w ∈ C}(18.10.4)

is a Lie subalgebra of the Lie algebra just mentioned, because C is a Lie sub-
algebra of A. More precisely, (18.10.4) is nilpotent as a Lie algebra, because C
is nilpotent, by hypothesis. In particular, (18.10.4) is solvable as a Lie algebra
over k.

If w, y, z ∈ C, then it follows that

trA(adw ◦ ad[y,z]A) = 0,(18.10.5)

as in Section 10.5. This uses the fact that ad[y,z]A = [ady, adz], as in Section
2.4. This implies that

[y, z]A = 0(18.10.6)

for every y, z ∈ C, because the restriction of the Killing form on A to C is
nondegenerate, as before. This shows that C is commutative as a Lie algebra
over k, as in part (a) of Theorem 3 on p15 of [24].

It follows that C is contained in its centralizer in A. The centralizer of C in
A is automatically contained in the normalizer NA(C) of C in A, as in Section
17.14. In this situation, NA(C) = C, so that C is equal to its centralizer in A.
This is part (b) of Theorem 3 on p80 of [24]. This implies that C is maximal
among commutative Lie subalgebras of A, as in Corollary 1 on p15 of [24].

Suppose now that k is also algebraically closed again. Let w ∈ C be given,
and let

w = w1 + w2(18.10.7)

be the abstract Jordan decomposition of w in A, as in Section 14.3. This means
that w1 ∈ A is ad-diagonalizable, w2 ∈ A is ad-nilpotent, and [w1, w2]A = 0.
Let y ∈ C be given, so that [w, y]A = 0, and hence adw commutes with ady on
A, as in Section 2.4. This implies that ady commutes with adw1

and adw2
, as

in Section 10.8. It follows that

[w1, y]A = [w2, y]A = 0.(18.10.8)

More precisely, this uses the fact that the kernel of the adjoint representation
of A is the center of A as a Lie algebra, which is trivial in this case, because A
is semisimple by hypothesis.

Thus adw2 commutes with ady on A, as in Section 2.4. This implies that
adw2 ◦ ady is nilpotent on A, because adw2 is nilpotent on A. It follows that

trA(adw2 ◦ ady) = 0.(18.10.9)

This shows that w2 = 0, because the restriction of the Killing form on A to C
is nondegenerate, as before. This means that w = w1 is ad-diagonalizable as an
element of A, as in part (c) of Theorem 3 on p15 of [24].
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The hypothesis that (18.10.1) be a Cartan subalgebra of A really means
that C is nilpotent as a Lie algebra over k, because Engel subalgebras of A are
self-normalizing, as in Section 18.5. In the previous arguments, it is enough to
ask that C be solvable as a Lie algebra over k, so that (18.10.4) is solvable as a
Lie algebra. The same conclusion is mentioned in Exercise 2 on p81 of [14].

18.11 Subalgebras and homomorphisms

Let k be a field, and let ([·, ·]A) be a Lie algebra over k. If C is a Cartan
subalgebra of A, then C is maximal among nilpotent Lie subalgebras of A. This
is the first part of Exercise 4 on p81 in [14], and it follows from the statement
mentioned at the end of Section 18.7.

If C1, C2 are Cartan subalgebras of A with

C1 ⊆ C2,(18.11.1)

then
C1 = C2,(18.11.2)

because C1 is maximal among nilpotent Lie subalgebras of A, as in the preceding
paragraph. Alternatively, if C1, C2 are Engel subalgebras of A, and C2 is
minimal among Engel subalgebras of A, then (18.11.1) implies (18.11.2).

Let Ã and C be Lie subalgebras of A, with

C ⊆ Ã.(18.11.3)

It is easy to see that
N
Ã
(C) = NA(C) ∩ Ã,(18.11.4)

where NA(C), NÃ(C) are the normalizers of C in A and Ã, respectively. In

particular, if C is self-normalizing in A, then C is self-normalizing in Ã. If C is
a Cartan subalgebra of A, then it follows that C is a Cartan subalgebra of Ã.

Let (A′, [·, ·]A′) be another Lie algebra over k, and let ϕ be a Lie algebra
homomorphism from A onto A′. If x ∈ A and x′ ∈ A′, then we put

adA,x(y) = [x, y]A, adA′,x′(y′) = [x′, y′]A′(18.11.5)

for every y ∈ A, y′ ∈ A′, as usual. Thus

ϕ(adA,x(y)) = ϕ([x, y]A) = [ϕ(x), ϕ(y)]A′ = adA′,ϕ(x)(ϕ(y))(18.11.6)

for every x, y ∈ A.
Let C ′ be a Lie subalgebra of A′. If x ∈ A, then it is easy to see that

adA′,ϕ(x)(C
′) ⊆ C ′(18.11.7)

if and only if
adA,x(ϕ

−1(C ′)) ⊆ ϕ−1(C ′),(18.11.8)
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using (18.11.6). This means that ϕ(x) is an element of the normalizer NA′(C ′)
of C ′ in A′ if and only if x is an element of the normalizer NA(ϕ

−1(C ′)) of
ϕ−1(C ′) in A. It follows that C ′ is self-normalizing in A′ if and only if ϕ−1(C ′)
is self-normalizing in A.

Suppose from now on in this section that A has finite dimension as a vector
space over k, so that the dimension of A′ is finite as well. If ϕ−1(C ′) contains
an Engel subalgebra of A, then ϕ−1(C ′) is self-normalizing in A, as in Section
18.5.

Let C be a Lie subalgebra of A again, so that ϕ(C) is a Lie subalgebra of A′.
Note that ϕ−1(ϕ(C)) is a Lie subalgebra of A, which is spanned by C and the
kernel of ϕ. If C contains an Engel subalgebra of A, then ϕ−1(ϕ(C)) contains
the same Engel subalgebra of A.

Suppose for the rest of the section that the number of elements of k is
strictly larger than the dimension of A as a vector space over k. If C is a
Cartan subalgebra of A, then C is an Engel subalgebra of A, as in Section 18.8.
It follows that ϕ(C) is self-normalizing in A′, as in the previous paragraphs. We
also have that C is nilpotent as a Lie algebra over k, so that ϕ(C) is nilpotent
too, as in Section 9.5. This shows that ϕ(C) is a Cartan subalgebra of A′, as in
Lemma A on p81 of [14].

Suppose now that C ′ is a Cartan subalgebra of A′, and that C is a Cartan
subalgebra of ϕ−1(C ′), as a Lie algebra over k. We would like to show that C
is a Cartan subalgebra of A too, as in Lemma B on p81 of [14]. Observe that
ϕ(C) is a Cartan subalgebra of ϕ(ϕ−1(C ′)) = C ′, as in the preceding paragraph.
We also have that C ′ is a Cartan subalgebra of itself, because C ′ is nilpotent as
a Lie algebra. This implies that

ϕ(C) = C ′,(18.11.9)

as in (18.11.2).
Suppose that x is an element of the normalizer NA(C) of C in A, and let

us check that x ∈ C. It is easy to see that ϕ(x) is in the normalizer NA′(ϕ(C))
of ϕ(C) in A′. This implies that ϕ(x) ∈ ϕ(C), because of (18.11.9) and the
hypothesis that C ′ be a Cartan subalgebra of A′. Thus

x ∈ ϕ−1(ϕ(C)) = ϕ−1(C ′).(18.11.10)

It follows that x ∈ C, as desired, because C is a Cartan subalgebra of ϕ−1(C ′),
by hypothesis.

18.12 Unions of hyperplanes

Let k be a field, and let V be a nonzero vector space over k. By a hyperplane
in V we mean a linear subspace W of codimension 1 in V , so that V is spanned
by W and a single vector in V that is not in W . Equivalently, this means that
W is the kernel of a nonzero linear functional on V . If W1, . . . ,Wr are finitely
many hyperplanes in V , and if r is less than or equal to the number of elements
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of k, then we would like to check that
∪r
j=1Wj is a proper subset of V . Note

that
∩r
j=1Wj is a linear subspace of V with codimension less than or equal to r.

Thus the quotient space V/
∩r
j=1Wj is a vector space over k of dimension less

than or equal to r. We may as well suppose that the dimension of V is finite,
since otherwise we could replace V with this quotient.

Of course, k2 = k × k is a two-dimensional vector space over k, with re-
spect to coordinatewise addition and scalar multiplication. The lines in k2 are
characterized by their slope in k, except for the second coordinate axis. The
number of distinct lines in k2 is the number of elements of k plus 1, which is
to say that there are infinitely many distinct lines in k2 when k has infinitely
many elements. These lines are pairwise disjoint away from 0. It follows that
k2 cannot be expressed as the union of finitely many lines, where the number
of lines is less than or equal to the number of elements of k.

If V has dimension one, then {0} is the only hyperplane in V , and the
statement under consideration is trivial. If V has dimension at least two, then
one can find at least as many distinct hyperplanes in V as lines in k2. In
particular, there is a hyperplane Z in V that is different from Wj for each
j = 1, . . . , r. Thus Z ∩Wj is a hyperplane in Z for each j = 1, . . . , r. Note that
the dimension of Z is one less than the dimension of V , which is strictly less
than the dimension of V , because the dimension of V is finite. This permits us
to use induction to get that the union of Z ∩Wj , 1 ≤ j ≤ r, is a proper subset
of Z. This implies that the union of Wj , 1 ≤ j ≤ r, is a proper subset of V , as
desired.

If a is a nonzero element of V , then

V ′
a = {λ ∈ V ′ : λ(a) = 0}(18.12.1)

is a hyperplane in the dual space V ′ of linear functionals on V . If A is a
nonempty finite set of nonzero elements of V , and if the number of elements of
A is less than or equal to the number of elements in k, then it follows that the
union of V ′

a, a ∈ A, is a proper subset of V ′. This means that there is a linear
functional λ on V such that

λ(a) ̸= 0(18.12.2)

for every a ∈ A.

18.13 Centralizers and diagonalizability

Let k be a field, and let (A, [·, ·]A) be a finite-dimensional Lie algebra over k.
Also let B be a nonzero Lie subalgebra of A such that every element of B is
ad-diagonalizable as an element of A. This implies that B is commutative as
a Lie algebra over k, as in Section 17.1. Let B′ be the dual of B, as a vector
space over k, as usual. If α ∈ B′, then we let Aα be the set of x ∈ A such that
adw(x) = [w, x]A = α(w)x for every w ∈ B, as before.

Thus A0 is the same as the centralizer CA(B) of B in A. Of course, B is
contained in CA(B), because B is commutative as a Lie algebra. Let ΦB be the
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set of α ∈ B′ such that α ̸= 0 and Aα ̸= {0}, as in Section 17.2. Remember
that A corresponds to the direct sum of Aα, α ∈ ΦB ∪ {0}, as before.

Let w ∈ B be given, and let CA(w) = CA({w}) be the centralizer of w in A,
which is the set of x ∈ A such that [w, x]A = 0. This corresponds to the direct
sum of Aα, where α ∈ ΦB ∪ {0} satisfies

α(w) = 0.(18.13.1)

Of course, this holds automatically when α = 0. If

α(w) ̸= 0(18.13.2)

for every α ∈ ΦB , then we get that

CA(w) = A0 = CA(B).(18.13.3)

This is related to the second part of Exercise 7 on p41 of [14].



Chapter 19

Root systems

19.1 Symmetries and reflections

Let V be a finite-dimensional vector space over the real numbers, and let α be
a nonzero element of V . A one-to-one linear mapping σ from V onto itself is
said to be a symmetry with vector α if it satisfies the following two conditions.
First,

σ(α) = −α.(19.1.1)

Second, the linear subspace

H = {v ∈ V : σ(v) = v}(19.1.2)

of V is a hyperplane, which is to say that it has codimension one in V . Let

Lα = {t α : t ∈ R}(19.1.3)

be the line in V passing through α. Note that

Lα +H = V, Lα ∩H = {0},(19.1.4)

so that Lα and H are complementary linear subspaces of V . It is easy to see
that σ is uniquely determined by Lα and H. One can also get a symmetry on
V from any line and complementary hyperplane in V , where the symmetry is
the same as multiplication by −1 on the line, and the identity mapping on the
hyperplane.

Let V ′ be the dual space of linear functionals on V , as a vector space over
R, as usual. In this situation, there is a unique λα ∈ V ′ such that

λα(α) = 2(19.1.5)

and

λα(v) = 0 for every v ∈ H.(19.1.6)

383
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Observe that
σ(v) = v − λα(v)α(19.1.7)

for every v ∈ V . Conversely, if α ∈ V and λα ∈ V ′ satisfy (19.1.5), then
(19.1.7) defines a symmetry on V with vector α, for which the kernel of λα is
the fixed-point set. These remarks correspond to the discussion on p24 of [24].

Suppose now that (v, w) is an inner product on V . Let σ be a symmetry on
V with vector α and fixed hyperplane H as in (19.1.2) again. Suppose that α
is orthogonal to H, so that

(v, α) = 0(19.1.8)

for every v ∈ H. Let us say that σ is a reflection on V with respect to (·, ·) in this
case, as on p42 of [14]. One can check that σ is an orthogonal transformation
on V with respect to (·, ·) under these conditions, which is to say that

(σ(v), σ(w)) = (v, w)(19.1.9)

for every v, w ∈ V .
Conversely, suppose that σ is a symmetry on V with vector α, and that σ is

an orthogonal transformation on V with respect to (·, ·). If v is an element of
the hyperplane H in (19.1.2), then

(v, α) = (σ(v), σ(α)) = −(v, α).(19.1.10)

This implies (19.1.8), so that σ is a reflection on V . This is related to some of
the remarks on p28 of [24].

Let α ∈ V , α ̸= 0, be given, and let

Hα = {v ∈ V : (v, α) = 0}(19.1.11)

be the hyperplane in V orthogonal to α. Put

µα(v) = 2 (v, α) (α, α)−1(19.1.12)

for every v ∈ V , which defines a linear functional on V . By construction,

µα(α) = 2,(19.1.13)

and (19.1.11) is the kernel of µα. The reflection associated to α on V is given
by

σ(v) = v − µα(v)α = v − 2 (v, α) (α, α)−1 α(19.1.14)

for every v ∈ V , as in (19.1.7). This corresponds to some of the remarks on p42
of [14], and p28 of [24].

19.2 Invariant inner products

Let V be a vector space over the real numbers of positive finite dimension,
and let G be a finite subgroup of the general linear group GL(V ) of invertible
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linear mappings on V . Under these conditions, it is well known that there is an
inner product (v, w) on V that is invariant under G, so that the elements of G
are orthogonal transformations on V with respect to (v, w). More precisely, if
(v, w)0 is any inner product on V , then one can verify that

(v, w) =
∑
g∈G

(g(v), g(w))0(19.2.1)

is an inner product on V that is invariant under the elements of G.

Let A be a nonempty subset of V , and let GA be the collection of one-to-one
linear mappings T from V onto itself such that

T (A) = A.(19.2.2)

Of course, GA is a subgroup of GL(V ). The mapping from T ∈ GA to the
restriction of T to A defines a group homomorphism from GA into the group of
one-to-one mappings from A onto itself. Suppose that the linear span of A in V
is equal to V . If T ∈ GA is equal to the identity mapping on A, then it follows
that T is the identity mapping on V . If A has only finitely many elements, then
GA has only finitely many elements too. This implies that there is an inner
product on V that is invariant under GA, as in the preceding paragraph.

Let α be a nonzero element of V , and let A be a finite subset of V whose
linear span in V is equal to V again. Under these conditions, there is at most
one symmetry σ on V with vector α that maps A onto itself, as in the lemma
on the top of p25 in [24]. To see this, let (v, w) be an inner product on V that
is invariant under GA, as in the preceding paragraph. Thus σ is an orthogonal
transformation on V with respect to (v, w), because σ ∈ GA, by hypothesis. It
follows that σ is the reflection on V associated to α with respect to (v, w), as
in the previous section.

Another version of this lemma is stated on p42 of [14], in terms of reflections.
In this version, V is equipped with an inner product (v, w)V , and A is a finite
subset of V whose linear span in V is equal to V again. Let σ be a symmetry on
V with vector α ∈ A, which is not necessarily a reflection on V with respect to
(v, w)V . Suppose that σ(A) = A, and that the reflection σα on V associated to
α with respect to (v, w)V maps A onto itself. Under these conditions, σ = σα.

This follows from the previous version, because σα is a symmetry on V with
vector α. Note however that (v, w)V is not necessarily invariant under GA. Of
course, any symmetry on V with vector α is the reflection associated to α with
respect to some inner product on V .

19.3 Defining root systems

Let V be a vector space over the real numbers of positive finite dimension. A
subset A of V is said to be a root system in V if it satisfies the following three
conditions, as in Definition 1 on p25 of [24]. First, A has only finitely many
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elements, the linear span of A in V is equal to V , and 0 ̸∈ A. Second, for each
α ∈ A, there is a symmetry σα on V with vector α such that

σα(A) = A.(19.3.1)

Note that σα is uniquely determined by these properties, as in the previous
section. Third, for every α, β ∈ A,

σα(β)− β is an integer multiple of α.(19.3.2)

The dimension of V may be called the rank of A, and the elements of A may
be called roots of V with respect to A.

If α ∈ A, then there is a unique linear functional λα on V such that λα(α) = 2
and λα = 0 on the hyperplane in V consisting of vectors fixed by σα, as in Section
19.1. Remember that

σα(v) = v − λα(v)α(19.3.3)

for every v ∈ V , as in (19.1.7). Using this, the third condition in the preceding
paragraph can be reformulated as saying that for every α, β ∈ A,

λα(β) ∈ Z.(19.3.4)

If α ∈ A, then we also have that

−α ∈ A,(19.3.5)

by (19.3.1) and the fact that sα(α) = −α.
A root system A in V is said to be reduced if for every α ∈ A, the only

elements of A that are proportional to α are α and −α, as in Definition 2 on
p25 of [24]. Otherwise, suppose that α ∈ A and t α ∈ A for some t ∈ R with
t ̸= ±1. Of course, t ̸= 0, because 0 ̸∈ A, and we may as well suppose that
|t| < 1, since otherwise we could interchange the roles of α and t α. Using
(19.3.4), we get that 2 t ∈ Z, because λα(α) = 2. This means that t = ±1/2.

In the definition of a root system on p42 of [14], one supposes that V is
already equipped with an inner product (v, w), and that the symmetries σα are
reflections with respect to this inner product. This means that

λα(v) = 2 (v, α) (α, α)−1(19.3.6)

for every α ∈ A and v ∈ V , as in Section 19.1. In this situation, (19.3.4) is the
same as saying that

2 (β, α) (α, α)−1 ∈ Z(19.3.7)

for every α, β ∈ A. The condition that the root system be reduced is also
included in the definition, as discussed further on p43 of [14]. If A is a root
system in V as before, then one can find a compatible inner product on V , as
in the next section.

Of course, we have seen properties like these in connection with Lie algebras,
in Chapter 17. This corresponds to the remarks following the theorem on p40 of
[14], and part (a) of Theorem 2 on p43 of [24]. This will be discussed further in
Section 22.1. Some classical examples of root systems will be discussed starting
in Section 20.10.
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19.4 The Weyl group

Let V be a vector space over the real numbers of positive finite dimension, and
let A be a root system in V . The Weyl group of A is defined to be the subgroup
W of GL(V ) generated by the symmetries σα, α ∈ A, as in Definition 3 on
p27 of [24]. Let GA be the subgroup of GL(V ) consisting of invertible linear
mappings T on V that map A onto itself, as in Section 19.2. Thus

W ⊆ GA,(19.4.1)

because σα ∈ GA for every α ∈ A, by definition of a root system. Remember
that GA has only finitely many elements in this situation, because A is a finite
subset of V that spans V .

More precisely, W is a normal subgroup of GA, as mentioned on p27 of [24].
To see this, let α ∈ A and T ∈ GA be given. It is easy to see that T ◦ σα ◦ T−1

is a symmetry on V with vector T (α). We also have that

(T ◦ σα ◦ T−1)(A) = A,(19.4.2)

because σα and T both map A onto itself. This implies that

T ◦ σα ◦ T−1 = σT (α),(19.4.3)

because T (α) ∈ A, as in the previous section. It follows that W is invariant
under conjugation by T , as desired. Note that (19.4.3) corresponds to the first
part of the lemma on p43 of [14], just after the definition of the Weyl group.

Let α ∈ A be given again, and let λα ∈ V ′ be as in the previous section, so
that σα can be expressed as in (19.3.3). If T ∈ GL(V ), then it follows that

(T ◦ σα ◦ T−1)(v) = v − λα(T
−1(v))T (α)(19.4.4)

for every v ∈ V . Suppose that T ∈ GA, and let λT (α) be the linear functional
on V corresponding to T (α) ∈ A in the same way. Thus

σT (α)(v) = v − λT (α)(v)T (α)(19.4.5)

for every v ∈ V , as before. This means that

λT (α)(v) = λα(T
−1(v))(19.4.6)

for every v ∈ V , because of (19.4.3).
Because the Weyl group W has only finitely many elements, one can find

an inner product on V that is invariant under W as in Section 19.2. This
corresponds to Proposition 1 on p27 of [24]. The choice of such an inner product
is sometimes included in the definition of a root system, as in [14], and mentioned
on p28 of [25].

Let (v, w) be an inner product on V that is invariant under W . If α ∈ A,
then λα ∈ V ′ can be expressed in terms of (·, ·) as in (19.3.6). Similarly, if
T ∈ GA, then T (α) ∈ A, and

λT (α)(v) = 2 (v, T (α)) (T (α), T (α))−1(19.4.7)
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for every v ∈ V . Combining this with (19.4.6), we get that

(v, T (α)) (T (α), T (α))−1 = (T−1(v), α) (α, α)−1(19.4.8)

for every v ∈ V . Equivalently, this means that

(T (u), T (α)) (T (α), T (α))−1 = (u, α) (α, α)−1(19.4.9)

for every u ∈ V . This corresponds to the second part of the lemma on p43 of
[14]. Note that this holds automatically when (·, ·) is invariant under GA.

19.5 Isomorphic root systems

Let V and Ṽ be vector spaces over the real numbers with the same positive
finite dimension, and let A and Ã be root systems in V and Ṽ , respectively. Let
us say that a one-to-one linear mapping T from V onto Ṽ is an isomorphism
between these root systems if

T (A) = Ã.(19.5.1)

In particular, an invertible linear mapping on V is an automorphism of the root
system A if it maps A onto itself, as on p27 of [24].

Let T : V → Ṽ be an isomorphism between the root systems A and Ã, and
let α ∈ A be given. If σα is the corresponding symmetry on V with vector α,
then it is easy to see that T ◦ σα ◦ T−1 is a symmetry on Ṽ with vector T (α).
Observe that

(T ◦ σα ◦ T−1)(Ã) = Ã,(19.5.2)

because of (19.5.1) and the fact that σα(A) = A. It follows that

T ◦ σα ◦ T−1 = σ̃T (α),(19.5.3)

where the right side is the symmetry on Ṽ corresponding to T (α) ∈ Ã as in
Section 19.3.

Of course, if τ is a one-to-one linear mapping from V onto itself, then

T ◦ τ ◦ T−1(19.5.4)

is a one-to-one linear mapping from Ṽ onto itself. More precisely,

τ 7→ T ◦ τ ◦ T−1(19.5.5)

defines a group isomorphism from GL(V ) onto GL(Ṽ ). This isomorphism sends

the Weyl group W of A onto the Weyl group W̃ of Ã, because of (19.5.3).
Let λα be the linear functional on V corresponding to σα as before, so that

σα can be expressed as in (19.3.3). Thus

(T ◦ σα ◦ T−1)(ṽ) = ṽ − λα(T
−1(ṽ))T (α)(19.5.6)
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for every ṽ ∈ Ṽ . Let λ̃T (α) be the linear functional on Ṽ that corresponds to

T (α) ∈ Ã in the same way, so that

σ̃T (α)(ṽ) = ṽ − λ̃T (α)(ṽ)T (α)(19.5.7)

for every ṽ ∈ Ṽ . It follows that

λ̃T (α)(ṽ) = λα(T
−1(ṽ))(19.5.8)

for every ṽ ∈ Ṽ , by (19.5.3). Equivalently,

λ̃T (α)(T (v)) = λα(v)(19.5.9)

for every v ∈ V .
Suppose that (·, ·)V and (·, ·)

Ṽ
are inner products on V and Ṽ that are

compatible with the root systems A and Ã, respectively, in the sense that σα
and σ̃

α̃
are reflections on V and Ṽ with respect to (·, ·)V and (·, ·)

Ṽ
for every

α ∈ A and α̃ ∈ Ã, respectively. Thus

λα(v) = 2 (v, α)V (α, α)−1
V(19.5.10)

for every α ∈ A and v ∈ V , as in (19.3.6), and similarly

λ̃
α̃
(ṽ) = 2 (ṽ, α̃)

Ṽ
(α̃, α̃)−1

Ṽ
(19.5.11)

for every α̃ ∈ Ã and ṽ ∈ Ṽ . In this case, (19.5.9) is the same as saying that

(T (v), T (α))
Ṽ
(T (α), T (α))−1

Ṽ
= (v, α)V (α, α)−1

V(19.5.12)

for every α ∈ A and v ∈ V . This is related to some of the remarks on p43 of
[14]. In particular, (19.5.12) holds automatically when

(T (u), T (v))
Ṽ
= (u, v)V(19.5.13)

for every u, v ∈ V .

19.6 Duality and symmetries

Let V be a vector space over the real numbers of positive finite dimension, and
let V ′ be the dual space of all linear functionals on V . Remember that V ′ has
the same dimension as V . If v ∈ V and µ ∈ V ′, then put

Lv(µ) = µ(v).(19.6.1)

This defines Lv as a linear functional on V ′, so that Lv is an element of the dual
space V ′′ = (V ′)′ of V ′. More precisely, v 7→ Lv is a one-to-one linear mapping
from V onto V ′′.
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If T is a linear mapping from V into itself and µ ∈ V ′, then

T ′(µ) = µ ◦ T(19.6.2)

defines a linear functional on V too. Equivalently,

(T ′(µ))(v) = µ(T (v))(19.6.3)

for every v ∈ V . This defines T ′ as a linear mapping from V ′ into itself, which
is the dual linear mapping associated to T . If T1, T2 are linear mappings from
V into itself, then

(T1 ◦ T2)′ = T ′
2 ◦ T ′

1,(19.6.4)

as linear mappings from V ′ into itself. Note that

(IV )
′ = IV ′ ,(19.6.5)

where IV and IV ′ are the identity mappings on V and V ′, respectively.
If T is a linear mapping from V into itself again, then T ′ is a linear mapping

from V ′ into itself, which leads to a dual mapping T ′′ = (T ′)′ from V ′′ into
itself. Thus, if L ∈ V ′′, then

T ′′(L) = L ◦ T ′,(19.6.6)

as a linear functional on V ′. This means that

(T ′′(L))(µ) = L(T ′(µ)) = L(µ ◦ T )(19.6.7)

for every µ ∈ V ′. If v ∈ V and Lv ∈ V ′′ is as in (19.6.1), then it follows that

(T ′′(Lv))(µ) = Lv(µ ◦ T ) = µ(T (v)) = LT (v)(µ)(19.6.8)

for every λ ∈ V ′. This means that

T ′′(Lv) = LT (v)(19.6.9)

for every v ∈ V .
Let z ∈ V and τ ∈ V ′ be given, so that

Tz,τ (v) = τ(v) z(19.6.10)

defines a linear mapping from V into itself. If µ ∈ V ′, then

(T ′
z,τ (µ))(v) = µ(Tz,τ (v)) = τ(v)µ(z) = τ(v)Lz(µ)(19.6.11)

for every v ∈ V . Equivalently, this means that

T ′
z,τ (µ) = Lz(µ) τ(19.6.12)

for every µ ∈ V ′.
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Let σ be a symmetry on V with vector α ∈ V . Thus there is a linear
functional λα on V such that λα(α) = 2 and σ(v) = v − λα(v)α for every
v ∈ V , as in Section 19.1. This is the same as saying that

σ = IV − Tα,λα
,(19.6.13)

where Tα,λα
is as in (19.6.10). The corresponding dual linear mapping is given

by
σ′(µ) = µ− Lα(µ)λα(19.6.14)

for every µ ∈ V ′, by (19.6.5) and (19.6.12). Note that

Lα(λα) = λα(α) = 2.(19.6.15)

It follows that σ′ is a symmetry on V ′ with vector λα, as in Section 19.1.
Alternatively, one can check more directly that

σ′(λα) = λα ◦ σ = −λα,(19.6.16)

because σ(α) = −α and the kernel of λα is the fixed-point set of σ. If µ ∈ V ′

satisfies µ(α) = 0, then one can verify that

σ′(µ) = µ ◦ σ = µ,(19.6.17)

because σ is equal to the identity on a hyperplane in V complementary to the
line passing through α.

19.7 Adjoints and reflections

Let V be a vector space over the real numbers of positive finite dimension again,
and suppose that (v, w) is an inner product on V . If T is a linear mapping from
V into itself, then there is a unique adjoint linear mapping T ∗ from V into itself
such that

(T (v), w) = (v, T ∗(w))(19.7.1)

for every v, w ∈ V , as before. Remember that

(T1 ◦ T2)∗ = T ∗
2 ◦ T ∗

1(19.7.2)

for all linear mappings T1 and T2 from V into itself, and that I∗V = IV . If T is
any linear mapping from V into itself, then (T ∗)∗ = T . We also have that T is
an orthogonal transformation on V with respect to (·, ·), in the sense that

(T (v), T (w)) = (v, w)(19.7.3)

for every v, w ∈ V , if and only if T is invertible on V , with T−1 = T ∗.
If u ∈ V , then

µu(v) = (v, u)(19.7.4)
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defines a linear functional on V , and u 7→ µu is a one-to-one linear mapping
from V onto V ′. If T is a linear mapping from V into itself, then it is easy to
see that

T ′(µu) = µT∗(u)(19.7.5)

for every u ∈ V . Let u, z ∈ V be given, and put

Tz,u(v) = (v, u) z(19.7.6)

for every v ∈ V . This defines a linear mapping from V into itself, which corre-
sponds to (19.6.10), with τ = µu. Observe that

(Tz,u(v), w) = (v, u) (z, w) = (v, Tu,z(w))(19.7.7)

for every v, w ∈ V , so that
(Tz,u)

∗ = Tu,z.(19.7.8)

Let α ∈ V with α ̸= 0 be given, and put

α̂ = 2α (α, α)−1.(19.7.9)

Thus
µ
α̂
(v) = (v, α̂) = 2 (v, α) (α, α)−1(19.7.10)

for every v ∈ V , in the notation of (19.7.4). Note that

µ
α̂
(α) = 2,(19.7.11)

and that
σα(v) = v − µ

α̂
(v)α = v − 2 (v, α) (α, α)−1 α(19.7.12)

is the reflection on V associated to α with respect to (·, ·), as in Section 19.1.
It is easy to see that

σ∗
α = σα,(19.7.13)

using (19.7.8). This also corresponds to the fact that σα is an orthogonal trans-
formation on V , and its own inverse.

Observe that σα may be considered as the reflection on V associated to α̂
with respect to (·, ·) as well, so that

σ
α̂
= σα.(19.7.14)

Indeed, σα only depends on the line in V passing through α. Put

(̂α̂) = 2 α̂ (α̂, α̂)−1,(19.7.15)

as in (19.7.9). Clearly

(α̂, α̂) = 4 (α, α) (α, α)−2 = 4 (α, α)−1,(19.7.16)

so that
(̂α̂) = 4α (α, α)−1 (4 (α, α)−1)−1 = α.(19.7.17)
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Using (19.7.12), we have that

σα(v) = v − µα(v) α̂ = v − µ
(̂α̂)

(v) α̂(19.7.18)

for every v ∈ V , which is another way to look at (19.7.14).

Let β ∈ V with β ̸= 0 be given, and put β̂ = 2β (β, β)−1, as in (19.7.9). If
T is an orthogonal transformation on V with respect to (·, ·), then

T (β̂) = 2T (β) (β, β)−1 = 2T (β) (T (β), T (β))−1 = T̂ (β),(19.7.19)

where T̂ (β) is defined as in (19.7.9) too.

19.8 Inverse roots

Let V be a vector space over the real numbers of positive finite dimension, and
let A be a root system in V . If α ∈ A, then there is a unique symmetry σα on V
with vector α that maps A onto itself, as in Section 19.3. Let λα be the linear
functional on V such that λα(α) = 2 and λα = 0 on the hyperplane of vectors
in V fixed by σα, so that

σα(v) = v − λα(v)α(19.8.1)

for every v ∈ V , as before. As on p25 of [24], λα may be called the inverse root
associated to α in the dual space V ′ of V . Let

A′ = {λα : α ∈ A}(19.8.2)

be the set of these inverse roots, which is a finite subset of V ′ that does not
contain 0.

Let (v, w) be an inner product on V that is invariant under the Weyl group
W of A, as in Section 19.4. Thus σα is the reflection on V associated to α with
respect to (v, w), as in Section 19.1. In this situation,

λα(v) = µ
α̂
(v) = (v, α̂) = 2 (v, α) (α, α)−1(19.8.3)

for every v ∈ V , using the notation in (19.7.4) and (19.7.9). Put

Â = {α̂ : α ∈ A} = {2α (α, α)−1 : α ∈ A},(19.8.4)

which is a finite subset of V that does not contain 0. It is easy to see that the
linear span of (19.8.4) in V is equal to V , because of the corresponding property
of A. Note that (19.8.4) corresponds to (19.8.2) under the isomorphism u 7→ µu
from V onto V ′ associated to the inner product. It follows that the linear span
of A′ in V ′ is equal to V ′.

If β ∈ V , β ̸= 0, and β̂ is as in (19.7.9), then

σα(β̂) = ̂(σα(β)),(19.8.5)
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where ̂(σα(β)) is defined as in (19.7.9) too. This follows from (19.7.19), because
σα is an orthogonal transformation on V with respect to (·, ·). This implies that

σα(Â) = Â,(19.8.6)

because σα(A) = A. This is the same as saying that

σ
α̂
(Â) = Â,(19.8.7)

because σ
α̂
= σα, as in (19.7.14). Using (19.8.6), we get that

σ′
α(A

′) = A′,(19.8.8)

where σ′
α is the dual linear mapping on V ′ associated to σα. This also uses

the correspondence between (19.8.2) and (19.8.4) mentioned earlier, the cor-
respondence between adjoints and dual linear mappings in (19.7.5), and the
self-adjointness of σα, as in (19.7.13). Remember that σ′

α is a symmetry on V ′

with vector λα, as in Section 19.6.
If µ ∈ V ′, then

σ′
α(µ) = µ− Lα(µ)λα = µ− µ(α)λα,(19.8.9)

as in (19.6.1) and (19.6.14). Let β ∈ A be given, and let λβ be the corresponding
element of (19.8.2). We would like to check that

σ′
α(λβ)− λβ is an integer multiple of λα.(19.8.10)

This is the same as saying that

λβ(α) ∈ Z,(19.8.11)

by (19.8.9). This condition holds because A is a root system in V , as in Section
19.3. This shows that A′ is a root system in V ′, as in Proposition 2 on p28 of
[24]. This is called the inverse system or dual system of A in V ′.

Alternatively, let us check that

σ
α̂
(β̂)− β̂ is an integer multiple of α̂.(19.8.12)

This means that
(α, β̂) ∈ Z,(19.8.13)

by (19.7.14) and (19.7.18). This condition holds because A is a root system in

V , as before. This shows that Â is a root system in V , which may be called the
inverse system or dual system of A in V with respect to (·, ·). This corresponds
to the formulation on p43 of [14].

If T is an invertible linear mapping on V , then the dual linear mapping T ′

is invertible on V ′, with
(T ′)−1 = (T−1)′.(19.8.14)
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It is well known and easy to see that the mapping from T to (19.8.14) defines
a group isomorphism from GL(V ) onto CL(V ′). This isomorphism takes the
Weyl group of A onto the Weyl group of A′.

Similarly, if T is an invertible linear mapping on V , then the adjoint T ∗ of
T with respect to (·, ·) is invertible on V as well, with

(T ∗)−1 = (T−1)∗.(19.8.15)

The mapping from T to (19.8.15) defines a group automorphism on GL(V ). The

Weyl group of Â is the same as the Weyl group of A, because it is generated by
the same reflections on V .

19.9 Angles between roots

Let V be a vector space over the real numbers of positive finite dimension, and
let A be a root system in V . If α ∈ A, then let σα be the unique symmetry on
V with vector α that maps A onto itself, as in Section 19.3. Also let λα be the
linear functional on V such that λα(α) = 2 and λα = 0 on the hyperplane of
vectors in V fixed by σα, as before. If β ∈ A too, then put

n(β, α) = λα(β),(19.9.1)

as on p29 of [24]. Remember that n(β, α) ∈ Z, as in Section 19.3.
Let (v, w) be an inner product on V that is invariant under the Weyl group

of A, as in Section 19.4. If v ∈ V , then put

∥v∥ = (v, v)1/2,(19.9.2)

which is the norm on V associated to (·, ·). Note that

n(β, α) = 2 (β, α) (α, α)−1(19.9.3)

for every α, β ∈ A, as in Section 19.3. Of course,

(β, α) = ∥α∥ ∥β∥ cos θ,(19.9.4)

where θ ∈ [0, π] is the angle between α and β with respect to (·, ·). Thus

n(β, α) = 2 ∥α∥−1 ∥β∥ cos θ.(19.9.5)

It follows that

n(β, α)n(α, β) = 4 cos2 θ(19.9.6)

for every α, β ∈ A. The left side is an integer, and the right side is a nonnegative
real number less than or equal to 4. This means that 4 cos2 θ can only take the
values 0, 1, 2, 3, 4. Of course,

4 cos2 θ = 4(19.9.7)
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exactly when θ = 0 or π, which means that α and β are proportional in V . Let
us suppose now that α and β are not proportional in V , so that 0 < θ < π.

Similarly,
4 cos2 θ = 0(19.9.8)

exactly when θ = π/2, in which case

n(β, α) = n(α, β) = 0.(19.9.9)

Otherwise, if θ ̸= π/2, then cos θ ̸= 0, (α, β) ̸= 0, and

n(α, β)/n(β, α) = ∥α∥2/∥β∥2.(19.9.10)

Remember that cos2 θ + sin2 θ = 1. Note that

4 cos2 θ = 2(19.9.11)

if and only if θ = π/4 or 3π/4. If θ = π/4, then we either have that

n(α, β) = 1, n(β, α) = 2, and ∥β∥ =
√
2 ∥α∥,(19.9.12)

or the analogous conditions with α and β interchanged. If θ = 3π/4, then we
either have that

n(α, β) = −1, n(β, α) = −2, and ∥β∥ =
√
2 ∥α∥,(19.9.13)

or the analogous conditions with α and β interchanged.
We also have that

4 cos2 θ = 1(19.9.14)

if and only of θ = π/3 or 2π/3. More precisely,

n(α, β) = n(β, α) = 1(19.9.15)

when θ = π/3, and
n(α, β) = n(β, α) = −1(19.9.16)

when θ = 2π/3. In both cases,

∥α∥ = ∥β∥.(19.9.17)

Similarly,
4 cos2 θ = 3(19.9.18)

if and only if θ = π/6 or 5π/6. If θ = π/6, then we either have that

n(α, β) = 1, n(β, α) = 3, and ∥β∥ =
√
3 ∥α∥,(19.9.19)

or the analogous conditions with α and β interchanged. If θ = 5π/6, then we
either have that

n(α, β) = −1, n(β, α) = −3, and ∥β∥ =
√
3 ∥α∥,(19.9.20)
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or the analogous conditions with α and β interchanged. This corresponds to
remarks on p44 of [14], and p29 of [24].

If α and β are not proportional in V and

n(α, β) > 0,(19.9.21)

then
α− β ∈ A,(19.9.22)

as in Proposition 3 on p29 of [24]. Note that (19.9.21) is the same as saying
that θ < π/2, which is symmetric in α and β. In this situation, we have that
n(α, β) = 1 or n(β, α) = 1, as before. Suppose that n(β, α) = 1, so that
λα(β) = 1, as in (19.9.1). In this case,

α− β = −(β − λα(β)α) = −σα(β),(19.9.23)

by the usual expression for σα in terms of λα. This implies (19.9.22), because
σα(β) ∈ A, and A is symmetric about 0 in V . If n(α, β) = 1, then α − β =
σβ(α) ∈ A.

Of course, (19.9.21) is equivalent to

(α, β) > 0,(19.9.24)

by (19.9.3). The lemma on p45 of [14] is stated in terms of (19.9.24), where it
is also mentioned that

α+ β ∈ A(19.9.25)

when α and β are not proportional and

(α, β) < 0.(19.9.26)

This follows from the previous statement, applied to β in place of −β.

19.10 A criterion for linear independence

Let V be a vector space over the real numbers, and let (v, w) be an inner product
on V . Also let τ be a linear functional on V , and let B be a nonempty subset
of V . Suppose that

τ(β) > 0(19.10.1)

for every β ∈ B, and that
(β, γ) ≤ 0(19.10.2)

for every β, γ ∈ B with β ≠ γ. Under these conditions, the elements of B are
linearly independent in V . This corresponds to Lemma 4 on p31 of [24], and
Step (3) on p48 of [14].

To see this, observe that a linear relation between elements of B can be
expressed as ∑

β∈B1

bβ β =
∑
γ∈B2

cγ γ,(19.10.3)
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where B1 and B2 are nonempty disjoint finite subsets of B, and the coefficients
bβ and cγ are nonnegative real numbers. Let v ∈ V be the vector determined
by (19.10.3), so that

(v, v) =
∑
β∈B1

∑
γ∈B2

bβ cγ(β, γ).(19.10.4)

It follows that (v, v) ≤ 0, by (19.10.2). Of course, this means that v = 0.
Using this, we get that

0 = τ(v) =
∑
β∈B1

bβ τ(β).(19.10.5)

This implies that bβ = 0 for every β ∈ B1, because of (19.10.1). Similarly,
cγ = 0 for every γ ∈ B2, as desired.

19.11 Bases for root systems

Let V be a vector space over the real numbers of positive finite dimension, and
let A be a root system in V . A subset B of A is said to be a base for A if it
satisfies the following two conditions. The first condition is that B is a basis for
V as a vector space over R. The second condition is that every α ∈ A can be
expressed as

α =
∑
β∈B

mβ β,(19.11.1)

where mβ ∈ Z for every β ∈ B, and either mβ ≥ 0 for every β ∈ B, or mβ ≤ 0
for every β ∈ B. This is Definition 4 on p30 of [24], which corresponds to the
definition of a base on p47 of [14]. A base for a root system may also be called
a simple root system or a fundamental root system, as mentioned on p30 of [24].
Similarly, the elements of the base may be called simple roots.

Of course, the second condition in the preceding paragraph implies in par-
ticular that A is contained in the linear span of B in V . Remember that the
linear span of A in V is equal to V , by definition of a root system. Thus the
second condition implies that the linear span of B in V is equal to V too.

Theorem 1 on p30 of [24] states that bases exist, which corresponds to the
theorem at the top of p48 of [14]. More precisely, if τ is a linear functional on
V , then put

A+
τ = {α ∈ A : τ(α) > 0}.(19.11.2)

Let us choose τ ∈ V ′ so that for every α ∈ A,

τ(α) ̸= 0.(19.11.3)

One can find such a τ ∈ V ′ as in Section 18.12. This implies that

A = A+
τ ∪ (−A+

τ ).(19.11.4)
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Let us say that α ∈ A+
τ is decomposable if it can be expressed as the sum of two

elements of A+
τ , and indecomposable otherwise. The first part of Proposition 4

on p30 of [24] states that

Bτ = {α ∈ A+
τ : α is indecomposable}(19.11.5)

is a base for A. This corresponds to the first part of the second theorem on p48
of [14].

The first step in the proof is Lemma 2 on p30 of [24], which corresponds to
Step (1) on p48 of [14]. This states that every element of A+

τ can be expressed
as a linear combination of elements of Bτ , with coefficients that are nonnegative
integers. Otherwise, there would be an α ∈ A+

τ that does not have this property,
and for which τ(α) is as small as possible. In particular, α ̸∈ Bτ , so that α is
decomposable. Thus there are α1, α2 ∈ A+

τ whose sum is equal to α. This
implies that

τ(α) = τ(α1) + τ(α2),(19.11.6)

and hence
τ(α1), τ(α2) < τ(α),(19.11.7)

because τ(α1), τ(α2) > 0. It follows that α1 and α2 can be expressed as linear
combinations of elements of Bτ with coefficients that are nonnegative integers,
by the minimality of τ(α). This means that α has the same property, which is
a contradiction.

Let (v, w) be an inner product on V that is invariant under the Weyl group
of A, as in Section 19.4. If β1 and β2 are distinct elements of Bτ , then

(β1, β2) ≤ 0.(19.11.8)

This corresponds to Lemma 3 on p30 of [24], and Step (2) on p48 of [14]. Suppose
for the sake of a contradiction that

(β1, β2) > 0.(19.11.9)

If β1 and β2 are proportional in V , then the proportionality constant is positive,
by (19.11.9). This implies that one of β1 and β2 is equal to 2 times the other, as
in Section 19.3, because β1 ̸= β2, by hypothesis. However, this would contradict
the fact that the elements of Bτ are indecomposable. Otherwise, if β1 and β2
are not proportional in V , then γ = β1 − β2 ∈ A, as in Section 19.9. If γ ∈ A+

τ ,
then β1 = β2 + γ is decomposable, contradicting the hypothesis that β1 ∈ Bτ .
Similarly, if −γ ∈ A+

τ , then β2 = β1 + (−γ) is decomposable, contradicting the
hypothesis that β2 ∈ Bτ .

Using (19.11.8) and the fact that Bτ ⊆ A+
τ , by construction, we get that

the elements of Bτ are linearly independent in V , as in the previous section.
Remember that the elements of A+

τ can be expressed as linear combinations
of elements of Bτ , with coefficients that are nonnegative integers. Thus the
elements of −A+

τ can be expressed as linear combinations of elements of Bτ
with coefficients that are integers less than or equal to 0. This shows that Bτ
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satisfies the second condition in the definition of a base for A. In particular, the
linear span of Bτ in V is equal to V , as before. It follows that Bτ is a basis for
V as a vector space over R. This implies that Bτ is a base for A, as on p31 of
[24], and Step (4) on p48 of [14].

Conversely, suppose that B is any base for A. Let τ be a linear functional
on V such that

τ(β) > 0(19.11.10)

for every β ∈ B. It is easy to find such a τ ∈ V ′, because B is a basis for V .
Let A+ be the set of α ∈ A that can be expressed as a linear combination of
elements of B with coefficients that are nonnegative integers. Observe that

A+ ⊆ A+
τ ,(19.11.11)

where A+
τ is as in (19.11.2). This implies that

−A+ ⊆ −A+
τ .(19.11.12)

It follows that
A+ = A+

τ ,(19.11.13)

because A = A+ ∪ (−A+), by hypothesis. We also get that (19.11.3) holds, so
that the remarks in the previous paragraphs hold for τ . Using (19.11.13), we
obtain that the elements of B are indecomposable in A+

τ , so that B ⊆ Bτ . This
implies that

B = Bτ ,(19.11.14)

because B and Bτ have the same number of elements, which is the dimension
of V . This corresponds to the second part of Proposition 4 on p30 of [24], and
the second part of the second theorem on p48 of [14].

If β1 and β2 are distinct elements of B, then it is easy to see that their
difference is not a root, using the second condition in the definition of a base for
A. We also have that β1 and β2 are not proportional in V , because B is a basis
for V . This implies that (19.11.8) holds, as in Section 19.9. This corresponds
to the lemma on p47 of [14]. This could also be obtained from (19.11.14) and
the previous proof, but this argument is more direct.

19.12 Positive roots

Let V be a vector space over the real numbers of positive finite dimension again,
and let A be a root system in V . Also let B be a base for A, and let A+ be the
set of α ∈ A such that α can be expressed as a linear combination of elements
of B with coefficients that are nonnegative integers, as in the previous section.
The elements of A+ are called positive roots with respect to B, as on p31 of
[24], and p47 of [14].

Let τ be the linear functional on V such that

τ(β) = 1(19.12.1)
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for every β ∈ B. If γ ∈ A+, then

τ(γ) ∈ Z+.(19.12.2)

Let (v, w) be an inner product on V that is invariant under the Weyl group
of A, as in Section 19.4. If γ ∈ A+, then we would like to check that there is a
β ∈ B such that

(β, γ) > 0.(19.12.3)

Suppose for the sake of a contradiction that (β, γ) ≤ 0 for every β ∈ B. Re-
member that (β1, β2) ≤ 0 for all β1, β2 ∈ B with β1 ̸= β2, as in the previous
section. Under these conditions, we get that B ∪ {γ} is linearly independent in
V , as in Section 19.10, which is a contradiction.

Let γ ∈ A+ be given, and put r = τ(γ) ∈ Z+. Proposition 5 on p32 of [24]
states that γ can be expressed as

γ =

r∑
j=1

αj ,(19.12.4)

where αj ∈ B for each j = 1, . . . , r, and

l∑
j=1

αj ∈ A(19.12.5)

for every l = 1, . . . , r. This corresponds to the corollary to Lemma A on p50 of
[14]. If r = 1, then γ ∈ B, and this is trivial. Otherwise, we can use induction
on r, as follows.

As before, there is a β ∈ B such that (19.12.3) holds. If β and γ are
proportional in V , then one can check that either γ = β or γ = 2β, using
remarks in Section 19.3. The statement in the preceding paragraph obviously
holds in both cases, and so we suppose now that β and γ are not proportional
in V . This implies that

γ − β ∈ A,(19.12.6)

as in Section 19.9.
If γ − β ∈ −A+, so that β − γ ∈ A+, then β = γ + (β − γ) would be the

sum of two elements of A+. This is not possible, because β ∈ B. Otherwise,
γ − β ∈ A+, and of course

τ(γ − β) = τ(γ)− τ(β) = r − 1.(19.12.7)

This means that the induction hypothesis can be applied to γ − β. Thus the
desired statement for γ can be obtained from the analogous statement for γ−β,
with αr = β.

Suppose now that A is reduced, as in Section 19.3. Let α ∈ B be given, and
let σα be the symmetry on V with vector α that maps A onto itself. Under
these conditions,

σα(A
+ \ {α}) = A+ \ {α},(19.12.8)
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as in Proposition 6 on p32 of [24], and Lemma B on p50 of [14]. To see this, it
suffices to verify that

σα(A
+ \ {α}) ⊆ A+ \ {α},(19.12.9)

because σα is its own inverse on V .
Let γ ∈ A+ \ {α} be given. Thus γ can be expressed as

γ =
∑
β∈B

mβ β,(19.12.10)

where mβ is a nonnegative integer for each β ∈ B, because γ ∈ A+. Observe
that γ is not proportional to α in this situation, because γ ̸= α by hypothesis,
and A is reduced. This means that there is a β ∈ B such that β ̸= α and
mβ ̸= 0.

Remember that σα(γ) is equal to γ minus a multiple of α. If we express σα(γ)
as a linear combination of the basis vectors in B, we get that the coefficient of
β in the expression for σα(γ) is equal to mβ too. This implies that σα(γ) ∈ A+,
because σα(γ) ∈ A,mβ > 0, and B is a base for A. We also have that σα(γ) ̸= α,
because mβ ̸= 0, as desired.

Put

ρ =
1

2

∑
γ∈A+

γ,(19.12.11)

which is an element of V . Let us check that

σα(ρ) = ρ− α,(19.12.12)

as in the corollary on p32 of [24], and the corollary to Lemma B on p50 of [14].
Put

ρα =
1

2

∑
γ∈A+\{α}

γ,(19.12.13)

which is interpreted as being 0 when A+ = {α}. Using (19.12.8), we get that
σα(ρα) = ρα. Note that ρ = ρα + α/2, by construction. We also have that
σα(α) = −α. Thus

σα(ρ) = σα(ρα) + σα(α)/2 = ρα − α/2 = ρ− α,(19.12.14)

as desired.

19.13 Bases and duality

Let V be a vector space over the real numbers of positive finite dimension, and
let A be a root system in V . If α ∈ A, then we let σα be the symmetry on V with
vector α that maps A onto itself, as usual. Let λα ∈ V ′ be the corresponding
linear functional on V , so that λα(α) = 2 and λα = 0 on the hyperplane of
vectors in V fixed by σα. Remember that

A′ = {λα : α ∈ A}(19.13.1)
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is a root system in the dual space V ′, as in Section 19.8.
If α ∈ A and 2α ∈ A, then

σ2α = σα,(19.13.2)

because σα may also be considered as a symmetry on V with vector 2α. In
particular, this means that λα and λ2α have the same kernel in V . One can
check that

λ2α = λα/2,(19.13.3)

using the condition that λ2α(2α) = 2.
Let B be a base for A, and put

B1 = {β ∈ B : 2β ̸∈ A},(19.13.4)

B2 = {β ∈ B : 2β ∈ A}.(19.13.5)

Of course, B2 = ∅ when A is reduced. We would like to show that

{λβ : β ∈ B1} ∪ {λβ/2 : β ∈ B2}(19.13.6)

is a base for A′. This corresponds to Proposition 7 on p32 and the remark on
p33 of [24]. Note that (19.13.6) is contained in A′, by (19.13.3).

Let (v, w) be an inner product on V that is invariant under the Weyl group
of A, as in Section 19.4. Using (·, ·), we get an isomorphism between V and V ′

in the usual way, as in Section 19.7. If α ∈ V and α ̸= 0, then put

α̂ = 2α (α, α)−1,(19.13.7)

as before. Clearly

(̂2α) = α̂/2(19.13.8)

in this case.
If α ∈ A, then we have seen that α̂ corresponds to λα under the isomorphism

between V and V ′ associated to (·, ·). Thus

Â = {α̂ : α ∈ A}(19.13.9)

corresponds to A′ under this isomorphism, as before. We also have that Â is a
root system in V , as in Section 19.8.

We would like to show that

{β̂ : β ∈ B1} ∪ {β̂/2 : β ∈ B2}(19.13.10)

is a base for Â, as in [24]. This corresponds to Exercise 1 on p54 of [14], in the

reduced case. Observe that (19.13.10) is contained in Â, because of (19.13.8). It
will follow that (19.13.6) is a base for A′, because of the isomorphism between
V and V ′ associated to (·, ·). It is easy to see that (19.13.10) is a basis for V ,
because B is a basis for V .
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Let A+ be the set of α ∈ A that can be expressed as a linear combination
of elements of B with coefficients that are nonnegative integers, as before. Also
let τ be a linear functional on V such that τ(β) > 0 for every β ∈ B. If α ∈ A+,
then τ(α) > 0, and hence

τ(α̂) > 0.(19.13.11)

Similarly, if α ∈ −A+, then τ(α) < 0, so that

τ(α̂) < 0.(19.13.12)

In particular, τ is nonzero at every element of Â.
Let (Â)+τ be the set of elements of Â on which τ is positive, as in Section

19.11. Equivalently,
(Â)+τ = {α̂ : α ∈ A+},(19.13.13)

as in the preceding paragraph. Let us say that an element of (Â)+τ is decompos-

able if it can be expressed as the sum of two elements of (Â)+τ , and indecom-
posable otherwise, as in Section 19.11. The set of indecomposable elements of
(Â)+τ is a base for Â, as before. Note that (19.13.10) is contained in (Â)+τ .

It suffices to show that (19.13.10) is the same as the set of indecomposable

elements of (Â)+τ . If an element of (19.13.10) is decomposable as an element

of (Â)+τ , then it could be expressed as the sum of two proportional elements

of (Â)+τ . One can check that this is not possible, because of the way that B1

and B2 are defined. Thus (19.13.10) is contained in the set of indecomposable

elements of (Â)+τ . It follows that these two sets are the same, because they have
the same number of elements, which is the dimension of V .

The argument in [24] considers the associated convex cones in V . More
precisely, let C be the set of vectors in V that can be expressed as linear com-
binations of elements of B with coefficients that are nonnegative real numbers.
This is the same as the closed convex cone in V generated by A+. This is
also the same as the closed convex cone in V generated by (Â)+τ , by (19.13.13).
The extremal rays in C correspond exactly to half-lines through elements of
B. Similarly, the extremal rays in C correspond to half-lines through the in-
decomposable elements of (Â)+τ . This means that these collections of half-lines

in V are the same. It follows that the indecomposable elements of (Â)+τ are
all proportional to elements of B. One can use this to check that the set of
indecomposable elements of (Â)+τ is the same as (19.13.10), as desired.

19.14 Bases and the Weyl group

Let V be a vector space over the real numbers of positive finite dimension, and
let A be a reduced root system in V . Also let σα be the symmetry on V with
vector α ∈ A that maps A onto itself, as usual. Thus the Weyl group W of A
is the subgroup of GL(V ) generated by σα, α ∈ A. Let B be a base for A, and
let WB be the subgroup of W generated by σβ , β ∈ B. It is well known that

WB =W,(19.14.1)
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as in Theorem 2 on p33 of [24], and the theorem on p51 of [14].
To show this, we first consider some other properties of WB , as in [14, 24].

Let τ be a linear functional on V . If σ ∈ W , then let σ′ be the corresponding
dual linear mapping on the dual space V ′ of V , so that

σ′(τ) = τ ◦ σ.(19.14.2)

We would like to find a σ ∈WB such that

(σ′(τ))(β) = τ(σ(β)) ≥ 0(19.14.3)

for every β ∈ B. This corresponds to part (a) of Theorem 2 on p33 of [24], as
mentioned in its proof. Part (a) of the theorem on p51 of [14] is very similar,
but formulated a bit differently. See also Exercise 14 on p55 of [14].

Let A+ be the set of α ∈ A that can be expressed as a linear combination
of elements of B with coefficients that are nonnegative integers, as usual. Also
let ρ be the element of V that is one-half the sum of the elements of A+. We
can choose σ ∈WB such that

(σ′(τ))(ρ) = τ(σ(ρ))(19.14.4)

is maximal in R. If β ∈ B, then σ ◦ σβ ∈WB , so that

(σ′(τ))(ρ) ≥ ((σ ◦ σβ)′(τ))(ρ).(19.14.5)

Of course,
((σ ◦ σβ)′(τ))(ρ) = τ(σ(σβ(ρ))).(19.14.6)

Under these conditions, we have that

σβ(ρ) = ρ− β,(19.14.7)

as in (19.12.12). Thus

((σ ◦ σβ)′(τ))(ρ) = τ(σ(ρ− β)) = (σ′(τ))(ρ− β).(19.14.8)

It follows that
(σ′(τ))(ρ) ≥ (σ′(τ))(ρ− β),(19.14.9)

by (19.14.5). This implies (19.14.3), as desired.

If B̃ is another base for A, then there is a σ ∈WB such that

σ(B) = B̃(19.14.10)

This corresponds to part (b) of Theorem 2 on p33 of [24], and part (b) of the
theorem on p51 of [14], as mentioned in their proofs again. To see this, let τ̃ be
a linear functional on V such that

τ̃(β̃) > 0(19.14.11)
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for every β̃ ∈ B̃, which is possible because B̃ is a basis for V . As in the previous
paragraphs, there is a σ ∈WB such that

(σ′(τ̃))(β) ≥ 0(19.14.12)

for every β ∈ B. Put
τ = σ′(τ̃) = τ̃ ◦ σ ∈ V ′,(19.14.13)

so that
τ(β) ≥ 0(19.14.14)

for every β ∈ B.
If α ∈ A can be expressed as a linear combination of elements of B̃ with

coefficients that are nonnegative integers, then τ̃(α) > 0, as usual. Otherwise,
α̃ < 0, so that τ̃(α) ̸= 0 for every α ∈ A. This implies that

τ(α) = τ̃(σ(α)) ̸= 0(19.14.15)

for every α ∈ A, because σ(A) = A. It follows that τ(β) > 0 for every β ∈ B,
because of (19.14.14).

Let A+
τ and A+

τ̃
be the collections of α ∈ A such that

τ̃(σ(α)) = τ(α) > 0(19.14.16)

and τ̃(α) > 0, respectively. It is easy to see that

σ(A+
τ ) = A+

τ̃
,(19.14.17)

because σ(A) = A. The elements of B and B̃ may be characterized as the
indecomposable elements of A+

τ and A+

τ̃
, respectively, as in Section 19.11. Thus

(19.14.10) follows from (19.14.17), as desired.
If γ ∈ A, then there is a σ ∈WB such that

σ(γ) ∈ B.(19.14.18)

This corresponds to part (c) of Theorem 2 on p33 of [24], and part (c) of the
theorem on p51 of [14], as mentioned in their proofs. In this argument, it will
be convenient to let

V ′
a = {λ ∈ V ′ : λ(a) = 0}(19.14.19)

be the hyperplane in V ′ dual to a nonzero element a of V . If b is another nonzero
element of V , then V ′

a = V ′
b exactly when a and b are proportional in V . In

particular, if α ∈ A and α ̸= ±γ, then

V ′
α ̸= V ′

γ ,(19.14.20)

because A is reduced, by hypothesis.
Thus, if α ∈ A and α ̸= ±γ, then

V ′
α ∩ V ′

γ(19.14.21)
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is a hyperplane in V ′
γ . The union of (19.14.21) over α ∈ A with α ̸= ±γ is not

all of V ′
γ , as in Section 18.12. This implies that there is a τ0 ∈ V ′ such that

τ0(γ) = 0 and τ0(α) ̸= 0 for every α ∈ A with α ̸= ±γ. Of course, there is also
a linear functional on V that is positive on γ. By adding a sufficiently small
multiple of such a linear functional on V to τ0, we can get τ ∈ V ′ such that

τ(γ) > 0(19.14.22)

and

|τ(α)| > τ(γ)(19.14.23)

for every α ∈ A with α ̸= ±γ.
In particular, τ(α) ̸= 0 for every α ∈ A. Thus we can get a base Bτ for A

using τ as in Section 19.11. One can check that

γ ∈ Bτ(19.14.24)

in this situation, which is to say that γ is indecomposable as an element of the
set A+

τ of α ∈ A with τ(α) > 0. As in (19.14.10), there is an element ofWB that
maps B onto Bτ . Using this, we can get (19.14.18) from (19.14.24), as desired.

Let us now use (19.14.18) to obtain (19.14.1), as in [14, 24]. If γ ∈ A, then
we would like to show that

σγ ∈WB .(19.14.25)

Let σ be an element of WB such that σ(γ) ∈ B, which implies that σσ(γ) ∈WB .
It is easy to see that

σ ◦ σγ ◦ σ−1(19.14.26)

is a symmetry on V with vector σ(γ), because σγ is a symmetry on V with vector
γ. We also have that (19.14.26) maps A onto itself, because σ(A) = σγ(A) = A.
This implies that (19.14.26) is equal to σσ(γ). Equivalently, this means that

σγ = σ−1 ◦ σσ(γ) ◦ σ.(19.14.27)

It follows that (19.14.25) holds, as desired, because σ, σσ(γ) ∈WB .

19.15 Weyl chambers

Let V be a vector space over the real numbers of positive finite dimension n, and
let A be a root system in V . Let us say that a linear functional τ on V is regular
with respect to A if for every α ∈ A, τ(α) ̸= 0. This corresponds to terminology
on p48 of [14], although in [14] an inner product on V is used, so that the dual
space V ′ of V can be identified with V . The set of linear functionals on V that
are regular with respect to A is the same as

V ′ \
( ∪
α∈A

V ′
α

)
,(19.15.1)
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where V ′
α is the hyperplane in V ′ dual to α ∈ A, as in (19.14.19). Of course, V ′

is isomorphic to Rn, as a vector space over R. This leads to a natural topology
on V ′, corresponding to the standard topology on Rn. This topology does not
depend on the particular isomorphism with Rn, because linear mappings on Rn

are continuous with respect to the standard topology. Note that (19.15.1) is an
open set with respect to this topology. Remember that (19.15.1) is nonempty,
as in Section 18.12.

Let B be a base for A, and let AB,+ be the set of α ∈ A that can be expressed
as a linear combination of elements of B with coefficients that are nonnegative
integers. Thus

A = AB,+ ∪ (−AB,+),(19.15.2)

by the definition of a base. If τ ∈ V ′ satisfies

τ(β) > 0 for every β ∈ B,(19.15.3)

then
τ(α) > 0 for every α ∈ AB,+,(19.15.4)

as before. The converse holds trivially, because B ⊆ AB,+. Observe that τ is
regular with respect to A when (19.15.4) holds, because of (19.15.2). The set of
τ ∈ V ′ that satisfy (19.15.3) is called the Weyl chamber associated to B, as in
Remark 2 on p34 of [24]. This corresponds to the fundamental Weyl chamber
relative to B defined on p49 of [14], using an inner product on V , as before.

Let τ be a linear functional on V that is regular with respect to A, and let
A+
τ be the set of α ∈ A such that τ(α) > 0, as in Section 19.11. If τ satisfies

(19.15.3) and hence (19.15.4), then AB,+ ⊆ A+
τ , which implies that

AB,+ = A+
τ ,(19.15.5)

because of (19.15.2), as in Section 19.11. Conversely, (19.15.5) implies (19.15.4),
and thus (19.15.3). Let Bτ be the set of indecomposable elements of A+

τ , which
is a base for A, as in Section 19.11. If τ satisfies (19.15.3), then B = Bτ , as
before. Conversely, if B = Bτ , then B ⊆ A+

τ , which means that (19.15.3) holds.
This shows that the Weyl chamber associated to B consists exactly of the linear
functionals τ on V that are regular with respect to A and satisfy B = Bτ . In
particular, if τ is any linear functional on V that is regular with respect to A,
then τ is an element of the Weyl chamber associated to Bτ .

It is easy to see that the Weyl chamber associated toB is an open convex cone
in V , so that it is connected in particular. If B̃ is another base for A, B̃ ̸= B,
then the Weyl chambers associated to B and B̃ are disjoint, by the remarks in
the preceding paragraph. The union of the Weyl chambers associated to bases
for A is equal to the set of linear functionals on V that are regular with respect
to A, as before. It follows that the Weyl chambers associated to bases for A are
the same as the connected components of (19.15.1).

If B̃ is another base for A and

B̃ ⊆ AB,+,(19.15.6)



19.15. WEYL CHAMBERS 409

then
B̃ = B.(19.15.7)

Indeed, if τ ∈ V ′ satisfies (19.15.3) and hence (19.15.4), then τ(β̃) > 0 for every

β̃ ∈ B̃. This implies that B̃ = Bτ , as before, so that (19.15.7) holds, because
B = Bτ too.



Chapter 20

Root systems, 2

20.1 Products in the Weyl group

Let V be a vector space over the real numbers of positive finite dimension, and
let A be a reduced root system in V . If α ∈ A, then we let σα be the symmetry
on V with vector α that maps A onto itself, as before. Let B be a base for A,
and remember that the Weyl group W of A is generated by σβ , β ∈ B, as in
Section 19.14.

Let r ≥ 2 be an integer, and let γ1, . . . , γr be r elements of B, possibly with
repetitions. Put σj = σγj for each j = 1, . . . , r, and consider

(σ1 ◦ · · · ◦ σr−1)(γr),(20.1.1)

which is an element of A. Thus (20.1.1) can be expressed as a linear combination
of elements of B with integer coefficients, and where the coefficients are either
all greater than or equal to 0, or all less than or equal to 0. If the coefficients
are all less than or equal to 0, then there is a positive integer n < r such that

σ1 ◦ · · · ◦ σr = σ1 ◦ · · ·σn−1 ◦ σn+1 ◦ · · · ◦ σr−1.(20.1.2)

This corresponds to Lemma C on p50 of [14]. More precisely, in the first part
of the right side of (20.1.2), σ1 ◦ · · · ◦ σn−1 is interpreted as being the identity
mapping on V when n = 1. Similarly, if n = r − 1, then σn+1 ◦ · · · ◦ σr−1 is
interpreted as being the identity mapping on V in the second part of the right
side of (20.1.2).

To see this, put

δj = (σj+1 ◦ · · · ◦ σr−1)(γr)(20.1.3)

for j = 0, . . . , r − 2, and δr−1 = γr. Note that δ0 is the same as (20.1.1), whose
coefficients with respect to B are all less than or equal to 0, by hypothesis. Of
course, the coefficients of δr−1 = γr with respect to B are all greater than or
equal to 0, because γr ∈ B. Let n be the smallest positive integer less than or

410
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equal to 0 such that the coefficients of δn with respect to B are all greater than
or equal to 0, so that the coefficients of

δn−1 = σn(δn)(20.1.4)

with respect to B are all less than or equal to 0. This implies that

γn = δn,(20.1.5)

by (19.12.8).
If α ∈ A and T is an invertible linear mapping on V that maps A onto

itself, then T ◦ σα ◦ T−1 = σT (α), as in Section 19.4. Let us take α = γr and
T = σn+1 ◦ · · · ◦ σr−1, so that T (α) = δn. Combining this with (20.1.5), we
obtain that

σn = (σn+1 ◦ · · · ◦ σr−1) ◦ σr ◦ (σr−1 ◦ · · · ◦ σn+1).(20.1.6)

It is easy to get (20.1.2) from (20.1.6).
Put

σ = σ1 ◦ · · · ◦ σr,(20.1.7)

and suppose now that r is the smallest positive integer such that σ can be
expressed as the composition of r symmetries associated to elements of B. The
previous statement implies that the coefficients of (20.1.1) with respect to B are
all greater than or equal to 0. Remember that σr(γr) = −γr, so that

σ(γr) = −(σ1 ◦ · · · ◦ σr−1)(γr).(20.1.8)

It follows that the coefficients of σ(γr) with respect to B are all less than or
equal to 0, as in the corollary to Lemma C on p50 of [14]. Note that this holds
automatically when r = 1.

If σ is any element of the Weyl groupW of A, then σ can be expressed as the
composition of finitely many symmetries associated to elements of B, as before.
In particular, if σ is not the identity mapping on V , then one needs at least one
of these symmetries. This means that σ can be expressed as in (20.1.7) for some
positive integer r, and we may as well take r to be as small as possible. Under
these conditions, σ cannot map B onto itself, as in the preceding paragraph.

Equivalently, if σ ∈W satisfies

σ(B) = B,(20.1.9)

then σ is the identity mapping on V . This corresponds to part (e) of the theorem
on p51 of [14]. This also corresponds to Proposition 4 on p62 of [24].

20.2 The Cartan matrix

Let V be a vector space over the real numbers of positive finite dimension, and
let A be a root system in V . If α ∈ A, then let σα be the symmetry on V
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with vector α that maps A onto itself, and let λα be the corresponding linear
functional on V . Thus λα(α) = 2, and λα = 0 on the hyperplane of vectors in
V that are fixed by σα. If β ∈ A too, then we put

n(α, β) = λβ(α),(20.2.1)

as in Section 19.9. Of course, this is an integer, by the definition of a root
system.

Let (·, ·) be an inner product on V that is invariant under the Weyl groupW
of A. This means that σα is the reflection on V with respect to (·, ·) associated
to α ∈ A, so that λα(v) = 2 (v, α) (α, α)−1 for every v ∈ V . In particular,

n(α, β) = 2 (α, β) (β, β)−1(20.2.2)

for every α, β ∈ A.
Let B be a base for A. The Cartan matrix of A with respect to B is n(α, β)

as a function of α, β ∈ B, as in Definition 5 on p34 of [24], and p55 of [14].
Note that n(α, α) = λα(α) = 2 for every α ∈ A, and in particular for α ∈ B. If
α, β ∈ B and α ̸= β, then n(α, β) ≤ 0, by (19.11.8) and (20.2.2). Of course, α
and β are not proportional in this situation. It follows that

n(α, β) ∈ {0,−1,−2,−3}(20.2.3)

when α ̸= β, as in Section 19.9, and mentioned on p34 of [24]. If A is reduced,
then A is determined up to isomorphism by the Cartan matrix, as in Proposition
8 on p34 of [24].

More precisely, let Ṽ be another vector space over the real numbers of posi-
tive finite dimension, and let Ã be a reduced root system in Ṽ . If α̃ ∈ Ã, then
let σ̃

α̃
on Ṽ with vector α̃ that maps Ã onto itself, as usual. Also let λ̃

α̃
be

the corresponding linear functional on Ṽ , so that λ̃
α̃
(α̃) = 2 and λ̃

α̃
= 0 on the

hyperplane of vectors in Ṽ that are fixed by σ̃
α̃
. If β̃ ∈ Ã too, then we put

ñ(α̃, β̃) = λ̃
β̃
(α̃),(20.2.4)

as before. Let B̃ be a base for Ã, so that the restriction of (20.2.4) to α̃, β̃ ∈ B̃

is the Cartan matrix of Ã with respect to B̃.
Suppose that ϕ is a one-to-one mapping from B onto B̃ such that

ñ(ϕ(α), ϕ(β)) = n(α, β)(20.2.5)

for every α, β ∈ B. If A is reduced, then ϕ extends to a unique one-to-one linear
mapping f from V onto Ṽ such that

f(A) = Ã.(20.2.6)

This is Proposition 8’ on p35 of [24], which corresponds to the proposition on

p55 of [14]. Remember that B and B̃ are bases for V and Ṽ , respectively, as
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vector spaces over R, by the definition of a base for a root system. Thus ϕ
automatically extends to a unique one-to-one linear mapping f from V onto Ṽ ,
and in particular V and Ṽ have the same dimension as vector spaces over R.

If α, β ∈ B, then

(σ̃ϕ(α) ◦ f)(β) = σ̃ϕ(α)(ϕ(β)) = ϕ(β)− ñ(ϕ(β), ϕ(α))ϕ(α)(20.2.7)

and
(f ◦ σα)(β) = f(β − n(β, α)α) = ϕ(β)− n(β, α)ϕ(α).(20.2.8)

Using our hypothesis (20.2.5), we get that the right sides of (20.2.7) and (20.2.8)
are the same. This implies that

σ̃ϕ(α) ◦ f = f ◦ σα(20.2.9)

on V for every α ∈ B, because V is spanned by β ∈ B. Equivalently,

σ̃ϕ(α) = f ◦ σα ◦ f−1(20.2.10)

on Ṽ for every α ∈ B.
As usual, GL(V ) and GL(Ṽ ) denote the general linear groups of invertible

linear mappings on V and Ṽ , respectively. Of course,

σ 7→ f ◦ σ ◦ f−1(20.2.11)

is a group isomorphism from GL(V ) onto GL(Ṽ ). Remember that the Weyl

groups W and W̃ of A and Ã are generated by the symmetries associated to
elements of B and B̃, respectively, as in Section 19.14. Using this and (20.2.10),

we get that (20.2.11) maps W onto W̃ .
Remember that A is the same as the set of images of elements of B under

elements of W , and similarly for Ã, as in Section 19.14. Using this and the
remarks in the preceding paragraph, it is easy to see that (20.2.6) holds, as
desired.

Of course, a one-to-one linear mapping f from V onto Ṽ that satisfies (20.2.6)

is the same as an isomorphism between the root systems A and Ã, as in Section
19.5. In this case, we have that

ñ(f(α), f(β)) = n(α, β)(20.2.12)

for every α, β ∈ A, by (19.5.9).
Let Aut(A) be the group of automorphisms of A, which is the subgroup of

GL(V ) consisting of invertible linear mappings on V that send A onto itself.
Remember that the Weyl group W of A is a normal subgroup of Aut(A), as in
Section 19.4. If T ∈ Aut(A), then

n(T (α), T (β)) = n(α, β)(20.2.13)

for every α, β ∈ A, as in (20.2.12). Of course,

{T ∈ Aut(A) : T (B) = B}(20.2.14)
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is a subgroup of Aut(A) as well. The elements of this subgroup are uniquely
determined by their restrictions to B, because B is a basis for V as a vector
space over R. If A is reduced, then the restrictions of elements of (20.2.14) to
B are characterized by the condition that (20.2.13) hold for every α, β ∈ B, as
before. In this case, the intersection of W and (20.2.14) is the trivial subgroup
of Aut(A), as in the previous section.

If T is any element of Aut(A), then it is easy to see that T (B) is a base for
A too. If A is reduced, then there is a σ ∈W such that

σ(T (B)) = B,(20.2.15)

as in Section 19.14. Equivalently, this means that σ◦T is an element of (20.2.14).
This corresponds to Proposition 9 on p35 of [24], and some remarks beginning
on p65 of [14].

20.3 Coxeter graphs

As on p35 of [24], a Coxeter graph is a finite graph, where each pair of distinct
vertices may be joined by 0, 1, 2, or 3 edges.

Let V be a vector space over the real numbers of positive finite dimension, let
A be a root system in V , and let B be a base for A. If α, β ∈ A, then λα ∈ V ′

and n(α, β) ∈ Z are defined in the usual way, as in the previous section. If
α, β ∈ B and α ̸= β, then α and β are not proportional, and

n(α, β)n(β, α)(20.3.1)

can only be equal to 0, 1, 2, or 3, as in Section 19.9. Of course, (20.3.1) is
symmetric in α and β.

The Coxeter graph of A with respect to B is defined as follows, as on p35 of
[24], and p56 of [14]. We take B to be the set of vertices of the Coxeter graph.
If α and β are distinct elements of B, then the number of edges between α and
β is equal to (20.3.1).

If B̃ is another base for A, then there is an element σ of the Weyl group
of A that maps B onto B̃, as in Section 19.14. This leads to an isomorphism
between the Coxeter graphs of A with respect to B and B̃.

Let (·, ·) be an inner product on V that is invariant under the Weyl group
of A. Using (20.2.2), we get that

n(α, β)n(β, α) = 4 (α, β)2 ∥α∥−2 ∥β∥−2(20.3.2)

for every α, β ∈ A, where ∥·∥ is the norm on V associated to (·, ·). Equivalently,
this is the same as 4 times the square of the cosine of the angle between α and β,
as in Section 19.9. In particular, (20.3.2) is equal to 0 exactly when (α, β) = 0.

The Coxeter graph of A with respect to B is determined by the Cartan
matrix of A with respect to B in an obvious way. Remember that the diagonal
entries of the Cartan matrix are equal to 2, and that the other entries are less
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than or equal to 0. It is easy to see that the Cartan metrix of A with respect
to B is determined by the Coxeter graph of A with respect to B together with
the ratios of the norms of the elements of B.

More precisely, let α and β be distinct elements of B. If (20.3.2) is equal to
0, then (α, β) = 0, and hence n(α, β) = 0. Otherwise, if (20.3.2) is not zero,
and if one knows if ∥α∥ and ∥β∥ are the same, or which is larger, then n(α, β)
can be determined from (20.3.2) as in Section 19.9. This is discussed beginning
on p56 of [14], and on p38 of [24].

20.4 Reducibility

Let V be a vector space over the real numbers of positive finite dimension
again, let A be a root system in V , and let (·, ·) be an inner product on V that
is invariant under the Weyl group of A. Suppose for the moment that V is the
direct sum of two nontrivial linear subspaces V1 and V2, as a vector space over
R, and that

A ⊆ V1 ∪ V2.(20.4.1)

Put Aj = A∩Vj for j = 1, 2. If α ∈ V1 and β ∈ V2, then α−β is not an element
of V1∪V2, and thus is not in A. This implies that (α, β) ≤ 0, as in Section 19.9.
The same argument could be applied to α and −β, to get that (α, β) ≥ 0, and
hence

(α, β) = 0.(20.4.2)

It is easy to see that the linear span of Aj is equal to Vj for each j = 1, 2,
because the linear span of A is V . It follows that the elements of V1 and V2 are
orthogonal to each other with respect to (·, ·), as in part (a) of Proposition 10
on p36 of [24].

If α ∈ A, then the symmetry σα on V with vector α that maps A onto
itself is the reflection associated to α with respect to (·, ·). If α ∈ A1, then σα
fixes every element of the hyperplane orthogonal to α, which contains V2. In
particular, σα(V2) = V2, which implies that σα(V1) = V1. One also can check
the latter more directly. It follows that A1 is a root system in V1, and similarly
A2 is a root system in V2. This is part (b) of Proposition 10 on p36 of [24].
Under these conditions, A is considered to be the sum of A1 and A2, as on p36
of [24]. If A cannot be expressed as the sum of two root systems in this way,
then A is said to be irreducible, as on p36 of [24], and p52 of [14].

Irreducibility of A is equivalent to the connectedness of the Coxeter graph
of A, as in Proposition 12 on p36 of [24], and mentioned on p57 of [14]. More
precisely, the connectedness of the Coxeter graph of A with respect to a base
B for A does not depend on the choice of B, because other choices lead to
isomorphic graphs, as before.

Suppose that A corresponds to the sum of subsystems A1 and A2, as before.
If B1 and B2 are bases for A1 and A2, then it is easy to see that B1 ∪ B2 is a
base for A. If α ∈ B1 and β ∈ B2, then (α, β) = 0, so that α and β are not
connected by any edges in the Coxeter graph of A with respect to B1∪B2. This
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means that the Coxeter graph of A with respect to B1 ∪ B2 is not connected,
as desired. This is one half of the proof of Proposition 12 on p36 of [24].

Alternatively, let B be any base for A, and put Bj = Aj ∩ B for j = 1, 2.
Every element of B1 is orthogonal to every element of B2, so that there are no
edges between B1 and B2 in the Coxeter graph of A with respect to B. To
get that the Coxeter graph is not connected, one has to check that B1, B2 ̸= ∅.
Equivalently, one can verify that B cannot be contained in A1 or A2, as on p52
of [14].

Conversely, suppose that the Coxeter graph of A with respect to a base B
is not connected. This implies that B can be expressed as the union of disjoint
nonempty subsets B1 and B2, with no edges in the Coxeter graph between
elements of B1 and B2. Equivalently, every element of B1 is orthogonal to every
element of B2 with respect to (·, ·). Let V1 and V2 be the linear subspaces of V
spanned by B1 and B2, respectively, so that every element of V1 is orthogonal
to every element of V2. Note that V corresponds to the direct sum of V1 and
V2, because V is spanned by B.

If β ∈ B1, then σβ fixes every element of the hyperplane orthogonal to
β, which contains V2. Thus σβ(V2) = V2, which implies that σβ(V1) = V1.
Alternatively, one can check directly that σβ(V1) = V1, which implies that
σβ(V2) = V2. Similarly, if β ∈ B2, then σβ maps V1 and V2 onto themselves.
Remember that every element α of A can be obtained from elements of B by
compositions of the reflections σβ , β ∈ B, as in Section 19.14. It follows that α
is contained in V1 or V2. This implies that A is reducible, as on p37 of [24], and
p52 of [14].

20.5 Root strings

Let V be a vector space over the real numbers of positive finite dimension, let A
be a root system in V , and let (·, ·) be an inner product on V that is invariant
under the Weyl group of A. Suppose that α and β are nonproportional elements
of A. Consider the elements of A of the form

β + j α,(20.5.1)

where j is an integer. The collection of these elements of A is called the α-string
through β in A, as on p45 of [14]. Let r and q be the largest integers such that

β − r α, β + q α ∈ A,(20.5.2)

respectively. Thus r, q ≥ 0, because β ∈ A, by hypothesis. We would like to
show that if j ∈ Z satisfies −r < j < q, then (20.5.1) is an element of A too.

Otherwise, there are integers j1, j2 such that −r ≤ j1 < j2 ≤ q such that

β + j1 α, β + j2 α ∈ A(20.5.3)

and
β + (j1 + 1)α, β + (j2 − 1)α ̸∈ A.(20.5.4)
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Observe that neither β+ j1 α nor β+ j2 α is proportional to α, because β is not
proportional to α, by hypothesis. It follows that

(α, β + j1 α) ≥ 0, (α, β + j2 α) ≤ 0,(20.5.5)

as in Section 19.9. However,

(j2 − j1) (α, α) > 0,(20.5.6)

because j1 < j2 and α ̸= 0. This is a contradiction, as on p45 of [14].

The fact that (20.5.1) is an element of A when j ∈ Z satisfies −r < j < q
also came up in the Lie algebra setting in Section 17.9, as in part (e) of the
proposition on p39 of [14].

Let σα be the symmetry on V with vector α that maps A onto itself, which
is the reflection on V associated to α with respect to (·, ·). Remember that
σα(β) − β is an integer multiple of α, by the definition of a root system. If
j ∈ Z, then

σα(β + j α) = σα(β)− j α(20.5.7)

is the sum of β and an integer multiple of α as well. Thus σα maps the α-string
through β onto itself, because σα(A) = A. Using this, it is easy to see that

σα(β + q α) = β − r α.(20.5.8)

Equivalently, σα(β)− q α = β − r α, so that

σα(β)− β = (q − r)α.(20.5.9)

This means that

2 (β, α) (α, α)−1 = r − q,(20.5.10)

by the usual expression for σα in terms of α and (·, ·). It follows that

|r − q| ≤ 3,(20.5.11)

because α and β are not proportional, as in Section 19.9.

Put β0 = β − r α, which is an element of A that is not proportional to α.
Observe that the α-string through β0 consists of the same elements of A as the
α-string through β. Let r0, q0 be the largest integers such that β0 − r0 α and
β0 + q0 α are elements of A, as before. By construction, r0 = 0 and q0 = q + r.
We also have that |r0 − q0| ≤ 3, as in (20.5.11). This means that

q + r ≤ 3.(20.5.12)

Thus the α-string through β has at most 4 elements, as on p45 of [14].
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20.6 Roots and linear subspaces

Let V be a vector space over the real numbers of positive finite dimension, as
usual. Suppose for the moment that α is a nonzero element of V , and that σα is
a symmetry on V with vector α. If V0 is a linear subspace of V , then we might
like to know if

σα(V0) ⊆ V0.(20.6.1)

Equivalently, this means that

σα(V0) = V0,(20.6.2)

because σα is its own inverse on V . If α ∈ V0, then it is easy to see that (20.6.1)
holds, and hence (20.6.2) holds as well. Of course, (20.6.2) holds when V0 is
contained in the hyperplane of vectors in V that are fixed by σα. In fact, these
are the only two ways in which (20.6.2) can hold, as in Exercise 1 on p45 of [14].
Indeed, if (20.6.1) holds, and if there is a v0 ∈ V0 such that σα(v0) ̸= v0, then
σα(v0)− v0 is a nonzero multiple of α that is contained in V0.

Let A be a root system in V , and for each α ∈ A, let σα be the symmetry on
V with vector α that maps A onto itself. Let V0 be a nontrivial linear subspace
of V , and put

A0 = A ∩ V0.(20.6.3)

If V0 is spanned by A0, then A0 is a root system in V0. This follows from the
fact that (20.6.2) holds for every α ∈ A0. This is related to Exercise 7 on p46
of [14].

Let A1 be a nonempty subset of A that satisfies the following two conditions.
First, if α ∈ A1, then −α ∈ A1. Second, if α, β ∈ A1 and α+ β ∈ A, then

α+ β ∈ A1.(20.6.4)

Under these conditions, A1 is a root system in the linear subspace V1 of V that
it spans, as in Exercise 7 on p46 of [14]. Note that this includes the situation
mentioned in the preceding paragraph. One way to see this is to check that if α
and β are nonproportional elements of A1, then A1 contains the α-string through
β in A, using the remarks in the previous section. This implies that σα(β) ∈ A1

in this case. Of course, if α, β ∈ A1 are proportional, then σα(β) = −β ∈ A1,
by the first condition. It follows that for every α ∈ A1, σα maps A1 into itself,
and hence σα(A1) = A1.

Let (·, ·) be an inner product on V that is invariant under the Weyl group
of A. If c is a positive real number, then let A(c) be the set of α ∈ A such that
(α, α) = c. If A(c) ̸= ∅, then one can verify that A(c) is a root system in the
linear subspace V (c) of V that it spans. This is part of Exercise 11 on p47 of
[14].

20.7 More on irreducibility

Let V be a vector space over the real numbers of positive finite dimension, let
A be an irreducible root system in V , and let (·, ·) be an inner product on V
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that is invariant under the Weyl group W of A. We would like to check that
W acts irreducibly on V , as in the first part of Lemma B on p53 of [14]. More
precisely, this means that there is no nontrivial proper linear subspace of V that
is mapped into itself by the elements of W . To see this, let V1 be a nonzero
linear subspace of V that is mapped into itself by elements ofW . If α ∈ A, then
let σα be the reflection on V associated to α with respect to (·, ·), as usual. By
hypothesis,

σα(V1) ⊆ V1,(20.7.1)

so that either α ∈ V1 or V1 is contained in the hyperplane of vectors that are
fixed by σα, as in the previous section. Remember that the hyperplane of vectors
that are fixed by σα is orthogonal to α. In the second case, we get that α is
contained in the orthogonal complement V2 of V1 in V . Thus A ⊆ V1∪V2, which
implies that V2 = {0}, because A is supposed to be irreducible in V . This means
that V1 = V , as desired.

If v ∈ V , then the linear span of the set of images of v under elements of
W is a linear subspace of V that is mapped into itself by elements of W . If
v ̸= 0, then it follows that this linear span is equal to V , as in the second part
of Lemma B on p53 of [14]. If u is another nonzero element of V , then we get
that

(σ(v), u) ̸= 0(20.7.2)

for some σ ∈W .
Suppose that α, β ∈ A satisfy

∥α∥ = ∥β∥,(20.7.3)

where ∥ · ∥ is the norm associated to (·, ·) on V . We would like to show that α
is the image of β under an element of W , as in the second part of Lemma C on
p53 of [14]. We may as well suppose that (α, β) ̸= 0, by replacing β by one of
its images under an element of W if necessary, as in the preceding paragraph.
If α and β are proportional, then α = ±β, by (20.7.3). There is nothing to do
when α = β, and if α = −β, then α = σβ(β), as desired. Suppose that α and
β are not proportional, and let n(α, β), n(β, α) be as in Section 19.9. Observe
that

n(α, β) = n(β, α) = ±1(20.7.4)

in this situation, as before. We may as well suppose that n(α, β) = n(β, α) = 1,
by replacing β with σβ(β) = −β if necessary. Under these conditions, we get
that

(σα ◦ σβ ◦ σα)(β) = (σα ◦ σβ)(β − α) = σα(−β − α+ β) = α,(20.7.5)

as desired.
Let α, β ∈ A be given, and let σ be an element of W such that

(σ(α), β) ̸= 0.(20.7.6)

If σ(α) and β are proportional, then

∥α∥2/∥β∥2 = ∥σ(α)∥2/∥β∥2 = 1, 4, or 1/4.(20.7.7)
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If σ(α) and β are not proportional, then

∥α∥2/∥β∥2 = ∥σ(α)∥2/∥β∥2 = 1, 2, 3, 1/2, or 1/3,(20.7.8)

as in Section 19.9. In particular, if A is reduced, then the only possible ratios
are as in (20.7.8). In this case, one can check that there are at most two possible
values for the norms of elements of A, as in the first part of Lemma C on p53
of [14]. If A is not reduced, then one can verify that there are at most three
possible values for the norms of elements of A. In order to have three different
values for the norms of elements of A, the ratio in (20.7.8) can only be 1, 2, or
1/2 when σ(α) and β are not proportional.

If α ∈ A, then put α̂ = 2α/∥α∥2, as in (19.7.9), so that

∥α̂∥ = 2/∥α∥.(20.7.9)

Remember that Â = {α̂ : α ∈ A} is the inverse system of A in V with respect
to (·, ·), as in Section 19.8. It is easy to see that the irreducibility of A in V

implies that Â is irreducible in V too. If the elements of A have the same norm,
then Â has the same property, by (20.7.9). In this case, Â is isomorphic to A,
using a dilation on V . Otherwise, the number of distinct values of the norms of
elements of Â is the same as for A. This corresponds to part of Exercise 11 on
p55 of [14].

If ⟨·, ·⟩ is another inner product on V , then there is a unique linear mapping
T from V into itself such that

⟨u, v⟩ = (T (u), v)(20.7.10)

for every u, v ∈ V . More precisely, T is self-adjoint and positive definite with
respect to (·, ·), because of the symmetry and positivity properties of ⟨·, ·⟩ on
V . If ⟨·, ·⟩ is also invariant under W , then one can check that T commutes with
the elements of W , because (·, ·) is invariant under W too. It is well known that
there is a basis for eigenvectors of T in V that is orthonormal with respect to
(·, ·), because T is self-adjoint with respect to (·, ·). The eigenspaces of T are
mapped into themselves by elements of W , because T commutes with elements
of W . It follows that T is a constant multiple of the identity mapping on V ,
because W acts irreducibly on V . This means that ⟨·, ·⟩ is a constant multiple
of (·, ·) on V .

Suppose that A is reduced, so that there are at most two distinct values of
the norms of elements of A. If there are two distinct values for the norms of the
elements of A, then the elements of A whose norm is the larger value are called
long roots, and the elements of A whose norm is the smaller value are called
short roots, as on p53 of [14]. If the elements of A have the same norm, then it
is customary to refer to them as long roots, as in [14].

20.8 Maximal roots

Let V be a vector space over the real numbers of positive finite dimension, let A
be a root system in V , and let (·, ·) be an inner product on V that is invariant
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under the Weyl group of A. Also let B be a base for A, so that every element
of A can be expressed as a linear combination of elements of B with integer
coefficients, and where the coefficients are either all greater than or equal to 0,
or all less than or equal to 0.

An element α of A is said to be maximal with respect to B if there is no
element of A that can be expressed as the sum of α and some elements of B,
which need not be distinct. Equivalently, this means that if γ ∈ A, and each
of the coefficients of α associated to elements of B is less than or equal to the
corresponding coefficient of γ, then α = γ. In particular, α is maximal when
the sum of its coefficients associated to elements of B is maximal, as an element
of Z.

Suppose from now on in this section that A is irreducible, and let α0 be
an element of A that is maximal with respect to B. It is easy to see that the
coefficients of α0 with respect to elements of B are nonnegative, by maximality.
Let B0 be the set of β ∈ B such that the coefficient of α with respect to β is
positive, so that the coefficients of α0 with respect to β ∈ B \ B0 are equal to
0. Note that B0 ̸= ∅, because α0 ̸= 0. We would like to show that

B0 = B,(20.8.1)

which is part of Lemma A at the bottom of p52 of [14].
If β and γ are distinct elements of B, then (β, γ) ≤ 0, as in (19.11.8). In

particular, this holds when β ∈ B0 and γ ∈ B \ B0. If B0 ̸= B, then there are
β ∈ B0 and γ ∈ B \B0 such that (β, γ) ̸= 0, because A is irreducible. It follows
that (α0, γ) < 0 under these conditions, by the definition of B0. Observe that
α0 is not proportional to γ in this situation. This implies that α0+γ ∈ A, as in
Section 19.9. This contradicts the maximality of α0 with respect to B, so that
(20.8.1) holds.

Next, we would like to check that

(α0, β) ≥ 0(20.8.2)

for every β ∈ B, which is another part of Lemma A at the bottom of p52 of
[14]. If the dimension of V is one, then B has only one element, α0 is a positive
integer multiple of that element of B, and (20.8.2) follows. Suppose now that
the dimension of V is at least two. Let β ∈ B be given, and note that α0 is not
proportional to β, because all of the coefficients of α0 with respect to elements
of B are positive. If (α0, β) < 0, then α0 + β ∈ A, as in Section 19.9 again.
This would contradict the maximality of α0 with respect to B, so that (20.8.2)
holds. We also have that

(α0, β) > 0(20.8.3)

for at least one β ∈ B, because V is spanned by B.
We would like to show that α0 is unique, as in Lemma A at the bottom of

p52 of [14]. Let α1 be another element of A that is maximal with respect to
B. This implies that the coefficients of α1 with respect to all elements of B are
positive, as before. It follows that

(α0, α1) > 0,(20.8.4)
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by (20.8.2) and (20.8.3). If α0 and α1 are proportional, then it is easy to see
that α0 = α1, as desired. Otherwise, if α0 and α1 are not proportional, then
α0 − α1 ∈ A, as in Section 19.9. If the coefficients of α0 − α1 with respect
to the elements of B are all nonnegative, then we get a contradiction with the
maximality of α1. Similarly, if the coefficients of α0 − α1 are all less than or
equal to 0, then we get a contradiction with the maximality of α0.

If α ∈ A and β ∈ B, then

the coefficient of α associated to β is less than(20.8.5)

or equal to the coefficient of α0 with respect to β.

To see this, one can first find an element α1 of A that is maximal with respect
to B such that the coefficient of α associated to β is less than or equal to the
coefficient of α1 associated to β for every β ∈ B. One can choose α1 ∈ A so
that the sum of its coefficients associated to elements of B is maximal, among
elements of A whose coefficients are greater than or equal to the corresponding
coefficients of α. The uniqueness of α0 implies that α0 = α1, so that (20.8.5)
holds. This is implicit in an argument near the top of p54 of [14]. It follows
that the sum of the coefficients of α associated to elements of B is less than or
equal to the sum of the coefficients of α0, with equality only when α = α0. This
is another part of Lemma A at the bottom of p52 of [14].

20.9 More on maximality

Let V be a vector space over the real numbers of positive finite dimension, and
let A be a root system in V . Also let (·, ·) be an inner product on V that is
invariant under the Weyl group W of A, and let B be a base for A. Suppose
for the moment that A is reduced. If τ is a linear functional on V , then there is
an element σ of W such that τ(σ(β)) ≥ 0 for every β ∈ B, as in Section 19.14.
Let α ∈ V be given, so that

τα(v) = (v, α)(20.9.1)

defines a linear functional on V . As before, there is a σ ∈W such that

(σ(β), α) = τα(σ(β)) ≥ 0(20.9.2)

for every β ∈ B. Equivalently, this means that

(β, σ−1(α)) ≥ 0(20.9.3)

for every β ∈ B, because σ is an orthogonal transformation on V with respect
to (·, ·). This corresponds to the formulation in part (a) of the theorem on p51
and Exercise 14 on p55 of [14].

Suppose now that A is irreducible as well as reduced, and let α0 ∈ A be
maximal with respect to B, as in the previous section. We would like to show
that

∥α0∥ ≥ ∥α∥(20.9.4)
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for every α ∈ A, where ∥ · ∥ is the norm on V associated to (·, ·), as in Lemma
D on p53 of [14]. We may as well suppose that

(β, α) ≥ 0(20.9.5)

for every β ∈ B, by replacing α with σ−1(α) for σ ∈W as in (20.9.3). Note that
the coefficients of α associated to elements of B are less than or equal to the
corresponding coefficients of α0, as in (20.8.5). Combining this with (20.9.5),
we get that

(α0 − α, α) ≥ 0,(20.9.6)

which is the same as saying that

(α0, α) ≥ (α, α).(20.9.7)

This implies that
∥α∥2 = (α, α) ≤ ∥α0∥ ∥α∥,(20.9.8)

by the Cauchy–Schwarz inequality. It is easy to obtain (20.9.4) from this, as
desired.

Let A be a root system in V again, that is not necessarily reduced. If α ∈ A,
then put α̂ = 2α/∥α∥2, as in (19.7.9), and remember that Â = {α̂ : α ∈ A} is
the inverse system of A in V with respect to (·, ·), as in Section 19.8. Let B be
a base for A, as before, and let B1, B2 be the sets of β ∈ B such that 2β ̸∈ A
and 2β ∈ A, respectively, as in Section 19.13. Remember that

B̃ = {β̂ : β ∈ B1} ∪ {β̂/2 : β ∈ B2}(20.9.9)

is a base for Â. If α, γ ∈ A satisfy

∥α∥ = ∥γ∥,(20.9.10)

then one can check that the coefficients of α associated to elements of B are less
than or equal to the corresponding coefficients of γ if and only if the coefficients
of α̂ associated to elements of B̃ are less than or equal to the corresponding
coefficients of γ̂.

Suppose that A is reduced, so that B2 = ∅, and B̃ is the same as

B̂ = {β̂ : β ∈ B}.(20.9.11)

Suppose that A is irreducible as well, which implies that Â is irreducible too,
as in Section 20.7. Remember that there are at most two distinct values for the
norms of the elements of A, as in Section 20.7. Let us suppose that there are
two distinct values for the norms of elements of A, which means that there are
two distinct values for the norms of elements of Â.

Let γ̂0 be a maximal root in Â, as in the previous section. This implies that
γ̂0 is a long root in Â, as before. It follows that the corresponding element γ0 of
A is a short root in A. If α ∈ A, then the coefficients of α̂ asociated to elements
of B̂ are less than or equal to the corresponding coefficients of γ̂0, as in (20.8.5).
If α is a short root in A, then ∥α∥ = ∥γ0∥, and it follows that the coefficients of
α associated to elements of B are less than or equal to the coefficients of γ0, as
before. Note that γ0 is uniquely determined by this property. This corresponds
to part of Exercise 11 on p55 of [14].
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20.10 Root systems of type An

Let n be a positive integer, and let Rn+1 be the usual space of (n + 1)-tuples
of real numbers. The standard inner product is defined on Rn+1 by

(u, v) =

n+1∑
j=1

uj vj ,(20.10.1)

as usual. Let e1, . . . , en+1 be the standard basis vectors in Rn+1, so that the
jth coordinate of el is equal to 1 when j = l, and to 0 otherwise. Of course, the
set Zn+1 of (n+ 1)-tuples of integers is a subgroup of Rn+1, as a commutative
group with respect to addition. Put

V =

{
v ∈ Rn+1 :

n+1∑
j=1

vj = 0

}
,(20.10.2)

which is the hyperplane in Rn+1 orthogonal to e1 + · · ·+ en+1.
Consider

A = {α ∈ V ∩ Zn+1 : (α, α) = 2}.(20.10.3)

Equivalently, it is easy to see that A consists exactly of the vectors of the form
ej − el, where 1 ≤ j, l ≤ n+ 1 and j ̸= l. Note that A is a finite set of nonzero
elements of V whose linear span is equal to V .

Suppose for the moment that α ∈ Rn+1 satisfies (α, α) = 2. In this case, the
reflection on Rn+1 associated to α with respect to the standard inner product
is given by

σα(v) = v − (v, α)α(20.10.4)

for every v ∈ Rn+1. If α ∈ V , then σα maps V onto itself, as in Section 20.6. If
α ∈ Zn+1, then σα(Z

n+1) ⊆ Zn+1, and hence

σα(Z
n+1) = Zn+1,(20.10.5)

because σα is its own inverse. It follows that σα(A) = A when α ∈ A, because
σα is an orthogonal transformation on Rn+1. Of course, (v, α) ∈ Z when
α, v ∈ Zn+1, so that A defines a root system in V . This root system is said to
be of type An. Clearly A is reduced, as a root system in V .

Suppose that α = ej − el for some j, l ∈ {1, . . . , n + 1}, with j ̸= l. If
v ∈ Rn+1, then

σα(v) = v − (vj − vl) (ej − el),(20.10.6)

which interchanges the jth and lth coordinates of v, without affecting the other
coordinates of v. It follows that the Weyl group of A consists of the linear
mappings on V obtained from permuting the coordinates of elements of V .

Remember that the inverse system Â of A in V with respect to (·, ·) is defined
in (19.8.4). In this case, Â = A.
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If α, β ∈ A and n(α, β) ∈ Z is as in Sections 19.9 and 20.2, then

n(α, β) = (α, β)(20.10.7)

in this situation, as in (20.2.2). Thus

n(α, β)n(β, α) = (α, β)2.(20.10.8)

If α = ±β, then (20.10.7) is ±2, and (20.10.8) is 4. Suppose that α = ej1 − ej2
and β = el1 − el2 for some j1, j2, l1, l2 ∈ {1, . . . , n+ 1} with j1 ̸= j2, l1 ̸= l2. If
{j1, j2} ∩ {l1, l2} has exactly one element, then (20.10.7) is ±1, and (20.10.8) is
1. If {j1, j2} ∩ {l1, l2} = ∅, then (20.10.7) and (20.10.8) are equal to 0.

Put
B = {ej − ej+1 : j = 1, . . . , n},(20.10.9)

which is a subset of A. It is easy to see that B is a basis for V , as a vector space
over the real numbers. More precisely, one can check that B is a base for A as
a root system in V . Indeed, if 1 ≤ j < l ≤ n+ 1, then

ej − el =

l−1∑
r=j

(er − er+1).(20.10.10)

In particular, e1 − en+1 is the unique maximal element of A with respect to B,
as in Section 20.8.

Let j, l ∈ {1, . . . , n} be given, so that ej − ej+1 and el− el+1 are elements of
(20.10.9). The corresponding entry of the Cartan matrix of A with respect to
B is given by

n(ej − ej+1, el − el+1) = (ej − ej+1, el − el+1).(20.10.11)

This is symmetric in j and l, and equal to 2 when j = l. As before, (20.10.11)
is equal to −1 when |j − l| = 1, and to 0 when |j − l| ≥ 2.

Similarly, let us consider the Coxeter graph of A with respect to B, as in
Section 20.3. If j, l ∈ {1, . . . , n} and j ̸= l, then the number of edges between
ej − ej+1 and el − el+1 in the Coxeter graph is the square of (20.10.11). This is
equal to 1 when |j − l| = 1, and to 0 when |j − l| ≥ 2. Note that the Coxeter
graph is connected, so that A is irreducible.

Let T be a one-to-one linear mapping from V onto itself such that T (A) = A.
This implies that

(T (α), T (β)) = (α, β)(20.10.12)

for every α, β ∈ A, by (20.2.13) and (20.10.7). It follows that (20.10.12) holds
for every α, β ∈ V , because V is spanned by A.

Suppose that T also satisfies T (B) = B. If n = 1, then T is the identity
mapping on V . If n ≥ 2, then there is another such mapping T on V , which
sends ej − ej+1 to en−j − en−j+1 for each j = 1, . . . , n. Equivalently, T is
the restriction to V of the mapping on Rn+1 that sends v = (v1, . . . , vn+1) to
−(vn+1, . . . , v1).

This corresponds to some of the remarks on p64 and in Tables 1 and 2 on
p66 of [14], and on p39-40 of [24].
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20.11 Types Bn and Cn

Let n be a positive integer, and let us take V = Rn, with its standard inner
product (·, ·) and basis e1, . . . , en. Consider

A1 = {α ∈ Zn : (α, α) = 1 or 2}.(20.11.1)

Equivalently, A1 consists of vectors of the form ±ej , 1 ≤ j ≤ n, and ±ej ± el,
1 ≤ j ̸= l ≤ n. Similarly, put

A2 = {±2 ej : 1 ≤ j ≤ n} ∪ {±ej ± el : 1 ≤ j ̸= l ≤ n},(20.11.2)

which is a subset of Zn as well. Clearly A1 and A2 are finite sets of nonzero
elements of V that span V . Note that the squares of the norms of the elements
of A2 are either 2 or 4.

If α is a nonzero element of V , then let σα be the reflection on V associated
to α with respect to (·, ·), as usual. Suppose for the moment that α is a nonzero
multiple of ej for some j = 1, . . . , n. In this case, σα = σej multiplies the jth
coordinate of v ∈ V by −1, and leaves the other coordinates of v unchanged. In
particular, σα maps Zn, A1, and A2 onto themselves. Equivalently,

σα(v)− v = −2 vj ej(20.11.3)

for every v ∈ V . If α = ±ej or ±2 ej and v ∈ Zn, then it follows that σα(v)− v
is an integer multiple of α. Thus this holds for every v ∈ A1 or A2.

If α ∈ V satisfies (α, α) = 2, then σα(v) = v − (v, α)α for every v ∈ V , as
before. If we also have that α ∈ Zn, then σα maps Zn into itself, and hence
onto itself. In this case, if v ∈ Zn, then (v, α) ∈ Z, so that σα(v) − v is an
integer multiple of α. If α = ej − el, 1 ≤ j ̸= l ≤ n, then σα(v) interchanges the
jth and lth coordinates of v, without affecting the other coordinates, as in the
previous section. This implies that σα maps A1 and A2 onto themselves.

Suppose that α = ±(ej + el) for some 1 ≤ j ̸= l ≤ n, so that (α, α) = 2. In
this case,

σα(v) = v − (vj + vl) (ej + el)(20.11.4)

for every v ∈ V . This interchanges the jth and lth coordinates and multiplies
them by −1, while leaving the other coordinates unchanged. Thus σα maps
A1 and A2 onto themselves, so that A1 and A2 are root systems in V . More
precisely, A1 is said to be of type Bn, and A2 is said to be of type Cn.

Consider

A3 = A1 ∪A2 = {±ej : 1 ≤ j ≤ n} ∪ {±2 ej : 1 ≤ j ≤ n}(20.11.5)

∪{±ej ± el : 1 ≤ j ̸= l ≤ n}.

If α ∈ A3, then σα maps A1 and A2 onto themselves, as in the previous para-
graphs, and hence σα maps A3 onto itself. We also have that σα(v) − v is an
integer multiple of α for every v ∈ Zn, as before, and in particular for v ∈ A3.
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This means that A3 is a root system in V as well, which is said to be of type
BCn. Note that A1 and A2 are reduced, and that A3 is not reduced.

If α is a nonzero element of V , then put α̂ = 2α/(α, α), as in (19.7.9).
Observe that

A2 = Â1 = {α̂ : α ∈ A1},(20.11.6)

which is the inverse system of A1 in V with respect to (·, ·), as in Section 19.8.

Of course, this means that A1 = Â2 is the inverse system of A2 in V with respect
to (·, ·). It follows that Â3 = A3.

The Weyl groups of A1, A2, and A3 are the same, because they are generated
by the same reflections on V . This group consists of linear mappings on V that
permute the coordinates of elements of V , while multiplying any collection of
the coordinates by −1.

Put
B1 = {ej − ej+1 : 1 ≤ j ≤ n− 1} ∪ {en}(20.11.7)

which is interpreted as being {e1} when n = 1. It is easy to see that this is a
basis for V as a vector space over R, and one can check that it is a base for A1,
as a root system in V . More precisely, if 1 ≤ j < n, then

ej =

n−1∑
r=j

(er − er+1) + en(20.11.8)

and

ej + en =

n−1∑
r=j

(er − er+1) + 2 en.(20.11.9)

If 1 ≤ j < l ≤ n, then

ej − el =

l−1∑
r=j

(er − er+1).(20.11.10)

If 1 ≤ j < l < n, then

ej + el =

l−1∑
r=j

(er − er+1) +

n−1∑
r=l

2 (er − er+1) + 2 en.(20.11.11)

Similarly, put

B2 = {ej − ej+1 : 1 ≤ j ≤ n− 1} ∪ {2 en},(20.11.12)

which is interpreted as being {2 e1} when n = 1. This is a basis for V as a
vector space over R, and one can verify that it is a base for A2 as a root system
in V . Indeed, if 1 ≤ j < n, then

2 ej =

n−1∑
r=j

2 (er − er+1) + 2 en,(20.11.13)
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and ej + en can be expressed as in (20.11.9). If 1 ≤ j < l ≤ n, then ej − el
can be expressed as in (20.11.10), and ej + el can be expressed as in (20.11.11)
when l < n. Note that B1 is a base for A3 as well, using (20.11.13).

If n = 1, then A1 = {±e1} and A2 = {±2 e1} are isomorphic to each other,
and to the root system discussed in the previous section, with n = 1. If n = 2,
then one can use the bases B1 and B2 to show that A1 is isomorphic to A2.

Let α and β be elements of A1, A2, or A3, so that n(α, β) ∈ Z can be defined
as in Section 19.9. In fact,

n(α, β) = 2 (α, β) (β, β)−1,(20.11.14)

as before, so that

n(α, β)n(β, α) = 2 (α, β)2 (α, α)−1 (β, β)−1.(20.11.15)

If 1 ≤ j, l ≤ n− 1, then

n(ej − ej+1, el − el+1) = (ej − ej+1, el − el+1)(20.11.16)

is symmetric in j and l, and equal to 2 when j = l. This is equal to −1 when
|j − l| = 1, and to 0 when |j − l| ≥ 2, as before. It follows that

n(ej − ej+1, el − el+1)n(el − el+1, ej − ej+1)(20.11.17)

is equal to 1 when |j − 1| = 1, and to 0 when |j − l| ≥ 2.
If 1 ≤ j ≤ n− 1, then

n(ej − ej+1, en) = 2 (ej − ej+1, en),(20.11.18)

which is 0 when j < n− 1, and −2 when j = n− 1. Similarly,

n(en, ej − ej+1) = (en, ej − ej+1),(20.11.19)

which is 0 when j < n− 1 and −1 when j = n− 1. Thus

n(ej − ej+1, en)n(en, ej − ej+1)(20.11.20)

is equal to 0 when j < n − 1, and to 2 when j = n − 1. Using this and the
remarks in the preceding paragraph, one can determine the Cartan matrix and
Coxeter graph of A1 with respect to B1. These are the same as for A3 with
respect to B1.

If 1 ≤ j ≤ n− 1 again, then

n(ej − ej+1, 2 en) = (ej − ej+1, en),(20.11.21)

which is 0 when j < n− 1 and −1 when j = n− 1. We also have that

n(2 en, ej − ej+1) = 2 (en, ej − ej+1),(20.11.22)
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which is 0 when j < n− 1, and −2 when j = n− 1. This implies that

n(ej − ej+1, 2 en)n(2 en, ej − ej+1)(20.11.23)

is equal to 0 when j < n − 1, and to 2 when j = n − 1. This can be used
to determine the Cartan matrix and Coxeter graph of A2 with respect to B2,
in combination with the earlier remarks about (20.11.16) and (20.11.17). Note
that the Coxeter graphs of A1, A2, and A3 are connected, so that these root
systems are irreducible.

If T is an automorphism of A1 or A3 and T (B1) = B1, then one can check
that T is the identity mapping on V , using the Cartan matrix. Similarly, if T is
an automorphism of A2 and T (B2) = B2, then T is the identity mapping on V .

If n ≥ 2, then the maximal root in A1 with respect to B1 is e1 + e2, which
can be expressed in terms of B1 as in (20.11.9) when n = 2, and (20.11.11)
when n > 2. The maximal short root in A1 with respect to B1 is e1, which
can be expressed in terms of B1 as in (20.11.8). The maximal root in A2 with
respect to B2 is 2 e1, which can be expressed in terms of B2 as in (20.11.13).
The maximal short root in A2 with respect to B2 is e1 + e2 when n ≥ 2, which
can be expressed in terms of B2 as in (20.11.9) when n = 2, and (20.11.11) when
n > 2.

This corresponds to some of the remarks on p64 and Tables 1 and 2 on p66 of
[14], and on p39-40 of [24], as before. Root systems of type BCn are mentioned
in Exercise 3 on p66 of [14], and on p41 of [24].

20.12 Type Dn

Let n ≥ 2 be an integer, and let us take V = Rn again, with its standard inner
product (·, ·) and basis e1, . . . , en. Consider

A = {α ∈ Zn : (α, α) = 2},(20.12.1)

which consists of the vectors of the form ±ej ± el, 1 ≤ j ̸= l ≤ n. Of course, A
is a finite set of nonzero elements of V that spans V .

If α ∈ V and (α, α) = 2, then the reflection σα on V associated to α with
respect to (·, ·) is given by σα(v) = v − (v, α)α, as before. If α ∈ Zn too, then
σα maps Zn onto itself, and hence σα maps A onto itself, because σα is an
orthogonal transformation on V . We also have that σα(v) − v = (v, α)α is an
integer multiple of α when v ∈ Zn in this situation. Thus A is a root system in
V , which is said to be of type Dn. Observe that A is reduced, as a root system
in V .

If α = ej − el for some 1 ≤ j ̸= l ≤ n, then σα(v) interchanges the jth and
lth coordinates of v ∈ V , leaving the other coordinates unchanged, as before.
If α = ±(ej + el) for some 1 ≤ j ̸= l ≤ n, then σα(v) interchanges the jth
and lth coordinates and multiplies them by −1, leaving the other coordinates
unchanged, as in the previous section. The Weyl group of A consists of linear
mappings on V that permute the coordinates of v ∈ V , and multiply an even
number of the coordinates by −1.
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Let Â be the inverse system of A in V with respect to (·, ·), as in Section

19.8. Observe that Â = A in this situation.
It is easy to see that

B = {ej − ej+1 : 1 ≤ j ≤ n− 1} ∪ {en−1 + en}(20.12.2)

is a basis for V , as a vector space over R. One can check that B is a base for
A, as a root system in V . More precisely, if 1 ≤ j < l ≤ n, then

ej − el =

l−1∑
r=j

(er − er+1),(20.12.3)

as usual. If 1 ≤ j < n− 1, then

ej + en =

n−2∑
r=j

(er − er+1) + (en−1 + en).(20.12.4)

If 1 ≤ j < l ≤ n− 1, then

ej + el =

l−1∑
r=j

(er − er+1) +

n−2∑
r=l

2 (er − er+1) + (en−1 − en)

+(en−1 + en),(20.12.5)

where the second sum on the right is interpreted as being equal to 0 when
l = n− 1.

If α, β ∈ A, then n(α, β) ∈ Z can be defined as in Section 19.9, and is equal
to (α, β) in this situation. If 1 ≤ j, l ≤ n− 1, then

n(ej − ej+1, el − el+1) = (ej − ej+1, el − el+1)(20.12.6)

is equal to 2 when j = l, to −1 when |j − l| = 1, and to 0 when |j − l| ≥ 2, as
before. Thus

n(ej − ej+1, el − el+1)n(el − el+1, ej − ej+1)(20.12.7)

is equal to 1 when |j − l| = 1, and to 0 when |j − l| ≥ 2. If 1 ≤ j ≤ n− 1, then

n(ej − ej+1, en−1 + en) = (ej − ej+1, en−1 + en)(20.12.8)

is equal to 0 when j ≤ n−3 and when j = n−1, and equal to −1 when j = n−2.
It follows that

n(ej − ej+1, en−1 + en)n(en−1 + en, ej − ej+1)(20.12.9)

is equal to 0 when j ≤ n − 3 and j = n − 1, and to 1 when j = n − 1. This
can be used to determine Cartan matrix and Coxeter graph of A with respect
to B. If n ≥ 3, then the Coxeter graph is connected, so that A is irreducible in



20.13. COMPLEX NUMBERS 431

V . In this case, the maximal root in A with respect to B is e1 + e2, which can
expressed in terms of B as in (20.12.5).

If n = 2, then A is isomorphic to the sum of two root systems of rank one. If
n = 3, then A is isomorphic to the corresponding root system in Section 20.10.
Thus one often restricts one’s attention to n ≥ 4.

As usual, one can look for automorphisms T of A that map B onto itself,
other than the identity mapping. One way to do this is to interchange en−1−en
with en−1 + en, while fixing the other elements of B. If n = 4, then one can
permute any of the basis elements e1 − e2, e3 − e4, and e3 + e4.

This corresponds to some remarks on p64 and Tables 1 and 2 on p66 of [14]
again, and on p39-40 of [24].

20.13 Complex numbers

Let V be a vector space over the real numbers of positive finite dimension, and
let (·, ·) be an inner product on V . If α is a nonzero element of V , then let σα
be the reflection on V associated to α with respect to (·, ·). Let β be another
nonzero element of V . If α and β are proportional in V , then σα = σβ on
V . Otherwise, if α and β are not proportional in V , then they span a two-
dimensional linear subspace V0 of V . Note that σα and σβ map V0 onto itself,
as in Section 20.6. Of course, σα and σβ fix every element of the orthogonal
complement of V0 in V .

The complex plane C may be considered as a two-dimensional vector space
over the real numbers. More precisely, C can be identified with R2 in the usual
way, using the real and imaginary parts of a complex number. If u, v ∈ C, then
put

(u, v) = Re(u v),(20.13.1)

which is the real part of u times the complex conjugate of v. This is the standard
inner product on C, as a vector space over R, and which corresponds to the
standard inner product on R2. The norm on C associated to (20.13.1) is the
same as the standard absolute value function | · | on C. Note that

(a u, a v) = |a|2 (u, v)(20.13.2)

for every a, u, v ∈ C. As before, a real-linear mapping from C into itself is a
linear mapping from C into itself, as a vector space over R. Complex conjuga-
tion on C is a real-linear mapping from C into itself that preserves (20.13.2).
This is the same as the reflection on C, as a vector space over R, associated to
a nonzero imaginary number with respect to (20.13.1).

If a is a nonzero complex number, then put

ρa(z) = a (z/a) = (a/a) z(20.13.3)

for every z ∈ C. This defines a real-linear mapping ρa from C into itself, with

ρt a = ρa(20.13.4)
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for every t ∈ R \ {0}. Observe that ρa is an orthogonal transformation on C,
as a vector space over R, with respect to (20.13.1). If α ∈ C \ {0}, then let σα
be the reflection on C, as a vector space over R, associated to α with respect
to (20.13.1). Observe that

ρa = σa i(20.13.5)

for every a ∈ C \ {0}. Equivalently,

σα = ρα i = −ρα(20.13.6)

for every α ∈ C \ {0}. Thus

σα(z) = −ρα(z) = −α (z/α) = −(α/α) z(20.13.7)

for every α ∈ C \ {0} and z ∈ C.
If α, β ∈ C \ {0} and z ∈ C, then

σα(σβ(z)) = −(α/α)σβ(z) = (αβ/(αβ)) z.(20.13.8)

This is related to Exercise 3 on p46 of [14]. This is also related to Weyl groups
of rank two root systems, as in Exercise 4 on p46 of [14], and some remarks on
p27 of [24].

Let α ∈ C \ {0} and z ∈ C be given. Observe that

σα(z)− z = −α (z/α)− z = −α (z/α)− α(z/α)

= −2 Re(z/α)α = −2 (z, α) |α|−2 α.(20.13.9)

Of course, the right side corresponds to the usual expression for reflections with
respect to an inner product.

20.14 Type A2

Some very nice pictures of a root system in the plane that is isomorphic to the
one in Section 20.10 with n = 2 can be found on p44 of [14] and p26 of [24].
This root system can also be described as the set A of cube roots of unity and
their negatives in the complex plane. Remember that points on the unit circle
in C can be expressed as exp(i t) with t ∈ R, using the complex exponential
function. The elements of A can be expressed as exp(i t), where t is an integer
multiple of π/3. In particular, A is a subgroup of the unit circle in C, as a
commutative group with respect to multiplication.

It is well known that

exp(π i/3) = 1/2 + (
√
3/2) i(20.14.1)

and

exp(2π i/3) = −1/2 + (
√
3/2) i.(20.14.2)
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Indeed,

(1/2 + (
√
3/2) i)2 = 1/4− 3/4 + 2 (1/2) (

√
3/2) i(20.14.3)

= −1/2 + (
√
3/2) i

and

(1/2 + (
√
3/2) i)3 = (1/2 + (

√
3/2) i)2 (1/2 + (

√
3/2) i)(20.14.4)

= (−1/2 + (
√
3/2) i) (1/2 + (

√
3/2) i)

= −1/4− 3/4 = −1.

Put α = 1 and β = exp(2π i/3), so that α + β = exp(π i/3), as indicated in
the pictures on p44 of [14] and p26 of [24]. Thus A consists of ±α, ±β, and
±(α + β). Of course, A is a finite set of nonzero elements of C, whose linear
span in C, as a vector space over R, is equal to C.

If γ ∈ C \ {0}, then let σγ be the reflection on C, as a vector space over R,
associated to γ with respect to the standard inner product, as before. Thus one
should check that σγ(A) = A for every γ ∈ A. This is clear from the pictures
in [14, 24], and can be verified using (20.13.7) as well. One should also check
that σγ(z) − z is an integer multiple of γ ∈ A for every z ∈ A, which means
that 2 (z, γ) ∈ Z for every z ∈ A. This can be seen using the expressions for the
elements of A mentioned earlier, or more geometrically.

Clearly A is reduced, as a root system in the plane. It is easy to see that
B = {α, β} is a base for A, as in [14, 24]. If we take n = 2 in Section 20.10, then
we have seen that {e1−e2, e2−e3} is a base for the root system discussed there.
One can check that these root systems are isomorphic, using a linear mapping
which sends one base to the other. Note that the inner product in Section 20.10
corresponds to twice the standard inner product on C in this way.

20.15 Dynkin diagrams

Let V be a vector space over the real numbers of positive finite dimension, and
let A be a root system in V . If α, β ∈ A, then let n(α, β) ∈ Z be as in Section
19.9. Let (·, ·) be an inner product on V that is invariant under the Weyl group
of A, and let ∥ · ∥ be the corresponding norm on V . If α, β ∈ A, then

n(α, β) = 2 (α, β)/∥β∥2,(20.15.1)

as before. In particular, n(α, β) = 0 if and only if (α, β) = 0, which is symmetric
in α and β. Otherwise, if n(β, α) ̸= 0, then

n(α, β)/n(β, α) = ∥α∥2/∥β∥2.(20.15.2)

In this case, ∥α∥ is greater than, equal to, or less than ∥β∥ exactly when (20.15.2)
is greater than, equal to, or less than 1, respectively.

Let B be a base for A. The corresponding Dynkin diagram adds some
information to the Coxeter graph of A with respect to B, so that the Cartan
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matrix of A with respect to B is determined. More precisely, if α and β are
distinct elements of B, and if there is more than one edge between α and β in
the Coxeter graph, then n(α, β), n(β, α) ̸= 0, and (20.15.2) is not equal to 1. In
this situation, one can add a marking to the edges between α and β, to indicate
whether (20.15.2) is greater than or less than 1. This is equivalent to indicating
whether ∥α∥ is greater than or less than ∥β∥, as on p57 of [14] and p39 of [24].

Alternatively, suppose that A is irreducible, so that the Coxeter graph is
connected. As on p38 of [24], one can label each α ∈ B with a positive real
number that is proportional to ∥α∥2. If α and β are distinct elements of B,
and if there is at least one edge between α and β in the Coxeter graph, then
n(α, β), n(β, α) ̸= 0, and (20.15.2) is the same as the ratio of the labels of α and
β. In this case, the number of edges between α and β in the Coxeter graph is
the same as this ratio. Two sets of labels of the elements of B are considered
to be equivalent when they differ by a single positive multiplicative constant.

Let B0 be a nonempty subset of B, and let V0 be the linear subspace spanned
by B0. Thus A0 = A∩V0 is a root system in V0, as in Section 20.6, and Exercise
2 on p54 of [14]. More precisely, B0 is a base for A0. If α ∈ A, then let σα
be the symmetry on V with vector α that maps A onto itself. If α ∈ A0, then
σα maps V0 onto itself, as before. This implies that σα maps A0 onto itself, so
that the restriction of σα to V0 is the symmetry on V0 with vector α that maps
A0 onto itself. If α, β ∈ A0, then it follows that the analogue of n(α, β) for A0

is the same as for A. Similarly, the restriction of (·, ·) to V0 is invariant under
the Weyl group of A0. The Cartan matrix of A0 with respect to B0 is the same
as the restriction to B0 × B0 of the Cartan matrix of A with respect to B. If
α and β are distinct elements of B0, then the number of edges between α and
β in the Coxeter graph of A0 with respect to B0 is the same as in the Coxeter
graph of A with respect to B. One could also use the same additional markings
or labellings for the Dynkin diagram of A0 with respect to B0 as for A with
respect to B. This corresponds to Exercise 6 on p54 of [14].
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Root systems, 3

21.1 More on type A2

Let (·, ·) be the standard inner product on the complex plane, considered as a
vector space over the real numbers, as in Section 20.13. Also let A2,1 be the
root system in C discussed in Section 20.14, consisting of the cube roots of unity
and their negatives. Equivalently, A2,1 consists of complex numbers of the form
exp(j π i/3), with j ∈ Z. Observe that

exp(π i/3) + exp(2π i/3) =
√
3 i,(21.1.1)

by (20.14.1) and (20.14.2). If j ∈ Z, then it follows that

exp(j π i/3) + exp((j + 1)π i/3) =
√
3 i exp((j − 1)π i/3).(21.1.2)

Put

A2,2 =
√
3 i A2,1 = {

√
3 i z : z ∈ A2,1}.(21.1.3)

This is the same as the set of complex numbers that can be expressed as in
(21.1.2) for some j ∈ Z. It is clear from (21.1.3) that A2,2 is a root system in
C, as a vector space over R, that is isomorphic to A2,1. If w ∈ A2,2, then it is
easy to see that

w/w ∈ A2,1.(21.1.4)

Of course, this also holds when w ∈ A2,1.
If γ ∈ C \ {0}, then let σγ be the reflection on C, as a vector space over

R, associated to γ with respect to (·, ·), as before. Thus σγ(z) = −(γ/γ) z for
every z ∈ C, as in Section 20.13. If γ ∈ A2,1 or A2,2, then one can check that
σγ maps A2,1 and A2,2 onto themselves, using (21.1.4).

Remember that σγ(z)−z = −2 (z, γ) |γ|−2 γ for every γ ∈ C\{0} and z ∈ C,
as in Section 20.13. Let us check that

2 (z, γ) |γ|−2 = 2 Re(z/γ) ∈ Z(21.1.5)

435
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for every γ, z ∈ A2,1 ∪A2,2. This was already mentioned in Section 20.14 when
γ, z ∈ A2,1. If γ, z ∈ A2,2, then this follows from the previous case, because γ
and z are products of elements of A2,1 by

√
3 i. If γ ∈ A2,1 and z ∈ A2,2, then

(21.1.5) can be reduced to the case where z ∈ A2,1, because elements of A2,2

can be expressed as sums of elements of A2,1, as in (21.1.2). The case where
γ ∈ A2,2 and z ∈ A2,1 is a more precise version of this, because of the additional
factor of |γ|−2 = 1/3. If γ =

√
3 i and z ∈ A2,1, then (21.1.5) can be verified

directly. Otherwise, if γ is the product of
√
3 i and any element of A2,1, then

one can reduce to the case where γ =
√
3 i.

21.2 Type G2

Some very nice pictures can be found on p44 of [14] and p27 of [24]. Let us
continue with the notation in the previous section, and put

A = A2,1 ∪A2,2.(21.2.1)

It is easy to see that this defines a root system in the complex plane, as a vector
space over the real numbers, using the remarks in the previous section. This
root system is said to be of type G2, and this description of it corresponds to
the one on p40 of [24]. More precisely, A is reduced as a root system in C.

Put α = 1 ∈ A2,1 and

β =
√
3 i exp(π i/3) =

√
3 i (1/2 + (

√
3/2) i) = −3/2 + (

√
3/2) i,(21.2.2)

which is an element of A2,2. Note that this choice of α is the same as in Section
20.14, but this choice of β is different. Of course, B = {α, β} is a basis for C as
a vector space over R, and in fact it is a base for A, as in [14, 24]. Indeed,

β + α = −1/2 + (
√
3/2) i = exp(2π i/3)(21.2.3)

and
β + 2α = 1/2 + (

√
3/2) i = exp(π i/3).(21.2.4)

Similarly,

β + 3α = 3/2 + (
√
3/2) i =

√
3 i (1/2− (

√
3/2) i)(21.2.5)

=
√
3 i exp(−π i/3).

We also have that
2β + 3α =

√
3 i.(21.2.6)

These expressions for elements of A are indicated in the picture on p27 of [24],
and the other elements of A can be obtained by multiplying by −1.

If z, w ∈ A, then n(z, w) = 2 (z, w) |w|−2 ∈ Z, as in Section 19.9. Observe
that

n(α, β) = 2 (α, β) |β|−2 = 2 Re(αβ) |β|−2 = −1(21.2.7)
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and
n(β, α) = 2 (α, β) |α|−2 = −3.(21.2.8)

Thus the number of edges between α and β in the Coxeter graph of A with
respect to B is

n(α, β)n(β, α) = 3.(21.2.9)

The corresponding Dynkin diagram may be depicted as on p38 of [24], where α
has the label |α|2 = 1 and β has the label |β|2 = 3. Alternatively, the Dynkin
diagram may be depicted as on p57f of [14] and p39 of [24], where the edges are
marked to indicate that |α| < |β|.

Let T be a one-to-one linear mapping from C onto itself, as a vector space
overR. Remember that T is an automorphism of the root system A if T (A) = A.
In this case, if T maps B onto itself, then T preserves the Cartan matrix of A
with respect to B, as in Section 20.2. It is easy to see that this only happens
when T is the identity mapping on C in this situation. This is mentioned in
Table 1 on p66 of [14], and on p39 of [24].

If z ∈ C \ {0}, then put ẑ = 2 z/|z|2, as in (19.7.9). If E ⊆ C \ {0}, then let

Ê be the set of ẑ, z ∈ E. Thus

Â2,1 = 2A2,1 = {2 z : z ∈ A2,1}(21.2.10)

and
Â2,2 = (2/3)A2,2 = {(2/3) z : z ∈ A2,2}.(21.2.11)

Observe that
Â2,1 = (2/

√
3) i A2,2(21.2.12)

and
Â2,2 = (2/

√
3) i A2,1.(21.2.13)

This implies that
Â = Â2,1 ∪ Â2,2 = (2/

√
3) i A.(21.2.14)

Remember that Â is the inverse system of A in C with respect to (·, ·), as in

Section 19.8. It follows that Â is isomorphic to A, as root systems in C. This
corresponds to part of Exercise 5 on p63 of [14].

21.3 Another description

Let us now consider the description on p65 of [14], of a root system that is
isomorphic to the one in the previous section. Let (·, ·) be the standard inner
product on R3, and let e1, e2, and e3 be the standard basis vectors in R3. Put

V = {v ∈ R3 : v1 + v2 + v3 = 0},(21.3.1)

which is the two-dimensional linear subspace of R3 orthogonal to e1 + e2 + e3.
Consider

A1 = {α ∈ V ∩ Z3 : (α, α) = 2},(21.3.2)

A2 = {α ∈ V ∩ Z3 : (α, α) = 6},(21.3.3)
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and

A = A1 ∪A2.(21.3.4)

Thus V is the same as in Section 20.10 with n = 2, and A1 is the root system
discussed there in this case. As before, the elements of A1 are of the form
ej − el, where 1 ≤ j ̸= l ≤ 3. Observe that α ∈ Z3 satisfies (α, α) = 6 exactly
when two of the coordinates of α are ±1, and the third coordinate is ±2. It
follows that α ∈ A2 exactly when one of the coordinates of α is 2 and the
other two coordinates are −1, or one of the coordinates is −2 and the other two
coordinates are 1. In particular, A is a finite set of nonzero elements of V whose
linear span is V .

If α is a nonzero element ofR3, then let σα be the reflection onR3 associated
to α with respect to (·, ·), as usual. If α ∈ V , then

σα(V ) = V,(21.3.5)

as in Section 20.6. Suppose for the moment that (α, α) = 2, so that σα(v) =
v− (v, α)α for every v ∈ R3. If α ∈ Z3, then σα(Z

3) = Z3, as in Section 20.10.
If α ∈ V ∩Z3, then it follows that σα maps A1 and A2 onto themselves, because
σα is an orthogonal transformation on R3. Of course, this implies that σα maps
A onto itself. If α, v ∈ Z3, then (v, α) ∈ Z, so that σα(v) − v = (v, α)α is an
integer multiple of α. If α = ej − el, 1 ≤ j ̸= l ≤ 3, then σα(v) interchanges the
jth and lth coordinates of v, without affecting the other coordinate, as before.

Suppose now that α ∈ A2, so that

σα(v) = v − (v, α)α/3(21.3.6)

for every v ∈ R3. If β ∈ A, then we would like to check that

(β, α)/3 ∈ Z.(21.3.7)

Suppose first that β ∈ A1, so that β = ej − el for some 1 ≤ j ̸= l ≤ n. If
αj = αl, then (β, α) = 0. Otherwise, if αj ̸= αl, then one can check that

(β, α) = ±3.(21.3.8)

If β = ±α ∈ A2, then (21.3.7) clearly holds. If β ∈ A2 and β ̸= ±α, then one
can verify that (21.3.8) holds.

It follows from (21.3.7) that σα maps A into Z3. This implies that σα maps
A1 and A2 into themselves, because σα is an orthogonal transformation on R3

that maps V to itself. This means that σα maps A1 and A2 onto themselves,
because σα is its own inverse, so that σα maps A onto itself as well. If β ∈ A,
then σα(β)− β is an integer multiple of α, by (21.3.7). This shows that A is a
root system in V , and it is easy to see that A is reduced.

As a base for A, one can take

{e1 − e2, −2 e1 + e2 + e3},(21.3.9)
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as on p65 of [14]. Indeed,

(e1 − e2) + (−2 e1 + e2 + e3) = e3 − e1,(21.3.10)

2 (e1 − e2) + (−2 e1 + e2 + e3) = e3 − e2,(21.3.11)

3 (e1 − e2) + (−2 e1 + e2 + e3) = e1 − 2 e2 + e3,(21.3.12)

3 (e1 − e2) + 2 (−2 e1 + e2 + e3) = −e1 − e2 + 2 e3.(21.3.13)

Note that (21.3.13) is the maximal root in A with respect to (21.3.9), and that
(21.3.11) is the maximal short root, as in Table 2 of p66 of [14].

If z, w ∈ A, then n(z, w) = 2 (z, w) (w,w)−2 ∈ Z, as in Section 19.9. It is
easy to see that

n(e1 − e2,−2 e1 + e2 + e3) = −1,(21.3.14)

n(−2 e1 + e2 + e3, e1 − e2) = −3.(21.3.15)

In particular, their product is 3, which is the number of edges between the two
vertices in the Coxeter graph of A.

Consider the linear mapping from the complex plane, as a vector space over
the real numbers, onto V which sends the elements α and β of the base in the
previous section to the first and second elements of (21.3.9), respectively. One
can check that this defines an isomorphism between the root systems discussed
in this and the previous section. More precisely, the subsystems A2,1 and A2,2

in the previous section correspond to A1 and A2 in this section. This is related
to Exercise 4 on p67 of [14]. Observe that the restriction to V of the standard
inner product on R corresponds to twice the standard inner product on C with
respect to this isomorphism.

21.4 Type F4

In this section, we take V = R4, with its standard inner product (·, ·) and basis
e1, e2, e3, e4. Put

A1 = {α ∈ Z4 : (α, α) = 1 or 2},(21.4.1)

as in Section 20.11, with n = 4. The elements of A1 with (α, α) = 1 are of the
form ±ej for some j = 1, 2, 3, 4, and the elements of A1 with (α, α) = 2 are of
the form ±ej ± el for some 1 ≤ j ̸= l ≤ n, as before. We have seen that A1 is a
reduced root system in V .

Let L̃4 be the subgroup of R4, as a commutative group with respect to
addition, generated by e1, e2, e3, e4, and (1/2) (e1 + e2 + e3 + e4). Of course,

L4 = Z4 is the subgroup of R4 generated by e1, e2, e3, e4, so that L̃4 is the same
as the subgroup ofR4 generated by Z4 and (1/2) (e1+e2+e3+e4). Equivalently,

L̃4 = Z4 ∪ (Z4 + (1/2, 1/2, 1/2, 1/2)).(21.4.2)

Consider
A = {α ∈ L̃4 : (α, α) = 1 or 2}.(21.4.3)
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Note that

A ∩ Zn = A1.(21.4.4)

One can check that

A ∩ (Z4 + (1/2, 1/2, 1/2, 1/2))(21.4.5)

= {α ∈ R4 : αj = ±1/2 for every j = 1, 2, 3, 4}.

More precisely, it is easy to see that if αj = ±1/2 for each j = 1, 2, 3, 4, then

α ∈ L̃4 and (α, α) = 1, so that α ∈ A. If α ∈ Z4 + (1/2, 1/2, 1/2, 1/2) and
αj ̸= ±1/2 for some j = 1, 2, 3, 4, then one can verify that (α, α) ≥ 3.

Of course, A is a finite set of nonzero elements of V , whose linear span is
V . If α ∈ V \ {0}, then let σα be the reflection on V associated to α with
respect to (·, ·), as usual. Suppose first that α = ±ej for some j = 1, 2, 3, 4,
so that σα = σej multiplies the jth coordinate of v ∈ V by −1, and leaves the

other coordinates of v unchanged. Clearly σα maps Z4, L̃4, A1, and A onto
themselves. If v ∈ L̃4, then 2 vj ∈ Z, and σα(v) − v = −2 vj ej is an integer
multiple of α.

Suppose now that α = ±ej ± el for some 1 ≤ j ̸= l ≤ 4, so that σα(v) =
v − (v, α)α for every v ∈ V . More precisely, we have seen that σα interchanges
the jth and lth coordinates of v ∈ V in this case, and may multiply them by
−1, while leaving the other coordinates of v unchanged. In particular, σα maps
Z4, L̃4, A1, and A onto themselves. If v ∈ L̃4, then one can check that

(v, α) ∈ Z.(21.4.6)

This implies that σα(v)−v = −(v, α)α is an integer multiple of α when v ∈ L̃4,
and in particular when v ∈ A.

Suppose that α is an element of (21.4.5), so that αj = ±1/2 for each j =

1, 2, 3, 4. If v ∈ L̃4, then one can verify that

2 (v, α) ∈ Z.(21.4.7)

More precisely, if v ∈ Z4, then this follows from the fact that 2α ∈ Z4. If
v = (1/2, 1/2, 1/2, 1/2), then (21.4.7) can be checked directly. This implies that

(21.4.7) holds for all v ∈ L̃4.
Note that σα(v) = v − 2 (v, α)α for every v ∈ V , because (α, α) = 1. It

follows that σα maps L̃4 into itself, by (21.4.7). Thus σα maps L̃4 onto itself,
because σα is its own inverse on V . This means that σα maps A onto itself,
because σα is an orthogonal transformation on V . If v ∈ L̃4, then σα(v)− v is
an integer multiple of α, by (21.4.7).

This shows that A is a root system in V , which is said to be of type F4.
This follows the descriptions on p65 of [14], and p40 of [24]. Observe that A is
reduced, as a root system in V .

Put

V0 = {v ∈ V : v1 = 0}(21.4.8)
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and
A0 = A ∩ V0 = A1 ∩ V0.(21.4.9)

Observe that A0 is a reduced root system in V0, which is isomorphic to the
analogue of A1 in R3.

Put
B = {e2 − e3, e3 − e4, e4, (1/2) (e1 − e2 − e3 − e4)}(21.4.10)

and
B0 = B ∩ V0 = {e2 − e3, e3 − e4, e4}.(21.4.11)

It is easy to see that B0 is a basis for V0. In fact, B0 is a base for A0 as a root
system in V0, as in Section 20.11. We also have that B is a basis for V , because
B0 is a basis for V0. One can check that B is a base for A, as in [14, 24].

More precisely, note that e2 and e3 can be expressed as sums of elements of
B0, as in Section 20.11. Using this, one can express any element of A of the
form (1/2) (e1 ± e2 ± e3 ± e4) as (1/2) (e1 − e2 − e3 − e4) plus possibly some
elements of B0. If l = 2, 3, 4, then e1 − el can be expressed as the sum of

2 ((1/2) (e1 − e2 − e3 − e4)) = e1 − e2 − e3 − e4(21.4.12)

and elements of B0. Similarly, one can use this to express e1 and e1 + el,
l = 2, 3, 4, as sums of (21.4.12) and elements of B0.

The maximal root in A with respect to B is

2 (e2 − e3) + 3 (e3 − e4) + 4 e4 + 2 ((1/2) (e1 − e2 − e3 − e4))(21.4.13)

= e1 + e2,

as in Table 2 on p66 of [14]. The maximal short root is

(e2 − e3) + 2 (e3 − e4) + 3 e4 + 2 ((1/2) (e1 − e2 − e3 − e4))(21.4.14)

= e1.

If α, β ∈ A, then n(α, β) = 2 (α, β) (β, β)−1 ∈ Z, as in Section 19.9. If
α, β ∈ B and α ̸= β, then the number of edges between α and β in the Coxeter
graph of A with respect to B is n(α, β)n(β, α). In particular, if (α, β) = 0, then
n(α, β) = n(β, α) = 0, and there are no edges between α and β in the Coxeter
graph of A with respect to B. Clearly

(e2 − e3, e4) = (e2 − e3, (1/2) (e1 − e2 − e3 − e4))(21.4.15)

= (e3 − e4, (1/2) (e1 − e2 − e3 − e4)) = 0.

Thus there are no edges between e2 − e3 and e4, or between either e2 − e3 or
e3 − e4 and (1/2) (e1 − e2 − e3 − e4) in the Coxeter graph of A with respect to
B.

It is easy to see that

n(e2 − e3, e3 − e4) = n(e3 − e4, e2 − e3) = −1(21.4.16)
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and

n(e4, (1/2) (e1 − e2 − e3 − e4))(21.4.17)

= n((1/2) (e1 − e2 − e3 − e4), e4) = −1.

This implies that there is one edge between e2 − e3 and e3 − e4, and one edge
between e4 and (1/2) (e1− e2− e3− e4), in the Coxeter graph of A with respect
to B.

We also have that
n(e3 − e4, e4) = −2(21.4.18)

and
n(e4, e3 − e4) = −1.(21.4.19)

This means that there are two edges between e3 − e4 and e4 in the Coxeter
graph of A with respect to B. The corresponding Dynkin diagram may be
depicted as on p38 of [24], where e2 − e3 and e3 − e4 are labelled with 2, and
e4 and (1/2) (e1 − e2 − e3 − e4) are labelled with 1. The Dynkin diagram may
be depicted as on p57f of [14] and p39 of [24] as well, where the edges between
e3 − e4 and e4 are marked to indicate that (e3 − e4, e3 − e4) = 2 > 1 = (e4, e4).

Let T be an automorphism of A as a root system, so that T is a one-to-one
linear mapping from V onto itself that maps A onto itself. If T (B) = B, then
T preserves the Cartan matrix of A with respect to B, as in Section 20.2. It it
easy to see that this can only happen when T is the identity mapping on V , as
indicated in Table 1 on p66 of [14], and on p39 of [24].

21.5 Inverse systems

Let V be a vector space over the real numbers of positive finite dimension, and
let A be a root system in V . If α, β ∈ A, then we let n(α, β) ∈ Z be as in Section
19.9, as usual. Let (·, ·) be an inner product on V that is invariant under the
Weyl group of A, so that n(α, β) = 2 (α, β) (β, β)−1 for every α, β ∈ A. If
v ∈ V \ {0}, then put v̂ = 2 v (v, v)−1, as in (19.7.9). Note that

(v̂, v̂) = 4/(v, v).(21.5.1)

Remember that Â = {α̂ : α ∈ A} is the inverse system of A in V with

respect to (·, ·), as in Section 19.8. If α, β ∈ A, then α̂, β̂ ∈ Â, and n(α̂, β̂) can
be defined as before. Observe that

n(α̂, β̂) = 2 (α̂, β̂) (β̂, β̂)−1 = 2 (α, β) (α, α)−1 = n(β, α).(21.5.2)

It follows that
n(α̂, β̂)n(β̂, α̂) = n(α, β)n(β, α)(21.5.3)

for every α, β ∈ A. Of course, if (α, α) = (β, β), then

n(α̂, β̂) = n(α, β).(21.5.4)
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Let B be a base for A. Suppose for the moment that A is reduced, so that
B̂ = {α̂ : α ∈ B} is a base for Â, as in Section 19.13. In this case, the Coxeter

graph of A with respect to B corresponds to the Coxeter graph of Â with respect
to B̂ under the mapping α 7→ α̂, by (21.5.3). If A is not reduced, then one can

get a base for Â from B as in Section 19.13. One can check that the Coxeter
graphs for A and Â with respect to these bases correspond to each other in this
situation as well.

If the elements of A have the same norm with respect to (·, ·), then there is

a dilation on V that sends A onto Â. This dilation sends α ∈ A to α̂ ∈ Â.

If A is as in Section 21.2, then the elements of A do not all have the same
norm, but we saw that Â is isomorphic to A. Alternatively, let B = {α, β} be

a base for A, so that B̂ = {α̂, β̂} is a base for Â. Consider the mapping ϕ from

B onto B̂ defined by ϕ(α) = β̂ and ϕ(β) = α̂. Using ϕ, the Cartan matrix of

A with respect to B corresponds to the Cartan matrix of Â with respect to B̂,
because of (21.5.2). Thus ϕ extends to an isomorphism between A and Â, as in
Section 20.2.

Let us now return to the situation considered in the previous section. Note
that v̂ = 2 v when v ∈ V satisfies (v, v) = 1, and v̂ = v when (v, v) = 2. If

A1 is as in (21.4.1), then its inverse system Â1 in V = R4 with respect to the
standard inner product consists of elements of the form ±2 ej for j = 1, 2, 3, 4
and ±ej ± el for 1 ≤ j ̸= l ≤ 4, as in Section 20.11. If A is as in (21.4.3),

then the inverse system Â of A in V with respect to the standard inner product
consists of the elements of Â1, and elements of the form ±e1 ± e2 ± e3 ± e4.

Let B be the base for A in (21.4.10). The corresponding base B̂ for Â is
given by

B̂ = {e2 − e3, e3 − e4, 2 e4, e1 − e2 − e3 − e4}.(21.5.5)

Let ϕ be the one-to-one mapping from B onto B̂ that interchanges the ordering
in these lists. One can verify that the Cartan matrix of A with respect to B
corresponds to the Cartan matrix of Â with respect to B̂, using ϕ. This means
that ϕ extends to an isomorphism between A and Â, as in Section 20.2 again.

This corresponds to part of Exercise 5 on p63 of [14]. Of course, the Dynkin
diagram of the inverse system can be obtained by changing the labels on the
vertices, or the markings of the multiple edges. In the previous two cases, the
resulting Dynkin diagram is easily seen to be isomorphic to the initial one.

21.6 Type E8

Let us take V = R8, with its standard inner product (·, ·) and basis e1, . . . , e8.
Put

A1 = {α ∈ Z8 : (α, α) = 2},(21.6.1)

as in Section 20.12, with n = 8. The elements of A1 are of the form ±ej ± el
with 1 ≤ j ̸= l ≤ 8, as before. Remember that A is a reduced root system in V .
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Of course, L8 = Z8 is the subgroup of R8, as a commutative group with
respect to addition, generated by e1, . . . , e8. Let L̃8 be the subgroup of R8

generated by e1, . . . , e8 and (1/2) (e1 + · · ·+ e8). Thus

L̃8 = Z8 ∪ (Z8 + (1/2, . . . , 1/2)).(21.6.2)

If α ∈ R8 satisfies αj = ±1/2 for every j = 1, . . . , 8, then α is an element of
Z8 + (1/2, . . . , 1/2) and (α, α) = 2. If α ∈ Z8 + (1/2, . . . , 1/2) and αj ̸= ±1/2
for some j = 1, . . . , 8, then it is easy to see that (α, α) ≥ 4.

Let L8,e be the set of v ∈ Z8 such that

8∑
j=1

vj ∈ 2Z,(21.6.3)

and let L̃8,e be the set of v ∈ L̃8 such that (21.6.3) holds. These are subgroups

of Z8 and L̃8, respectively. Note that

(1/2) (e1 + · · ·+ e8) ∈ L̃8,e,(21.6.4)

because the sum of its coordinates is 4. It follows that

L̃8,e = L8,e ∪ (L8,e + (1/2, . . . , 1/2)).(21.6.5)

We also have that A1 ⊆ L8,e.
Suppose that α ∈ R8 satisfies αj = ±1/2 for each j = 1, . . . , 8, and let r be

the number of j such that αj = 1/2. In this case,

8∑
j=1

αj = (1/2) (r − (8− r)) = r − 4.(21.6.6)

This means that α ∈ L̃8,e exactly when r is even.
Consider

A = {α ∈ L̃8,e : (α, α) = 2}.(21.6.7)

Observe that
A ∩ L8,e = A1.(21.6.8)

Using the previous remarks, we get that α ∈ A ∩ (L8,e + (1/2, . . . , 1/2)) if and
only if αj = ±1/2 for every j = 1, . . . , 8, and αj = 1/2 for an even number of j.
Clearly A is a finite set of nonzero elements of V whose linear span is V .

Let us check that
(v, w) ∈ Z(21.6.9)

for every v, w ∈ L̃8,e. Of course, (21.6.9) holds when v, w ∈ Z8. If w =
(1/2, . . . , 1/2), then (21.6.9) holds for every v ∈ L8,e, by (21.6.3). If v =
(1/2, . . . , 1/2) as well, then (v, w) = 2. It follows that (21.6.9) holds for ev-

ery v, w ∈ L̃8,e, by (21.6.5).
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If α ∈ V satisfies (α, α) = 2, then the reflection σα on V associated to α
with respect to (·, ·) is given by σα(v) = v − (v, α)α, as before. If α ∈ A, then

σα maps L̃8,e into itself, because of (21.6.9). This implies that σα maps L̃8,e

onto itself, because σα is its own inverse. It follows that σα maps A onto itself,
because σα is an orthogonal transformation on V . If v ∈ L̃8,e, then σα(v)− v is
an integer multiple of α, by (21.6.9).

Thus A is a root system in V , which is said to be of type E8. This follows
the descriptions on p65 of [14], and p41 of [24]. Note that A is reduced, as a
root system in V .

Put
V0 = {v ∈ V : v8 = 0}(21.6.10)

and
A0 = A ∩ V0.(21.6.11)

Equivalently,
A0 = A1 ∩ V0,(21.6.12)

because L̃8,e ∩ V0 = L8,e ∩ V0. This is a reduced root system in V0, which is
isomorphic to the one in Section 20.12 with n = 7.

Put

B = {(1/2) (e1 + e8 − (e2 + · · ·+ e7)), e1 + e2, e2 − e1,(21.6.13)

e3 − e2, e4 − e3, e5 − e4, e6 − e5, e7 − e6}

and

B0 = B ∩ V0 = {e1 + e2, e2 − e1, e3 − e2, e4 − e3,(21.6.14)

e5 − e4, e6 − e5, e7 − e6}.

Observe that B0 is a basis for V0. More precisely, B0 is a base for A0, as a root
system in V0. This is similar to the base discussed in Section 20.12, with n = 7,
ordering the standard basis vectors in V0 the other way. If 1 ≤ l < j ≤ 7, then
ej − el and ej + el can be expressed as sums of elements of B0, as before.

It is easy to see that B is a basis for V , because B0 is a basis for V0. In
fact, B is a base for A, as on p65 of [14]. More precisely, suppose first that
α ∈ A satisfies αj = ±1/2 for j = 1, . . . , 7, and α8 = 1/2. One can express α as
(1/2) (e1 + e8 − (e2 + · · ·+ e7)) plus possibly some elements elements of B0.

One can express e8 − e7 as the sum of

2 ((1/2) (e1 + e8 − (e2 + · · · e7))) = e8 + e1 − (e2 + · · ·+ e7)(21.6.15)

and elements of B0. Using this, one can express e8 − el as the sum of (21.6.15)
and elements of B0 for every l = 1, . . . , 7. One can use this to express e8 + el as
the sum of (21.6.15) and elements of B0 for every l = 1, . . . , 7.

The maximal root in A with respect to B is

2 ((1/2) (e1 + e8 − (e2 + · · ·+ e7))) + 3 (e1 + e2) + 4 (e2 − e1)(21.6.16)

+6 (e3 − e2) + 5 (e4 − e3) + 4 (e5 − e4) + 3 (e6 − e5) + 2 (e7 − e6)

= e8 + e7,
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as in Table 2 on p66 of [14].
If α, β ∈ A, then let n(α, β) ∈ Z be as in Section 19.9, so that n(α, β) =

2 (α, β) (β, β)−1 = (α, β). If α, β ∈ B and α ̸= β, then n(α, β)n(β, α) = (α, β)2

is the number of edges between α and β in the Coxeter graph of A with respect
to B. Observe that

((1/2) (e1 + e8 − (e2 + · · ·+ e7)), e2 − e1) = −1.(21.6.17)

However, (1/2) (e1 + e8 − (e2 + · · · + e7)) is orthogonal to the elements of B
other than e2 − e1 and itself.

The inner products between distinct elements of B0 can be determined as in
Section 20.12. More precisely,

(e1 + e2, e3 − e2) = −1,(21.6.18)

and e1 + e2 is orthogonal to the elements of B0 other than e3 − e2 and itself.
Similarly,

(ej − ej−1, el − el−1)(21.6.19)

is equal to −1 when |j − l| = 1, and to 0 when |j − l| ≥ 2. The Coxeter graph
or Dynkin diagram of A can be depicted as on p58 of [14], or p37, 39 of [24].

Let T be an automorphism of A as a root system in V , and suppose that
T (B) = B. This implies that T preserves the Cartan matrix of A with respect to
B, as in Section 20.2, so that T preserves the Coxeter graph of A with respect
to B too. One can check that this can only happen when T is the identity
mapping on V , as indicated in Table 1 on p66 of [14], and on p39 of [24].

21.7 Type E7

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Observe that

(1/2) (e1 + e8 − (e2 + · · ·+ e7)) ∈ Z8 + (1/2, . . . , 1/2) ⊆ L̃8,(21.7.1)

so that
Z8 + (1/2,−1/2, . . . ,−1/2, 1/2) = Z8 + (1/2, . . . , 1/2).(21.7.2)

Thus
L̃8 = Z8 ∪ (Z8 + (1/2,−1/2, . . . ,−1/2, 1/2)),(21.7.3)

which is the same as the subgroup of R8, as a commutative group with respect
to addition, generated by e1, . . . , e8 and (1/2) (e1 + e8 − (e2 + · · ·+ e7)). More
precisely,

(1/2) (e1 + e8 − (e2 + · · ·+ e7)) ∈ L̃8,e,(21.7.4)

with the sum of its coordinates equal to −2, and in fact

(1/2) (e1 + e8 − (e2 + · · ·+ e7)) ∈ L8,e + (1/2, . . . , 1/2).(21.7.5)
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This implies that

L8,e + (1/2,−1/2, . . . ,−1/2, 1/2) = L8,e + (1/2, . . . , 1/2),(21.7.6)

so that

L̃8,e = L8,e ∪ (L8,e + (1/2,−1/2, . . . ,−1/2, 1/2)).(21.7.7)

Remember that V = R8, and put

V7 = {v ∈ V : v7 = −v8}.(21.7.8)

Note that (1/2) (e1 + e8 − (e2 + · · ·+ e7)) ∈ V7. The elements of

A1 ∩ V7 = {α ∈ Z8 ∩ V7 : (α, α) = 2}(21.7.9)

are of the form ±ej ± el with 1 ≤ j ̸= l ≤ 6, or ±(e7 − e8). It is easy to see that
A1 ∩ V7 spans V7. In fact, A1 ∩ V7 is a reduced root system in V7, as in Section
20.6.

Consider

A7 = A ∩ V7 = {α ∈ L̃8,e ∩ V7 : (α, α) = 2}.(21.7.10)

Clearly

A7 ∩ L8,e = (A ∩ L8,e) ∩ V7 = A1 ∩ V7.(21.7.11)

Observe that

A7 ∩ (L8,e + (1/2,−1/2, . . . ,−1/2, 1/2))(21.7.12)

= (A ∩ (L8,e + (1/2, . . . , 1/2))) ∩ V7

consists of α ∈ R8 such that αj = ±1/2 for every j = 1, . . . , 8, αj = 1/2 for an
even number of j, and α7 = −α8. Of course, V7 is spanned by A7, because V7
is spanned by A1 ∩ V7. Thus A7 is a root system in V7, as in Section 20.6. This
root system is said to be of type E7. Note that A7 is reduced, as a root system
in V7.

Put

V7,0 = V7 ∩ V0 = {v ∈ V : v7 = v8 = 0}(21.7.13)

and

A7,0 = A7 ∩ V7,0 = A ∩ V7,0.(21.7.14)

Equivalently,

A7,0 = A1 ∩ V7,0,(21.7.15)

because L̃8,e ∩ V7,0 = L8,e ∩ V7,0. This is a reduced root system in V7,0, which
is isomorphic to the one in Section 20.12 with n = 6.

Put

B7 = {(1/2) (e1 + e8 − (e2 + · · ·+ e7)), e1 + e2,(21.7.16)

e2 − e1, e3 − e2, e4 − e3, e5 − e4, e6 − e5},
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and
B7,0 = {e1 + e2, e2 − e1, e3 − e2, e4 − e3, e5 − e4, e6 − e5}.(21.7.17)

Thus B, B0 in the previous section can be expressed as

B = B7 ∪ {e7 − e6}, B0 = B7,0 ∪ {e7 − e6}.(21.7.18)

It is easy to see that B7,0 is a basis for V7,0, and in fact B7,0 is a base for A7,0.
This is similar to the base discussed in Section 20.12, ordering the standard
basis vectors in V7,0 the other way, as before.

Observe that B7 is a basis for V7, because B7,0 is a basis for V7,0. More
precisely, B7 is a base for A7, because B is a base for A, as in Section 20.15.
This is how the root system of type E7 is described on p65 of [14], and p41 of
[24].

The maximal root in A7 with respect to B7 is

2 ((1/2) (e1 + e8 − (e2 + · · ·+ e7))) + 2 (e1 + e2) + 3 (e2 − e1)(21.7.19)

+4 (e3 − e2) + 3 (e4 − e3) + 2 (e5 − e4) + (e6 − e5)

= e8 − e7,

as in Table 2 on p66 of [14].
The Coxeter graph of A7 with respect to B7 corresponds to a subgraph of

the Coxeter graph of A with respect to B, and similarly for the Dynkin diagram,
as in Section 20.15. These can be depicted as on p58 of [14], or p37, 39 of [24].

If T is an automorphism of A7 as a root system in V7, and if T (B7) = B7,
then T preserves the Cartan matrix of A7 with respect to B7, as in Section 20.2.
This implies that T preserves the Coxeter graph of A with respect to B too.
One can verify that this can only happen when T is the identity mapping on
V7, as in Table 1 on p66 of [14], and on p39 of [24].

21.8 Type E6

We continue with the same notation and hypotheses as in the previous two
sections. Remember that V = R8, and put

V6 = {v ∈ V : v6 = v7 = −v8},(21.8.1)

which is a linear subspace of V7. Note that (1/2) (e1+ e8− (e2+ · · ·+ e7)) ∈ V6.
Put

V6,0 = V6 ∩ V0 = {v ∈ V : v6 = v7 = v8 = 0},(21.8.2)

which is a linear subspace of V7,0.
The elements of

A1 ∩ V6 = {α ∈ Z8 ∩ V6 : (α, α) = 2}(21.8.3)

are of the form ±ej ± el with 1 ≤ j ̸= l ≤ 5. Thus

A1 ∩ V6 = A1 ∩ V6,0,(21.8.4)
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and the linear span of (21.8.4) is V6,0. More precisely, (21.8.4) is a reduced root
system in V6,0, which is isomorphic to the one in Section 20.12 with n = 5.

Consider
A6 = A ∩ V6 = {α ∈ L̃8,e ∩ V6 : (α, α) = 2}.(21.8.5)

Note that A6 ⊆ A7, and that

A6 ∩ L8,e = (A ∩ L8,e) ∩ V6 = A1 ∩ V6.(21.8.6)

Of course, A6 is the union of (21.8.6) and

A6 ∩ (L8,e + (1/2,−1/2, . . . ,−1/2, 1/2))(21.8.7)

= (A ∩ (L8,e + (1/2, . . . , 1/2))) ∩ V6.

An element α of R8 is in (21.8.7) if and only if αj = ±1/2 for every j =
1, . . . , 8, αj = 1/2 for an even number of j, and α6 = α7 = −α8. In particular,
(1/2) (e1 + e8 − (e2 + · · · + e7)) is an element of (21.8.7). It follows that V6
is spanned by A6, because V6,0 is spanned by (21.8.6), as in the preceding
paragraph. This implies that A6 is a root system in V6, as in Section 20.6. This
root system is reduced, and said to be of type E6.

Put
A6,0 = A6 ∩ V6,0 = A ∩ V6,0.(21.8.8)

Equivalently,
A6,0 = A1 ∩ V6,0,(21.8.9)

because L̃8,e ∩ V6,0 = L8,e ∩ V6,0.
Put

B6 = {(1/2) (e1 + e8 − (e2 + · · ·+ e7)), e1 + e2,(21.8.10)

e2 − e1, e3 − e2, e4 − e3, e5 − e4}

and
B6,0 = {e1 + e2, e2 − e1, e3 − e2, e4 − e3, e5 − e4}.(21.8.11)

This means that

B7 = B6 ∪ {e6 − e5}, B7,0 = B6,0 ∪ {e6 − e5}.(21.8.12)

Observe that B6,0 is a basis for V6,0, and in fact a base for A6,0. This is similar
to the base discussed in Section 20.12, as before.

It is easy to see that B6 is a basis for V6, because B6,0 is a basis for V6,0. In
fact, B6 is a base for A6, because B7 is a base for A7, as in Section 20.15. Of
course, one could also use the fact that B is a base for A here. The root system
of type E6 is described in this way on p65 of [14], and p41 of [24].

The maximal root in A6 with respect to B6 is

(1/2) (e1 + e8 − (e2 + · · ·+ e7)) + 2 (e1 + e2)(21.8.13)

+2 (e2 − e1) + 3 (e3 − e2) + 2 (e4 − e3) + (e5 − e4)

= (1/2) (e1 + e2 + e3 + e4 + e5 − e6 − e7 + e8),
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as in Table 2 on p66 of [14].
The Coxeter graph of A6 with respect to B6 corresponds to a subgraph of the

Coxeter graph of A7 with respect to B7, and similarly for the Dynkin diagram,
as in Section 20.15. One can also look at these in terms of their analogues for A
and B. The Coxeter graph and Dynkin diagram of A6 with respect to B6 may
be depicted as on p58 of [14], or p37, 39 of [24].

If T is an automorphism of A6 as a root system in V6, and T (B6) = B6, then
T preserves the Cartan matrix of A6 with respect to B6, and hence the Coxeter
graph. There is exactly one automorphism T with this property, other than the
identity mapping, which interchanges some elements of B6, and satisfies T 2 = I.
This is mentioned in Table 1 on p66 of [14], and on p39 of [24].

21.9 Irreducible root systems

Let V be a vector space over the real numbers of positive finite dimension, and
let A be an irreducible reduced root system in V . It is well known that A is
isomorphic to one of the root systems that has been described previously. More
precisely, A is isomorphic to one of the following:

a root system of type An, with n ≥ 1, as in Section 20.10;(21.9.1)

a root system of type Bn, with n ≥ 2, as in Section 20.11;(21.9.2)

a root system of type Cn, with n ≥ 3, as in Section 20.11;(21.9.3)

a root system of type Dn, with n ≥ 4, as in Section 20.12;(21.9.4)

a root system of type E6, E7, or E8, as in Sections 21.6 – 21.8;(21.9.5)

a root system of type F4, as in Section 21.4;(21.9.6)

a root system of type G2, as in Sections 21.2 and 21.3.(21.9.7)

Equivalently, if B is a base for A, then the corresponding Dynkin diagram is
isomorphic to one of the Dynkin diagrams in this list. This is the theorem on
p57f of [14], which corresponds to Theorem 4 on p38 of [24]. The restrictions on
n in the first four types ensures that there are no repetitions. If A is irreducible
but not reduced, then it is well known that A is isomorphic to a root system of
type BCn, with n ≥ 1, as in Section 20.11. This corresponds to Exercise 3 on
p66 of [14], and is also mentioned on p41 of [24].

Suppose that A is an irreducible reduced root system again, and let B be
a base for A. If T is an automorphism of A that maps B onto itself, then
T preserves the Cartan matrix of A with respect to B, as in Section 20.2.
Conversely, any one-to-one mapping from B onto itself that preserves the Cartan
matrix corresponds to a unique automorphism T of A that maps B onto itself,
as before. Equivalently, automorphisms of A that map B onto itself correspond
to automorphisms of the Dynkin diagram of A with respect to B.

Remember that there are pairs of vertices in the Coxeter graph of A with
respect to B with multiple edges in the cases (21.9.2), (21.9.3), (21.9.6), and
(21.9.7). In these cases, the only automorphism of the Dynkin diagram is the
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identity mapping, as before. This implies that the automorphism group of A is
the same as the Weyl group of A.

In the cases (21.9.1), (21.9.4), and (21.9.5), there is at most one edge between
any pair of vertices in the Coxeter graph. This means that the Coxeter graph
determines the Cartan matrix of A with respect to B, or equivalently the Dynkin
diagram. In these cases, automorphisms of A that map B onto itself correspond
exactly to automorphisms of the Coxeter graph.

If A is of type A1, E7, or E8, then the only automorphism of the Coxeter
graph is the identity mapping. Thus the automorphism group of A is the same
as the Weyl group of A in these cases.

21.10 Connected Coxeter graphs

Let V be a vector space over the real numbers of positive finite dimension, let
A be a root system in V , and let B be a base for A. Also let (·, ·) be an inner
product on V that is invariant under the Weyl group of A, and let ∥ · ∥ be the
corresponding norm on V . If α ∈ B, then put

eα = α/∥α∥.(21.10.1)

If α, β ∈ B and α ̸= β, then

(eα, eβ) = (α, β) ∥α∥−1 ∥β∥−1 ≤ 0,(21.10.2)

where the second step is as in Section 19.11. In this case,

4 (eα, eβ)
2 = 4 (α, β)2 ∥α∥−2 ∥β∥−2(21.10.3)

is the same as the number of edges between α and β in the Coxeter graph of A
with respect to B, as in Section 20.3.

Now let B be a nonempty finite set, and let Γ be a Coxeter graph, with B as
the set of vertices in Γ. Thus every pair of distinct elements of B is connected
by 0, 1, 2, or 3 edges in Γ. Let V be a vector space over the real numbers, with
dimension equal to the number of elements of B. Suppose that for each α ∈ B,
eα is a nonzero element of V , and that the collection of eα, α ∈ B, is a basis for
V . Under these conditions, there is a unique symmetric bilinear form (v, w) on
V with the following properties. First,

(eα, eα) = 1(21.10.4)

for every α ∈ B. Second, if α, β ∈ B and α ̸= β, then

(eα, eβ) ≤ 0(21.10.5)

and

4 (eα, eβ)
2 = the number of edges between α and β in Γ.(21.10.6)
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We may also be interested in situations where

(v, w) is positive definite on V.(21.10.7)

If Γ is the Coxeter graph of a root system, then we can take eα to be as in
(21.10.1). Thus (21.10.7) holds in this situation, as on p37 of [24]. The prop-
erties of the eα’s in the preceding paragraph, including (21.10.7), correspond
to the definition of an admissible set of vectors in a finite-dimensional inner
product space on p60 of [14].

If Γ is a connected Coxeter graph for which (21.10.7) holds, then it is well
known that Γ isomorphic to the Coxeter graph of one of the root systems (21.9.1)
– (21.9.7). More precisely, the Coxeter graphs associated to root systems of type
Bn and Cn are the same, and otherwise these Coxeter graphs are distinct. In
particular, Coxeter graphs of irreducible root systems are of this form, as in
Theorem 3 on p37 of [24]. This is shown in the proof of the theorem on p57f of
[14]. Using this, it is not difficult to obtain the analogous statement for Dynkin
diagrams, as on p62f of [14], and p39 of [24].

21.11 Lengths in the Weyl group

Let V be a vector space over the real numbers of positive finite dimension, let
A be a reduced root system in V , and let B be a base for A. If α ∈ A, then
σα denotes the symmetry on V with vector α that maps A onto itself, as usual.
Remember that the Weyl groupW of A is generated by the symmetries σβ with
β ∈ B, as in Section 19.14.

Suppose that σ ∈W can be expressed as

σ = σβ1
◦ · · · ◦ σβr

(21.11.1)

for some β1, . . . , βr ∈ B, where r ≥ 0 is as small as possible. In this case, the
expression on the right side of (21.11.1) is said to be reduced, and the length of
σ with respect to B is defined by

length(σ) = r,(21.11.2)

as on p51 of [14]. More precisely, the right side of (21.11.1) is interpreted as
being the identity mapping on V when r = 0, so that length(σ) = 0 exactly
when σ is the identity mapping.

Let A+ = AB,+ be the set of α ∈ A that can be expressed as a linear
combination of elements of B whose coefficients are nonnegative integers, so
that A = A+ ∪ (−A+). If σ ∈W , then put

n(σ) = #{α ∈ A+ : σ(α) ∈ −A+},(21.11.3)

which is to say the number of elements of the set on the right, as on p51 of [14].
Lemma A at the top of p52 of [14] states that

length(σ) = n(σ)(21.11.4)
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for every σ ∈W . Of course, if length(σ) = 0, then σ is the identity mapping on
V , and n(σ) = 0 too.

Suppose now that length(σ) > 0, and that the statement holds for elements
of W with smaller length. Let (21.11.1) be a reduced expression for σ, so that
(21.11.2) holds. Under these conditions, we have that

σ(βr) ∈ −A+,(21.11.5)

as mentioned just after (20.1.8). Equivalently,

(σβ1
◦ · · · ◦ σβr−1

)(βr) ∈ A+,(21.11.6)

because σβr
(βr) = −βr.

Remember that σβr
maps A+ \ {βr} onto itself, as in (19.12.8). Using this,

we get that

n(σβ1 ◦ · · · ◦ σβr−1) = n(σ)− 1.(21.11.7)

More precisely, the number of α ∈ A+ \ {βr} that are mapped into −A+ by
σβ1 ◦ · · · ◦ σβr−1 is the same as for σ, because σβr maps A+ \ {βr} onto itself.
The case where α = βr corresponds to the remarks in the preceding paragraph.

The length of σβ1 ◦ · · · ◦ σβr−1 with respect to B is clearly less than or equal
to r − 1. In fact,

length(σβ1
◦ · · · ◦ σβr−1

) = r − 1 = length(σ)− 1,(21.11.8)

because otherwise σ would have length less than r with respect to B. Arguing
by induction, we have that

length(σβ1
◦ · · · ◦ σβr−1

) = n(σβ1
◦ · · · ◦ σβr−1

).(21.11.9)

Thus (21.11.4) follows from (21.11.7), (21.11.8), and (21.11.9), as desired.
If σ ∈W and β ∈ B, then

n(σ ◦ σβ) = n(σ)± 1.(21.11.10)

Indeed, the number of α ∈ A+ \ {β} that are mapped into −A+ by σ is the
same as for σ ◦ σβ , because σβ maps A \ {β} onto itself, as before. Of course,

(σ ◦ σβ)(β) = σ(σβ(β)) = −σ(β),(21.11.11)

so that exactly one of σ(β) and (σ ◦ σβ)(β) is in A+. This implies (21.11.10).
Exercise 5 on p54 of [14] states that if σ ∈ W can be expressed as the

composition of r symmetries associated to elements of B, then r has the same
parity as length(σ). More precisely, it is easy to see that r has the same parity
as n(σ), by (21.11.11). Thus r has the same parity as length(σ), by (21.11.4).

Exercise 6 on p54 of [14] says that

σ 7→ (−1)length(σ)(21.11.12)
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defines a group homomorphism from W into the multiplicative group {±1}.
This follows from the fact that if σ ∈ W can be expressed as the composition
of r symmetries associated to elements of β, then

(−1)r = (−1)length(σ),(21.11.13)

as in the preceding paragraph. Alternatively, the determinant of any symmetry
on V is equal to −1, so that (21.11.12) is the same as the restriction of the
determinant to W .

21.12 Nonnegative linear functionals

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Note that

length(σ−1) = length(σ)(21.12.1)

for every σ ∈W , because the inverse of a symmetry on V is itself. Similarly,

n(σ−1) = n(σ)(21.12.2)

for every σ ∈ W . This can be verified directly from the definition (21.11.3) of
n(σ), and it is compatible with (21.11.4) and (21.12.1) as well.

Let us say that a linear functional λ on V is nonnegative with respect to B
if

λ(β) ≥ 0 for every β ∈ B.(21.12.3)

Of course, this implies that

λ(α) ≥ 0 for every α ∈ A+.(21.12.4)

Remember that the Weyl chamber associated to B consists of the λ ∈ V ′ such
that λ(β) > 0 for every β ∈ B, as in Section 19.15. The set of linear functionals
on V that are nonnegative with respect to B is the same as the closure in V ′

of the Weyl chamber associated to B. This uses the topology on V ′ that corre-
sponds to the standard topology on a Euclidean space of the same dimension,
using any linear isomorphism.

Suppose that λ ∈ V ′ is nonnegative with respect to B, σ ∈ W , and λ ◦ σ is
nonnegative with respect to B too. Under these conditions, σ can be expressed
as the composition of finitely many symmetries on V with vector in B that map
A onto itself, in such a way that λ is invariant under each of these symmetries.
In particular,

λ ◦ σ = λ.(21.12.5)

This corresponds to Lemma B on p52 of [14].
If the length of σ with respect to B is 0, then σ is the identity mapping

on V , and the statement in the preceding paragraph is trivial. Suppose that
length(σ) > 0, which is the same as saying that length(σ−1) > 0. Thus n(σ−1)
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is positive, by (21.11.4), so that there is an α ∈ A+ such that σ−1(α) ∈ −A+,
by the definition (21.11.3) of n(σ−1). More precisely, there is a β ∈ B such that

σ−1(β) ∈ −A+,(21.12.6)

because otherwise σ−1 would map A+ into itself. Alternatively, this can be
obtained as in (20.1.8).

Because λ ◦ σ is nonnegative with respect to B, we have that

λ(β) = (λ ◦ σ)(σ−1(β)) ≤ 0.(21.12.7)

This implies that
λ(β) = 0,(21.12.8)

because λ(β) ≥ 0, by hypothesis. It follows that

λ ◦ σβ = λ(21.12.9)

on V , because σβ(v)− v is a multiple of β for every v ∈ V .
Let us check that

length(σ−1 ◦ σβ) = length(σ−1)− 1.(21.12.10)

Equivalently, this means that

n(σ−1 ◦ σβ) = n(σ−1)− 1,(21.12.11)

by (21.11.4). Remember that σβ maps A+ \{β} onto itself, as in (19.12.8). One
can use this to get (21.12.11), because of (21.12.6) and the fact that σβ(β) = −β.
Alternatively, if β is obtained from σ−1 as in (20.1.8), then (21.12.10) holds by
construction, as in (21.11.8).

Observe that
λ ◦ (σβ ◦ σ) = (λ ◦ σβ) ◦ σ = λ ◦ σ,(21.12.12)

by (21.12.9). Thus λ ◦ (σβ ◦ σ) is nonnegative with respect to B, by hypothesis.
We also have that

length(σβ ◦ σ) = length(σ)− 1,(21.12.13)

by (21.12.1), (21.12.10), and the fact that σβ is its own inverse. This permits
us to use induction to obtain the initial statement about σ.

If λ is strictly positive on B, then σ has to be the identity mapping on
V . More precisely, (21.12.7) cannot hold in this situation. This corresponds to
Exercise 12 on p55 of [14].

Alternatively, if λ is strictly positive on B, then B is the same as the base
Bλ for A associated to λ as in Section 19.11. If σ ∈W , then σ(B) is a base for
A too. If λ◦σ is strictly positive on B, then λ is strictly positive on σ(B). This
implies that σ(B) = Bλ, as before, so that σ(B) = B. It follows that σ is the
identity mapping on V , as in Section 20.1.

Remember that τ ∈ V ′ is said to be regular with respect to A if τ(α) ̸= 0
for each α ∈ A, as in Section 19.15. In this case, there is a unique base Bτ for
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A on which τ is strictly positive, as in Section 19.11. If σ ∈ W and τ ◦ σ = τ ,
then τ is strictly positive on σ(Bτ ), so that σ(Bτ ) = Bτ . This implies that σ is
the identity mapping on V , as before.

Let (·, ·) be an inner product on V that is invariant under W . If u ∈ V , then
let µu(v) = (v, u) be the corresponding linear functional on V with respect to
(·, ·). If σ is an orthogonal transformation on V with respect to (·, ·), then

µu(σ(v)) = (σ(v), u) = (v, σ−1(u)) = µσ−1(u)(v)(21.12.14)

for every v ∈ V , so that µu ◦ σ = µσ−1(u) on V . In particular, this holds when
σ ∈W . If σ(u) = u, then σ−1(u) = u, and µu ◦ σ = µu.

Note that µu is regular with respect to A exactly when u is not orthogonal
to any element of A with respect to (·, ·). In this case, if σ(u) = u, then we get
that σ is the identity mapping on V , because µu ◦ σ = σ, as before.

If σ ∈ W is a reflection on V with respect to (·, ·), then σ is the reflection
associated to an element of A, as in Exercise 13 on p55 of [14]. To see this,
it suffices to show that the hyperplane in V of vectors fixed by σ is contained
in the hyperplane of vectors fixed by σα for some α ∈ A. Otherwise, for each
α ∈ A, the intersection of the hyperplane in V of vectors fixed by σ with the
hyperplane of vectors fixed by σα is a hyperplane in the hyperplane of vectors
fixed by σ. Because A has only finitely many elements, there is an element u
of the hyperplane of vectors fixed by σ that is not in the hyperplane of vectors
fixed by σα for any α ∈ A, as in Section 18.12.

Equivalently, this means that u is not orthogonal to any α ∈ A with respect
to (·, ·). By construction, σ(u) = u, so that σ is the identity mapping on V , as
before. This contradicts the hypothesis that σ be a reflection on V .

21.13 The mapping α 7→ −α

Let V be a vector space over the real numbers of positive finite dimension, and
let A be a root system in V . It is easy to see that the mapping

α 7→ −α(21.13.1)

on V is an automorphism of A, as in the first part of Exercise 6 on p67 of [14].
The second part of the exercise is to try to decide for which irreducible reduced
root systems (21.13.1) is an element of the Weyl group of A. Of course, this
holds automatically when the automorphism group of A is the same as the Weyl
group of A. Remember that this happens for root systems of type Bn and Cn,
as well as types A1, F4, G2, E7, and E8, as in Section 21.9.

If n ≥ 2, then (21.13.1) is not in the Weyl group of the root system of type
An. This can be seen using the description of the Weyl group in Section 20.10.

TheWeyl group of root systems of typeDn consist of linear mappings on V =
Rn that permute the coordinates, and multiply an even number of coordinates
by −1, as in Section 20.12. Thus (21.13.1) is an element of the Weyl group
exactly when n is even.
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To deal with type E6, let us take V = R8, equipped with the standard inner
product (·, ·), and put

V6 = {v ∈ V : v6 = v7 = −v8},(21.13.2)

V7 = {v ∈ V : v7 = −v8},(21.13.3)

as in Sections 21.7 and 21.6. Consider the line

Z = {v ∈ V : v1 = · · · = v5 = 0, v7 = −v6/2 = −v8}(21.13.4)

in V7. If v ∈ V6 and z ∈ Z, then

(v, z) =

n∑
j=1

vj zj = v6 z6 + v7 z7 + v8 z8

= v7 (−2 z7) + v7 z7 + (−v7) (−z7) = 0.(21.13.5)

Thus Z is the orthogonal complement of V6 in V7, with respect to the standard
inner product on V .

Let A6 and A7 be the root systems in V6 and V7 of types E6 and E7, re-
spectively, as in Sections 21.8 and 21.7. If α ∈ A6, then the reflection on V6
associated to α is the same as the restriction to V6 of the reflection on V7 asso-
ciated to α. The restriction to Z of the reflection on V7 associated to α ∈ V6 is
the identity mapping on Z, because Z is orthogonal to α.

Remember that A6 = A7 ∩ V6 ⊆ A7, by construction. If T is a one-to-one
linear mapping from V6 onto itself, then let T̃ be the extension of T to a one-
to-one linear mapping from V7 onto itself whose restriction to Z is the identity
mapping on Z. If T is in the Weyl group of A6, then it follows that T̃ is in the
Weyl group of A7.

Consider the mapping T from V6 into itself defined by T (v) = −v for every

v ∈ V6. If T is in the Weyl group of A6, then T̃ is in the Weyl group of A7, as
before. Remember that the mapping on V7 that sends v ∈ V7 to −v is in the
Weyl group of A7, as mentioned earlier. It follows that the composition of this
mapping with T̃ is in the Weyl group of A7 as well.

The composed mapping on V7 just mentioned sends every element of V6
to itself, and sends z ∈ Z to −z. Note that this is a reflection on V7. If this
composed mapping is an element of the Weyl group of A7, then it is the reflection
associated to an element of A7, as in the previous section. This is not possible,
because there are no elements of A7 in Z. Thus the mapping v 7→ −v on V6 is
not an element of the Weyl group of A6.

21.14 Another mapping on V

Let V be a vector space over the real numbers of positive finite dimension again,
and let A be a reduced root system in V . Also let B be a base for A, and observe
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that −B is a base for A as well. It follows that there is an element σ of the
Weyl group W of A such that

σ(B) = −B,(21.14.1)

as in Section 19.14. In fact, σ is unique, as in Section 20.1.
Let A+ = AB,+ be the set of α ∈ A that can be expressed as linear combi-

nations of elements of B whose coefficients are nonnegative integers, as before.
Of course, (21.14.1) implies that

σ(A+) = −A+.(21.14.2)

If n(σ) is as in (21.11.3), then (21.14.2) is the same as saying that

n(σ) = #A+.(21.14.3)

Note that this is the largest possible value of n(σ). Remember that this is equal
to the length of σ with respect to B, as in (21.11.4).

If σ is any element of W that satisfies (21.14.2), then σ satisfies (21.14.1).
Indeed, (21.14.2) implies that

σ(B) ⊆ −A+ = A−B,+.(21.14.4)

This implies that (21.14.1) holds, because σ(B) is a base for A, as in (19.15.7).
Let β0 ∈ B be given, and let V0 be the hyperplane in V spanned by β ∈ B

with β ̸= β0. If v ∈ V , then v can be expressed in a unique way as a linear
combination of elements of B, and we let τ0(v) ∈ R be the coefficient of β0 in
this expression for v. Thus V0 is the same as the kernel of τ0. If β ∈ B \ {β0}
and v ∈ V , then σβ(v)− v ∈ V0, so that

τ0 ◦ σβ = τ0(21.14.5)

on V . If σ is an element of the subgroup ofW generated by σβ with β ∈ B\{β0},
then it follows that

τ0 ◦ σ = τ0(21.14.6)

on V too. In particular, this means that

τ0(σ(β0)) = τ0(β0) = 1.(21.14.7)

This implies that σ does not satisfy (21.14.2).
This corresponds to Exercise 9 on p54 of [14].

21.15 Invertibility of Cartan matrices

Let k be a field, and let V be a vector space over k of positive finite dimension
r. Also let kr be the space of r-tuples of elements of k, as usual, which is an
r-dimensional vector space over k with respect to coordinatewise addition and
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scalar multiplication. If v1, . . . , vr is a basis for V , then we get a one-to-one
linear mapping from kr onto V , which sends t = (t1, . . . , tr) ∈ kr to

∑r
j=1 tj vj .

Similarly, if λ1, . . . , λr are linear functionals on V that form a basis for the dual
space V ′, then we get a one-to-one mapping from V onto kr, which sends v ∈ V
to (λ1(v), . . . , λr(v)) ∈ kr. Thus the composition of these two mappings is a
one-to-one linear mapping from kr onto itself. The composition of these two
mappings corresponds to the r × r matrix with entries λl(vj), j, l = 1, . . . , r,
with respect to the standard basis in kr. Thus this matrix is invertible, as an
r × r matrix with entries in k, under these conditions.

Now let V be a vector space over the real numbers of positive finite dimen-
sion, and let A be a root system in V . As before, let σα be the symmetry on
V with vector α ∈ A that maps A onto itself, and let λα be the corresponding
linear functional on V . Remember that n(α, β) = λβ(α) is an integer for every
α, β ∈ A, by the definition of a root system. Let (·, ·) be an inner product on
V that is invariant under the Weyl group of A, so that σα is the reflection on
V with respect to (·, ·) associated to α ∈ A, and λα(v) = 2 (v, α) (α, α)−1 for
every v ∈ V . Thus n(α, β) = 2 (α, β) (β, β)−1 for every α, β ∈ A.

Let B be a base for A, so that B is a basis for V in particular. Using the
inner product, we can identify V with its dual space, and it follows that λβ ,
β ∈ B, is a basis for V ′. This implies that the Cartan matrix n(α, β), α, β ∈ B,
is invertible, as before, and as on p55 of [14]. Equivalently, the determinant of
the Cartan matrix is nonzero. Of course, the determinant is an integer.

More precisely, the Cartan matrix may be considered as the product of
the symmetric matrix (α, β) and the diagonal matrix with diagonal entries
2 (β, β)−1. The symmetric matrix (α, β) is positive definite, because of the
positivity of the inner product, and the fact that B is a basis for V . Thus its
determinant is a positive real number. The determinant of the diagonal matrix
is postive too, because the diagonal entries of the matrix are positive. This
means that the determinant of the Cartan matrix is positive as well.



Chapter 22

Roots and Lie algebras

22.1 A basic situation

Let k be a field of characteristic 0, and let (A, [·, ·]A) be a Lie algebra over k
with positive finite dimension as a vector space over k. Also let B be a Lie
subalgebra of A such that every element of B is ad-diagonalizable as an element
of A. This implies that B is commutative as a Lie algebra, as in Section 17.1.
Let B′ be the dual space of linear functionals on B, as a vector space over k, as
usual. If α ∈ B′, then put

Aα = {x ∈ A : adw(x) = [w, x]A = α(w)x for every w ∈ B},(22.1.1)

as before, which is a linear subspace of A. This is the same as the centralizer
CA(B) of B in A when α = 0. In particular, B ⊆ A0, because B is commutative
as a Lie algebra. Let us suppose for the rest of the section that

A0 = CA(B) = B(22.1.2)

and
Z(A) = {0},(22.1.3)

where Z(A) is the center of A as a Lie algebra.
It follows that B ̸= {0}, because A ̸= {0}, by hypothesis. Put

ΦB = {α ∈ B′ : α ̸= 0 and Aα ̸= {0}},(22.1.4)

so that ΦB ∪ {0} is the same as the set of α ∈ B′ such that Aα ̸= {0}, as
before. Remember that A corresponds to the direct sum of the subspaces Aα
with α ∈ ΦB ∪ {0}, as a vector space over k, and in particular that ΦB has
only finitely many elements, as in Section 17.2. If x ∈ Aα and y ∈ Aβ for some
α, β ∈ B′, then

[x, y]A ∈ Aα+β ,(22.1.5)

as before. We also have that the linear span of ΦB in B′ is equal to B′, because
of (22.1.3), as in Section 17.5. Let b(·, ·) be a nondegenerate bilinear form on A,
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and suppose that b(·, ·) is associative on A, or equivalently invariant under the
adjoint representation on A, as in Sections 6.10 and 7.7. This implies that the
restriction of b(·, ·) to (22.1.2) is nondegenerate, as in Section 17.3.

Of course, there is a natural embedding of Q into k, because k has charac-
teristic 0, so that B′ may also be considered as a vector space over Q. Let EQ

be the linear subspace of B′, as a vector space over Q, spanned by ΦB , as in
Section 17.12. If α1, . . . , αn are elements of ΦB that form a basis for B′, as a
vector space over k, then α1, . . . , αn form a basis for EQ, as a vector space over
Q, as in Section 17.10. Using this, we can get a vector space ER over R of the
same dimension n that contains EQ, as in Section 17.13. In particular, ΦB is
contained in ER, and the linear span of ΦB in ER, as a vector space over R, is
equal to ER.

If α ∈ B′, then there is a unique tb,α ∈ B such that α(w) = b(w, tb,w) for
every w ∈ B, because b(·, ·) is nondegenerate on B. Remember that α(tb,α) =
b(tb,α, tb,α) ̸= 0 when α ∈ ΦB , as in Section 17.6. In this case, we put

hα = 2α(tb,α)
−1 tb,α,(22.1.6)

as before, so that α(hα) = 2. If β ∈ ΦB , then β − β(hα)α ∈ ΦB , as in Section
17.8. We have also seen that β(hα) corresponds to an integer in this situation,
with respect to the standard embedding of Q into k.

Of course,
β 7→ β(hα)(22.1.7)

defines a linear functional on B′, as a vector space over k. If β ∈ EQ, then
β(hα) is in the image of Q in k, by the remarks in the previous paragraphs.
Let λα be the corresponding linear functional on EQ, as a vector space over Q.
This extends to a linear functional on ER, as a vector space over R, in a natural
way, that we shall also denote by λα. As before, we have that

β − λα(β)α ∈ ΦB(22.1.8)

and λα(β) ∈ Z for every β ∈ ΦB .
It follows that ΦB is a root system in ER, as in Section 19.3. More precisely,

if α ∈ ΦB , then the corresponding symmetry on ER is defined by

σα(β) = β − λα(β)α(22.1.9)

for every β ∈ ER. Note that the definition of a root system is extended to
finite-dimensional vector spaces over the complex numbers in Definition 7 on
p41 of [24]. If k = C, then one can consider ΦB as a root system in B′ as a
vector space over C.

This root system is reduced, in the sense that for each α ∈ ΦB , the only
multiples of α in ΦB are ±α. This was discussed in Sections 17.7 and 17.8, for
multiples of α by elements of k, and by elements of Q in particular. One should
also consider multiples of α by real numbers in ER, but it is easy to reduce
to considering multiples by elements of Q, because ΦB is contained in EQ. Of
course, in any root system, one only has to consider multiples by ±2 or ±1/2.
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Let (·, ·) be any inner product on ER that is invariant under the Weyl group
of ΦB . If α ∈ ΦB , then it follows that (22.1.9) is the reflection on ER associated
to α with respect to (·, ·). This means that

λα(β) = 2 (β, α) (α, α)−1(22.1.10)

for every β ∈ ER. In particular, this corresponds to β(hα) when β ∈ ΦB too.
Suppose for the moment that A is semisimple as a Lie algebra over k, so

that we can take b(·, ·) to be the Killing form on A, as in Section 17.11. This
leads to an inner product (·, ·)ER

on ER, as in Section 17.13. More precisely, a
bilinear form (·, ·)EQ

was defined on EQ in Section 17.12, which was extended
to ER. If α, β ∈ ΦB , then

λα(β) = 2 (α, β)EQ
(α, α)−1

EQ
,(22.1.11)

by (17.10.8) and the definition of (·, ·)EQ
. Of course, this implies that

λα(β) = 2 (α, β)ER
(α, α)−1

ER
.(22.1.12)

In fact, this holds for every α ∈ ΦB and β ∈ ER, because ER is spanned by
ΦB , and both sides are linear in β. This means that (22.1.9) is the same as the
reflection on ER associated to α ∈ ΦB with respect to (·, ·)ER

in this situation.
This corresponds to the theorem on p40 of [14].

22.2 Inverse roots and B

Let us continue with the same notation and hypotheses as in the previous sec-
tion, except for the last paragraph. Let α1, . . . , αn be elements of ΦB that form
a basis for B′ as a vector space over k, so that α1, . . . , αn form a basis for EQ

as a vector space over Q, as before. Thus α1, . . . , αn is a basis for ER too, as a
vector space over R, by construction.

Let E′
Q and E′

R be the dual spaces of linear functionals on EQ and ER, as
vector spaces over Q and R, respectively. Of course, any linear functional on
EQ or ER is uniquely determined by its values on α1, . . . , αn. Linear functionals
on EQ may take arbitrary values in Q on α1, . . . , αn, and linear functionals on
ER may take arbitrary values in R on α1, . . . , αn. Every linear functional on
EQ has a natural unique extension to a linear functional on ER. If µ is a linear
functional on ER, and µ maps EQ ⊆ ER into Q, then the restriction of µ to
EQ is a linear functional on EQ. Thus we may identify E′

Q with

{µ ∈ E′
R : µ(EQ) ⊆ Q}.(22.2.1)

This is a linear subspace of E′
R, as a vector space over Q.

If w ∈ B, then put

T (w) = (α1(w), . . . , αn(w)),(22.2.2)
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which is an element of the space kn of n-tuples of elements of k. This defines a
linear mapping from B into kn, as a vector space over k with respect to coor-
dinatewise addition and scalar multiplication, because αj is a linear functional
on B as a vector space over k for each j = 1, . . . , n. More precisely, T is a
one-to-one mapping from B onto kn, because α1, . . . , αn is a basis for B′, as a
vector space over k.

Remember that k has characteristic 0, so that there is a standard embedding
ofQ into k. Let us identifyQ with its image in k under the standard embedding,
so that Qn may be identified with a subset of kn. Of course, Qn is a linear
subspace of kn, as a vector space over Q. Put

CQ = T−1(Qn),(22.2.3)

which is a linear subspace of B, as a vector space over Q. Equivalently, CQ

consists of the w ∈ B such that αj(w) ∈ Q for every j = 1, . . . , n. This is the
same as

CQ = {w ∈ B : β(w) ∈ Q for every β ∈ EQ},(22.2.4)

by the definition of EQ. Note that the dimension of CQ, as a vector space over
Q, is equal to n, and that the linear span of CQ in B, as a vector space over k,
is equal to B. The standard basis for Qn corresponds to a basis for CQ, as a
vector space over Q, which is also a basis for B, as a vector space over k.

If β ∈ EQ ⊆ B′, then β is a linear functional on B, as a vector space over k,
that maps CQ into Q. This implies that the restriction of β to CQ is a linear
functional on CQ, as a vector space over Q. Of course, β is uniquely determined,
as an element of B′, by its restriction to CQ, because the linear span of CQ in
B, as a vector space over k, is equal to B. It is easy to see that every linear
functional on CQ, as a vector space over Q, corresponds to some β ∈ EQ in this
way, using T . Thus the dual space C ′

Q of linear functionals on CQ, as a vector
space over Q, can be identified with EQ.

If w ∈ B, then

β 7→ β(w)(22.2.5)

defines a linear functional on the dual B′ of B, as a vector space over k. This
defines a one-to-one linear mapping from B onto the dual of B′, as vector spaces
over k. Similarly, if w ∈ CQ, then (22.2.5) defines a linear functional on EQ, as
a vector space over Q. This defines a one-to-one linear mapping from CQ onto
E′

Q, as vector spaces over Q.
Let α ∈ ΦB be given, and let hα ∈ B be as in the previous section. Remem-

ber that β(hα) ∈ Z for every β ∈ ΦB , so that

hα ∈ CQ(22.2.6)

in particular. The linear functional λα on EQ that corresponds to hα as in
the preceding paragraph is the same as in the previous section. Note that λα,
considered as a linear functional on ER, is the inverse root associated to α, as
in Section 19.8.
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Put
Φ′
B = {λα : α ∈ ΦB},(22.2.7)

which is a subset of E′
Q ⊆ E′

R. As a subset of E′
R, this is the inverse system of

ΦB , as in Section 19.8.
In [24], k = C, and the notion of root systems is extended to complex vector

spaces, so that hα is identified directly with the inverse root of α, as in part (b)
of Theorem 2 on p43f.

In [14], the Killing form on a semisimple Lie algebra A is used to get an
inner product on ER, as in the previous section. Using this, the inverse root of
α ∈ ΦB is identified with an element of ER. More precisely, the inverse root of α
corresponds to an element of EQ, and thus an element of B′. This corresponds
to hα ∈ B using the Killing form, as on p43 of [14].

22.3 Semigroups and submodules

Let Ξ be a commutative semigroup, with the semigroup operation expressed
additively. Also let Ψ be a nonempty subset of Ξ. If α ∈ Ξ and n is a positive
integer, then n · α is the sum of n α’s in Ξ, as usual.

Let k be a commutative ring with a multiplicative identity element, and
let (A, [·, ·]A) be a Lie algebra over k. Suppose that for each α ∈ Ψ, Aα is a
submodule of A, as a module over k. We ask that A correspond to the direct
sum of the Aα’s, α ∈ Ψ, as a module over k, so that every element of A can be
expressed in a unique way as a sum of elements of the Aα’s. It is convenient to
put

Aα = {0} when α ∈ Ξ \Ψ,(22.3.1)

so that Aα is defined as a submodule of A, as a module over k, for every α ∈ Ξ.
If x ∈ Aα and y ∈ Aβ for some α, β ∈ Ξ, then we ask that

[x, y]A ∈ Aα+β .(22.3.2)

Of course, this holds trivially when α or β is in Ξ\Ψ, by (22.3.1). Observe that

[x, y]A = 0 when α+ β ̸∈ Ψ,(22.3.3)

by (22.3.1) and (22.3.2). If Ξ has an additive identity element 0, then (22.3.2)
implies that A0 is a Lie subalgebra of A.

If x ∈ Aα for some α ∈ Ψ, then

adx(Aγ) ⊆ Aα+γ(22.3.4)

for every γ ∈ Ξ. If n ∈ Z+, then we get that

(adx)
n(Aγ) ⊆ An·α+γ ,(22.3.5)

where (adx)
n is the nth power of adx on A, with respect to composition of

mappings. Suppose that γ ∈ Ψ and n(γ) ∈ Z+ have the property that

n(γ) · α+ γ ̸∈ Ψ.(22.3.6)
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This implies that (adx)
n(γ) = 0 on Aγ , and hence that (adx)

n = 0 on Aγ for
every integer n ≥ n(γ). If Ψ has only finitely many elements, and for each γ ∈ Ψ
there is an n(γ) ∈ Z+ such that (22.3.6) holds, then it follows that (adx)

n = 0
on A when n ≥ maxγ∈Ψ n(γ), so that x is ad-nilpotent as an element of A.

In some situations, we may have that

n 7→ n · α+ γ(22.3.7)

is injective as a mapping from Z+ into Ξ. In particular, this holds for every
γ ∈ Ξ when Ξ is a commutative group without torsion, and α ̸= 0. Suppose
that Ψ has only finitely many elements, so that the injectivity of (22.3.7) implies
that

n · α+ γ ∈ Ψ(22.3.8)

for only finitely many n ∈ Z+. This means that (adx)
n = 0 on Aγ for all but

finitely many n ∈ Z+, as before. If this holds for every γ ∈ Ψ, then it follows
that (adx)

n = 0 on A for all but finitely many n ∈ Z+.
As usual, one may say that Ξ is a semigroup with cancellation if for every

α, β, γ ∈ Ξ with

α+ γ = β + γ,(22.3.9)

we have that α = β. Note that this holds when Ξ is a subsemigroup of a group.
Suppose now that Ξ has an additive identity element 0. If α ∈ Ξ satisfies

n · α = 0 for some n ∈ Z+, then α is said to be a torsion element of Ξ. If 0 is
the only torsion element of Ξ, then one may say that Ξ is torsion-free, or that
Ξ has no nontrivial torsion.

Suppose that Ξ is a semigroup with cancellation. If α, γ ∈ Ξ and α is not
a torsion element, then it is easy to see that (22.3.8) is injective as a mapping
from Z+ into Ξ. If x ∈ Aα and Ψ has only finitely many elements, then it
follows that x is ad-nilpotent as an element of A, as before.

22.4 Semigroups and algebras

Let Ξ be a commutative semigroup, where the semigroup operation is expressed
additively, and let Ψ be a nonempty subset of Ξ. Also let k be a commutative
ring with a multiplicative identity element, and let A be an algebra over k in
the strict sense, where multiplication of x, y ∈ A is expressed as x y. Suppose
that for each α ∈ Ψ, Aα is a submodule of A, as a module over k, and that
A corresponds to the direct sum of the Aα’s, α ∈ Ψ, as a module over k. As
before, it is convenient to put Aα = {0} when α ∈ Ξ \Ψ.

Suppose that

x y ∈ Aα+β(22.4.1)

when x ∈ Aα and y ∈ Aβ for some α, β ∈ Ξ. Thus

x y = 0(22.4.2)
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when α, β, or α+β is not in Ψ. If Ξ has an additive identity element 0, then A0

is a subalgebra of A, by (22.4.1). Of course, the remarks in the previous section
correspond to the case where A is a Lie algebra over k.

Note that
x y − y x ∈ Aα+β(22.4.3)

when x ∈ Aα and y ∈ Aβ for some α, β ∈ Ξ, by (22.4.1). If A is an associative
algebra over k, then A may be considered as a Lie algebra with respect to the
corresponding commutator bracket, as usual.

Suppose that A is an associative algebra over k, and that x ∈ Aα for some
α ∈ Ψ. If n ∈ Z+, then

xn ∈ An·α,(22.4.4)

by (22.4.1). In particular, if n ·α ̸∈ Ψ, then xn = 0. If n 7→ n ·α is injective as a
mapping from Z+ into Ξ, and Ψ has only finitely many elements, then n ·α ∈ Ψ
for only finitely many n ∈ Z+, so that x is nilpotent in A. If Ξ is a semigroup
with cancellation and an additive identity element 0, and if α is not a torsion
element of Ξ, then n 7→ n ·α is an injective mapping from Z+ into Ξ, as before.

Let A be an algebra over k in the strict sense again. If Ψ0 is a subset of Ξ,
then let A(Ψ0) be the subset of A consisting of elements that can be expressed
as a sum of elements of Aα, for finitely many α ∈ Ψ0. This is a submodule of
A, as a module over k, which may be interpreted as being {0} when Ψ0 = ∅,
and which corresponds to the direct sum of the Aα’s, α ∈ Ψ0, as a module over
k. Of course,

A(Ψ0) = A(Ψ0 ∩Ψ),(22.4.5)

and one may wish to restrict one’s attention to Ψ0 ⊆ Ψ. However, it is sometimes
convenient for A(Ψ0) to be defined for any Ψ0 ⊆ Ξ.

Suppose that Ψ0 ⊆ Ξ has the property that

if α, β ∈ Ψ0 and α+ β ∈ Ψ, then α+ β ∈ Ψ0.(22.4.6)

In particular, if Ξ0 is a subsemigroup of Ξ, then Ξ0∩Ψ has this property. Under
these conditions, A(Ψ0) is a subalgebra of A, as an algebra over k in the strict
sense.

Suppose that Ψ1 ⊆ Ξ has the property that

if α ∈ Ψ1 and β, α+ β ∈ Ψ, then α+ β ∈ Ψ1.(22.4.7)

In this case, A(Ψ1) is a two-sided ideal in A. If Ξ1 ⊆ Ξ has the property that

if α ∈ Ξ1 and β ∈ Ξ, then α+ β ∈ Ξ1,(22.4.8)

then Ξ1 ∩Ψ satisfies (22.4.7).
Similarly, suppose that Ψ2 ⊆ Ξ satisfies (22.4.6), and that Ψ1 ⊆ Ψ2 satisfies

if α ∈ Ψ1 and β, α+ β ∈ Ψ2, then α+ β ∈ Ψ1.(22.4.9)

In this situation, A(Ψ1) is a two-sided ideal in A(Ψ2), as an algebra over k in
the strict sense.
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22.5 Some nilpotency properties

Let us continue with the same notation and hypotheses as in the previous sec-
tion. In particular, Ξ is a commutative semigroup, and A is an algebra over k
in the strict sense. If Ψ1, . . . ,Ψr ⊆ Ξ for some r ∈ Z+, then put

Ψ1 + · · ·+Ψr =

{ r∑
j=1

αj : αj ∈ Ψj for each j = 1, . . . , r

}
,(22.5.1)

as usual. This subset of Ξ may be denoted
∑r
j=1 Ψj as well. Note that

A(Ψ1) ·A(Ψ2) ⊆ A(Ψ1 +Ψ2)(22.5.2)

for every Ψ1,Ψ2 ⊆ Ξ, by (22.4.1), where the left side is the set of finite sums of
products of elements of A(Ψ1) and A(Ψ2), as in Section 9.2.

If Ψ0 ⊆ Ξ, then (22.4.6) may be expressed as

(Ψ0 +Ψ0) ∩Ψ ⊆ Ψ0.(22.5.3)

Of course, Ξ0 ⊆ Ξ is a subsemigroup of Ξ when

Ξ0 + Ξ0 ⊆ Ξ0.(22.5.4)

Similarly, if Ψ1 ⊆ Ξ, then (22.4.7) may be expressed as

(Ψ1 +Ψ) ∩Ψ ⊆ Ψ1.(22.5.5)

If Ξ1 ⊆ Ξ, then (22.4.8) may be expressed as

Ξ1 + Ξ ⊆ Ξ1.(22.5.6)

If Ψ1 ⊆ Ψ2 ⊆ Ξ, then (22.4.9) may be expressed as

(Ψ1 +Ψ2) ∩Ψ2 ⊆ Ψ1.(22.5.7)

If r ∈ Z+, and Ψj ⊆ Ξ, xj ∈ A(Ψj) for each j = 1, . . . , r, then the product of

x1, . . . , xr in A, with any ordering or grouping, is an element of A
(∑r

j=1 Ψj

)
.

In particular, if ( r∑
j=1

Ψj

)
∩Ψ = ∅,(22.5.8)

then any such product of x1, . . . , xn in A is equal to 0.
Let Ψ0 be a subset of Ξ, and put

Ψ0(r) =

r∑
j=1

Ψ0(22.5.9)
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for each r ∈ Z+, which is the subset of Ξ consisting of sums of r elements of Ψ0.
If x1, . . . , xr are elements of A(Ψ0), then the product of x1, . . . , xr in A, with
any grouping, is an element of A(Ψ0(r)), as in the preceding paragraph. If

Ψ0(r) ∩Ψ = ∅,(22.5.10)

then such a product of x1, . . . , xr in A is equal to 0.
If y ∈ A = A(Ψ), then the product of x1, . . . , xr, y in A, with any ordering

or grouping, is an element of A(Ψ0(r) + Ψ), as before. If

(Ψ0(r) + Ψ) ∩Ψ = ∅,(22.5.11)

then such a product of x1, . . . , xr, y in A is equal to 0.
Suppose now that A is a Lie algebra over k, so that (22.5.2) can be expressed

as

[A(Ψ1), A(Ψ2)] ⊆ A(Ψ1 +Ψ2)(22.5.12)

for every Ψ1,Ψ2 ⊆ Ξ. Equivalently, if x ∈ Ψ1, then

adx(A(Ψ2)) ⊆ A(Ψ1 +Ψ2).(22.5.13)

If Ψ0 ⊆ Ξ, x ∈ A(Ψ0), and r ∈ Z+, then

adx(A(Ψ0(r) + Ψ)) ⊆ A(Ψ0(r + 1) + Ψ).(22.5.14)

Thus

(adx)
r(A) ⊆ A(Ψ0(r) + Ψ)(22.5.15)

for every r ≥ 1. In particular, if x ∈ A(Ψ0) and r ∈ Z+ satisfies (22.5.11), then
we get that (adx)

r = 0 on A.
Suppose that Ψ0 satisfies (22.5.3), so that A(Ψ0) is a Lie subalgebra of A.

Let (A(Ψ0))
j , j ≥ 0, be the lower central series in A(Ψ0), as in Section 9.5. If

r ∈ Z+, then

(A(Ψ0))
r−1 ⊆ A(Ψ0(r)),(22.5.16)

as before. If (22.5.10) holds, then

(A(Ψ0))
r−1 = {0},(22.5.17)

so that A(Ψ0) is nilpotent as a Lie algebra.
Suppose that Ξ has an additive identity element 0, so that A0 is a Lie

subslagebra of A. If Ψ1,Ψ2 ⊆ Ξ, then

(Ψ1 ∪ {0}) + (Ψ2 ∪ {0}) = (Ψ1 +Ψ2) ∪Ψ1 ∪Ψ2 ∪ {0}.(22.5.18)

If A0 is commutative as a Lie algebra, then

[A(Ψ1 ∪ {0}), A(Ψ2 ∪ {0})] ⊆ A((Ψ1 +Ψ2) ∪Ψ1 ∪Ψ2).(22.5.19)
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Suppose that Ψ0 ⊆ Ξ satisfies (22.5.3) again. This implies that Ψ0 ∪ {0}
satisfies the analogous condition,

((Ψ0 ∪ {0}) + (Ψ0 ∪ {0})) ∩Ψ ⊆ Ψ0 ∪ {0}.(22.5.20)

Thus A(Ψ0 ∪ {0}) is a Lie subalgebra of A too, and it is easy to see that A(Ψ0)
is an ideal in A(Ψ0 ∪ {0}). If A0 is commutative as a Lie algebra, then

[A(Ψ0 ∪ {0}), A(Ψ0 ∪ {0})] ⊆ A(Ψ0).(22.5.21)

It follows that A(Ψ0 ∪ {0}) is solvable as a Lie algebra over k when (22.5.10)
holds for some r, so that A(Ψ0) is nilpotent as a Lie algebra.

If

[A0, Aα] = Aα(22.5.22)

for every α ∈ Ψ0, then

[A0, A(Ψ0)] = A(Ψ0).(22.5.23)

If A0 is commutative as a Lie algebra, then we get that

[A(Ψ0 ∪ {0}), A(Ψ0 ∪ {0})] = A(Ψ0).(22.5.24)

22.6 Roots and submodules

Let V be a vector space over the real numbers of positive finite dimension, and
let Φ be a root system in V . Also let Θ be the subgroup of V , as a commutative
group with respect to addition, generated by Φ. We would like to consider
situations like those in Section 22.3, with

Ξ = Θ, Ψ = Φ ∪ {0}.(22.6.1)

Note that Θ has no nontrivial torsion, because V has none.
Let k be a commutative ring with a multiplicative identity element, and let

(A, [·, ·]A) be a Lie algebra over k. If α ∈ Φ ∪ {0}, then we ask that Aα be a
submodule of A, as a module over k, and that A correspond to the direct sum
of the Aα’s, α ∈ Φ∪{0}, as a module over k. As before, we put Aα = {0} when
α ∈ Θ \ (Φ ∪ {0}), and we ask that

[Aα, Aβ ] ⊆ Aα+β(22.6.2)

for every α, β ∈ Θ, as in (22.3.2). Thus A0 is a Lie subalgebra of A, as before.
If x ∈ Aα for some nonzero α ∈ Θ, then x is ad-nilpotent in A, as in Section
22.3.

If Ψ0 ⊆ Θ, then let A(Ψ0) be the subset of A consisting of finite sums of
elements of Aα, α ∈ Ψ0, as in Section 22.4. Let ∆ ⊆ Φ be a base for Φ, as a
root system in V , and let Φ+ = Φ∆,+ be the set of positive roots in Φ with
respect to ∆. Thus Φ+ consists of the α ∈ Φ that can be expressed as a linear
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combination of elements of ∆ whose coefficients are nonnegative integers, and
Φ = Φ+ ∪ (−Φ+). Note that

(Φ+ +Φ+) ∩ (Φ ∪ {0}) ⊆ Φ+,(22.6.3)

so that A(Φ+) is a Lie subalgebra of A, as before. Similarly,

((−Φ+) + (−Φ+)) ∩ (Φ ∪ {0}) ⊆ −Φ+,(22.6.4)

and A(−Φ+) is a Lie subalgebra of A too.
It is easy to see that ( r∑

j=1

Φ+
)
∩ (Φ ∪ {0}) = ∅(22.6.5)

when r is sufficiently large, because Φ has only finitely many elements. In fact,(( r∑
j=1

Φ+
)
+ (Φ ∪ {0})

)
∩ (Φ ∪ {0}) = ∅(22.6.6)

when r is sufficiently large. This implies that A(Φ+) is nilpotent as a Lie algebra
over k, and that the elements of A(Φ+) are ad-nilpotent in A, as in the previous
section. Similarly, A(−Φ+) is nilpotent as a Lie algebra over k, and the elements
of A(−Φ+) are ad-nilpotent in A. This corresponds to some remarks near the
top of p84 of [14], and part (b) of Theorem 4 on p47 of [24].

Observe that

((Φ+ ∪ {0}) + (Φ+ ∪ {0})) ∩ (Φ ∪ {0}) ⊆ Φ+ ∪ {0}(22.6.7)

and
(((−Φ+) ∪ {0}) + ((−Φ+) ∪ {0})) ∩ (Φ ∪ {0}) ⊆ (−Φ+) ∪ {0},(22.6.8)

so that A(Φ+ ∪ {0}) and A((−Φ+) ∪ {0}) are Lie subalgebras of A. As in the
previous section, A(Φ+) is an ideal in A(Φ+ ∪ {0}), and A(−Φ+) is an ideal in
A((−Φ+) ∪ {0}).

If A0 is commutative as a Lie algebra over k, then

[A(Φ+ ∪ {0}), A(Φ+ ∪ {0})] ⊆ A(Φ+)(22.6.9)

and
[A((−Φ+) ∪ {0}), A((−Φ+) ∪ {0})] ⊆ A(−Φ+),(22.6.10)

as in (22.5.21). This implies that A(Φ+∪{0}) and A((−Φ+)∪{0}) are solvable as
Lie algebras over k, because A(Φ+) and A(−Φ+) are nilpotent as Lie algebras
over k. This corresponds to some of the remarks near the top of p84 of [14]
again, and part of part (c) of Theorem 4 on p47 of [24].

If
[A0, Aα] = Aα(22.6.11)
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for every α ∈ Φ, then

[A0, A(Φ
+)] = A(Φ+)(22.6.12)

and

[A0, A(−Φ+)] = A(−Φ+).(22.6.13)

If A0 is commutative as a Lie algebra over k, then it follows that

[A(Φ+ ∪ {0}), A(Φ+ ∪ {0})] = A(Φ+)(22.6.14)

and

[A((−Φ+) ∪ {0}), A((−Φ+) ∪ {0})] = A(−Φ+),(22.6.15)

as in (22.5.24). This corresponds to the second part of part (c) of Theorem 4
on p47 of [24].

22.7 Borel subalgebras

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. A Lie subalgebra B of A is said to be a
Borel subalgebra if B is solvable as a Lie algebra over k, and B is maximal
with respect to inclusion among Lie subalgebras of A that are solvable as Lie
algebras. If solvable subalgebras in A satisfy an ascending chain condition, then
every solvable subalgebra of A is contained in a Borel subalgebra. In particular,
this holds for finite-dimensional Lie algebras over fields.

Let A be an algebra over k in the strict sense for the moment, where multi-
plication of a, b ∈ A is expressed as a b, and let A1, A2 be subalgebras of A. In
particular, A1 and A2 are submodules of A, as a module over k, so that A1+A2

is a submodule of A. Let a1, b1 ∈ A1 and a2, b2 ∈ A2 be given, so that

(a1 + a2) (b1 + b2) = a1 b1 + a1 b2 + a2 b1 + a2 b2.(22.7.1)

Of course, a1 b1 ∈ A1 and a2 b2 ∈ A2, by hypothesis. If A1 is a right ideal in
A, then a1 b2 ∈ A1, and if A2 is a left ideal in A, then a1 b2 ∈ A2. Similarly,
if A1 is a left ideal in A, then a2 b1 ∈ A1, and if A2 is a right ideal in A, then
a2 b1 ∈ A2. It follows that (22.7.1) is an element of A1+A2 when either A1 is a
right ideal in A or A2 is a left ideal in A, and either A1 is a left ideal in A, or A2

is a right ideal in A. In particular, this holds when A1 or A2 is a two-sided ideal
in A. This means that A1 +A2 is a subalgebra of A under these conditions.

Let A be a Lie algebra over k again, let A1 be a Lie subalgebra of A, and
let A2 be an ideal in A. Thus A1 + A2 is a Lie subalgebra of A, as in the
preceding paragraph. If A1 and A2 are both solvable as Lie algebras over k,
then A1 + A2 is solvable as well. This was mentioned in Section 9.4 when A1

and A2 are both ideals in A, and essentially the same argument works in this
situation. More precisely, note that A2 is an ideal in A1 + A2. It suffices to
verify that (A1 +A2)/A2 is solvable as a Lie algebra, because A2 is solvable, as
in Section 9.3. Let q2 be the canonical quotient mapping from A1 + A2 onto
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(A1 + A2)/A2, which is essentially the same as the restriction of the canonical
quotient mapping from A onto A/A2 to A1 +A2.

It is easy to see that A1 ∩ A2 is an ideal in A1, because A2 is an ideal in
A. In fact, A1 ∩ A2 is the same as the kernel of the restriction of q2 to A1, as
a subalgebra of A1 + A2. Note that q2(A1) = q2(A1 + A2). The restriction of
q2 to A1 can be identified with the canonical quotient mapping from A1 onto
A1/(A1 ∩ A2), as a Lie algebra homomorphism. This leads to a natural Lie
algebra isomorphism between A1/(A1 ∩A2) and (A1 +A2)/A2. By hypothesis,
A1 is solvable, which implies that A1/(A1 ∩ A2) is solvable, as in Section 9.3.
This means that (A1 +A2)/A2 is solvable, as desired.

If A1 is a Borel subalgebra of A, then we get that A1 = A1 + A2, which
means that

A2 ⊆ A1.(22.7.2)

If A has a solvable radical RadA, as in Section 9.4, then it follows that

RadA ⊆ A1.(22.7.3)

This corresponds to part of the proof of Lemma B on p83 of [14].
Let A0 be a solvable ideal in A, and let q0 be the canonical quotient mapping

from A onto A/A0. If B is a Lie subalgebra of A that is solvable as a Lie algebra
over k, then q0(B) is solvable too, as in Section 9.3. If B0 is a solvable Lie
subalgebra of A/A0, then q

−1
0 (B0) is a solvable Lie subalgebra of A, as before.

If B is a Borel subalgebra of A, then A0 ⊆ B, as in the preceding paragraph.
This leads to a natural one-to-one correspondence between Borel subalgebras of
A and A/A0, as in Lemma B on p83 of [14].

Let B be a Lie subalgebra of A, and let x be an element of the normalizer
NA(B) of B in A. Under these conditions, it is easy to see that

B(x) = {t x+ y : t ∈ k, y ∈ B}(22.7.4)

is a Lie subalgebra of A, with

[B(x), B(x)] ⊆ B.(22.7.5)

If B is solvable, then it follows that B(x) is solvable as well. If B is a Borel
subalgebra of A, then we get that B = B(x), so that x ∈ B. This means that
NA(B) = B when B is a Borel subalgebra of A, as in Lemma A on p83 of [14].

22.8 Some diagonalizability conditions

Let Ξ be a commutative semigroup, with the semigroup operation expressed
additively, and with an additive identity element 0. Also let Φ be a set of
nonzero elements of Ξ. We would like to consider the same type of situation as
in Section 22.3, with Ψ = Φ ∪ {0}.

Let k be a commutative ring with a multiplicative identity element again, and
let (A, [·, ·]A) be a Lie algebra over k. As before, suppose that Aα is a submodule
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of A, as a module over k, for each α ∈ Φ ∪ {0}, and that A corresponds to
the direct sum of the Aα’s, as a module over k. We put Aα = {0} when
α ∈ Ξ \ (Φ ∪ {0}), and ask that

[Aα, Aβ ] ⊆ Aα+β(22.8.1)

for every α, β ∈ Ξ, as in (22.3.2). In particular, this means that A0 is a Lie
subalgebra of A.

Let Homk(A0, k) be the space of homomorphisms from A0 into k, as modules
over k. Remember that this is a module over k, with respect to pointwise
addition and scalar multiplication. Suppose that

ϕ is a semigroup homomorphism from Ξ into Homk(A0, k),(22.8.2)

as a commutative semigroup with respect to addition. Note that

ϕ(0) = 0(22.8.3)

in Homk(A0, k), because the additive identity element in a group is the only
element of the group whose sum with itself is equal to itself.

If α ∈ Ξ, then it is convenient to let

ϕα = ϕ(α)(22.8.4)

be the corresponding element of Homk(A0, k). Thus, if w ∈ A0, then ϕα(w) is
an element of k.

If α ∈ Φ ∪ {0}, w ∈ A0, and x ∈ Aα, then we ask that

adw(x) = [w, x]A = ϕα(w)x.(22.8.5)

In particular, this is equal to 0 when α = 0. This means that A0 is commutative
as a Lie algebra. If α ∈ Ξ \ (Φ ∪ {0}) and x ∈ Aα, then x = 0, so that (22.8.5)
holds trivially.

Note that (22.8.1) follows from (22.8.5) when α or β is 0. If w ∈ A0, and
x ∈ Aα, y ∈ Aβ for some α, β ∈ Ξ, then

[w, [x, y]A]A = [[w, x]A, y]A + [x, [w, y]A]A

= ϕα(w) [x, y]A + ϕβ(w) [x, y]A = ϕα+β(w) [x, y]A.(22.8.6)

Of course, this is compatible with (22.8.1) and (22.8.5).
If w ∈ A0 satisfies

ϕα(w) = 0(22.8.7)

for every α ∈ Φ, then w is in the center Z(A) of A as a Lie algebra. In particular,
if Z(A) = {0}, then w = 0.

If α ∈ Ξ, then [A0, Aα] ⊆ Aα, as in (22.8.1). If there is a w ∈ A0 such that
ϕα(w) has a multiplicative inverse in k, then we get that

[A0, Aα] = Aα.(22.8.8)
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22.9 Diagonalizability and subspaces

Let k be a field, and let (A, [·, ·]A) be a finite-dimensional Lie algebra over k.
Suppose that B is a Lie subalgebra of A such that every element of B is ad-
diagonalizable as an element of A. This implies that B is commutative as a Lie
algebra, as in Section 17.1. Let B′ be the dual of B, as a vector space over k,
and for each α ∈ B′, let Aα be the set of x ∈ A such that adw(x) = α(w)x for
every w ∈ B. Consider the set ΦB of α ∈ B′ such that α ̸= 0 and Aα ̸= {0}.
Under these conditions, ΦB has only finitely many elements, and A corresponds
to the direct sum of the subspaces Aα with α ∈ ΦB ∪ {0}, as a vector space
over k, as in Section 17.2. Remember that [Aα, Aβ ] ⊆ Aα+β for every α, β ∈ B′,
as before. In this situation, we can take ΞB to be a subsemigroup of B′, as a
commutative group with respect to addition, with

ΦB ∪ {0} ⊆ ΞB .(22.9.1)

Note that
[B,Aα] = Aα(22.9.2)

for every α ∈ ΦB . It follows that [A0, Aα] = Aα for every α ∈ ΦB , because
B ⊆ A0, by the commutativity of B as a Lie algebra.

As before, A0 is the centralizer CA(B) of B in A. Suppose that CA(B) = B,
so that A0 = B, and

Homk(A0, k) = A′
0 = B′.(22.9.3)

In this case, we can take ϕ to be the obvious inclusion mapping of ΞB into
(22.9.3), so that (22.8.5) follows from the definition of Aα.

Let us return for the moment to the situation before the preceding paragraph,
so that we do not necessarily ask the centralizer of B in A to be B. Let C be a
linear subspace of A such that

[B,C] ⊆ C.(22.9.4)

In particular, this holds when C is a Lie subalgebra of A that contains B. If
w ∈ B, then

adw(C) ⊆ C,(22.9.5)

and adw is diagonalizable on A, by hypothesis. This implies that the restriction
of adw to C is diagonalizable on C, as in Section 10.6.

If u, v ∈ B, then [u, v]A = 0, which implies that adu and adv commute on
A, as in Section 2.4. Thus the restrictions of adu and adv to C commute as
well. This means that the restrictions of adu, u ∈ B, to C are simultaneously
diagonalizable on C, by standard arguments. Put

ΨC = {α ∈ B′ : Aα ∩ C ̸= {0}},(22.9.6)

which is contained in ΦB ∪{0}. It follows that C corresponds to the direct sum
of Aα ∩C with α ∈ ΨC , as a vector space over k. If C is a Lie subalgebra of A,
then

[Aα ∩ C,Aβ ∩ C] ⊆ Aα+β ∩ C(22.9.7)
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for every α, β ∈ B′. Of course,

adw(Aα ∩ C) = Aα ∩ C(22.9.8)

when w ∈ B, α ∈ B′, and α(w) ̸= 0.

22.10 Injectivity on Ψ

Let us consider some situations as in Section 22.8, with k a field. Thus we
let Ξ be a commutative semigroup, with the semigroup operation expressed
additively, and with an additive identity element 0. We also let Φ be a finite
set of nonzero elements in Ξ, and start with situations as in Section 22.3, with
Ψ = Φ ∪ {0}.

Let (A, [·, ·]A) be a finite-dimensional Lie algebra over k, and let Aα be a
linear subspace of A, as a vector space over k, for each α ∈ Φ∪{0}. Suppose that
A corresponds to the direct sum of the Aα’s, α ∈ Φ ∪ {0}, and put Aα = {0}
when α ∈ Ξ \ (Φ ∪ {0}). As before, we ask that [Aα, Aβ ] ⊆ Aα+β for every
α, β ∈ Ξ, which implies that A0 is a Lie subalgebra of A.

Suppose that

ϕ is a semigroup homomorphism from Ξ into A′
0,(22.10.1)

where A′
0 is the dual of A0 as a vector space over k, considered as a commutative

semigroup with respect to addition in (22.10.1). As before, ϕ(0) = 0 in A′
0,

because A′
0 is a group with respect to addition. If α ∈ Ξ, then it is convenient

to put ϕα = ϕ(α) again. We ask that adw(x) = [w, x]A = ϕα(w)x for every
α ∈ Φ∪{0}, w ∈ A0, and x ∈ Aα, which holds trivially when α ∈ Ξ \ (Φ∪{0}).
This implies that A0 is commutative as a Lie subalgebra of A.

Note that [A0, Aα] = Aα for every α ∈ Φ such that ϕα ̸= 0, as in (22.8.8).
More precisely, if ϕα ̸= 0, then there is a w ∈ A0 such that ϕα(w) ̸= 0, and
adw(Aα) = Aα.

Let us take B = A0, so that every element of B is ad-diagonalizable, by
hypothesis. If ρ is an element of the dual B′ = A′

0 of B, then put

Ãρ = {x ∈ A : for every w ∈ B, adw(x) = [w, x]A = ρ(w)x},(22.10.2)

which is a linear subspace of A. Thus

Aα ⊆ Ãϕα
(22.10.3)

for every α ∈ Ξ. If ρ is any element of B′, then it follows that Ãρ corresponds to

the direct sum of Aα with α ∈ Φ ∪ {0} and ϕα = ρ. This means that Ãρ = {0}
when ρ ̸= ϕα for every α ∈ Φ ∪ {0}.

Suppose that

for every α ∈ Φ, we have that ϕα ̸= 0.(22.10.4)
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This implies that
A0 = Ã0,(22.10.5)

as in the preceding paragraph. Note that Ã0 is the same as the centralizer of B
in A, as before. Thus the centralizer CA(A0) of A0 in A is equal to A0 in this
case. We also get that [A0, Aα] = Aα for every α ∈ Φ when (22.10.4) holds.

Suppose now that
ϕ is injective on Φ ∪ {0},(22.10.6)

so that ϕα ̸= ϕβ , as elements of A′
0, for every α, β ∈ Φ ∪ {0} with α ̸= β.

Of course, (22.10.6) is the same as saying that (22.10.4) holds, and that ϕ is
injective on Φ. It follows that

Aα = Ãϕα
(22.10.7)

for every α ∈ Φ ∪ {0}, as before.
Let C be a linear subspace of A such that

[A0, C] ⊆ C,(22.10.8)

and put
Ψ̃C = {ρ ∈ B′ : Ãρ ∩ C ̸= {0}},(22.10.9)

which corresponds to (22.9.6) with the notation in this section. As in the previ-

ous section, C corresponds to the direct sum of Ãρ∩C with ρ ∈ Ψ̃C , as a vector
space over k. Note that this does not use (22.10.4) or (22.10.6). Put

ΨC = {α ∈ Φ ∪ {0} : Aα ∩ C ̸= {0}}.(22.10.10)

If (22.10.6) holds, then C corresponds to the direct sum of Aα∩C with α ∈ ΨC ,
as a vector space over k.

22.11 Some additional conditions

Let V be a vector space over the real numbers of positive finite dimension, and
let Φ be a root system in V . Thus, for every α ∈ Φ, there is a unique symmetry
σα on V with vector α that maps Φ onto itself. Let λα be the linear functional
on V that is equal to 0 on the hyperplane fixed by σα and satisfies λα(α) = 2,
as before. Equivalently, σα(v) = v − λα(v)α for every v ∈ V . Remember that
λα(β) ∈ Z for every α, β ∈ Φ, by definition of a root system.

Let Θ be the subgroup of V , as a commutative group with respect to addi-
tion, generated by Φ. This is the same as the subsemigroup of V generated by
Φ. We would like to consider situations like those discussed in Section 22.8, with
Ξ = Θ. Note that the elements of Θ can be expressed as linear combinations of
the elements of any base for Φ with coefficients in Z.

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. If α ∈ Φ∪{0}, then we suppose that Aα is a
submodule of A, as a module over k, and that A corresponds to the direct sum
of the Aα’s, as a module over k. As usual, it is convenient to put Aα = {0}
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when α ∈ Θ \ (Φ ∪ {0}), and we ask that [Aα, Aβ ] ⊆ Aα+β for every α, β ∈ Θ.
We also ask that ϕ be a group homomorphism from Θ into Homk(A0, k), as a
commutative group with respect to addition, such that adw(x) = ϕα(w)x for
every w ∈ A0 and x ∈ Aα, α ∈ Φ∪ {0}, where ϕα = ϕ(α). This implies that A0

is a Lie subalgebra of A that is commutative as a Lie algebra over k, as before.
If α ∈ Φ, then −α ∈ Φ, and [Aα, A−α] ⊆ A0. We may be interested in

situations where there is an hα ∈ A0 such that

[Aα, A−α] = {t hα : t ∈ k}.(22.11.1)

We may also ask that
ϕα(hα) = 2(= 1 + 1)(22.11.2)

in k. In particular, (22.11.1) implies that there are xα ∈ Aα and yα ∈ A−α such
that

[xα, yα]A = hα.(22.11.3)

More precisely, we may ask that

Aα and A−α are generated by xα and yα, respectively,(22.11.4)

as modules over k, so that every element of Aα or A−α can be expressed as a
multiple of xα or yα by an element of k, as appropriate. Of course, (22.11.3)
and (22.11.4) imply (22.11.1). If β ∈ Φ, then we may ask that

ϕβ(hα) = λα(β) · 1(22.11.5)

in k, which reduces to (22.11.2) when α = β.
In the situation considered in Section 22.1, we take V = ER and Φ =

ΦB . More precisely, k is a field of characteristic 0 in this case, and Φ may
be considered as a subset of the dual of A0 = B, as a vector space over k.
Remember that EQ is the linear subspace of the dual of A0, as a vector space
over Q, spanned by Φ. By construction, EQ is also a linear subspace of V = ER,
as a vector space over Q. In particular,

Θ ⊆ EQ.(22.11.6)

Thus ϕ may be taken to be the obvious inclusion mapping of Θ into the dual
of A0. The one-dimensionality of [Aα, A−α] for α ∈ Φ was discussed in Section
17.5, and hα was defined in Section 17.6. The one-dimensionality of Aα, A−α
was discussed in Section 17.7, and (22.11.5) follows from the definition of λα in
Section 22.1.

We also have that

A0 is spanned by the hα’s, α ∈ Φ,(22.11.7)

as a vector space over k, in the situation considered in Section 22.1. More
precisely, A0 = B is spanned by tb,α, α ∈ Φ, because the dual of B is spanned
by Φ.
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Similarly, if ∆ ⊆ Φ is a base for Φ, then

A0 is spanned by the hα’s, α ∈ ∆,(22.11.8)

as a vector space over k, in the situation considered in Section 22.1. To see this,
it suffices to check that A0 is spanned by tb,α, α ∈ ∆, because hα was defined to
be the product of tb,α by a nonzero element of k. This reduces to the previous
case, because every element of Φ can be expressed as a linear combination of
elements of ∆ with integer coefficients.

In fact,
hα, α ∈ ∆, form a basis for A0(22.11.9)

as a vector space over k, in the situation considered in Section 22.1. To see this,
remember that the number of elements of ∆ is the same as the dimension of
V = ER as a vector space over R. This is the same as the dimension of EQ,
as a vector space over Q. This is also the same as the dimension of the dual of
A0 = B, as a vector space over k. Of course, this is the same as the dimension
of A0, as a vector space over k.

If α, β ∈ Φ, then adxα
maps Aβ into Aα+β , as before. In the situation

considered in Section 22.1, if we also have that α+ β ∈ Φ, then

the restriction of adxα to Aβ is a one-to-one mapping onto Aα+β ,(22.11.10)

as in Section 17.9.

22.12 Standard Borel subalgebras

Let V be a vector space over the real numbers of positive finite dimension, and
let Φ be a root system in V . Also let Θ be the subgroup of V , as a commutative
group with respect to addition, generated by Φ. We would like to consider
situations with some of the conditions mentioned in the previous section, with
k a field. Let (A, [·, ·]A) be a finite-dimensional Lie algebra over k, and let Aα be
a linear subspace of A, as a vector space over k, for each α ∈ Φ∪{0}. As before,
we suppose that A corresponds to the direct sum of the Aα’s, α ∈ Φ ∪ {0},
as a vector space over k, and we put Aα = {0} when α ∈ Θ \ (Φ ∪ {0}), for
convenience. We suppose that [Aα, Aβ ] ⊆ Aα+β for every α, β ∈ Θ, and that
there is a group homomorphism ϕ from Θ into the dual A′

0 of A0 as a vector space
over k such that adw(x) = ϕα(w)x for every w ∈ A0 and x ∈ Aα, α ∈ Φ ∪ {0}.
Here ϕα = ϕ(α) for every α ∈ Θ, as usual.

Suppose that for each α ∈ Φ there are xα ∈ Aα and yα ∈ A−α such that
Aα, A−α are spanned in A by xα, yα, respectively. Put hα = [xα, yα]A for every
α ∈ Φ, so that hα ∈ A0. We ask that

ϕα(hα) = 2 · 1(22.12.1)

in k for every α ∈ Φ, as before. Suppose in addition that

ϕ is injective on Φ ∪ {0},(22.12.2)
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so that ϕα ̸= ϕβ when α and β are distinct elements of Φ ∪ {0}. Note that this
holds in the situation considered in Section 22.1, as in the previous section.

In particular, we are in the type of situation considered in Section 22.6. Let
∆ ⊆ Φ be a base for Φ, as a root system in V , and let Φ+ be the set of positive
roots in Φ with respect to ∆, as before. If Ψ0 ⊆ Θ, then we let A(Ψ0) be the
linear subspace of A spanned by Aα with α ∈ Ψ0, as in Section 22.4. Remember
that A0 is commutative as a Lie subalgebra of A, as in Section 22.8. It follows
that A(Φ+ ∪ {0}) is a solvable Lie subalgebra of A, as in Section 22.6.

Let C be a Lie subalgebra of A such that

A(Φ+ ∪ {0}) ⊆ C(22.12.3)

In particular, this means that A0 ⊆ C, so that [A0, C] ⊆ C. If we put

ΨC = {α ∈ Φ ∪ {0} : Aα ∩ C ̸= {0}},(22.12.4)

then C corresponds to the direct sum of Aα ∩ C with α ∈ ΨC , as in Section
22.10. Note that this uses (22.12.2).

Suppose that A(Φ+ ∪ {0}) is a proper subset of C. This implies that ΨC
is not contained in Φ+ ∪ {0}, as in the preceding paragraph. This means that
there is an α ∈ ΨC ∩ (−Φ+), because Φ = Φ+ ∪ (−Φ+). It follows that xα ∈ C,
because Aα is spanned by xα.

Under these conditions, −α ∈ Φ+, and yα, hα ∈ A(Φ+ ∪ {0}), so that yα,
hα are elements of C too. Suppose that the characteristic of k is not 2, which
implies that

ϕα(hα) ̸= 0.(22.12.5)

In particular, xα, yα, hα ̸= 0, and their linear span in A is a Lie subalgebra of
A that is isomorphic to sl2(k), as a Lie algebra over k. Remember that this Lie
subalgebra is not solvable in this case. It follows that C is not solvable as a Lie
algebra over k.

Equivalently, if the characteristic of k is not 2, and if C is solvable as a
Lie algebra, then A(Φ+ ∪ {0}) = C. This means that A(Φ+ ∪ {0}) is a Borel
subalgebra of A when the characteristic of k is not 2. This may be called
the standard Borel subalgebra of A with respect to Φ, ∆, and the Aα’s. This
corresponds to some remarks near the top of p84 in [14], and at the bottom of
p47 of [24].

22.13 Subalgebras and derivations

Let k be a commutative ring with a multiplicative identity element, and let A
be an algebra over k in the strict sense, where multiplication of x, y ∈ A is
expressed as x y. If B and C are submodules of A, as a module over k, then
remember that their product B · C is defined to be the subset of A consisting
of finite sums of elements of A of the form x y, with x ∈ B and y ∈ C. This is
a submodule of A too, as a module over k, as in Section 9.2.
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Let B be a submodule of A again, as a module over k, and put B1 = B. If
B1, . . . , Bl ⊆ A have been defined for some positive integer l, then let Bl+1 ⊆ A
be the set of finite sums of elements of Bj ·Bl+1−j , j = 1, . . . , l. Continuing in
this way, we can define Bl as a submodule of A, as a module over k, for every
l ∈ Z+. Equivalently, Bl consists of finite sums of elements of A that can be
expressed as the product of l elements of B, with some grouping of the factors.

Let B∞ ⊆ A be the set of finite sums of elements of Bl, l ∈ Z+. It is easy to
see that B∞ is a submodule of A as a module over k, and in fact a subalgebra
of A. Of course, B = B1 ⊆ B∞, by construction. More precisely, B∞ is the
smallest subalgebra of A that contains B. We may call B∞ the subalgebra of
A generated by B.

Let δ be a derivation on A such that

δ(B) ⊆ B.(22.13.1)

One can check that
δ(Bl) ⊆ Bl(22.13.2)

for every l ∈ Z+, by induction. This implies that

δ(B∞) ⊆ B∞.(22.13.3)

22.14 Reducibility and semigroups

Let us return to the type of situation considered in Section 22.3. Thus we let Ξ be
a commutative semigroup, with the semigroup operation expressed additively,
and we let Ψ be a nonempty subset of Ξ. Also let k be a commutative ring
with a multiplicative identity element, and let (A, [·, ·]A) be a Lie algebra over
k. Suppose that Aα is a submodule of A, as a module over k, for each α ∈ Ψ,
and that A corresponds to the direct sum of the Aα’s, α ∈ Ψ, as a module over
k. It is convenient to put Aα = {0} when α ∈ Ξ \ Ψ, as before. We ask that
[Aα, Aβ ] ⊆ Aα+β for every α, β ∈ Ψ, which holds trivially when α or β is in
Ξ \ Ψ. If Ξ has an additive identity element 0, then it follows that A0 is a Lie
subalgebra of A.

If Ψ0 ⊆ Ξ, then let A(Ψ0) be the subset of A consisting of finite sums of
elements of Aα, α ∈ Ψ0, as in Section 22.4. If (Ψ0 +Ψ0)∩Ψ ⊆ Ψ0, then A(Ψ0)
is a Lie subalgebra of A, as before.

Let Ψ1, Ψ2 be nonempty subsets of Ψ. If

(Ψj +Ψj) ∩Ψ ⊆ Ψj(22.14.1)

for j = 1, 2, then A(Ψ1), A(Ψ2) are Lie subalgebras of A, as in the preceding
paragraph. If

Ψ1 ∪Ψ2 = Ψ(22.14.2)

and
Ψ1 ∩Ψ2 = ∅,(22.14.3)
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then A corresponds to the direct sum of A(Ψ1) and A(Ψ2), as a module over k.
If

(Ψ1 +Ψ2) ∩Ψ = ∅,(22.14.4)

then it follows that
[A(Ψ1), A(Ψ2)] = {0}.(22.14.5)

If all four of these conditions hold, then A corresponds to the direct sum of
A(Ψ1) and A(Ψ2), as a Lie algebra over k.

Suppose from now on in this section that Ξ has an additive identity element
0, and that 0 ∈ Ψ. In this case, (22.14.2) implies that 0 is an element of Ψ1 or
Ψ2. This means that (22.14.4) does not hold, because Ψ1,Ψ2 ̸= ∅.

Let Φ1, Φ2 be nonempty subsets of

Φ = Ψ \ {0}.(22.14.6)

If j ∈ {1, 2} and
(Φj +Φj) ∩Ψ ⊆ Φj ∪ {0},(22.14.7)

then
((Φj ∪ {0}) + (Φj ∪ {0})) ∩Ψ ⊆ Φj ∪ {0},(22.14.8)

and A(Φj ∪ {0}) is a Lie subalgebra of A, as before. Let

Aj be the Lie subalgebra of A generated by A(Φj),(22.14.9)

so that
Aj ⊆ A(Φj ∪ {0})(22.14.10)

in this situation.
If

(Φ1 +Φ2) ∩Ψ = ∅,(22.14.11)

then
[A(Φ1), A(Φ2)] = {0},(22.14.12)

as before. Equivalently, this means that

A(Φ1) ⊆ CA(A(Φ2)), A(Φ2) ⊆ CA(A(Φ1)).(22.14.13)

This implies that

A1 ⊆ CA(A(Φ2)), A2 ⊆ CA(A(Φ1)),(22.14.14)

because the centralizer CA(E) of any E ⊆ A in A is a Lie subalgebra of A, as
in Section 7.6. This is the same as saying that

A(Φ2) ⊆ CA(A
1), A(Φ1) ⊆ CA(A

2).(22.14.15)

It follows that
A2 ⊆ CA(A

1), A1 ⊆ CA(A
2),(22.14.16)
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as before, which are of course equivalent.
If w ∈ A0, then

adw(A(Φj)) ⊆ A(Φj)(22.14.17)

for j = 1, 2, because adw(Aα) ⊆ Aα for every α ∈ Ψ, by hypothesis. This
implies that

adw(A
j) ⊆ Aj(22.14.18)

for j = 1, 2, as in the previous section, because adw is a derivation on A.
Let us check that

Aj is an ideal in A for j = 1, 2(22.14.19)

when (22.14.11) holds. Of course, this is the same as saying that the normalizer
NA(A

j) of Aj in A is equal to A. By construction, A(Φj) ⊆ Aj ⊆ NA(A
j) for

j = 1, 2. Using (22.14.14), we get that A(Φ2) ⊆ NA(A
1) and A(Φ1) ⊆ NA(A

2).
We also have that A0 ⊆ NA(A

j) for j = 1, 2, by (22.14.18), so that NA(A
j) = A,

as desired.
If

for each j = 1, 2, there is an αj ∈ Φj such that Aαj
̸= {0},(22.14.20)

then
Aj ̸= {0} for j = 1, 2.(22.14.21)

If (22.14.7) holds for j = 1, 2, (22.14.20) holds, and

Φ1 ∩ Φ2 = ∅,(22.14.22)

then
Aj ̸= A for j = 1, 2,(22.14.23)

by (22.14.10). If (22.14.11) holds too, and k is a field, then it follows that A
is not simple as a Lie algebra, because of (22.14.19). This is related to the
proposition on p73 of [14], and to part of the corollary to Theorem 9 on p50 of
[24].

Note that
A1 ∩A2 ⊆ A0(22.14.24)

when (22.14.7) holds for j = 1, 2 and (22.14.22) holds, because of (22.14.10). If
(22.14.11) holds as well,

Φ1 ∪ Φ2 = Φ,(22.14.25)

and
A0 is commutative as a Lie algebra over k,(22.14.26)

then
A1 ∩A2 ⊆ Z(A),(22.14.27)

where Z(A) is the center of A as a Lie algebra, as usual. More precisely, if
x ∈ A1 ∩A2, then [x, y]A = 0 for every y ∈ A1 or A2, by (22.14.16). This holds
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when y ∈ A0 too, by (22.14.24) and (22.14.26). It follows that this holds for
every y ∈ A, because of (22.14.25), as desired.

If Z(A) = {0}, then (22.14.27) implies that

A1 ∩A2 = {0}.(22.14.28)

If we also have that

every element of A can be expressed(22.14.29)

as the sum of elements of A1 and A2,

then A corresponds to the direct sum of A1 and A2, as a module over k. If
(22.14.11) holds too, then A corresponds to the direct sum of A1 and A2 as a
Lie algebra over k, because of (22.14.16). If (22.14.25) holds, and every element
of A0 can be expressed as a sum of elements of A1 and A2, then (22.14.29) holds.

If j ∈ {1, 2}, α, β ∈ Φj , and α+ β = 0, then

[Aα, Aβ ] ⊆ Aj ∩A0.(22.14.30)

If (22.14.7) and (22.14.26) hold, then one can check that set of elements of A
that can be expressed as finite sums of elements of A(Φj) and [Aα, Aβ ] with
α, β ∈ Φj and α + β = 0 is a Lie subalgebra of A. It follows that this is the
same as Aj in this case.

22.15 Reducibility and roots

Let V be a vector space over the real numbers of positive finite dimension, and
let Φ be a root system in V . Also let Θ be the subgroup of V , as a group with
respect to addition, generated by Φ. We would like to consider situations like
those in the previous section, with Ξ = Θ and Ψ = Φ ∪ {0}. Thus we let k, A,
and Aα be as before.

Suppose that Φ is reducible as a root system in V , as in Section 20.4. Thus
V is the direct sum of two nontrivial linear subspaces V1 and V2, as a vector
space over R, and

Φ ⊆ V1 ∪ V2.(22.15.1)

Put Φj = Φ ∩ Vj for j = 1, 2, so that Φ = Φ1 ∪ Φ2. If α ∈ Φ1 and β ∈ Φ2, then
α ̸= β, because V1 ∩ V2 = {0}, and

α+ β ̸∈ Φ ∪ {0},(22.15.2)

because α+ β ̸∈ V1 ∪ V2. This means that (22.14.7), (22.14.11), (22.14.22), and
(22.14.25) hold in this situation.

If j ∈ {1, 2} and α ∈ Φj , then −α ∈ Φj , and

[Aα, A−α] ⊆ Aj ∩A0,(22.15.3)

as in (22.14.30). Suppose from now on in this section that A0 is commutative
as a Lie algebra over k, as in (22.14.26). This implies that the set of elements of



484 CHAPTER 22. ROOTS AND LIE ALGEBRAS

A that can be expressed as finite sums of elements of A(Φj) and [Aα, A−α] with
α ∈ Φj is a Lie subalgebra of A, as in the previous section. This Lie subalgebra
is the same as Aj under these conditions, as before.

We can describe Aj , j = 1, 2, more precisely with some additional conditions,
as in Section 22.11. Suppose that for each α ∈ Φ, there is an hα ∈ A0 such that
[Aα, A−α] is the set of multiples of hα by elements of k, as before. This means
that Aj consists of sums of elements of A(Φj) and linear combinations of the
hα’s, α ∈ Φj , with coefficients in k, for j = 1, 2.

Let ∆1 and ∆2 be bases for Φ1 and Φ2 in V1 and V2, respectively. This
implies that ∆1 ∪ ∆2 is a base for Φ, as in Section 20.4. In the situation
considered in Section 22.1, k is a field, and hα, α ∈ ∆1 ∪∆2, form a basis for
A0 as a vector space over k, as in Section 22.11. If α ∈ Φj for j = 1, 2, then
hα can be expressed as a linear combination of hβ , β ∈ ∆j , in A0 in this case.
This follows from the fact that α can be expressed as a linear combination of
the elements of ∆j with integer coefficients, so that tb,α can be expressed as a
linear combination of tb,β , β ∈ ∆j , where tb,γ is as in Section 22.1.

Under these conditions, Aj consists of sums of elements of A(Φj) and linear
combinations of the hα’s, now with α ∈ ∆j , for j = 1, 2. It follows that every
element of A can be expressed in a unique way as a sum of elements of A1 and
A2, so that A corresponds to the direct sum of A1 and A2, as a Lie algebra over
k.

As before, this is related to the proposition on p73 of [14], and to part of the
corollary to Theorem 9 on p50 of [24].



Chapter 23

Roots and Lie algebras, 2

23.1 Inverse roots and homomorphisms

Let V be a vector space over the real numbers of positive finite dimension, and
let Φ be a root system in V . If α ∈ Φ, then there is a unique symmetry σα on V
with vector α that maps Φ onto itself, as usual. Let λα be the linear functional
on V that is equal to 0 on the hyperplane fixed by σα and satisfies λα(α) = 2,
so that σα(v) = v − λα(v)α for every v ∈ V . Remember that

Φ′ = {λα : α ∈ Φ}(23.1.1)

is a root system in the dual V ′ of V , as in Section 19.8.
Note that

α 7→ λα(23.1.2)

is a one-to-one mapping from Φ onto Φ′. More precisely, if (·, ·) is an inner
product on V that is invariant under the Weyl group of Φ and α ∈ Φ, then λα
corresponds to α̂ = 2α (α, α)−1 with respect to (·, ·), and ̂̂α = α. Alternatively,
the symmetry on V ′ with vector λα that maps Φ′ onto itself corresponds to the
dual of σα, and the associated linear functional on V ′ corresponds to α in a
natural way.

Let Θ = ΘΦ be the subgroup of V , as a commutative group with respect to
addition, generated by Φ. If ∆ is a base for Φ, then Θ consists of the linear
combinations of elements of ∆ with coefficients in Z.

Let Hom(Θ,Z) be the collection of homomorphisms from Θ in Z, as commu-
tative groups with respect to addition. Of course, commutative groups may be
considered as modules over Z, and group homomorphisms between them may
be considered as module homomorphisms. Thus we may also use HomZ(Θ,Z)
for space of homomorphisms from Θ into Z, as commutative groups or mod-
ules over Z. This is a commutative group with respect to pointwise addition of
functions into Z, or equivalently a module over Z.

Elements of Hom(Θ,Z) are uniquely determined by their restrictions to ∆.
Every Z-valued function on ∆ can be extended to a homomorphism from Θ
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into Z. Similarly, linear functionals on V are uniquely determined by their
restrictions to ∆, and every real-valued function on ∆ can be extended to a
linear functional on V . If λ is a linear functional on V that maps Θ into Z, then
the restriction of λ to Θ defines an element of Hom(Θ,Z). Every element of
Hom(Θ,Z) is the restriction to Θ of a unique linear functional on V that maps
Θ into Z, which can be obtained from its restriction to ∆, as before.

Thus Hom(Θ,Z) can be identified with the set of linear functionals on V that
map Θ into Z. This is a subgroup of the dual space V ′, as a commutative group
with respect to addition. If α ∈ Φ, then λα maps Φ into Z, by the definition of
a root system. This means that λα maps Θ into Z, so that the restriction of λα
to Θ is an element of Hom(Θ,Z).

Let ΘΦ′ be the subgroup of V ′, as a commutative group with respect to
addition, generated by Φ′. Note that every element of ΘΦ′ maps Θ into Z, so
that its restriction to Θ is an element of Hom(Θ,Z).

As before, ΘΦ′ consists of linear combinations of elements of a base for Φ′

with coefficients in Z. If Φ is reduced as a root system in V , then

∆′ = {λα : α ∈ ∆}(23.1.3)

is a base for Φ′, as in Section 19.13.
In the types of situations considered in Section 22.11, one can ask for a ho-

momorphism from ΘΦ′ into A0, as commutative groups with respect to addition,
that sends λα to hα for every α ∈ Φ. In particular, this happens in the type of
situation considered in Section 22.1, as in Section 22.2.

23.2 Bases and submodules

Let us return to the type of situation considered in Section 22.6, and look at
some additional properties related to a base for the root system. Thus we let V
be a vector space over the real numbers of positive finite dimension, and let Φ
be a root system in V . Also let ∆ be a base for Φ, and let Φ+ = Φ∆,+ be the
set of positive roots in Φ with respect to ∆. Let Θ be the subgroup of V , as
a commutative group with respect to addition, generated by Φ, as before. Of
course, this is the same as the subgroup of V generated by ∆.

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Suppose that Aα is a submodule of A, as a
module over k, for each α ∈ Φ ∪ {0}, and that A corresponds to the direct sum
of the Aα’s, as a module over k. Put Aα = {0} when α ∈ Θ \ (Φ ∪ {0}), as
before, and suppose that [Aα, Aβ ] ⊆ Aα+β for every α, β ∈ Θ. Of course, this
implies that

[Aα, A−α] ⊆ A0(23.2.1)

for every α ∈ Θ. In particular, A0 is a Lie subalgebra of A, as before.
If α, β ∈ ∆, then α− β ̸∈ Φ, by the definition of a base for a root system. If

α ̸= β too, then α− β ̸∈ Φ ∪ {0}, so that

[Aα, A−β ] = {0}.(23.2.2)
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This corresponds to part of the proposition on p96 of [14], and part of part (b)
of Theorem 6 on p48 of [24].

If α ∈ Φ, then let σα be the symmetry on V with vector α that maps Φ
onto itself, and let λα be the corresponding linear functional on V , so that
σα(v) = v − λα(v)α for every v ∈ V . Let α, β ∈ ∆ be given, with α ̸= β.
Remember that λα(β) ∈ Z, by definition of a root system, and that λα(β) ≤ 0
in this case, as in Section 20.2. Observe that

β − λα(β)α+ α = σα(β − α),(23.2.3)

because σα(α) = −α. This implies that

β − λα(β)α+ α ∈ Θ \ (Φ ∪ {0}),(23.2.4)

because λα(β) ∈ Z and α− β ̸∈ Φ ∪ {0}, as before. It follows that

Aβ−λα(β)α+α = {0}(23.2.5)

under these conditions. Similarly,

−β − λα(β) (−α)− α = −(β − λα(β)α+ α) ∈ Θ \ (Φ ∪ {0}),(23.2.6)

so that
A−β−λα(β) (−α)−α = {0}.(23.2.7)

This corresponds to another part of the proposition on p96 of [14], and to part
(c) of Theorem 6 on p48 of [24].

Let α, β ∈ Θ be given, so that

[[Aα, Aβ ], A−α−β ] ⊆ [Aα+β , A−α−β ] ⊆ A0.(23.2.8)

Using the Jacobi identity, we get that

[[Aα, Aβ ], A−α−β ] ⊆ [[Aβ , A−α−β ], Aα] + [[A−α−β , Aα], Aβ ].(23.2.9)

This implies that

[[Aα, Aβ ], A−α−β ] ⊆ [Aα, A−α] + [Aβ , A−β ].(23.2.10)

23.3 Some generating submodules

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If Ψ0 ⊆ Θ, then let A(Ψ0) be the subset of A consisting of finite sums of
elements of Aα, α ∈ Ψ0, as before. This is a submodule of A, as a module over
k.

Suppose that for each α ∈ ∆ and β ∈ Φ+ with α+ β ∈ Φ we have that

[Aα, Aβ ] = Aα+β .(23.3.1)
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Of course, α + β ∈ Φ+ in this case. This condition holds in the situation
considered in Section 22.1, as in Section 17.9. Note that α + β ̸= 0 when α,
β are elements of Φ+, because of the nonnegativity of the coefficients of α and
β when expressed as linear combinations of elements of ∆. If α + β ̸∈ Φ, then
Aα+β = {0}, by construction, and (23.3.1) holds automatically, by hypothesis.

Let β ∈ Φ+ be given, and remember that β can be expressed as
∑r
j=1 αj for

some α1, . . . , αr ∈ ∆, where

βl =

l∑
j=1

αj ∈ Φ(23.3.2)

for each l = 1, . . . , r, as in Section 19.12. If l < r, then we get that

Aβl+1
= [Aαl+1

, Aβl
],(23.3.3)

as in (23.3.1), because βl ∈ Φ+.
Remember that A(Φ+) is a Lie subalgebra of A, as in Section 22.6. If (23.3.1)

holds for every α ∈ ∆ and β ∈ Φ+ with α+ β ∈ Φ, then

A(Φ+) is generated by the submodules(23.3.4)

Aα, α ∈ ∆, as a Lie algebra over k.

More precisely, if β ∈ Φ+, then one can use (23.3.3) to get that Aβ is contained
in the Lie subalgebra of A generated by Aα, α ∈ ∆. This corresponds to part
of the proof of the proposition on p74 of [14], and is related to part of part (a)
of Theorem 6 on p48 of [24].

Similarly, suppose that

[A−α, A−β ] = A−α−β(23.3.5)

for every α ∈ ∆ and β ∈ Φ+ with α + β ∈ Φ. This also holds in the situation
considered in Section 22.1, as in Section 17.9. If α+β ̸∈ Φ, then −α−β ̸∈ Φ, so
that A−α−β = {0}, and (23.3.5) holds automatically, by hypothesis. If β ∈ Φ+,
and α1, . . . , αr ∈ ∆, βl ∈ Φ+ are as in (23.3.2), then we get that

A−βl+1
= [A−αl+1

, A−βl
](23.3.6)

when l < r.
We also have that A(−Φ+) is a Lie subalgebra of A, as in Section 22.6 again.

If (23.3.5) holds for every α ∈ ∆ and β ∈ Φ+ with α+ β ∈ Φ, then

A(−Φ+) is generated by the submodules(23.3.7)

A−α, α ∈ ∆, as a Lie algebra over k.

This can be obtained from (23.3.6), as before. This corresponds to another part
of the proof of the proposition on p74 of [14], and is related to another part of
part (a) of Theorem 6 on p48 of [24].



23.4. SOME GENERATORS 489

If α ∈ ∆, β ∈ Φ+, and (23.3.1) holds, then

[Aα+β , A−α−β ] ⊆ [Aα, A−α] + [Aβ , A−β ],(23.3.8)

by (23.2.10). Suppose that (23.3.1) holds for every α ∈ ∆ and β ∈ Φ+ with
α+ β ∈ Φ again. If β ∈ Φ+, then

[Aβ , A−β ] is contained in the submodule of A0(23.3.9)

generated by [Aα, A−α], α ∈ ∆, as a module over k.

To see this, one can express β as in (23.3.2) with l = r, as before. If l < r, then

[Aβl+1
, A−βl+1

] ⊆ [Aαl+1
, A−αl+1

] + [Aβl
, A−βl

],(23.3.10)

by (23.3.3) and (23.3.8). One can use this repeatedly to get (23.3.9). Of course,
one can use an analogous argument when (23.3.5) holds for every α ∈ ∆ and
β ∈ Φ+ with α+ β ∈ Φ, instead of (23.3.1).

In the situation considered in Section 22.1,

A0 is generated by [Aα, A−α], α ∈ Φ+, as a module over k.(23.3.11)

as in (22.11.7). More precisely,

A0 is generated by [Aα, A−α], α ∈ ∆, as a module over k.(23.3.12)

in this case, as in (22.11.8). If (23.3.9) holds for every β ∈ Φ+, then (23.3.11)
implies (23.3.12).

Suppose that (23.3.1) and (23.3.5) hold for every α ∈ ∆ and β ∈ Φ+ with
α+ β ∈ Φ. If (23.3.11) holds too, then we get that

A is generated by the submodules(23.3.13)

Aα and A−α, α ∈ ∆, as a Lie algebra over k.

This corresponds to the proposition on p74 of [14], which is related to another
part of part (a) of Theorem 6 on p48 of [24].

23.4 Some generators

Let us continue with the same notation and basic hypotheses as in the previous
two sections. Suppose now that for each α ∈ ∆, there is an xα ∈ Aα such that

Aα is generated by xα as a module over k,(23.4.1)

so that every element of Aα can be expressed as a multiple of xα by an element
of k. This holds in the situation considered in Section 22.1, as in Section 17.7.
If α ∈ ∆ and β ∈ Φ+ satisfy α+β ∈ Φ, then (23.3.1) is the same as saying that

adxα
(Aβ) = Aα+β .(23.4.2)
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Suppose that this holds for all such α and β, let β ∈ Φ+ be given, and let
α1, . . . , αr ∈ ∆ be as before, so that (23.3.2) holds for every l = 1, . . . , r, and
βr = β. If l < r, then

Aβl+1
= adxαl+1

(Aβl
),(23.4.3)

by (23.4.2). This implies that Aβl
is generated by a single element as a module

over k for each l = 1, . . . , r. In particular, Aβ is generated by a single element,
as a module over k, because β = βr.

In this situation, (23.3.4) is the same as saying that

A(Φ+) is generated by xα, α ∈ ∆, as a Lie algebra over k.(23.4.4)

This corresponds to part of part (a) of Theorem 6 on p48 of [24].
Similarly, suppose that for each α ∈ ∆ there is a yα ∈ A−α such that

A−α is generated by yα as a module over k.(23.4.5)

This holds in the situation considered in Section 22.1, as in Section 17.7 again.
If α ∈ ∆, β ∈ Φ+, and α+ β ∈ Φ, then (23.3.5) is the same as saying that

adyα(A−β) = A−α−β .(23.4.6)

If this holds for all such α and β, then we get that A−β is generated by a single
element as a module over k for every β ∈ Φ+, as before.

In this case, (23.3.7) is the same as saying that

A(−Φ+) is generated by yα, α ∈ ∆, as a Lie algebra over k.(23.4.7)

This corresponds to another part of part (a) of Theorem 6 on p48 of [24].
Suppose that (23.4.1) and (23.4.5) hold for every α ∈ ∆, so that

[Aα, A−α] is generated by [xα, yα]A as a module over k(23.4.8)

for every α ∈ ∆. In this situation, (23.3.12) is the same as saying that

A0 is generated by [xα, yα]A, α ∈ ∆, as a module over k.(23.4.9)

If (23.4.2) and (23.4.6) hold for every α ∈ ∆ and β ∈ Φ+ with α + β ∈ Φ, and
if (23.4.9) holds, then we get that

A is generated by xα and yα, α ∈ ∆, as a Lie algebra over k.(23.4.10)

This corresponds to the second formulation of the proposition on p74 of [14],
and to another part of part (a) of Theorem 6 on p48 of [24].

23.5 Some relations

Let us continue with the same notation and basic hypotheses as in the previous
three sections. If α ∈ Φ, then let σα be the symmetry on V with vector α that
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maps Φ onto itself, and let λα be the corresponding linear functional on V . Thus
λα is equal to 0 on the hyperplane fixed by σα and satisfies λα(α) = 2, so that
σα(v) = v−λα(v)α for every v ∈ V . Suppose that ϕ is a group homomorphism
from Θ into Homk(A0, k), as a commutative group with respect to addition,
such that adw(x) = ϕα(w)x for every w ∈ A0 and x ∈ Aα, α ∈ Φ ∪ {0}, where
ϕα = ϕ(α), as before. In particular, this means that A0 is commutative as a Lie
subalgebra of A.

Suppose that for each α ∈ ∆, xα ∈ Aα and yα ∈ A−α, and put

hα = [xα, yα]A(23.5.1)

which is an element of A0. We also suppose that

ϕβ(hα) = λα(β) · 1(23.5.2)

in k for every α ∈ ∆ and β ∈ Φ. Remember that λα(β) ∈ Z for every α, β ∈ Φ.
In the situation considered in Section 22.1, we can choose xα, yα so that (23.5.1)
satisfies (23.5.2), as in Section 22.11. These choices of xα and yα satisfy the
other conditions mentioned in the previous section in that situation too, as
before.

If α, β ∈ ∆, then

[hα, hβ ]A = 0,(23.5.3)

because A0 is commutative as a Lie algebra over k. If α ̸= β, then

[xα, yβ ]A = 0,(23.5.4)

as in (23.2.2). We also have that

[hα, xβ ]A = ϕβ(hα)xβ = λα(β) · xβ(23.5.5)

for every α, β ∈ ∆, using (23.5.2) and the fact that xβ ∈ Aβ , by construction.
Similarly,

[hα, yβ ]A = ϕ−β(hα) yβ = −λα(β) · yβ(23.5.6)

for every α, β ∈ ∆, because yβ ∈ A−β . These relations, including (23.5.1), are
called the Weyl relations, as in part (b) of Theorem 6 on p48 of [24].

Let α, β ∈ ∆ be given, with α ̸= β. Remember that λα(β) ≤ 0, as in Section
20.2. Observe that

ad−λα(β)+1
xα

(xβ) = 0,(23.5.7)

by (23.2.5). Similarly,

ad−λα(β)+1
yα (yβ) = 0,(23.5.8)

by (23.2.7). This corresponds to part (c) of Theorem 6 on p48 of [24], and the
Weyl relations together with these additional relations are in the proposition on
p96 of [14].
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23.6 Isomorphisms and diagonalizability

Let k be a field, and let (A1, [·, ·]A1) and (A2, [·, ·]A2) be finite-dimensional Lie
algebras over k. Also let T be a Lie algebra isomorphism from A1 onto A2.
Suppose that B1 is a Lie subalgebra of A1 such that every element of B1 is
ad-diagonalizable as an element of A1. This implies that B1 is commutative as
a Lie algebra over k, as in Section 17.1. It follows that

B2 = T (B1)(23.6.1)

has the analogous properties in A2.
Let B′

1, B
′
2 be the duals of B1, B2, respectively, as vector spaces over k. The

restriction TB of T to B1 is a one-to-one linear mapping from B1 onto B2. If
α2 ∈ B′

2, then
T ′
B(α2) = α2 ◦ TB ∈ B′

1,(23.6.2)

as usual. This defines the dual linear mapping T ′
B from B′

2 into B′
1. More

precisely, T ′
B is a one-to-one mapping from B′

2 onto B′
1 in this situation.

If αj ∈ B′
j , j = 1, 2, then let Aj,αj

be the set of xj ∈ Aj such that

adAj ,wj
(xj) = [wj , xj ]Aj

= αj(wj)xj(23.6.3)

for every wj ∈ Bj , as before. Thus Aj,αj
is a linear subspace of Aj , as a vector

space over k. Observe that x1 ∈ A1, w1 ∈ B1, and α1 ∈ B′
1 satisfy

[w1, x1]A1 = α1(w1)x1(23.6.4)

exactly when
[T (w1), T (x1)]A2 = α1(w1)T (x1).(23.6.5)

Let α2 ∈ B′
2 be given, and let us apply this to α1 = T ′

B(α2). This implies that
x1 ∈ A1 and w1 ∈ B1 satisfy

[w1, x1]A1
= (T ′

B(α2))(w1)x1(23.6.6)

exactly when
[T (w1), T (x1)]A2

= α2(T (w1))T (x1),(23.6.7)

because (T ′
B(α2))(w1) = α2(TB(w1)) = α2(T (w1)).

Using this, it is easy to see that

T (A1,T ′
B
(α2)) = A2,α2

(23.6.8)

for every α2 ∈ B′
2. Put

Φj,Bj = {αj ∈ B′
j : αj ̸= 0 and Aj,αj ̸= {0}}(23.6.9)

for j = 1, 2, as before. It follows that

T ′
B(Φ2,B2

) = Φ1,B1
,(23.6.10)



23.7. AUTOMORPHISMS AND SL2(K) 493

by (23.6.8). Remember that Φj,Bj has finitely many elements, as in Section
17.2.

Suppose now that k has characteristic 0. Let Ej,Q be the linear subspace of
B′
j , as a vector space over Q, spanned by Φj,Bj

for j = 1, 2, as before. Using
(23.6.10), we get that

T ′
B(E2,Q) = E1,Q.(23.6.11)

Thus the restriction of T ′
B to E2,Q is a one-to-one mapping onto E1,Q that is

linear over Q.
Let Ej,R be the vector space over R obtained from Ej,Q as in Section 17.13,

for j = 1, 2. More precisely, Ej,Q corresponds to a linear subspace of Ej,R, as a
vector space over Q, and any basis for Ej,Q, as a vector space over Q, is also a
basis for Ej,R, as a vector space over R. The restriction of T ′

B to E2,Q leads to
a one-to-one mapping from E2,R onto E1,R that is linear over R. This mapping
agrees with T ′

B on E2,Q, and in particular maps Φ2,B2
onto Φ1,B1

.
If Φ1,B1

is a root system in E1,R, then Φ2,B2
is a root system in E2,R. In

this case, the linear mapping from E2,R onto E1,R obtained from T ′
B as in the

preceding paragraph is an isomorphism between these root systems. Remember
that Φj,Bj is a root system in Ej,R when Aj , Bj satisfy the conditions in Section
22.1.

23.7 Automorphisms and sl2(k)

Let k be a field of characteristic 0, and let (A, [·, ·]A) be a finite-dimensional Lie
algebra over k. If w ∈ A is ad-nilpotent, then the exponential of adw defines a
Lie algebra automorphism of A, as in Section 14.11. If u ∈ A and [w, u]A = 0,
then it is easy to see that

(exp adw)(u) = u.(23.7.1)

Let x, y be elements of A, and put

h = [x, y]A.(23.7.2)

Suppose that
[h, x]A = 2 · x, [h, y]A = −2 · y.(23.7.3)

Let C be the linear span of x, y, and h in A, which is a Lie subalgebra of A that
is isomorphic to sl2(k), as a Lie algebra over k. Using (23.7.3), we get that x
and y are ad-nilpotent as elements of A, as in Section 14.2. More precisely, this
uses the adjoint representation of A.

Of course, −y is ad-nilpotent as an element of A too. Thus the exponentials
of adx and − ady define Lie algebra automorphisms on A, as before. It follows
that

θ = (exp adx) ◦ (exp−ady) ◦ (exp adx)(23.7.4)

is a Lie algebra automorphism on A too. If u ∈ A satisfies

[x, u]A = [y, u]A = 0,(23.7.5)
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then

(exp adx)(u) = (exp−ady)(u) = u,(23.7.6)

as in (23.7.1). This implies that

θ(u) = u.(23.7.7)

Clearly adx and ady map C into itself, because C is a Lie subalgebra of A
that contains x and y. The restrictions of adx = adA,x and ady = adA,y to C are
the same as adC,x and adC,y, respectively, corresponding to the adjoint repre-
sentation on C. It is easy to see that the restrictions of exp adx = exp adA,x and
exp(− ady) = exp(− adA,y) to C are the same as exp adC,x and exp(− adC,y).
This means that the restriction of θ to C is the same as

(exp adC,x) ◦ (exp−adC,y) ◦ (exp adC,x).(23.7.8)

Using this, we get that

θ(x) = −y, θ(y) = −x, θ(h) = −h.(23.7.9)

More precisely, we can take θ to be as in (23.7.8) here, as in the preceding
paragraph. This permits one to obtain (23.7.9) as in Section 15.7, because C
is isomorphic to sl2(k) as a Lie algebra over k, with its usual basis. Note that
(23.7.4) is an inner automorphism of A, as in Section 14.11.

23.8 Automorphisms and roots

Let k be a field of characteristic 0 again, and let (A, [·, ·]A) be a finite-dimensional
Lie algebra over k. Also let B be a Lie subalgebra of A, all of whose elements
are ad-diagonalizable as elements of A. If α is an element of the dual B′ of
B, as a vector space over k, then we let Aα be the set of x ∈ A such that
[w, x]A = α(w)x for every w ∈ B, as before. The set of α ∈ B′ such that α ̸= 0
and Aα ̸= {0} is denoted ΦB , as usual.

Let α ∈ ΦB be given, and suppose that xα ∈ Aα and yα ∈ A−α have the
property that hα = [xα, yα]A satisfies α(hα) = 2. Thus [hα, xα]A = α(hα)xα =
2xα, and [hα, yα]A = −α(hα) yα = −2 yα. In particular, xα and yα are ad-
nilpotent as elements of A, as in Sections 14.2 and 17.2. This implies that −yα
is ad-nilpotent as an element of A, and that the exponentials of adxα and − adyα
define Lie algebra automorphisms of A, as in Section 14.11. Note that there are
such xα, yα in the situation considered in Section 22.1, as in Section 17.6.

Put

θα = (exp adxα
) ◦ (exp−adyα) ◦ (exp adxα

),(23.8.1)

which defines a Lie algebra automorphism on A. If u ∈ A satisfies [xα, u]A =
[yα, u]A = 0, then

θα(u) = u,(23.8.2)
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as in the previous section. In particular, this holds for every u ∈ B with
α(u) = 0, because xα ∈ Aα and yα ∈ A−α. We also have that

θα(hα) = −hα,(23.8.3)

as before. This implies that
θα(B) = B,(23.8.4)

because B is spanned by the kernel of α and hα.
Let θα,B be the restriction of θα to B, which is a one-to-one linear mapping

from B onto itself. If β ∈ B′, then

θ′α,B(β) = β ◦ θα,B ∈ B′,(23.8.5)

and θ′α,B is a one-to-one linear mapping from B′ onto itself. As in Section 23.6,

θα(Aθ′
α,B

(β)) = Aβ(23.8.6)

for every β ∈ B′. This implies that

θ′α,B(ΦB) = ΦB ,(23.8.7)

as before.
It is easy to see that

θα(u) = u− α(u)hα(23.8.8)

for every u ∈ B, using (23.8.2), (23.8.3), and the fact that α(hα) = 2. If β ∈ B′,
then we get that

θ′α,B(β) = β − β(hα)α.(23.8.9)

Let EQ be the linear subspace of B′, as a vector space over Q, spanned by
ΦB , as before. Thus

θ′α,B(EQ) = EQ,(23.8.10)

as in Section 23.6, by (23.8.7).
Suppose that for each β ∈ ΦB , β(hα) corresponds to an element of Q with

respect to the standard embedding into k, which holds in the situation consid-
ered in Section 22.1. This implies that β(hα) is in the image of Q in k when
β ∈ EQ, by definition of EQ. Let λα be the linear functional on EQ, as a vector
space over Q, corresponding to β 7→ β(hα). If β ∈ EQ, then (23.8.9) can be
expressed as

θ′α,B(β) = β − λα(β)α.(23.8.11)

Let ER be the vector space over R obtained from EQ as in Sections 17.13
and 23.6, so that EQ corresponds to a linear subspace of ER, as a vector space
over Q, and any basis for EQ, as a vector space over Q, is a basis for ER too,
as a vector space over R. The restriction of θ′α,B to EQ leads to a one-to-one
mapping from ER onto itself that is linear over R, as in Section 23.6.

There is a natural extension of λα to a linear functional on ER, that we
shall denote as λα as well. The mapping on ER corresponding to the restriction
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of θ′α,B to EQ can be given by the same expression as in (23.8.11), using this
extension of λα to ER. This defines a symmetry on ER with vector α that maps
ΦB onto itself.

In the situation considered in Section 22.1, ΦB is a root system in ER, and
every α ∈ ΦB can be handled in this way. It follows that every element of the
Weyl group of ΦB corresponds to a Lie algebra automorphism of A that maps
B onto itself as in Section 23.6 in this case. This corresponds to the first part
of the remark on p47 of [24]. This also corresponds to some remarks on p77 of
[14]. More precisely, every element of the Weyl group of ΦB corresponds to an
inner automorphism of A that maps B into itself in this way, because (23.8.1)
is an inner automorphism of A, as in the previous section.

23.9 Automorphisms and bases for ΦB

We would like to consider some conditions combining those in Section 22.12
and the previous section, and which hold in the situation described in Section
22.1, as usual. We begin as in the previous section, so that (A, [·, ·]A) is a finite-
dimensional Lie algebra over a field k of characteristic 0. Let B, Aα for α ∈ B′,
and ΦB be as before. Remember that B is commutative as a Lie subalgebra of
A, as in Section 17.1, and that A corresponds to the direct sum of the linear
subspaces Aα, α ∈ ΦB ∪ {0}, as a vector space over k, as in Section 17.2. We
also have that [Aα, Aβ ] ⊆ Aα+β for every α, β ∈ B′, as before.

Of course, B ⊆ A0, because B is commutative as a Lie subalgebra of A. We
ask that B = A0, which will be compatible with Section 22.12. This is the same
as saying that B is equal to its centralizer in A, as usual.

Suppose that for each α ∈ ΦB , we have elements xα of Aα and yα of A−α
such that hα = [xα, yα]A satisfies α(hα) = 2, as in the previous section. Suppose
also that Aα, A−α are spanned by xα, yα, respectively, as in Section 22.12.

Let EQ be the linear subapce of B′, as a vector space over Q, spanned by
ΦB , and let ER be the vector space over R obtained from EQ in the usual way,
as in the previous section. Suppose that for each α, β ∈ ΦB , β(hα) corresponds
to an element of Q with respect to the standard embedding into k, as in the
previous section. If α ∈ ΦB , then we get a linear functional λα on EQ, as a
vector space over Q, corresponding to β 7→ β(hα), as before. This has a natural
extension to a linear functional on ER, which is denoted λα too, as before. This
can be used to get a symmetry on ER with vector α that maps ΦB onto itself,
as in the prevous section.

We would like ΦB to be a root system in ER. This amounts to asking
that for every α, β ∈ ΦB , β(hα) corresponds to an integer with respect to the
standard embedding into k, so that λα(β) ∈ Z. Under these conditions, we can
take V = ER and Φ = ΦB in Section 22.12.

If Θ is the subgroup of ER, as a commutative group with respect to addi-
tion, generated by ΦB , then Θ is in fact a subgroup of EQ, and thus of B′.
Equivalently, Θ is a subgroup of the dual A′

0 of A0, as a vector space over k.
The group homomorphism ϕ from Θ into A′

0 mentioned in Section 22.12 may
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be taken to be the obvious inclusion mapping of Θ into A′
0 here.

If Ψ0 ⊆ ΦB∪{0}, then we take A(Ψ0) to be the linear subspace of A spanned
by Aα, α ∈ Ψ0, as in Section 22.12. Let ∆ be a base for ΦB , as a root system
in ER. This leads to the set Φ∆,+

B of positive roots in ΦB with respect to ∆,
which can be expressed as linear combinations of elements of ∆ with nonnegative
coefficients. Remember that A(Φ∆,+

B ∪ {0}) is a solvable Lie subalgebra of A,
and in fact a Borel subalgebra of A, as in Section 22.12. This may be called the
standard Borel subalgebra of A associated to B and ∆, as before.

If σ is an element of the Weyl group of ΦB , then there is an inner automor-
phism θ of A that corresponds to σ as in the previous section. More precisely,
θ(B) = B, and we let θB be the restriction of θ to B, which is a one-to-one
linear mapping from B onto itself. If β ∈ B′, then θ′B(β) = β ◦ θB ∈ B′, and θ′B
is a one-to-one linear mapping from B′ onto itself. As before, θ maps Aθ′

B
(β)

onto Aβ for every β ∈ B′, which implies that θ′B maps ΦB onto itself. It follows
that θ′B maps EQ onto itself, as in the previous section.

The restriction of θ′B to EQ leads to a one-to-one linear mapping from ER

onto itself, as before. We can choose θ so that this linear mapping on ER is σ.
Indeed, if α ∈ ΦB , then the automorphism θα in (23.8.1) corresponds in this
way to the symmetry on ER with vector α that maps ΦB onto itself. If σ is any
element of the Weyl group of Φ, then σ can be expressed as the composition of
finitely many such symmetries on ER. One can take θ to be the composition
of the corresponding θα’s in the other order, because the dual of a composition
of linear mappings is the composition of the dual linear mappings in the other
order.

If Ψ0 ⊆ ΦB ∪ {0}, then θ′B(Ψ0) = σ(Ψ0) ⊆ ΦB ∪ {0}, and

θ(A(σ(Ψ0))) = θ(A(θ′B(Ψ0))) = A(Ψ0).(23.9.1)

Let ∆ be a base for ΦB again, so that σ(∆) is a base for ΦB too. Thus Φ
σ(∆),+
B

can be defined in the same way as before, and in fact

σ(Φ∆,+
B ) = Φ

σ(∆),+
B .(23.9.2)

This implies that

θ(A(Φ
σ(∆),+
B )) = A(Φ∆,+

B ),(23.9.3)

by (23.9.1).
Suppose that ΦB is reduced as a root system in ER. This implies that every

base for ΦB can be expressed as σ(∆) for some σ in the Weyl group of ΦB , as
in Section 19.14. It follows that the standard Borel subalgebra of A associated
to any base of ΦB is related to A(Φ∆,+

B ∪ {0}) by an inner automorphism of A,
as in (23.9.3). This basically corresponds to the second part of Lemma C on
p84 of [14].

More precisely, that result also states that θ can be taken to be an element of
the subgroup E(A) of the group Int(A) of all inner automorphisms of A defined
in Section 24.3. To see this, it is enough to check that if α ∈ ΦB , then the
automorphism θα in (23.8.1) is an element of E(A). To get this, it is enough
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to verify that exp adxα and exp(− adyα) are elements of E(A). This reduces to
showing that xα and yα are strongly ad-nilpotent in A, in the sense described
in Section 24.3, by definition of E(A). This is easy to do, using the properties
of xα and yα mentioned in the previous section.

23.10 Sums and diagonalizability

Let k be a field, and let (A, [·, ·]A) be a finite-dimensional Lie algebra over k. Also
let B be a Lie subalgebra of A such that every element of B is ad-diagonalizable
as an element of A, which implies that B is commutative as a Lie algebra, as
in Section 17.1. As usual, B′ denotes the dual of B, as a vector space over k,
and if α ∈ B′, then Aα is the set of x ∈ A such that [w, x]A = α(w)x for every
w ∈ B. Let ΦB be the set of α ∈ B′ such that α ̸= 0 and Aα ̸= {0}, as before.
Remember that ΦB has only finitely many elements, and that A corresponds to
the direct sum of the linear subspaces Aα, α ∈ ΦB ∪ {0}, as a vector space over
k, as in Section 17.2.

If C is an ideal in A, then adw(C) ⊆ C for every w ∈ B, and the restrictions
of adw, w ∈ B, to C are simultaneously diagonalizable, as in Section 22.9. This
means that C corresponds to the direct sum of the linear subspaces Aα ∩C, as
a vector space over k, where α ∈ ΦB ∪ {0} and Aα ∩ C ̸= {0}, as before.

Let C1, . . . , Cn be finitely many nontrivial ideals in A, and suppose that A
corresponds to their direct sum, as a vector space over k, and thus as a Lie
algebra. Each Cj corresponds to a direct sum of subspaces of the form Aα∩Cj ,
as a vector space over k, as in the preceding paragraph. It follows that for each
α ∈ ΦB ∪{0}, Aα corresponds to the direct sum of linear subspaces of the form
Aα ∩ Cj , j = 1, . . . , n, as a vector space over k.

Let us suppose from now on in this section that B is equal to its centralizer
in A, which means that B = A0. This implies that B corresponds to the direct
sum of the linear subspaces

Bj = B ∩ Cj = A0 ∩ Cj ,(23.10.1)

j = 1, . . . , n, as in the previous paragraph. It is easy to see that every element
of the centralizer of Bj in Cj is contained in the centralizer of B in A, for each
j = 1, . . . , n. Thus

the centralizer of Bj in Cj is equal to Bj(23.10.2)

for every j = 1, . . . , n.
If j ∈ {1, . . . , n}, then put

B̃′
j = {α ∈ B′ : α(wl) = 0 for every wl ∈ Bl, 1 ≤ l ̸= j ≤ n}.(23.10.3)

This is a linear subspace of B′, and B′ corresponds to the direct sum of B̃′
j ,

1 ≤ j ≤ n, as a vector space over k. The mapping from α ∈ B̃′
j to the restriction

of α to Bj is a one-to-one linear mapping from B̃′
j onto the dual B

′
j of Bj for each
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j = 1, . . . , n, because B corresponds to the direct sum of the Bj ’s, 1 ≤ j ≤ n,
as a vector space over k.

Let α ∈ B′ and j ∈ {1, . . . , n} be given, and suppose that

there is a wj ∈ Bj such that α(wj) ̸= 0.(23.10.4)

If x ∈ A, then [wj , x]A ∈ Cj , because Bj ⊆ Cj , and Cj is an ideal in A. If
x ∈ Aα, then we get that α(wl)x ∈ Cj , so that x ∈ Cj . Thus

Aα ⊆ Cj(23.10.5)

when (23.10.4) holds.
Suppose that there are also an l ∈ {1, . . . , n} and a wl ∈ Bl such that j ̸= l

and α(wl) ̸= 0. This implies that Aα ⊆ Cl, as before, so that Aα = {0}, because
Cj ∩ Cl = {0}, by hypothesis.

If α ∈ ΦB , then (23.10.4) holds for some j ∈ {1, . . . , n}, because α ̸= 0 and
B corresponds to the direct sum of the Bj ’s. If 1 ≤ l ≤ n and j ̸= l, then it
follows from the remarks in the preceding paragraph that α(wl) = 0 for every

wl ∈ Bl, because Aα ̸= {0}. This means that α ∈ B̃′
j , so that

ΦB ⊆
n∪
j=1

B̃′
j .(23.10.6)

Let j ∈ {1, . . . , n} be given, and put

ΦB,j = ΦB ∩ B̃′
j .(23.10.7)

If α ∈ ΦB,j , then (23.10.4) holds, because α ̸= 0 and α ∈ B̃′
j . This implies that

(23.10.5) holds, as before. Of course,

ΦB =

n∪
j=1

ΦB,j ,(23.10.8)

by (23.10.6). Note that
ΦB,j ∩ ΦB,l = ∅(23.10.9)

when 1 ≤ j ̸= l ≤ n, because B̃′
j ∩ B̃′

l = {0}, by construction.

Let α ∈ B̃′
j be given for some j ∈ {1, . . . , n}, and suppose that α ̸= 0, so

that (23.10.4) holds. Under these conditions,

Aα = {xj ∈ Cj : [uj , xj ]A = α(uj)xj for every uj ∈ Bj}.(23.10.10)

More precisely, Aα is contained in the right side, by (23.10.5). If xj ∈ Cj and
wl ∈ Bl for some 1 ≤ l ̸= j ≤ n, then [wl, xj ]A = 0 and α(wl) = 0. This implies
that the right side of (23.10.10) is contained in Aα, as desired.

Suppose now that k has characteristic 0, and that ΦB ̸= ∅. Let EQ be
the linear subspace of B′, as a vector space over Q, spanned by ΦB , as usual.
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Similarly, if ΦB,j ̸= ∅ for some j ∈ {1, . . . , n}, then let EQ,j be the linear

subspace of B̃′
j , as a vector space over Q, spanned by ΦB,j . Thus

EQ,j ⊆ EQ,(23.10.11)

and it is easy to see that EQ corresponds to the direct sum of the EQ,j ’s for
these j’s, as a vector space over Q.

Let ER be the vector space over R obtained from EQ in the usual way, so
that EQ corresponds to a linear subspace of ER, as a vector space over Q, and
any basis for EQ, as a vector space over Q, is a basis for ER, as a vector space
over R. Similarly, we can get a vector space ER,j over R from EQ,j for each
j ∈ {1, . . . , n} such that ΦB,j ̸= ∅. More precisely, ER,j is a linear subspace of
ER, and ER corresponds to the direct sum of the ER,j ’s for these j’s.

Suppose that ΦB is a root system in ER. This implies that ΦB,j is a root
system in ER,j when ΦB,j ̸= ∅. If this happens for more that one j ∈ {1, . . . , n},
then it follows that ΦB is reducible as a root system in ER. This is related to
the corollary on p74 of [14], and to part of the corollary to Theorem 9 on p50
of [24].

23.11 Reducibility and diagonalizability

Let us return to the same type of situation as at the beginning of the previous
section. Thus we let k be a field, and (A, [·, ·]A) be a finite-dimensional Lie
algebra over k. We also let B be a Lie subalgebra of A such that every element of
B is ad-diagonalizable as an element of A, which implies that B is commutative
as a Lie algebra, as before. If α is an element of the dual B′ of B, as a vector
space over k, then Aα is the set of x ∈ A such that [w, x]A = α(w)x for every
w ∈ B. We let ΦB be the set of α ∈ B′ such that α ̸= 0 and Aα ̸= {0}, which
is a finite set with the property that A corresponds to the direct sum of Aα,
α ∈ ΦB ∪ {0}, as a vector space over k.

Remember that [Aα, Aβ ] ⊆ Aα+β for every α, β ∈ B′, as in Section 17.2. Let
ΞB be a subsemigroup of B′, as a commutative group with respect to addition,
that contains ΦB ∪ {0}. In particular, we are in the same type of situation as
in Section 22.3, with Ξ = ΞB and Ψ = ΦB ∪ {0}. If Ψ0 ⊆ ΞB , then let A(Ψ0)
be the subset of A0 consisting of finite sums of elements of Aα, α ∈ Ψ0, as in
Section 22.4. If

(Ψ0 +Ψ0) ∩ (ΦB ∪ {0}) ⊆ Ψ0,(23.11.1)

then A(Ψ0) is a Lie subalgebra of A, as before.

Let B̂′
1, B̂

′
2 be complementary linear subspaces of B′, so that

B̂′
1 ∩ B̂′

2 = {0}(23.11.2)

and

B̂′
1 + B̂′

2 = B′.(23.11.3)
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Suppose that
ΦB ⊆ B̂′

1 ∪ B̂′
2,(23.11.4)

and put
ΦB,j = ΦB ∩ B̂′

j(23.11.5)

for j = 1, 2. Note that ΦB = ΦB,1 ∪ ΦB,2 and

ΦB,1 ∩ ΦB,2 = ∅,(23.11.6)

by (23.11.2). If α ∈ ΦB,1 and β ∈ ΦB,2, then

α+ β ̸∈ ΦB ∪ {0},(23.11.7)

because α+ β ̸∈ B̂′
1 ∪ B̂′

2. It follows that

[Aα, Aβ ] = {0}(23.11.8)

in this case.
We are now in a situation like one considered in Section 22.14, with Φ = ΦB

and Φj = ΦB,j for j = 1, 2. More precisely, (22.14.7), (22.14.11), (22.14.22),
and (22.14.25) hold under these conditions, as in the preceding paragraph. In
particular, A(ΦB,j ∪{0}) is a Lie subalgebra of A for j = 1, 2, as before. Let Aj

be the Lie subalgebra of A generated by A(ΦB,j) for j = 1, 2, as before, which
is contained in A(ΦB,j ∪ {0}). Remember that

[A1, A2] = {0},(23.11.9)

and that Aj is an ideal in A for j = 1, 2, as a Lie algebra over k.
Put

B1 = {w ∈ B : β(w) = 0 for every β ∈ B̂′
2},(23.11.10)

B2 = {w ∈ B : β(w) = 0 for every β ∈ B̂′
1}.(23.11.11)

These are complementary linear subspaces of B, because B̂′
1, B̂

′
2 are comple-

mentary linear subspaces of B′, by hypothesis. Observe that

[B1, Aβ ] = {0}(23.11.12)

for every β ∈ ΦB,2, and similarly that

[B2, Aβ ] = {0}(23.11.13)

for every β ∈ ΦB,1, by the definition of Aβ . Equivalently, this means that

[B1, A(ΦB,2)] = [B2, A(ΦB,1)] = {0},(23.11.14)

which is the same as saying that

A(ΦB,1) ⊆ CA(B2), A(ΦB,2) ⊆ CA(B1).(23.11.15)
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It follows that
A1 ⊆ CA(B2), A2 ⊆ CA(B1),(23.11.16)

because the centralizer CA(E) of E ⊆ A is a Lie subalgebra of A.
Suppose from now on in this section that B is its own centralizer in A, so

that B = A0. In particular, this means that A0 is commutative as a Lie algebra
over k. This implies that A1 ∩A2 is contained in the center Z(A) of A as a Lie
algebra, as in Section 22.14.

If j ∈ {1, 2} and α ∈ ΦB,j , then

[Aα, A−α] ⊆ Aj ∩A0 = Aj ∩B.(23.11.17)

Note that A−α = {0} unless −α ∈ ΦB,j too. As in Section 22.14, Aj is the same
as the set of elements of A that can be expressed as finite sums of elements of
A(ΦB,j) and [Aα, A−α] with α ∈ ΦB,j , because A0 is commutative as a Lie
algebra over k.

Suppose for the moment that α ∈ ΦB,1, β ∈ ΦB,2, xα ∈ Aα, yα ∈ A−α, and
zβ ∈ Aβ . This implies that

[xα, zβ ]A = [yα, zβ ]A = 0,(23.11.18)

because ±α+ β ̸∈ B̂′
1 ∪ B̂′

2. It follows that

[[xα, yα]A, zβ ]A = 0,(23.11.19)

by the Jacobi identity. We also have that [xα, yα]A ∈ A0 = B, so that

[[xα, yα]A, zβ ]A = β([xα, yα]A) zβ ,(23.11.20)

by definition of Aβ . If zβ ̸= 0, then we get that

β([xα, yα]A) = 0.(23.11.21)

Of course, we can always choose zβ to be a nonzero element of Aβ , because
β ∈ ΦB,2 ⊆ ΦB . This shows that (23.11.21) holds for every xα ∈ Aα and
yα ∈ A−α when β ∈ ΦB,2. This argument works as well when α ∈ ΦB,2 and
β ∈ ΦB,1.

Let us suppose from now on in this section that Z(A) = {0}. This implies
that the linear span of ΦB in B′ is equal to B′, as in Section 17.5. It follows that
the linear span of ΦB,j in B̂′

j is equal to B̂′
j for j = 1, 2 in this situation. This

means that (23.11.21) holds for every xα ∈ Aα and yα ∈ A−α when α ∈ ΦB,j
and β ∈ B̂′

2, and when α ∈ ΦB,2 and β ∈ B̂′
1. This is the same as saying that

[Aα, A−α] ⊆ Bj(23.11.22)

for j = 1, 2 and α ∈ ΦB,j .
Using (23.11.22), we get that

Aj ⊆ A(ΦB,j) +Bj(23.11.23)
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for j = 1, 2. One can check that A(ΦB,j)+Bj is a Lie subalgebra ofA for j = 1, 2,
because B is commutative as a Lie subalgebra of A, and [B,A(ΦB,j)] ⊆ A(ΦB,j)
for j = 1, 2. We also have that

[A(ΦB,1) +B1, A(ΦB,2) +B2] = {0},(23.11.24)

because of (23.11.8), (23.11.14), and the fact that B is commutative as a Lie
algebra. It is easy to see that

A(ΦB,1) +B1, A(ΦB,2) +B2(23.11.25)

are complementary linear subspaces of A, because B1, B2 are complementary
linear subspaces of B = A0. It follows that these are ideals in A, and that A
corresponds to their direct sum, as a Lie algebra over k.

This is related to the proposition on p73 of [14], and to part of the corollary
to Theorem 9 on p50 of [24], as before.



Chapter 24

Strong ad-nilpotence and
automorphisms

24.1 Invariant subspaces and nilpotent vectors

Let k be a field, let V be a vector space over k, and let T be a linear mapping
from V into itself. Remember that

V0 = {v ∈ V : T l(v) = 0 for some l ∈ Z+}(24.1.1)

is a linear subspace of V , as in Section 10.7. Clearly

T (V0) ⊆ V0.(24.1.2)

In fact,

T−1(V0) = V0.(24.1.3)

More precisely, if v ∈ V and T (v) ∈ V0, then it is easy to see that v ∈ V0.
Let W be a linear subspace of V , and suppose that

T (W ) ⊆W.(24.1.4)

Put

W0 =W ∩ V0 = {w ∈W : T l(w) = 0 for some l ∈ Z+},(24.1.5)

which is a linear subspace of W . Of course,

T (W0) ⊆W0,(24.1.6)

as in (24.1.2). Similarly,

W ∩ T−1(W0) =W0,(24.1.7)

as in (24.1.3).

504
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Let q be the canonical quotient mapping from V onto the quotient vector
space V/W . As usual, there is a unique linear mapping TV/W from V/W into
itself such that

TV/W ◦ q = q ◦ T(24.1.8)

on V . This implies that
(TV/W )l ◦ q = q ◦ T l(24.1.9)

on V for every positive integer l.
Put

(V/W )0 = {z ∈ V/W : (TV/W )l(z) = 0 for some l ∈ Z+},(24.1.10)

which is a linear subspace of V/W , as before. If v ∈ V , then

(TV/W )l(q(v)) = q(T l(v))(24.1.11)

for every positive integer l, as in (24.1.9). Thus (24.1.10) consists of the q(v)
with v ∈ V such that (24.1.11) is equal to 0 for some l ≥ 1. Equivalently, this
means that

T l(v) ∈W(24.1.12)

for some l ≥ 1. In particular,

q(V0) ⊆ (V/W )0.(24.1.13)

Let q0 be the canonical quotient mapping from W onto the quotient vector
space W/W0. As before, there is a unique linear mapping TW/W0

from W/W0

into itself such that
TW/W0

◦ q0 = q0 ◦ T(24.1.14)

on W . Thus
(TW/W0

)l ◦ q0 = q0 ◦ T l(24.1.15)

on W for every positive integer l, as before. Observe that the kernel of TW/W0

is trivial in W/W0, because of (24.1.7).

24.2 Finite-dimensional spaces

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Suppose in addition that the dimension of W is finite, as a vector space
over k. Of course, this implies that the dimension ofW/W0 is finite. Remember
that the kernel of TW/W0

is trivial inW/W0. It follows that TW/W0
mapsW/W0

onto itself.
If w ∈W and l ∈ Z+, then we get that there is a ul ∈W such that

(TW/W0
)l(q0(ul)) = q0(w).(24.2.1)

Equivalently, this means that

q0(T
l(ul)) = q0(w).(24.2.2)
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This is the same as saying that

T l(ul)− w ∈W0.(24.2.3)

Let v ∈ V be given, and suppose that q(v) ∈ (V/W )0. This implies that
T l(v) ∈W for some positive integer l, as in (24.1.12). It follows that there is a
ul ∈W such that

T l(ul)− T l(v) ∈W0,(24.2.4)

as in the preceding paragraph. Equivalently, this means that

T l(v − ul) ∈W0.(24.2.5)

Hence there is a positive integer r such that

T r(T l(v − ul)) = 0,(24.2.6)

by the definition (24.1.5) of W0.
Thus T l+r(v − ul) = 0, so that

v − ul ∈ V0.(24.2.7)

Of course, q(v) = q(v − ul), because ul ∈W . It follows that

q(v) = q(v − ul) ∈ q(V0).(24.2.8)

Combining this with (24.1.13), we get that

q(V0) = (V/W )0(24.2.9)

under these conditions.
Alternatively, suppose that V has finite dimension, as a vector space over

k. It is well known that the characteristic polynomial of T on V is equal to the
product of the characteristic polynomial of the restriction of T to W and the
characteristic polynomial of TV/W on V/W . In particular, the order of vanishing
of the characteristic polynomial of T on V at 0 is the same as the sum of the
orders of vanishing of the characteristic polynomials of the restriction of T to
W and TV/W at 0. This means that the dimension of V0 is equal to the sum
of the dimensions of W0 and (V/W )0, as vector spaces over k. Note that the
kernel of the restriction of q to V0 is equal to W0, because W0 = W ∩ V0, as
in (24.1.5). This implies that the dimension of V0 is equal to the sum of the
dimensions of W0 and q(V0) too. Hence the dimension of q(V0) is equal to the
dimension of (V/W )0. This permits one to obtain (24.2.9) from (24.1.13).

24.3 Strong ad-nilpotence

Let k be a field of characteristic 0, and let (A, [·, ·]A) be a finite-dimensional Lie
algebra over k. An element x of A is said to be strongly ad-nilpotent if there
are a y ∈ A, α ∈ k, and l ∈ Z+ such that α ̸= 0 and

(ady − α I)l(x) = 0,(24.3.1)
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where I is the identity mapping on A. This definition is given on p82 of [14],
where k is also taken to be algebraically closed. In that case, if x is strongly
ad-nilpotent, then x is ad-nilpotent in A, by the remarks in Section 18.1, as in
[14].

Otherwise, let k1 be an algebraically closed field that contains k. We may
as well identify A with kn for some positive integer n as a vector space over k,
using a basis for A. Let A1 be kn1 , as a vector space over k1. We can extend
the Lie bracket on A to A1, so that A1 becomes a Lie algebra over k1. If x ∈ A
is strongly ad-nilpotent as an element of A, then x is strongly ad-nilpotent as
an element of A1 too. This implies that x is ad-nilpotent as an element of A1,
as before. It follows that x is ad-nilpotent as an element of A as well. Another
approach to this will be given in Section 24.5.

If A is semisimple, and x ∈ A is ad-nilpotent, then x is strongly ad-nilpotent,
as in Sections 14.1 and 14.2.

Let N (A) be the set of x ∈ A such that x is strongly ad-nilpotent in A. If
B is a Lie subalgebra of A, then it is easy to see that

N (B) ⊆ N (A),(24.3.2)

as on p82 of [14]. Note that N (A) is invariant under Lie algebra automorphisms
of A.

If x ∈ A is ad-nilpotent in A, then the exponential exp adx of adx on A
defines a Lie algebra automorphism of A, as in Section 14.11. Remember that
IntA denotes the subgroup of the automorphism group of A generated by these
automorphisms. Let E(A) be the subgroup of IntA generated by exponentials
of strongly ad-nilpotent elements of A. One can check that E(A) is a normal
subgroup of the group of all Lie algebra automorphisms of A, because N (A)
is invariant under Lie algebra automorphisms of A, as on p82 of [14]. If A is
semisimple, then E(A) = IntA, becauseN (A) contains all ad-nilpotent elements
of A, as before.

Let B be a Lie subalgebra of A, and let x be an element of B. Thus adB,x
is the same as the restriction of adA,x to B. Suppose that x ∈ N (B), so that
x ∈ N (A), and adA,x is nilpotent on A. Note that exp adB,x is the same as the
restriction of exp adA,x to B.

Let E(A,B) be the subgroup of E(A) generated by elements of the form
exp adA,x with x ∈ N (B). The restriction of every element of E(A,B) to B is
an element of E(B). It is easy to see that every element of E(B) can be obtained
from an element of E(A,B) in this way. This corresponds to some remarks on
p82 of [14].

24.4 Strong ad-nilpotence and homomorphisms

Let k be a field of characteristic 0, and let (A, [·, ·]A), (C, [·, ·]C) be finite-
dimensional Lie algebras over k. Also let ψ be a Lie algebra homomorphism
from A into C. If y ∈ A, then

ψ ◦ adA,y = adC,ψ(y) ◦ ψ,(24.4.1)
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as in Section 14.8. This implies that

ψ ◦ (adA,y − α IA) = (adC,ψ(y) − α IC) ◦ ψ(24.4.2)

for every α ∈ k, where IA, IC are the identity mappings on A, C, respectively.
It follows that

ψ ◦ (adA,y − α IA)
l = (adC,ψ(y) − α IC)

l ◦ ψ(24.4.3)

for every l ∈ Z+.
Suppose that x ∈ A is strongly ad-nilpotent in A, so that there are y ∈ A,

α ∈ k, and l ∈ Z+ such that α ̸= 0 and

(adA,y − α IA)
l(x) = 0,(24.4.4)

as in (24.3.1). This implies that

(adC,ψ(y) − α IC)
l(ψ(x)) = 0,(24.4.5)

by (24.4.3). This means that ψ(x) is strongly ad-nilpotent in C, so that

ψ(N (A)) ⊆ N (C).(24.4.6)

In particular, x and ψ(x) are ad-nilpotent in A and C, respectively, as before.
We also get that

ψ ◦ (exp adA,x) = (exp adC,ψ(x)) ◦ ψ,(24.4.7)

as in Section 14.12.
Let y ∈ A and α ∈ k be given again, and observe that

{x ∈ A : (adA,y − α IA)
l(x) = 0 for some l ∈ Z+}(24.4.8)

is a linear subspace of A. This corresponds to (24.1.1), with V = A and T =
adA,y −α IA. Similarly,

{z ∈ C : (adC,ψ(y) − α IC)
l(z) = 0 for some l ∈ Z+}(24.4.9)

is a linear subspace of C. Clearly ψ maps (24.4.8) into (24.4.9), because of
(24.4.3). If, in the notation of Section 24.1, we take W to be the kernel of ψ,
then (24.1.4) holds, because the kernel of ψ is an ideal in A.

Suppose now that ψ maps A onto C, so that V/W corresponds to C, and
the quotient mapping q from V onto V/W corresponds to ψ. Note that the
linear mapping TV/W induced on V/W by T as in Section 24.1 corresponds to
adC,ψ(y) −α IC , and that (24.1.10) corresponds to (24.4.9). In this case, ψ maps
(24.4.8) onto (24.4.9), as in (24.2.9). It follows that

ψ(N (A)) = ψ(N (C))(24.4.10)

under these conditions. This corresponds to some remarks on p82 of [14].
If σC ∈ E(C), then there is a σA ∈ E(A) such that

ψ ◦ σA = σC ◦ ψ.(24.4.11)

This can be obtained from (24.4.7) and (24.4.10). This corresponds to the
lemma on p82 of [14].
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24.5 Another criterion for nilpotence

Let k be a field of characteristic 0, let A be an associative algebra over k, and
let δ be a derivation on A. If λ ∈ k, then put

Eλ(δ) = {a ∈ A : (δ − λ I)l(a) = 0 for some l ∈ Z+},(24.5.1)

as in Sections 10.7 and 10.9, where I is the identity mapping on A. If b ∈ Eλ(δ)
and c ∈ Eµ(δ) for some µ ∈ k, then b c ∈ Eλ+µ(δ), as in Section 10.9. It follows
that

bj ∈ Ej·λ(δ)(24.5.2)

for every positive integer j.
Suppose that λ ̸= 0, so that the elements of k of the form j · λ, j ∈ Z+,

are distinct, because k has characteristic 0. If, for each j ∈ Z+, we have that
bj ̸= 0, then the bj ’s are linearly independent in A, as in Section 10.7. If A has
finite dimension as a vector space over k, then it follows that bj = 0 for some
j ≥ 1. This extends the remarks at the beginning of Section 14.2.

If a ∈ A, then δa(x) = [a, x] = a x − x a defines a derivation on A. Thus if
b ∈ Eλ(δa) for some nonzero λ ∈ k and A has finite dimension as a vector space
over k, then b is nilpotent in A.

Remember that A may be considered as a Lie algebra over k, with respect
to the commutator bracket corresponding to multiplication in A. If b ∈ A is
strongly ad-nilpotent in A as a Lie algebra, then b is nilpotent in A, as in the
preceding paragraph.

Let (A, [·, ·]A) be a finite-dimensional Lie algebra over k. If x ∈ A is strongly
ad-nilpotent, then adx is strongly ad-nilpotent as an element of the Lie algebra of
linear mappings from A into itself. This follows from (24.4.6), using the adjoint
representation of A. This implies that adx is nilpotent as a linear mapping on
A, as in the previous paragraph.

24.6 Nilpotence and automorphisms

Let k be a field, and let f(t) =
∑n
j=0 fj t

j be a polynomial function of t ∈ k
with coefficients in a vector space over k. If fj ̸= 0 for some j, then f(t) = 0
for at most n t ∈ k, by standard arguments.

Suppose from now on in this section that k has characteristic 0. Let A be
an associative algebra over k with a multiplicative identity element e, and let
a be a nilpotent element of A. Thus exp(t a) defines a polynomial function of
t ∈ k with values in A. If a ̸= 0, then exp(t a) = e for only finitely many t ∈ k,
as in the previous paragraph.

Let (A, [·, ·]A) be a Lie algebra over k. If x ∈ A is ad-nilpotent, then
exp(t adx) defines a polynomial function of t ∈ k with values in the algebra
of linear mappings from A into itself. If adx ̸= 0 as a linear mapping from A
into itself, then exp(t adx) is equal to the identity mapping on A for only finitely
many t ∈ k, as before.
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Let y ∈ A be given, and for each α ∈ k, let Ay,α be the set of x ∈ A such that
(ady −α I)l(x) = 0 for some positive integer l, as in Section 18.1. Remember
that Ay,α ̸= {0} exactly when α is an eigenvalue of ady on A. In particular, if
y is ad-nilpotent as an element of A, then Ay,α = {0} when α ̸= 0.

If A is nilpotent as a Lie algebra over k, then every y ∈ A is ad-nilpotent,
and it follows that 0 is the only element of A that is strongly ad-nilpotent. This
implies that E(A) contains only the identity mapping on A, as in Exercise 1 on
p87 of [14].

Suppose now that k is algebraically closed, and that A has finite dimension,
as a vector space over k. If y ∈ A, then A corresponds to the direct sum of the
linear subspaces Ay,α, where α ∈ k is an eigenvalue of ady on A, as a vector
space over k, as in Section 18.1.

If ady is not nilpotent on A, then it follows that ady has a nonzero eigenvalue
α ∈ k. This means that there is an x ∈ A such that x ̸= 0 and ady(x) = αx,
so that x is strongly ad-nilpotent in particular. Note that adx(y) = − ady(x) =
−αx ̸= 0, so that adx ̸= 0. Of course, t adx is strongly ad-nilpotent for every
t ∈ k too, so that

exp(t adx) ∈ E(A)(24.6.1)

for every t ∈ k.

If A is not nilpotent as a Lie algebra, then there is a y ∈ A that is not
ad-nilpotent, by Engel’s theorem. Under these conditions, we get that E(A) is
nontrivial, as in Exercise 1 on p87 of [14].

24.7 Conjugacy and solvability

Let k be an algebraically closed field of characteristic 0, and let (A, [·, ·]A) be a
finite-dimensional solvable Lie algebra over k. If C1, C2 are Cartan subalgebras
of A, then there is an element of the group E(A) defined in Section 24.3 that
maps C1 onto C2. This is the theorem on p82 of [14], which is related to Theorem
2 on p12 of [24].

Of course, if A is nilpotent as a Lie algebra, then A may be considered as
a Cartan subalgebra of itself. More precisely, A is the only Cartan subalgebra
of itself in this case, because Cartan subalgebras are maximal among nilpotent
Lie subalgebras, as mentioned at the beginning of Section 18.11.

To prove the theorem, one can use induction on the dimension of A. We may
also suppose that A is not nilpotent as a Lie algebra over k, as in the preceding
paragraph. In particular, this means that the dimension of A is at least two.

Because A ̸= {0} is solvable as a Lie algebra, A has nontrivial ideals that
are commutative as Lie algebras. Let A0 be a nontrivial ideal in A that is
commutative as a Lie algebra, and with minimal dimension among such ideals.

Let q0 be the natural quotient mapping from A onto A/A0, and note that
A/A0 is a solvable Lie algebra over k, with dimension strictly less than the
dimension of A. Under these conditions, q0(C1) and q0(C2) are Cartan subal-
gebras of A/A0, as in Section 18.11.
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Our induction hypothesis implies that there is an element σ0 of E(A/A0)
such that

σ0(q0(C1)) = q0(C2).(24.7.1)

This leads to an element σ of E(A) such that

q0 ◦ σ = σ0 ◦ q0,(24.7.2)

as in Section 24.4.
Put

B1 = q−1
0 (q0(C1)), B2 = q−1

0 (q0(C2)).(24.7.3)

These are Lie subalgebras of A, with

C1 ⊆ B1, C2 ⊆ B2.(24.7.4)

It is easy to see that
σ(B1) = B2,(24.7.5)

using (24.7.1) and (24.7.2).
Note that C1, C2 may be considered as Cartan subalgebras of B1, B2, re-

spectively, as in Section 18.11. It follows that σ(C1) may be considered as a
Cartan subalgebra of B2, by (24.7.5).

Suppose for the moment that

B2 ̸= A.(24.7.6)

In this case, our induction hypothesis implies that there is an element τ2 of
E(B2) such that

τ2(σ(C1)) = C2.(24.7.7)

As in Section 24.3, there is an element τ of E(A,B2) ⊆ E(A) whose restriction
to B2 is equal to τ2. In particular, this implies that

τ(σ(C1)) = C2.(24.7.8)

This completes the proof of the theorem in this case, because τ ◦ σ ∈ E(A).

24.8 The case where A = B2

Let us continue with the same notation and hypotheses as in the previous sec-
tion, except that we suppose now that A = B2. In this case, σ(B1) = B2 = A,
so that B1 = A as well. Equivalently, this means that

C1 +A0 = C2 +A0 = A.(24.8.1)

If x ∈ A and α ∈ k, then let Ax,α be the set of y ∈ A such that

(adx − α I)l(y) = 0(24.8.2)
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for some positive integer l, as in Section 18.1, and where I is the identity map-
ping on A. This is a linear subspace of A, and A corresponds to the direct sum
of Ax,α, as a vector space over k, where α ∈ k is an eigenvalue of adx on A, as
before, because k is algebraically closed, by hypothesis.

Remember that A0 is an ideal in A, so that adx(A0) ⊆ A0. If α ∈ k, then
A0 ∩Ax,α consists of y ∈ A0 such that (24.8.2) holds for some l ∈ Z+, which is
the analogue of Ax,α for the restriction of adx to A0. As before, A0 corresponds
to the direct sum of A0 ∩Ax,α, where α ∈ k is an eigenvalue of adx on A0, as a
vector space over k.

Remember that [Ax,α, Ax,β ] ⊆ Ax,α+β for every α, β ∈ k, as in Section 18.1.
This implies that

[Ax,0, A0 ∩Ax,α] ⊆ A0 ∩Ax,α(24.8.3)

for every α ∈ k, because A0 is an ideal in A.
Because C2 is a Cartan subalgebra of A, there is an x ∈ A such that

C2 = Ax,0,(24.8.4)

as in Section 18.8. In this case, one can check that

A0 ∩Ax,α is an ideal in A(24.8.5)

for every α ∈ k. More precisely, this uses (24.8.1), (24.8.3), and the fact that
A0 is commutative as a Lie subalgebra of A.

If
A0 ∩Ax,α ̸= {0}(24.8.6)

for some α ∈ k, then
A0 ∩Ax,α = A0,(24.8.7)

because A0 is supposed to be minimal among nontrivial ideals that are commu-
tative as Lie subalgebras of A. Note that (24.8.6) holds for some α ∈ k, because
A0 ̸= {0}, and A0 corresponds to the direct sum of A0 ∩Ax,α over some α ∈ k,
as a vector space over k.

If (24.8.7) holds with α = 0, then A0 ⊆ Ax,0 = C2, which means that
A = C2, by (24.8.1). This would imply that A is nilpotent as a Lie algebra, by
definition of a Cartan subalgebra. However, A is not supposed to be nilpotent,
as in the previous section, and so we get that A0 ∩Ax,0 = {0}.

It follows that (24.8.7) holds for some nonzero α ∈ k, so that A0 ⊆ Ax,α.
This implies that

A0 = Ax,α,(24.8.8)

because of (24.8.1), (24.8.4), and the fact that A corresponds to the direct sum
of Ax,β over some β ∈ k, as a vector space over k.

Using (24.8.1), we get that x can be expressed as

x = y + z,(24.8.9)

with y ∈ C1 and z ∈ A0. More precisely, z ∈ Ax,α, by (24.8.8).
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It is easy to see that adx(Ax,α) ⊆ Ax,α, by the definition of Ax,α. Because
z ∈ Ax,α and α ̸= 0, one can express z as

z = adx(w),(24.8.10)

where w is a linear combination of (adx)
j(z), for finitely many positive integers

j. In particular, this implies that w ∈ Ax,α.

Equivalently, w ∈ A0, so that adw(A) ⊆ A0, because A0 is an ideal in A.
This implies that

adw ◦ adw = 0(24.8.11)

on A, because A0 is commutative as a Lie subalgebra of A.

Thus

exp(adw) = I + adw,(24.8.12)

so that

(exp(adw))(x) = x+ adw(x) = x− adx(w) = x− z = y.(24.8.13)

Put

C = (exp(adw))(C2),(24.8.14)

which is a Cartan subalgebra of A, because C2 is a Cartan subalgebra of A, and
exp(adw) is an automorphism of A. One can check that

C = Ay,0,(24.8.15)

using (24.8.4) and (24.8.13).

Remember that y ∈ C1, by construction, so that ady maps C1 into itself.
More precisely, ady is nilpotent on C1, because C1 is a Cartan subalgebra of A,
and thus nilpotent as a Lie algebra. It follows that

C1 ⊆ C,(24.8.16)

by (24.8.15).

This implies that

C1 = C,(24.8.17)

by the characterization of Cartan subalgebras as minimal Engel subalgebras, as
in Section 18.8. Alternatively, one can use the fact that Cartan subalgebras are
maximal among nilpotent Lie subalgebras of A, as in Section 18.11.

Remember that w ∈ Ax,α, so that w is strongly ad-nilpotent in A, and
exp(adw) ∈ E(A). It follows that there is an element of E(A) that maps C1 onto
C2, by (24.8.14) and (24.8.17). This completes the proof of the theorem stated
at the beginning of the previous section.



514CHAPTER 24. STRONG AD-NILPOTENCE AND AUTOMORPHISMS

24.9 Conjugacy in arbitrary Lie algebras

Let k be an algebraically closed field of characteristic 0 again, and let (A, [·, ·]A)
be a finite-dimensional Lie algebra over k. If B1, B2 are Borel subalgebras of
A, then the theorem on p84 of [14] states that

there is an element of E(A) that maps B1 onto B2.(24.9.1)

This is closely related to Theorem 5 on p48 of [24].
If C1, C2 are Cartan subalgebras of A, then the corollary on p84 states that

there is an element of E(A) that maps C1 onto C2.(24.9.2)

This is closely related to Theorem 2 on p12 of [24].
To obtain the corollary from the theorem, remember that Cartan subalgebras

are nilpotent, and solvable in particular. This implies that there are Borel
subalgebras B1, B2 of A that contain C1, C2, respectively. Using the theorem,
we get σ ∈ E(A) such that σ(B1) = B2. It follows that

σ(C1) ⊆ B2.(24.9.3)

Of course, σ(C1) is a Cartan subalgebra of A as well. As in Section 18.11,
σ(C1) and C2 may also be considered as Cartan subalgebras of B2. Because
B2 is solvable as a Lie algebra over k, there is an element of E(B2) that maps
σ(C1) onto C2, as in Section 24.7.

Every element of E(B2) can be obtained as the restriction of an element of
E(A,B2) ⊆ E(A) to B2, as in Section 24.3. This implies that there is an element
of E(A) that maps σ(C1) onto C2. It follows that there is an element of E(A)
that maps C1 onto C2, as desired.

24.9.1 The beginning of the proof of the theorem

Let us now begin the proof of the theorem. Note that the theorem holds trivially
when A is solvable as a Lie algebra, in which case A is the only Borel subalgebra
of itself.

To prove the theorem, one uses induction on the dimension of A as a vector
space over k. If the dimension of A is one, then the theorem is trivial, as in the
preceding paragraph.

Remember that RadA denotes the solvable radical of A, as in Section 9.4.
If B1, B2 are Borel subalgebras of A, then

RadA ⊆ B1, B2,(24.9.4)

as in Section 22.7.
Remember that RadA is an ideal in A, and let q be the natural quotient

mapping from A onto A/Rad(A). Note that q(B1), q(B2) are Borel subalgebras
of A/RadA, as in Section 22.7. We also have that

Bj = q−1(q(Bj)) for j = 1, 2,(24.9.5)
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by (24.9.4).
If RadA ̸= {0}, then the dimension of A/RadA is less than the dimen-

sion of A, and our induction hypothesis implies that there is an element σ of
E(A/RadA) such that

σ(q(B1)) = q(B2).(24.9.6)

This leads to an element σA of E(A) such that

q ◦ σA = σ ◦ q,(24.9.7)

as in Section 24.4.
It is easy to see that

σA(B1) = B2,(24.9.8)

using (24.9.5), (24.9.6), and (24.9.7). This completes the proof when RadA ̸=
{0}.

Thus we may suppose from now on that RadA = {0}, so that A is semisimple
as a Lie algebra over k. Of course, we may suppose that A ̸= {0} too.

24.9.2 Standard Borel subalgebras of A

Let A0 be a toral subalgebra of A, as in Section 17.1, so that every element of
A0 is ad-diagonalizable as an element of A. Remember that A0 is commutative
as a Lie algebra, as before. More precisely, let A0 be a toral subalgebra of A
that is maximal with respect to inclusion. Note that A0 ̸= {0}, as in Section
17.1, because A ̸= {0}, and using our hypotheses on k. We also have that the
centralizer of A0 in A is equal to A0, as in Section 17.4.

Let A′
0 be the dual of A0, as a vector space over k, as usual. If α ∈ A′

0, then
let Aα be the set of x ∈ A such that adw(x) = α(w)x for every w ∈ A0. This
is the same as A0 when α = 0, because A0 is its own centralizer in A, as in the
preceding paragraph.

Let Φ = ΦA0
be the set of α ∈ A′

0 such that α ̸= 0 and Aα ̸= {0}. Remember
that A corresponds to the direct sum of the subspaces Aα, α ∈ Φ ∪ {0}, as a
vector space over k, as in Section 17.2. If α, β ∈ A′

0, then [Aα, Aβ ] ⊆ Aα+β , as
before.

If α ∈ Φ, then Aα has dimension one as a vector space over k, as in Section
17.7. We may choose xα ∈ Aα and yα ∈ A−α so that hα = [xα, yα]A satisfies
α(hα) = 2, as in Section 17.6.

Let EQ be the linear subspace of A′
0, as a vector space over Q, spanned by

Φ, as in Section 17.12. Let ER be the corresponding vector space over R, as in
Section 17.13. Remember that Φ is a reduced root system in ER, as in Section
22.1.

If Ψ0 ⊆ Φ∪{0}, then let A(Ψ0) be the linear subspace of A spanned by Aα,
α ∈ Ψ0, as in Section 22.4. Let ∆ be a base for Φ, as a root system in ER,
and let Φ+ = Φ∆,+ be the corresponding set of positive roots, which are the
elements of Φ that can be expressed as linear combinations of elements of ∆
with nonnegative coefficients. Remember that

B∆ = A(Φ+ ∪ {0})(24.9.9)
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is a Borel subalgebra of A, as in Section 22.12, which is the standard Borel
subalgebra associated to A0 and ∆.

Let B be any other Borel subalgebra of A. It suffices to show that there is
an element of E(A) that maps B∆ onto B.

If B∆ ⊆ B, then B∆ = B, because B∆ is maximal among solvable Lie
subalgebras of A. Of course, the problem is trivial in this case.

24.9.3 The second induction hypothesis

To continue the proof, we also use induction on the dimension of B∆ ∩B, as a
vector space over k, as on p84 of [14]. If the dimension is equal to the dimension

of B∆, then B∆ ∩B = B∆, so that B∆ ⊆ B, and thus B∆ = B, as before. If B̃
is a Borel subalgebra of A such that

dim(B∆ ∩ B̃) > dimB∆ ∩B,(24.9.10)

then we suppose from now on that there is an element of E(A) that maps B∆

onto B̃.
Of course, B∆ depends on the choice of the maximal toral subalgebra A0

of A, as well as the base ∆ for the corresponding root system Φ, as in the
previous subsection. In Section 24.12, we shall consider another maximal toral
subalgebra of A. Thus A0 should be considered as an arbitrary maximal toral
subalgebra of A here, and ∆ as an arbitrary base for the corresponding root
system Φ.

As in [14], we consider separately the cases where B∆ ∩ B is nontrivial or
equal to {0}. In the first case, we consider the subcases where B∆ ∩B does or
does not have nonzero elements that are ad-nilpotent in A. These two subcases
are discussed in the next two sections.

24.10 The first subcase

Let us continue with the same notation and hypotheses as in the previous sec-
tion. In this section, we suppose that

B∆ ∩B ̸= {0},(24.10.1)

and that

B∆ ∩B has a nonzero element that is ad-nilpotent in A.(24.10.2)

This corresponds to Case (i) of (1) on p85 of [14].
We may as well suppose too that

B∆ ∩B ̸= B∆, B.(24.10.3)

Otherwise, we would have B∆ ⊆ B or B ⊆ B∆, which would imply that B∆ =
B.
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Put
N∆ = A(Φ+),(24.10.4)

so that N∆ ⊆ B∆. Remember that N∆ is a Lie subalgebra of A that is nilpotent
as a Lie algebra over k, and that the elements of N∆ are ad-nilpotent in A, as
in Section 22.6.

If α ∈ A′
0 and α ̸= 0, then it is easy to see that [A0, Aα] = Aα. This implies

that
[B∆, B∆] = N∆,(24.10.5)

as in Section 22.6.
We would like to check that

N∆ = {v ∈ B∆ : adv is nilpotent on A}.(24.10.6)

We have seen that N∆ is contained in the right side, and so we only have to
verify that the right side is contained in N∆. Note that B∆ corresponds to the
direct sum of A0 and N∆, as a vector space over k.

Let v ∈ B∆ be given, so that v can be expressed as

v = w + u,(24.10.7)

with w ∈ A0 and u ∈ N∆. Suppose that v ̸∈ N∆, so that w ̸= 0. We would like
to check that adv is not nilpotent on A.

Remember that the linear span of Φ in A′
0, as a vector space over k, is equal

to A′
0, as in Section 17.5. This implies that the linear span of ∆ in A′

0 is equal
to A′

0, because every element of Φ can be expressed as a linear combination of
elements of ∆ with coefficients in Z. It follows that α(w) ̸= 0 for some α ∈ ∆,
because w is a nonzero element of A0.

Observe that adv maps N∆ into itself, and that N∆ corresponds to the direct
sum of Aβ , β ∈ Φ+, as a vector space over k. If z ∈ N∆, then the component of
adu(z) in Aα is equal to 0. This implies that the component of adv(z) in Aα is
the same as the component of adw(z) in Aα, which is α(w) times the component
of z in Aα. One can use this to get that adv is not nilpotent on N∆, because
Aα ̸= {0}.

24.10.1 Nilpotent elements of B∆ ∩B

Let N be the set of elements of B∆ ∩ B that are ad-nilpotent in A, so that
N ̸= {0}, by hypothesis. Observe that

N = N∆ ∩B,(24.10.8)

by (24.10.6).
Thus N is a linear subspace of A, and in fact a Lie subalgebra of A. We also

have that
[B∆ ∩B,B∆ ∩B] ⊆ [B∆, B∆] ∩B = N∆ ∩B = N.(24.10.9)

In particular, N is an ideal in B∆ ∩B, as a Lie algebra over k.
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Of course, x 7→ adx = adA,x defines a representation of B on A, as a vector
space over k. If x ∈ [B,B], then adx is nilpotent on A, because B is solvable,
as in Section 14.14. This implies that

B∆ ∩ [B,B] ⊆ N.(24.10.10)

Note that N is nilpotent as a Lie algebra over k, because N∆ is nilpotent.
This means that N is solvable as a Lie algebra over k in particular. It follows
that N is not an ideal in A, because A is semisimple, and N ̸= {0}.

Let M be the normalizer of N in A, so that M is a proper Lie subalgebra
of A. Clearly

B∆ ∩B ⊆M,(24.10.11)

because N is an ideal in B∆ ∩B.
Let us check that

B∆ ∩B ̸= B∆ ∩M.(24.10.12)

Of course, B∆ ∩B is a linear subspace of B∆, so that the quotient

B∆/(B∆ ∩B)(24.10.13)

may be considered as a vector space over k. If x ∈ N , then adx maps B∆ and
B∆ ∩ B into themselves, because x ∈ B∆ ∩ B. This leads to an induced linear
mapping from (24.10.13) into iself. More precisely, this induced linear mapping
is nilpotent, because adx is nilpotent.

The collection of linear mappings from (24.10.13) into itself induced by adx,
x ∈ N , is a Lie subalgebra of the algebra of all linear mappings from (24.10.13)
into itself, because N is a Lie algebra over k. Note that (24.10.13) is nontrivial,
by (24.10.3). It follows that there is a nonzero element of (24.10.13) that is sent
to 0 by the mapping induced by adx for every x ∈ N , as in Section 9.9.

Equivalently, this means that there is a y ∈ B∆ such that y ̸∈ B and
adx(y) ∈ B∆ ∩ B for every x ∈ N . We also have that adx(y) ∈ N∆ for every
x ∈ N , because N∆ is an ideal in B∆. This implies that

[y, x] = −adx(y) ∈ N(24.10.14)

for every x ∈ N , so that y ∈M . It follows that (24.10.12) holds, because y ∈ B∆

and y ̸∈ B.
Similarly, let us verify that

B∆ ∩B ̸= B ∩M.(24.10.15)

The quotient B/(B∆ ∩ B) is a nontrivial vector space over k, on which adx
induces a linear mapping for every x ∈ N . Using the same type of argument as
before, we get that there is a z ∈ B such that z ̸∈ B∆ and adx(z) ∈ B∆ ∩B for
every x ∈ N .

If x ∈ N , then [x, z] ∈ [B,B], because N ⊆ B and z ∈ B. This means that

[x, z] ∈ B∆ ∩ [B,B] ⊆ N,(24.10.16)

using (24.10.10) in the second step. It follows that z ∈M . Thus z is an element
of the right side of (24.10.15), and not the left.
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24.10.2 Some Borel subalgebras of M and A

Note that B∆ ∩M , B ∩M are solvable as Lie algebras over k, because B∆, B
are solvable. Let C∆, C be Borel subalgebras of M such that

B∆ ∩M ⊆ C∆, B ∩M ⊆ C.(24.10.17)

Remember that M is a proper Lie subalgebra of A, so that the dimension of
M is less than the dimension of A. Thus our induction hypothesis implies that
there is an element of E(M) that maps C onto C∆.

Every element of E(M) can be obtained by restricting an element of E(A,M)
to M . It follows that there is a σ ∈ E(A,M) ⊆ E(A) such that

σ(C) = C∆.(24.10.18)

Let B1 be a Borel subalgebra of A that contains C∆. Note that

B∆ ∩B ⊆ B∆ ∩M ⊆ B∆ ∩ C∆ ⊆ B∆ ∩B1,(24.10.19)

by (24.10.11) and (24.10.17). We also have that

B∆ ∩B ̸= B∆ ∩B1,(24.10.20)

by (24.10.12). This implies that the dimension of B∆∩B is strictly less than the
dimension of B∆ ∩B1. This permits us to use our second induction hypothesis,
to get an element τ of E(A) such that

τ(B1) = B∆.(24.10.21)

Combining (24.10.18) and (24.10.21), we obtain that

τ(σ(C)) = τ(C∆) ⊆ τ(B1) = B∆.(24.10.22)

Observe that

τ(σ(B∆ ∩B)) ⊆ τ(σ(B ∩M))(24.10.23)

⊆ τ(σ(C)) ∩ τ(σ(B)) ⊆ B∆ ∩ τ(σ(B)),

by (24.10.11), (24.10.17), and (24.10.22). We also have that the first inclusion
is strict, by (24.10.15).

This shows that the dimension of B∆ ∩B is strictly less than the dimension
of B∆ ∩ τ(σ(B)). Of course, τ(σ(B)) is a Borel subalgebra of A too. Thus we
may use our second induction hypothesis again, to get that there is an element
of E(A) that maps B∆ onto τ(σ(B)). This means that there is an element of
E(A) that maps B∆ onto B, as desired.
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24.11 The second subcase

We continue with the same notation and hypotheses as in Section 24.9. In this
section, we continue to suppose that B∆ ∩B ̸= {0} as well, and now also that

B∆ ∩B does not have any nonzero elements(24.11.1)

that are ad-nilpotent in A.

This corresponds to Case (ii) of (1) on p85 of [14].

Let B0 be a Borel subalgebra of A, and let x ∈ B0 be given. Remember that
there are unique x1, x2 ∈ A such that x = x1+x2, [x1, x2]A = 0, and adx1

, adx2

are the diagonalizable and nilpotent parts of adx, as a linear mapping from A
into itself, as in Section 14.3. We also have that

adx1
(B0), adx2

(B0) ⊆ B0,(24.11.2)

because adx(B0) ⊆ B0, as in Section 10.8. This means that x1, x2 are elements
of the normalizer of B0 in A. It follows that

x1, x2 ∈ B0,(24.11.3)

because the normalizer of a Borel subalgebra of A is itself, as in Section 22.7.

If x ∈ B∆ ∩ B, then the ad-diagonalizable and ad-nilpotent parts of x are
elements of B∆ ∩ B too, by the remarks in the preceding paragraph. This
implies that the ad-nilpotent part of x is 0, by hypothesis. This means that
every element of B∆ ∩B is ad-diagonalizable in A under these conditions.

Of course,

T = B∆ ∩B(24.11.4)

is a Lie subalgebra of A, and in fact a toral subalgebra of A, as in Section 17.1.
In particular, T is commutative as a Lie algebra over k, as before. It follows
that adx, x ∈ T , can be simultaneously diagonalized on A.

Let N∆ be as in (24.10.4), and note that

N∆ ∩ T = {0},(24.11.5)

by hypothesis. Thus

[B∆, B∆] ∩ T = {0},(24.11.6)

by (24.10.5). Of course, this implies that

[B∆, T ] ∩ T = {0},(24.11.7)

because T ⊆ B∆. It follows that the normalizer of T in B∆ is the same as the
centralizer of T in B∆, which is to say that

NB∆
(T ) = CB∆

(T ).(24.11.8)
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24.11.1 Reducing to T ⊆ A0

Let C be a Cartan subalgebra of CB∆
(T ), as a Lie algebra over k. Observe that

T is contained in the normalizer NCB∆
(T )(C) of C in CB∆

(T ), by definition of
CB∆

(T ). This implies that

T ⊆ C,(24.11.9)

because NCB(T )(C) = C, by the definition of a Cartan subalgebra.
Of course, CB∆(T ) ⊆ B∆, by definition. Let u be an element of the normal-

izer NB∆
(C) of C in B∆, and let t ∈ T be given. Clearly

adt(u) = [t, u]A ∈ C,(24.11.10)

because t ∈ C. This implies that

adt(adt(u)) = 0,(24.11.11)

because C ⊆ CB∆
(T ). It follows that

adt(u) = 0,(24.11.12)

because adt is diagonalizable on A, as before.
This shows that u ∈ CB∆

(T ), so that

NB∆(C) ⊆ CB∆(T ).(24.11.13)

Using this, it is easy to see that

NB∆(C) = NCB∆
(T )(C),(24.11.14)

by definition of the normalizer. This means that

NB∆(C) = C,(24.11.15)

because C is a Cartan subalgebra of CB∆
(T ). Of course, C is nilpotent as a Lie

algebra over k, because it is a Cartan subalgebra of CB∆
(T ). It follows that C

is a Cartan subalgebra of B∆ as well.
Remember that A0 is a maximal toral subalgebra of A, as in Section 24.9.

This implies that A0 is a Cartan subalgebra of A, as in Section 18.10. We also
have that A0 ⊆ B∆, by the definition (24.9.9) of B∆. It follows that A0 is a
Cartan subalgebra of B∆, as in Section 18.11.

Because B∆ is solvable as a Lie algebra over k, and A0, C are Cartan subal-
gebras of B∆, there is an element of E(B∆) that maps C onto A0, as in Section
24.7. This implies that there is an element of E(A,B∆) ⊆ E(A) that maps C
onto A0, as in Section 24.3. In particular, this element of E(A,B∆) maps T into
A0. Using this, we can reduce to the case where

T ⊆ A0.(24.11.16)
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24.11.2 The case where T = A0

Suppose for the moment that T = A0. Remember that A0 ̸= {0}, as in Section
24.9. We also have A ̸= A0, because A is semisimple, and A0 is commutative
as a Lie algebra. This implies that Φ ̸= ∅, so that B∆ ̸= A0. Thus A0 is not a
Borel subalgebra of A, and A0 ̸= B.

If T = A0, then A0 ⊆ B. If x ∈ A0, then it follows that adx maps B
into itself. This implies that the restrictions of the adx’s, x ∈ A0, to B are
simultaneously diagonalizable on B. Remember that for each α ∈ Φ, Aα has
dimension one as a vector space over k. This means that B corresponds, as a
vector space over k, to the direct sum of A0 and some collection of Aα’s. In
particular, there is at least one α0 ∈ Φ such that

Aα0
⊆ B,(24.11.17)

because B ̸= A0. More precisely, α0 ̸∈ Φ+, because B∆ ∩ B = T ⊆ A0. Thus
α0 ∈ −Φ+.

Let θα0
be the Lie algebra automorphism of A corresponding to α0 as in

(23.8.1). Note that the Lie subalgebra of A denoted B in Section 23.8 corre-
sponds to A0 here. It is easy to see that θα0 ∈ E(A), because xα, yα are strongly
ad-nilpotent in A, as mentioned in Section 23.9. We also have that

θα0
(A0) = A0(24.11.18)

and
θα0

(Aα0
) = A−α0

.(24.11.19)

More precisely, (24.11.18) corresponds to (23.8.4), and can also be obtained
from (23.8.6), while (24.11.19) can be obtained from (23.7.9) or (23.8.6).

It follows that θα0(B) is a Borel subalgebra of A with

A0 +A−α0
⊆ θα0

(B).(24.11.20)

Of course, A0 +A−α0
⊆ B∆, because −α0 ∈ Φ+. Thus

A0 +A−α0 ⊆ B∆ ∩ θα0(B).(24.11.21)

In particular, the dimension of B∆∩θα0(B) is strictly larger than the dimension
of B∆∩B = T = A0, so that our second induction hypothesis implies that there
is an element of E(A) that maps B∆ onto θα0(B). This implies that there is an
element of E(A) that maps B∆ onto B, as desired.

24.11.3 The case where T ̸= A0, B ⊆ CA(T )

Thus we suppose from now on in this section that

T ̸= A0.(24.11.22)

Suppose for the moment that

B ⊆ CA(T ).(24.11.23)
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Remember that T = B∆ ∩B ̸= {0}, by hypothesis. This implies that

CA(T ) ̸= A,(24.11.24)

because otherwise T would be contained in the center of A, which would con-
tradict the semisimplicity of A.

Observe that
A0 ⊆ CA(T ),(24.11.25)

because T ⊆ A0 and A0 is commutative as a Lie algebra. Let B1 be a Borel
subalgebra of CA(T ), as a Lie algebra over k, that contains A0. Of course, B
may be considered as a Borel subalgebra of CA(T ) too, as in Section 18.11. Thus
our first induction hypothesis implies that there is an element of E(CA(T )) that
maps B onto B1. It follows that there is an element σ of E(A,CA(T )) ⊆ E(A)
such that

σ(B) = B1,(24.11.26)

as in Section 24.3.
Using (24.11.26) we get that B1 is a Borel subalgebra of A. Note that

A0 ⊆ B∆ ∩B1,(24.11.27)

while B∆ ∩ B = T is a proper linear subspace of A0. This means that the
dimension of B∆ ∩B is strictly less than the dimension of B∆ ∩B1, so that our
second induction hypothesis implies that there is an element of E(A) that maps
B∆ onto B1. It follows that there is an element of E(A) that maps B∆ onto B,
by (24.11.26).

24.11.4 The case where T ̸= A0, B ̸⊆ CA(T )

Suppose for the rest of the section that (24.11.23) does not hold. This means
that there is a t1 ∈ T such that adt1 is not identically zero on B. Note that
adt1 maps B into itself, because T ⊆ B and B is a Lie subalgebra of A. We
also have that adt1 is diagonalizable on B, because it is diagonalizable on A. It
follows that there is an a1 ∈ k and x1 ∈ B such that a1 ̸= 0, x1 ̸= 0, and

adt1(x1) = a1 x1.(24.11.28)

Remember that if Ψ0 ⊆ Φ ∪ {0}, then A(Ψ0) is the linear subspace of A
spanned by Aα, α ∈ Ψ0, as in Subsection 24.9.2. Put

Ψ1 = {α ∈ Φ : α(t1) = a1}(24.11.29)

and
Ψ2 = {α ∈ Φ : α(t1) = n · a1 for some n ∈ Z+},(24.11.30)

so that Ψ1 ⊆ Ψ2. One can use (24.11.28) to check that

x1 ∈ A(Ψ1).(24.11.31)
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One can also verify that A(Ψ2), A(Ψ2∪{0}) are Lie subalgebras of A, with A(Ψ2)
nilpotent, and A(Ψ2 ∪ {0}) solvable. More precisely, this can be obtained as in
Section 22.5.

Let B2 be a Borel subalgebra of A that contains A(Ψ2 ∪ {0}). Thus

A0 ⊆ B∆ ∩B2,(24.11.32)

which implies that the dimension of B∆∩B = T is strictly less than the dimen-
sion of B∆ ∩B2, because T is a proper linear subspace of A0. Using our second
induction hypothesis, we get that there is an element σ2 of E(A) such that

σ2(B∆) = B2.(24.11.33)

Observe that
x1 ∈ B2 ∩B,(24.11.34)

using (24.11.31). Clearly T ⊆ A0 ⊆ B2, so that

T ⊆ B2 ∩B.(24.11.35)

Of course, x1 is not in T , by (24.11.28). This implies that B∆ ∩ B = T is a
proper linear subspace of B2 ∩ B. In particular, the dimension of B∆ ∩ B is
strictly less than the dimension of B2 ∩B.

It follows that the dimension of B∆ ∩ B is strictly less than the dimension
of

σ−1
2 (B2 ∩B) = B∆ ∩ σ−1

2 (B).(24.11.36)

Note that σ−1
2 (B) is a Borel subalgebra of A, so that our second induction

hypothesis implies that there is an element of E(A) that maps B∆ onto σ−1
2 (B).

This implies that there is an element of E(A) that maps B∆ onto B, as desired.

24.12 The second case

We continue with the same notation and hypotheses as in Section 24.9 again.
The arguments in the previous two sections show that if B∆ ∩ B ̸= {0}, then
there is an element of E(A) that maps B∆ onto B. More precisely, this works
for any choice of maximal toral subalgebra A0 of A, and base ∆ for the corre-
sponding root system Φ, as in Subsection 24.9.3.

In this section, we suppose that

B∆ ∩B = {0}.(24.12.1)

This corresponds to (2) on p86 of [14].
Remember that A corresponds to the direct sum of Aα, α ∈ Φ ∪ {0}, as a

vector space over k, as in Subsection 24.9.2. In particular, the dimension of A,
as a vector space over k, is given by

dimA = dimA0 +#Φ,(24.12.2)
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where #Φ is the number of elements of Φ, because Aα has dimension one as a
vector space over k when α ∈ Φ. Similarly,

dimB∆ = dimA(Φ+ ∪ {0}) = dimA0 +#Φ+.(24.12.3)

Note that
#Φ+ = #Φ/2,(24.12.4)

because Φ is the union of Φ+ and −Φ+, which are disjoint. Thus

dimB∆ = dimA0 +#Φ/2.(24.12.5)

It follows that
(dimA)/2 < dimB∆,(24.12.6)

because A0 ̸= {0}. We also have that

dimB∆ + dimB ≤ dimA,(24.12.7)

by (24.12.1). This means that

dimB < (dimA)/2.(24.12.8)

Suppose for the moment that every element of B is ad-nilpotent in A. Of
course, this implies that every element of B is ad-nilpotent in B. It follows that
B is nilpotent as a Lie algebra over k, as in Section 9.10.

Remember that the normalizer of B in A is equal to B, because B is a Borel
subalgebra of A, as in Section 22.7. This means that B is a Cartan subalgebra
of A.

Under these conditions, we get that B is a toral subalgebra of A, as in
Section 18.10. Thus the elements of B are ad-diagonalizble in A. This implies
that B = {0}, because the elements of B are also supposed to be ad-nilpotent
in A. This contradicts the hypothesis that B be a Borel subalgebra of A, since
A ̸= {0}.

Thus we may suppose now that B has an element that is not ad-nilpotent
in A. Remember that B contains the ad-diagonalizable and ad-nipotent parts
of its elements, as in (24.11.3). It follows that B has a nonzero element x0 that
is ad-diagonalizable in A.

Let T0 be a maximal toral subalgebra of A that contains x0. Using any base
for the root system corresponding to T0, we get a standard Borel subalgebra B0

of A with respect to T0, as in Subsection 24.9.2. Note that T0 ⊆ B0, so that

B0 ∩B ̸= {0}.(24.12.9)

This implies that there is an element of E(A) that maps B0 onto B, as
mentioned at the beginning of the section. In particular,

dimB = dimB0.(24.12.10)

However, dimB0 > (dimA)/2, as in (24.12.6). This contradicts (24.12.8).
This shows that (24.12.1) is not possible. It follows that there is an element

of E(A) that maps B∆ onto B. This completes the proof of the theorem stated
at the beginning of Section 24.9.
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24.13 Some consequences

Let k be an algebraically closed field of characteristic 0 again, and let (A, [·, ·]A)
be a finite-dimensional Lie algebra over k. The rank of A as a Lie algebra over
k may be defined as the dimension of any Cartan subalgebra of A, as on p86 of
[14]. The corollary stated at the beginning of Section 24.9 implies that

the rank of A does not depend on the choice(24.13.1)

of the Cartan subalgebra.

The rank of a finite-dimensional complex Lie algebra is defined another way in
Definition 2 on p11 of [24], and Corollary 1 on p13 of [24] states that these two
definitions are equivalent.

Suppose now that A ̸= {0} is semisimple, as a Lie algebra over k. Let A0 be
a maximal toral subalgebra of A, and let Φ be the corresponding root system,
as in Subsection 24.9.2. Also let ∆ be a base for Φ, and B∆ be the standard
Borel subalgebra of A associated to A0 and ∆, as in Subsection 24.9.2.

Suppose that N is a Lie subalgebra of A such that every element of N is ad-
nilpotent as an element of A. In particular, every element of N is ad-nilpotent
as an element of N , so that N is nilpotent as a Lie algebra over k, as in Section
9.10. Of course, this implies that N is solvable as a Lie algebra over k, so that
there is a Borel subalgebra B of A that contains N .

The theorem stated at the beginning of Section 24.9 implies that there is an
element σ of E(A) such that σ(B) = B∆. In particular, σ(N) ⊆ B∆. In fact,

σ(N) ⊆ N∆,(24.13.2)

where N∆ is as in (24.10.4). This follows from (24.10.6), because the elements
of σ(N) are ad-nilpotent in A. This corresponds to Exercise 2 on p87 of [14],
and the corollary to Theorem 5 on p48 of [24].

Note that the standard Borel subalgebras of A associated to A0 and any base
for Φ contain A0, by construction. Conversely, let B be any Borel subalgebra
of A such that

A0 ⊆ B.(24.13.3)

Under these conditions,

B is a standard Borel subalgebra of A with respect to A0(24.13.4)

and some base for Φ,

as mentioned on p86 of [14].
To see this, let ∆ be a base for Φ again, and let B∆ be the corresponding

standard Borel subalgebra of A, as before. Remember that there is an element
σ of E(A) such that σ(B∆) = B, by the theorem stated at the beginning of
Section 24.9. In particular,

σ(A0) ⊆ σ(B∆) ⊆ B.(24.13.5)
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Remember that A0 is a Cartan subalgebra of A, as in Section 18.10. Of
course, this implies that σ(A0) is a Cartan subalgebra of A too. It follows that
A0 and σ(A0) may be considered as Cartan subalgebras of B, as in Section
18.11.

Thus there is an element of E(B) that maps σ(A0) onto A0, as in Section
24.7. This implies that there is an element τ of E(A,B) ⊆ E(A) such that

τ(σ(A0)) = A0,(24.13.6)

as in Section 24.3. Note that

τ(σ(B∆)) = τ(B) = B.(24.13.7)

Put σ1 = τ ◦ σ ∈ E(A), so that σ1(A0) = A0 and σ1(B∆) = B. Let σ0 be
the restriction of σ1 to A0, and let σ′

0 be the corresponding dual linear mapping
from the dual A′

0 of A0 into itself. If α ∈ A′
0 and Aα is as in Subsection 24.9.2,

then

σ1(Aσ′
0(α)

) = Aα(24.13.8)

for every α ∈ A′
0, as in Section 23.6. In particular,

σ′
0(Φ) = Φ,(24.13.9)

as before.

Let EQ be the linear subspace of A′
0, as a vector space over Q, spanned by

Φ, as in Subsection 24.9.2. Thus

σ′
0(EQ) = EQ,(24.13.10)

by (24.13.9), as in Section 23.6. This leads to a one-to-one linear mapping from
the corresponding real vector space ER onto itself, which is an automorphism
of Φ as a root system in ER, as before. Using this, one can check that

∆̃ = (σ′
0)

−1(∆)(24.13.11)

is a base for Φ as a root system in ER too.

Let B
∆̃

be the standard Borel subalgebra of A associated to A0 and ∆̃ as in
Subsection 24.9.2. One can verify that

σ1(B∆) = B
∆̃
,(24.13.12)

using (24.13.8). This means that

B = B
∆̃
,(24.13.13)

as desired, because σ1(B∆) = B, by construction.
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24.14 The case of sl2(k)

Exercise 4 on p87 of [14] asks one to consider simplifications of the proof of
the theorem stated at the beginning of Section 24.9, in the case where the Lie
algebra is sl2(k). Let us begin with a preliminary remark.

Let k be an algebraically closed field, and let (A, [·, ·]A) be a Lie algebra over
k of finite dimension at least 2. Suppose that x is a nonzero element of A, so
that the quotient

A/{t x : t ∈ k}(24.14.1)

may be considered as a vector space over k of positive finite dimension. Note
that adx induces a linear mapping from (24.14.1) into itself. This mapping has
a nonzero eigenvector in (24.14.1), because k is algebraically closed.

Equivalently, there is an element y of A such that x and y are linearly
independent in A, and adx(y) can be expressed as a linear combination of x and
y. This means that the linear span of x and y is a 2-dimensional Lie subalgebra
of A, which is solvable as a Lie algebra over k. It follows that

every Borel subalgebra of A has dimension at least two(24.14.2)

under these conditions.
Now let k be an algebraically closed field of characteristic 0, as in Section

24.9. Note that the Borel subalgebras of sl2(k) are proper subalgebras of sl2(k),
because sl2(k) is not solvable. This implies that every Borel subalgebra of sl2(k)
has dimension two as a vector space over k, by (24.14.2). Conversely, every two-
dimensional Lie subalgebra of sl2(k) is solvable, and thus a Borel subalgebra.

Let x =
(
0 1
0 0

)
, y =

(
0 0
1 0

)
, and h =

(
1 0
0 −1

)
be the usual basis for sl2(k), as

a vector space over k. Thus [x, y] = h, [h, x] = 2 · x, and [h, y] = −2 · y, as
before. The linear span of h is a maximal toral subalgebra of sl2(k), for which
Φ corresponds to the linear functionals defined by multiplication by 2 and −2.
The linear functional defined by multiplication by 2 may be considered as a base
for Φ as a root system, for which the corresponding standard Borel subalgebra
B∆ of sl2(k) is spanned by h and x.

Let B be any Borel subalgebra of sl2(k), so that B has dimension two as a
vector space over k, as before. In particular, B∆ ∩ B ̸= {0} in this case. We
would like to show that there is an element of E(sl2(k)) that maps B∆ onto B.
Of course, this is trivial when B = B∆, and so we may suppose that B ̸= B∆.

Suppose for the moment that x ∈ B. If B ⊆ B∆, then B = B∆, and so we
may suppose that B ̸⊆ B∆. Thus

a x+ b y + c h ∈ B(24.14.3)

for some a, b, c ∈ k, with b ̸= 0. This implies that

[x, a x+ b y + c h] = b h− 2 c x ∈ B,(24.14.4)

because x ∈ B and B is a Lie subalgebra of sl2(k). It follows that h ∈ B,
because x ∈ B. This means that y ∈ B, by (24.14.3), which is to say that
B = sl2(k). This is a contradiction, because sl2(k) is not solvable.
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Thus we may suppose that x ̸∈ B. It follows that

a x+ h ∈ B(24.14.5)

for some a ∈ k, because B∆ ∩ B ̸= {0}. One can use the exponential of a
multiple of adx to reduce to the case where h ∈ B. Using this, one can check
that either B = B∆, or B is spanned by y and h. If B is spanned by y and h,
then B = σ(B∆), where σ ∈ E(sl2(k)) is as in Section 15.7.

24.15 Automorphisms and semisimplicity

Let k be an algebraically closed field of characteristic 0, and let (A, [·, ·]A) be
a semisimple Lie algebra over k of positive finite dimension. Also let A0 be a
maximal toral subalgebra of A, and let Φ be the corresponding root system, as
in Subsection 24.9.2. Choose a base ∆ for Φ, and let B∆ be the standard Borel
subalgebra of A associated to A0 and ∆, as before.

Suppose that τ is an automorphism of A, as a Lie algebra over k. Thus
τ(B) is another Borel subalgebra of A. The theorem stated at the beginning of
Section 24.9 implies that there is an element σ1 of E(A) such that

σ1(τ(B∆)) = B∆.(24.15.1)

Remember that A0 is a Cartan subalgebra of A, as in Section 18.10. This
implies that σ1(τ(A0)) is a Cartan subalgebra of A as well. It follows that A0

and σ1(τ(A0)) are Cartan subalgebras of B∆ too, as a Lie algebra over k, as in
Section 18.11. Thus there is an element of E(B∆) that maps σ1(τ(A0)) onto A0,
as in Section 24.7. This means that there is an element σ2 of E(A,B∆) ⊆ E(A)
with

σ2(σ1(τ(A0))) = A0,(24.15.2)

as in Section 24.3.
Put

τ2 = σ2 ◦ σ1 ◦ τ,(24.15.3)

which is an automorphism of A that maps A0 onto itself. Let τ2,0 be the
restriction of τ2 to A0, and let τ ′2,0 be the corresponding dual linear mapping
from A′

0 into itself. Thus
τ2(Aτ ′

2,0(α)
) = Aα(24.15.4)

for every α ∈ A′
0, as in Section 23.6, where Aα is as in Subsection 24.9.2. This

implies that
τ ′2,0(Φ) = Φ,(24.15.5)

as before.
It follows that

τ ′2,0(EQ) = EQ,(24.15.6)

as in Section 23.6, where EQ is the linear subspace of A′
0, as a vector space over

Q, spanned by Φ. As before, this leads to a one-to-one linear mapping from the
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corresponding real vector space ER onto itself, which is an automorphism of Φ
as a root system in ER.

Note that
τ2(B∆) = B∆,(24.15.7)

by (24.15.1), and because σ2 ∈ E(A,B∆). Let Φ+ be the set of positive roots
with respect to ∆, as in Subsection 24.9.2. One can check that

τ ′2,0(Φ
+) = Φ+,(24.15.8)

using (24.15.4) and (24.15.7).
Using (24.15.8), one can verify that

τ ′2,0(∆) = ∆.(24.15.9)

More precisely, ∆ consists of exactly the elements of Φ+ that cannot be ex-
pressed as the sum of at least two other elements of Φ+.

We shall see in Section 28.6 that every automorphism of Φ as a root system
that sends ∆ onto itself corresponds to an automorphism of A that maps A0

onto itself. This also uses the remarks in Section 28.7.
The automorphisms of A that are equal to the identity mapping on A0 are

called diagonal automorphisms, and they will be discussed further in Sections
28.6 and 29.7.

This corresponds to some remarks on p87 of [14].
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Chapter 25

Universal enveloping
algebras

25.1 Polynomial algebras

Let I be a nonempty set, and let MI be the set of functions α on I with values
in the set Z+∪{0} of nonnegative integers such that α(j) = 0 for all but finitely
many j ∈ I. The elements of MI are considered as multi-indices with respect
to I, which reduces to the usual notion when I = {1, . . . , n} for some positive
integer n. If α ∈ MI , then we put

|α| =
∑
j∈I

α(j),(25.1.1)

which reduces to a finite sum. If β ∈ MI too, then α+ β ∈ MI , and

|α+ β| = |α|+ |β|.(25.1.2)

Let Xj , j ∈ I, be a commuting family of indeterminates. If α ∈ MI , then
Xα is considered as a formal monomial in the Xj ’s of degree |α|. This may be
identified with the formal product

X
α(j1)
j1

· · ·Xα(jn)
jn

(25.1.3)

when j1, . . . , jn are finitely many distinct elements of I, and α(j) = 0 for every
j ∈ I \{j1, . . . , jn}. If β ∈ MI as well, then the corresponding product of formal
monomials can be defined as usual by

Xα ·Xβ = Xα+β .(25.1.4)

Let k be a commutative ring with a multiplicative identity element. A formal
polynomial in the Xj ’s, j ∈ I, with coefficients in k can be expressed as

f(X) =
∑
α∈MI

fαX
α,(25.1.5)

532
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where fα ∈ k for every α ∈ MI , and fα = 0 for all but finitely many α ∈ MI .
The space k[{Xj : j ∈ I}] of these formal polynomials can be defined as the
space c00(MI , k) of all k-valued functions on MI with finite support, which is
to say that are equal to 0 at all but finitely many elements of MI . This is a
submodule of the space c(MI , k) of all k-valued functions on MI , as a module
over k with respect to pointwise addition and scalar multiplication of functions.
Of course, this corresponds to termwise addition and scalar multiplication of
formal polynomials as in (25.1.5).

Let
g(X) =

∑
β∈MI

gβ X
β(25.1.6)

be another formal polynomial in the Xj ’s, j ∈ I, with coefficients in k. If
γ ∈ MI , then put

hγ =
∑

α+β=γ

fα gβ ,(25.1.7)

where more precisely the sum is taken over all α, β ∈ MI such that α+ β = γ.
It is easy to see that there are only finitely many such α, β ∈ MI , so that the
right side of (25.1.7) is a finite sum in k. We also have that (25.1.7) is equal to
0 for all but finitely many γ ∈ MI , because of the analogous conditions for fα
and gβ . Thus

h(X) =
∑
γ∈MI

hγ X
γ(25.1.8)

is a formal polynomial in the Xj ’s, j ∈ I, with coefficients in k, and we put
f(X) g(X) = h(X). One can check that k[Xj : j ∈ I}] is a commutative
associative algebra over k with respect to this definition of multiplication. Let
us identify elements of k with the formal polynomials whose coefficients of Xα

are equal to 0 when α is a nonzero element of MI , and are equal to the given
element of k when α = 0. This is a subalgebra of k[{Xj : j ∈ I}], and 1 ∈ k
corresponds to the multiplicative identity element in k[{Xj : j ∈ I}].

Let B be an associative algebra over k with a multiplicative identity element
eB , and let bj be an element of B for each j ∈ I. The Cartesian power BI is
the same as the Cartesian product of the family of copies of B indexed by I,
and we let b be the element of BI whose jth coordinate is equal to bj for each
j ∈ I. Suppose that the bj ’s commute in B, which is to say that

bj bl = bl bj(25.1.9)

for every j, l ∈ I. If α ∈ MI , and j1, . . . , jn are finitely many distinct elements
of I such that α(j) = 0 when j ∈ I \ {j1, . . . , jn}, then put

bα = b
α(j1)
j1

· · · bα(jn)jn
.(25.1.10)

As usual, b
α(j)
j is interpreted as being eB when α(j) = 0, so that the right side

of (25.1.10) does not depend on the choice of j1, . . . , jn. If β ∈ MI too, then

bα+β = bα bβ ,(25.1.11)
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because of (25.1.9). If f(X) is as in (25.1.5), then put

f(b) =
∑
α∈MI

fα b
α,(25.1.12)

which reduces to a finite sum in B. It is easy to see that f(X) 7→ f(b) defines
an algebra homomorphism from k[{Xj : j ∈ I}] into B.

25.2 Tensor products of associative algebras

Let k be a commutative ring with a multiplicative identity element, and let B1,
B2 be associative algebras over k. Thus B1, B2 are modules over k in particular,
and we take B = B1

⊗
B2, as a module over k. If b1, b

′
1 ∈ B1 and b2, b

′
2 ∈ B2,

then

(b1 b
′
1)⊗ (b2 b

′
2)(25.2.1)

is an element of B, and this defines a multilinear mapping from B1×B2×B1×B2

into B. This multilinear mapping corresponds to a unique linear mapping from
B1

⊗
B2

⊗
B1

⊗
B2 into B, as usual. Remember that B1

⊗
B2

⊗
B1

⊗
B2

can be identified with B
⊗
B, as in Section 7.15. This leads to a bilinear

mapping from B×B into B, by composing the standard bilinear mapping from
B ×B into B

⊗
B with the previous linear mapping from B

⊗
B into B. This

bilinear mapping is used to define multiplication on B. By construction,

(b1 ⊗ b2) (b
′
1 ⊗ b′2) = (b1 b

′
1)⊗ (b2 b

′
2)(25.2.2)

in B for every b1, b
′
1 ∈ B1 and b2, b

′
2 ∈ B2. One can check that multiplication

on B is associative, because multiplication is associative on B1 and B2, by
hypothesis. If multiplication is commutative on B1 and B2, then multiplication
on B is commutative as well.

Suppose for the moment that B1 and B2 have multiplicative identity ele-
ments e1 and e2, respectively. In this case, e1 ⊗ e2 is the multiplicative identity
element in B. Observe that

b1 7→ b1 ⊗ e2(25.2.3)

and

b2 7→ e1 ⊗ b2(25.2.4)

are algebra homomorphisms from B1 and B2 into B. We also have that

(b1 ⊗ e2) (e1 ⊗ b2) = (e1 ⊗ b2) (b1 ⊗ e2) = b1 ⊗ b2(25.2.5)

for every b1 ∈ B1 and b2 ∈ B2.
Let C be another associative algebra over k, and let ϕ1, ϕ2 be algebra ho-

momorphisms from B1, B2 into C, respectively. Suppose that

ϕ1(b1)ϕ2(b2) = ϕ2(b2)ϕ1(b1)(25.2.6)
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for every b1 ∈ B1 and b2 ∈ B2. Of course, (b1, b2) 7→ ϕ1(b1)ϕ2(b2) is a bilinear
mapping from B1 × B2 into C. This leads to a unique linear mapping ϕ from
B into C, with

ϕ(b1 ⊗ b2) = ϕ1(b1)ϕ2(b2)(25.2.7)

for every b1 ∈ B1 and b2 ∈ B2. One can verify that ϕ is an algebra homomor-
phism from B into C under these conditions.

25.3 Tensor algebras

Let k be a commutative ring with a multiplicative identity element, and let V be
a module over k. If n is a positive integer, then let V n be the space of n-tuples
of elements of V , which is the same as the Cartesian product of n copies of V .
Remember that the nth tensor power TnV of V is defined as a module over k
as in Section 7.15, as the tensor product of n copies of V . This is interpreted
as being equal to V when n = 1, as before. In particular, the mapping from
(v1, . . . , vn) ∈ V n to v1 ⊗ · · · ⊗ vn ∈ TnV is multilinear over k.

Let n1 and n2 be positive integers, and remember that there is a natural
isomorphism between (Tn1V )

⊗
(Tn2V ) and Tn1+n2V , as modules over k, as

in Section 7.15. There is also a natural bilinear mapping from Tn1V × Tn2V
into (Tn1V )

⊗
(Tn2V ), by the definition of the tensor product. This leads to a

natural bilinear mapping from (Tn1V ) × (Tn2V ) into Tn1+n2V . If a1 ∈ Tn1V
and a2 ∈ Tn2V , then let a1 a2 be the image of (a1, a2) in Tn1+n2V under this
mapping. If a1 = v1 ⊗ · · · ⊗ vn1 and a2 = w1 ⊗ · · · ⊗ wn2 for some v1, . . . , vn1

and w1, . . . , wn2
in V , then

(v1 ⊗ · · · ⊗ vn1
) (w1 ⊗ · · · ⊗ wn2

) = v1 ⊗ · · · ⊗ vn1
⊗ w1 ⊗ · · · ⊗ wn2

(25.3.1)

in Tn1+n2V , by construction.
It is customary to define TnV when n = 0 to be k, as a module over itself.

If W is any module over k, then scalar multiplication on W can be used to
define bilinear mappings from k ×W and from W × k into W . This leads to
standard isomorphisms from k

⊗
W and from W

⊗
k onto W , as modules over

k. In particular, we have a natural bilinear mapping from Tn1V × Tn2V into
Tn1+n2V when n1 = 0 or n2 = 0 as well. If a1 ∈ Tn1V , a2 ∈ Tn2V , and
a3 ∈ Tn3V for some nonnegative integers n1, n2, n3, then one can check that

(a1a2) a3 = a1 (a2 a3)(25.3.2)

in Tn1+n2+n3V .
The tensor algebra on V is denoted TV , and defined initially as a module

over k to be the direct sum of TnV over all nonnegative integers n,

TV =

∞⊕
n=0

TnV.(25.3.3)

There is a natural bilinear mapping from (TV )×(TV ) into TV , which is defined
using the natural bilinear mapping from (Tn1V ) × (Tn2V ) into Tn1+n2V for
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n1, n2 ≥ 0 mentioned in the previous two paragraphs. If a, b ∈ TV , then let a b
be the image of (a, b) in TV under this mapping. It is easy to see this definition of
multiplication on TV is associative, using (25.3.2). We may consider k = T 0V
as a subalgebra of TV , and the multiplicative identity element 1 in k is the
multiplicative identity element in TV too.

Let A be an associative algebra over k with a multiplicative identity element
e, and let ϕ be a homomorphism from V into A, as modules over k. If n is a
positive integer, then there is a natural multilinear mapping from V n into A,
which sends (v1, . . . , vn) ∈ V n to ϕ(v1) · · ·ϕ(vn). This leads to a unique linear
mapping ψn from TnV into A, with

ψn(v1 ⊗ · · · ⊗ vn) = ϕ(v1) · · ·ϕ(vn)(25.3.4)

for every (v1, . . . , vn) ∈ V n. Put ψ0(t) = t e for every t ∈ k = T 0V . If a1 ∈ Tn1V
and a2 ∈ Tn2V for some n1, n2 ≥ 0, then one can check that

ψn1+n2
(a1 a2) = ψn1

(a1)ψn2
(a2).(25.3.5)

Let ψ be the mapping from TV into A which corresponds to ψn on TnV for
every n ≥ 0. This defines an algebra homomorphism from TV into A, because
of (25.3.5). More precisely, this is the unique algebra homomorphism from TV
into A that is equal to ϕ on V = T 1V and sends 1 ∈ k = T 0V to e. Note that
every algebra homomorphism ψ from TV into A with ψ(1) = e occurs in this
way, where ϕ corresponds to ψ on V = T 1V . This corresponds to some of the
remarks on p11 of [25], and on p89 of [14].

25.4 Defining universal enveloping algebras

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. A universal enveloping algebra of A is an
associative algebra UA over k with a multiplicative identity element e = eUA
and a mapping i = iUA from A into UA with the following two properties. First,
i is a Lie algebra homomorphism from A into UA, considered as a Lie algebra
over k with respect to the corresponding commutator bracket. This means that
i is a homomorphism from A into UA as modules over k such that

i([x, y]A) = i(x) i(y)− i(y) i(x)(25.4.1)

for every x, y ∈ A.

Second, let B be an associative algebra over k with a multiplicative identity
element eB , and let ϕ be a Lie algebra homomorphism from A into B, as a
Lie algebra over k with respect to the corresponding commutator bracket. As
before, this means that ϕ is a homomorphism from A into B, as modules over
k, such that

ϕ([x, y]A) = ϕ(x)ϕ(y)− ϕ(y)ϕ(x)(25.4.2)
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for every x, y ∈ B. Under these conditions, there should be a unique algebra
homomorphism ψ from UA into B such that ψ(eUA) = eB and

ψ ◦ i = ϕ(25.4.3)

on A. This corresponds to Definition 1.1 on p11 of [25], and to the definition
on p90 of [14].

In particular, we can apply the second condition to B = UA and ϕ = i. This
implies that there is a unique algebra homomorphism ψ from UA into itself such
that ψ(eUA) = eUA and ψ ◦ i = i. The identity mapping on UA satisfies these
properties, which means that the identity mapping on UA is the only mapping
on UA with these properties.

It is easy to see that the pair (UA, i) is unique when it exists, up to iso-

morphic equivalence. Indeed, let ŨA be another associative algebra over k with
a multiplicative identity element e

ŨA
and a Lie algebra homomorphism i

ŨA

from A into ŨA that is a universal enveloping algebra over A. Because iUA
and i

ŨA
are Lie algebra homomorphisms, there are unique algebra homomor-

phisms ψ from UA into ŨA and ψ̃ from ŨA into UA such that ψ(eUA) = e
ŨA

,

ψ̃(e
ŨA

) = eUA, ψ ◦ iUA = i
ŨA

, and ψ̃ ◦ i
ŨA

= iUA. Observe that

(ψ̃ ◦ ψ) ◦ iUA = ψ̃ ◦ (ψ ◦ iUA) = ψ̃ ◦ i
ŨA

= iUA,(25.4.4)

and similarly (ψ ◦ ψ̃) ◦ i
ŨA

= i
ŨA

. Of course,

(ψ̃ ◦ ψ)(eUA) = ψ̃(ψ(eUA)) = ψ̃(e
ŨA

) = eUA,(25.4.5)

and similarly (ψ ◦ ψ̃)(e
ŨA

) = e
ŨA

. Clearly ψ̃ ◦ ψ is an algebra homomorphism

from UA into itself, and ψ ◦ ψ̃ is an algebra homomorphism from ŨA into itself.
It follows that ψ̃ ◦ ψ is the identity mapping on UA, and that ψ ◦ ψ̃ is the
identity mapping on ŨA, as in the preceding paragraph. This corresponds to
some remarks on p11 of [25], and on p90f of [14].

25.5 Constructing universal enveloping algebras

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. In particular, A is a module over k, so that
the corresponding tensor algebra TA can be defined as in Section 25.3. Let IA
be the two-sided ideal in TA generated by elements of the form

[x, y]A − x⊗ y − y ⊗ x,(25.5.1)

where x, y ∈ A. Of course, this uses the obvious embeddings of A = T 1A
and T 2A in TA. Thus IA consists of elements of TA that can be obtained by
multiplying elements of the form (25.5.1) by other elements of TA on the left
and right, and taking finite sums of such products.
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The corresponding quotient

UA = (TA)/IA(25.5.2)

is an associative algebra over k. Let qA be the canonical quotient mapping
from TA onto UA. Remember that 1 ∈ k = T 0A is the multiplicative identity
element in TA, so that eUA = qA(1) is the multiplicative identity element in UA.
Let i = iUA be the composition of the natural inclusion mapping of A = T 1A
into TA with qA. Let us check that (UA, i) is a universal enveloping algebra of
A, as in Theorem 1.2 on p11 of [25], and as mentioned on p91 of [14].

It is easy to see that i is a Lie algebra homomorphism from A into UA,
by construction. Let B be an associative algebra over k with a multiplicative
identity element eB , and let ϕ be a Lie algebra homomorphism from A into B.
In particular, ϕ is a homomorphism from A into B as modules over k, and so
there is a unique algebra homomorphism ρ from TA into B that is equal to ϕ
on A = T 1A and sends 1 ∈ k = T 0A to eB , as in Section 25.3. If x, y ∈ A,
then one can check that (25.5.1) is in the kernel of ρ, because ϕ is a Lie algebra
homomorphism from A into B. This implies that IA is contained in the kernel
of ρ, so that ρ can be expressed as

ρ = ψ ◦ qA(25.5.3)

on TA for some algebra homomorphism ψ from UA into B. Note that ψ(eUA) =
ψ(qA(1)) = ρ(1) = eB . We can compose both sides of (25.5.3) with the natural
inclusion of A = T 1A into TA to get that

ϕ = ψ ◦ i(25.5.4)

on A.

Suppose that ψ̃ is another algebra homomorphism from UA into B such
that ψ̃(eUA) = eB and ϕ = ψ̃ ◦ i. This implies that ρ̃ = ψ̃ ◦ qA is an algebra

homomorphism from TA into B such that ρ̃(1) = ψ̃(qA(1)) = ψ̃(eUA) = eB and
ρ̃ = ϕ on A = T 1A. It follows that ρ̃ = ρ on TA, as in Section 25.3. This means
that ψ̃ = ψ on UA, so that ψ is unique. This could also be obtained from the
fact that UA is generated by eUA and i(A), as an algebra over k, because TA is
generated by the images of k = T 0A and A = T 1A in TA, as an algebra over k.

25.6 Some properties of UA

Let k be a commutative ring with a multiplicative identity element, and let A
be a module over k. Also let q0 be the mapping from TA into k that sends each
element of TA to its component in T 0A = k. This is an algebra homomorphism
from TA onto k. The kernel of q0 is the two-sided ideal I0 in TA consisting of
elements of TA whose component in T 0A is equal to 0, which corresponds to
the direct sum of TnA over n ≥ 1 in TA.
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Suppose now that (A, [·, ·]A) is a Lie algebra over k. Let IA be the two-sided
ideal in TA associated to A as in the previous section, and observe that

IA ⊆ I0.(25.6.1)

Remember that qA is the canonical quotient mapping from TA onto UA =
(TA)/IA, as before. Using (25.6.1), we get that the restriction of qA to T 0A = k
is injective, as mentioned on p91 of [14]. We can also express q0 as the com-
position of qA with an algebra homomorphism from UA onto k. Alternatively,
the map from A into k that sends every element of A to 0 is a Lie algebra
homomorphism. This leads to an algebra homomorphism from UA into k that
sends e to 1.

Let V be a module over k, and remember that the space Homk(V, V ) of
module homomorphisms from V into itself is an associative algebra over k with
respect to composition of mappings, and with the identity mapping on V as
the multiplicative identity element. A Lie algebra homomorphism from A into
Homk(V, V ) is the same as a representation of A, as a Lie algebra over k, on V .
This leads to an algebra homomorphism from UA into Homk(V, V ) that sends
eUA to the identity mapping on V , and whose composition with iUA is the given
representation of A on V . Thus, if V is a module over A as a Lie algebra, then
V may be considered as a left module over UA as an associative algebra, as in
the remark on p11f of [25].

There is an exercise on p12 of [25], which is attributed to Bergman, and
which asks one to show that UA = k if and only if A = {0}. More precisely,
UA = k means that UA = qA(k), which happens exactly when IA = I0. Of
course, if A = {0}, then I0 = {0}, and IA = I0. Conversely, let us check that
A = {0} when IA = I0. The exercise comes with the hint that one should use
the adjoint representation. Remember that A may be considered as a module
over itself, as a Lie algebra over k, using the adjoint representation. Using this,
we may consider A as a left module over UA, as an associative algebra over k,
as in the preceding paragraph. If IA = I0, then it follows that the action of
any element of A on A by the adjoint representation is equal to 0, so that A is
commutative as a Lie algebra. In this case, the condition that IA = I0 implies
that A = T 1A = {0}, as desired.

Let A0 be a Lie subalgebra of A, so that A0 also has a universal enveloping
algebra UA0, with multiplicative identity element e0 = eUA0

and corresponding
Lie algebra homomorphism i0 = iUA0

from A0 into UA0. Consider the restric-
tion ϕ0 of iUA to A0, which is a Lie algebra homomorphism from A0 into UA.
This leads to a unique algebra homomorphism ψ0 from UA0 into UA such that
ψ0(e0) = eUA and ψ0 ◦ i0 = ϕ0.

25.7 Commuting Lie subalgebras

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Also let UA be a universal enveloping algebra
ofA, with multiplicative identity element e = eUA and corresponding Lie algebra
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homomorphism i = iUA from A into UA. Suppose that A1 and A2 are Lie
subalgebras of A, and let UA1, UA2 be universal enveloping algebras of A1, A2,
respectively, with multiplicative identity elements ej = eUAj

and corresponding
Lie algebra homomorphisms ij = iUAj

from Aj into UAj for j = 1, 2. As in the
previous section, the restriction ϕj of i to Aj is a Lie algebra homomorphism
from Aj into UA for j = 1, 2, which leads to a unique algebra homomorphism
ψj from UAj into UA such that ψj(ej) = e and ψj ◦ ij = ϕj .

Suppose that A1 and A2 commute in A, in the sense that

[a1, a2]A = 0(25.7.1)

for every a1 ∈ A1 and a2 ∈ A2. This implies that

i(a1) i(a2) = i(a2) i(a1)(25.7.2)

in UA for every a1 ∈ A1 and a2 ∈ A2, because i is a Lie algebra homomorphism
from A into UA. Using this, we get that

ψ1(x1)ψ2(x2) = ψ2(x2)ψ1(x1)(25.7.3)

in UA for every x1 ∈ UA1 and x2 ∈ UA2. More precisely, this follows from
(25.7.2) when xj ∈ ij(Aj) for j = 1, 2. Of course, (25.7.3) holds automatically
when x1 = e1 or x2 = e2. It follows that (25.7.3) holds for every x1 ∈ UA1

and x2 ∈ UA2, because UAj is generated by ej and ij(Aj) as an algebra over k
for j = 1, 2. Let ψ be the unique linear mapping from (UA1)

⊗
(UA2) into UA

such that

ψ(x1 ⊗ x2) = ψ1(x1)ψ2(x2)(25.7.4)

for every x1 ∈ UA1 and x2 ∈ UA2. This is an algebra homomorphism, as in
Section 25.2, with ψ(e1 ⊗ e2) = ψ1(e1)ψ2(e2) = e.

Suppose now that A corresponds to the direct sum of A1 and A2, so that
every element of A can be expressed in a unique way as a sum of elements of
A1 and A2. Observe that

a1 7→ i1(a1)⊗ e2(25.7.5)

is a Lie algebra homomorphism from A1 into (UA1)
⊗

(UA2), and similarly that

a2 7→ e1 ⊗ i2(a2)(25.7.6)

is a Lie algebra homomorphism from A2 into (UA1)
⊗

(UA2). If a1 ∈ A1 and
a2 ∈ A2, then put

ρ(a1 + a2) = i1(a1)⊗ e2 + e1 ⊗ i2(a2),(25.7.7)

which defines a mapping from A into (UA1)
⊗

(UA2). It is easy to see that
ρ is a Lie algebra homomorphism from A into (UA1)

⊗
(UA2), using (25.7.1).

This implies that there is a unique algebra homomorphism θ from UA into
(UA1)

⊗
(UA2) such that θ(e) = e1 ⊗ e2 and ρ = θ ◦ i.
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Let us check that ψ◦θ is the identity mapping on UA. Of course, (ψ◦θ)(e) =
ψ(θ(e)) = ψ(e1 ⊗ e2) = e. If a1 ∈ A1 and a2 ∈ A2, then

(ψ ◦ θ)(i(a1 + a2)) = ψ(ρ(a1 + a2))(25.7.8)

= ψ(i1(a1)⊗ e2) + ψ(e1 ⊗ i2(a2))

= ψ1(i1(a1))ψ2(e2) + ψ1(e1)ψ2(i2(a2))

= ϕ1(a1) + ϕ2(a2) = i(a1 + a2).

This implies that ψ ◦θ is the identity mapping on UA, because UA is generated
as an algebra over k by e and i(A).

Similarly, we would like to verify that θ ◦ ψ is the identity mapping on
(UA1)

⊗
(UA2). It suffices to show that

(θ ◦ ψ)(x1 ⊗ x2) = x1 ⊗ x2(25.7.9)

for every x1 ∈ UA1 and x2 ∈ UA2. Observe that

(θ ◦ ψ)(x1 ⊗ x2) = θ(ψ(x1 ⊗ x2))

= θ(ψ1(x1)ψ2(x2)) = θ(ψ1(x1)) θ(ψ2(x2))(25.7.10)

for every x1 ∈ UA1 and x2 ∈ UA2.
Let us check that

θ(ψ1(x1)) = x1 ⊗ e2(25.7.11)

for every x1 ∈ UA1. Of course, θ(ψ1(e1)) = θ(e) = e1 ⊗ e2, so that (25.7.11)
holds when x1 = e1. If a1 ∈ A1, then

θ(ψ1(i1(a1))) = θ(i(a1)) = ρ(a1) = i1(a1)⊗ e2.(25.7.12)

This shows that (25.7.11) holds when x1 ∈ i1(A1). It follows that (25.7.11)
holds for every x1 ∈ UA1, because UA1 is generated by e1 and i1(A1), as an
algebra over k.

If x2 ∈ UA2, then
θ(ψ2(x2)) = e1 ⊗ x2,(25.7.13)

for the same reasons. If x1 ∈ UA1 as well, then we get that

(θ ◦ ψ)(x1 ⊗ x2) = θ(ψ1(x1)) θ(ψ2(x2))(25.7.14)

= (x1 ⊗ e2) (e1 ⊗ x2) = x1 ⊗ x2,

as desired. Thus UA is isomorphic to (UA1)
⊗

(UA2) in a natural way, as on
p12 of [25].

25.8 Symmetric algebras

Let k be a commutative ring with a multiplicative identity element, and let A
be a module over k. We may consider A as a commutative Lie algebra over k,
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by putting [x, y]A = 0 for every x, y ∈ A. In this case, a universal enveloping
algebra of A as a Lie algebra over k is called a symmetric algebra of A as a
module over k, and is denoted SA, as on p12 of [25].

More precisely, a symmetric algebra SA of A comes with a multiplicative
identity element e = eSA, and a Lie algebra homomorphism i = iSA from A
into SA. In this situation, the condition that i be a Lie algebra homomorphism
means that i is a homomorphism from A into SA, as modules over k, and that

i(x) i(y) = i(y) i(x)(25.8.1)

for every x, y ∈ A. This implies that SA is commutative as an algebra over k,
because it is generated by i(A) and e, as before.

The two-sided ideal IA in the tensor algebra TA defined in Section 25.5 is
generated by elements of the form

x⊗ y − y ⊗ x(25.8.2)

with x, y ∈ A in this situation. This means that IA consists of elements of
TA that can be obtained by multiplying elements of the form (25.8.2) by other
elements of TA on the left and right, and taking finite sums of such elements,
as before. Thus a symmetric algebra of A can be obtained as the quotient

SA = (TA)/IA,(25.8.3)

as in Section 25.5. This corresponds to the definition of the symmetric algebra
on p89 of [14], and the characterization as a universal enveloping algebra of a
commutative Lie algebra is mentioned in the example on p91 of [14].

Let us identify TnA with a submodule of TA, as a module over k, in the
obvious way. It is easy to see that IA corresponds to the direct sum of IA∩(TnA)
over n ≥ 2 in TV . More precisely, IA∩(TnA) consists of finite sums of elements
that can be expressed as the product of the form (25.8.2) by an element of T jA
on the left and T lA on the right, where j, l as nonnegative integers such that
j + l + 2 = n. In particular, IA ∩ (TnA) = {0} when n = 0 or 1. If n is any
nonnegative integer, then IA ∩ (TnA) is a submodule of Tn, as a module over
k, so that the quotient

SnA = (TnA)/(IA ∩ (TnA))(25.8.4)

can be defined as a module over k. Thus (25.8.3) may be considered as the
direct sum of SnA over n ≥ 0, as a module over k. Note that S0A = T 0A = k,
and S1A = T 1A = A.

Let SA be a symmetric algebra of A again, with e = eSA and i = iSA as
before. The second property in the definition of a universal enveloping algebra
says that if B is an associative algebra over k with a multiplicative identity
element eB , and ϕ is a Lie algebra homomorphism from A into B, then there
is a unique algebra homomorphism ψ from SA into B such that ψ(e) = eB
and ψ ◦ i = ϕ. In this situation, a mapping ϕ from A into B is a Lie algebra
homomorphism if ϕ is a homomorphism from A into B, as modules over k, and

ϕ(x)ϕ(y) = ϕ(y)ϕ(x)(25.8.5)
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for every x, y ∈ A. Of course, (25.8.5) holds automatically when B is commuta-
tive, in which case this corresponds to a remark on p90 of [14]. Remember that
SA is unique up to isomorphism, as in Section 25.4.

Suppose now that A is free as a module over k, so that A corresponds to
the direct sum of a nonempty family of copies of k. Equivalently, there is a
nonempty set I and an element ej of A for each j ∈ I so that every element of
A can be expressed in a unique way as a finite linear combinations of ej ’s, with
coefficients in k. Let Xj , j ∈ I, be a commuting family of indeterminates, so
that the corresponding polynomial algebra k[{Xj : j ∈ I}] can be defined as in
Section 25.1. There is a unique homomorphism i from A into k[{Xj : j ∈ I}],
as modules over k, such that

i(ej) = Xj(25.8.6)

for every j ∈ I. Let us check that this satisfies the requirements of a symmetric
algebra of A.

Note that i is a Lie algebra homomorphism from A into k[{Xj : j ∈ I}],
because k[{Xj : j ∈ I}] is a commutative algebra over k. Let B be an associative
algebra over k with a multiplicative identity element eB , and let ϕ be a Lie
algebra homomorphism from A into B, where A is considered as a commutative
Lie algebra over k. This means that ϕ is a homomorphism from A into B, as
modules over k, that satisfies (25.8.5), as before. Put

bj = ϕ(ej)(25.8.7)

for each j ∈ I, so that bj bl = bl bj for every j, l ∈ I. Let b be the element of
the Cartesian power BI whose jth coordinate is equal to bj for each j ∈ I. If
f(X) ∈ k[{Xj : j ∈ I}], then put

ψ(f(X)) = f(b),(25.8.8)

where the right side is as in Section 25.1. Thus ψ is an algebra homomorphism
from k[{Xj : j ∈ I}] into B, as before, and it is easy to see that ψ ◦ i = ϕ on A.
Of course, ψ(1) = eB , by construction, and ψ is uniquely determined by these
properties. This corresponds to some remarks on p12 of [25], and is mentioned
on p90 of [14] as well.

25.9 A filtration on UA

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Also let UA be a universal enveloping algebra
of A, with multiplicative identity element eUA and Lie algebra homomorphism
iUA from A into UA. If n is a nonnegative integer, then we let UnA be the
submodule of UA, as a module over k, generated by products of the form

iUA(x1) · · · iUA(xm),(25.9.1)

where x1, . . . , xm ∈ A and m ≤ n. We interpret eUA as being such a product
with m = 0, so that multiples of eUA by elements of k are in UnA for every
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n ≥ 0. More precisely, U0A consists exactly of multiples of eUA by elements of
k, and

UnA ⊆ Un+1A(25.9.2)

for every n ≥ 0. Note that
∪∞
n=0 UnA = UA. This is the way that UnA is

defined on p13 of [25].
Alternatively, we can take UA to be obtained from the tensor algebra TA

as in Section 25.5. If n is a nonnegative integer, then let TnA be the submodule
of TA that corresponds to the direct sum of TmA over m = 0, . . . , n. Thus T0A
corresponds to T 0A, as a submodule of TA, TnA ⊆ Tn+1A for every n ≥ 0,
and TA =

∪∞
n=0 TnA. If UA is the quotient of TA discussed before, then UnA

corresponds to the image of TnA under the quotient mapping from TA onto
UA. This is how UnA is defined on p91 of [14].

If n is a positive integer, then put

grnUA = (UnA)/(Un−1A),(25.9.3)

where the quotient is defined as a module over k. Also put gr0 UA = U0A, and

grUA =

∞⊕
n=0

grnUA,(25.9.4)

considered as a module over k for the moment. If n, r are nonnegative inte-
gers, then multiplication on UA defines a bilinear mapping from (UnA)× (UrA)
into Un+rA. It is easy to see that this determines a bilinear mapping from
(grn UA) × (grr UA) into grn+r UA in a natural way. This defines a bilinear
mapping of multiplication from (grUA) × (grUA) into grUA. One can check
that multiplication on grUA is associative, and that the element of grUA cor-
responding to eUA ∈ U0A = gr0 UA is the multiplicative identity element. This
is called the graded algebra associated to UA, as on p13 of [25].

Note that iUA maps A into U1A, which is mapped into gr1 UA by the quo-
tient mapping. This gives a natural homomorphism from A into grUA, as
modules over k. One can check that grUA is generated, as an algebra over k,
by the image of A under this mapping and the multiplicative identity element,
as in Proposition 4.1 on p13 of [25].

Theorem 4.2 on p13 of [25] states that grUA is commutative as an algebra
over k. To see this, let x, y ∈ A be given, and remember that

iUA(x) iUA(y)− iUA(y) iUA(x) = iUA([x, y]A)(25.9.5)

in UA, because iUA is a Lie algebra homomorphism from A into UA. Of course,
iUA(x) iUA(y) and iUA(y) iUA(x) are elements of U2A, which are mapped to the
same element of gr2 UA, by (25.9.5). This means that the images of x, y in grUA
commute. It follows that grUA is commutative, because grUA is generated as
an algebra by the image of A and the multiplicative identity element, as in the
preceding paragraph.

Let SA be a symmetric algebra of A, as a module over k, with multiplicative
identity element eSA, and homomorphism iSA from A into SA, as modules over
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k. Because grUA is commutative, there is a unique algebra homomorphism ρ
from SA into grUA such that ρ(eSA) is the multiplicative identity element in
grUA, and ρ ◦ iSA is the natural mapping from A into grUA. More precisely,
ρ maps SA onto grUA, because grUA is generated as an algebra by the image
of A and the multiplicative identity element, as mentioned on p13 of [25].

This corresponds to the lemma on p91 of [14], which is formulated with UA
given by the quotient of TA as in Section 25.5. If n is a nonnegative integer,
then there is a natural module homomorphism from TnA into UnA, using the
quotient mapping from TA onto UA. More precisely, this mapping can be
obtained by first mapping TnA into TnA, and mapping TnA onto UnA using
the quotient mapping from TA onto UA. This leads to a module homomorphism
from TnA into grn UA, by composition with the quotient mapping from UnA
onto grn UA. In fact, this module homomorphism maps TnA onto grn UA. We
can combine these module homomorphisms to get a module homomorphism
from TA onto grUA. This maps the multiplicative identity element in TA to
the multiplicative identity element in grUA. One can check that this is an
algebra homomorphism from TA onto grUA.

Remember that a symmetric algebra SA of A can be obtained as a quotient
of TA as well. One can verify that the ideal in TA used to get SA is contained
in the kernel of the homomorphism from TA onto grUA mentioned in the
preceding paragraph, using (25.9.5). This leads to an algebra homomorphism
from SA onto grUA, as before.

25.10 The Poincaré–Birkhoff–Witt theorem

Let us continue with the same notation and hyotheses as in the previous section,
and suppose also that A is a free module over k. The Poincaré–Birkhoff–Witt
theorem states that the homomorphism ρ from SA onto grUA defined in the
previous section is an isomorphism, as in Theorem 4.3 on p14 of [25]. Of course,
if k is a field, so that A is a vector space over k, then A is automatically free as
a module over k. This corresponds to the formulation of the theorem on p92 of
[14].

To say that A is a free module over k means that there is a nonempty set I
and a family {xj}j∈I of elements of A indexed by I such that every element of
A can be expressed in a unique way as a finite linear combination of the xj ’s,
with coefficients in k. We may refer to {xj}j∈I as a basis for A, as a free module
over k. Let ⪯ be a linear ordering on I.

Let n be a nonnegative integer, and let j1, . . . , jm be m elements of I for
some m ≤ n, with

j1 ⪯ · · · ⪯ jm.(25.10.1)

Thus the product

iUA(xj1) · · · iUA(xjm)(25.10.2)

is an element of UnA. As before, we interpret (25.10.2) as being equal to eUA
when m = 0, in which case (25.10.1) is considered to hold vacuously. Lemma
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4.4 on p14 of [25] states that UnA is generated, as a module over k, by products
of the form (25.10.2).

The proof is by induction on n, with the base case n = 0 being trivial.
Suppose that n ≥ 1, and remember that UnA is generated as a module over k
by products of the form (25.10.2) without the condition (25.10.1), by definition.
Using (25.9.5), we can express an element of UnA as a linear combination of
terms of the form (25.10.2), with coefficients in k, m = n, and the condition
(25.10.1), plus an element of Un−1A. This implies that UnA is generated as a
module over k in the desired way, because of the corresponding property for
Un−1A, by the induction hypothesis.

Consider the following statement:

the family of products of the form (25.10.2) with (25.10.1)(25.10.3)

and m ≥ 0 is a basis for UA as a module over k.

Lemma 4.5 on p14 of [25] asserts that this is equivalent to the Poincaré–Birkhoff–
Witt theorem. Lemma C on p92 of [14] corresponds to the fact that the theorem
implies (25.10.3).

If m ∈ Z+, then let Mm(I) be the set of m-tuples M = (j1, . . . , jm) of
elements of I that satisfy (25.10.1). We consider M = ∅ to be the unique
element of M0(I), and put

M(I) =

∞∪
m=0

Mm(I).(25.10.4)

If M ∈ Mm(I) for some m ≥ 0, then m is called the length of M , and may be
denoted length(M).

Remember that MI is the set of all multi-indices with respect to I, as in
Section 25.1. If α ∈ MI , then let Mα ∈ M(I) be the m-tuple with m = |α|
obtained by taking the j ∈ I with α(j) ̸= 0 in order and with multiplicity α(j),
so that M0 = ∅. Similarly, if M ∈ Mm(I) for some m ≥ 0, then we can define
αM ∈ MI by taking αM (j) to be the number of coordinates of M equal to j for
each j ∈ I. This defines a one-to-one correspondence between M(I) and MI .

Let Xj , j ∈ I, be a commuting family of indeterminates, with the corre-
sponding polynomial algebra k[{Xj : j ∈ I}], as in Section 25.1. There is
a unique homomorphism from A into k[{Xj : j ∈ I}], as modules over k,
that sends xj ∈ A to Xj for every j ∈ I. Using this module homomorphism,
k[{Xj : j ∈ I}] satisfies the requirements of a symmetric algebra of A, as in
Section 25.8. Of course, the collection of monomials Xα, α ∈ MI , is a basis for
k[{Xj : j ∈ I}] as a module over k.

If M = (j1, . . . , jn) ∈ Mn(I) for some n ≥ 0, then put

xM = iUA(xj1) · · · iUA(xjn),(25.10.5)

which is interpreted as being eUA when M = ∅, as before. This is an element of
UnA, and we let xM be its image in grn UA under the corresponding quotient
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mapping. Using k[{Xj : j ∈ I}] as the symmetric algebra of A, the mapping ρ
from SA onto grUA defined in the previous section corresponds exactly to the
module homomorphism from k[{Xj : j ∈ I}] into grUA with

Xα 7→ xMα(25.10.6)

for every α ∈ MI .
The Poincaré–Birkhoff–Witt theorem is equivalent to the statement that ρ is

injective, because we already know that it is a surjective algebra homomorphism.
The injectivity of ρ is equivalent to saying that if n ≥ 0, cM ∈ k for every
M ∈ Mn(I), and ∑

M∈Mn(I)

cM xM = 0(25.10.7)

in grn UA, then cM = 0 for every M ∈ Mn(I). This holds trivially when n = 0,
and so we may as well take n ≥ 1. Note that (25.10.7) is the same as saying
that ∑

M∈Mn(I)

cM xM ≡ 0 modulo Un−1A(25.10.8)

in UnA when n ≥ 1. This means that there are cM ∈ k for M ∈ M(I) with
length(M) ≤ n− 1 such that∑

M∈Mn(I)

cM xM =
∑

M∈M(I)
length(M)<n

cMxM(25.10.9)

in UnA, because Un−1A is generated as a module over k by the xM with M in
M(I) and length(M) ≤ n− 1, as before.

Of course, (25.10.3) is the same as saying that the family of xM , M ∈ M(I),
is a basis for UA as a module over k. If this holds, then (25.10.9) implies that
cM = 0 for every M ∈ M(I) with length(M) ≤ n, and in particular when
length(M) = n, as desired. Conversely, if ρ is injective, then (25.10.9) implies
that cM = 0 for every M ∈ M(I) with length(M) = n, as in the preceding
paragraph. In this case, one can repeat the process to get that cM = 0 for
every M ∈ M(I) with length(M) ≤ n. This implies that the family of xM ,
M ∈ M(I) is a basis for UA as a module over k, because UA is generated by
the xM ’s, M ∈ M(I), as a module over k.

25.11 The rest of the proof

Let us continue with the same notation and hypotheses as in the previous two
sections. In order to prove the Poincaré–Birkhoff–Witt theorem, we take ⪯ to
be a well-ordering on I. Let V be a free module over k with a basis consisting
of elements ZM for each M ∈ M(I), as on p14 of [25]. As a module over k, V
is isomorphic to k[{Xj : j ∈ I}], which is a symmetric algebra of A, and the
argument on p93 of [14] uses this.
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If j ∈ I and M = (j1, . . . , jn) ∈ M(I), then we put j ⪯ M when j ⪯ j1. In
this case, we put

j M = (j, j1, . . . , jn),(25.11.1)

which is an element ofM(I) too. IfM = ∅, then j ⪯M is interpreted as holding
automatically, and j M has only the one coordinate j. The main lemma on p14
of [25] states that V can be made a module over A, as a Lie algebra over k, in
such a way that

xj · ZM = Zj M(25.11.2)

for every j ∈ I and M ∈ M(I) with j ⪯ M . This corresponds to Lemma B on
p94 of [14], part (a) in particular.

We first want to define (x, v) 7→ x · v as a bilinear mapping from A× V into
V . To do this, it suffices to define xj · ZM as an element of V for every j ∈ I
and M ∈ M(I). More precisely, we want to do this in such a way that

xj · ZM is a finite linear combination of ZL’s with coefficients(25.11.3)

in k, L ∈ M(I), and length(L) ≤ length(M) + 1.

Note that (25.11.2) has this property.
Let j ∈ I and M ∈ M(I) be given. Suppose that xj0 · ZN ∈ V has already

been defined and satisfies (25.11.3) for j0 ∈ I and N ∈ M(I) such that either

length(N) < length(M),(25.11.4)

or
length(N) = length(M), j0 ⪯ j, and j0 ̸= j.(25.11.5)

If j ⪯ M , then xj · ZM can be defined as in (25.11.2). Otherwise, there are
j1 ∈ I and N ∈ M(I) such that

j1 ⪯ N , M = j1N , j1 ⪯ j, and j1 ̸= j.(25.11.6)

In this case, we would like to define xj · ZM ∈ V by

xj · ZM = xj1 · (xj · ZN ) + ([xj , xj1 ]A) · ZN .(25.11.7)

It is easy to see that the right side is defined as an element of V under these
conditions, and that it satisfies (25.11.3) as well. One can use this to define
xj · ZM for every j ∈ I and M ∈ M(I), because I is well ordered by ⪯.

In order to show that V is a module over A as a Lie algebra over k, we need
to check that

x · (y · v)− y · (x · v) = ([x, y]A) · v(25.11.8)

for every x, y ∈ A and v ∈ V . To do this, it suffices to verify that

xj · (xl · ZN )− xl · (xj · ZN ) = ([xj , xl]A) · ZN(25.11.9)

for every j, l ∈ I and N ∈ M(I). Arguing by induction on length(N) and
min(j, l) as on p15 of [25], we may suppose that

xj0 · (xl0 · ZN0
)− xl0 · (xj0 · ZN0

) = ([xj0 , xl0 ]A) · ZN0
(25.11.10)
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holds for every j0, l0 ∈ I and N0 ∈ M(I) such that either

lengthN0 < lengthN(25.11.11)

or

length(N0) = length(N), min(j0, l0) ⪯ min(j, l),(25.11.12)

and min(j0, l0) ̸= min(j, l).

We may as well suppose that

l ⪯ j and l ̸= j,(25.11.13)

because both sides of (25.11.9) are antisymmetric in j and l, and are equal to
0 when j = l. Suppose first that l ⪯ N , so that xl · ZN = Zl N . Thus (25.11.7)
holds with M = l N and j1 = l. This implies (25.11.9), as desired.

Otherwise, there are r ∈ I and L ∈ M(I) such that

r ⪯ L, N = r L, r ⪯ l, and r ̸= l.(25.11.14)

This means that ZN = Zr L = xr · Zl, as in (25.11.2). In this case, (25.11.9) is
the same as saying that

xj · (xl · (xr · ZL))− xl · (xj · (xr · ZL)) = ([xj , xl]A) · (xr · ZL).(25.11.15)

Consider the analogous equations

xl · (xr · (xj · ZL))− xr · (xl · (xj · ZL)) = ([xl, xr]A) · (xj · ZL)(25.11.16)

and

xr · (xj · (xl · ZL))− xj · (xr · (xl ZL)) = ([xr, xj ]A) · (xl ZL),(25.11.17)

where the indices j, l, and r have been cyclically permuted. These two equa-
tions hold by induction, because min(l, r) = min(r, j) = r is strictly less than
min(j, l) = l. This also uses the fact that xj · ZL and xl · ZL can be expressed
as finite linear combinations of ZN0 ’s with N0 ∈ M(I) and

length(N0) ≤ length(L) + 1 = length(N),(25.11.18)

as in (25.11.3).
If x, y ∈ A, then

x · (y · ZL)− y · (x · ZL) = ([x, y]A) · ZL,(25.11.19)

by induction, because

lengthL = length(N)− 1 < length(N).(25.11.20)
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This implies that

([xj , xl]A) · (xr · ZL) = xr · ([xj , xl]A · ZL) + ([[xj , xl]A, xr]A) · ZL
= xr · (xj · (xl · ZL))− xr · (xl · (xj · ZL))(25.11.21)

+([[xj , xl]A, xr]A) · ZL,

using (25.11.19) in both steps. The left side of (25.11.21) is the same as the
right side of (25.11.15), so that (25.11.15) is equivalent to

xj · (xl · (xr · ZL))− xl · (xj · (xr · ZL))(25.11.22)

= xr · (xj · (xl · ZL))− xr · (xl · (xj · ZL))
+([[xj , xl]A, xr]A) · ZL.

Similarly, (25.11.16) and (25.11.17) imply that the equations analogous to
(25.11.22) but with the indices j, l, and r permuted cyclically hold. Consider
the equation obtained by adding the left and right sides of the three equations
corresponding to (25.11.22) and the two analogous equations for (25.11.16) and
(25.11.17). The terms on the left side of the new equation all cancel with terms
on the right side of the new equation. There are also three terms on the right
side of the new equation that correspond to the last term on the right side of
(25.11.22), and the two analogous terms with the indices permuted cyclically.
The sum of these three terms is equal to 0, by the Jacobi identity.

This means that the new equation holds automatically. Because the two
equations analogous to (25.11.22) with the indices permuted cyclically hold,
we get that (25.11.22) holds as well. It follows that (25.11.15) holds, so that
(25.11.9) holds, as desired. This shows that V is a module over A as a Lie
algebra over k.

We may consider V as a left module over UA too, as an associative algebra
over k, as in Section 25.6. If M ∈ M(I), then xM ∈ UA can be defined as in
(25.10.5). One can check that

xM · Z∅ = ZM ,(25.11.23)

using (25.11.2) and induction on the length of M . In particular, if M = ∅, then
xM is interpreted as being eUA, which acts on V by the identity mapping.

Suppose that cM is an element of k for every M ∈ M(I), with cM = 0 for
all but finitely many M , and ∑

M∈M(I)

cM xM = 0(25.11.24)

in UA. This implies that∑
M∈M(I)

cM ZM =
∑

M∈M(I)

cM xM · Z∅ = 0(25.11.25)

in V . It follows that cM = 0 for every M ∈ M(I), because the ZM ’s form
a basis for V as a free module over k, by construction. This means that the
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family of xM , M ∈ M(I), is a basis for UA as a module over k, because UA
is generated by the xM ’s as a module over k, as in the previous section. This
completes the proof of the Poincaré–Birkhoff–Witt theorem, as before.

25.12 Some corollaries

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Also let UA be a universal enveloping algebra
of A, with multiplicative identity element e = eUA and Lie algebra homomor-
phism i = iUA from A into UA. Remember that the submodule UnA of UA,
as a module over k, is defined for nonnegative integers n as in Section 25.9. In
particular, U0A consists of multiples of e by elements of k, and U1A consists of
sums of elements of U0A and i(A).

More precisely, U1A corresponds to the direct sum of U0A and i(A), as a
module over k, as indicated on p13 of [25]. This can be seen using the natu-
ral algebra homomorphism from UA onto k mentioned in Section 25.6. This
implies that the restriction of the quotient mapping from U1A onto gr1 UA =
(U1A)/(U0A) to i(A) is a one-to-one mapping from i(A) onto gr1 UA.

If A is free as a module over k, then the Poincaré–Birkhoff–Witt theorem
implies that i is an injective mapping from A into UA. This is Corollary 1 on
p16 of [25], which corresponds to Corollary B on p92 of [14].

Let A0 be a Lie subalgebra of A, and let UA0 be a universal enveloping
algebra of A0, with multiplicative identity element e0 = eUA0

and Lie algebra
homomorphism i0 = iUA0 from A0 into UA0. As in Section 25.6, the restriction
ϕ0 of i to A0 is a Lie algebra homomorphism from A0 into UA, which leads to a
unique algebra homomorphism ϕ0 from UA0 into UA such that ψ0(e0) = e and
ψ0 ◦ i0 = ϕ0. Suppose that A0 is free as a module over k, with basis {xj}j∈I0
for some nonempty set I0. Suppose also that A is free as a module over k, and
that {xj}j∈I0 can be extended to a basis {xj}j∈I of A, with I0 ⊆ I. Let ⪯ be a
linear ordering on I, with j0 ⪯ l for every j0 ∈ I0 and l ∈ I \I0. Thus M(I) and
xM ∈ UA,M ∈ M(I), can be defined as in Section 25.10, and the family of xM ,
M ∈ I, is a basis for UA, as a module over k, by the Poincaré–Birkhoff–Witt
theorem. This implies that ψ0 is an injective mapping from UA0 into UA, and
more precisely that UA may be considered as a free module over UA0, using
xM with M ∈ M(I \ I0). This corresponds to Corollary D on p92 of [14].

Let A1 and A2 be Lie subalgebras of A, and let UA1, UA2 be universal
enveloping algebras of A1, A2, respectively, with multiplicative identity elements
ej = eUAj

and Lie algebra homomorphisms ij = iUAj
from Aj into UAj for

j = 1, 2. As before, the restriction ϕj of i to Aj is a Lie algebra homomorphism
from Aj into UA for j = 1, 2, which leads to a unique algebra homomorphism
ψj from UAj into UA such that ψj(ej) = e and ψj ◦ ij = ϕj . Observe that

(w1, w2) 7→ ψ1(w1)ψ2(w2)(25.12.1)

is a bilinear mapping from (UA1)× (UA2) into UA. Using this, we get a unique



552 CHAPTER 25. UNIVERSAL ENVELOPING ALGEBRAS

linear mapping from (UA1)
⊗

(UA2) into UA with

w1 ⊗ w2 7→ ψ1(w1)ψ2(w2)(25.12.2)

for every w1 ∈ UA1 and w2 ∈ UA2.
Suppose that A corresponds to the direct sum of A1 and A2, as a module

over k, and that A1 and A2 are free as modules over k. Let {xj}j∈I1 and
{xj}j∈I2 be bases for A1 and A2, respectively, where I1 ∩ I2 = ∅. Of course, A
is a free module over k as well, with basis {xj}j∈I , where I = I1 ∪ I2. Let ⪯ be
a linear ordering on I, with j1 ⪯ j2 for every j1 ∈ I1 and j2 ∈ I2. Note that the
restrictions of ⪯ to I1 and I2 define linear orderings on those sets.

Let M(I) and xM ∈ UA, M ∈ M(I), be as in Section 25.10, so that the
family of xM ,M ∈ M(I), is a basis for UA, as a module over k, by the Poincaré–
Birkhoff–Witt theorem. Of course, we get analogous bases for UA1 and UA2, as
modules over k, indexed byM(I1) andM(I2), respectively. This leads to a basis
for (UA1)

⊗
(UA2), as a module over k, indexed byM(I1)×M(I2). Elements of

M(I1) and M(I2) can be combined to get elements of M(I), and every element
of M(I) can be obtained by combining unique elements of M(I1) and M(I2)
in this way. This defines a one-to-one correspondence between M(I1)×M(I2)
and M(I).

The linear mapping from (UA1)
⊗

(UA2) into UA determined by (25.12.2)
defines a one-to-one correspondence between the bases for (UA1)

⊗
(UA2) and

UA, as modules over k, defined in the preceding paragraph. In particular, this
linear mapping is an isomorphism between (UA1)

⊗
(UA2) and UA, as modules

over k, as in Corollary 2 on p16 of [25].
In this case, we also have an induced isomorphism from (grUA1)

⊗
(grUA2)

onto grUA, as on p16 of [25]. More precisely, remember that grUA is isomorphic
to SA, as in the Poincaré–Birkhoff–Witt theorem, and similarly grUA1, grUA2

are isomorphic to SA1, SA2, respectively. The corresponding isomorphism from
(SA1)

⊗
(SA2) onto SA can be seen in terms of bases here, or as in Section 25.7.

25.13 Some related filtrations

Let us look a bit more at the filtrations associated to the type of situation
mentioned at the end of the previous section. Let k be a commutative ring with
a multiplicative identity element again, let (A, [·, ·]A) be a Lie algebra over k,
and let A1, A2 be Lie subalgebras of A. Also let UA, UA1, and UA2 be universal
enveloping algebras of A, A1, and A2, respectively, with multiplicative identity
elements e = eUA, e1 = eUA1

and e2 = eUA2
, and Lie algebra homomorphisms

i = iUA, i1 = iUA1
, and i2 = iUA2

from A, A1, and A2 into UA, UA1, and UA2,
respectively. If n is a nonnegative integer, then the corresponding submodules
UnA, UnA1, and UnA2 of UA, UA1, and UA2, respectively, can be defined as
in Section 25.9.

The restriction ϕj of i to Aj is a Lie algebra homomorphism from Aj into
UA for j = 1, 2, which leads to a unique algebra homomorphism ψj from UAj
into UA such that ψj(ej) = e and ψj ◦ i = ϕj , as before. Using this, we get a
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bilinear mapping from (UA1) × (UA2) into UA as in (25.12.1), which leads to
a unique linear mapping from (UA1)

⊗
(UA2) into UA that satisfies (25.12.2).

If w1 ∈ Un1
A1 and w2 ∈ Un2

A2 for some n1, n2 ≥ 0, then it is easy to see that

ψ1(w1)ψ2(w2) ∈ Un1+n2
A.(25.13.1)

Let n be a nonnegative integer, and let ((UA1)
⊗

(UA2))n be the submodule of
(UA1)

⊗
(UA2), as a module over k, generated by elements of the form w1⊗w2,

with w1 ∈ Un1
A1, w2 ∈ Un2

A2, and n1+n2 ≤ n. Thus the linear mapping from
(UA1)

⊗
(UA2) into UA mentioned before maps ((UA1)

⊗
(UA2))n into UnA

for every n ≥ 0, by (25.13.1).
Observe that

((UA1)
⊗

(UA2))n ⊆ ((UA1)
⊗

(UA2))n+1(25.13.2)

for every n ≥ 0, and that
∪∞
n=0((UA1)

⊗
(UA2))n = (UA1)

⊗
(UA2). Remem-

ber that grnUA is defined as in Section 25.9 for each nonnegative integer n, and
similarly for grn UA1, grn UA2. Put

grn((UA1)
⊗

(UA2)) = ((UA1)
⊗

(UA2))n/((UA1)
⊗

(UA2))n−1(25.13.3)

for each positive integer n, where the quotient is defined as a module over
k, and gr0((UA1)

⊗
(UA2))0 = ((UA1)

⊗
(UA2))0. Using the linear mapping

from (UA1)
⊗

(UA2) into UA mentioned in the preceding paragraph, we get
an induced linear mapping from grn((UA1)

⊗
(UA2))n into grn UA for every

n ≥ 0. If we put

gr((UA1)
⊗

(UA2)) =

∞⊕
n=0

grn((UA1)
⊗

(UA2)),(25.13.4)

then we get a homomorphism from gr((UA1)
⊗

(UA2)) into grUA, as modules
over k.

Of course,
(w1, w2) 7→ w1 ⊗ w2(25.13.5)

defines a bilinear mapping from (UA1)×(UA2) into ((UA1)
⊗

(UA2)). If n1, n2
are nonnegative integers, then this bilinear mapping sends (Un1

A1) × (Un2
A2)

into ((UA1)
⊗

(UA2))n1+n2
. This leads to a bilinear mapping

from (grn1
UA1)× (grn2

UA2) into grn1+n2
((UA1)

⊗
(UA2)).(25.13.6)

Using this, we get a bilinear mapping

from (grUA1)× (grUA2) into gr((UA1)
⊗

(UA2)).(25.13.7)

This leads to a linear mapping

from (grUA1)
⊗

(grUA2) into gr((UA1)
⊗

(UA2)).(25.13.8)
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More precisely, if n is a nonnegative integer, then then grn((UA1)
⊗

(UA2)) is
generated, as a module over k, by the images of (grn1

UA1)× (grn2
UA2), with

n1 + n2 = n. This means that

(grUA1)
⊗

(grUA2) maps onto gr((UA1)
⊗

(UA2)),(25.13.9)

under the mapping just mentioned.

Suppose that A1 and A2 are free as modules over k, with bases {xj}j∈I1 and
{xj}j∈I2 , respectively. Suppose that I1 and I2 are also linearly ordered, so that
M(I1), M(I2) can be defined as in Section 25.10. Using the Poincaré–Birkhoff–
Witt theorem, we get bases for UA1 and UA2, as modules over k, indexed
by M(I1) and M(I2), respectively. In particular, the mapping indicated in
(25.13.8) is an isomorphism between modules over k in this situation. Using
these bases for UA1 and UA2, we get a basis for (UA1)

⊗
(UA2) as well, as a

module over k.

Suppose that A corresponds to the direct sum of A1 and A2, as a module over
k. Thus A is free as a module over k too, with basis {xj}j∈I , where I = I1 ∪ I2,
and I1 ∩ I2 = ∅. Let ⪯ be a linear ordering on I, with j1 ⪯ j2 for every j1 ∈ I1
and j2 ∈ I2, and let us take I1 and I2 to be linearly ordered by the restrictions
of ⪯ to the subsets of I. Using the Poincaré–Birkhoff–Witt theorem again, we
get a basis for UA, as a module over k, indexed by the corresponding set M(I).
As in the previous section, the linear mapping from (UA1)

⊗
(UA2) into UA

determined by (25.12.2) is an isomorphism between these spaces, as modules
over k, because it defines a one-to-one correspondence between their bases.

Similarly, the homomorphism from gr((UA1)
⊗

(UA2)) into grUA, as mod-
ules over k, mentioned earlier is an isomorphism under these conditions. This
can be composed with the isomorphism indicated in (25.13.8), to get an isomor-
phism from (grUA1)

⊗
(grUA2) onto grUA, as modules over k, under these

conditions.

25.14 The diagonal mapping

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Also let UA be a universal enveloping algebra
of A, with multiplicative identity element e = eUA and Lie algebra homomor-
phism i = iUA from A into UA, as before. Of course, A×A may be considered
as a Lie algebra over k too, where addition, scalar multiplication, and the Lie
bracket are defined coordinatewise. Note that A1 = A× {0} and A2 = {0} ×A
are Lie subalgebras of A × A, and that A × A corresponds to the direct sum
of A1 and A2, as a Lie algebra over k. We may consider UA to be a universal
enveloping algebra of A1 and A2, using the obvious isomorphisms a 7→ (a, 0)
and a 7→ (0, a) from A onto A1 and A2, respectively.

If a1, a2 ∈ A, then put

ρ((a1, a2)) = i(a1)⊗ e+ e⊗ i(a2),(25.14.1)
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which defines a mapping from A× A into (UA)
⊗

(UA). More precisely, ρ is a
Lie algebra homomorphism from A × A into (UA)

⊗
(UA), as in Section 25.7.

This leads to an algebra homomorphism θ from a universal enveloping algebra
of A×A into (UA)

⊗
(UA), which is an algebra isomorphism in this situation,

as before. One can use this to consider (UA)
⊗

(UA) as a universal enveloping
algebra of A×A.

Clearly a 7→ (a, a) is a Lie algebra homomorphism from A into A × A. We
can compose this with ρ to get a Lie algebra homomorphism

a 7→ i(a)⊗ e+ e⊗ i(a)(25.14.2)

from A into (UA)
⊗

(UA). This leads to a unique algebra homomorphism ∆
from UA into (UA)

⊗
(UA), where ∆(e) = e ⊗ e and ∆ ◦ i is the same as

(25.14.2). This is called the diagonal map, as in Definition 5.1 and Proposition
5.2 on p16 of [25].

An element α of UA is said to be primitive if

∆(α) = α⊗ e+ e⊗ α,(25.14.3)

as in Definition 5.3 on p17 of [25]. Every element of i(A) is primitive, as in the
preceding paragraph.

If t ∈ k and n ∈ Z+, then n · t denotes the sum of n t’s in k, as usual.
Suppose that k is torsion-free, so that n · t = 0 implies t = 0. If A is free as a
module over k, then Theorem 5.4 on p17 of [25] states that the only primitive
elements of UA are in i(A).

Suppose first that A is commutative as a Lie algebra over k, as in [25]. Let
{xj}j∈I be a basis for A, as a module over k, and let Xj , j ∈ I, be a commuting
family of indeterminates. There is a unique module homomorphism from A into
the polynomial algebra k[{Xj : j ∈ I}] that sends xj to Xj for every j ∈ I.
Using this, k[{Xj : j ∈ I}] may be considered as a symmetric algebra of A, as in
Section 25.8. This means that k[{Xj : j ∈ I}] is a universal enveloping algebra
of A in this case.

Let X ′
j and X

′′
j be additional indeterminates for each j ∈ I, which commute

with each other and with X ′
l , X

′′
l , l ∈ I. The tensor product of k[{Xj : j ∈ I}]

with itself can be identified with the polynomial algebra

k[{X ′
j , X

′′
j : j ∈ I}],(25.14.4)

where X ′
j corresponds to Xj⊗1 and X ′′

j corresponds to 1⊗Xj for every j ∈ I. In
this situation, ∆ corresponds to the mapping from k[{Xj : j ∈ I}] to (25.14.4)
that sends a formal polynomial f(X) in the Xj ’s to the formal polynomial
f(X ′ + X ′′) in the X ′

j ’s and X ′′
j ’s, which replaces Xj with X ′

j + X ′′
j for every

j ∈ I. The primitive elements correspond to f(X) ∈ k[{Xj : j ∈ I}] such that

f(X ′ +X ′′) = f(X ′) + f(X ′′).(25.14.5)

If f(X) is homogeneous of degree n for some nonnegative integer n, then this
would imply that

2n · f(X) = f(X +X) = f(X) + f(X) = 2 · f(X),(25.14.6)
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which is to say that (2n − 2) · f(X) = 0. If n ̸= 1, then this implies that
f(X) = 0, because k is torsion-free, by hypothesis. Otherwise, one can apply
this argument to the homogeneous components of f(X), which satisfy the same
condition.

Let us now consider the case where A is not necessarily commutative as a
Lie algebra over k, as in [25] again. Remember that a 7→ (a, a) is a Lie algebra
homomorphism from A into A×A. If U(A×A) is a universal enveloping algebra
of A×A, then we can compose the previous Lie algebra homomorphism from A
into A×A with the usual Lie algebra homomorphism from A×A into U(A×A)
to get a Lie algebra homomorphism from A into U(A×A). This leads to a unique
algebra homomorphism from UA into U(A×A), with the usual properties. It is
easy to see that ∆ is the same as the composition of this homomorphism with
the algebra isomorphism θ from U(A×A) onto (UA)× (UA) mentioned earlier.

The algebra homomorphism from UA into U(A×A) mentioned in the preced-
ing paragraph induces an algebra homomorphism from grUA into grU(A×A).
We also have that θ induces an algebra isomorphism from grU(A × A) onto
(grUA)

⊗
(grUA), as in the previous sections. Using this, ∆ induces an alge-

bra homomorphism gr∆ from grUA into (grUA)
⊗

(grUA). Remember that
grUA is isomorphic to SA, by the Poincaré–Birkhoff–Witt theorem. Thus gr∆
corresponds to an algebra homomorphism from SA into (SA)

⊗
(SA).

Of course, SA is the same as a universal enveloping algebra of A as a
commutative Lie algebra over k. The algebra homomorphism from SA into
(SA)

⊗
(SA) mentioned in the preceding paragraph corresponds exactly to the

one considered in the first case. This can be seen by considering elements of
gr1 UA that come from elements of A in the usual way.

Let x be a primitive element of UA, and suppose that x ∈ UnA for some
n ≥ 0. This implies the analogous condition for the image of x in grn UA with
respect to gr∆. If n > 1, then it follows that the image of x in grn UA is equal
to 0, as in the first case. This means that x ∈ Un−1A, and we can repeat the
process to get that x ∈ U1A.

Thus x = t e+ i(a) for some t ∈ k and a ∈ A, which implies that

∆(x) = t (e⊗ e) + i(a)⊗ e+ e⊗ i(a).(25.14.7)

Observe that

x⊗ e+ e⊗ x = t (e⊗ e) + i(a)⊗ e+ t (e⊗ e) + e⊗ i(a).(25.14.8)

The hypothesis that x be primitive means that (25.14.7) and (25.14.8) are the
same, so that t = 0. This shows that x = i(a) ∈ i(A), as desired.

25.15 More on primitive elements

Let us return to the situation considered at the beginning of the previous section.
Thus we let k be a commutative ring with a multiplicative identity element
again, and (A, [·, ·]A) be a Lie algebra over k. Also let UA be a universal
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enveloping algebra of A, with multiplicative identity element e = eUA and Lie
algebra homomorphism i = iUA from A into UA. Remember that the diagonal
map ∆ is an algebra homomorphism from UA into (UA)

⊗
(UA).

Let PUA be the set of primitive elements of UA. It is easy to see that PUA
is a submodule of UA, as a module over k. Execise 1 on p17 of [25] asks one to
show that if x, y ∈ PUA, then [x, y] = x y − y x ∈ PUA. This means that

∆([x, y]) = ([x, y])⊗ e+ e⊗ ([x, y]).(25.15.1)

Of course, ∆([x, y]) = [∆(x),∆(y)], because ∆ is an algebra homomorphism. It
follows that

∆([x, y]) = [x⊗ e+ e⊗ x, y ⊗ e+ e⊗ y],(25.15.2)

because x, y are primitive by hypothesis. It is easy to obtain (25.15.1) from
(25.15.2), because of the way multiplication is defined in (UA) ⊗ (UA), as in
Section 25.2.

Of course, we may as well suppose that k ̸= {0}, so that 1 ̸= 0 in k. Let us
suppose from now on in this section that there is a prime number p such that
p ·1 = 0 in k, as in Exercise 2 on p17 of [25]. Of course, this means that p · t = 0
for every t ∈ k.

Let n be a positive integer that is not a multiple of p, so that there is a
positive integer m such that mn− 1 is a multiple of p. If t ∈ k, then

m · (n · t) = (mn) · t = t.(25.15.3)

In particular, if n · t = 0, then t = 0.
If y ∈ PUA, then part (a) of Exercise 2 on p17 of [25] asks us to show that

yp ∈ PUA.(25.15.4)

Observe that
∆(yp) = (∆(y))p = (y ⊗ e+ e⊗ y)p,(25.15.5)

because ∆ is an algebra homomorphism. The right side can be expanded into
a sum, using the binomial theorem, because y ⊗ e commutes with e ⊗ y in
(UA)

⊗
(UA). It is well known and easy to see that the binomial coefficient

(
p
j

)
is a multiple of p when j = 1, . . . , p− 1. It follows that

∆(yp) = (y ⊗ e)p + (e⊗ y)p = yp ⊗ e+ e⊗ yp,(25.15.6)

as desired.
Let us suppose for the rest of the section that A is free as a module over k,

and let {xj}j∈I be a basis for A, as a module over k. If j ∈ I, then i(xj) ∈ PUA,
as in the previous section. This implies that

i(xj)
pν ∈ PUA(25.15.7)

for every positive integer ν, by (25.15.4). Part (b) of Exercise 2 on p17 of [25]
asks us to show that the family of elements of PUA of the form

i(xj)
pν , with j ∈ I and ν ∈ Z+ ∪ {0},(25.15.8)
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is a basis for PUA, as a module over k. It suffices to show that every element of
PUA can be expressed as a finite linear combination of these elements, because
of the Poincaré–Birkhoff–Witt theorem.

Suppose first that A is commutative as a Lie algebra over k, as in the previous
section, and let Xj , j ∈ I, be a commuting family of indeterminates again. As
before, the polynomial algebra k[{Xj : j ∈ I}] may be considered as a symmetric
algebra of A, using the unique module homomorphism from A into this algebra
that sends xj to Xj for every j ∈ I. This is the same as a universal enveloping
algebra of A in this case. Let X ′

j and X
′′
j be additional indeterminates for each

j ∈ I again, which commute with each other and X ′
l , X

′′
l , l ∈ I, so that the

tensor product of k[{Xj : j ∈ I}] with itself can be identified with

k[{X ′
j , X

′′
j : j ∈ I}],(25.15.9)

as before. Remember that ∆ corresponds in this situation to the mapping from
k[{Xj : j ∈ I}] to (25.15.9) that sends a formal polynomial f(X) in the Xj ’s to
the formal polynomial f(X ′ +X ′′) in the X ′

j and X
′′
j ’s. The primitive elements

correspond to the formal polynomials f(X) such that

f(X ′ +X ′′) = f(X ′) + f(X ′′),(25.15.10)

as before. In particular, this implies that the constant term in f(X) is equal to
0.

If f(X) satisfies (25.14.5, 2), then we would like to show that f(X) can be

expressed as a finite linear combination of the monomials Xpν

j , with j ∈ I and
ν ∈ Z+ ∪ {0}. We may as well suppose that the linear terms in f(X) are equal
to 0, which would correspond to ν = 0. Under these conditions, one can check
that the formal partial derivative of f(X) in the jth variable is equal to 0 for
every j ∈ I. To see this, consider the sum of the terms in f(X ′ + X ′′) with
exactly one factor of X ′′

j and no factors of X ′′
l when j ̸= l, and any number of

factors of X ′
l for l ∈ I. This sum is equal to the formal partial derivative of

f(X ′) in the jth variable times X ′′
j . This would have to be a scalar multiple

of X ′′
j , by (25.15.10), which would be a term in f(X ′′). In fact, this has to be

equal to 0, because the linear terms in f(X) are supposed to be equal to 0.
If j ∈ I, then f(X) can be identified with a formal polynomial in Xj whose

coefficients are formal polynomials in Xl, j ̸= l. The formal partial derivative of
f(X) in the jth variable corresponds to the usual formal derivative of f(X) as a
formal polynomial in this way. In this situation, the condition that the derivative
be equal to 0 implies that this formal polynomial in Xj can be expressed as a
formal polynomial in Xp

j . This means that f(X) can be expressed as a formal
polynomial in Xp

j , j ∈ I, with coefficients in k. Let us express this formally as

f(X) = g(Xp).(25.15.11)

Using the binomial theorem again, we get that (X ′
j +X

′′
j )
p = (X ′

j)
p+(X ′′

j )
p

for every j ∈ I. This implies that g corresponds to a primitive element in the
polynomial algebra as well. Note that the linear terms in g correspond to terms
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in f(X) of the form Xp
j , j ∈ I. We can subtract the linear terms from g, and

repeat the previous argument. After a finite number of steps, we can express
f(X) as a linear combination of monomials Xpν

j , with j ∈ I, ν ≥ 0, as desired.
If A is not necessarily commutative as a Lie algebra over k, then one can

reduce to the previous case, as in the preceding section. Let x ∈ PUA be given,
and suppose that x ∈ UnA for some n ≥ 0. This implies that the image of x
in grn UA satisfies the analogous primitivity condition with respect to gr∆, as
before. Using the previous case, we can express the image of x in grn UA in the
analogous way. This means that x can be expressed as the sum of a finite linear
combination of elements of PUA of the form (25.15.8) and an element of Un−1A.
This element of Un−1A is primitive as well, because PUA is a submodule of UA,
as a module over k. Thus we can repeat the process, to get that x is a finite
linear combination of elements of PUA of the form (25.15.8), as desired.

If x, y ∈ i(A), then part (c) of Exercise 2 on p17 of [25] asks us to show that

(x+ y)p − xp − yp ∈ i(A).(25.15.12)

Note that xp, yp, (x + y)p ∈ PUA, as in (25.15.7), and because i(A) ⊆ PUA.
This implies that

(x+ y)p − xp − yp ∈ PUA,(25.15.13)

because PAU is a submodule of UA, as a module over k.
We also have that

(x+ y)p − xp − yp ∈ Up−1A.(25.15.14)

More precisely, (x+ y)p − xp − yp ∈ UpA, and (25.15.14) is the same as saying
that its image in grp UA is equal to 0. This can be obtained from the binomial

theorem, because
(
p
l

)
is a multiple of p when l = 1, . . . , p − 1. It is easy to see

that (25.15.12) follows from (25.15.13) and (25.15.14), using the basis (25.15.8)
for PUA.



Chapter 26

Free Lie algebras

26.1 Magmas and their homomorphisms

A magma is a set M together with a mapping from M ×M into M , which may
be expressed as

(x, y) 7→ x y.(26.1.1)

This is Definition 1.1 on p18 of [25]. A mapping ϕ from M into another magma
N is said to be a magma homomorphism if

ϕ(x y) = ϕ(x)ϕ(y)(26.1.2)

for every x, y ∈M .

Let X be a set, and put X1 = X. If n ≥ 2 is an integer, then Xn can
be defined recursively as the disjoint union of Xj × Xl, where j, l ∈ Z+ and
j+ l = n. LetMX be the disjoint union of the Xn’s, n ∈ Z+. There is a natural
binary operation on MX , defined using the embedding of Xj ×Xl into Xj+l for
every j, l ≥ 1, by construction. This makes MX into a magma, which is the
free magma on X, as on p18 of [25]. The elements of MX may be described as
non-associative words on X. If n ∈ Z+, then the elements of Xn are said to
have length n.

If f is any mapping fromX into a magma N , then there is a unique extension
of f to a magma homomorphism F from MX into N . This is Theorem 1.2 on
p18 of [25]. More precisely, if j, l ∈ Z+, x ∈ Xj , and y ∈ Xl, then (x, y) ∈ Xj+l,
and F should satisfy

F ((x, y)) = F (x)F (y).(26.1.3)

This can be used to define F recursively on MX .

Of course, MX is generated by elements of X in the obvious way. Every
element of MX \X can be expressed in a unique way as a product of elements
of Mx, as mentioned on p18 of [25].

560
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26.2 Magmas and algebras

Let k be a commutative (associative) ring with a multiplicative identity element,
and let M be a nonempty magma. We can define an algebra A over k in the
strict sense using M in the usual way, whose elements are formal sums∑

m∈M
cmm(26.2.1)

with cm ∈ k for every m ∈ M , and cm = 0 for all but finitely many m ∈ M .
More precisely, this can be defined as the space of k-valued functions onM with
finite support, and it is convenient to express the elements of A as formal sums
in this way. Of course, A is a module over k with respect to pointwise addition
and scalar multiplication of functions on M , which corresponds to termwise
addition and scalar multiplication of these formal sums. Multiplication on M
extends to a bilinear mapping from A×A into A, which defines multiplication
on A.

Let X be a nonempty set, and let MX be the free magma on X, as in the
previous section. UsingMX , we get an algebra AX(k) = AX over k in the strict
sense, as in the preceding paragraph. This is called the free algebra on X over
k, as in Definition 2.1 on p18 of [25].

Let B be another algebra over k in the strict sense, and let f be a mapping
from X into B. Under these conditions, there is a unique extension of f to an
algebra homomorphism F from AX into B, as in Theorem 2.2 on p19 of [25].
Note that B may be considered as a magma with respect to multiplication.
Thus f can first be extended to a magma homomorphism from MX into B, as
in the previous section. This can be extended to a mapping F from AX into
B that is linear over k. It is easy to see that F is an algebra homomorphism
on AX , because it is a magma homomorphism on MX . The uniqueness of F
follows from the fact that AX is generated by X, as an algebra over k.

Remember that the length of an element of MX is defined as in the previous
section. Let us say that an element

a =
∑

m∈MX

cmm(26.2.2)

of AX is homogeneous of degree n for some positive integer n if cm = 0 for every
m ∈ MX such that the length of m is not equal to n. The set AnX(k) = AnX
of elements of AX that are homogeneous of degree n is a submodule of AX , as
a module over k, and AX corresponds to the direct sum of these submodules,
as a module over k. If a1, a2 ∈ AX are homogeneous of degrees n1, n2 ≥ 1,
respectively, then a1 a2 is homogeneous of degree n1 + n2. Thus AX is graded
as an algebra over k in the strict sense in this way, as mentioned on p19 of [25].

26.3 Constructing free Lie algebras

Let k be a commutative ring with a multiplicative identity element again, and
let X be a nonempty set. Also let AX be the free algebra on X over k, as in the
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previous section. Consider the two-sided ideal IX of AX generated by elements
of the form

a a,(26.3.1)

with a ∈ AX , and

J(a, b, c) = (a b) c+ (b c) a+ (c a) b,(26.3.2)

with a, b, c ∈ AX . Thus an element of IX is a finite sum of elements of AX ,
each of which can be obtained by starting with an element of the form (26.3.1)
or (26.3.2), and multiplying it on the left and right by elements of AX . More
precisely, one can multiply elements of the form (26.3.1) or (26.3.2) by elements
of AX on the left or right by elements of AX repeatedly, and in any order.

Thus the quotient
AX/IX(26.3.3)

is defined as an algebra over k in the strict sense. It is easy to see that (26.3.3)
is a Lie algebra over k, because elements of AX of the form (26.3.1) and (26.3.2)
are mapped to 0 in (26.3.3). More precisely, the Lie bracket on (26.3.3) is the
binary operation that corresponds to multiplication on AX . This is called the
free Lie algebra on X over k, as in Definition 3.1 on p19 of [25]. This may be
denoted LX(k), or LX when the choice of k is clear.

Of course, there is a natural mapping from X into LX , obtained by restrict-
ing the quotient mapping from AX onto LX to X, as a subset of AX . Note that
LX is generated as an algebra over k by the image of X in LX , because AX is
generated as an algebra over k by X, by construction.

Let B be a Lie algebra over k, and let f be a mapping from X into B.
As in the previous section, there is a unique extension of f to an algebra ho-
momorphism F from AX into B. This extension maps elements of AX of the
form (26.3.1) and (26.3.2) to 0 in B, because B is a Lie algebra over k. This
implies that IX is contained in the kernel of F . This leads to an algebra ho-
momorphism from LX into B. By construction, the composition of this algebra
homomorphism with the natural mapping from X into LX is f . This algebra
homomorphism from LX into B is uniquely determined by this property, be-
cause LX is generated as an algebra by the image of X, as in the preceding
paragraph.

This property is essentially used to define free Lie algebras on X on p94f of
[14]. It is easy to see that the free Lie algebra on X is uniquely determined by
this property, up to a unique isomorphism, as on p95 of [14]. The existence of
a free Lie algebra on X is obtained another way on p95 of [14], and we shall
return to this later.

Let Y be another nonempty set, and let LY be the corresponding free algebra
on Y over k. If f is a mapping from X into Y , then we get a mapping from X
into LY , by composing f with the natural mapping from Y into LY . This leads
to a unique Lie algebra homomorphism from LX into LY , whose composition
with the natural mapping from X into LX is the mapping from X into LY
just mentioned, as before. This is one of the properties of free Lie algebras
mentioned on p19 of [25].
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Remember that AX is graded as an algebra over k in the strict sense, as
in the previous section. Let I#

X be the collection of elements of AX whose

homogeneous components are elements of IX . Thus I#
X ⊆ IX automatically,

and we would like to verify that

I#
X = IX ,(26.3.4)

as on p19 of [25]. It suffices to check that IX is generated by homogeneous
elements of AX , as a two-sided ideal in AX .

Let a ∈ AX be given, and let an be the homogeneous component of an for
each positive integer n, so that an = 0 for all but finitely many n ≥ 1, and
a =

∑∞
n=1 an. Observe that

a a =

∞∑
n=1

an an +

∞∑
n=2

n−1∑
l=1

(al an + an al).(26.3.5)

Clearly an an ∈ IX for every n ≥ 1, and

al an + an al = (al + an) (al + an)− al al − an an(26.3.6)

is an element of IX when l < n. This implies that a a can be expressed as a
finite sum of homogeneous elements of IX .

Similarly, let b, c ∈ AX be given, with homogeneous components bn, cn for
every n ≥ 1, respectively. It is easy to see that

J(a, b, c) =

∞∑
j=1

∞∑
l=1

∞∑
n=1

J(aj , bl, cn).(26.3.7)

Thus J(a, b, c) can be expressed as a finite sum of homogeneous elements of IX
too. It follows that (26.3.4) holds, as before.

Let us say that an element of LX is homogeneous of degree n ∈ Z+ if it is the
image of an element of AX that is homogeneous of degree n under the natural
quotient mapping. This makes LX a graded algebra over k as well, because of
(26.3.4), as on p19 of [25].

In particular, 0 is the only element of IX that is homogeneous of degree 1.
Thus the quotient mapping from AX onto LX is injective on the submodule of
AX consisting of elements that are homogeneous of degree 1. This corresponds
to part of the statement at the top of p20 of [25].

26.4 Degree 2 in LX

Let k be a commutative ring with a multiplicative identity element, and let A
be a module over k. Thus A

⊗
A can be defined as a module over k in the usual

way. Let B be the submodule of A
⊗
A generated by elements of A

⊗
A of the

form a ⊗ a, with a ∈ A. Equivalently, B consists of finite linear combinations
of elements of this form, with coefficients in k. In particular, if x, y ∈ A, then

x⊗ y + y ⊗ x = (x+ y)⊗ (x+ y)− x⊗ x− y ⊗ y(26.4.1)
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is an element of B. We can define
∧2

A to be the quotient

(A
⊗

A)/B,(26.4.2)

as a module over k. If x, y ∈ A, then let x ∧ y be the image of x ⊗ y under
the quotient mapping from A

⊗
A onto (26.4.2). By construction, a∧ a = 0 for

every a ∈ A, and x ∧ y = −y ∧ x for every x, y ∈ A.
Consider A × (

∧2
A), as a module over k with respect to coordinatewise

addition and scalar multiplication. Of course, this is the same as the direct sum
of A and

∧2
A, as a module over k. If x, y ∈ A and u, v ∈

∧2
A, then put

[(x, u), (y, v)] = (0, x ∧ y).(26.4.3)

One can check that A × (
∧2

A) is a Lie algebra over k with respect to this
definition of Lie bracket, as on p2 of [25].

Let X be a nonempty set, and let AX be as in Section 26.2. Remember
that AX is a graded as an algebra over k in the strict sense, and let A be the
submodule of A consisting of elements that are homogeneous of degree 1. The
elements of A correspond to formal sums of elements of X with coefficients in
k, where all but finitely many of the coefficients are equal to 0. This can be
identified with the space of all k-valued functions on X with finite support, and
is free as a module over k.

Similarly, the elements of AX that are homogeneous of degree 2 correspond
to formal sums of elements of X×X with coefficients in k, where all but finitely
many of the coefficients are equal to 0. The submodule of AX consisting of
elements that are homogeneous of degree 2 is free as a module over k, and can
be identified with A

⊗
A. The intersection of this submodule with the ideal IX

in AX defined in the previous section corresponds in this way exactly to the
submodule B of A

⊗
A mentioned earlier. Remember that the free Lie algebra

LX on X over k is graded as an algebra over k, as in the previous section. The
submodule of LX consisting of homogeneous elements of degree 2 corresponds
to

∧2
A, as on p20 of [25].

Of course, we can identify A and
∧2

A with submodules of A × (
∧2

A), as
a module over k, in the obvious way. Thus the natural mapping from X into A
can be identified with a mapping from X into A× (

∧2
A). This leads to a Lie

algebra homomorphism from LX into A × (
∧2

A), as in the previous section.
This homomorphism sends homogeneous elements of LX of degree 1 and 2 to
their counterparts in A and

∧2
A, as on p20 of [25]. Homogeneous elements of

LX of larger degree are sent to 0 by this homomorphism.
If a1, a2 ∈ A, then a1, a2 can be identified with homogeneous elements of

LX of degree 1, whose Lie bracket [a1, a2] is homogeneous of degree 2 in LX .

This corresponds to a1 ∧ a2 in
∧2

A, as before. In particular, if x, y ∈ X, then
x, y can be identified with elements of A, and [x, y] defined as a homogeneous
element of LX of degree 2.

Let ⪯ be a linear ordering onX. The collection of elements of LX of the form
[x, y], where x, y ∈ X, x ⪯ y, and x ̸= y, is a basis for the set of homogeneous
elements of LX of degree 2, as a module over k, as on p20 of [25].
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26.5 Free associative algebras

Let k be a commutative ring with a multiplicative identity element, and let
X be a nonempty set. Also let E = EX be the free module over k with the
elements of X as a basis, so that the elements of E can be given as formal sums∑

x∈X
cx x,(26.5.1)

with cx ∈ k for every x ∈ X, and cx = 0 for all but finitely many x ∈ X.
This can be defined as the space of k-valued functions on X with finite support,
which can be expressed as formal sums in this way for convenience. This is a
module over k with respect to termwise addition and scalar multiplication of
formal sums, which corresponds to pointwise addition and scalar multiplication
of functions on X.

The free associative algebra on X over k, AssocX(k) = AssocX , is defined
to be the tensor algebra TE on E, as in Definition 4.1 on p20 of [25]. If f is any
mapping from X into a module A over k, then f has a natural unique extension
to a module homomorphism ϕ from E into A. If A is an associative algebra
over k with a multiplicative identity element e, then there is a unique algebra
homomorphism ψ from TE into A that is equal to ϕ on E = T 1E and sends
1 ∈ k = T 0E to e, as in Section 25.3.

Of course, AssocX may be considered as a Lie algebra over k, using the
commutator bracket corresponding to multiplication on AssocX . The natural
inclusion mapping from X into E = T 1E may be considered as a mapping from
X into AssocX = TE, which leads to a unique Lie algebra homomorphism ϕ
from the free Lie algebra LX on X over k into AssocX , as in Section 26.3. More
precisely,

the composition of ϕ with natural mapping from X into LX(26.5.2)

is the same as the natural mapping from X into AssocX .

Let ULX be a universal enveloping algebra of LX , with corresponding mul-
tiplicative identity element eULX

and mapping iULX
from LX into ULX . The

Lie algebra homomorphism ϕ from LX into AssocX mentioned in the preceding
paragraph leads to a unique algebra homomorphism Φ from ULX into AssocX
such that Φ(eULX

) = 1 ∈ k ∈ T 0E and

Φ ◦ iULX
= ϕ,(26.5.3)

as in Section 25.4.
Similarly,

there is a natural mapping from X into ULX , which is obtained(26.5.4)

by composing the natural mapping from X into LX with iULX
.

This leads to a unique algebra homomorphism Ψ from AssocX into ULX , such
that

the composition of Ψ with the natural mapping from X(26.5.5)
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into AssocX is the same as the mapping in (26.5.4),

and which sends 1 ∈ k = T 0E to eULX
.

Thus Φ ◦Ψ is an algebra homomorphism from AssocX to itself, which sends
1 ∈ k = T 0E to itself. By construction, the composition of Φ ◦ Ψ with the
natural mapping from X into AssocX is that mapping. More precisely, the
composition of Φ◦Ψ with the natural mapping from X into AssocX is the same
as the composition of (26.5.3) with the natural mapping from X into LX . This
is the same as the natural mapping from X into AssocX , as in (26.5.2). It
follows that Φ ◦Ψ is the identity mapping on AssocX .

We also have that Ψ ◦ Φ is an algebra homomorphism from ULX to itself
that sends eULX

to itself. In order to show that Ψ ◦ Φ is the identity mapping
on ULX , it suffices to verify that

(Ψ ◦ Φ) ◦ iULX
= iULX

.(26.5.6)

Observe that
(Ψ ◦ Φ) ◦ iULX

= Ψ ◦ (Φ ◦ iULX
) = Ψ ◦ ϕ,(26.5.7)

by (26.5.3). The composition of this mapping with the natural mapping from
X into LX is the same as the composition of Ψ with the natural mapping
from X into AssocX , by (26.5.2). This is the same as (26.5.4), as in (26.5.5).
This means that the compositions of both sides of (26.5.6) with the natural
mapping from X into LX are the same. Of course, both sides of (26.5.6) are
Lie algebra homomorphisms from LX into ULX . This implies (26.5.6), because
LX is generated as a Lie algebra over k by the image of the natural mapping
from X into LX .

Thus Φ is an algebra isomorphism from ULX onto AssocX , and Ψ is its
inverse. This is the first part of Theorem 4.2 on p20 of [25], which corresponds
to Exercise 4 on p95 of [14].

Note that

ϕ maps LX onto the Lie subalgebra of AssocX generated by(26.5.8)

the image of the natural mapping from X into AssocX ,

because ϕ is a Lie algebra homomorphism from LX into AssocX , and LX is
generated as a Lie algebra over k by the image of the natural mapping from X
into LX . This is the easy part of the second part of Theorem 4.2 on p20 of [25].

26.6 Injectivity and free modules

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Under these conditions, we have that

ϕ is injective as a mapping from LX into AssocX .(26.6.1)

This means that ϕ is a Lie algebra isomorphism from LX onto the Lie subalgebra
of AssocX generated by the image of the natural mapping from X into AssocX ,
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because of (26.5.8). This is the second part of Theorem 4.2 on p20 of [25]. The
Lie subalgebra of AssocX generated by the image of the natural mapping from
X into AssocX is used to construct free Lie algebras on p95 of [14].

Part of the third part of Theorem 4.2 on p20 of [25] states that

LX is free as a module over k.(26.6.2)

Of course, this holds automatically when k is a field. Note that iULX
is injective

as a mapping from LX into ULX when (26.6.2) holds, by the Poincaré–Birkhoff–
Witt theorem. In this case, (26.6.1) follows from (26.5.3) and the fact that Φ is
an isomorphism from ULX onto AssocX , as mentioned on p21 of [25]. Exercise
6 on p95 of [14] asks how the Poincaré–Birkhoff–Witt theorem is used there,
perhaps more precisely in the verification of the requirements of free Lie algebras.

Remember that LX is graded as an algebra over k, as in Section 26.3. If
n ∈ Z+, then let LnX = LnX(k) be the submodule of LX , as a module over k,
consisting of elements of LX that are homogeneous of degree n. The other part
of the third part of Theorem 4.2 on p20 of [25] states that

LnX is free as a module over k for each n ≥ 1.(26.6.3)

This implies (26.6.2), because LX corresponds to the direct sum of LnX , n ≥ 1,
as a module over k. As before, (26.6.3) holds automatically when k is a field.

If X has only finitely many elements, then LnX is finitely generated as a
module over k for each n ≥ 1. More precisely, this follows from the analogous
statement for the free algebra AX on X over k. The fourth part of Theorem 4.2
concerns the rank of LnX , as a free module over k, in this case.

Of course, AssocX = TE is graded as an associative algebra over k, where
TnE corresponds to the submodule of TE of elements that are homogeneous of
degree n ≥ 0. Let AssocnX = AssocnX(k) be the submodule of AssocX = TE,
as a module over k, that corresponds to TnE for each nonnegative integer n.
Similarly, AssocX is graded as a Lie algebra over k in this way, with respect to
the commutator bracket corresponding to multiplication. Let us check that

ϕ(LnX) ⊆ AssocnX(26.6.4)

for every n ≥ 1.
Let f be the natural mapping from X into AssocX , which corresponds to

the natural inclusion mapping of X into E = T 1E. Also let AX be the free
algebra on X over k, and let AnX be the submodule of AX consisting of elements
that are homogeneous of degree n ∈ Z+, as in Section 26.2. There is a unique
extension of f to an algebra homomorphism F from AX into AssocX , considered
as a Lie algebra over k with respect to the commutator bracket corresponding
to multiplication, as before. It is easy to see that

F (AnX) ⊆ AssocnX(26.6.5)

for every n ≥ 1. Remember that LX is a quotient of AX , and that LnX is the
image of AnX under the quotient mapping. By construction, F is the same as
the quotient mapping composed with ϕ. Thus (26.6.4) follows from (26.6.5).
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Suppose that k is a field, and that X has only finitely many elements, as in
the first step on p21 of [25]. Let {γj}j∈I be a homogeneous basis for LX , as a

graded vector space over k. This means that for each j ∈ I, γj ∈ L
n(j)
X for some

n(j) ∈ Z+, and for each n ∈ Z+, the collection of γj with n(j) = n is a basis
for LnX , as a vector space over k. Also let ⪯ be a linear ordering on I.

The Poincaré–Birkhoff–Witt theorem implies that the family of products of
the form

iULX
(γj1) · · · iULX

(γjm),(26.6.6)

where j1, . . . , jm ∈ I satisfy j1 ⪯ · · · ⪯ jm and m is a nonnegative integer, form
a basis for ULX . This implies that the corresponding family of products

ϕ(γj1) · · ·ϕ(γjm)(26.6.7)

is a basis for AssocX as a vector space over k. More precisely, this uses (26.5.3)
and the fact that Φ is an algebra isomorphism from ULX onto AssocX . We

also have that ϕ(γj) ∈ Assoc
n(j)
X for every j ∈ I, by (26.6.4). This means that

(26.6.7) is homogeneous of degree

n(j1) + · · ·+ n(jm)(26.6.8)

in AssocX , which is interpreted as being equal to 0 when m = 0.
This can be used to express the dimension of AssocnX in terms of the dimen-

sions of LrX with r ≤ n, as in [25]. This means that the dimension of LnX can be
expressed in terms of the dimension of AssocnX and the dimensions of LrX with
r < n, as in the remark on p20 of [25]. In particular, the dimension of LnX does
not depend on k.

26.7 Finite sets X, k = Z

Let k be a commutative ring with a multiplicative identity element, and let
X be a nonempty set. Also let MX be the free magma on X, and let AX(k)
be the free algebra on X over k, as in Sections 26.1 and 26.2. Remember that
IX = IX(k) is the two sided ideal in AX(k) generated by elements of the form a a
and J(a, b, c), where a, b, c ∈ AX(k) and J(a, b, c) is as in (26.3.2). Equivalently,
IX(k) is generated as a two-sided ideal in AX(k) by elements of the form

mm,(26.7.1)

with m ∈MX ,

m1m2 +m2m1 = (m1 +m2) (m1 +m2)−m1m1 −m2m2,(26.7.2)

with m1,m2 ∈MX , and
J(m1,m2,m3),(26.7.3)

with m1,m2,m3 ∈MX . This can be seen by expressing a, b, c ∈ AX(k) as linear
combinations of elements of MX with coefficients in k.
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Let us now consider the cases where k is Z or Z/pZ for some prime number
p. There is a natural mapping from AX(Z) onto AX(Z/pZ), defined by apply-
ing the quotient mapping from Z onto Z/pZ to the coefficients of elements of
AX(Z). One can check that this mapping also sends IX(Z) onto IX(Z/pZ).
This leads to a mapping from LX(Z) onto LX(Z/pZ).

More precisely, the mapping from AX(Z) onto AX(Z/pZ) mentioned in
the preceding paragraph sends AnX(Z) onto AnX(Z/pZ) for every n ∈ Z+, where
AnX(k) consists of the elements of AX(k) that are homogeneous of degree n, as in
Section 26.2. Similarly, the induced mapping from LX(Z) onto LX(Z/pZ) sends
LnX(Z) onto LnX(Z/pZ) for every n ∈ Z+, where L

n
X(k) consists of elements of

LX(k) that are homogeneous of degree n, as in Section 26.3.
Of course, p times any element of LX(Z) is mapped to 0 in LX(Z/pZ).

Conversely, one can check that any element of LX(Z) that is mapped to 0 in
LX(Z/pZ) can be expressed as p times an element of LX(Z).

Suppose now thatX has only finitely many elements. Remember that LnX(Z)
is finitely generated as a module over Z for every n ≥ 1 in this case, as in the
previous section, which means that LnX(Z) is finitely generated as a commutative
group. It follows that LnX(Z) is isomorphic to a direct sum of finitely many cyclic
groups for each n ≥ 1.

The dimension of LnX(Z/pZ), as a vector space over Z/pZ, can be deter-
mined as in the previous section, and does not depend on p. Using this, one can
check that LnX(Z) is isomorphic to the direct sum of finitely many infinite cyclic
groups for each n ≥ 1. More precisely, the number of factors is the same as the
common value of the dimension of LnX(Z/pZ) as a vector space over Z/pZ.

In particular, LX(Z) is free as a module over Z for every n ≥ 1, which implies
that LX(Z) is free as a module over Z too. It follows that the mapping ϕ from
LX(Z) into AssocX(Z) defined in Section 26.5 is injective, as in the previous
section. This corresponds to the second step on p22 of [25].

26.8 Arbitrary sets X, k = Z

Let k be a commutative ring with a multiplicative identity element, and let X
be a nonempty set. Also let LX be the free Lie algebra on X over k, let EX
be the free module on X over k, and let AssocX = TEX be the free associative
algebra on X over k, as in Sections 26.3 and 26.5. Remember that the natural
inclusion of X in EX = T 1EX leads to a unique Lie algebra homomorphism
ϕ = ϕX from LX into AssocX , as before.

Let Y be a nonempty subset of X. The free Lie algebra LY on Y over k, the
free module EY on Y over k, and the free associative algebra AssocY = TEY
on Y over k can be defined in the same way as before. Of course, there is a
natural inclusion of EY into EX , which leads to a natural inclusion of AssocY
into AssocX . There is a natural Lie algebra homomorphism from LY into LX
as well, as in Section 26.3.

Let ϕY be the unique Lie algebra homomorphism from LY into AssocY
obtained from the natural inclusion of Y in EY , as in Section 26.5. One can
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check that the composition of the natural Lie algebra homomorphism from LY
into LX with ϕX is the same as the composition of ϕY with the natural inclusion
from AssocY into AssocX .

Suppose now that k = Z. If Y has only finitely many elements, then ϕY is
injective, as in the previous section. This implies that ϕX is injective on the
image of LY in LX under the natural Lie algebra homomorphism.

It is easy to see that every element of LX is in the image of LY for some
nonempty finite subset Y of X. It follows that ϕX is injective as a mapping
from LX into AssocX .

Note that AssocX is free as a module over Z, which is to say as a commutative
group. It is well known that subgroups of free abelian groups are free abelian
groups too.

Using the injectivity of ϕX , we get that LnX is a free abelian group for every
n ≥ 1, and that LX is a free abelian group. Equivalently, these are free as
modules over Z. This corresponds to the third step on p22 of [25].

26.9 Arbitrary X, k

Let k be a commutative ring with a multiplicative identity element, and let X
be a nonempty set. Also letMX be the free magma on X, let AX(k) be the free
algebra on X over k, and let LX(k) be the free Lie algebra on X over k, as in
Sections 26.1, 26.2, and 26.3. Remember that LX(k) is the quotient of AX(k)
by the two-sided ideal IX(k) discussed in Sections 26.3 and 26.7. Of course,
AX(Z), LX(Z), and IX(Z) can be defined in the same way. If n ∈ Z+, then let
LnX(k), LnX(Z) be the subsets of LX(k), LX(Z) consisting of elements that are
homogeneous of degree n, as before.

One can identify LX(k) with the tensor product of LX(Z) with k over Z.
This is stated more broadly on p19 of [25]. Of course, AX(k) corresponds to the
tensor product of AX(Z) with k over Z, because AX(Z) is a free module over Z
with basis MX . We also have that IX(k) is the image of the tensor product of
IX(Z) with k over Z. Similarly, LnX(k) can be identified with the tensor product
of LnX(Z) with k over Z for each n ≥ 1.

Remember that LX(Z) is a free module over Z for every n ≥ 1, and that
LX(Z) is a free module over Z, as in the previous section. It follows that Ln(k)
is a free module over k for every n ≥ 1, and that LX(k) is a free module over k.
This implies that the Lie algebra homomorphism ϕ from LX(k) into AssocX(k)
defined in Section 26.5 is injective, as in Section 26.6. If X has only finitely
many elements, then the rank of LnX(k) as a free module over k is the same as
the rank of LnX(Z) as a free module over Z, which is the same as the dimension
in the case of fields. This corresponds to the fourth step on p22 of [25].
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26.10 Bases from P. Hall families

Let X be a nonempty set, and let MX be the free magma on X, as in Section
26.1. A P. Hall family in MX is a subset H of MX equipped with a linear
ordering ⪯ that satisfies the following three properties. First,

X ⊆ H.(26.10.1)

Second, if u, v ∈ H, then

u ⪯ v when the length of u is strictly less than the length of v.(26.10.2)

Third, suppose that u ∈MX \X, so that u can be expressed in a unique way as

u = v w,(26.10.3)

with v, w ∈ MX . In this case, u ∈ H if and only if v, w satisfy the following
two conditions. The first condition is that

v, w ∈ H, v ⪯ w, v ̸= w.(26.10.4)

The second condition is that either w ∈ X, or

w = w′ w′′, with w′, w′′ ∈ H, w′ ⪯ v.(26.10.5)

This is Definition 5.1 on p22f of [25]. Of course, in (26.10.5), w should satisfy
the requirements of the third property of a P. Hall family as well.

Lemma 5.2 on p23 of [25] states that there is always a P. Hall family in MX .
Remember that for each positive integer n, Xn is the set of elements of MX of
length n, as in Section 26.1. We would like to define Hn ⊆ Xn recursively, which
will be the set of elements in the Hall family that are in Xn. More precisely, we
should also choose a linear ordering on Hn for each n, which leads to a linear
ordering on their union that satisfies (26.10.2). Put H1 = X = X1, which we
can take to be equipped with any linear ordering.

Suppose that H1, . . . , Hn−1 have been chosen for some n ≥ 2, as well as
linear orderings on them. This leads to a linear ordering on their union that
satisfies (26.10.2), as before. Suppose also that their union satisfies the three
properties of a P. Hall family for elements of length less than or equal to n− 1.
Using the third property of a P. Hall family, Hn is uniquely determined as a
subset ofXn. In order to continue the process, we can choose any linear ordering
on Hn. Thus we can repeat the process, to choose Hn and a linear ordering on
it for every n ≥ 1. It is easy to see that H =

∪∞
n=1H

n is a P. Hall family in
MX , as desired.

Let k be a commutative ring with a multiplicative identity element, so that
the free algebra AX(k) on X over k can be defined as in Section 26.2. Let LX(k)
be the corresponding free Lie algebra on X over k, as in Section 26.3. If H is
a P. Hall family in MX , then the elements of H may be considered as elements
of AX(k), which are mapped into LX(k) by the quotient mapping from AX(k)
onto LX(k). Theorem 5.3 on p23 of [25] states that the images of the elements
of H in LX(k) form a basis for LX(k), as a module over k.
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26.11 More on LnX

Let k be a commutative ring with a multiplicative identity element, and let X
be a nonempty set. Thus the free algebra AX on X over k can be defined as in
Section 26.2. Remember that AX is graded as an algebra over k in the strict
sense, and let AnX be the submodule of AX , as a module over k, of elements
that are homogeneous of degree n ∈ Z+, as before. If n1, n2 ∈ Z+, then

An1

X ·An2

X ⊆ An1+n2

X ,(26.11.1)

where the left side is defined as in Section 9.2. If n ≥ 2, then it is easy to
see that every element of AnX can be expressed as a finite sum of elements of
An1

X ·An2

X , where n1 + n2 = n.
Similarly, the free Lie algebra LX on X over k is a graded algebra over k, as

in Section 26.3. Let LnX be the submodule of LX , as a module over k, consisting
of elements that are homogeneous of degree n ∈ Z+, as before. If n1, n2 ∈ Z+,
then

[Ln1

X , L
n2

X ] ⊆ Ln1+n2

X ,(26.11.2)

where the left side is as defined in Section 9.2. If n ≥ 2, then every element of
LnX can be expressed as a finite sum of elements of [Ln1

X , L
n2

X ], where n1+n2 = n.
This follows from the analogous statement for AnX , in the preceding paragraph.

If n ≥ 2, then
[L1
X , L

n−1
X ] = LnX ,(26.11.3)

as in Exercise 2 on p29 of [25]. To see this, let n1, n2 be positive integers with
n1+n2 = n, and let u1 ∈ Ln1

X and u2 ∈ Ln2

X be given. We would like to show that
[u1, u2] ∈ [L1

X , L
n−1
X ], which is obvious when n1 or n2 is equal to 1. Otherwise,

we may as well suppose that n2 ≥ n1 > 1. Thus u1 can be expressed as a finite
sum of terms of the form [u1,1, u1,2], where u1,1 ∈ L

n1,1

X and u1,2 ∈ L
n1,2

X for
some positive integers n1,1 and n1,2 with n1,1 + n1,2 = n1. This means that
[u1, u2] can be expressed as a finite sum of terms of the form

[[u1,1, u1,2], u2] = [[u1,1, u2], u1,2] + [u1,1, [u1,2, u2]].(26.11.4)

The terms on the right side are elements of [L
n1,1+n2

X , L
n1,2

X ] and [L
n1,1

X , L
n1,2+n2

X ],
respectively. Of course, n1,1, n1,2 < n1, and so one can repeat the process as
needed to get that [u1, u2] ∈ [L1

X , L
n−1
X ], as desired. Equivalently, if n ≥ 2, then

LnX is generated, as a module over k, by elements of the form

[x1, [x2, . . . [xn−1, xn] · · ·]],(26.11.5)

where x1, . . . , xn ∈ X.
Let L be any Lie algebra over k, and suppose that L is generated, as a

Lie algebra over k, by a nonempty subset X. Under these conditions, L is
generated as a module over k by the elements of X and elements of the form
(26.11.5), where x1, . . . , xn ∈ X for some n ≥ 2. This could be obtained from
the previous remarks for free Lie algebras, or verified directly using the same
type of arguments.
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Some more Lie algebras

27.1 Generators and relations

Let k be a commutative ring with a mutliplicative identity element, and let X
be a nonempty set. Thus the free Lie algebra LX = LX(k) on X over k may
be defined as in Section 26.3. If E ⊆ LX , then let R(E) be the ideal in LX
generated by E. Equivalently, R(E) consists of finite linear combinations of the
elements of E and other elements of LX obtained by taking brackets of elements
of E with elements of LX any number of times. The quotient LX/R(E) may
be described as the Lie algebra over k generated by the images of the elements
of X in the quotient, and with relations given by condition that the images of
the elements of E in the quotient be equal to 0, as on p95 of [14].

If B is any Lie algebra over k, then any mapping from X into B leads to
a unique Lie algebra homomorphism from LX into B, as before. If this Lie
algebra homomorphism maps the elements of E to 0, then it maps the elements
of R(E) to 0 as well. This leads to an induced Lie algebra homomorphism
from LX/R(E) into B. If B is generated as a Lie algebra over k by the images
of the elements of X, then the Lie algebra homomorphism from LX into B
just mentioned is surjective. Of course, this implies that the corresponding Lie
algebra homomorphism from LX/R(E) into B is surjective as well.

Let V be a vector space over the real numbers of positive finite dimension,
and let Φ be a reduced root system in V . If α ∈ Φ, then let σα be the symmetry
on V with vector α that maps Φ onto itself, as usual. Remember that σα can
be expressed as σα(v) = v − λα(v)α, where λα is a linear functional on V such
that λα(α) = 2. Let (·, ·) be an inner product on V that is invariant under the
Weyl group of Φ. If α ∈ Φ, then σα is the reflection on V with respect to (·, ·)
associated to α, so that λα(v) = 2 (v, α) (α, α)−1 for every v ∈ V . Put

n(α, β) = λβ(α) = 2 (α, β) (β, β)−1(27.1.1)

for every α, β ∈ Φ, as before. Remember that this is an integer, by the definition
of a root system. Let ∆ be a base for Φ, so that the restriction of (27.1.1) to

573
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α, β ∈ ∆ is the Cartan matrix of Φ with respect to ∆. If α, β ∈ ∆ and α ̸= β,
then

−3 ≤ n(α, β) ≤ 0,(27.1.2)

as in Section 20.2. We have also seen that the Cartan matrix is invertible, as in
Section 21.15.

Let k be a field of characteristic 0, and let X∆, Y∆, and H∆ be disjoint sets,
with distinct elements x̂α, ŷα, and ĥα indexed by α ∈ ∆, respectively. Also let
L̂ = L̂(k) be the free Lie algebra on

X∆ ∪ Y∆ ∪H∆(27.1.3)

over k. If α, β ∈ ∆, then put δα,β = 1 when α = β, and equal to 0 when α ̸= β.

Let Ê0 be the subset of L̂ consisting of the following elements, for α, β ∈ ∆:

[ĥα, ĥβ ],(27.1.4)

[x̂α, ŷβ ]− δα,β ĥα,(27.1.5)

[ĥα, x̂β ]− n(β, α) x̂β ,(27.1.6)

[ĥα, ŷβ ] + n(β, α) ŷβ .(27.1.7)

This leads to an ideal R(Ê0) in L̂, as before.
Let

L̃ = L̃(k) = L̂/R(Ê0)(27.1.8)

be the corresponding quotient Lie algebra, and let x̃α, ỹα, and h̃α be the images
of x̂α, ŷα, and ĥα, respectively, under the quotient mapping for each α ∈ ∆.
Note that L̃ is generated by the x̃α’s, ỹα’s, and h̃α’s, α ∈ ∆, as a Lie algebra
over k. If α, β ∈ ∆, then we have that

[h̃α, h̃β ] = 0,(27.1.9)

[x̃α, ỹβ ] = δα,β h̃α,(27.1.10)

[h̃α, x̃β ] = n(β, α) x̃β ,(27.1.11)

[h̃α, ỹβ ] = −n(β, α) ỹβ(27.1.12)

in L̃, by construction. This Lie algebra has been analyzed by Chevalley, Harish-
Chandra, and Jacobson. Here we are largely following the discussion that begins
on p96 of [14].

27.2 A module over L̂

Let us continue with the same notation and hypotheses as in the previous sec-
tion, and let Z∆ be a vector space over k with a basis given by distinct elements
zα, α ∈ ∆. If m is a positive integer, then the mth tensor power TmZ∆ is a
vector space over k, and we can get a basis for TmZ∆ using elements of the form
zα1

⊗· · ·⊗zαm
, where α1, . . . , αm ∈ ∆. Remember that the tensor algebra TZ∆
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is obtained by taking the direct sum of TmZ∆ over all nonnegative integers m,
with T 0Z∆ = k, as in Section 25.3. We would like to make TZ∆ into a module
over L̂ in a certain way, as on p97 of [14]. To do this, we need to define the

action of the generators of L̂ on TZ∆.
Of course, we can get a basis for TZ∆, as a vector space over k, using the

bases for TmZ∆ mentioned in the preceding paragraph for each m ≥ 1, and
1 ∈ k. In order to define the action of the generators of L̂ on TZ∆, it suffices
to define the action on the basis elements of TZ∆. If α ∈ ∆, then we put

ĥα · 1 = 0,(27.2.1)

and

ĥα · (zγ1 ⊗ · · · ⊗ zγm)(27.2.2)

= −(n(γ1, α) + · · ·+ n(γm, α)) (zγ1 ⊗ · · · ⊗ zγm)

for every m ≥ 1 and γ1, . . . , γm ∈ ∆. Similarly, we put

ŷα · 1 = zα,(27.2.3)

and
ŷα · (zγ1 ⊗ · · · ⊗ zγm) = zα ⊗ zγ1 ⊗ · · · ⊗ zγm(27.2.4)

for every m ≥ 1 and γ1, . . . , γm ∈ ∆. We also put

x̂α · 1 = 0,(27.2.5)

and
x̂α · zγ = 0(27.2.6)

for every γ ∈ ∆. If m ≥ 2 and γ1, . . . , γm ∈ ∆, then we put

x̂α · (zγ1 ⊗ · · · ⊗ zγm)(27.2.7)

= zγ1 ⊗ (x̂α · (zγ2 ⊗ · · · ⊗ zγm))

−δγ1,α (n(γ2, α) + · · ·+ n(γm, α)) (zγ2 ⊗ · · · ⊗ zγm).

More precisely, this can be used to define the left side recursively.
Let gl(TZ∆) be the space of linear mappings from TZ∆ into itself, as a Lie

algebra over k with respect to the corresponding commutator bracket, as usual.
If α ∈ ∆, then we get elements of gl(TZ∆) associated to ĥα, ŷα, and x̂α, as in

the previous paragraph. This leads to a Lie algebra homomorphism ϕ̂ from L̂
into gl(TZ∆), so that TZ∆ becomes a module over L̂, as a Lie algebra over k.
We would like to show that

R(Ê0) ⊆ ker ϕ̂,(27.2.8)

where R(Ê0) is as in the previous section. This corresponds to the proposition
on p97 of [14].
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Of course, it suffices to show that

Ê0 ⊆ ker ϕ̂,(27.2.9)

where Ê0 is as in the previous section, because R(Ê0) is the ideal in L̂ generated

by Ê0. If α, β ∈ ∆, then it is easy to see that

ϕ̂([ĥα, ĥβ ]) = [ϕ̂(ĥα), ϕ̂(ĥβ)] = 0,(27.2.10)

which is to say that the actions of ĥα and ĥβ on TZ∆ commute. Note that
the action of ŷα on TZ∆ is the same as multiplication by zα on the left, with
respect to multiplication on the tensor algebra TZ∆.

Let α, β ∈ ∆ be given, and let us check that

ϕ̂([x̂α, ŷβ ]) = [ϕ̂(x̂α), ϕ̂(ŷβ)] = δα,β ϕ̂(ĥα).(27.2.11)

Observe that x̂α · (ŷβ · 1) = x̂α · zβ = 0, so that

x̂α · (ŷβ · 1)− ŷβ · (x̂α · 1) = 0,(27.2.12)

which is the same as δα,β ĥα · 1. If m ≥ 2 and γ2, . . . , γm ∈ ∆, then

x̂α · (ŷβ · (zγ2 ⊗ · · · ⊗ zγm))− ŷβ · (x̂α · (zγ2 ⊗ · · · ⊗ zγm))

= x̂α · (zβ ⊗ zγ2 ⊗ · · · ⊗ zγm)− zβ ⊗ (x̂α · (zγ2 ⊗ · · · ⊗ zγm))(27.2.13)

= −δβ,α (n(γ2, α) + · · ·+ n(γm, α)) (zγ2 ⊗ · · · ⊗ zγm)

= δβ,α ĥα · (zγ2 ⊗ · · · ⊗ zγm).

More precisely, this uses (27.2.7) in the second step. This shows that (27.2.11)
holds.

Similarly, let us verify that

ϕ̂([ĥα, ŷβ ]) = [ϕ̂(ĥα), ϕ̂(ŷβ)] = −n(β, α) ϕ̂(ŷβ).(27.2.14)

Observe that

ĥα · (ŷβ · 1)− ŷβ · (ĥα · 1) = ĥα · zβ
= −n(β, α) zβ = −n(β, α) ŷβ · 1.(27.2.15)

If γ1, . . . , γm ∈ ∆ for some m ≥ 1, then

ĥα · (ŷβ · (zγ1 ⊗ · · · ⊗ zγm))− ŷβ · (ĥα · (zγ1 ⊗ · · · ⊗ zγm))

= ĥα · (zβ ⊗ ·zγ1 ⊗ · · · ⊗ zγm)− zβ ⊗ (ĥα · (zγ1 ⊗ · · · ⊗ zγm))(27.2.16)

= −n(β, α) (zβ ⊗ zγ1 ⊗ · · · ⊗ zγm)

= −n(β, α) ŷβ · (zγ1 ⊗ · · · ⊗ zγm).

This implies (27.2.14).
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Note that
ĥα · (x̂β · 1) = n(β, α) x̂β · 1 = 0.(27.2.17)

We would like to check that

ĥα · (x̂β · (zγ1 ⊗ · · · ⊗ zγm))(27.2.18)

= −(n(γ1, α) + · · ·+ n(γm, α)− n(β, α)) x̂β · (zγ1 ⊗ · · · ⊗ zγm)

for every m ≥ 1 and γ1, . . . , γm ∈ ∆. If m = 1, then both sides of the equation
are equal to 0. Suppose that m ≥ 2, and that the analogous statement holds
when m− 1, by induction, so that

ĥα · (x̂β · (zγ2 ⊗ · · · ⊗ zγm))(27.2.19)

= −(n(γ2, α) + · · ·n(γm, α)− n(β, α)) x̂β · (zγ2 ⊗ · · · ⊗ zγm).

Using this, one can verify that

ĥα · (zγ1 ⊗ (x̂β · (zγ2 ⊗ · · · ⊗ zγm)))(27.2.20)

= −(n(γ1, α) + · · ·+ n(γm, α)− n(β, α)) (zγ1 ⊗ (x̂β · (zγ2 ⊗ · · · ⊗ zγm))).

One can obtain (27.2.18) from this and (27.2.7). More precisely, this also uses
the fact that

ĥα · (δγ1,β (zγ2 ⊗ · · · ⊗ zγm))(27.2.21)

= −δγ1,β (n(γ2, α) + · · ·+ n(γm, α)) (zγ2 ⊗ · · · ⊗ zγm)

= −δγ1,β (n(γ1, α) + n(γ2, α) + · · ·+ n(γm, α)− n(β, α)) (zγ2 ⊗ · · · ⊗ zγm).

Let us check that

ϕ̂([ĥα, x̂β ]) = [ϕ̂(ĥα), ϕ̂(x̂β)] = n(β, α) ϕ̂(x̂β).(27.2.22)

Observe that
ĥα · (x̂β · 1)− x̂β · (ĥα · 1) = 0,(27.2.23)

which is the same as n(β, α) x̂β ·1. Let γ1, . . . , γm ∈ ∆ be given for some m ≥ 1,
and note that

x̂β · (ĥα · (zγ1 ⊗ · · · ⊗ zγm))(27.2.24)

= −(n(γ1, α) + · · ·+ n(γm, α)) x̂β · (zγ1 ⊗ · · · ⊗ zγm).

Combining this with (27.2.18), we obtain that

ĥα · (x̂β · (zγ1 ⊗ · · · ⊗ zγm))− x̂β · (ĥα · (zγ1 ⊗ · · · ⊗ zγm))(27.2.25)

= (−(n(γ1, α) + · · ·+ n(γm, α)− n(β, α)) + (n(γ1, α) + · · ·+ n(γm, α)))

x̂β · (zγ1 ⊗ · · · ⊗ zγm)

= n(β, α) x̂β · (zγ1 ⊗ · · · ⊗ zγm).

This implies (27.2.22), using (27.2.23) as well.
It follows that (27.2.9) holds, because of (27.2.10), (27.2.11), (27.2.14), and

(27.2.22). This implies (27.2.8), as before.
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27.3 Some properties of L̃

We continue with the same notation and hypotheses as in the previous two
sections. In particular, remember that L̃ = L̂/R(Ê0), and that x̃α, ỹα, h̃α
are the images of x̂α, ŷα, ĥα ∈ L̂ in L̃, respectively, under the natural quotient
mapping for each α ∈ ∆. In the previous section, a Lie algebra homomorphism
ϕ̂ from L̂ into gl(TZ∆) was defined, whose kernel contains R(Ê0). This leads to

a Lie algebra homomorphism ϕ̃ from L̃ into gl(TZ∆), whose composition with

the natural quotient mapping from L̂ onto L̃ is equal to ϕ̂, as in the proposition
on p97 of [14]. Thus TZ∆ may be considered as a module over L̃, as a Lie
algebra over k.

Of course, ϕ̃(x̃α) = ϕ̂(x̂α), ϕ̃(ỹα) = ϕ̂(ŷα), and ϕ̃(h̃α) = ϕ̂(ĥα) for every

α ∈ ∆, by construction. This means that the actions of x̃α, ỹα, and h̃α on TZ∆

are the same as for x̂α, ŷα, and ĥα, respectively, for each α ∈ ∆.
Let H̃ be the linear span of the h̃α’s, α ∈ ∆, in L̃. This is a Lie subalgebra

of L̃, that is commutative as a Lie algebra, because the h̃α’s commute with each
other, as in (27.1.9). Let X̃ be the Lie subalgebra of L̃ generated by the x̃α’s,

α ∈ ∆, and let Ỹ be the Lie subalgebra of L̃ generated by the ỹα’s, α ∈ ∆. The
theorem on p97f of [14] states that

the h̃α’s, α ∈ ∆, form a basis for H̃ as a vector space over k,(27.3.1)

and that

L̃ corresponds to the direct sum of X̃ , H̃, and Ỹ,(27.3.2)

as a vector space over k.

Step (1) on p98 of [14] states that the intersection of the linear span of the

ĥα’s, α ∈ ∆, in L̂ with the kernel of ϕ̂ is trivial. To see this, let aα ∈ k be given
for each α ∈ ∆, and put

ĥ =
∑
α∈∆

aα ĥα.(27.3.3)

Thus ĥ ∈ L̂, and

ĥ · zγ = −
∑
α∈∆

aα n(γ, α) zγ(27.3.4)

for every γ ∈ ∆, by (27.2.2). If ϕ̂(ĥ) = 0, then (27.3.4) is equal to 0 for each
γ ∈ ∆, so that ∑

α∈∆

aα n(γ, α) = 0(27.3.5)

for every γ ∈ ∆. We would like to use this to get that aα = 0 for every α ∈ ∆.
Remember that the Cartan matrix is invertible, as a matrix of real numbers,

as in Section 21.15. The entries of the Cartan matrix are integers, so that its
determinant is a nonzero integer. If we consider the Cartan matrix as having
entries in k, then its determinant is still nonzero, because k has characteristic 0,
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by hypothesis. This means that the Cartan matrix is also invertible as a matrix
with entries in k. Thus (27.3.5) implies that aα = 0 for every α ∈ ∆, as desired.

Of course,

h̃ =
∑
α∈∆

aα h̃α(27.3.6)

is the image of (27.3.3) under the natural quotient mapping from L̂ onto L̃. If

h̃ = 0, then ϕ̂(ĥ) = ϕ̃(h̃) = 0, so that aα = 0 for every α ∈ ∆, as before. It

follows that the restriction of the natural quotient mapping from L̂ onto L̃ to
the linear span of the ĥα’s, α ∈ ∆, in L̂ is injective, as in Step (2) on p98 of

[14]. This implies that the dimension of H̃, as a vector space over k, is the same
as the number of elements in ∆, as in Step (4) on p98 of [14]. Equivalently, this
means that (27.3.1) holds.

In particular,

h̃α ̸= 0 for each α ∈ ∆.(27.3.7)

This implies that

x̃α, ỹα ̸= 0 for each α ∈ ∆,(27.3.8)

because [x̃α, ỹα] = h̃α, as in (27.1.10).

If β ∈ ∆, then put

fβ(α) = n(β, α)(27.3.9)

for every α ∈ ∆, which may be considered as a k-valued function on ∆. In
fact, the fβ ’s form a basis for the space of k-valued functions on ∆, as a vector
space over k. This follows from the invertibility of the Cartan matrix, as a
matrix with entries in k, as before. In particular, for each β ∈ ∆, fβ ̸≡ 0 on ∆.
Similarly, if β, β′ ∈ ∆ and β ̸= β′, then fβ ̸= fβ′ , as functions on ∆. We also
have that fβ ̸= −fβ′ , even when β = β′. This uses the hypothesis that k has
characteristic 0, so that 1 ̸= −1 in k.

One can use this to check that

the set of x̃β ’s, ỹβ ’s, and h̃β ’s, β ∈ ∆,(27.3.10)

is linearly independent in L̃,

as in Step (3) on p98 of [14]. This also uses the fact that the x̃β ’, ỹβ ’s, and h̃β ’s
are simultaneous eigenvectors for ad

h̃α
, α ∈ ∆, as in (27.1.9), (27.1.11), and

(27.1.12), with the corresponding eigenvalues given by fβ(α), −fβ(α), and 0,
respectively. Note that the ad

h̃α
’s, α ∈ ∆, commute with each other, as linear

mappings on L̃, because the h̃α’s commute in L̃, as in Section 2.4.

More precisely, suppose that we have a linear combination of the x̃β ’s, ỹβ ’s,

and h̃β ’s, β ∈ ∆, in L̃ that is equal to 0. One can show that the coefficients of the
x̃β ’s and ỹβ ’s are all equal to 0, and that the corresponding linear combination

of the h̃β ’s is equal to 0, using the earlier remarks about the fβ ’s. It follows

that the coefficients of the h̃β ’s have to be equal to 0 too, by (27.3.1).
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Equivalently, consider the linear subspace of L̂ spanned by the x̂β ’s, ŷβ ’s,

and ĥβ ’s, β ∈ ∆. The restriction of the natural quotient mapping from L̂ onto

L̃ to this linear subspace is injective, as in Step (3) on p98 of [14].

27.4 Some brackets in L̃

Let us continue with the discussion in the previous section. In particular, we
would like to prove (27.3.2).

If ũ1, . . . , ũr ∈ L̃ for some r ≥ 2, then put

[ũ1, . . . , ũr] = [ũ1, [ũ2, . . . [ũr−1, ũr] · · ·]].(27.4.1)

If α, β1, . . . , βr ∈ ∆, then

[h̃α, [x̃β1
, . . . , x̃βr

]] = (n(β1, α) + · · ·+ n(βr, α)) [x̃β1
, . . . , x̃βr

],(27.4.2)

as in Step (5) on p98 of [14]. This follows from (27.1.11) and the Jacobi identity
when r = 2, and one can use induction to get the analogous conclusion for every
r ≥ 2. Similarly,

[h̃α, [ỹβ1
, . . . , ỹβr

]] = −(n(β1, α) + · · ·+ n(βr, α)) [ỹβ1
, . . . , ỹβr

],(27.4.3)

by (27.1.12).
If α, β1, . . . , βr ∈ ∆ for some r ≥ 2 again, then

[ỹα, [x̃β1
, . . . , x̃βr

]](27.4.4)

can be expressed as a linear combination of x̃β1
and x̃β2

when r = 2, and as a
linear combination of terms of the form

[x̃γ1 , . . . , x̃γr−1
](27.4.5)

when r ≥ 3, where γ1, . . . , γr−1 ∈ {β1, . . . , βr}. In particular, this means that

(27.4.4) is an element of X̃ , as in Step 6 on p98 of [14]. If r = 2, then the
previous statement can be obtained from (27.1.10), (27.1.11), and the Jacobi
identity. If r ≥ 3, then one can use induction and (27.4.2). Similarly,

[x̃α, [ỹβ1
, . . . , ỹβr

]](27.4.6)

can be expressed as a linear combination of ỹβ1
and ỹβ2

when r = 2, and as a
linear combination of terms of the form

[ỹγ1 , . . . , ỹγr−1
](27.4.7)

when r ≥ 3, where γ1, . . . , γr−1 ∈ {β1, . . . , βr}, as before.
Remember that X̃ and Ỹ are the Lie subalgebras of L̃ generated by the x̃α’s

and ỹα’s, respectively, with α ∈ ∆. Note that X̃ is spanned by the x̃α’s, α ∈ ∆,
and elements of the form [x̃α1

, . . . , x̃αr
], where α1, . . . , αr ∈ ∆ for some r ≥ 2,
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as in Section 26.11. Similarly, Ỹ is spanned by the ỹα’s, α ∈ ∆, and elements
of the form [ỹα1 , . . . , ỹαr ], with α1, . . . , αr ∈ ∆ for some r ≥ 2.

One can check that the linear subspace X̃ + H̃+ Ỹ of L̃ spanned by elements
of X̃ , H̃, and Ỹ is a Lie subalgebra of L̃, as in Step (7) on p98 of [14]. More

precisely, this uses the fact that H̃ is a Lie subalgebra of L̃, (27.4.2), and (27.4.3),
as well as (27.1.10) and the earlier remarks about (27.4.4) and (27.4.6).

It follows that X̃ + H̃ + Ỹ is equal to L̃, because L̃ is generated as a Lie
algebra by the x̃α’s, ỹα’s, and h̃α’s, α ∈ ∆.

In order to verify (27.3.2), we need to show that if a sum of elements of

X̃ , H̃, and Ỹ is equal to 0, then each term is 0. Note that X̃ is spanned by
simultaneous eigenvectors for ad

h̃α
, α ∈ ∆, by (27.4.2). The corresponding

eigenvalues for the simultaneous eigenvectors are given by nontrivial sums of
fβ ’s, β ∈ ∆. Similarly, Ỹ is spanned by simultaneous eigenvectors for ad

h̃α
,

α ∈ ∆, by (27.4.3), with the corresponding eigenvalues given by nontrivial sums

of −fβ ’s, β ∈ ∆. Of course, H̃ is contained in the kernel of ad
h̃α

for each α ∈ ∆,

by (27.1.9). Because k has characteristic 0, nontrivial sums of fβ ’s or of −fβ ’s
cannot be equal to 0 on all of ∆, or equal to each other on all of ∆. This can
be used to get that if a sum of elements of X̃ , H̃, and Ỹ is equal to 0, then each
term is 0, as in Step (8) on p98 of [14].

27.5 Eigenvectors in L̃

Let us look a bit more at the simultaneous eigenvectors for ad
h̃α

, α ∈ ∆, in L̃,

as in the previous two sections. Remember that H̃ is the linear span of the h̃α’s,
α ∈ ∆. Let H̃′ be the dual of H̃, as a vector space over k, as usual. If µ̃ ∈ H̃′,
then put

L̃
µ̃
= {ũ ∈ L : [h̃, ũ] = µ̃(h̃) ũ for every h̃ ∈ H̃},(27.5.1)

which is a linear subspace of L̃. Of course, the ad
h̃
’s, h̃ ∈ H̃, commute as linear

mappings on L̃, because of the same property of the ad
h̃α

’s, α ∈ ∆.

Suppose for the moment that µ̃1, . . . , µ̃n are distinct elements of H̃′, and that
ũj ∈ L̃

µ̃j
for j = 1, . . . , n. If

∑n
j=1 ũj = 0, then ũj = 0 for every j = 1, . . . , n,

by standard arguments.
Remember that the h̃α’s, α ∈ ∆, form a basis for H̃. If β ∈ ∆, then there is

a unique ν̃β ∈ H̃′ such that

ν̃β(h̃α) = n(β, α)(27.5.2)

for every α ∈ ∆. The ν̃β ’s, β ∈ ∆, form a basis for H̃′, as a vector space over
k. This is essentially the same as the fact that the fβ ’s in (27.3.9) form a basis
for the space of k-valued functions on ∆, as before.

Every element of X̃ can be expressed as the sum of elements of finitely many
of the subspaces L̃

µ̃
, where µ̃ ∈ H̃′ can be expressed as a nontrivial sum of ν̃β ’s,
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as in the previous section. Similarly, every element of Ỹ can be expressed as
the sum of finitely many elements of L̃

µ̃
’s, where µ̃ ∈ H̃′ can be expressed as a

nontrivial sum of −ν̃β ’s. It follows that X̃ and Ỹ correspond to direct sums of

their intersections with the appropriate subspaces L̃
µ̃
, as vector spaces over k.

Clearly H̃ ⊆ L̃0, by (27.1.9). Remember that L̃ corresponds to the direct

sum of X̃ , H̃, and Ỹ, as a vector space over k, as in (27.3.2). Using this, one
can check that

H̃ = L̃0.(27.5.3)

This also uses the hypothesis that k have characteristic 0, so that nontrivial
sums of ν̃β ’s cannot be equal to 0.

Similarly, L̃
µ̃
⊆ X̃ when µ̃ ∈ H̃ is a nontrivial sum of ν̃β ’s, and L̃µ̃ ⊆ Ỹ when

µ̃ is a nontrivial sum of −ν̃β ’s. This uses the hypothesis that k have character-
istic 0, to get that nontrivial sums of ν̃β ’s cannot be equal to nontrivial sums of

−ν̃β ’s. This implies that X̃ corresponds to the direct sum of the subspaces L̃
µ̃
,

where µ̃ ∈ H̃′ can be expressed as a nontrivial sum of ν̃β ’s, and that Ỹ corre-

sponds to the direct sum of the suspaces L̃
µ̃
, where µ̃ ∈ H̃′ can be expressed as

a nontrivial sum of −ν̃β ’s, as vector spaces over k.
Let µ̃ ∈ H̃′ be given, and suppose that L̃

µ̃
̸= {0}. Under these conditions,

one can verify that either µ̃ = 0, or µ̃ is a nontrivial sum of ν̃β ’s, or µ̃ is a
nontrivial sum of −ν̃β ’s.

If µ̃ ∈ H̃′, then L̃
µ̃
is finite-dimensional, as a vector space over k. This

follows from (27.5.3) when µ̃ = 0, and otherwise we may suppose that µ̃ is a
nontrivial sum of νβ ’s, or that µ̃ is a nontrivial sum of −νβ ’s, as in the preceding

paragraph. In both cases, the elements of L̃
µ̃
considered in the previous section

are contained in finite-dimensional subspaces of L̃. One can check that all of
the elements of L̃

µ̃
can be obtained as linear combinations of those considered

before, because L̃ is spanned by elements of this type and the h̃α’s, as in the
previous section.

This corresponds to some remarks on p98 of [14], after the proof of the

theorem, and on p53 of [24]. In particular, the elements of L̃
µ̃
are said to have

weight µ̃.

27.6 Some more properties of L̃

Let us continue with the same notation and hypotheses as in the previous five
sections. Thus the tensor algebra TZ∆ from Section 27.2 is an associative
algebra over k, which may be considered as a Lie algebra over k with respect
to the corresponding commutator bracket. Let LY∆

be the free Lie algebra on
Y∆ = {ŷα : α ∈ ∆} over k, and let ψ1 be the Lie algebra homomorphism from
LY∆

into TZ∆ that sends ŷα to zα ∈ Z∆ for every α ∈ ∆. Note that

ψ1 is injective as a mapping from LY∆
into TZ∆,(27.6.1)
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as in Section 26.6. More precisely, this corresponds to identifying TZ∆ with
the free associative algebra AssocY∆ on Y∆ over k, by identifying ŷα with zα for
each α ∈ ∆.

Of course, each element of TZ∆ determines a linear mapping from TZ∆ into
itself, defined by multiplication on the left by the given element of TZ∆. In
particular, this defines a Lie algebra homomorphism from TZ∆ into gl(TZ∆).
Note that this mapping is injective, because TZ∆ has a multiplicative identity
element. Let ψ′

1 be the mapping from LY∆ into gl(TZ∆) which is the compo-
sition of ψ1 with the Lie algebra homomorphism from TZ∆ into gl(TZ∆) just
mentioned. Thus ψ′

1 is an injective Lie algebra homomorphism from LY∆
into

gl(TZ∆).

Let ϕ̂ be the Lie algebra homomorphism from L̂ into gl(TZ∆) defined in

Section 27.2. Remember that ϕ̂(ŷα) is the linear mapping from TZ∆ to itself
corresponding to left multiplication by zα for each α ∈ ∆. There is a natural Lie
algebra homomorphism from LY∆

into L̂, which sends ŷα to itself as an element

of L̂ for every α ∈ ∆. Let ϕ̂1 be the composition of this homomorphism with
ϕ̂, so that ϕ̂1 is a Lie algebra homomorphism from LY∆

into gl(TZ∆). Observe
that

ϕ̂1 = ψ′
1(27.6.2)

on LY∆
, because both mappings send ŷα to the linear mapping from TZ∆ into

itself that corresponds to left multiplication by zα for each α ∈ ∆.
Remember from Section 27.3 that ϕ̂ is the same as the composition of the

natural quotient mapping from L̂ onto L̃ with the Lie algebra homomorphism
ϕ̃ from L̃ into gl(TZ∆). Let ρ1 be the composition of the natural mapping from

LY∆
into L̂ with the quotient mapping from L̂ onto L̃. Thus ρ1 is a Lie algebra

homomorphism from LY∆ into L̃, and

ϕ̂1 = ϕ̃ ◦ ρ1(27.6.3)

on LY∆
, by construction. It follows that

ρ1 is injective as a mapping from LY∆
into L̃,(27.6.4)

because of (27.6.2) and the fact that ψ′
1 is injective on LY∆ , as before.

Note that ρ1(ŷα) = ỹα for each α ∈ ∆, by construction. Let Ỹ be the Lie

subalgebra of L̃ generated by the ỹα’s, α ∈ ∆, as in Section 27.3. Thus

ρ1(LY∆) = Ỹ,(27.6.5)

because LY∆
is generated by Y∆ as a Lie algebra over k. This shows that Ỹ is

isomorphic to LY∆
as a Lie algebra over k, as in Exercise 1 on p101 of [14].

Let σ̂ be the Lie algebra homomorphism from L̂ into itself such that

σ̂(x̂α) = −ŷα, σ̂(ŷα) = −x̂α, and σ̂(ĥα) = −ĥα(27.6.6)

for every α ∈ ∆. The composition of σ̂ with itself sends x̂α, ŷα, and ĥα to
themselves, respectively, for every α ∈ ∆. Thus σ̂ ◦ σ̂ is the identity mapping
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on L̂, and in particular σ̂ is a Lie algebra automorphism of L̂. It is easy to see
that

σ̂(R(Ê0)) = R(Ê0),(27.6.7)

where Ê0 ⊆ L̂ is as in Section 27.1, and R(Ê0) is the ideal in L̂ generated by Ê0.

This implies that there is a Lie algebra automorphism σ̃ of L̃, whose composition
with the quotient mapping from L̂ onto L̃ is the same as the composition of the
quotient mapping with σ̂.

Of course,

σ̃(x̃α) = −ỹα, σ̃(ỹα) = −x̃α, and σ̃(h̃α) = −h̃α(27.6.8)

for every α ∈ ∆. This implies that

σ̃(Ỹ) = X̃ ,(27.6.9)

which is the Lie subalgebra of L̃ generated by the x̃α’s, α ∈ ∆, as before. In
particular, X̃ and Ỹ are isomorphic as Lie algebras over k, as in Exercise 1 on
p101 of [14].

27.7 Some more relations in L̃

Let us continue with the same notation and hypotheses as in the previous sec-
tions. Remember that n(α, β) ∈ Z for every α, β ∈ ∆, with −3 ≤ n(α, β) ≤ 0
when α ̸= β. Put

x̃α,β = (ad
x̃α

)−n(β,α)+1(x̃β), ỹα,β = (ad
ỹα
)−n(β,α)+1(ỹβ)(27.7.1)

for every α, β ∈ ∆ with α ̸= β, which are elements of L̃. We would like to show
that

ad
x̃γ
(ỹα,β) = 0(27.7.2)

for every α, β, γ ∈ ∆ with α ̸= β, as in the lemma on p99 of [14]. We also have
that

ad
ỹγ
(x̃α,β) = 0(27.7.3)

when α ̸= β, using a similar argument, or the automorphism σ̃ on L̃ discussed
in the previous section.

Suppose first that α ̸= γ, so that [x̃γ , ỹα] = 0, as in (27.1.10). This implies

that ad
x̃γ

and ad
ỹα

commute as linear mappings on L̃, as in Section 2.4. It

follows that
ad
x̃γ
(ỹα,β) = (ad

ỹα
)−n(β,α)+1(ad

x̃γ
(ỹβ))(27.7.4)

in this case. If β ̸= γ, then ad
x̃γ
(ỹβ) = 0, by (27.1.10) again, so that (27.7.2)

holds. If β = γ, then (27.7.4) reduces to

ad
x̃β
(ỹα,β) = (ad

ỹα
)−n(β,α)+1(h̃β),(27.7.5)
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by (27.1.10).
Note that

ad
ỹα
(h̃β) = n(α, β) ỹα,(27.7.6)

by (27.1.12). If n(α, β) = 0, then it follows that (27.7.2) holds, by (27.7.5). Oth-
erwise, if n(α, β) ̸= 0, then n(β, α) ̸= 0, by (27.1.1). More precisely, n(β, α) < 0,
because α ̸= β, so that

−n(β, α) + 1 ≥ 2.(27.7.7)

This means that (27.7.2) follows from (27.7.5), because ad
ỹα
(ỹα) = 0.

Suppose now that α = γ, so that we would like to show that

ad
x̃α

(ỹα,β) = 0(27.7.8)

when α ̸= β. Remember that x̃α, ỹα, h̃α ̸= 0, as in (27.3.7) and (27.3.8). The

linear span of x̃α, ỹα, and h̃α in L̃ is a Lie subalgebra of L̃, because of (27.1.10),
(27.1.11), and (27.1.12). This subalgebra is isomorphic to sl(2, k) as a Lie

algebra over k, because n(α, α) = 2. Thus we may consider L̃ as a module over
sl(2, k), as a Lie algebra over k, using adw when w is in the linear span of x̃α,

ỹα, and h̃α.
Note that ad

x̃α
(ỹβ) = 0, as in (27.1.10), because α ̸= β. We also have that

ad
h̃α

(ỹβ) = −n(β, α) ỹβ , as in (27.1.12). This means that ỹβ is a maximal or

primitive vector of weight λ = −n(β, α) in L̃ as a module over the linear span

of x̃α, ỹα, and h̃α, as in Section 15.2. If j is a positive integer, then

ad
x̃α

((ad
ỹα
)j(ỹβ)) = j (λ− j + 1) (ad

ỹα
)j−1(ỹβ),(27.7.9)

as in (15.3.4). The right side is equal to 0 when j = λ+1 = −n(β, α)+1, which
implies (27.7.8), as desired.

27.8 Serre’s theorem

Let us continue with the same notation and hypotheses as in the previous sec-
tions, Section 27.1 in particular. If α, β ∈ ∆ and α ̸= β, then put

x̂α,β = (ad
x̂α

)−n(β,α)+1(x̂β), ŷα,β = (ad
ŷα
)−n(β,α)+1(ŷβ),(27.8.1)

which are elements of L̂. Of course, ad
x̂α

and ad
ŷα

refer to the adjoint rep-

resentation on L̂ here. Remember that n(β, α) ≤ 0 when α ̸= β, so that

−n(β, α) + 1 ∈ Z+. Clearly the images of x̂α,β and ŷα,β in L̃ under the natural
quotient mapping are the same as x̃α,β and ỹα,β in (27.7.1), respectively.

Let Ê1 be the subset of L̂ consisting of x̂α,β and ŷα,β for α, β ∈ ∆ with

α ̸= β. Remember that Ê0 ⊆ L̂ was defined in Section 27.1, and let R(Ê0 ∪ Ê1)

be the ideal in L̂ generated by Ê0 ∪ Ê1. Thus the quotient

L̂/R(Ê0 ∪ Ê1)(27.8.2)
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is a Lie algebra over k. A famous theorem of Serre states that this is a finite-
dimensional semisimple Lie algebra, as on p52 of [24], and p99 of [14]. More

precisely, the linear span of the images of the ĥα’s, α ∈ ∆, in (27.8.2) is a Cartan
subalgebra of this Lie algebra, which corresponds to the given root system Φ.

Let Ẽ1 be the subset of L̃ consisting of x̃α,β and ỹα,β for α, β ∈ ∆ with α ̸= β,

which is the same as the image of Ê1 under the natural quotient mapping from L̂
onto L̃. Also let R(Ẽ1) = R

L̃
(Ẽ1) be the ideal in L̃ generated by Ẽ1. Consider

the quotient
L = L(k) = L̃/R(Ẽ1),(27.8.3)

which is a Lie algebra over k. There is a natural Lie algebra homomorphism
from L̂ onto L, which is the composition of the quotient mappings from L̂ onto
L̃ and from L̃ onto L. The kernel of this homomorphism is R(Ê0 ∪ Ê1), which
leads to a natural Lie algebra isomorphism from (27.8.2) onto L.

Let xα, yα, and hα be the images of x̃α, ỹα, and h̃α, respectively, under
the natural quotient mapping from L̃ onto L for each α ∈ ∆. Of course, these
correspond to the images of x̂α, ŷα, and ĥα, respectively, in (27.8.2) for every
α ∈ ∆. If α, β ∈ ∆, then

[hα, hβ ] = 0,(27.8.4)

[xα, yβ ] = δα,β hα,(27.8.5)

[hα, xβ ] = n(β, α)xβ ,(27.8.6)

[hα, yβ ] = −n(β, α) yβ(27.8.7)

in L, because of the analogous properties of x̃α, ỹα, and h̃α in L̃, as in Section
27.1. If α ̸= β, then we also have that

(adxα
)−n(β,α)+1(xβ) = (adyα)

−n(β,α)+1(yβ) = 0(27.8.8)

in L, by definition of Ẽ1.
The proof of Serre’s theorem will be discussed in the next sections, and

continuing in the next chapter.

27.9 Ideals I, J
We continue with the discussion of Serre’s theorem, from the previous section.

Remember that X̃ , Ỹ are the Lie subalgebras of L̃ generated by the x̃α’s,
ỹα’s, respectively, with α ∈ ∆, as in Section 27.3. Let Ẽ1,1 be the subset of L̃

consisting of x̃α,β for α, β ∈ ∆ with α ̸= β, and let Ẽ1,2 be the set of ỹα,β for
α, β ∈ ∆ with α ̸= β. Thus

Ẽ1 = Ẽ1,1 ∪ Ẽ1,2, Ẽ1,1 ⊆ X̃ , and Ẽ1,2 ⊆ Ỹ.(27.9.1)

Let I be the ideal in X̃ generated by Ẽ1,1, and let J be the ideal in Ỹ generated

by Ẽ1,2. Note that

I,J ⊆ R(Ẽ1).(27.9.2)
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We would like to show that

I,J are ideals in L̃,(27.9.3)

as in Step (1) on p99 of [14], and (a) on p53 of [24]. We shall do this for J ,
since the argument for I is analogous, as in [14]. Observe that

[h̃γ , ỹα,β ] = (−n(β, γ) + (n(β, α)− 1)n(α, γ)) ỹα,β(27.9.4)

for every α, β, γ ∈ ∆ with α ̸= β, by (27.4.3) and the definition (27.7.1) of ỹα,β .
It is easy to see that

ad
h̃γ
(Ỹ) ⊆ Ỹ(27.9.5)

for every γ ∈ ∆, using (27.1.12) and the Jacobi identity; a more precise version
of this is given by (27.4.3). It follows from (27.9.4) and (27.9.5) that

ad
h̃γ
(J ) ⊆ J(27.9.6)

for every γ ∈ ∆, using the Jacobi identity again.
Remember that H̃ is the linear span of the h̃α’s, α ∈ ∆, in L̃, as in Section

27.3. Observe that
ad
x̃γ
(Ỹ) ⊆ Ỹ + H̃(27.9.7)

for every γ ∈ ∆, by (27.1.10) and the earlier remarks about (27.4.6). One can
check that

ad
x̃γ
(J ) ⊆ J(27.9.8)

for every γ ∈ ∆, using (27.7.2), (27.9.6), (27.9.7), and the Jacobi identity. This

implies that J is an ideal in L̃, because L̃ is generated as a Lie algebra over k
by the x̃γ ’s and ỹγ ’s, γ ∈ ∆. More precisely, this is the same as saying that the

normalizer of J in L̃ is L̃, and the normalizer of J in L̃ is automatically a Lie
subalgebra of L̃, by the Jacobi identity.

Step (2) on p99 of [14] states that

I + J = R(Ẽ1),(27.9.9)

which corresponds to a remark just after (a) on p53 of [24]. Of course,

I + J ⊆ R(Ẽ1),(27.9.10)

by (27.9.2). We also have that Ẽ1 ⊆ I + J , by construction. Note that I + J
is an ideal in L̃, by (27.9.3). This implies that R(Ẽ1) ⊆ I + J , as desired.

27.10 Subalgebras X , H, and Y of L

Let us continue with the same notation and hypotheses as in the previous sec-
tions. Let X , H, and Y be the images of X̃ , H̃, and Ỹ, respectively, under the
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natural quotient mapping from L̃ onto L. Thus X , H, and Y are Lie subalgebras
of L, and H is commutative as a Lie algebra over k, because of the analogous
properties of X̃ , H̃, and Ỹ in L̃. More precisely, X is the Lie subalgebra of L
generated by the xα’s, α ∈ ∆, and Y is the Lie subalgebra of L generated by
the yα’s, α ∈ ∆. Similarly, H is the same as the linear span of the hα’s, α ∈ ∆,
in L.

Remember that L̃ corresponds to the direct sum of X̃ , H̃, and Ỹ as a vector
space over k, as in (27.3.2). Similarly,

L corresponds to the direct sum of X , H, and Y,(27.10.1)

as a vector space over k.

This follows from (27.9.9), and the analogous statement for L̃. This is part of
Step (3) on p100 of [14], and of (b) on p53 of [24].

The kernels of the restrictions of the natural quotient mapping from L̃ onto
L to X̃ and Ỹ are I and J , respectively, because of (27.9.9). Thus we can
identify X , Y with the quotients

X̃/I, Ỹ/J ,(27.10.2)

respectively. Similarly, the restriction of the natural quotient mapping from L̃
onto L to H̃ is injective, by (27.9.9). This permits us to identify H̃ with H.
This is also part of Step (3) on p100 of [14], and (b) on p53 of [24].

Remember that the h̃α’s, α ∈ ∆, form a basis for H̃ as a vector space over
k, as in (27.3.1). This means that the hα’s, α ∈ ∆, form a basis for H as a

vector space over k. In particular, h̃α ̸= 0 for each α ∈ ∆, as in (27.3.7), so
that hα ̸= 0 for every α ∈ ∆ too. This implies that xα, yα ̸= 0 for every α ∈ ∆,
because [xα, yα] = hα, as in (27.8.5).

Using this, one can verify that

the set of xβ ’s, yβ ’s, and hβ ’s, β ∈ ∆,(27.10.3)

is linearly independent in L,

as in (27.3.10). More precisely, the xβ ’s, yβ ’s, and hβ ’s are simultaneous eigen-
vectors for adhα on L, α ∈ ∆, by (27.8.4), (27.8.6), and (27.8.7). To get linear
independence, one also uses the fact that the eigenvalues for the xβ ’s and yβ ’s
correspond to distinct functions of α on ∆ that are not identically 0, as be-
fore. This permits one to reduce to the linear independence of the hβ ’s, β ∈ ∆.

Equivalently, the restriction of the natural quotient mapping from L̃ onto L to
the linear subspace of L̃ spanned by the x̃β ’s, ỹβ ’s, and h̃β ’s, β ∈ ∆, is injective,
as in Step (4) on p100 of [14].

27.11 Eigenvectors in L

We continue with the same notation and hypotheses as in the previous sections.
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Let H′ be the dual of H, as a vector space over k, as usual, and put

Lµ = {u ∈ L : [h, u] = µ(h)u for every h ∈ H}(27.11.1)

for each µ ∈ H′. The elements of Lµ are said to have weight µ. If µ ∈ H′, then

let µ̃ be the corresponding linear functional on H̃, which is the composition of
µ with the restriction to H̃ of the natural quotient mapping from L̃ onto L.
Observe that

the natural quotient mapping from L̃ onto L maps L̃
µ̃
into Lµ,(27.11.2)

where L̃
µ̃
is as in (27.5.1). Of course, H ⊆ L0, by (27.8.4).

If β ∈ ∆, then there is a unique νβ ∈ H′ such that

νβ(hα) = n(β, α)(27.11.3)

for every α ∈ ∆, because the hα’s form a basis for H. The composition of νβ
with the restriction of the natural quotient mapping from L̃ onto L to H̃ is the
same as ν̃β ∈ H̃′, defined in (27.5.2). It is easy to see that the νβ ’s, β ∈ ∆, form
a basis for H′, as a vector space over k, because of the analogous statement for
the ν̃β ’s in Section 27.5.

Every element of X can be expressed as the sum of finitely elements of the
subspaces Lµ, where µ ∈ H′ can be expressed as a nontrivial sum of νβ ’s. This

follows from (27.11.2) and the analogous statement for X̃ in Section 27.5. We
also have that every element of Y can be expressed as the sum of finitely many
elements of Lµ’s, where µ ∈ H′ can be expressed as a nontrivial sum of −νβ ’s.
This implies that X and Y correspond to the direct sums of their intersections
with the appropriate subspaces Lµ, as vector spaces over k, as in Section 27.5.

As before, one can use this to check that

H = L0.(27.11.4)

Similarly, X corresponds to the direct sum of the subspaces Lµ, where µ ∈ H′

can be expressed as a nontrivial sum of νβ ’s, and Y corresponds to the direct sum
of the subspaces Lµ, where µ ∈ H′ can be expressed as a nontrivial sum of −νβ ’s,
as vector spaces over k. This uses the hypothesis that k have characteristic 0, so
that nontrivial sums of νβ ’s or of −νβ ’s cannot be equal to 0, or to each other.
If µ ∈ H′ and Lµ ̸= {0}, then one can verify that µ = 0, or µ is a nontrivial
sum of νβ ’s, or µ is a nontrivial sum of −νβ ’s.

More precisely, every element of X can be expressed as the sum of the images
under the natural quotient mapping from L̃ onto L of finitely many elements of
L̃
µ̃
, where µ̃ is a nontrivial sum of ν̃β ’s, and every element of Y can be expressed

as the sum of the images of finitely many elements of L̃
µ̃
, where µ̃ is a nontrivial

sum of −ν̃β ’s. Let µ ∈ H′ be given, and let µ̃ be the corresponding linear

functional on H̃′ again, as in (27.11.2). One can check that

the natural quotient mapping from L̃ onto L maps L̃
µ̃
onto Lµ.(27.11.5)



590 CHAPTER 27. SOME MORE LIE ALGEBRAS

This follows from (27.11.4) when µ = 0. Otherwise, one can use the previous
remarks about X , Y.

Using (27.11.5), we get that Lµ is finite-dimensional as a vector space over

k for every µ ∈ H′, because of the analogous statement for L̃
µ̃
in Section 27.5.

This corresponds to Step (5) on p100 of [14], and some remarks on p53 of [24].

27.12 Locally nilpotent linear mappings

Let k be a field, and let V be a vector space over k. A linear mapping T from
V into itself is said to be locally nilpotent if for each v ∈ V there is a positive
integer l such that T l(v) = 0. If W is a finite-dimensional linear subspace of
V , then it follows that there is a positive integer r such that T r(W ) = {0}.
In this case, the linear subspace W1 of V spanned by W,T (W ), . . . , T r(W ) is
finite-dimensional and satisfies

T (W1) ⊆W1.(27.12.1)

If T1, T2 are commuting locally nilpotent linear mappings from V into itself,
then it is easy to see that T1 + T2 is locally nilpotent on V as well.

Suppose now that k has characteristic 0, and let T be a locally nilpotent
linear mapping from V into itself. If v ∈ V , then put

(expT )(v) =

∞∑
j=0

(1/j!)T j(v),(27.12.2)

where the sum on the right reduces to a finite sum in V . It is easy to see that
this defines a linear mapping from V into itself.

Let T1, T2 be commuting locally nilpotent linear mappings from V into itself
again. If v ∈ V , then

T j1 (T
l
2(v)) = T l2(T

j
1 (v)) = 0(27.12.3)

when j or l is sufficiently large. One can check that

(exp(T1 + T2))(v) = (expT1)((expT2)(v)),(27.12.4)

using the binomial theorem in the usual way. If T is a locally nilpotent linear
mapping from V into itself, then one can apply the previous statement to T ,
−T to get that expT is invertible on V , with inverse equal to exp(−T ). This is
related to some remarks just before the theorem on p99 of [14].

Let A be an algebra over k in the strict sense, and let δ be a derivation on
A. If δ is locally nilpotent on A, then exp δ is an algebra automorphism of A,
as in Section 14.11.

Let us now return to the discussion of Serre’s theorem, as in the previous
sections. We would like to show that for each α ∈ ∆, adxα

and adyα are locally
nilpotent as linear mappings from L into itself, as in Step (6) on p100 of [14],
and (c) on p53 of [24]. Put

Vα = {u ∈ L : adlxα
(u) = 0 for some l ∈ Z+},(27.12.5)



27.13. SOME PROPERTIES OF θα 591

which is a linear subspace of L. One can check that Vα is a Lie subalgebra of L,
using the fact that adxα is a derivation on L. Observe that xβ ∈ Vα for every
β ∈ ∆, by (27.8.8). One can verify that yβ ∈ Vα for every β ∈ ∆, using (27.8.5)
and (27.8.6). It follows that L ⊆ Vα, because L is generated as a Lie algebra
over k by the xβ ’s and yβ ’s, β ∈ ∆. This means that adxα

is locally nilpotent
on L, and the argument for adyα is analogous.

Let α ∈ ∆ be given, and note that − adyα is locally nilpotent on L. Thus
exp adxα

and exp(− adyα) are Lie algebra automorphisms of L, because adxα
,

− adyα are derivations on L, as before. It follows that

θα = (exp adxα
) ◦ (exp−adyα) ◦ (exp adxα

)(27.12.6)

is a Lie algebra automorphism of L too. This corresponds to Step (7) on p100
of [14], and to part of (d) on p54 of [24].

If u ∈ L satisfies [xα, u] = [yα, u] = 0, then

(exp adxα
)(u) = (exp−adyα)(u) = u,(27.12.7)

and hence

θα(u) = u.(27.12.8)

Remember that n(α, α) = 2, as in Section 27.1. Using the same type of argument
as in Section 23.7, we get that

θα(xα) = −yα, θα(yα) = −xα, θα(hα) = −hα.(27.12.9)

27.13 Some properties of θα

Let us continue with the same notation and hypotheses as in the previous sec-
tions. In particular, let α ∈ ∆ be given again, and let θα be the Lie algebra
automorphism of L defined in (27.12.6). If h ∈ H, then h can be expressed in a
unique way as

h =
∑
β∈∆

cβ hβ ,(27.13.1)

with cβ ∈ k for each β ∈ ∆. In this case,

[h, xα] =
∑
β∈∆

cβ [hβ , xα] =
∑
β∈∆

cβ n(α, β)xα,(27.13.2)

[h, yα] =
∑
β∈∆

cβ [hβ , yα] = −
∑
β∈∆

cβ n(α, β) yα,(27.13.3)

by (27.8.6) and (27.8.7). If ∑
β∈∆

cβ n(α, β) = 0,(27.13.4)
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then it follows that [h, xα] = [h, yα] = 0, so that

θα(h) = h,(27.13.5)

as in (27.12.8).
If h = hα, then (27.13.4) does not hold, because k has characteristic 0, so

that n(α, α) = 2 is not zero in k. It follows that

H is spanned by hα and the h ∈ H that satisfy (27.13.4),(27.13.6)

as a vector space over k. This implies that

θα(H) = H,(27.13.7)

by (27.12.9) and (27.13.5). Note that

θα(θα(h)) = h(27.13.8)

for every h ∈ H.
If h ∈ H is as in (27.13.1), then put

να(h) =
∑
β∈∆

cβ n(α, β).(27.13.9)

This defines a linear functional on H, which is the same as the one in (27.11.3),
with α and β interchanged. Observe that να(hα) = n(α, α) = 2, and that

θα(h) = h− να(h)hα(27.13.10)

for every h ∈ H, because of (27.12.9) and (27.13.5).
Let µ ∈ H′ be given, and put

ζµ,α(h) = µ(θα(h))(27.13.11)

for every h ∈ H, which defines a linear functional on H too. Clearly h ∈ H and
u ∈ L satisfy

[h, u] = ζµ,α(h)u(27.13.12)

if and only if
[θα(h), θα(u)] = µ(θα(h)) θα(u),(27.13.13)

because θα is a Lie algebra automorphism of L. This implies that

θα(Lζµ,α
) = Lµ,(27.13.14)

where Lµ, Lζµ,α
are as in (27.11.1). This corresponds to part of Step (8) on

p100 of [14], and of (d) on p54 of [24].
Equivalently,

ζµ,α(h) = µ(h)− να(h)µ(hα)(27.13.15)
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for every h ∈ H, by (27.13.10). This means that

ζµ,α = µ− µ(hα) να,(27.13.16)

as elements of H′. Let γ ∈ ∆ be given, and let νγ ∈ H′ be as in (27.11.3) and
(27.13.9), so that

νγ(hβ) = n(γ, β)(27.13.17)

for every β ∈ ∆. If we take µ = νγ in (27.13.16), then we get that

ζνγ ,α = νγ − νγ(hα) να = νγ − n(γ, α) να.(27.13.18)

This means that
ζνγ ,α = νγ − λα(γ) να,(27.13.19)

where λα(γ) ∈ Z is as in Section 27.1.

27.14 Roots and H′

We continue with the discussion of Serre’s theorem, as in the previous sections.
Remember from Section 27.1 that V is a vector space over the real numbers of
positive finite dimension, Φ is a reduced root system in V , and that ∆ is a base
for Φ. Let ΘΦ be the subgroup of V , as a commutative group with respect to
addition, generated by Φ. This is the same as the subgroup of V generated by
∆, which consists of linear combinations of elements of ∆ with coefficients in Z.

If α ∈ Φ, then σα is the symmetry on V with vector α that maps Φ onto
itself, as before. This can be expressed as σα(v) = v − λα(v)α, where λα is a
linear functional on V such that λα(α) = 2 and λα(β) ∈ Z for every β ∈ Φ.
Observe that σα maps ΘΦ onto itself, and that λα maps ΘΦ into Z. If σ is in
the Weyl group W of Φ, then it follows that

σ(ΘΦ) = ΘΦ.(27.14.1)

If γ ∈ ΘΦ, then let νγ be the linear functional on H such that

νγ(hβ) = λβ(γ)(27.14.2)

for every β ∈ ∆. This is equivalent to (27.13.17) when γ ∈ ∆, by (27.1.1). Note
that

γ 7→ νγ(27.14.3)

is a homomorphism from ΘΦ into H′, as commutative groups with respect to
addition. Remember that the νγ ’s, γ ∈ ∆, form a basis for H′ as a vector
space over k, as in Section 27.11. This implies that (27.14.3) is injective on ΘΦ,
because k has characteristic 0.

Let α ∈ ∆ be given, and let θα be the Lie algebra automorphism of L defined
in Section 27.12. If γ ∈ ΘΦ, then ζνγ ,α ∈ H′ can be defined as in (27.13.11).
Using (27.13.16), we get that

ζνγ ,α = νγ − νγ(hα) να = νγ − λα(γ) να.(27.14.4)
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Equivalently, this means that

ζνγ ,α = νσα(γ).(27.14.5)

It follows that
θα(Lνσα(γ)

) = Lνγ ,(27.14.6)

by taking µ = νγ in (27.13.14).
Remember that Lµ is finite-dimensional as a vector space over k for every

µ ∈ H′, as in Section 27.11. Using (27.14.6), we get that

dimLνγ = dimLνσα(γ)
(27.14.7)

for every α ∈ ∆ and γ ∈ ΘΦ. This implies that

dimLνγ = dimLνσ(γ)
(27.14.8)

for every σ ∈ W and γ ∈ ΘΦ. More precisely, this uses the fact that W is
generated by σα with α ∈ ∆, as in Section 19.14. This corresponds to Step (8)
on p100 of [14], and (d) on p54 of [24].

27.15 Some dimensions of eigenspaces

We continue with the same notation and hypotheses as in the previous sections.
Let β ∈ ∆ be given, and let ν̃β be the linear functional on H̃ such that ν̃β(h̃α) =

n(β, α) for every α ∈ ∆, as in (27.5.2). Remember that L̃
ν̃β

consists of the

ũ ∈ L̃ such that [h̃, ũ] = ν̃β(h̃) ũ for every h̃ ∈ H̃, as in (27.5.1). Equivalently,

this means that [h̃α, ũ] = n(β, α) ũ for every α ∈ ∆. In particular, x̃β ∈ L̃
ν̃β
, by

(27.1.11).

In fact, L̃
ν̃β

is spanned by x̃β . Remember that L̃ is spanned by X̃ , H̃, and

Ỹ, and more precisely by elements of L̃
µ̃
for suitable µ̃ ∈ H̃′. Only multiples of

x̃β by elements of k were needed when µ̃ = ν̃β . This implies that L̃
ν̃β

consists

of only multiples of x̃β .

Similarly, if r ∈ Z and r ̸= 0,±1, then L̃
r ν̃β

= {0}. Indeed, If |r| ≥ 2, then

the only elements of L̃
r ν̃β

that would have been needed before were multiples

of [x̃β1
, . . . , x̃β|r| ] or [ỹβ1

, . . . , ỹβ|r| ] with βl = β for l = 1, . . . , |r|, as in Section
27.4. Of course, [x̃β1 , . . . , x̃β|r| ] and [ỹβ1 , . . . , ỹβ|r| ] are equal to 0 in this case. It

follows that 0 is the only element of L̃
r ν̃β

when |r| ≥ 2.

Let νβ be the linear functional on H such that νβ(hα) = n(β, α) for every
α ∈ ∆, as in (27.11.3). Note that ν̃β is the same as the composition of νβ with

the restriction to H̃ of the natural quotient mapping from L̃ onto L. If r ∈ Z,
then the natural quotient mapping from L̃ onto L maps L̃

r ν̃β
onto Lr νβ , as in

(27.11.5). This implies that

Lr νβ = {0} when |r| ≥ 2,(27.15.1)
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by the remarks in the preceding paragraph.
If we take r = 1, then we get that Lνβ is spanned by xβ , because of the

analogous statement for L̃
ν̃β
. Remember that xβ ̸= 0, as in Section 27.10. Thus

dimLνβ = 1.(27.15.2)

This corresponds to Step (9) on p100 of [14], and (e) on p54 of [24].
Let ΘΦ be as in the previous section, and if γ ∈ ΘΦ, then let νγ ∈ H′ be as

in (27.14.2). Remember that this is equivalent to the previous definition when
γ ∈ ∆. If γ ∈ Φ, then there is an element σ of the Weyl group of Φ such that
σ(γ) ∈ ∆, as in Section 19.14. It follows that

dimLνγ = 1,(27.15.3)

by (27.14.8) and (27.15.2).
If r ∈ Z, then r γ ∈ ΘΦ, and r νγ = νr γ . Similarly, νσ(r γ) = νr σ(γ) = r νσ(γ).

If |r| ≥ 2, then we get that
dimLr νγ = 0,(27.15.4)

using (27.14.8) and (27.15.1). This corresponds to Step (10) on p100 of [14],
and (f) on p54 of [24].



Chapter 28

Some more Lie algebras, 2

28.1 Linear combinations of roots

Let us continue with the discussion of Serre’s theorem, as in the previous chap-
ter. We first need an auxiliary result about root systems. Remember that (·, ·)
is an inner product on V that is invariant under the Weyl group of Φ, as in
Section 27.1. If w ∈ V , then let V ′

w be the linear subspace of the dual V ′ of
V consisting of linear functionals on V that are equal to 0 at w, which is a
hyperplane in V ′ when w ̸= 0. Of course, one can use (·, ·) to identify V ′ with
V , and V ′

w with the set of vectors in V that are orthogonal to w.

Suppose that

γ ∈ V is not a multiple of any element of Φ by a real number.(28.1.1)

This implies that γ ̸= 0, and that V ′
γ ̸= V ′

α for each α ∈ Φ. More precisely,
V ′
γ ̸⊆ V ′

α for each α ∈ Φ, so that V ′
γ ∩ V ′

α is a hyperplane in V ′
γ for every α ∈ Φ.

It follows that the union of V ′
γ ∩ V ′

α over α ∈ Φ is a proper subset of V ′
γ , as in

Section 18.12. Equivalently, this means that V ′
γ is not contained in the union

of V ′
α, α ∈ Φ. Let τ be an element of V ′

γ that is not in V ′
α for any α ∈ Φ. Thus

τ ∈ V ′ satisfies

τ(γ) = 0 and τ(α) ̸= 0 for every α ∈ Φ.(28.1.2)

As in Section 19.14, there is an element σ of the Weyl group of Φ such that
τ(σ(β)) ≥ 0 for every β ∈ ∆. This means that

τ(σ(β)) > 0 for every β ∈ ∆,(28.1.3)

because σ(β) ∈ Φ, so that τ(σ(β)) ̸= 0, by (28.1.2). Note that σ(∆) is a basis
for V , because ∆ is a basis for V . Thus we can express γ as

γ =
∑
β∈∆

cβ σ(β)(28.1.4)

596
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for some real numbers cβ , β ∈ ∆. It follows that

0 = τ(γ) =
∑
β∈∆

cβ τ(σ(β)).(28.1.5)

Of course, cβ ̸= 0 for some β ∈ ∆, because γ ̸= 0. In fact, (28.1.5) implies that

cβ > 0 for some β ∈ ∆, and cβ < 0 for some β ∈ ∆,(28.1.6)

because of (28.1.3). This corresponds to Exercise 10 on p54 of [14], and (g) on
p54 of [24].

Suppose now that γ is also an element of the subgroup ΘΦ of V generated
by Φ, as a commutative group with respect to addition. This implies that

σ−1(γ) =
∑
β∈∆

cβ β(28.1.7)

is an element of ΘΦ too, as in (27.14.1), so that cβ ∈ Z for every β ∈ ∆. Let
νγ ∈ H′ be as in (27.14.2), and similarly for νσ−1(γ). Remember that Lµ ⊆ L is
defined for µ ∈ H′ as in (27.11.1). It follows that

dimLνγ = dimLνσ−1(γ)
,(28.1.8)

as in (27.14.8).
As in Section 27.11, Lµ = {0} unless µ = 0, or µ can be expressed as a sum

of νβ ’s, β ∈ ∆, or µ can be expressed as a sum of −νβ ’s, β ∈ ∆. This implies
that

Lνσ−1(γ)
= {0}(28.1.9)

under the conditions described in the previous paragraphs, because of (28.1.6).
This means that

Lνγ = {0},(28.1.10)

by (28.1.8). More precisely, this holds when γ ∈ ΘΦ satisfies (28.1.1). This
corresponds to part of Step (11) on p100 of [14], and of (h) on p54 of [24].

28.2 The dimension of L

Let us continue with the same notation and hypotheses as in the previous sec-
tions. If α ∈ Φ, γ ∈ ΘΦ, and

γ = t α(28.2.1)

for some t ∈ R, then
t ∈ Z.(28.2.2)

This is easy to see when α is an element of a base for Φ, because γ can be
expressed in a unique way as a linear combination of elements of the base, with
coefficients in Z. Remember that Φ is supposed to be reduced as a root system
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in V , as in Section 27.1. This implies that every element of Φ is an element of
a base for Φ, as in Section 19.14.

If (28.2.1) and (28.2.2) hold, then (28.1.10) holds when

|t| ≥ 2,(28.2.3)

as in (27.15.4). Combining this with the remarks in the previous section, we get
that (28.1.10) holds for every γ ∈ ΘΦ such that γ ̸= 0 and γ ̸∈ Φ.

Remember that Lµ = {0} unless µ ∈ H′ satisfies µ = 0, or µ is a sum of νβ ’s,
β ∈ ∆, or µ is a sum of −νβ ’s, β ∈ ∆. In particular, this means that Lµ = {0}
unless µ = νγ for some γ ∈ ΘΦ. It follows from this and the remarks in the
preceding paragraph that Lµ = {0} unless µ = 0, or µ = να for some α ∈ Φ.

Remember that X corresponds to the direct sum of the subspaces Lµ, where
µ ∈ H′ can be expressed as a nontrivial sum of νβ ’s, β ∈ ∆, as a vector space
over k, as in Section 27.11. Similarly, Y corresponds to the direct sum of the
subspaces Lµ, where µ can be expressed as a nontrivial sum of νβ ’s, β ∈ ∆,
as a vector space over k. Let Φ+ = Φ+

∆ be the set of α ∈ Φ that can be
expressed as a linear combination of β ∈ ∆ with nonnegative coefficients, so
that Φ = Φ+ ∪ (−Φ+). Note that ν−α = −να for every α ∈ Φ, by the definition
(27.14.2) of να. Thus X corresponds to the direct sum of the subspaces Lνα ,
α ∈ Φ+, as a vector space over k, and Y corresponds to the direct sum of
the subspaces L−να , α ∈ Φ+, as a vector space over k. These subspaces have
dimension equal to 1, as in (27.15.3). This means that X and Y are finite-
dimensional as vector spaces over k, with dimension equal to the number of
elements of Φ+.

Remember that L corresponds to the direct sum of X , H, and Y as a vector
space over k, as in (27.10.1). We also have that the hα’s, α ∈ ∆, form a basis
for H as a vector space over k, as in Section 27.10. Thus the dimension of H as
a vector space over k is equal to the number of elements of ∆, which is the same
as the dimension of V as a vector space over R. It follows that the dimension
of L, as a vector space over k, is equal to the sum of the number of elements of
Φ and the number of elements of ∆. This corresponds to Step (12) on p100 of
[14], and to (i) on p54 of [24].

28.3 Automorphisms and the Weyl group

We continue with the same notation and hypotheses as in the previous sections.
If α ∈ Φ, then σα is the symmetry on V with vector α that maps Φ onto itself,
as usual. Suppose that α ∈ ∆, and let θα be the automorphism of L associated
to α as in Section 27.12. Remember that θα maps H onto itself, as in (27.13.7).
If µ ∈ H′, then let ζµ,α ∈ H′ be as in (27.13.11), so that ζµ,α(h) = µ(θα(h)) for
every h ∈ H.

Suppose that γ is an element of the subgroup ΘΦ of V , as a commutative
group with respect to addition, generated by Φ. Thus νγ ∈ H′ can be defined
as in (27.14.2), so that ζνγ ,α can be defined as before. Remember that ζνγ ,α =
νσα(γ), as in (27.14.5).
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Let α1, . . . , αr be a finite sequence of elements of ∆, possibly with repetitions.
Thus

σ = σα1
◦ · · · ◦ σαr

(28.3.1)

is an element of the Weyl group of Φ, and

θ = θαr ◦ · · · ◦ θα1(28.3.2)

is a Lie algebra automorphism of L. If µ ∈ H′, then put

ζµ,θ(h) = µ(θ(h))(28.3.3)

for every h ∈ H, which defines a linear functional on H′. Observe that

ζνγ ,θ = νσ(γ),(28.3.4)

because of the analogous statement for σα mentioned in the preceding para-
graph.

If µ ∈ H′, then let Lµ be as in (27.11.1). Observe that h ∈ H and u ∈ L
satisfy

[h, u] = ζµ,θ(h)u(28.3.5)

if and only if

[θ(h), θ(u)] = µ(θ(h)) θ(u).(28.3.6)

This means that

θ(Lζµ,θ
) = Lµ,(28.3.7)

which could also be obtained from (27.13.14). It follows that

θ(Lνσ(γ)
) = Lνγ ,(28.3.8)

by (28.3.4).
If β ∈ ∆, then Lνβ is spanned by xβ , as in Section 27.15. Similarly, one can

check that L−νβ is spanned by yβ . This implies that [Lνβ , L−νβ ] is spanned by
hβ , because of (27.8.5). Remember that xβ , yβ , hβ ̸= 0, as in Section 27.10. The
linear subspace of L spanned by Lνβ , L−νβ , and [Lνβ , L−νβ ] is a Lie subalgebra
of L isomorphic to sl2(k), because of (27.8.5), (27.8.6), (27.8.7) and the fact
that n(β, β) = 2, as in Section 27.1.

If γ ∈ Φ, then there is an element σ of the Weyl group of Φ such that σ(γ)
is contained in ∆, as in Section 19.14. Remember that σ can be expressed
as in (28.3.1), with α1, . . . , αr ∈ ∆, as in Section 19.14, so that we get a Lie
algebra automorphism θ of L as in (28.3.2). This means that (28.3.8) holds,
and similarly

θ(L−νσ(γ)
) = L−νγ .(28.3.9)

It follows that

θ([Lνσ(γ)
, L−νσ(γ)

]) = [θ(Lνσ(γ)
), θ(L−νσ(γ)

)] = [Lνγ , L−νγ ].(28.3.10)
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In particular,
dim[Lνγ , L−νγ ] = 1,(28.3.11)

because [Lνσ(γ)
, L−νσ(γ)

] is one-dimensional as a linear subspace of L, as in the
preceding paragraph.

We also get that the linear subspace of L spanned by Lνγ , L−νγ , and
[Lνγ , L−νγ ] is a Lie subalgebra of L isomorphic to sl2(k). More precisely, this
subspace is the image under θ of the linear subspace of L spanned by Lνσ(γ)

,
L−νσ(γ)

, and [Lνσ(γ)
, L−νσ(γ)

]. The latter subspace of L is a Lie subalgebra iso-
morphic to sl2(k), because σ(γ) ∈ ∆, as before. This corresponds to (j) on p55
of [24].

28.4 Semisimplicity of L

Let us continue with the same notation and hypotheses as in the previous sec-
tions. We would like to show that L is semisimple as a Lie algebra over k. It
suffices to show that if C is an ideal in L that is commutative as a Lie algebra,
then C = {0}, as in Section 9.4.

Remember that L corresponds to the direct sum of the linear subspaces
Lµ, µ ∈ H′, defined in (27.11.1), as a vector space over k. More precisely, L
corresponds to the direct sum of H = L0 and the linear subspaces Lνα , α ∈ Φ,
as in Section 28.2. If h ∈ H, then adh maps C into itself, because C is an
ideal in L. This implies that C corresponds to the direct sum of C ∩H and the
subspaces C ∩ Lνα , α ∈ Φ, as a vector space over k.

If α ∈ Φ, then the linear subspace of L spanned by

Lνα , L−να , and [Lνα , L−να ](28.4.1)

is a Lie subalgebra of L isomorphic to sl2(k) as a Lie algebra over k, as in the
previous section. The intersection of C with this Lie subalgebra is an ideal
in this Lie subalgebra, and hence the intersection is trivial, because sl2(k) is
simple. In particular, C ∩ Lνα = {0} for every α ∈ Φ. It follows that C ⊆ H.

If β ∈ ∆, then xβ ∈ Lνβ , as in Section 27.15. Equivalently, [h, xβ ] = νβ(h)xβ
for every h ∈ H. If h ∈ C, then [h, xβ ] ∈ C, because C is an ideal in L. This
implies that [h, xβ ] = 0 for every h ∈ C, by (27.10.3). Thus νβ(h) = 0 for every
h ∈ C. Remember that the νβ ’s, β ∈ ∆, form a basis for the dual of H, as a
vector space over k, as in Section 27.11. This implies that C = {0}, as desired.
This corresponds to Step (13) on p100 of [14], and (k) on p55 of [24].

Of course, H is commutative as a Lie subalgebra of L, and in particular
H is nilpotent as a Lie algebra. Let us check that H is self-normalizing in L,
which means that H is a Cartan subalgebra of L. Suppose that u ∈ L is in the
normalizer NL(H) of H in L, so that adu maps H into itself. As before, u can
be expressed as the sum of an element of H and elements of Lνα , α ∈ Φ. If the
component of u in Lνα is not equal to 0 for some α ∈ Φ, then the component of
[hα, u] in Lνα is nonzero, and [hα, u] is not contained in H. Thus the component
of u in Lνα is equal to 0 for every α ∈ Φ when u ∈ NL(H). This means that
NL(H) is contained in H, as desired.
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Remember that V is the vector space over the real numbers of positive finite
dimension in which Φ is a root system. Consider the linear subspace of V , as
a vector space over Q, generated by Φ. It is easy to see that the mapping
γ 7→ νγ defined in Section 27.14 extends to an injective linear mapping from the
subspace of V just mentioned into H′, as a vector space over Q.

Remember that Lµ ̸= {0} when µ ∈ H′ and µ ̸= {0} exactly when µ = να
for some α ∈ Φ, as in Section 28.2. Thus we get the usual relationship between
Φ and the set of µ ∈ H′ such that µ ̸= 0 and Lµ ̸= {0}. This corresponds to
Step (14) on p100 of [14], and (l) on p55 of [24].

28.5 An isomorphism theorem

Let V1, V2 be vector spaces over the real numbers of equal positive finite dimen-
sion, and let Φ1, Φ2 be reduced root systems in V1, V2, respectively. If i = 1, 2
and α, β ∈ Φi, then let

ni(α, β) ∈ Z(28.5.1)

be as in (27.1.1), as usual. Let ∆i be a base for Φi for i = 1, 2, and remember
that

−3 ≤ ni(α, β) ≤ 0(28.5.2)

for every α, β ∈ ∆i with α ̸= β, as in (27.1.2).
Let k be a field of characteristice 0, and suppose that (Ai, [·, ·]Ai

) is a finite-
dimensional Lie algebra over k for i = 1, 2 with the following properties. If
i = 1, 2 and α ∈ ∆i, then xi,α, yi,α, and hi,α are elements of Ai. If α, β ∈ ∆i,
then

[hi,α, hi,β ]Ai = 0,(28.5.3)

[xi,α, yi,β ]Ai = δα,β hi,α,(28.5.4)

[hi,α, xi,β ]Ai = ni(β, α)xi,β ,(28.5.5)

[hi,α, yi,β ]Ai = −ni(β, α) yi,β ,(28.5.6)

where δα,β ∈ k is equal to 1 when α = β, and is equal to 0 when α ̸= β, as
usual. If α ̸= β, then

(adAi,xi,α
)−ni(β,α)+1(xi,β) = (adAi,yi,α)

−ni(β,α)+1(yi,β) = 0.(28.5.7)

We also ask that Ai be generated as a Lie algebra over k by

xi,α, yi,α, and hi,α, α ∈ ∆i,(28.5.8)

and that the dimension of Ai as a vector space over k be equal to the sum of
the number of elements of Φi and the number of elements of ∆i.

Of course, the number of elements of ∆i is the same as the dimension of Vi.
Suppose that ϕ is a one-to-one mapping from ∆1 onto ∆2 such that

n2(ϕ(α), ϕ(β)) = n1(α, β)(28.5.9)
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for every α, β ∈ ∆1. Thus ϕ has a unique extension to a one-to-one linear
mapping from V1 onto V2 that maps Φ1 onto Φ2, as in Section 20.2. Conversely,
if a one-to-one linear mapping from V1 onto V2 maps Φ1 onto Φ2 and ∆1 onto
∆2, then its restriction to ∆1 satisfies (28.5.9), as before.

Under these conditions, there is a unique Lie algebra isomorphism from A1

onto A2 with

x1,α 7→ x2,ϕ(α), y1,α 7→ y2,ϕ(α), h1,α 7→ h2,ϕ(α),(28.5.10)

for every α ∈ ∆1. This corresponds to Theorem 8’ on p50 of [24], and to part
(b) of the theorem on p101 of [14]. This is also related to Theorem 7 on p49 of
[24], whose proof is discussed on p55 of [24]. Another approach to isomorphisms
like these is discussed in Section 14.2 of [14].

Note that Serre’s theorem shows that there are Lie algebras with these prop-
erties, as in Sections 27.8 and 28.2. This permits us to reduce to the case where
A1 is as in Serre’s theorem. It follows from the proof of Serre’s theorem that
there is a unique Lie algebra homomorphism from A1 into A2 that satisfies
(28.5.10). This homomorphism is surjective, because A2 is generated by (28.5.8)
with i = 2, as a Lie algebra over k. This homomorphism is injective as well,
because A1 and A2 have the same dimension, as vector spaces over k.

28.6 Some automorphisms

Let V1 be a vector space over the real numbers of positive finite dimension,
and let Φ1 be a reduced root system in V1. Also let n1(α, β) be as before for
α, β ∈ Φ1, and let ∆1 be a base for Φ1. Suppose that (A1, [·, ·]A1) is a finite-
dimensional Lie algebra over a field k of characteristic 0 with the properties
mentioned in the previous section. In particular, A1 should be generated as a
Lie algebra over k by (28.5.8), with i = 1.

In this section, we take V2 = V1, Φ2 = Φ1, and A2 = A1. Thus n2(·, ·) is
the same as n1(·, ·). Let ∆2 be another base for Φ1, and suppose that we have
generators for A1 = A2 as in (28.5.8), with i = 2, and which satisfy the same
conditions as before.

Let ϕ be a one-to-one mapping from ∆1 onto ∆2 such that

n1(ϕ(α), ϕ(β)) = n1(α, β)(28.6.1)

for every α, β ∈ ∆1, which is the same as (28.5.9) in this case. As before,
ϕ has a unique extension to an automorphism of Φ1. Conversely, if T is any
automorphism of Φ1, then ∆2 = T (∆1) is a base for Φ1, and the restriction of
T to ∆1 satisfies (28.6.1).

The isomorphism theorem described in the previous section implies that
there is a unique Lie algebra automorphism of A1 that satisfies (28.5.10). This
is related to the remarks at the beginning of Section 14.3 on p76 of [14].

Remember that the mapping T from V1 onto itself defined by

T (v1) = −v1(28.6.2)
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defines an automorphism of Φ1. In particular,

n1(−α,−β) = n1(α, β)(28.6.3)

for every α, β ∈ Φ1. If α ∈ ∆1, then −α ∈ T (∆1), and we put

x2,−α = −y1,α, y2,−α = −x1,α, h2,−α = −h1,α.(28.6.4)

One can check that x2,−α, y2,−α, and h2,−α, α ∈ ∆1, satisfy the requirements
in the previous section for A1 = A2, using (28.6.3) and the analogous properties
of x1,α, y1,α, and h1,α.

It follows that there is a unique Lie algebra automorphism σ of A1 with

x1,α 7→ −y1,α, y1,α 7→ −x1,α, h1,α 7→ −h1,α(28.6.5)

for every α ∈ ∆1. Observe that σ ◦ σ is the identity mapping on A1, because it
sends the generators x1,α, y1,α, and h1,α to themselves for every α ∈ ∆1. This
corresponds to the corollary to Theorem 7 on p49 of [24], and to the remark
after Theorem 8’ on p50 of [24]. This also corresponds to the proposition on
p77 of [14].

Of course, the identity mapping on V1 is an automorphism of Φ1. Let tα be
a nonzero element of k for every α ∈ ∆1, and put ∆2 = ∆1 and

x2,α = tα x1,α, y2,α = (1/tα) y1,α, h2,α = h1,α(28.6.6)

for every α ∈ ∆1. It is easy to see that x2,α, y2,α, and h2,α, α ∈ ∆1, satisfy
the requirements in the previous section for A1 = A2, using the analogous
properties of x1,α, y1,α, and h1,α. This implies that there is a unique Lie algebra
automorphism of A1 with

x1,α 7→ tα x1,α, y1,α 7→ (1/tα) y1,α, h1,α 7→ h1,α(28.6.7)

for every α ∈ ∆1. This corresponds to the diagonal automorphisms mentioned
on p87 of [14].

Let T be an automorphism of Φ1 such that

T (∆1) = ∆1.(28.6.8)

Put ∆2 = ∆1, and let ϕ be the restriction of T to ∆1. Equivalently, one can
take ϕ to be any one-to-one mapping from ∆1 onto itself that satisfies (28.6.1).
Of course,

x2,α = x1,α, y2,α = y1,α, h2,α = h1,α(28.6.9)

automatically satisfy the requirements in the previous section for A1 = A2, by
hypothesis. Thus there is a unique Lie algebra automorphism of A1 with

x1,α 7→ x1,ϕ(α), y1,α 7→ y1,ϕ(α), h1,α 7→ h1,ϕ(α)(28.6.10)

for every α ∈ ∆1. More precisely, the collection of automorphisms of Φ1 that
satisfy (28.6.8) is a group with respect to composition of mappings, and we get
an injective homomorphism from this group into the automorphism group of
A1. This corresponds to Exercise 6 on p77 of [14].
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28.7 Roots and diagonalizability

Let V be a vector space over the real numbers of positive finite dimension, and
let Φ be a reduced root system in V . As usual, if α ∈ Φ, then we let σα be
the symmetry on V with vector α that maps Φ onto itself. Thus σα can be
expressed as σα(v) = v − λα(v)α, where λα is a linear functional on V with
λα(α) = 2. Remember that λα(β) ∈ Z for every β ∈ Φ, by the definition of a
root system.

Let Θ be the subgroup of V , as a commutative group with respect to ad-
dition, generated by Φ. We would like to consider a Lie algebra (A, [·, ·]A)
over a field k with properties like those mentioned in Sections 22.11, 23.3, 23.4,
and 23.5. In particular, these conditions will hold in the situation described in
Section 22.1, as before.

If α ∈ Φ ∪ {0}, then we ask that Aα be a linear subspace of A, and that
A correspond to the direct sum of Aα, α ∈ Φ ∪ {0}, as a vector space over k.
More precisely, if α ∈ Φ, then we ask that Aα have dimension one. As before,
it is convenient to put Aα = {0} when α ∈ Θ \ (Φ ∪ {0}), and we ask that
[Aα, Aβ ] ⊆ Aα+β for every α, β ∈ Θ.

Let A′
0 be the dual space of linear functionals on A0, as a vector space over

k, as usual. Suppose that ϕ is a group homomorphism from Θ into A′
0, as a

commutative group with respect to addition, such that adw(x) = ϕα(w)x for
every w ∈ A0 and x ∈ Aα, α ∈ Φ ∪ {0}, where ϕα = ϕ(α). In particular, this
implies that A0 is a Lie subalgebra of A that is commutative as a Lie algebra.

Let ∆ be a base for Φ, and let Φ+ = Φ∆,+ be the corresponding set of
positive roots in Φ. If α ∈ ∆, β ∈ Φ+, and α+ β ∈ Φ, then we ask that

[Aα, Aβ ] = Aα+β , [A−α, A−β ] = A−α−β .(28.7.1)

Suppose that xA,α, yA,α are nonzero elements of Aα, A−α, respectively, for each
α ∈ ∆, and put

hA,α = [xA,α, yA,α]A,(28.7.2)

which is an element of A0. We ask that ϕβ(hA,α) = λα(β) · 1 in k for every
α ∈ ∆ and β ∈ Φ, and that the hA,α’s, α ∈ ∆, form a basis for A0.

Under these conditions, A is generated by xA,α, yA,α, hA,α, α ∈ ∆, as a Lie
algebra over k, as in Section 23.4. These generators satisfy the same relations as
in Section 28.5, as discussed in Section 23.5. We also have that the dimension
of A as a vector space over k is equal to the sum of the numbers of elements of
Φ and ∆.

If k has characteristic 0, then all of the conditions mentioned in Section 28.5
are satisfied. It follows that there is a unique Lie algebra isomorphism from the
Lie algebra L obtained from Serre’s theorem in Section 27.8 onto A, with

xα 7→ xA,α, yα 7→ yA,α, hα 7→ hA,α(28.7.3)

for every α ∈ ∆. This corresponds to Theorem 7 on p49 of [24]. This is also
related to Theorems 8 and 8’ on p50 of [24], and part (b) of the theorem on
p101 of [14]. Note that the remarks in the previous section can be used as well
in this case.
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28.8 Quotients of L̃

Let V be a vector space over the real numbers of positive finite dimension again,
and let Φ be a reduced root system in V . Also let σα, λα be as before for every
α ∈ Φ, and put n(α, β) = λβ(α) for every α, β ∈ Φ, as in (27.1.1). Let ∆
be a base for Φ as well, and let k be a field of characteristic 0. Under these
conditions, the Lie algebra L̃ = L̃(k) can be defined as in Section 27.1.

Let (B, [·, ·]B) be a Lie algebra over k with the following properties. If α ∈ ∆,
then there are elements xB,α, yB,α, and hB,α that satisfy the Weyl relations.
This means that for every α, β ∈ ∆, we have that

[hB,α, bB,β ]B = 0,(28.8.1)

[xB,α, yB,β ]B = δα,β hB,α,(28.8.2)

[hB,α, xB,β ]B = n(β, α)xB,β ,(28.8.3)

[hB,α, yB,β ]B = −n(β, α) yB,β .(28.8.4)

Let us also ask that B be generated by xB,α, yB,α, hB,α, α ∈ ∆, as a Lie algebra
over k. Of course, this can be arranged by replacing B with the subalgebra
generated by these elements.

Remember that L̃ is generated by elements x̃α, ỹα, and h̃α, α ∈ ∆, that
satisfy the Weyl relations. More precisely, L̃ was defined to be the quotient of
a suitable free Lie algebra by the ideal corresponding to the Weyl relations. It
follows that there is a unique Lie algebra homomorphism from L̃ onto B with

x̃α 7→ xB,α, ỹα 7→ yB,α, h̃α 7→ hB,α(28.8.5)

for every α ∈ ∆.
Let α, β ∈ ∆ and a nonnegative integer l be given. Observe that

ad
L̃,̃hα

((ad
L̃,x̃α

)l(x̃β)) = (l · n(α, α) + n(β, α)) (ad
L̃,x̃α

)l(x̃β)(28.8.6)

and
ad
L̃,̃hα

((ad
L̃,ỹα

)l(ỹβ)) = −(l · n(α, α) + n(β, α)) (ad
L̃,ỹα

)l(ỹβ),(28.8.7)

by (27.4.2) and (27.4.3), respectively. This implies that

adB,hB,α
((adB,xB,α

)l(xB,β))(28.8.8)

= (l · n(α, α) + n(β, α)) (adB,xB,α
)l(xB,β)

and

adB,hB,α
((adB,yB,α

)l)(yB,β)(28.8.9)

= −(l · n(α, α) + n(β, α)) (adB,yB,α
)l(yB,β).

Of course, these identities could also be obtained more directly, using the same
type of argument.
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Remember that n(α, α) = λα(α) = 2. If, for each l ≥ 0,

(adB,xB,α
)l(xB,β) ̸= 0,(28.8.10)

then it follows that B has infinite dimension as a vector space over k, be-
cause these elements of B are eigenvectors of adB,hB,α

with distinct eigenvalues.
Equivalently, if B has finite dimension as a vector space over k, then

(adB,xB,α
)l(xB,β) = 0(28.8.11)

for some l ≥ 0. Similarly,

(adB,yB,α
)l(yB,β) = 0(28.8.12)

for some l ≥ 0 in this case. This corresponds to the fact that (ii) implies (iii) in
the exercise on p55 of [24], which is related to Execise 3 on p101 of [14].

28.9 Additional identities in B

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let α, β ∈ ∆ be given again, and suppose that α ̸= β. Remember that

ad
L̃,x̃α

((ad
L̃,ỹα

)j(ỹβ)) = j (−n(β, α)− j + 1) (ad
L̃,ỹα

)j−1(ỹβ)(28.9.1)

for every positive integer j, as in (27.7.9). Similarly,

ad
L̃,ỹα

((ad
L̃,x̃α

)j(x̃β)) = j (−n(β, α)− j + 1) (ad
L̃,x̃α

)j−1(x̃β)(28.9.2)

for every positive integer j. This can be obtained from (28.9.1) using the au-

tomorphism σ̃ of L̃ discussed in Section 27.6, which sends x̃γ , ỹγ to −ỹγ , −x̃γ ,
respectively, for each γ ∈ ∆.

It follows that

adB,xB,α
((adB,yB,α

)j(yB,β))(28.9.3)

= j (−n(β, α)− j + 1) (adB,yB,α
)j−1(yB,β)

for every positive integer j, using the Lie algebra homomorphism from L̃ onto
B mentioned in the previous section. Similarly,

adB,yB,α
((adB,xB,α

)j(xB,β))(28.9.4)

= j (−n(β, α)− j + 1) (adB,xB,α
)j−1(xB,β)

for every positive integer j.
Remember that −3 ≤ n(β, α) ≤ 0, as in (27.1.2). If (28.8.11) holds for some

l ≥ 0, then
(adB,xB,α

)−n(β,α)+1(xB,β) = 0.(28.9.5)
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More precisely, this is trivial when

l ≤ −n(β, α) + 1,(28.9.6)

and otherwise one can use (28.9.4). Similarly, if (28.8.12) holds for some l ≥ 0,
then

(adB,yB,α
)−n(β,α)+1(yB,β) = 0,(28.9.7)

because of (28.9.3). This corresponds to the fact that (iii) implies (i) in the
exercise on p55 of [24]. In particular, (28.9.5) and (28.9.7) hold when B has
finite dimension as a vector space over k, by the remarks in the previous section.
This corresponds to Exercise 3 on p101 of [14].

Let L = L(k) be the Lie algebra defined as in Serre’s theorem, in Section 27.8.

Remember that L is a quotient of L̃, and that the natural quotient mapping
sends x̃γ , ỹγ , and h̃γ to xγ , yγ , and hγ , respectively, for each γ ∈ ∆. If (28.9.5)
and (28.9.7) hold for every α, β ∈ ∆ with α ̸= β, then there is a unique Lie
algebra homomorphism from L onto B with

xγ 7→ xB,γ , yγ 7→ yB,γ , hγ 7→ hB,γ(28.9.8)

for every γ ∈ ∆. More precisely, the Lie algebra homomorphism from L̃ onto B
mentioned in the previous section is the same as the composition of the natural
quotient mapping from L̃ onto L with this homomorphism from L onto B. This
shows that any finite-dimensional quotient of L̃ is in fact a quotient of L.

28.10 Eigenspaces in L

Let V be a vector space over the real numbers of positive finite dimension, and
let Φ be a reduced root system in V again. If α, β ∈ Φ, then we let n(α, β) ∈ Z
be as in (27.1.1), and we let ∆ be a base for Φ. Let k be a field of characteristic
0, and let L = L(k) be the Lie algebra over k defined as in Serre’s theorem, in
Section 27.8. Remember that L is generated by the elements xα, yα, and hα
with α ∈ ∆.

Let H be the linear subspace of L spanned by the hα’s, α ∈ ∆, as in Section
27.10. Also let H′ be the dual of H, as a vector space over k. If µ ∈ H′, then
let Lµ be the set of u ∈ L such that

[h, u] = µ(h)u(28.10.1)

for every h ∈ H, as in (27.11.1). If µ1, µ2 ∈ H′, then it is easy to see that

[Lµ1 , Lµ2 ] ⊆ Lµ1+µ2 ,(28.10.2)

using the Jacobi identity. Remember that H = L0, as in (27.11.4).
Let ΘΦ be the subgroup of V , as a commutative group with respect to

addition, generated by Φ, which is the same as the subgroup generated by ∆.
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If γ ∈ ΘΦ, then let νγ be the linear functional defined on H as in (27.14.2). If
γ ∈ Φ, then

νγ(hβ) = n(γ, β)(28.10.3)

for every β ∈ ∆, because of (27.1.1). Remember that γ 7→ νγ is a homomorphism
from ΘΦ into H′, as commutative groups with respect to addition.

If γ ∈ Φ, then Lνγ has dimension one as a vector space over k, as in Section
27.15. Let γ ∈ Φ be given, and let σ be an element of the Weyl group of Φ
such that σ(γ) ∈ ∆, as in Section 19.14. This leads to an automorphism θ of
L, as in Section 28.3. By construction, θ maps Lνσ(γ)

, L−νσ(γ)
onto Lνγ , L−νγ ,

respectively, and thus [Lνσ(γ)
, L−νσ(γ)

] onto [Lνγ , L−νγ ], as before.
Remember that [Lνσ(γ)

, L−νσ(γ)
] is spanned by hσ(γ), because σ(γ) ∈ ∆. Put

hγ = θ(hσ(γ)),(28.10.4)

which is an element of [Lνγ , L−νγ ]. In fact, [Lνγ , L−νγ ] is spanned by hγ , because
[Lνσ(γ)

, L−νσ(γ)
] is spanned by hσ(γ).

If α ∈ ΘΦ, then

να(hγ) = να(θ(hσ(γ))) = νσ(α)(hσ(γ)),(28.10.5)

using (28.3.4) in the second step. If α ∈ Φ, then σ(α) ∈ Φ, then we get that

να(hγ) = n(σ(α), σ(γ)),(28.10.6)

by (28.10.3), and because σ(γ) ∈ ∆. This implies that

να(hγ) = n(α, γ),(28.10.7)

because σ is an automorphism of Φ, as in Section 20.2.
In particular,

νγ(hγ) = 2,(28.10.8)

by the definition of n(γ, γ), as in (27.1.1). It follows that hγ does not depend
on the choice of σ. More precisely, this also uses the fact that [Lνγ , L−νγ ] is
spanned by hγ , as before.

If γ1, γ2 ∈ Φ and γ1 + γ2 ∈ Φ, then

[Lνγ1 , Lνγ2 ] = Lνγ1+γ2
.(28.10.9)

Remember that L is semisimple, as in Section 28.4. This permits us to use
many of the remarks in Chapter 17, although a number of these properties
have already been established. In particular, (28.10.9) was discussed in Section
17.9. Remember that if γ ∈ Φ, then the linear subspace of L spanned by Lνγ ,
L−νγ , and [Lνγ , L−νγ ] is a Lie subalgebra of L that is isomorphic to sl2(k), as
in Section 28.3.

Let α ∈ ∆ be given, and remember that xα ∈ Lνα , yα ∈ L−να , by construc-
tion. If γ ∈ Φ and α+γ ∈ Φ, then the restriction of adxα to Lνγ is a one-to-one
mapping onto Lνα+γ

. Similarly, the restriction of adyα to L−νγ is a one-to-one
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mapping onto L−να+γ . This is the same as (28.10.9) with γ1 = α, γ2 = γ and
γ1 = −α, γ2 = −γ, respectively, as in Section 17.9. Note that the fact that
the linear subspace of L spanned by xα, yα, and hα is a Lie subalgebra of L
isomorphic to sl2(k) can be verified more directly, as in Section 28.3.

If u1, . . . , ur ∈ L for some r ≥ 2, then put

[u1, . . . , ur] = [u1, [u2, . . . [ur−1, ur] . . .]],(28.10.10)

as before. Let α1, . . . , αr be a finite sequence of elements of ∆, possible with
repetitions, such that

l∑
j=1

αj ∈ Φ(28.10.11)

for every l = 1, . . . , r. If r ≥ 2, then we get that

[xα1
, . . . , xαr

] ̸= 0(28.10.12)

and
[yα1

, . . . , yαr
] ̸= 0,(28.10.13)

as in the preceding paragraph.

28.11 Subsets of ∆

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let ∆0 be a nonempty subset of ∆, and let V0 be the linear subspace of
V spanned by ∆0. Remember that

Φ0 = Φ ∩ V0(28.11.1)

is a root system in V0, as in Section 20.6. If α, β ∈ Φ0, then the analogue
n0(α, β) of (27.1.1) for Φ0 is the same as n(α, β), as in Section 20.15. Note that
∆0 is a base for Φ0, as before.

Let L0 = L0(k) be the Lie algebra over k defined as in Serre’s theorem in
Section 27.8, using Φ0 and ∆0. More precisely, if α ∈ ∆0, then let x0,α, y0,α, and
h0,α be the corresponding generators in L0, as before. These generators satisfy
the same relations in L0 as their analogues in L, because n0(α, β) = n(α, β) for
every α, β ∈ ∆0.

The construction used in Serre’s theorem implies that there is a unique Lie
algebra homomorphism from L0 into L with

x0,α 7→ xα, y0,α 7→ yα, h0,α 7→ hα,(28.11.2)

for every α ∈ ∆0. This homomorphism maps L0 onto the Lie subalgebra of
L generated by xα, yα, hα, with α ∈ ∆0. We would like to check that this
homomorphism is injective. This corresponds to Exercise 8 on p101 of [14].

It suffices to show that the dimension of the Lie subalgebra of L generated
by xα, yα, hα, α ∈ ∆0, is at least the dimension of L0. To do this, it is enough
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to verify that if γ ∈ Φ0, then Lνγ is contained in this subalgebra of L. This is
clear when γ ∈ ∆0 or −γ ∈ ∆0.

Let γ ∈ Φ0 be a positive root with respect to ∆0, so that γ can be expressed
as a linear combination of elements of ∆0 with nonnegative coefficients. Remem-
ber that γ can be expressed as

∑r
j=1 αj , where αj ∈ ∆0 for every j = 1, . . . , r,

and
l∑

j=1

αj ∈ Φ0(28.11.3)

for every l = 1, . . . , r, as in Section 19.12. Suppose that γ ̸∈ ∆0, so that r ≥ 2.
Observe that

[xα1 , . . . , xαr ](28.11.4)

and
[yα1 , . . . , yαr ](28.11.5)

are elements of this subalgebra of L. These are also elements of Lνγ and L−νγ ,
respectively.

Remember that (28.11.4) and (28.11.5) are nonzero under these conditions,
as in the previous section. It follows that Lνγ and L−νγ are spanned by (28.11.4)
and (28.11.5), respectively, because Lνγ and L−νγ are one-dimensional linear
subspaces of L, as in Section 27.15. This implies that Lνγ and L−νγ are con-
tained in this subalgebra of L, as desired.



Chapter 29

Chevalley’s normalization

29.1 Linearly independent roots

Let V be a vector space over the real numbers of positive finite dimension, and
let Φ be a reduced root system in V . As usual, if α ∈ Φ, then we let σα be the
symmetry on V with vector α that maps Φ onto itself. Let (·, ·) be an inner
product on V that is invariant under the Weyl group of Φ, so that σα is the
reflection on V with respect to (·, ·) associated to α for every α ∈ Φ. If α, β ∈ Φ,
then

n(β, α) = 2 (β, α) (α, α)−1 ∈ Z,(29.1.1)

as before.
Suppose that α, β ∈ Φ are linearly independent in V , which is to say that

they are not proportional in V . Let r, q be the largest nonnegative integers
such that

β − r α, β + q α ∈ Φ,(29.1.2)

as in Section 20.5. Remember that

2 (β, α) (α, α)−1 = r − q,(29.1.3)

as in (20.5.10). This corresponds to part (a) of the proposition on p145 of [14],
and was also mentioned on p45 of [14].

Let V1 be the linear subspace of V spanned by α and β, and let Φ1 be the set
of elements of Φ that can be expressed as a linear combination of α and β with
integer coefficients. Note that if the sum of two elements of Φ1 is an element of
Φ, then the sum is also an element of Φ1. It follows that Φ1 is a root system in
V1, as in Section 20.6. More precisely, Φ1 is reduced, because Φ is reduced, by
hypothesis. This corresponds to Exercise 7 on p46 of [14], as before.

Under these conditions, there are at most two possible values for the norms
of elements of Φ1 with respect to (·, ·), as in part (b) of the proposition on p145
of [14], and its proof. More precisely, this follows from the remarks in Section
20.7 when Φ1 is irreducible in V1. Otherwise, if Φ1 is reducible, then it consists

611
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of only ±α, ±β, because Φ1 is reduced. In this case, it is clear that there are
at most two possible values for the norms of elements of Φ1.

If α+ β ∈ Φ, then part (c) of the proposition on p145 of [14] states that

r + 1 = q (α+ β, α+ β) (β, β)−1.(29.1.4)

To see this, we first use (29.1.3) to get that

r + 1− q (α+ β, α+ β) (β, β)−1

= q + 2 (β, α) (α, α)−1 + 1− q (α+ β, α+ β) (β, β)−1(29.1.5)

= 2 (β, α) (α, α)−1 + 1− q (α, α) (β, β)−1 − 2 q (α, β) (β, β)−1.

If we put

A = 2 (β, α) (α, α)−1 + 1,(29.1.6)

B = 1− q (α, α) (β, β)−1,(29.1.7)

then the right side of (29.1.5) is the same as AB. Thus it suffices to show that
A = 0 or B = 0.

Remember that
n(β, α)n(α, β) = 0, 1, 2, or 3,(29.1.8)

because α and β are not proportional in V , as in Section 19.9. Suppose for the
moment that

(α, α) ≥ (β, β),(29.1.9)

so that
|n(β, α)| ≤ |n(α, β)|.(29.1.10)

This implies that
|n(β, α)| = 0 or 1,(29.1.11)

by (29.1.8). If n(β, α) = −1, then A = 0, as desired.
Otherwise, if n(β, α) = 0 or 1, then (β, α) ≥ 0. This implies that

(β + α, β + α) > (α, α), (β, β).(29.1.12)

Note that α+ β ∈ Φ1, because α+ β ∈ Φ, by hypothesis. It follows that

(α, α) = (β, β)(29.1.13)

in this case, because there are at most two possible values for the norms of
elements of Φ1, as before.

Similarly,
(β + 2α, β + 2α) > (β + α, β + α),(29.1.14)

because (β, α) ≥ 0. This implies that β + 2α ̸∈ Φ1, because there are at most
two possible values of the norms of elements of Φ1. This means that β+2α ̸∈ Φ.
Remember that β + j α ∈ Φ when j ∈ Z and −r < j < q, as in Section 20.5. It
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follows that q ≤ 1, by the definition q. Thus q = 1, because α + β ∈ Φ. This
implies that B = 0, because of (29.1.13).

Suppose now that
(α, α) < (β, β).(29.1.15)

Observe that
(α+ β, α+ β) = (α, α) or (β, β),(29.1.16)

because α+ β ∈ Φ1, and there are at most two possible values for the norms of
elements of Φ1. This implies that (α, β) < 0, so that

n(α, β) < 0.(29.1.17)

We also get that
(β − α, β − α) > (β, β).(29.1.18)

It follows that β − α ̸∈ Φ, because otherwise β − α would be an element of Φ1,
and have the same norm as α or β.

This shows that r = 0, because β + j α ∈ Φ when j ∈ Z and −r < j < q, as
before. Using (29.1.15) and the fact that (α, β) ̸= 0, we obtain that

|n(α, β)| < |n(β, α)|.(29.1.19)

Combining this with (29.1.8), we get that n(α, β) = −1, 0, or 1. This means
that

n(α, β) = −1,(29.1.20)

because of (29.1.17).
Because r = 0, (29.1.3) reduces to saying that q = −n(β, α). Equivalently,

q =
n(β, α)

n(α, β)
,(29.1.21)

by (29.1.20). This implies that

q =
(β, β)

(α, α),
(29.1.22)

by the definition of n(·, ·). It follows that B = 0 in this case as well.

29.2 An identity for root strings

Let V be a vector space over the real numbers of positive finite dimension, and
let Φ be a root system in V . Also let (·, ·) be an inner product on V that
is invariant under the Weyl group of Φ, and suppose that α, β ∈ Φ are not
proportional in V . As before, we take r, q to be the largest nonnegative integers
such that β − r α, β + q α ∈ Φ. Similarly, let r′, q′ be the largest nonnegative
integers such that

α− r′ β, α+ q′ β ∈ Φ.(29.2.1)
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Thus
2 (α, β) (β, β)−1 = r′ − q′,(29.2.2)

as in (29.1.3) and Section 20.5. We would like to check that

q (r + 1) (β, β)−1 = q′ (r′ + 1) (α, α)−1,(29.2.3)

as in Exercise 10 on p47 of [14]. This is mentioned in Exercise 3 on p150 of [14]
as well.

Remember that β + j α ∈ Φ for every integer j with −r ≤ j ≤ q, as in
Section 20.5. Similarly, if l ∈ Z and −r′ ≤ l ≤ q′, then α+ l β ∈ Φ.

It follows that q = 0 if and only if α+ β ̸∈ Φ. Of course, q′ = 0 if and only
if α+β ̸∈ Φ too, for the same reason. Thus q = 0 if and only if q′ = 0, in which
case (29.2.3) holds trivially.

Similarly, r = 0 if and only if β − α ̸∈ Φ. The same argument shows that
r′ = 0 if and only if α− β ̸∈ Φ. Of course, α− β ∈ Φ if and only if β − α ∈ Φ.
This means that r = 0 if and only if r′ = 0. In this case, (29.2.3) follows from
(29.1.3) and (29.2.2).

Thus we may suppose from now on that q, q′, r, r′ ≥ 1. Remember that

q + r, q′ + r′ ≤ 3,(29.2.4)

as in Section 20.5.
Observe that q = r if and only if (α, β) = 0, by (29.1.3). Similarly, q′ = r′ if

and only if (α, β) = 0. Under these conditions, we get that q = r = q′ = r′ = 1,
because of (29.2.4). Thus it suffices to verify that (α, α) = (β, β), to get (29.2.3).

Remember that α+ β ∈ Φ, because q, q′ ≥ 1. We also have that

(α, α+ β) = (α, α), (β, α+ β) = (β, β)(29.2.5)

and
(α+ β, α+ β) = (α, α) + (β, β),(29.2.6)

because (α, β) = 0. In particular,

max((α, α), (β, β)) < (α+ β, α+ β) ≤ 2 max((α, α), (β, β)).(29.2.7)

Note that α+ β is not proportional to either α or β in V .
Using the remarks in Section 19.9, we obtain that (α + β, α + β) is either

1, 2, or 3 times (α, α), and similarly for (β, β). In fact, (α + β, α + β) has
to be 2 times (α, α) or (β, β), because of (29.2.7). In either case, we get that
(α, α) = (β, β), as desired.

Suppose now that (α, β) ̸= 0, so that q ̸= r and q′ ̸= r′. It follows that

|q − r| = |q′ − r′| = 1,(29.2.8)

because of (29.2.4). This implies that (α, α) = (β, β), because of (29.1.3) and
(29.2.2). Using this and (29.1.3), (29.2.2) again, we get that

r − q = r′ − q′.(29.2.9)

One can use this and (29.2.4) to verify that q = q′ and r = r′. More precisely,
either q = q′ is equal to 1 and r = r′ is equal to 2, or the other way around.
This implies (29.2.3), because (α, α) = (β, β).
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29.3 Related properties of λα’s

Let V be a vector space over the real numbers of positive finite dimension again,
and let Φ be a root system in V . If α ∈ Φ, then the symmetry σα on V with
vector α that maps Φ onto itself can be expressed as σα(v) = v−λα(v)α, where
λα is a linear functional on V such that λα(α) = 2, as usual. Let (·, ·) be an
inner product on V that is invariant under the Weyl group of Φ, so that σα is
the reflection on V with respect to (·, ·) associated to α for every α ∈ Φ. This
means that λα(v) = 2 (v, α) (α, α)−1 for every α ∈ Φ and v ∈ V , as before.

Suppose that α, β ∈ Φ are not proportional in V , and let r, q, r′, q′ ≥ 0 be
as in the previous section. If we multiply both sides of (29.2.3) by 2 (α, β), then
we get that

q (r + 1)λβ(α) = q′ (r′ + 1)λα(β).(29.3.1)

If (α, β) = 0, then λα(β) = λβ(α) = 0, q = q′, and r = r′, as in the previous
section.

Suppose now that Φ is a reduced root system, and that α + β ∈ Φ too. If
v ∈ V , then

λα+β(v) = 2 (α+ β, α+ β)−1 (v, α+ β)

= (α+ β, α+ β)−1 (α, α)λα(v) + (α+ β, α+ β)−1 (β, β)λβ(v).(29.3.2)

It follows that

λα+β(v) = q′ (r′ + 1)−1 λα(v) + q (r + 1)−1 λβ(v)(29.3.3)

for every v ∈ V , using (29.1.4) and its analogue for q′, r′. Note that λα and
λβ are not proportional as linear functionals on V , because α and β are not
proportional in V . Thus the coefficients of λα and λβ on the right side of
(29.3.3) are uniquely determined by this condition.

29.4 Associated Lie algebras

Let V be a vector space over the real numbers of positive finite dimension again,
and let Φ be a reduced root system in V . If α ∈ Φ, then the symmetry σα on V
with vector α that maps Φ onto itself can be expressed as σα(v) = v− λα(v)α,
where λα is a linear functional on V with λα(α) = 2. If α, β ∈ Φ, then

n(β, α) = λα(β) ∈ Z,(29.4.1)

by the definition of a root system. Of course, this is the same as (29.1.1), where
(·, ·) is an inner product on V that is invariant under the Weyl group. Let Θ
be the subgroup of V , as a commutative group with respect to addition, that is
generated by Φ.

Let k be a field of characteristic 0. We would like to consider a Lie algebra
(A, [·, ·]A) over k as in Serre’s theorem in Section 27.8, or equivalently as in
Section 28.7. Thus, if α ∈ Φ ∪ {0}, then we ask that Aα be a linear subspace
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of A, and that A correspond to the direct sum of Aα, α ∈ Φ ∪ {0}, as a vector
space over k. Put Aα = {0} when α ∈ Θ \ (Φ ∪ {0}), so that we may ask that
[Aα, Aβ ] ⊆ Aα+β for every α, β ∈ Θ. We also ask that Aα have dimension one
as a vector space over k when α ∈ Φ.

As usual, A′
0 denotes the dual space of linear functionals on A0, as a vector

space over k. We ask that there be a group homomorphism ϕ from Θ into A′
0,

as a commutative group with respect to addition, such that adw(x) = ϕα(w)x
for every w ∈ A0, x ∈ Aα, and α ∈ Φ ∪ {0}, where ϕα = ϕ(α). Of course, this
implies that A0 is a Lie subalgebra of A that is commutative as a Lie algebra.

If α, β ∈ Φ and α+ β ∈ Φ, then we ask that

[Aα, Aβ ] = Aα+β .(29.4.2)

We also ask that for each α ∈ Φ there be an element hα of [Aα, A−α] ⊆ A0 such
that

ϕβ(hα) = λα(β)(29.4.3)

for every β ∈ Φ. In particular, this means that ϕα(hα) = 2 · 1 = 1 + 1 in
k, which is not zero, because k has characteristic zero. Of course, [Aα, A−α]
has dimension at most one as a vector space over k, because Aα, A−α are one-
dimensional. It follows that [Aα, A−α] is the one-dimensional linear subspace of
A spanned by hα, and that hα is uniquely determined by (29.4.3), with β = α.

Let ∆ be a base for Φ. We ask that hα, α ∈ ∆, be a basis for A0, as a
vector space over k. If A is as in Section 22.1, then conditions like these were
discussed in Section 22.11. We also have that A is isomorphic to the Lie algebra
obtained as in Serre’s theorem in Section 27.8, as discussed in Section 28.7.
If A is obtained as in Serre’s theorem, then conditions like these follow from
properties discussed in Sections 27.11, 27.15, 28.2, and 28.10.

If β ∈ Φ, then (29.4.3) defines a k-valued function of α ∈ ∆, which is the
same as (27.3.9) when β ∈ ∆. The collection of these functions with β ∈ ∆ is
a basis for the space of k-valued functions on ∆, as a vector space over k, as in
Section 27.3. This means that ϕβ , β ∈ ∆, is a basis for A′

0 as a vector space
over k. If A is as in Section 22.1, then this can be obtained from the facts that
A′

0 is spanned by ϕβ , β ∈ ∆, as a vector space over k, and the dimension of A′
0

is the same as the number of elements of ∆, which is the dimension of V . If
h ∈ A0, then it follows that h is uniquely determined by ϕβ(h), β ∈ ∆.

Remember that Θ is the same as the subgroup of V , as a commutative
group with respect to addition, generated by ∆. The remark in the preceding
paragraph implies that ϕ is injective as a mapping from Θ into A′

0. This also
uses the hypothesis that k have characteristic 0. If α ∈ Φ ∪ {0}, then one
can use the previous statement to get that Aα consists of all x ∈ A such that
adw(x) = ϕα(w)x for every w ∈ A0.

If α ∈ Φ, then λα is an element of the dual V ′ of V , as a vector space over
R. The set Φ′ of λα, α ∈ Φ, is a root system in V ′, as in Section 19.8. The set
∆′ of λα, α ∈ ∆, is a base for Φ′, as in Section 19.13, and because Φ is reduced,
by hypothesis. Thus, if γ ∈ Φ, then λγ can be expressed as a linear combination
of λα, α ∈ ∆, with coefficients in Z.
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If γ ∈ Φ, then it follows that hγ can be expressed as a linear combination of
hα, α ∈ ∆, with the same coefficients in Z as in the preceding paragraph. This
uses (29.4.3), and the fact that hγ is uniquely determined by ϕβ(hγ), β ∈ ∆, as
before.

29.5 A lemma about brackets

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Also let α, β ∈ Φ be given, and suppose that α, β are not proportional in
V . Let r, q be the largest nonnegative integers such that β − r α and β + q α
are elements of Φ, as before. It follows that

β + j α ∈ Φ(29.5.1)

for every j ∈ Z with −r ≤ j ≤ q, as in Section 20.5.
Suppose that xα ∈ Aα and x−α ∈ A−α satisfy

[xα, x−α]A = hα.(29.5.2)

Of course, this implies that xα, x−α ̸= 0, and (29.5.2) can always be arranged
by multiplying xα or x−α by a suitable element of k. If xβ ∈ Aβ , then

[x−α, [xα, xβ ]A]A = q (r + 1)xβ .(29.5.3)

This corresponds to the lemma on p146 of [14].
Note that [xα, xβ ]A ∈ Aα+β , so that the left side of (29.5.3) is an element of

Aβ . If α + β ̸∈ Φ, then Aα+β = {0}, which means that [xα, xβ ]A = 0. We also
have that q = 0 in this case, so that (29.5.3) holds.

Let E be the linear subspace of A spanned by Aβ+j α, j ∈ Z. More precisely,
we may as well restrict our attention to −r ≤ j ≤ q, because otherwise β + j α
is not in Φ, and Aβ+j α = {0}. We also have that E corresponds to the direct
sum of Aβ+j α, −r ≤ j ≤ q, because A corresponds to the direct sum of Aγ ,
γ ∈ Φ ∪ {0}, as a vector space over k. It follows that

dimE = q + r + 1(29.5.4)

as a vector space over k, because Aγ is one-dimensional for every γ ∈ Φ.
The linear span of xα, x−α, and hα in A is a Lie subalgebra of A that is

isomorphic to sl2(k). If we consider A as a module over this subalgebra, then
E is a submodule of A. This is basically the same as in Section 17.9, with
yα = x−α.

The weights of hα on E are given by

ϕβ+j α(hα) = ϕβ(hα) + j ϕα(hα) = ϕβ(hα) + 2 j,(29.5.5)

with −r ≤ j ≤ q. One can verify that E is irreducible as a module over sl2(k),
as in Section 17.9.

Under these conditions, E is as in Section 15.3 as a module over sl2(k), with
m = q + r, as in Section 17.9. To get (29.5.3), one can consider vq in Section
15.3, as on p146 of [14].
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29.6 Some remarks about automorphisms

Let us continue with the same notation and hypotheses as in Section 29.4.
Suppose that σ is a Lie algebra automorphism of A such that

σ(w) = −w(29.6.1)

for every w ∈ A0. Let w ∈ A0 and x ∈ A be given, and observe that

[w, σ(x)]A = −[σ(w), σ(x)]A = −σ([w, x]A).(29.6.2)

Also let α ∈ Φ be given, and note that ϕ−α(w) = −ϕα(w). It follows that
[w, x]A = ϕα(w)x if and only if

[w, σ(x)]A = ϕ−α(w)σ(x).(29.6.3)

This implies that
σ(Aα) = A−α,(29.6.4)

because Aα consists of all x ∈ A such that adw(x) = ϕα(w)x for every w ∈ A0,
as in Section 29.4, and similarly for −α. Of course, (29.6.4) holds for α = 0 too,
by hypothesis.

Let xα ∈ Aα and yα ∈ A−α be given, with xα, yα ̸= 0. Observe that there
are ξα, ηα ∈ k such that

σ(xα) = ξα yα, σ(yα) = ηα xα,(29.6.5)

because of (29.6.4) and the analogous statement for −α. This also uses the
fact that Aα, A−α are one-dimensional linear subspaces of A, and we have that
ξα, ηα ̸= 0, because σ is injective on A. It follows that

σ([xα, yα]A) = [σ(xα), σ(yα)]A = −ξα ηα [xα, yα]A.(29.6.6)

Remember that [xα, yα]A ∈ A0, so that

σ([xα, yα]A) = −[xα, yα]A,(29.6.7)

by (29.6.1).
Note that [xα, yα]A ̸= 0, because [Aα, A−α]A is one-dimensional as a linear

subspace of A. Thus we get that

ξα ηα = 1(29.6.8)

in k. This implies that

σ(σ(xα)) = xα, σ(σ(yα)) = yα.(29.6.9)

It follows that σ ◦ σ is the identity mapping on A, because α ∈ Φ is arbitrary,
and using (29.6.1) on A0. Remember that an automorphism on A with these
properties was discussed in Section 28.6.



29.7. DIAGONAL AUTOMORPHISMS 619

Let α ∈ Φ be given again, and let xα be a nonzero element of Aα. Also let
ζα be a nonzero element of k, and put

zα = ζα xα, z−α = −σ(zα) = −ζα σ(xα).(29.6.10)

Thus
[zα, z−α]A = −ζ2α [xα, σ(xα)]A,(29.6.11)

and [xα, σ(xα)]A ̸= 0, as before. If k is algebraically closed, then we can choose
ζα so that

[zα, z−α]A = hα.(29.6.12)

Note that −ζα would also work, and that only these two elements of k would
have this property.

29.7 Diagonal automorphisms

We continue with the same notation and hypotheses as in Section 29.4. Suppose
now that τ is a Lie algebra automorphism of A such that

τ(w) = w(29.7.1)

for every w ∈ A0. If w ∈ A0 and x ∈ A, then

[w, τ(x)]A = [τ(w), τ(x)]A = τ([w, x]A).(29.7.2)

If α ∈ Φ, then it follows that [w, x]A = ϕα(w)x if and only if

[w, τ(x)]A = ϕα(w) τ(x).(29.7.3)

This means that
τ(Aα) = Aα(29.7.4)

for every α ∈ Φ, as before.
In this case, τ is said to be a diagonal automorphism of A, as on p87 of

[14]. If α ∈ Φ, then there are nonzero elements τα, τ−α such that τ corresponds
to multiplication by τα, τ−α on Aα, A−α, respectively, because Aα, A−α are
one-dimensional linear subspaces of A. It is easy to see that

τα τ−α = 1,(29.7.5)

because [Aα, A−α] is a nontrivial linear subspace of A0.
Of course, any Lie algebra automorphism of A is uniquely determined by its

values on a set of generators of A as a Lie algebra over k. If A is as in Serre’s
theorem in Section 27.8, then the diagonal automorphisms of A can be obtained
as in Section 28.6.

Let σ be a Lie algebra automorphism of A that satisfies (29.6.1), and thus
(29.6.4) for every α ∈ Φ. If τ is a diagonal automorphism of A, then one can
check that

σ ◦ τ = τ−1 ◦ σ.(29.7.6)
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Observe that σ ◦ τ is a Lie algebra automorphism of A that sends every w ∈ A0

to −w. If σ̃ is any Lie algebra automorphism of A that sends every w ∈ A0 to
−w, then

σ−1 ◦ σ̃(29.7.7)

is a diagonal automorphism on A.
Let τ be a diagonal automorphism on A again, and for each α ∈ Φ, let τα

be the nonzero element of k such that τ corresponds to multiplication by τα on
Aα, as before. Similarly, we may as well put τ0 = 1. If α, β ∈ Φ and α+ β ∈ Φ,
then it is easy to see that

τα+β = τα τβ ,(29.7.8)

because [Aα, Aβ ] = Aα+β ̸= {0}.
Let ∆ be a base for Φ, and let β ∈ Φ be given. We would like to check

that τβ is uniquely determined by the values of τα with α ∈ ∆. Suppose first
that β is a positive root with respect to ∆, so that β can be expressed as a
linear combination of elements of ∆ with nonnegative coefficients. Remember
that β can be expressed

∑r
j=1 αj , where αj ∈ ∆ for every j = 1, . . . , r, and∑l

j=1 αj ∈ Φ for every l = 1, . . . , r, as in Section 19.12. This implies that

τβ = τα1 · · · ταr ,(29.7.9)

by (29.7.8). Otherwise, if −β is a positive root, then one can reduce to the
previous case, using (29.7.5).

Let Θ be the subgroup of V , as a commutative group with respect to ad-
dition, generated by Φ, which is the same as the subgroup of V generated by
∆. Every mapping from ∆ into k \ {0} has a unique extension to a group ho-
momorphism from Θ into the multiplicative group of nonzero elements of k. In
particular, α 7→ τα, α ∈ ∆, has a unique extension to a group homomorphism
from Θ into k \ {0}. If β ∈ Φ, then τβ is the same as the value of this extension
at β, by the remarks in the preceding paragraph. Conversely, every group ho-
momorphism from Θ into k \ {0} corresponds to a diagonal automorphism on
A in this way.

29.8 Basis vectors in A

Let us continue with the same notation and hypotheses as in Section 29.4. As
before, we let ∆ be a base for Φ, and ask that hα, α ∈ ∆, be a basis for A0, as
a vector space over k. Let zα be a nonzero element of Aα for each α ∈ Φ. Note
that the collection of zα’s, α ∈ Φ, together with hα, α ∈ ∆, is a basis for A as
a vector space over k.

If α, β ∈ Φ and α+β ∈ Φ, then there is a unique element cα,β of k such that

[zα, zβ ]A = cα,β zα+β ,(29.8.1)

because [zα, zβ ]A is an element of Aα+β , which is spanned by zα+β . Of course, if
α, β ∈ Φ and α+β ̸∈ Φ∪{0}, then [zα, zβ ]A = 0, because [zα, zβ ] ∈ Aα+β = {0}.
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Observe that
[hα, zβ ]A = ϕβ(hα) zβ = λα(β) zβ(29.8.2)

for every α, β ∈ Φ, as in Section 29.4. If γ ∈ Φ, then hγ can be expressed as a
linear combination of hα, α ∈ ∆, with coefficients in Z obtained from the dual
root system Φ′, as in Section 29.4.

As in Section 28.6, there is a Lie algebra automorphism σ on A such that
σ(w) = −w for every w ∈ A0, and σ ◦σ is the identity mapping on A. It follows
that σ(Aα) = A−α for every α ∈ Φ, as in Section 29.6. Let Φ+ be the set of
positive roots with respect to ∆, which is to say the set of α ∈ Φ that can be
expressed as linear combinations of elements of ∆ with nonnegative coefficients.

Suppose for the moment that k is algebraically closed. If α ∈ Φ+, then there
is a nonzero element zα of Aα such that

z−α = −σ(zα)(29.8.3)

satisfies
[zα, z−α]A = hα,(29.8.4)

as in Section 29.6. Note that z−α is a nonzero element of A−α. By doing this
for every α ∈ Φ+, we get a nonzero element zα of Aα for every α ∈ Φ. We also
have that the analogues of (29.8.3) and (29.8.4) hold with α replaced with −α,
because σ ◦ σ is the identity mapping on A, and h−α = −hα.

Let zα be a nonzero element of Aα for each α ∈ Φ again, and suppose that
(29.8.4) holds for every α ∈ Φ. Also let cα,β ∈ k be defined for α, β ∈ Φ with
α + β ∈ Φ as in (29.8.1), as before. Note that [·, ·]A is uniquely determined on
A by the cα,β ’s under these conditions.

Suppose that (29.8.3) holds for every α ∈ Φ. If α, β ∈ Φ and α + β ∈ Φ,
then

[z−α, z−β ]A = [−σ(zα),−σ(zβ)]A = σ([zα, zβ ]A)

= cα,β σ(zα+β) = −cα,β z−α−β .(29.8.5)

Of course, −α,−β,−α− β ∈ Φ in this case, so that

[z−α, z−β ]A = c−α,−β z−α−β ,(29.8.6)

as in (29.8.1). It follows that

c−α,−β = −cα,β(29.8.7)

for every α, β ∈ Φ with α + β ∈ Φ. This corresponds to Theorem 10 on p51 of
[24], and to parts (a) and (b) of the proposition on p146 of [14].

Let zα be a nonzero element of Aα for each α ∈ Φ again, and suppose that
(29.8.4) holds for every α ∈ Φ. If α, β ∈ Φ and α + β ∈ Φ, then let cα,β ∈ k
be as in (29.8.1), and suppose that (29.8.7) holds. Under these conditions, the
the collection of zα’s, α ∈ Φ, together with the hα’s, α ∈ ∆, is said to be a
Chevalley basis for A, as on p147 of [14].
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29.9 Some properties of the cα,β’s

We continue with the same notation and hypotheses as in Section 29.4. Let zα
be a nonzero element of Aα for every α ∈ Φ again, and suppose that (29.8.4)
holds for every α ∈ Φ. If α, β ∈ Φ and α + β ∈ Φ, then let cα,β ∈ k be as in
(29.8.1).

Let α, β ∈ Φ with α + β ∈ Φ be given, so that −α,−β,−α − β ∈ Φ too.
Observe that

[[zα, zβ ]A, [z−α, z−β ]A]A = [cα,β zα+β , c−α,−β z−α−β ]A(29.9.1)

= cα,β c−α,−β hα+β .

We can also use the Jacobi identity to get that

[[zα, zβ ]A, [z−α, z−β ]A]A(29.9.2)

= [zα, [zβ , [z−α, z−β ]A]A]A − [zβ , [zα, [z−α, z−β ]A]A]A

= −[zα, [zβ , [z−β , z−α]A]A]A − [zβ , [zα, [z−α, z−β ]A]A]A.

Note that α and β are not proportional in V , because α + β ∈ Φ, and Φ
is reduced. Let r, q be the largest nonnegative integers such that β − r α and
β + q α are elements of Φ again. Similarly, let r′, q′ be the largest nonnegative
integers such that α− r′ β and α+ q′ β are elements of Φ. Equivalently, r, q are
the largest nonnegative integers such that

(−β)− r (−α), (−β) + q (−α) ∈ Φ,(29.9.3)

and r′, q′ are the largest nonnegative integers such that

(−α)− r′ (−β), (−α) + q′ (−β) ∈ Φ.(29.9.4)

Of course,
q, q′ ≥ 1,(29.9.5)

because α+ β ∈ Φ.
Note that

[zα, [z−α, z−β ]A]A = q (r + 1) z−β ,(29.9.6)

as in (29.5.3). Similarly,

[zβ , [z−β , z−α]A]A = q′ (r′ + 1) z−α.(29.9.7)

Combining these identites with (29.9.2), we get that

[[zα, zβ ]A, [z−α, z−β ]A]A = −q′ (r′ + 1) [zα, z−α]A − q (r + 1) [zβ , z−β ]A

= −q′ (r′ + 1)hα − q (r + 1)hβ .(29.9.8)

It follows that

cα,β c−α,−β hα+β = −q′ (r′ + 1)hα − q (r + 1)hβ ,(29.9.9)
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by (29.9.1).
If γ ∈ Φ, then we can evaluate ϕγ at both sides of (29.9.9), using (29.4.3),

to get that

cα,β c−α,−β λα+β(γ) = −q′ (r′ + 1)λα(γ)− q (r + 1)λβ(γ).(29.9.10)

In particular, we can take γ = α + β, to get that 2 cα,β c−α,−β corresponds to
an integer under the natural embedding of Q into k. This means that

cα,β c−α,−β λα+β = −q′ (r′ + 1)λα − q (r + 1)λβ(29.9.11)

as linear functionals on V , because V is spanned by Φ. Comparing this with
(29.3.3), we obtain that

cα,β c−α,−β = −(r + 1)2 = −(r′ + 1)2.(29.9.12)

This also uses (29.9.5), and corresponds to a remark on p148 of [14].
If (29.8.7) holds, then we get that

c2α,β = (r + 1)2 = (r′ + 1)2.(29.9.13)

This means that
cα,β = ±(r + 1) = ±(r′ + 1),(29.9.14)

which is part of a famous theorem of Chevalley, as in part (d) of the theorem
on p147 of [14], and Theorem 11 on p51 of [24]. More precisely, some of the
previous arguments correspond to the proof of part (c) of the proposition on
p146f of [14].

Remember ∆ is a base for Φ, and that the zα’s, α ∈ Φ, together with the
hα’s, α ∈ ∆, form a basis for A as a vector space over k, which is a Chevalley
basis, as in the previous section. Observe that the brackets of any two elements
of this basis can be expressed as a linear combination of elements of the basis
with integer coefficients, because of (29.9.14). This corresponds to the theorem
on p147 of [14].

Let A(Z) be the collection of elements of A that can be expressed as linear
combinations of the zα’s, α ∈ Φ, and the hα’s, α ∈ ∆, with integer coefficients.
This is a subgroup of A, as a commutative group with respect to addition, and
in fact a Lie subalgebra of A, as a Lie algebra over Z. This is part of Remark
(1) on p51 of [24], and is also mentioned on p149 of [14].

Note that hγ ∈ A(Z) for every γ ∈ Φ, as in Section 29.4. This implies that
A(Z) does not depend on the base ∆ for Φ, as mentioned on p149 of [14].

29.10 Uniqueness of Chevalley bases

Let us continue with the same notation and hypotheses as in Section 29.4. Let
zα, z̃α be nonzero elements of Aα for every α ∈ Φ. Thus, for each α ∈ Φ, there
is a nonzero element ηα of k such that

z̃α = ηα zα.(29.10.1)
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Suppose that [zα, z−α]A = hα for every α ∈ Φ, as before. Observe that

[z̃α, z̃−α]A = hα(29.10.2)

for every α ∈ Φ if and only if

ηα η−α = 1(29.10.3)

for every α ∈ Φ, as on p148 of [14].
If α, β ∈ Φ and α + β ∈ Φ, then there is a unique cα,β ∈ k such that

[zα, zβ ]A = cα,β zα+β , as before. Similarly, there is a unique c̃α,β ∈ k such that

[z̃α, z̃β ]A = c̃α,β z̃α+β .(29.10.4)

More precisely, cα,β , c̃α,β ̸= 0, because of (29.4.2). Using (29.10.1), we get that

c̃α,β ηα+β = ηα ηβ cα,β .(29.10.5)

Suppose that c−α,−β = −cα,β for every α, β ∈ Φ with α+ β ∈ Φ, as before.
Suppose also that (29.10.3) holds for every α ∈ Φ. Under these conditions, one
can check that

c̃−α,−β = −c̃α,β(29.10.6)

for every α, β ∈ Φ with α+ β ∈ Φ if and only if

ηα+β = ±ηα ηβ(29.10.7)

for every α, β ∈ Φ with α+ β ∈ Φ, as on p148 of [14].
Let ∆ be a base for Φ, and remember that Θ is the subgroup of V , as a

commutative group with respect to addition, generated by Φ. This is the same
as the subgroup of V generated by ∆, and every mapping from ∆ into k \ {0}
has a unique extension to a group homomorphism from Θ into the multiplicative
group of nonzero elements of k.

Suppose now that ηα is a nonzero element of k for each α ∈ Φ that satisfies
(29.10.3) for every α ∈ Φ, and (29.10.7) for every α, β ∈ Φ with α + β ∈ Φ.
Let α 7→ τα be the unique group homomorphism from Θ into the multiplicative
group of nonzero elements of k such that

τα = ηα for every α ∈ ∆.(29.10.8)

If α ∈ Φ, then let ρα be the nonzero element of k determined by

ηα = ρα τα.(29.10.9)

Observe that

ρα ρ−α = 1(29.10.10)

for every α ∈ Φ, and that

ρα+β = ±ρα ρβ(29.10.11)
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for every α, β ∈ Φ with α + β ∈ Φ, because of the analogous properties of the
ηα’s and τα’s. We would like to verify that

ρβ = ±1(29.10.12)

for every β ∈ Φ.
Of course, ρα = 1 for every α ∈ ∆, by construction. Suppose that β ∈ Φ

is a positive root with respect to ∆, so that β can be expressed as a linear
combination of elements of ∆ with nonnegative coefficients. In this case, β can
be expressed as

∑r
j=1 αj , where αj ∈ ∆ for every j = 1, . . . , r, and

∑l
j=1 αj ∈ Φ

for every l = 1, . . . , r, as in Section 19.12. This permits one to obtain (29.10.12)
using (29.10.11). If −β is a positive root, then (29.10.12) can be obtained from
(29.10.10) and the previous case.

Let the zα’s and z̃α’s be as before, so that the zα’s, α ∈ Φ, together with
the hα’s, α ∈ ∆, is a Chevalley basis for A, and similarly for the z̃α’s. The
corresponding ηα’s can be defined for α ∈ Φ as in (29.10.1), and satisfy (29.10.3)
and (29.10.7). Thus we can define τα and ρα as in (29.10.8) and (29.10.9),
respectively. Using the τα’s, we get a diagonal automorphism τ of A, as in
Section 29.7. Note that τ(h) = h for every h ∈ A0, and τ(zα) = τα zα for every
α ∈ Φ, as before.

If α ∈ Φ, then we get that

z̃α = ρα τ(zα).(29.10.13)

Let A(Z) be the collection of elements of A that can be expressed as linear
combinations of the zα’s, α ∈ Φ, and hα’s, α ∈ ∆, with coefficients in Z, as in
the previous section. Similarly, let Ã(Z) be the collection of elements of A that
can be expressed as linear combinations of the z̃α’s, α ∈ Φ, and hα’s, α ∈ ∆,
with coefficients in Z. It is easy to see that

Ã(Z) = τ(A(Z)),(29.10.14)

using (29.10.12) and (29.10.13). In particular, the restriction of τ to A(Z) defines

an isomorphism from A(Z) onto Ã(Z) as Lie algebras over Z, as in Exercise 5
on p150 of [14].

29.11 The complex case

Let us continue with the same notation and hypotheses as in Section 29.4, with
k = C. As before, we let ∆ be a base for Φ, so that hα, α ∈ ∆, forms a basis
for A0, as a vector space over C. If α ∈ Φ, then we let zα be a nonzero element
of Aα, and ask that zα, α ∈ Φ, together with hα, α ∈ ∆, be a Chevalley basis
for A. Let Φ+ = Φ∆,+ be the set of positive roots with respect to ∆, which is
to say the set of elements of Φ that can be expressed as linear combinations of
elements of ∆ with nonnegative coefficients.

If α ∈ Φ+, then put

uα = zα − z−α, vα = i (zα + z−α).(29.11.1)
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This corresponds to Remark (3) on p52 of [24], and Exercise 7 on p151 of [14].
It is easy to see that

{uα, vα : α ∈ Φ+} ∪ {i hα : α ∈ ∆}(29.11.2)

is a basis for A, as a vector space over C. In particular, the elements of (29.11.2)
are linearly independent in A, as a vector space over R. Let B be the linear
span of (29.11.2) in A, as a vector space over R.

Let i B be the set of elements of A that can be expressed as i times an
element of B, as usual. Observe that

B + (i B) = A,(29.11.3)

because (29.11.2) is a basis for A as a vector space over C. Similarly,

B ∩ (i B) = {0}.(29.11.4)

This means that A may be considered as the complexification of B, as a vector
space over R.

Let α ∈ ∆ and β ∈ Φ+ be given, and observe that

[i hα, uβ ]A = i [hα, zβ ]A − i [hα, z−β ]A(29.11.5)

= i λα(β) zβ − i λα(−β) z−β = λα(β) vβ .

Similarly,

[i hα, vβ ]A = −[hα, zβ ]A − [hα, z−β ]A(29.11.6)

= −λα(β) zβ − λα(−β) z−β = −λα(β)uβ .

Note that the right sides of (29.11.5) and (29.11.6) are elements of B.
If α ∈ Φ+, then

[uα, vα]A = 2 i [zα, z−α]A = 2 i hα.(29.11.7)

This is an element of B, because hα can be expressed as a linear combination
of hβ , β ∈ ∆, with integer coefficients, as in Section 29.4.

If α, β ∈ Φ and α + β ∈ Φ, then there is a unique cα,β ∈ C such that
[zα, zβ ]A = cα,β zα+β , as before. More precisely, cα,β ∈ R, by (29.9.14).

Let α, β ∈ Φ+ be given, with α ̸= β. Note that α + β ≠ 0 in this case. If
α+ β ̸∈ Φ, then −α− β ̸∈ Φ, and

[zα, zβ ]A = [z−α, z−β ]A = 0.(29.11.8)

Similarly, if α− β ̸∈ Φ, then β − α ̸∈ Φ, and

[z−α, zβ ]A = [zα, z−β ]A = 0.(29.11.9)

If α+ β ∈ Φ, then

[zα, zβ ]A + [z−α, z−β ]A = cα,β zα+β + c−α,−β z−α−β

= cα,βzα+β − cα,β z−α−β = cα,β uα+β ,(29.11.10)
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using (29.8.7) in the second step. Similarly, if α− β ∈ Φ, then

[z−α, zβ ]A + [zα, z−β ]A = c−α,β z−α+β + cα,−β zα−β(29.11.11)

= cα,−β (zα−β − zβ−α).

This is the same as cα,−β uα−β when α − β ∈ Φ+, and −cα,−β uβ−α when
β − α ∈ Φ+.

If α+ β ∈ Φ, then we also have that

i [zα, zβ ]A − i [z−α, z−β ]A = i cα,β zα+β − i c−α,−β z−α−β

= i cα,β zα+β + i cα,β z−α−β = cα,β vα+β .(29.11.12)

If α− β ∈ Φ, then

i [z−α, zβ ]A − i [zα, z−β ]A = i c−α,β z−α+β(29.11.13)

−i cα,−β zα−β = −i cα,−β (zα−β + zβ−α).

This is the same as −cα,−β vα−β when α − β ∈ Φ+, and −cα,−β vβ−α when
β − α ∈ Φ+.

Using these remarks, one can check that

[uα, uβ ]A, [uα, vβ ]A, [vα, vβ ]A ∈ A(29.11.14)

for every α, β ∈ Φ+. It follows that B is a Lie subalgebra of A, as a Lie algebra
over R, as in Remark (3) on p52 of [24], and Exercise 7 on p151 if [14]. Thus A
may be considered as the complexification of B as a Lie algebra over R.

29.12 The corresponding Killing forms

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If x ∈ A, then adA,x defines a linear mapping from A into itself, as a
vector space over C, as in Section 2.4. Similarly, if x ∈ B, then adB,x defines a
linear mapping from B into itself, as a vector space over R. Of course, adB,x is
the same as the restriction of adA,x to B in this case.

Remember that the Killing form on A is defined by

bA(x, y) = trA(adA,x ◦ adA,y)(29.12.1)

for every x, y ∈ A, where the right side is the trace of adA,x ◦ adA,y as a linear
mapping from A into itself, as a complex vector space. Similarly, the Killing
form on B is defined by

bB(x, y) = trB(adB,x ◦ adB,y)(29.12.2)

for every x, y ∈ B, where the right side is the trace of adB,x ◦ adB,y as a linear
mapping from B into itself, as a real vector space. If x, y ∈ B, then

bA(x, y) = bB(x, y),(29.12.3)
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as in Exercise 7 on p151 of [14]. This uses the fact that a basis for B as a real
vector space is also a basis for A as a complex vector space, as in the previous
section.

If α, β ∈ Φ and α+ β ̸= 0, then

bA(zα, zβ) = 0,(29.12.4)

as in Section 17.3. Note that the Lie subalgebra of A that is denoted B in
Section 17.3 may be taken to be A0 here. Similarly, if α ∈ Φ and w ∈ A0, then

bA(zα, w) = 0,(29.12.5)

as before.
If α, β ∈ Φ+ and α ̸= β, then it is easy to see that

bA(uα, uβ) = bA(uα, vβ) = bA(vα, vβ) = 0,(29.12.6)

using (29.12.4). This implies that

bB(uα, uβ) = bB(uα, vβ) = bB(vα, vβ) = 0,(29.12.7)

by (29.12.3). Similarly, if α ∈ Φ+ and β ∈ ∆, then

bA(uα, i hβ) = bA(vα, i hβ) = 0,(29.12.8)

by (29.12.5). This implies that

bB(uα, i hβ) = bB(vα, i hβ) = 0,(29.12.9)

by (29.12.3).
If α ∈ Φ+, then

bA(uα, vα) = i bA(zα − z−α, zα + z−α),(29.12.10)

by the definition (29.11.1) of uα, vα. Of course,

bA(zα, zα) = bA(z−α, z−α) = 0,(29.12.11)

by (29.12.4). This implies that

bA(uα, vα) = 0,(29.12.12)

because bA(·, ·) is symmetric on A. It follows that

bB(uα, vα) = 0,(29.12.13)

by (29.12.3).
Remember that for each α ∈ Φ there is a linear functional ϕα on A0 such that

adA,w(zα) = ϕα(w) for every w ∈ A0. We also have that ϕα(hβ) = λβ(α) ∈ R
for every β ∈ Φ, as in (29.4.3). If w ∈ A0 ∩ B, then w can be expressed as a
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linear combination of i hβ , β ∈ ∆, with coefficients in R, by construction. This
implies that

ϕα(w) ∈ iR(29.12.14)

for every α ∈ Φ and w ∈ A0 ∩B.
If w,w′ ∈ A0, then

bA(w,w
′) =

∑
α∈Φ

ϕα(w)ϕα(w
′).(29.12.15)

This follows from the fact that the zα’s, α ∈ Φ, together with the hβ ’s, β ∈ ∆,
form a basis for A as a vector space over C. If w,w′ ∈ A0 ∩B, then

bB(w,w
′) =

∑
α∈Φ

ϕα(w)ϕα(w
′),(29.12.16)

by (29.12.3). In particular,

bB(w,w) =
∑
α∈Φ

ϕα(w)
2(29.12.17)

for every w ∈ A0 ∩B.
If w ∈ A0 ∩ B, then every term in the sum on the right side of (29.12.17)

is less than or equal to 0, by (29.12.14). If each of these terms is equal to 0,
then w = 0, as in Section 29.4. This implies that bB(·, ·) is negative-definite on
A0 ∩B.

Let α ∈ Φ+ be given, and observe that

bB([uα, vα]A, i hα) = 2 bB(i hα, i hα),(29.12.18)

by (29.11.7). Remember that hα ̸= 0, as in Section 29.4, and that i hα ∈ B, as
in the previous section. Thus

bB([uα, vα]A, i hα) < 0,(29.12.19)

as in the preceding paragraph.
Of course,

bB([uα, vα]A, i hα) = −bB(vα, [uα, i hα]A),(29.12.20)

as in Section 7.9. We also have that

bB(vα, [uα, i hα]A) = −λα(α) bB(vα, vα) = −2 bB(vα, vα),(29.12.21)

by (29.11.5). This implies that

bB(vα, vα) < 0,(29.12.22)

by (29.12.19).
Similarly,

bB([uα, vα]A, i hα) = −bB([vα, uα]A, i hα) = bB(uα, [vα, i hα]A),(29.12.23)
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as in Section 7.9. Note that

bB(uα, [vα, i hα]A) = λα(α) bB(uα, uα) = 2 bB(uα, uα),(29.12.24)

by (29.11.6). This means that

bB(uα, uα) < 0,(29.12.25)

because of (29.12.19). One can check more directly that bB(uα, uα) = bB(vα, vα)
too.

It follows that bB(·, ·) is negative-definite on B, as in Remark (3) on p52 of
[24], and Exercise 7 on p151 of [14].

29.13 Using other commutative rings

Let us return to the same notation and hypotheses as in Section 29.4. Thus
∆ is a base for Φ, and we let zα be a nonzero element of Aα for every α ∈ Φ.
Suppose that zα, α ∈ Φ, together with hα, α ∈ ∆, is a Chevalley basis for A,
as in Section 29.8. Let A(Z) be the collection of elements of A that can be
expressed as a linear combination of the zα’s, α ∈ Φ, and hα’s, α ∈ ∆, with
integer coefficients. This is a Lie subalgebra of A, as a Lie algebra over Z, as in
Section 29.9.

Let k1 be a commutative ring with a multiplicative identity element. Let us
define A(k1) initially as a free module over k1 with basis consisting of zα, α ∈ Φ,
and hα, α ∈ ∆. These basis elements may also be denoted zα,k1 , α ∈ Φ, and
hα,k1 , α ∈ ∆, to be more precise. One may consider A(k1) to be the same as the
tensor product of A(Z) and k1, as modules over Z. One can use multiplication
on k1 to define scalar multiplication by elements of k1 on this tensor product
over Z, to get a module over k1.

If n is a positive integer, then we can consider the sum of n 1’s in k1, where
1 is the multiplicative identity element in k1. This leads to a natural ring
homomorphism from Z into k1, as usual. Using this, we get a mapping from
A(Z) into A(k1) that is linear over Z.

It is easy to define the Lie bracket [·, ·]A(k1) initially as a mapping from
A(k1) × A(k1) into A(k1) that is bilinear over k1. The brackets of basis ele-
ments can be defined using the corresponding brackets in A(Z), and the natural
mapping from A(Z) into A(k1) described in the preceding paragraph. This can
be extended in a unique way to a mapping from A(k1)×A(k1) into A(k1) that
is bilinear over k.

Clearly [·, ·]A(k1) is antisymmetric on A(k1), because [·, ·]A is antisymmetric
on A. One can check that [a, a]A(k1) = 0 for every a ∈ A(k1), using the anti-
symmetry of [·, ·]A(k1) on A(k1), and the fact that this property holds when a is
a basis element, because of the corresponding property of [·, ·]A on A. Similarly,
[·, ·]A(k1) satisfies the Jacobi identity on A(k1), because [·, ·]A satisfies the Jacobi
identity on A. Thus A(k1) is a Lie algebra over k1 with respect to [·, ·]A(k1).
This may be called a Chevalley algebra, as on p149 of [14]. This is also related
to Remark (1) on p51 of [24].
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Of course, A(k1) may be considered as a Lie algebra over Z as well. The
natural mapping from A(Z) into A(k1) mentioned earlier is a homomorphism
as a mapping between Lie algebras over Z.

Remember that A(Z) does not depend on the base ∆ for Φ, as in Section
29.9. This used the fact that for each γ ∈ Φ, hγ can be expressed as a linear
combination of hα, α ∈ ∆, with integer coefficients, as in Section 29.4. Similarly,
if α ∈ ∆, then hα can be expressed as a linear combination of hβ , with β in
any other base for Φ, and with integer coefficients. One can use this to check
that A(k1) does not depend on ∆, up to isomorphism, as a Lie algebra over k1.
Another base for Φ essentially only leads to another basis for A(k1) as a free
module over k1. If A(k1) is considered as the tensor product of A(Z) and k1
over Z, then this clearly does not depend on ∆, because A(Z) does not depend
on ∆.

Let z̃α be another nonzero element of Aα for each α ∈ Φ, and suppose that
z̃α, α ∈ Φ, together with hα, α ∈ ∆, is another Chevalley basis for A. Under
these conditions, there is a diagonal automorphism τ of A such that for every
α ∈ Φ, z̃α = ρα τ(zα) with ρα = ±1, as in Section 29.10. If Ã(Z) is the collection
of elements of A that can be expressed as linear combinations of the z̃α’s, α ∈ Φ,
and hα’s, α ∈ ∆, then Ã(Z) = τ(A(Z)), as before. Let Ã(k1) be the Lie algebra
over k1 defined using the z̃α’s in the same way as before. One can check that
τ leads to an isomorphism from A(k1) onto Ã(k1), as Lie algebras over k1. If

A(k1), Ã(k1) are considered as tensor products of A(Z), Ã(Z), respectively, and
k1 over Z, then this follows from the fact that the restriction of τ to A(Z) defines

an isomorphism from A(Z) onto Ã(Z), as Lie algebras over Z. This corresponds
to a remark on p149 of [14].

29.14 Some mappings on A(Z)

Let us continue with the same notation and hypotheses as in Section 29.4 again.
Remember that ∆ is a base for Φ, and let zα be a nonzero element of Aα for
every α ∈ Φ. Suppose that zα, α ∈ Φ, together with hα, α ∈ ∆, is a Chevalley
basis for A, as in Section 29.8, and let A(Z) be the collection of elements of
A that can be expressed as a linear combination of the zα’s, α ∈ Φ, and hα’s,
α ∈ ∆, with integer coefficients. This is a Lie subalgebra of A, as a Lie algebra
over Z, as in Section 29.9.

Let α ∈ Φ and a positive integer m be given. We would like to check that
(1/m!) (adzα)

m maps A(Z) into itself, as in the proposition on p149 of [14]. It
suffices to show that

(1/m!) (adzα)
m(hβ) ∈ A(Z)(29.14.1)

for every β ∈ ∆, and that

(1/m!) (adzα)
m(zβ) ∈ A(Z)(29.14.2)

for every β ∈ Φ.
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If β ∈ ∆, then

adzα(hβ) = [zα, hβ ]A = −λβ(α) zα,(29.14.3)

which is an element of A(Z). It follows that (adzα)
m(hβ) = 0 when m ≥ 2, so

that (29.14.1) holds for every m ≥ 1.
Note that (adzα)

m(zα) = 0 for every m ≥ 1, so that (29.14.2) holds trivially
when α = β. Remember that adzα(z−α) = [zα, z−α]A = hα, as in Section 29.8.
This implies that (29.14.2) holds when m = 1 and β = −α, because hα ∈ A(Z),
as in Section 29.9. It follows that

(1/2!) (adzα)
2(z−α) = (1/2) [zα, hα]A = −(λα(α)/2) zα = −zα,(29.14.4)

so that (29.14.2) holds when m = 2 and β = −α. If m ≥ 3, then we get that
(adzα)

m(z−α) = 0, so that (29.14.2) holds when β = −α.
Suppose now that β ∈ Φ, β ̸= ±α. Thus α, β are linearly independent in V ,

because Φ is reduced, by hypothesis. If γ ∈ Φ is not proportional to α, then let
r(γ), q(γ) be the largest nonnegative integers such that

γ − r(γ)α, γ + q(γ)α ∈ Φ,(29.14.5)

as in Section 20.5. Remember that γ+j α ∈ Φ when j is an integer that satisfies
−r(γ) ≤ j ≤ q(γ), as before. If α+ γ ∈ Φ, then

[zα, zγ ]A = cα,γ zα+γ = ±(r(γ) + 1) zα+γ ,(29.14.6)

as in Sections 29.8 and 29.9.
Let j be a nonnegative integer less than or equal to q(β), and observe that

r(β + j α) = r(β) + j.(29.14.7)

If 0 ≤ j < q(β), then β + j α and β + (j + 1)α are elements of Φ, and

[zα, zβ+j α]A = ±(r(β + j α) + 1) zβ+(j+1)α(29.14.8)

= ±(r(β) + j + 1) zβ+(j+1)α.

If m is a positive integer less than or equal to q(β), then we get that

(adzα)
m(zβ) = ±

(m−1∏
j=0

(r(β) + j + 1)
)
zβ+mα.(29.14.9)

This means that

(1/m!) (adzα)
m(zβ) = ±

(
r(β) +m

m

)
zβ+mα,(29.14.10)

where
(
r(β)+m

m

)
is the usual binomial coefficient. It follows that (29.14.2) holds

in this case, because the binomial coefficient is an integer.
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Note that (adzα)
q(β)+1(zβ) = 0, because β + (q(β) + 1)α ̸∈ Φ. This implies

that (adzα)
m(zβ) = 0 when m ≥ q(β) + 1, so that (29.14.2) holds for every

m ≥ 1, as desired.
If c ∈ Z, then

exp(c adzα) =

∞∑
m=0

(cm/m!) (adzα)
m(29.14.11)

defines a Lie algebra automorphism of A, as in Section 14.11, because adzα is
nilpotent on A. We also have that

(exp(c adzα))(A(Z)) ⊆ A(Z),(29.14.12)

because (1/m!) (adzα)
m maps A(Z) into itself for every m, as before. This

implies that
(exp(c adzα))(A(Z)) = A(Z),(29.14.13)

by applying the previous statement to −c. This corresponds to some remarks
on p150 of [14], and is related to Remark (1) on p51 of [24].

29.15 Some related mappings on A(k1)

We continue with the same notation and hypotheses as in the previous section.
Let α ∈ Φ be given again, and for each positive integer m, put

Zα,m = (1/m!) (adzα)
m.(29.15.1)

This defines a linear mapping from A into itself, as a vector space over k, which
may be interpreted as the identity mapping on A when m = 0. Remember that

Zα,m(A(Z)) ⊆ A(Z)(29.15.2)

for every m ≥ 0, as before.
If l, m are nonnegative integers, then(

l +m

l

)
Zα,l+m = Zα,l ◦ Zα,m,(29.15.3)

by construction. If n is a nonnegative integer and a, b ∈ A, then

(adzα)
n([a, b]A) =

n∑
j=0

(
n

j

)
[(adzα)

j(a), (adzα)
n−j(b)]A,(29.15.4)

because adzα is a derivation on A, as in Section 14.10. Equivalently, this means
that

Zα,n([a, b]A) =

n∑
j=0

[Zα,j(a), Zα,n−j(b)]A.(29.15.5)

Let k1 be a commutative ring with a multiplicative identity element, and let
A(k1) be as in Section 29.13. Note that every mapping from A(Z) into itself
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that is linear over Z leads to a linear mapping from A(k1) into itself that is linear
over k1. This can be seen in terms of the bases for A(Z), A(k1) as free modules
over Z, k1, respectively, described earlier, or by considering A(k1) as the tensor
product of A(Z) and k1, as modules over Z. This correspondence between
mappings on A(Z) and on A(k1) is linear over Z, and preserves compositions.

If m is a nonnegative integer, then let Zα,m,k1 be the mapping on A(k1)
that corresponds to the restriction of Zα,m to A(Z) in this way. If l is another
nonnegative integer, then(

l +m

l

)
Zα,l+m,k1 = Zα,l,k1 ◦ Zα,m,k1 ,(29.15.6)

by (29.15.3). Similarly, if n is a nonnegative integer and a, b ∈ A(k1), then

Zα,n,k1([a, b]A(k1)) =

n∑
j=0

[Zα,j,k1(a), Zα,n−j,k1(b)]A(k1),(29.15.7)

by (29.15.5). More precisely, it suffices to verify this when a, b are basis elements
of A(k1), which can be obtained from the previous case.

If t ∈ k1, then put

Eα,k1(t) =

∞∑
l=0

tl Zα,l,k1 .(29.15.8)

Of course, Zα,l = 0 for all but finitely many l ≥ 0, because zα is ad-nilpotent
in A. This implies that Zα,l,k1 = 0 for the same l ≥ 0, so that the right side
of (29.15.8) reduces to a finite sum. Thus (29.15.8) defines Eα,k1(t) as a linear
mapping from A(k1) into itself.

If r ∈ k1 too, then

Eα,k1(r + t) =

∞∑
n=0

(r + t)n Zα,n,k1 =

∞∑
n=0

n∑
l=0

(
n

l

)
rl tn−l Zα,n,k1 ,(29.15.9)

by the binomial theorem. This implies that

Eα,k1(r + t) =

∞∑
n=0

n∑
l=0

rl tn−l Zα,l,k1 ◦ Zα,n−l,k1 ,(29.15.10)

by (29.15.6). It follows that

Eα,k1(r + t) = Eα,k1(r) ◦ Eα,k1(t),(29.15.11)

because the right side of (29.15.10) corresponds to the Cauchy product of the
series that defined Eα,k1(r) and Eα,k1(t). In particular, Eα,k1(t) is invertible on
A(k1), with

Eα,k1(t)
−1 = Eα,k1(−t),(29.15.12)

because Eα,k1(0) is the identity mapping on A(k1).
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If a, b ∈ A(k1), then

(Eα,k1(t))([a, b]A(k1)) =

∞∑
n=0

tn Zα,n,k1([a, b]A(k1))

=

∞∑
n=0

tn
n∑
l=0

[Zα,l,k1(a), Zα,n−l,k1 ]A(k1),(29.15.13)

using (29.15.7) in the second step. This implies that

(Eα,k1(t))([a, b]A(k1)) =

∞∑
n=0

n∑
l=0

[tl Zα,l,k1(a), t
n−l Zα,n−l,k1(b)]A(k1)

= [(Eα,k1(t))(a), (Eα,k1(t))(b)]A(k1),(29.15.14)

because the right side is equal to the Cauchy product with respect to [·, ·]A(k1)

of the series that define (Eα,k1(t))(a) and (Eα,k1(t))(b). Thus Eα,k1(t) is an
automorphism of A(k1), as a Lie algebra over k1.

This corresponds to some remarks on p150 of [14], and to Exercise 11 on
p151 of [14]. This is also related to Remark (1) on p51 of [24].



Chapter 30

Roots and abstract weights

30.1 Abstract weights

Let V be a vector space over the real numbers of positive finite dimension, and
let Φ be a root system in V . If α ∈ Φ, then let σα be the unique symmetry on
V with vector α that maps Φ onto itself, as usual. Thus σα can be expressed
as σα(v) = v − λα(v)α, where λα is a linear functional on V with λα(α) = 2.

As before, we let Θ = ΘΦ be the subgroup of V , as a commutative group
with respect to addition, generated by Φ. Equivalently, this is the subgroup
of V generated by any base for Φ. This may be called the root lattice in V
associated to Φ, as on p67 of [14].

Put
Υ = ΥΦ = {v ∈ V : λα(v) ∈ Z for every α ∈ Φ}.(30.1.1)

The elements of Υ may be called (abstract) weights with respect to Φ, as on p67
of [14]. This corresponds to P on p63 of [24], where the root system is associated
to a finite-dimensional semisimple Lie algebra. Note that Υ is a subgroup of V ,
as a commutative group with respect to addition. We also have that

Θ ⊆ Υ,(30.1.2)

by the definition of a root system.
Let V ′ be the dual space of linear functionals on V , and remember that

Φ′ = {λα : α ∈ Φ}(30.1.3)

is a root system in V ′, as in Section 19.8. If α ∈ Φ and 2α ∈ Φ, then σ2α = σα,
and λ2α = λα/2, as in Section 19.13. Let ∆ be a base for Φ, and put

∆1 = {β ∈ ∆ : 2β ̸∈ Φ}, ∆2 = {β ∈ ∆ : 2β ∈ Φ}.(30.1.4)

Note that ∆2 = ∅ when Φ is reduced, and put

∆′
1 = {λβ : β ∈ ∆1}, ∆∗

2 = {λβ/2 : β ∈ ∆2}.(30.1.5)

636
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Remember that ∆′
1 ∪∆∗

2 is a base for Φ′, as in Section 19.13.
It follows that

Υ = {v ∈ V : λβ(v) ∈ Z for every β ∈ ∆1,(30.1.6)

and λβ(v)/2 ∈ Z for every β ∈ ∆2}.

Equivalently,

Υ = {v ∈ V : λ(v) ∈ Z for every λ ∈ ∆′
1 ∪∆∗

2}.(30.1.7)

In particular, ∆′
1 ∪∆∗

2 is a basis for V ′, as a vector space over R. If v ∈ V ,
then

λ 7→ λ(v)(30.1.8)

defines a real-valued function on ∆′
1 ∪∆∗

2. The mapping from v ∈ V to (30.1.8)
defines a one-to-one linear mapping from V onto the space of real-valued func-
tions on ∆′

1 ∪∆∗
2. Thus, for each µ ∈ ∆′

1 ∪∆∗
2, there is a unique vµ ∈ V such

that

λ(vµ) = 1 when λ = µ(30.1.9)

= 0 for every λ ∈ ∆′
1 ∪∆∗

2 with λ ̸= µ.

The vµ’s, µ ∈ ∆′
1 ∪∆∗

2, form a basis for V , which is dual to ∆′
1 ∪∆∗

2.
Using (30.1.7), we get that

vλ ∈ Υ(30.1.10)

for every λ ∈ ∆′
1 ∪ ∆′

2. The vλ’s, λ ∈ ∆′
1 ∪ ∆∗

2, are called the fundamental
(dominant) weights with respect to ∆, as on p67 of [14], and Remark (2) on
p62 of [24]. Note that Υ consists exactly of linear combinations of the vλ’s,
λ ∈ ∆′

1 ∪∆∗
2, with integer coefficients.

30.2 Some remarks about lattices

Let V be a vector space over the real numbers of positive finite dimension n, and
let u1, . . . , un and w1, . . . , wn be bases for V . Also let A and B be the subgroups
of V , as a commutative group with respect to addition, generated by the uj ’s
and wj ’s, respectively. Equivalently, A and B consist of the elements of V that
can be expressed as linear combinations of the uj ’s and wj ’s, respectively, with
integer coefficients.

Suppose that

B ⊆ A.(30.2.1)

This means that for each l = 1, . . . , n, wl can be expressed as a linear combina-
tion of the uj ’s with integer coefficients. Let T be the linear mapping from V
onto itself with

T (ul) = wl(30.2.2)
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for every l = 1, . . . , n. Note that T is invertible, so that detT ̸= 0. We also
have that

T (A) = B,(30.2.3)

by construction.
Of course, T corresponds to an n × n matrix, with respect to the basis

u1, . . . , un of V . The entries of this matrix are obtained by expressing wl as a
linear combination of the uj ’s for each l = 1, . . . , n. In particular, the entries of
the matrix associated to T are integers in this case. This implies that

detT ∈ Z.(30.2.4)

Using Cramer’s rule, we get that (detT )T−1 corresponds to a matrix with
integer entries as well. This means that

(detT )T−1(A) ⊆ A.(30.2.5)

It follows that
(detT )A ⊆ T (A) = B.(30.2.6)

This implies that the quotient group A/B has only finitely many elements.
Because V is isomorphic to Rn as a vector space over R, one can define

n-dimensional volumes on V as on Rn. These volumes are determined up to
multiplication by a positive real number, depending on the isomorphism with
Rn. These volumes are invariant under translations on V , and are changed by
T by a factor of |detT |, because of the analogous properties on Rn.

It is well known that
#(A/B) = |detT |,(30.2.7)

where the left side is the number of elements of A/B. To see this, one can
consider the quotients V/A and V/B of V by A and B, respectively. There is a
natural quotient mapping from V/B onto V/A, because of (30.2.1). The natural
quotient mapping from V onto V/A is the same as the composition of the natural
quotient mapping from V onto V/B with the quotient mapping from V/B onto
V/A. One can define n-dimensional volumes on V/A and V/B that correspond
locally to volumes on V under the quotient mappings. In particular, volumes on
V/A correspond locally to volumes on V/B under the natural quotient mapping.
This implies that the ratio of the volumes of V/B and V/A is equal to #(A/B).

There is also a natural one-to-one mapping from V/A onto V/B induced by
T . Because volumes on V are changed by T by a factor of |detT |, volumes on
the quotients are changed in the same way by the mapping induced by T , where
the volumes on the quotients correspond locally to volumes on V as before. This
means that the ratio of the volumes of V/B and V/A is equal to |detT |, which
implies (30.2.7).

Let us return now to the situation considered in the previous section. Note
that Θ is generated, as a subgroup of V , by ∆, which is a basis for V . We also
have that Υ is generated, as a subgroup of V , by the vλ’s, λ ∈ ∆′

1 ∪∆∗
2, which

form a basis for V too. Remember that Θ ⊆ Υ, so that the quotient Υ/Θ is
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defined as a commutative group, and has only finitely many elements, as before.
This is known as the fundamental group of Φ, as on p68 of [14].

Suppose that Φ is reduced, as a root system in V . This means that ∆1 = ∆
and ∆2 = ∅, and we put

∆′ = {λβ : β ∈ ∆},(30.2.8)

which is the same as ∆′
1 in this case. If β ∈ ∆, then there is a unique vβ =

vλβ
∈ V such that

λα(vβ) = 1 when α = β(30.2.9)

= 0 for every α ∈ ∆ with α ̸= β,

as in (30.1.9). The vβ ’s, β ∈ ∆, form a basis for V , which is dual to ∆′, as a
basis for V ′, as before. If v ∈ V , then

v =
∑
β∈∆

λβ(v) vβ .(30.2.10)

In particular, if α ∈ ∆, then

α =
∑
β∈∆

λβ(α) vβ .(30.2.11)

Remember that n(α, β) = λβ(α), α, β ∈ ∆, is the Cartan matrix of Φ with
respect to ∆, as in Section 20.2. The determinant of the Cartan matrix is a
positive integer, as in Section 21.15. In fact,

#(Υ/Θ) = det(n(α, β))α,β∈∆,(30.2.12)

as in (30.2.7). This corresponds to some remarks on p68 of [14].

30.3 Related positivity conditions

Let us go back to the notation and hypotheses in Section 30.1. In particular, ∆
is a base for Φ, and we put

Υ+ = Υ+
Φ,∆ = {v ∈ Υ : λα(v) ≥ 0 for every α ∈ ∆}.(30.3.1)

The elements of Υ+ are said to be dominant weights with respect to ∆, as on
p67 of [14]. If v ∈ Υ satisfies

λα(v) > 0 for every α ∈ ∆,(30.3.2)

then v is said to be strongly dominant.
Equivalently, it is easy to see that

Υ+ = {v ∈ Υ : λ(v) ≥ 0 for every λ ∈ ∆′
1 ∪∆∗

2}.(30.3.3)
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Similarly, (30.3.2) holds if and only if

λ(v) > 0 for every λ ∈ ∆′
1 ∪∆∗

2.(30.3.4)

If µ ∈ ∆′
1 ∪∆∗

2 and vµ ∈ Υ is as in (30.1.9), then we get that

vµ ∈ Υ+,(30.3.5)

by (30.3.3).
Let Φ+ = Φ∆,+ be the set of α ∈ Φ that can be expressed as linear combi-

nations of elements of ∆ with nonnegative coefficients, as usual. Put

(Φ′)+ = {λα : α ∈ Φ+}.(30.3.6)

Remember that ∆′
1∪∆∗

2 is a base for Φ′, as a root system in V ′. One can check
directly that

∆′
1 ∪∆∗

2 ⊆ (Φ′)+,(30.3.7)

because ∆ ⊆ Φ+.
In fact, (Φ′)+ consists exactly of the elements of Φ′ that can be expressed as

linear combinations of elements of ∆′
1 ∪∆∗

2 with nonnegative coefficients. This
is basically implicit in the proof of the fact that ∆′

1 ∪ ∆∗
2 is a base for Φ′, as

in Section 19.13. More precisely, in the proof an inner product on V that is
invariant under the Weyl group of Φ was used to identify V and V ′. Using this
identification, ∆′

1 ∪∆∗
2 was shown to correspond to the construction of a base

for a root system in Section 19.11. The set of positive roots with respect to this
base is also determined in this construction, as before. In this case, the set of
positive roots corresponds exactly to (Φ′)+. This is because of the way that the
linear functional τ is defined in the proof in Section 19.13.

If v ∈ Υ+, then it follows that

λα(v) ≥ 0 for every α ∈ Φ+.(30.3.8)

This corresponds to the statement following Theorem 3 on p60 of [24]. Similarly,
if v ∈ Υ is strongly dominant, then

λα(v) > 0 for every α ∈ Φ+.(30.3.9)

Let (·, ·) be an inner product on V that is invariant under the Weyl group
of Φ. If α ∈ Φ, then σα is the reflection on V associated to α with respect to
(·, ·), so that λα(v) = 2 (v, α) (α, α)−1, as before. Under these conditions,

Υ+ = {v ∈ Υ : (v, α) ≥ 0 for every α ∈ ∆}.(30.3.10)

Similarly, v ∈ Υ is strongly dominant if and only if

(v, α) > 0 for every α ∈ ∆.(30.3.11)

This corresponds to some remarks about Weyl chambers on p67 of [14].
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If v ∈ V , then (30.3.8) holds if and only if

(v, α) ≥ 0 for every α ∈ Φ+.(30.3.12)

In particular, this holds when v ∈ Υ+, as before. Alternatively, (30.3.12) holds
when v ∈ V satisfies (v, α) ≥ 0 for every α ∈ ∆, by definition of Φ+.

Similarly, v ∈ V satisfies (30.3.9) if and only if

(v, α) > 0 for every α ∈ Φ+.(30.3.13)

This holds when v ∈ Υ is strongly dominant, as before. Alternatively, (30.3.11)
implies (30.3.13), by definition of Φ+.

30.4 Automorphisms and Υ

Let us continue with the notation and hypotheses in Section 30.1 again. Remem-
ber that a one-to-one linear mapping T from V onto itself is an automorphism of
Φ when T (Φ) = Φ, and that Aut(Φ) denotes the group of these automorphisms.
If T ∈ Aut(Φ), then

T (Θ) = Θ.(30.4.1)

In this case,
λT (α)(T (v)) = λα(v)(30.4.2)

for every α ∈ Φ and v ∈ V , as in Section 19.5. One can use this to check that

T (Υ) = Υ.(30.4.3)

Remember that the quotient group Υ/Θ has only finitely many elements, as

in Section 30.2. If T ∈ Aut(Φ), then T induces an automorphism T̂ of Υ/Θ, by
(30.4.1) and (30.4.3).

If α ∈ Φ and v ∈ Υ, then

σα(v)− v = −λα(v)α ∈ Θ.(30.4.4)

Of course, σα ∈ Aut(Φ), so that σα induces an automorphism σ̂α on Υ/Θ, as
in the preceding paragraph. It follows from (30.4.4) that σ̂α is the identity
mapping on Υ/Θ. If σ is any element of the Weyl group of Φ, then σ ∈ Aut(Φ),
and we get that σ̂ is the identity mapping on Υ/Θ. Equivalently, this means
that

σ(v)− v ∈ Θ(30.4.5)

for every v ∈ Υ.
Let (·, ·) be an inner product on V that is invariant under the Weyl group

of Φ. Remember that ∆ is a base for Φ, and suppose for the rest of the section
that Φ is reduced, as a root system in V . If v ∈ V , then there is an element σ
of the Weyl group of Φ such that

(σ(v), α) ≥ 0 for every α ∈ ∆,(30.4.6)
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as in Section 20.9. If v ∈ Υ, then σ(v) ∈ Υ, and it follows that

σ(v) ∈ Υ+,(30.4.7)

as in(30.3.10). This corresponds to part of Lemma A on p68 of [14].
As in Section 21.12, a linear functional µ on V is said to be nonnegative

with respect to ∆ if
µ(α) ≥ 0 for every α ∈ ∆.(30.4.8)

If v ∈ V , then put
µv(w) = (v, w)(30.4.9)

for every w ∈ V , which defines a linear functional on V . If σ is in the Weyl
group of Φ, then

µσ(v)(w) = (σ(v), w) = (v, σ−1(w))(30.4.10)

for every w ∈ V , which is to say that

µσ(v) = µ ◦ σ−1.(30.4.11)

Suppose that µv is nonnegative with respect to ∆, and that µσ(v) is non-
negative with respect to ∆ for some σ in the Weyl group of Φ. Under these
conditions,

µσ(v) = µv,(30.4.12)

as in Section 21.12. Equivalently, this means that

σ(v) = v.(30.4.13)

In particular, this holds when v ∈ Υ+ and σ(v) ∈ Υ+ for some σ in the Weyl
group of Φ. This is another part of Lemma A on p68 of [14].

Suppose again that µv is nonnegative with respect to ∆ for some v ∈ V , and
that µσ(v) is nonnegative with respect to ∆ for some σ in the Weyl group of Φ.
As in Section 21.12, this implies that σ can be expressed as the composition of
finitely many reflections σα with α ∈ ∆ and

µv = µv ◦ σα.(30.4.14)

Observe that (30.4.14) implies that

µv(α) = −µv(α),(30.4.15)

so that µv(α) = 0. This is not possible when µv is strictly positive with respect
to ∆, in the sense that

µv(α) = (v, α) > 0 for every α ∈ ∆.(30.4.16)

In this case, we get that σ is the identity mapping on V .
If v ∈ Υ is strongly dominant and σ(v) ∈ Υ+ for some σ in the Weyl group

of Φ, then it follows that σ is the identity mapping on V . This is another part
of Lemma A on p68 of [14].
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30.5 Some partial orderings on V

Let us continue with the usual notation and hypotheses in Section 30.1. Thus
∆ is a base for Φ, and a basis for V in particular. Consider the binary relation
⪯=⪯∆ defined on V by putting v ⪯ w when v, w ∈ V and either v = w, or
w − v can be expressed as a finite sum of elements of ∆. This defines a partial
ordering on V , as on p47 of [14].

Similarly, consider the binary relation ⪯R=⪯R
∆ defined on V by putting

v ⪯R w when v, w ∈ V and w − v can be expressed as a linear combination of
elements of ∆ with nonnegative coefficients. This defines a partial ordering on
V too, as mentioned in Exercise 14 on p55 of [14]. Of course,

v ⪯ w implies v ⪯R w(30.5.1)

for every v, w ∈ V . Conversely, if v, w ∈ V , v ⪯R w, and w−v ∈ Θ, then v ⪯ w.
Let v ∈ V and α ∈ ∆ be given, and note that

v − σα(v) = λα(v)α.(30.5.2)

In this case, σα(v) ⪯R v when λα(v) ≥ 0, and v ⪯R σα(v) when λα(v) ≤ 0.
If v ∈ Υ, then we get that σα(v) ⪯ v when λα(v) ≥ 0, and v ⪯ σα(v) when
λα(v) ≤ 0.

Let v ∈ V be given again, and suppose that σ is an element of the Weyl
group of Φ such that σ(v) is maximal with respect to ⪯R among the images of
v under elements of the Weyl group. If α ∈ ∆ and σ(v) ⪯R σα(σ(v)), then it
follows that σα(σ(v)) = σ(v). This means that

λα(σ(v)) ≥ 0 for every α ∈ ∆,(30.5.3)

as in the preceding paragraph.
Let (·, ·) be an inner product on V that is invariant under the Weyl group

of Φ. Observe that (30.5.3) is the same as saying that (30.4.6) holds.
Of course, there are only finitely many images of v in V under elements of

the Weyl group of Φ, because the Weyl group has only finitely many elements.
This implies that there is an element σ of the Weyl group such that σ(v) is
maximal with respect to ⪯R, because every nonempty finite partially-ordered
set has a maximal element. This gives another way to get the existence of an
element σ of the Weyl group such that (30.4.6) holds, as in Exercise 14 on p55
of [14].

Let σ0 be any element of the Weyl group of Φ. Consider the set of elements
σ1 of the Weyl group such that

σ0(v) ⪯R σ1(v).(30.5.4)

Let σ be an element of this set such that σ(v) is maximal with respect to ⪯R

among the images of v under the elements of this set, which exists as before.
Thus

σ0(v) ⪯R σ(v),(30.5.5)
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and it is easy to see that σ(v) is maximal among all images of v under elements
of the Weyl group with respect to ⪯R. This implies that (30.4.6) holds, as
before.

Suppose from now on in this section that Φ is reduced, as a root system in
V . Suppose also that v ∈ V satisfies

(v, α) ≥ 0 for every α ∈ ∆.(30.5.6)

This is the same as saying that the linear functional µv on V associated to v
as in (30.4.9) is nonnegative with respect to ∆. If σ is an element of the Weyl
group that satisfies (30.4.6), then µσ(v) is nonnegative with respect to ∆ too.
This implies that σ(v) = v, as before.

If σ0 is any element of the Weyl group, then there is an element σ of the
Weyl group that satisfies (30.4.6) and (30.5.5). Under these conditions, we get
that

σ0(v) ⪯R v,(30.5.7)

because σ(v) = v, as in the preceding paragraph.

Suppose that v is a dominant weight, so that v ∈ Υ and (30.5.6) holds, as in
(30.3.10). Note that v − σ0(v) ∈ Θ, as in (30.4.5). In this case, (30.5.7) implies
that

σ0(v) ⪯ v.(30.5.8)

This corresponds to another part of Lemma A on p68 of [14].

30.6 Some more properties of Υ

Let us continue with the usual notation and hypotheses in Section 30.1 again. In
particular, ∆ is a base for Φ, so that Υ+ can be defined as in Section 30.3. Let
⪯ be defined on V as in the previous section, and let (·, ·) be an inner product
on V that is invariant under the Weyl group of Φ.

Let v ∈ Υ+ be given, and suppose that

w ∈ Υ+ satisfies w ⪯ v.(30.6.1)

This implies that v + w ∈ Υ+, and that v − w can be expressed as a sum of
elements of ∆. It follows that

(v + w, v − w) ≥ 0,(30.6.2)

because (v + w,α) ≥ 0 for every α ∈ ∆. This means that

(v, v)− (w,w) ≥ 0,(30.6.3)

which is to say that (w,w) ≤ (v, v). Using this, one can check that there are
only finitely many w as in (30.6.1), which is Lemma B at the top of p70 of [14].
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Let Φ+ be the set of elements of Φ that can be expressed as linear combi-
nations of elements of ∆ with nonnegative coefficients, as before. Suppose from
now on in this section that Φ is reduced as a root system in V , and put

ρ =
1

2

∑
γ∈Φ+

γ,(30.6.4)

as in Section 19.12. If α ∈ ∆, then

σα(ρ) = ρ− α,(30.6.5)

as before. Equivalently, this means that

λα(ρ) = 1(30.6.6)

for every α ∈ ∆. This shows that

ρ ∈ Υ+,(30.6.7)

and more precisely that ρ is strongly dominant with respect to ∆, as in Lemma
A around the middle of p70 of [14].

Because Φ is reduced, we have that ∆1 = ∆ and ∆2 = ∅, in the notation of
Section 30.1. If β ∈ ∆, then let vβ = vλβ

∈ Υ be as in Sections 30.1 and 30.2.
Using (30.2.10) and (30.6.6), we get that

ρ =
∑
β∈∆

vβ .(30.6.8)

This is another part of Lemma A around the middle of p70 of [14].
Let u ∈ Υ+ be given, and suppose that w = σ−1(u) for some σ in the Weyl

group of Φ. Under these conditions, Lemma B around the middle of p70 of [14]
states that

(w + ρ,w + ρ) ≤ (u+ ρ, u+ ρ),(30.6.9)

with equality only when u = w. To see this, observe first that

(w + ρ,w + ρ) = (σ(w + ρ), σ(w + ρ)) = (u+ σ(ρ), u+ σ(ρ)).(30.6.10)

This implies that

(w + ρ,w + ρ) = (u+ ρ, u+ ρ)− 2 (u, ρ− σ(ρ)),(30.6.11)

because (σ(ρ), σ(ρ)) = (ρ, ρ).
Note that

σ(ρ) ⪯ ρ,(30.6.12)

by (30.5.8) and (30.6.7). Thus ρ−σ(ρ) is either equal to 0, or a sum of elements
of ∆. It follows that

(u, ρ− σ(ρ)) ≥ 0,(30.6.13)
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because u ∈ Υ+. This implies (30.6.9), using (30.6.11). We also get that equality
holds in (30.6.9) if and only if

(u, ρ− σ(ρ)) = 0.(30.6.14)

Clearly

(u, ρ− σ(ρ)) = (u, ρ)− (u, σ(ρ))(30.6.15)

= (u, ρ)− (σ−1(u), ρ) = (u− w, ρ).

We also have that

w ⪯ u,(30.6.16)

as in (30.5.8), because u ∈ Υ+. This means that either u = w, or u − w is a
sum of elements of ∆. In the second case, we would get that

(u, ρ− σ(ρ)) = (u− w, ρ) > 0,(30.6.17)

because ρ is strongly dominant with respect to ∆, as before. Thus (30.6.14)
holds only when u = w, as desired.

30.7 Saturated subsets of Υ

Let us continue with the same notation and hypotheses as in Sections 30.1 and
30.3, and let ⪯ be defined on V as in Section 30.5. A subset Π of Υ is said to
be saturated if for every v ∈ Π and α ∈ Φ we have that

v − j α ∈ Π(30.7.1)

for every integer j between 0 and λα(v), as on p70 of [14]. Of course, this holds
trivially when j = 0, and it is also supposed to hold when j = λα(v).

If α ∈ Φ, then it follows that σα(Π) ⊆ Π. This implies that σα(Π) = Π,
because σα is its own inverse on V . Thus

σ(Π) = Π(30.7.2)

for every σ in the Weyl group of Φ when Π is saturated, as on p70 of [14].
A saturated set Π ⊆ Υ is said to have highest weight v ∈ Υ+ if v ∈ Π and

w ⪯ v for every w ∈ Π,(30.7.3)

as on p70 of [14]. It is easy to see that Π = {0} is saturated, with highest weight
0, as in Example (1) on p70 of [14].

Let us check that Π = Φ∪{0} is saturated, as in Example (2) on p70 of [14].
If v = 0, then λα(v) = 0 for every α ∈ Φ, and (30.7.1) holds trivially. Otherwise,
let v, α ∈ Φ be given, and note that (30.7.1) holds when j = λα(v), because
σα(v) ∈ Φ, by the definition of a root system. If v and α are not proportional
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in V , then it follows that (30.7.1) holds when j is between 0 and λα(v), as in
Section 20.5. If v and α are proportional in V , then this can be verified directly.

Let us say that an element of Φ is maximal with respect to ∆ if it is maximal
with respect to ⪯. This is equivalent to the definition of a maximal root in
Section 20.8. If α ∈ Φ, then the set of β ∈ Φ such that α ⪯ β is a nonempty
finite set. It follows that this set has a maximal element β0 with respect to ⪯,
and it is easy to see that β0 is also maximal in Φ.

Suppose for the moment that Φ is irreducible as a root system in V . This
implies that Φ has a unique maximal element α0, as in Section 20.8. If α ∈ Φ,
then

α ⪯ α0,(30.7.4)

by the remarks in the preceding paragraph, and which was also mentioned in
Section 20.8. It is easy to see that (30.7.4) holds with α = 0 too.

Let (·, ·) be an inner product on V that is invariant under the Weyl group
of Φ. If γ ∈ ∆, then

(α0, γ) ≥ 0,(30.7.5)

as in Section 20.8. This means that

α0 ∈ Υ+,(30.7.6)

as in Section 30.3. It follows that Π = Φ ∪ {0} has highest weight α0 under
these conditions, as on p70 of [14].

Suppose that Π ⊆ Υ is saturated, and has highest weight v ∈ Υ+. Using
the remarks near the beginning of the previous section, we get that Π∩Υ+ has
only finitely many elements. Suppose also that Φ is reduced, as a root system
in V . If w ∈ Π, then there is an element σ in the Weyl group of Φ such that
σ(w) ∈ Υ+, as in Section 30.4. We also have that σ(w) ∈ Π, as in (30.7.2). It
follows that Π has only finitely many elements under these conditions, because
Π ∩ Υ+ and the Weyl group of Φ have only finitely many elements. This is
Lemma A near the bottom of p70 of [14].

30.8 More on highest weights

We continue with the same notation and hypotheses as in Sections 30.1 and
30.3, and to let ⪯ be defined on V as in Section 30.5. We also ask that Φ be
reduced as a root system in V in this section. Let (·, ·) be an inner product on
V that is invariant under the Weyl group of Φ.

Suppose that Π ⊆ Υ is saturated, with highest weight v ∈ Υ+. If u ∈ Υ+

and u ⪯ v, then Lemma B at the bottom of p70 of [14] states that

u ∈ Π.(30.8.1)

To see this, we shall consider elements w of Π of the form

w = u+
∑
α∈∆

cα α,(30.8.2)
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where cα is a nonnegative integer for each α ∈ ∆. Of course, if this happens
with cα = 0 for each α ∈ ∆, then (30.8.1) holds, as desired. Note that w = v
can be expressed as in (30.8.2), by hypothesis.

Suppose that w ∈ Π is of the form (30.8.2), and that cα > 0 for some α ∈ ∆.
Thus

∑
α∈∆ cα α ̸= 0, which implies that( ∑

α∈∆

cα vα,
∑
β∈∆

cβ β
)
> 0.(30.8.3)

It follows that there is a β0 ∈ ∆ such that cβ0
> 0 and( ∑

α∈∆

cα α, β0

)
> 0.(30.8.4)

Equivalently,

λβ0

( ∑
α∈∆

cα α
)
> 0.(30.8.5)

We also have that
λβ0

(u) ≥ 0,(30.8.6)

because u ∈ Υ+, by hypothesis. Combining this with (30.8.5), we obtain that

λβ0
(w) > 0.(30.8.7)

This means that λβ0
(w) ≥ 1, because w ∈ Π ⊆ Υ, so that λβ0

(w) ∈ Z. It
follows that

w − β ∈ Π,(30.8.8)

because w ∈ Π and Π is saturated.
Note that cβ0

≥ 1, because cβ0
> 0 and cβ0

∈ Z. This means that w−β can
be expressed as in (30.8.2) as well. Thus we can start with w = v and repeat
the process, as needed, to get that (30.8.1) holds.

If u ∈ Υ+ and u ⪯ v, then
σ(u) ∈ Π(30.8.9)

for every element σ of the Weyl group of Φ, because of (30.8.1) and (30.7.2).
Conversely, if u1 ∈ Π, then there is an element σ1 of the Weyl group of Φ such
that

σ−1
1 (u1) ∈ Υ+,(30.8.10)

as in Section 30.4. We also have that σ−1
1 (u1) ∈ Π, by (30.7.2), and that

σ−1
1 (u1) ⪯ v, because Π has highest weight v, by hypothesis.
It follows that

Π = {σ(u) : u ∈ Υ+, u ⪯ v, and σ is an element(30.8.11)

of the Weyl group of Φ},

as on p71 of [14]. In particular, this means that Π is uniquely determined by v.
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30.9 More on saturated sets

We continue with the same notations and hypotheses as in Sections 30.1 and
30.3 again, and to let ⪯ be defined on V as in Section 30.5. We ask that Φ be
reduced as a root system in V in this section too.

Let Π be a subset of Υ that is invariant under the Weyl group of Φ, so
that σ(Π) = Π for every element σ of the Weyl group. Suppose that for every
w ∈ Π ∩Υ+ and α ∈ Φ we have that

w − j α ∈ Π(30.9.1)

for every integer j between 0 and λα(w). We would like to check that Π is
saturated as a subset of Υ under these conditions. This is related to a remark
on p71 of [14].

To do this, let v ∈ Π be given. Remember that there is an element σ of the
Weyl group such that σ(v) ∈ Υ+, as in Section 30.4. Note that σ(v) ∈ Π, by
hypothesis. Let α ∈ Φ be given, and remember that

λσ(α)(σ(v)) = λα(v),(30.9.2)

as in (30.4.2).
If j is an integer between 0 and λσ(α)(σ(v)), then

σ(v)− j σ(α) ∈ Π,(30.9.3)

by hypothesis, and because σ(α) ∈ Φ. This implies that v − j α ∈ Π, because
σ(Π) = Π. Equivalently, this holds for every integer j between 0 and λα(v), by
(30.9.2), as desired.

Let v ∈ Υ+ be given, and let Π = Πv be as in (30.8.11). We would like to
verify that Π is saturated as a subset of Υ, as in Exercise 10 on p72 of [14].
Of course, Π is invariant under the Weyl group of Φ, by construction. Let
w ∈ Π∩Υ+ and α ∈ Φ be given. It suffices to show that (30.9.1) holds for every
integer j between 0 and λα(w), as before.

By definition of Π, there is a u ∈ Υ+ and an element σ of the Weyl group
such that w = σ(u) and u ⪯ v. Under these conditions, we have that u = w, as
in Section 30.4. Thus w ⪯ v.

If j ∈ Z, then w− j α ∈ Υ, and so there is an element σj of the Weyl group
such that

σj(w − j α) ∈ Υ+,(30.9.4)

as in Section 30.4. We would like to check that

σj(w − j α) ⪯ v(30.9.5)

when j is between 0 and λα(w).
Remember that σj(w) ⪯ w, because w ∈ Υ+, as in Section 30.5. If

j σj(α) ⪰ 0,(30.9.6)
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then we get that

σj(w − j α) = σj(w)− j σj(α) ⪯ σj(w) ⪯ w ⪯ v.(30.9.7)

Observe that
w − j α = σα(w)− (j − λα(w))α,(30.9.8)

so that
σj(w − j α) = σj(σα(w))− (j − λα(w))σj(α).(30.9.9)

As before, σj(σα(w)) ⪯ w, because w ∈ Υ+, as in Section 30.5. If

(j − λα(w))σj(α) ⪰ 0,(30.9.10)

then it follows that

σj(w − j α) ⪯ σj(σα(w)) ⪯ w ⪯ v.(30.9.11)

Because σj(α) ∈ Φ, we automatically have that σj(α) ⪰ 0 or σj(α) ⪯ 0. If
j is between 0 and λα(w), then it is easy to see that one of j and j − λα(w) is
greater than or equal to 0, and the other is less than or equal to 0. This implies
that (30.9.6) or (30.9.10) holds. It follows that (30.9.5) holds in either case, by
(30.9.7) and (30.9.11). This shows that Π is saturated in Υ, as desired.

It is easy to see that Π has highest weight v, as on p71 of [14]. More precisely,
v ∈ Π by construction, because v ∈ Υ+, by hypothesis. Let u ∈ Υ+ with u ⪯ v
be given, and let σ be an element of the Weyl group of Φ. Note that σ(u) ⪯ u,
as in Section 30.5. This implies that σ(u) ⪯ v, as desired.

30.10 Another look at saturated sets

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Also let v ∈ Υ+ be given, and put

Πv = {u ∈ Υ : σ(u) ⪯ v for every element σ(30.10.1)

of the Weyl group of Φ}.

Observe that
v ∈ Πv,(30.10.2)

because v ∈ Υ+, as in Section 30.5. Of course, Πv is automatically invariant
under every element of the Weyl group of Φ.

Let Πv = Π be the subset of Υ defined as in (30.8.11) again, and let us check
that

Πv = Πv.(30.10.3)

By construction, every element of Πv is of the form τ(u), where u ∈ Υ+, u ⪯ v,
and τ is an element of the Weyl group of Φ. Let σ be any element of the Weyl
group of Φ, so that σ ◦ τ is an element of the Weyl group too. This implies that

σ(τ(u)) ⪯ u,(30.10.4)



30.10. ANOTHER LOOK AT SATURATED SETS 651

because u ∈ Υ+, as in Section 30.5. It follows that

σ(τ(u)) ⪯ v,(30.10.5)

so that τ(u) ∈ Πv.

Now let u be any element of Πv, and let σ be an element of the Weyl group
of Φ such that σ(u) ∈ Υ+, as in Section 30.4. We also have that σ(u) ⪯ v, by
definition of Πv. This implies that u ∈ Πv, because the inverse of σ is in the
Weyl group of Φ.

Let us verify directly that Πv is saturated as a subset of Υ, as a variant of
the argument in the previous section. Let u ∈ Πv and α ∈ Φ be given, and let
us check that

u− j α ∈ Πv(30.10.6)

for every integer j between 0 and λα(u). To do this, let an element σ of the
Weyl group of Φ be given, and let us show that

σ(u− j α) ⪯ v.(30.10.7)

Of course, σ(u) ⪯ v, because u ∈ Πv. If

j σ(α) ⪰ 0,(30.10.8)

then

σ(u− j α) = σ(u)− j σ(α) ⪯ σ(u) ⪯ v.(30.10.9)

We also have that

u− j α = σα(u)− (j − λα(u))α,(30.10.10)

so that

σ(u− j α) = σ(σα(u))− (j − λα(u))σ(α).(30.10.11)

Note that σ(σα(u)) ⪯ v, because u ∈ Πv and σ ◦ σα is in the Weyl group of Φ.
If

(j − λα(u))σ(α) ⪰ 0,(30.10.12)

then we get that

σ(u− j α) ⪯ σ(σα(u)) ⪯ v.(30.10.13)

As before, we automatically have that σ(α) ⪰ 0 or σ(α) ⪯ 0, because σ(α)
is in Φ. We also have that one of j and j − λα(u) is greater than or equal to 0,
and the other is less than or equal to 0, because j is between 0 and λα(u), by
hypothesis. Using this, it is easy to see that (30.10.8) or (30.10.12) holds. In
either case, we get that (30.10.7) holds, as desired. Note that Πv has highest
weight v, by construction.
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30.11 A property of saturated sets

Let us continue with the same notations and hypotheses as in Section 30.1 and
30.3, and let ⪯ be defined on V as in Section 30.5. In this section, we continue
to suppose that Φ is reduced as a root system in V . Let (·, ·) be an inner product
on V that is invariant under the Weyl group of Φ.

Let Π be a saturated subset of Υ, with highest weight v ∈ Υ+. If w ∈ Π
and ρ is as in Section 30.6, then Lemma C on p71 of [14] states that

(w + ρ,w + ρ) ≤ (v + ρ, v + ρ),(30.11.1)

with equality only when w = v. To see this, let σ be an element of the Weyl
group of Φ such that u = σ(w) ∈ Υ+, as in Section 30.4. Remember that

(w + ρ,w + ρ) ≤ (u+ ρ, u+ ρ),(30.11.2)

with equality only when u = w, as in Section 30.6. Thus it suffices to show that

(u+ ρ, u+ ρ) ≤ (v + ρ, v + ρ),(30.11.3)

with equality only when u = v.
Note that u ∈ Π, because σ(Π) = Π, as in Section 30.7. This means that

u ⪯ v, because Π has highest weight v. Observe that

(v + ρ, v + ρ)− (u+ ρ, u+ ρ)(30.11.4)

= ((v + ρ, v + ρ)− (v + ρ, u+ ρ)) + ((v + ρ, u+ ρ)− (u+ ρ, u+ ρ))

= (v + ρ, v − u) + (v − u, u+ ρ).

Remember that ρ ∈ Υ+, and in fact ρ is strongly dominant, as in Section 30.6.
This implies that u+ρ and v+ρ are strongly dominant too, because u, v ∈ Υ+.

It follows that each of the terms on the right side of (30.11.4) is greater than
or equal to 0, with equality only when u = v, because u ⪯ v. Combining this
with (30.11.4), we get that (30.11.3) holds, with equality only when u = v, as
desired.



Chapter 31

Regular elements and
polynomials

31.1 Integral domains and polynomials

As usual, a commutative ring A with a nonzero multiplicative identity element
is said to be an integral domain if it has no nontrivial zero-divisors. This means
that if a, b ∈ A and a, b ̸= 0, then a b ̸= 0.

Let A be an integral domain, and let T be an indeterminate. It is well known
and easy to see that the ring A[T ] of formal polynomials in T with coefficients
in A is an integral domain too.

Similarly, let T1, . . . , Tn be n commuting indeterminates, for some positive
integer n. It is well known that the ring A[T1, . . . , Tn] of formal polynomials in
T1, . . . , Tn with coefficients in A is an integral domain. To see this, remember
that A[T1, . . . , Tn] is isomorphic to the ring

(A[T1, . . . , Tn−1])[Tn](31.1.1)

of formal polynomials in Tn with coefficients in A[T1, . . . , Tn−1], as in Section
5.8. This permits one to reduce to the n = 1 case, using induction.

Let T be an indeterminate again, and let f(T ) be a nonzero element of A[T ].
This leads to a polynomial function f(a) on A with values in A, as in Section
5.7. It is well known and not difficult to show that f(a) = 0 for only finitely
many a ∈ A. More precisely, the number of such elements a of A is less than or
equal to the degree of f(T ).

Let T1, . . . , Tn be n commuting indeterminates again, and let f(T1, . . . , Tn)
be a nonzero element of A[T1, . . . , Tn]. This leads to a polynomial function
f(a1, . . . , an) on the space An of n-tuples of elements of A with values in A, as
in Section 5.9.

653
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Suppose that E1, . . . , En are infinite subsets of A, and put

E =

n∏
j=1

Ej .(31.1.2)

Under these conditions, there is an (a1, . . . , an) ∈ E such that f(a1, . . . , an) ̸= 0.
In particular, if A has infinitely many elements, then f(a1, . . . , an) ̸= 0 for some
(a1, . . . , an) ∈ An.

To see this, it is helpful to consider f(T1, . . . , Tn) as an element of (31.1.1),
as before. More precisely, we can express f(T1, . . . , Tn) as

f(T1, . . . , Tn) =

l∑
j=1

fj(T1, . . . , Tn−1)T
j
n,(31.1.3)

where l is a nonnegative integer and fj(T1, . . . , Tn−1) is an element of

A[T1, . . . , Tn−1](31.1.4)

for each j = 0, 1, . . . , l. The hypothesis that f(T1, . . . , Tn) ̸= 0 means that
fj(T1, . . . , Tn−1) ̸= 0 for some j, and one may as well suppose that this holds
with j = l.

If an ∈ A, then

f(T1, . . . , Tn−1, an) =

l∑
j=0

fj(T1, . . . , Tn−1) a
j
n(31.1.5)

defines an element of (31.1.4). Equivalently, if we consider (31.1.3) as a for-
mal polynomial in Tn with coefficients in (31.1.4), then we can evaluate the
corresponding polynomial function at an to get an element of (31.1.4).

Of course, (31.1.3) is nonzero as an element of (31.1.1), by hypothesis. This
implies that (31.1.5) can be equal to 0 as an element of (31.1.4) for only finitely
many an ∈ A, as before. In particular, there is an an ∈ En such that (31.1.5) is
nonzero as an element of (31.1.4), because En has infinitely many elements, by
hypothesis.

If n ≥ 2, then we may as well suppose that the polynomial function on An−1

associated to (31.1.5) is nonzero at some element (a1, . . . , an−1) of
∏n−1
j=1 Ej ,

by induction. The value of this function at (a1, . . . , an−1) is the same as the
value of the polynomial function on An associated to f(T1, . . . , Tn−1, Tn) at
(a1, . . . , an−1, an). Thus f(a1, . . . , an) ̸= 0, as desired.

31.2 The Zariski topology

Let k be an integral domain, let n be a positive integer, and let T1, . . . , Tn be
n commuting indeterminates. Also let kn be the set of n-tuples of elements
of k, as usual, so that every element of k[T1, . . . , Tn] determines a polynomial
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function on kn, as in Section 5.9. If C is a nonempty subset of k[T1, . . . , Tn],
then let

V(C) = Vkn(C) = {(x1, . . . , xn) ∈ kn : f(x1, . . . , xn) = 0

for every f(T1, . . . , Tn) ∈ C}(31.2.1)

be the set of points in kn at which all of the polynomial functions associated to
elements of C vanish.

It is easy to see that (31.2.1) is the same as for the ideal in k[T1, . . . , Tn]
generated by C. If k is Noetherian, then it is well known that k[T1, . . . , Tn] is
Noetherian, so that every ideal in k[T1, . . . , Tn] is finitely generated.

If C1, C2 are nonempty subsets of k[T1, . . . , Tn], then the collection C1 · C2

of all products of elements of C1 and C2 is a nonempty subset of k[T1, . . . , Tn]
as well. One can check that

V(C1 · C2) = V(C1) ∪ V(C2),(31.2.2)

because k is an integral domain.
Similarly, let I be a nonempty set, and let Cj be a nonempty subset of

k[T1, . . . , Tn] for each j ∈ I. Observe that

V
( ∪
j∈I

Cj

)
=

∩
j∈I

V(Cj).(31.2.3)

A subset of kn of the form (31.2.1) is said to be Zariski closed. Note that the
empty set and kn are Zariski-closed sets. Thus the collection of Zariski-closed
subsets of kn is the collection of closed sets with respect to a topology on kn,
which is the Zariski topology.

It is easy to see that a subset of kn with only one element is Zariski closed,
so that kn satisfies the first separation condition with respect to the Zariski
topology. If k has only finitely many elements, then the Zariski topology on kn

is the same as the discrete topology.
Of course, the Zariski topology can be defined on k, by taking n = 1 in the

previous definition. The Zariski-closed subsets of k are the finite subsets of k,
as well as k itself. Note that polynomial functions on kn are continuous with
respect to the Zariski topologies on k and kn.

A subset of kn is said to be irreducible if it is not contained in the union of
two Zariski-closed sets, neither of which contains the given set. If k has infinitely
many elements, then it is well known that

kn is irreducible,(31.2.4)

as in Lemma A on p133 of [14].
Indeed, suppose that C1, C2 are nonempty subsets of k[T1, . . . , Tn] such that

kn ⊆ V(C1) ∪ V(C2),(31.2.5)

and that kn is not contained in either V(C1) or V(C2). This implies that there
are elements f(T1, . . . , Tn), g(T1, . . . , Tn) of C1, C2, respectively, such that the
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corresponding polynomial functions are nonzero at some elements of kn. Of
course, this means that the corresponding formal polynomials are nonzero, so
that their product

f(T1, . . . , Tn) g(T1, . . . , Tn)(31.2.6)

is nonzero as an element of k[T1, . . . , Tn] too, as in the previous section. It follows
that the polynomial function on kn corresponding to (31.2.6) is nonzero at an
element of kn, because k has infinitely many elements, as in the previous section.
This contradicts (31.2.5), which implies that the product of the polynomial
functions corresponding to f(T1, . . . , Tn) and g(T1, . . . , Tn) vanishes everywhere
on kn.

If U , V are two nonempty Zariski-open subsets of kn, then (31.2.4) implies
that

U ∩ V ̸= ∅(31.2.7)

when k has infinitely many elements. This means that nonempty Zariski-open
subsets of kn are dense in kn with respect to the Zariski topology when k has
infinitely many elements, as in the corollary on p133 of [14].

31.3 Polynomial mappings

Let us continue with the same notation and hypotheses as in the previous sec-
tion, and letm be another positive integer. Also let Z1, . . . , Zm bem commuting
indeterminates, so that elements of k[Z1, . . . , Zm] determine polynomial func-
tions on km, as before.

Suppose that
ϕ1(Z1, . . . , Zm), . . . , ϕn(Z1, . . . , Zm)(31.3.1)

are n elements of k[Z1, . . . , Zm]. These determine n polynomial functions on
km, which can be used to define a mapping ϕ from km into kn. More precisely,
if x ∈ km, then ϕ(x) is the element of kn whose jth coordinate is ϕj(x1, . . . , xm)
for every j = 1, . . . , n.

It is easy to see that the composition of a polynomial function on kn with
ϕ is a polynomial function on km. Indeed, if f(T1, . . . , Tn) ∈ k[T1, . . . , Tn], then
one can get an element of k[Z1, . . . , Zm] by replacing Tj with ϕj(Z1, . . . , Zm)
for every j = 1, . . . , n. This defines a homomorphism from k[T1, . . . , Tn] into
k[Z1, . . . , Zm], as algebras over k, with

Tj 7→ ϕj(Z1, . . . , Zm)(31.3.2)

for each j = 1, . . . , n. Of course, this homomorphism takes elements of k to
themselves, as formal polynomials in T1, . . . , Tn or Z1, . . . , Zm. The composition
of the polynomial function on kn associated to f(T1, . . . , Tn) with ϕ is the same
as the polynomial function on km associated to the corresponding element of
k[Z1, . . . , Zm].

Let C be a nonempty subset of k[T1, . . . , Tn], and let C0 be the corresponding
collection of elements of k[Z1, . . . , Zm], as in the preceding paragraph. Observe
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that
ϕ−1(Vkn(C)) = Vkm(C0),(31.3.3)

where Vkn(C), Vkm(C0) are as in (31.2.1). This implies that ϕ is continuous
with respect to the Zariski topologies on km, kn.

Remember that km, kn may be considered as modules over k, with respect
to coordinatewise addition and scalar multiplication. Let a = (aj,l) be an n×m
matrix with entries in k, and consider

ϕj(Z1, . . . , Zm) =

m∑
l=1

aj,l Zl(31.3.4)

for each j = 1, . . . , n. The corresponding mapping ϕ from km into kn is a
module homomorphism in this case.

Suppose that m = n, and that a is invertible as an n×n matrix with entries
in k. This implies that ϕ is a one-to-one mapping from kn onto itself, whose
inverse corresponds to the inverse of a. It follows that ϕ is a homeomorphism
from kn onto itself, with respect to the Zariski topology.

If V is any module over k that is free of rank n, then V is isomorphic to kn,
as a module over k. In particular, we can use this to define the Zariski topology
on V . Using the remarks in the preceding paragraph, we get that this topology
does not depend on the particular isomorphism between V and kn.

Suppose now that m = 1, so that we can use a single indeterminate Z. If
a1, . . . , an and b1, . . . , bn are elements of k, then we can take

ϕj(Z) = aj Z + bj(31.3.5)

for j = 1, . . . , n. The corresponding mapping ϕ from k into kn maps k onto an
affine line in kn, at least if aj ̸= 0 for some j.

31.4 More on the Zariski topology

Let X be a topological space, and let E be a subset of X. As in Section 31.2,
we may say that E is irreducible if E is not contained in the union of two closed
subsets of X, neither of which contains E. Let us check that this implies that
E is connected, as mentioned on p133 of [14].

If E is not connected, then E can be expressed as the union of two nonempty
separated subsets E1, E2 of X. This means that

E1 ∩ E2 = E1 ∩ E2 = ∅,(31.4.1)

where E1, E2 are the closures of E1, E2 in X, respectively. It follows that

E ⊆ E1 ∪ E2,(31.4.2)

and that E is not contained in either E1 or E2. This contradicts irreducibility,
as desired.
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Note that X is irreducible as a subset of itself if and only if X cannot be
expressed as the union of two proper closed subsets of itself. This is the same as
saying that the intersection of any two nonempty open subsets ofX is nonempty.
Equivalently, this means that any nonempty open subset of X is dense in X.

Suppose that X is irreducible, as a subset of itself. If U is any open subset
of X, then one can verify that U is irreducible in X.

Let us continue now with the same notation and hypotheses as in Section
31.2. Suppose for the moment that k has infinitely many elements, so that kn is
irreducible, as before. If U is a Zariski-open subset of kn, then U is irreducible,
as in the preceding paragraph. This implies that U is connected with respect
to the Zariski topology.

Let k be a field equipped with an absolue value function | · |. Note that poly-
nomial functions on kn are continuous, with respect to the topology determined
on k by the metric associated to | · |, and the corresponding product topology on
kn. This implies that Zariski-closed subsets of kn are closed sets with respect
to this product topology.

Suppose that | · | is not the trivial absolute value function on k. This means
that open balls in k with respect to the metric associated to | · | have infinitely
many elements. It follows that any nonempty open subset of kn with respect to
the corresponding product topology contains the Cartesian product of n infinite
subsets of k. If a polynomial on kn vanishes on a nonempty open subset W of
kn with respect to this product topology, then the polynomial vanishes on all
of kn, as in Section 31.1. Thus W is dense in kn with respect to the Zariski
topology under these conditions.

Equivalently, a proper Zarski-closed subset of kn has empty interior with
respect to this product topology. This implies that a nonempty Zariski-open
subset of kn is dense in kn with respect to this product topology in this case.

Of course, any two distinct elements of kn are contained in a unique affine
line in kn. Let U be a Zariski-open subset of kn. The intersection of U with
any affine line in kn is either empty, or contains all but finitely many elements
of the line. One can use this to check that any Zariski-open subset of Cn is
path connected, with respect to the product topology on Cn corresponding to
the standard topology on C.

31.5 Regular elements of Lie algebras

Let k be a field, and let (A, [·, ·]A) be a Lie algebra over k of positive finite
dimension n, as a vector space over k. Also let T be an indeterminate, and let
I = IA be the identity mapping on A. If x ∈ A, then let

Qx(T ) = det(adx − T I)(31.5.1)

be the characteristic polynomial of adx, as a linear mapping from A into itself,
as in Section 18.3.
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Of course, we can use a basis for A to identify A with kn, as a vector space
over k. This permits us to express (31.5.1) as

Qx(T ) =

n∑
j=0

qj(x)T
j ,(31.5.2)

where qj(x) corresponds to a homogeneous polynomial of degree n − j in the
coordinates of x for every j = 0, 1, . . . , n, as in Section 18.3 again.

Let us suppose from now on in this section that k has infinitely many el-
ements. This implies that formal polynomials in n commuting indeterminates
with coefficients in k are uniquely determined by the corresponding polynomial
functions on kn, as in Section 31.1.

Remember that qn(x) corresponds to the constant polynomial (−1)n, by
construction. Let n0 be the smallest integer j = 0, 1, . . . , n such that qj(x) is
not identically zero on A. This may be called the rank of A, as in Definition 2
on p11 of [24], or the ρ-rank of A, as on p133 of [14].

Of course, adx(x) = 0 for every x ∈ A, which implies that q0(x) = 0, because
n ≥ 1, by hypothesis. This means that

n0 ≥ 1,(31.5.3)

as on p11 of [24].

If x ∈ A, then let n0(x) be the smallest integer j = 0, 1, . . . , n such that
qj(x) ̸= 0. This was initially defined another way in Section 18.3, and the
equivalence with this formulation was mentioned just afterwards. Note that

n0(x) ≤ n,(31.5.4)

because qn(x) = (−1)n, and that

n0 = min{n0(x) : x ∈ A},(31.5.5)

by construction.

Thus n0 = n if and only if n0(x) = n for every x ∈ A. This happens exactly
when A is nilpotent as a Lie algebra, as on p11 of [24], and mentioned in Section
18.3.

Observe that x ∈ A satisfies

n0(x) = n0(31.5.6)

if and only if

qn0
(x) ̸= 0,(31.5.7)

because qj(x) = 0 when j < n0, by definition of n0. In this case, x is said to be
regular, as in Definition 2 on p11 of [24], or ρ-regular, as on p133 of [14]. The
set R(A) of regular elements of A is nonempty, by (31.5.5).
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31.6 The set of regular elements

Let us continue with the same notation and hypotheses as in the previous sec-
tion. As before, we can use a basis for A to identify A with kn, as a vector
space over k. Using this, we can define the Zariski topology on A as in Section
31.2. The Zariski topology on A does not depend on the choice of basis, as in
Section 31.3.

The set R(A) of regular elements of A is an open set with respect to the
Zariski topology on A, because of the characterization (31.5.7) of its elements.
We also have that R(A) ̸= ∅, by definition of n0, as in the previous section.
It follows that R(A) is dense in A with respect to the Zariski topology, as in
Section 31.2, because k has infinitely many elements. This corresponds to some
remarks on p133 of [14].

Let | · | be an absolute value function on k. As usual, the metric on k associ-
ated to |·| determines a topology on k, which leads to the corresponding product
topology on kn. This defines a topology on A, that we shall call the topology
associated to | · |, because A is identified with kn. It is easy to see that this
topology does not depend on the choice of basis for A, because linear mappings
from kn into itself are continuous with respect to this product topology.

The topology on A associated to | · | is at least as strong as the Zariski
topology, as in Section 31.4. This means that R(A) is an open set in A with
respect to the topology associated to | · |. If | · | is not the trivial absolute value
function on k, then R(A) is dense in A with respect to the topology associated
to | · |, as in Section 31.4 again.

Note that R(A) is connected with respect to the Zariski topology on A,
because k has infinitely many elements, as in Section 31.4. If k = C with the
standard absolute value function, then R(A) is path connected with respect
to the topology on A associated to | · |, as before. These properties of R(A)
correspond to Proposition 1 on p11 of [24].

If x ∈ A, then let Ax,0 be the set of y ∈ A such that (adx)
l(y) = 0 for some

positive integer l, as in Section 18.1. Remember that this is a Lie subalgebra of
A, which is called an Engel subalgebra, as in Section 18.4. We also have that

n0(x) = dimAx,0,(31.6.1)

as in Section 18.3.
Thus

n0 = min{dimAx,0 : x ∈ A},(31.6.2)

by (31.5.5). Similarly,

R(A) = {x ∈ A : dimAx,0 = n0}.(31.6.3)

If x ∈ R(A), then Ax,0 is minimal with respect to inclusion among Engel sub-
algebras of A, because the dimension of Ax,0 is minimal among the dimensions
of Engel subalgebras of A. This implies that

Ax,0 is a Cartan subalgebra of A,(31.6.4)
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as in the theorem on p80 of [14], and as mentioned in Section 18.8. This corre-
sponds to Theorem 1 on p12 of [24].

31.7 Regularity and automorphisms

Let us continue with the same notation and hypotheses as in the previous two
sections. Suppose for the moment that ϕ is an automorphism of A, as a Lie
algebra over k. If x, y ∈ A, then

ϕ(adx(y)) = ϕ([x, y]A) = [ϕ(x), ϕ(y)]A = adϕ(x)(ϕ(y)).(31.7.1)

This means that ϕ ◦ adx = adϕ(x) ◦ϕ, so that

adϕ(x) = ϕ ◦ adx ◦ ϕ−1.(31.7.2)

It follows that adx and adϕ(x) have the same characteristic polynomials,
which is to say that

Qϕ(x)(T ) = Qx(T ).(31.7.3)

This implies that
qj(ϕ(x)) = qj(x)(31.7.4)

for every j = 0, 1, . . . , n. One can also verify that

ϕ(Ax,0) = Aϕ(x),0.(31.7.5)

Note that
n0(ϕ(x)) = n0(x),(31.7.6)

using either the characterization of n0(x) in Section 31.5, or (31.6.1). Similarly,

ϕ(R(A)) = R(A).(31.7.7)

Let x be an element of R(A), so that Ax,0 is a Cartan subalgebra of A.
Note that x ∈ Ax,0, so that every element of R(A) is contained in a Cartan
subalgebra of A.

Suppose for the moment that k is an algebraically closed field of charac-
teristic 0. If C is any Cartan subalgebra of A, then there is a Lie algebra
automorphism ϕ of A such that

C = ϕ(Ax,0),(31.7.8)

as in Section 24.9. Of course, this means that

C = Aϕ(x),0,(31.7.9)

by (31.7.5). We also have that ϕ(x) ∈ R(A), by (31.7.7). This corresponds to
Corollary 2 on p13 of [24].

Observe that
dimC = dimAx,0 = n0(31.7.10)

under these conditions. This corresponds to Corollary 1 on p13 of [24]. It follows
that the definition of the rank of A in Section 24.13 is equivalent to the one in
Section 31.5 when k is an algebraically closed field of characteristic 0.
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31.8 Regular semisimple elements

Let us continue with the same notation and hypotheses as in the previous three
sections. If x ∈ A is ad-diagonalizable, then Ax,0 is the same as the kernel of
adx on A. This is the same as the centralizer CA(x) = CA({x}) of x in A, so
that

Ax,0 = CA(x),(31.8.1)

as in Section 18.9.
Of course, if x is any element of A, then CA(x) contains any commutative Lie

subalgebra of A that contains x. If CA(x) is commutative as a Lie subalgebra
of A, then CA(x) is maximal among commutative Lie subalgebras of A.

Suppose that CA(x) is a toral subalgebra of A, as in Section 17.1. Remember
that toral subalgebras of A are commutative as Lie subalgebras of A. This
implies that CA(x) is maximal among toral subalgebras of A, as in the preceding
paragraph.

If CA(x) is a toral subalgebra of A, then x is ad-diagonalizable in A, because
x ∈ CA(x). This means that (31.8.1) holds, so that

n0(x) = dimCA(x),(31.8.2)

by (31.6.1).
Suppose from now on in this section that k is an algebraically closed field of

characteristic 0, and that A is semisimple as a Lie algebra over k. If x ∈ A has
the property that CA(x) is a toral subalgebra of A, and thus a maximal toral
subalgebra of A, then x may be called regular semisimple in A, as on p80 of
[14].

If B is any maximal toral subalgebra of A, then

B = CA(x)(31.8.3)

for some x ∈ A, which is therefore regular semisimple in A, as on p80 of [14].
Indeed, B is a Cartan subalgebra of A, as in Section 18.10. This implies that

B = Ax,0(31.8.4)

for some x ∈ A, as in Section 18.8. Of course, x ∈ Ax,0, so that x ∈ B, and
thus x is ad-diagonalizable in A. This means that (31.8.3) follows from (31.8.1)
and (31.8.4), as desired.

Alternatively, one can get x ∈ A such that (31.8.3) holds as in Section 18.13,
as mentioned on p80 of [14]. This uses the fact that B is equal to its centralizer
CA(B) in A, as in Section 17.4.

Suppose that x ∈ A and that Ax,0 is a Cartan subalgebra of A. Every Cartan
subalgebra of A is of this form, as in Section 18.8 again. Under these conditions,
Ax,0 is a maximal toral subalgebra of A, as in Section 18.10. This implies that
x is ad-diagonalizable in A, because x ∈ Ax,0, so that (31.8.1) holds. It follows
that x is regular semisimple in A.
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If x ∈ R(A), then Ax,0 is a Cartan subalgebra of A, as before. In particular,
this implies that x is ad-diagonalizable in A, as in Corollary 2 on p15 of [24].
This is also mentioned on p134 of [14], using another argument. More precisely,
x is regular semisimple in A, as in the preceding paragraph.

31.9 Regularity and semisimplicity

We continue with the same notation and hypotheses as in the previous four
sections. Let us also continue to ask that k be an algebraically closed field of
characteristic 0, and that A be semisimple as a Lie algebra over k.

Let x ∈ A be given, and let x = x1+x2 be the abstract Jordan decomposition
of x in A, as in Section 14.3. Thus x1, x2 ∈ A, x1 is ad-diagonalizable in A, x2
is ad-nilpotent in A, and [x1, x2]A = 0. This means that adx = adx1

+adx2
is

the usual Jordan decomposition of adx, as a linear mapping from A into itself.
It follows that adx and adx1 have the same characteristic polynomials, as

linear mappings from A into itself. This means that

Qx(T ) = Qx1(T ),(31.9.1)

in the notation of Section 31.5. It follows that

qj(x) = qj(x1)(31.9.2)

for every j = 0, 1, . . . , n. This is related to some remarks on p133 of [14].
Similarly,

n0(x) = n0(x1),(31.9.3)

using the characterization of n0(·) in Section 31.5.
Alternatively, one can check directly that

Ax,0 = Ax1,0,(31.9.4)

as in Section 18.9. This implies (31.9.3), because of (31.6.1).
This gives another way to see that there are elements of R(A) that are ad-

diagonalizable in A, as on p133 of [14]. More precisely, x ∈ R(A) if and only if
x1 ∈ R(A), by (31.9.3).

If y ∈ A is ad-diagonalizable, then y is contained in a maximal toral sub-
algebra B of A. If z is any element of B, then z is ad-diagonalizable in A, so
that Az,0 = CA(z), as in (31.8.1). We also have that B ⊆ CA(z), because B is
commutative as a Lie subalgebra of A, as in Section 17.1. This implies that

n0(z) = dimAz,0 = dimCA(z) ≥ dimB.(31.9.5)

Note that there are z ∈ B such that B = CA(z), so that equality holds in
(31.9.5), as in the previous section.

Of course, we can take z = y in (31.9.5), to get that

n0(y) = dimAy,0 ≥ dimB.(31.9.6)
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If y ∈ R(A) too, then we get that

n0 = n0(y) = dimB,(31.9.7)

because there are z ∈ B for which equality holds in (31.9.5). This implies that
Ay,0 = CA(y) = B, so that y is regular semisimple in A, in the sense described
in the previous section. If z ∈ B and CA(z) = B, so that equality holds in
(31.9.5), then we obtain that n0(z) = n0, which means that z ∈ R(A). This
corresponds to some remarks on p133 of [14].

Suppose that x ∈ R(A), so that the ad-diagonalizable part x1 of x is in
R(A) too, as before. This implies that x1 is regular semisimple in A, as in
the preceding paragraph. Thus CA(x1) is a toral subalgebra of A that contains
the ad-nilpotent part x2 of x. This means that x2 is also ad-diagonalizable, so
that adx2 = 0. It follows that x2 = 0, because A is semisimple, by hypothesis.
Equivalently, x = x1, so that x is ad-diagonalizable. This gives another way to
see that every element of R(A) is ad-diagonalizable in A, as on p133f of [14].
More precisely, this gives another way to see that every element of R(A) is
regular semisimple in A.

If w is any regular semisimple element of A, then n0(w) = dimCA(w), as
in (31.8.2). In this case, CA(w) is a maximal toral subalgebra of A, and thus a
Cartan subalgebra of A, as in Section 18.10. This implies that dimCA(w) = n0,
by (31.7.10). It follows that

n0(w) = n0,(31.9.8)

so that w ∈ R(A). This shows that R(A) is the same as the set of all regular
semisimple elements of A, as on p134 of [14].

31.10 Symmetric algebras and homomorphisms

Let k be a commutative ring with a multiplicative identity element, and let V
be a module over k. Also let SV be a symmetric algebra of V , as in Section
25.8. Thus SV is a commutative associative algebra over k with a multiplicative
identity element eSV , and SV comes with a homomorphism iSV from V into
SV , as modules over k.

Let B be a commutative associative algebra over k with a multiplicative
identity element eB . If ϕ is a homomorphism from V into B, as modules over
k, then there is a unique algebra homomorphism ψ from SV into B such that
ψ(eSV ) = eB and

ψ ◦ iSV = ϕ,(31.10.1)

as in Section 25.8. Note that SV is uniquely determined, up to isomorphic
equivalence, by this property.

Let W be another module over k, and let SW be a symmetric algebra of
W , with multiplicative identity element eSW , and module homomorphism iSW
from W into SW . If ξ1 is a homomorphism from V into W , as modules over k,
then

iSW ◦ ξ1(31.10.2)
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is a homomorphism from V into SW , as modules over k. This leads to a unique
algebra homomorphism η1 from SV into SW such that η1(eSV ) = eSW and

η1 ◦ iSV = iSW ◦ ξ1,(31.10.3)

as before.
Similarly, let Z be a third module over k, and let SZ be a symmetric algebra

of Z, with multiplicative identity element eSZ , and module homomorphism iSZ
from Z into SZ. Also let ξ2 be a module homomorphism from W into Z, so
that

iSZ ◦ ξ2(31.10.4)

is a module homomorphism from W into SZ. Using this, we get a unique
algebra homomorphism η2 from SW into SZ such that η2(eSW ) = eSZ and

η2 ◦ iSW = iSZ ◦ ξ2,(31.10.5)

as usual.
Under these conditions, ξ2◦ξ1 is a homomorphism from V into Z, as modules

over k, and

iSZ ◦ ξ2 ◦ ξ1(31.10.6)

is a module homomorphism from V into SZ. Of course, η2 ◦ η1 is an algebra
homomorphism from SV into SZ that maps eSV to eSZ , and

η2 ◦ η1 ◦ iSV = η2 ◦ iSW ◦ ξ1 = iSZ ◦ ξ2 ◦ ξ1,(31.10.7)

by (31.10.3) and (31.10.5). In fact, η2 ◦ η1 is uniquely determined by these
properties, as before.

In particular, we can take V = Z, SV = SZ, and iSV = iSZ . If ξ2 ◦ ξ1 is the
identity mapping on V , then we get that η2 ◦ η1 is the identity mapping on SV .

Similarly, if ξ1 ◦ ξ2 is the identity mapping on W , then η1 ◦ η2 is the identity
mapping on SW . If ξ1 is a module isomorphism from V onto W , then it follows
that η1 is an algebra isomorphism from SV onto SW .

31.11 Some polynomial functions on V ′

Let k be a commutative ring with a multiplicative identity element again, and
let V be a module over k. Put

V ′ = Homk(V, k),(31.11.1)

which is the space of module homomorphisms from V into k, considered as a
module over itself. Remember that V ′ is a module over k too, with respect to
pointwise addition and scalar multiplication of functions on V .

Let SV be a symmetric algebra of V , with multiplicative identity element
eSV , and module homomorphism iSV from V into SV . If ϕ0 ∈ V ′, then there
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is a unique algebra homomorphism ψ0 from SV into k such that ψ0(eSV ) = 1
and

ψ0 ◦ iSV = ϕ0.(31.11.2)

This corresponds to taking B = k in the previous section.
Let c(V ′, k) be the set of all functions on V ′ with values in k. This is a

module over k with respect to pointwise addition and scalar multiplication of
functions on V ′, and a commutative algebra over k with respect to pointwise
multiplication of functions on V ′. The multiplicative identity element in c(V ′, k)
is the constant function on V ′ equal to 1 ∈ k.

Note that V ′′ = Homk(V
′, k) may be considered as a submodule of c(V ′, k),

as a module over k. If v ∈ V , then let Φ(v) be the k-valued function on V ′

defined by
Φ(v)(ϕ0) = ϕ0(v)(31.11.3)

for every ϕ0 ∈ V ′. This defines Φ as a module homomorphism from V into
c(V ′, k). More precisely, Φ maps V into V ′′.

It follows that there is a unique algebra homomorphism Ψ from SV into
c(V ′, k) such that Ψ(eSV ) is the constant function equal to 1 on V ′ and

Ψ ◦ iSV = Φ.(31.11.4)

This corresponds to taking B = c(V ′, k) in the previous section. Note that Ψ
maps SV onto the subalgebra of c(V ′, k) generated by Φ(V ) and the constant
functions.

Let ϕ0 ∈ V ′ be given, and put

Eϕ0
(f) = f(ϕ0)(31.11.5)

for every f ∈ c(V ′, k). This defines an algebra homomorphism from c(V ′, k)
into k. Observe that

Eϕ0
◦ Φ = ϕ0,(31.11.6)

as a mapping from V into k, by construction.
Clearly Eϕ0

◦Ψ is an algebra homomorphism from SV into k that sends eSV
to 1. We also have that

Eϕ0 ◦Ψ ◦ iSV = Eϕ0 ◦ Φ = ϕ0,(31.11.7)

by (31.11.4) and (31.11.6). This implies that

Eϕ0 ◦Ψ = ψ0,(31.11.8)

where ψ0 is as in (31.11.2).
Suppose now that V is free as a module over k, with positive finite rank n,

so that V can be identified with kn, as a module over k. In this case, every
element of V ′ can be expressed in a unique way as a linear combination of the
coordinates of an element of kn with coefficients in k, so that V ′ can be identified
with kn too, as a module over k.
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Similarly, the elements of V ′′ can be expressed in a unique way as a linear
combination of the coordinates of an element of V ′ with coefficients in k. This
means that the mapping Φ defined earlier is an isomorphism from V onto V ′′,
as modules over k. Thus Ψ maps SV onto the subalgebra of c(V ′, k) generated
by V ′′ and the constant functions.

Under these conditions, SV can be identified with the algebra of formal
polynomials in n commuting indeterminates with coefficients in k, as in Section
25.8. With these identifications, Ψ corresponds to the usual mapping from
formal polynomials to polynomial functions on kn.

31.12 Polynomials and symmetric algebras

Let k be a commutative ring with a multiplicative identity element, let V be a
module over k, and let c(V, k) be the set of all functions on V with values in k.
Thus c(V, k) is a module over k with respect to pointwise addition and scalar
multiplication, and a commutatitive associative algebra over k with respect to
pointwise multiplication of functions. Put V ′ = Homk(V, k) again, which may
be considered as a submodule of c(V, k), as a module over k.

Let SV ′ be the symmetric algebra associated to V ′, as in Section 25.8. This is
a commutative associative algebra over k, with a multiplicative identity element
eSV ′ . This also comes with a homomorphism iSV ′ from V ′ into SV ′, as modules
over k, as before.

Let B be a commutative associative algebra over k, with a multiplicative
identity element eB , and let ϕ be a homomorphism from V ′ into B, as modules
over k. Under these conditions, there is a unique algebra homomorphism ψ from
SV ′ into B such that ψ(eSV ′) = eB and

ψ ◦ iSV ′ = ϕ,(31.12.1)

as in Section 25.8.
Let us take B = c(V, k), whose multiplicative identity element is the constant

function equal to 1 ∈ k on V . The natural inclusion mapping from V ′ into c(V, k)
leads to an algebra homomorphism from SV ′ into c(V, k), as in the preceding
pargraph.

One may consider SV ′ as the algebra of polynomials associated to V , as on
p126 of [14]. The algebra homomorphism from SV ′ into c(V, k) mentioned in
the previous paragraph maps SV ′ onto the subalgebra of c(V, k) generated by
V ′ and the constant functions.

Suppose for the moment that V is a free module over k of positive finite
rank n, so that V can be identified with kn, as a module over k. In this case,
V ′ can be identified with kn too, as a module over k, as in the previous section.
Equivalently, V ′ is freely generated by the n coordinate functions on kn, as a
module over k.

Using this, one can identify SV ′ with the algebra of formal polynomials in n
commuting indeterminates with coefficients in k, as in Section 25.8. With these
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identifications, the algebra homomorphism from SV ′ into c(V, k) corresponds
to the usual mapping from formal polynomials to polynomial functions on kn.

Let V be any module over k again, letW be another module over k, and put
W ′ = Homk(W,k), as before. If ξ is a module homomorphism from W into V ,
then there is a natural dual homomorphism ξ′ from V ′ into W ′. This is defined
by composing a module homomorphism from V into k with ξ, to get a module
homomorphism from W into k.

Let SW ′ be the symmetric algebra associated to W ′, with multiplicative
identity element eSW ′ and module homomorphism iSW ′ from W ′ into SW ′.
Note that

iSW ′ ◦ ξ′(31.12.2)

is a homomorphism from V ′ into SW ′, as modules over k. This leads to a unique
algebra homomorphism η from SV ′ into SW ′ such that η(eSV ′) = eSW ′ and

η ◦ iSV ′ = iSW ′ ◦ ξ′,(31.12.3)

as before.
If ξ is a module isomorphism from W onto V , then ξ′ is a module isomor-

phism from W ′ onto V ′. This implies that η is an algebra isomorphism from
SV ′ onto SW ′, as in Section 31.10.

Suppose that V , W are free as modules over k, with positive finite ranks
n, m, respectively. Thus V , V ′ and W , W ′ can be identified with kn and km,
respectively, as modules over k, as before.

In this case, a module homomorphism ξ from W into V corresponds exactly
to an n × m matrix with entries in k in the usual way. The corresponding
dual homomorphism ξ′ corresponds to the transpose of this matrix in the same
way. The algebra homomorphism η from SV ′ into SW ′ obtained from ξ as in
(31.12.3) corresponds to the analogous algebra homomorphism obtained from
an n×m matrix with entries in k in Section 31.3.

31.13 Polynomials on Lie algebras

Let k be a field with infinitely many elements, and let (A, [·, ·]A) be a Lie algebra
over k of positive finite dimension n. Remember that the set R(A) of regular
elements of A is dense in A with respect to the Zariski topology, as in Section
31.6. Of course, this uses the identification of A with kn, as a vector space over
k, as before.

Let C(A) be the union of all of the Cartan subalgebras of A. Observe that

R(A) ⊆ C(A),(31.13.1)

because every element of R(A) is contained in a Cartan subalgebra of A, as
mentioned in Section 31.7. It follows that C(A) is dense in A with respect to
the Zariski topology.

Suppose from now on in this section that k is an algebraically closed field
of characteristic 0. Let E(A) be the subgroup of the group of all Lie algebra
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automorphisms of A generated by exponentials of strongly ad-nilpotent elements
of A, as in Section 24.3. Also let f be a polynomial function on A that is
invariant under E(A).

If C is a Cartan subalgebra of A and

f(x) = 0 for every x ∈ C,(31.13.2)

then
f(x) = 0 for every x ∈ A.(31.13.3)

Indeed, remember that every Cartan subalgebra of A is conjugate to C by an
element of E(A), as in Section 24.9. Thus (31.13.2) implies that

f(x) = 0 for every x ∈ C(A),(31.13.4)

because f is invariant under E(A), by hypothesis. This implies (31.13.3), be-
cause C(A) is Zariski dense in A, as before. This corresponds to some remarks
on p132, 134 of [14].



Chapter 32

Some remarks and helpful
facts

32.1 Roots and vector spaces

Let k be a field of characteristic 0, and let A0 be a vector space over k of positive
finite dimension n. Also let A′

0 be the dual space of linear functionals on A0,
as usual, and let Φ be a finite set of nonzero elements of A′

0 whose linear span
is A′

0. We would like to consider conditions on A0 and Φ like those in Sections
22.11, 28.7, 29.4, and 33.1, without the larger Lie algebra.

Of course, we may consider A0 and A′
0 as vector spaces over Q, using the

natural embedding of Q into k. Let EQ be the linear subspace of A′
0, as a vector

space over Q, spanned by Φ. We can use EQ to get a vector space ER over
R, as in Section 17.13. Thus EQ corresponds to a linear subspace of ER, as a
vector space over Q, and any basis for EQ, as a vector space over Q, is a basis
for ER, as a vector space over R, by construction.

We ask that Φ be a root system in ER. If α ∈ Φ, then let σα be the symmetry
on ER with vector α that maps Φ onto itself, as usual. Note that

σα(EQ) = EQ.(32.1.1)

Let λα be the linear functional on ER corresponding to σα, so that σα is the
identity mapping on ER minus λα times α. Remember that λα takes integer
values on Φ, by definition of a root system, which means that λα takes values
in Q on EQ.

Let ∆ be a base for Φ as a root system in ER. The elements of ∆ are
automatically linearly independent in EQ, as a vector space over Q, because
they are linearly independent in ER, as a vector space over R. Observe that
EQ is spanned by ∆, as a vector space over Q, because EQ is spanned by Φ,
and every element of Φ can be expressed as a linear combination of elements of
∆ with integer coefficients. This means that

∆ is a basis for EQ,(32.1.2)

670
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as a vector space over Q.

Similarly, A′
0 is spanned by ∆, as a vector space over k, because A′

0 is
spanned by Φ, by hypothesis. We ask that

∆ be a basis for A′
0,(32.1.3)

as a vector space over k. Equivalently, this means that

dimkA
′
0 = dimQEQ,(32.1.4)

where the subscripts indicate the fields over which the dimensions of the corre-
sponding vector spaces are taken. This is the same as saying that

dimQEQ = n,(32.1.5)

because

dimkA
′
0 = dimkA0 = n,(32.1.6)

by hypothesis.

Let T be an automorphism of Φ in ER, so that T is a one-to-one linear
mapping from ER onto itself such that T (Φ) = Φ. This implies that

T (EQ) = EQ.(32.1.7)

The restriction of T to EQ is a one-to-one linear mapping from EQ onto itself,
as a vector space over Q. Every linear mapping from EQ into itself, as a vector
space over Q, has a unique extension to a linear mapping from ER into itself, as
a vector space over R. A one-to-one linear mapping from EQ onto itself extends
to a one-to-one linear mapping from ER onto itself.

Similarly, every linear mapping from EQ into itself, as a vector space over
Q, has a unique extension to a linear mapping from A′

0 into itself, as a vector
space over k, because of (32.1.3). The extension of a one-to-one linear mapping
from EQ onto itself is a one-to-one linear mapping from A′

0 onto itself. If R is
a one-to-one linear mapping from A′

0 onto itself, as a vector space over k, and
R(Φ) = Φ, then

R(EQ) = EQ.(32.1.8)

The restriction of R to EQ is a one-to-one linear mapping from EQ onto itself,
as a vector space over Q.

It follows that the group Aut(Φ) of automorphisms of Φ in ER can be iden-
tified with the group of one-to-one linear mappings from EQ onto itself, as a
vector space over Q, that send Φ onto itself. This can also be identified with
the group of one-to-one linear mappings from A′

0 onto itself, as a vector space
over k, that send Φ onto itself. Similarly, the Weyl group of Φ can be identified
with a group of one-to-one linear mappings from EQ onto itself, or a group of
one-to-one linear mappings from A′

0 onto itself.
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32.2 Roots and dual spaces

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If α ∈ Φ, then λα is an element of the dual E′

R of ER, as a vector space
over R. Put

Φ′ = {λα : α ∈ Φ},(32.2.1)

which is a root system in E′
R, as in Section 19.8.

Similarly, let E′
Q be the dual of EQ, as a vector space over Q. Every ele-

ment of E′
Q has a unique extension to an element of E′

R, so that E′
Q may be

identified with a subset of E′
R. Equivalently, the elements of E′

Q correspond to
the elements of E′

R that take values in Q on EQ. Thus

E′
Q corresponds to a linear subspace of E′

R,(32.2.2)

as a vector space over Q.

If α ∈ Φ, then λα takes values in Q on EQ, as in the previous section, so
that Φ′ corresponds to a subset of E′

Q. Let ∆ be a base of Φ, and put

∆′ = {λβ : β ∈ ∆}.(32.2.3)

If Φ is reduced as a root system in ER, then ∆′ is a base for Φ′, as in Section
19.13. Otherwise, one can get a base for Φ by replacing λβ with λβ/2 when
β ∈ ∆ and 2β ∈ Φ, as before. In either case,

∆′ is a basis for E′
R,(32.2.4)

as a vector space over R.
In particular, the elements of ∆′ are linearly independent in E′

R, as a vector
space over R. Of course, this means that the elements of ∆′ are linearly inde-
pendent in E′

R as a vector space over Q. This implies that ∆′ corresponds to a
linearly independent set in E′

Q, as a vector space over Q. More precisely, this
uses the fact that if a linear combination of elements of ∆′ is equal to 0 on EQ,
then it is equal to 0 on ER too.

Remember that

dimQEQ = dimRER,(32.2.5)

by construction. This implies that

dimQE
′
Q = dimRE

′
R.(32.2.6)

It follows that

∆′ corresponds to a basis for E′
Q,(32.2.7)

as a vector space over Q.
Let A′′

0 be the dual of A′
0, as a vector space over k. Every element of E′

Q

has a unique extension to an element of A′′
0 , because ∆ is a basis for A′

0, as a
vector space over k. Thus E′

Q corresponds to a subset of A′′
0 , whose elements
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are the linear functionals on A′
0 that take values in Q on EQ, with respect to

the natural embedding of Q into k. More precisely,

E′
Q corresponds to a linear subspace of A′′

0 ,(32.2.8)

as a vector space over Q.

Remember that there is a natural isomorphism from A0 onto A′′
0 , as vector

spaces over k. This isomorphism sends w ∈ A0 to the linear functional on A′
0

defined by evaluating an element of A′
0 at w.

If α ∈ Φ, then there is a unique element hα of A0 such that

β(hα) = λα(β)(32.2.9)

for every β ∈ Φ. The right side is an integer, by definition of a root system,
which may be considered as an element of k, using the natural embedding of Q
into k. The uniqueness of hα follows from the fact that A′

0 is spanned by Φ, as
a vector space over k.

To get the existence of hα, we consider λα as an element of E′
Q, which can

be extended to a unique element of A′′
0 , as before. This element of A′′

0 can
be expressed in terms of evaluation at an element of A0, which is hα. More
precisely, (32.2.9) holds for every β ∈ EQ. By construction,

β 7→ β(hα)(32.2.10)

is the linear functional on A′
0 whose restriction to EQ is the same as λα.

Remember that σα sends EQ onto itself, as in the previous section. The
restriction of σα to EQ has a unique extension to a one-to-one linear mapping
from A′

0 onto itself, as a vector space over k, as before. This extension is given
by

β 7→ β − β(hα)α,(32.2.11)

by the remarks in the previous two paragraphs.

32.3 Dual spaces and abstract weights

Let us continue with the same notation and hypotheses as in the previous two
sections. Remember that EQ is the linear span of Φ in A′

0, as a vector space
over Q. We may also consider EQ to be the linear span of Φ in ER, as a vector
space over Q.

Remember that the restrictions of the λα’s, α ∈ ∆, to EQ form a basis for
E′

Q, as a vector space over Q. This implies that

any function of α ∈ ∆ with values in Q can be(32.3.1)

obtained by evaluating λα at an element of EQ.

If z ∈ ER, then z is uniquely determined by λα(z), α ∈ ∆, because the
λα’s, α ∈ ∆, form a basis for E′

R. If λα(z) ∈ Q for every α ∈ ∆, then there
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is an element of EQ for which the values of λα, α ∈ ∆, are the same, as in
the preceding paragraph. This means that z ∈ EQ, because z is determined by
λα(z), α ∈ ∆. Thus

EQ = {z ∈ ER : λα(z) ∈ Q for every α ∈ ∆},(32.3.2)

because λα maps EQ into Q for every α ∈ Φ, as before. Of course, it follows
that

EQ = {z ∈ ER : λα(z) ∈ Q for every α ∈ Φ}.(32.3.3)

If β ∈ A′
0, then put

fβ(α) = β(hα)(32.3.4)

for every α ∈ ∆, so that fβ defines a k-valued function on ∆. Of course, the set
of k-valued functions on ∆ is a vector space over k, with respect to pointwise
addition and scalar multiplication. Clearly

{fβ : β ∈ A′
0}(32.3.5)

is a linear subspace of the space of all k-valued functions on ∆, because A′
0 is a

vector space over k, and fβ is linear in β over k.
If β ∈ EQ, then

fβ(α) = λα(β)(32.3.6)

for every α ∈ ∆, as in (32.2.9), where the right side is considered as an element
of k, using the natural embedding of Q into k. Every Q-valued function on
∆ corresponds to some β ∈ EQ in this way, as in (32.3.1). This implies that
every k-valued function on ∆ can be expressed as fβ for some β ∈ A′

0, because
(32.3.5) is a linear subspace of the space of all k-valued functions on ∆, as in
the preceding paragraph.

It follows that

the hα’s, α ∈ ∆, are linearly independent in A0,(32.3.7)

because otherwise the values of the fβ ’s, β ∈ A′
0, on ∆ would satisfy a nontrivial

linear relation. Note that the dimension of A0, as a vector space over k, is equal
to the number of elements of ∆, by the remarks in Section 32.1. This means
that

{hα : α ∈ ∆} is a basis for A0,(32.3.8)

as a vector space over k.
In particular, every element of A′

0 is uniquely determined by its values on
the hα’s, α ∈ ∆. If ν ∈ A′

0 and ν(hα) corresponds to an element of Q for every
α ∈ ∆, under the natural embedding of Q into k, then it follows that ν ∈ EQ,
because of (32.3.1). This shows that

EQ = {ν ∈ A′
0 : ν(hα) ∈ Q for every α ∈ ∆}.(32.3.9)

We also have that

EQ = {ν ∈ A′
0 : ν(hα) ∈ Q for every α ∈ Φ},(32.3.10)
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because ν(hα) = λα(ν) ∈ Q for every α ∈ Φ when ν ∈ EQ, as in (32.2.9).
Put

Υ = ΥΦ = {z ∈ ER : λα(z) ∈ Z for every α ∈ Φ},(32.3.11)

as in Section 30.1. If Φ is reduced as a root system in ER, then

Υ = {z ∈ ER : λα(z) ∈ Z for every α ∈ ∆},(32.3.12)

because the collection ∆′ of λα, α ∈ ∆, is a base for Φ′, as before. Note that

Υ ⊆ EQ,(32.3.13)

by (32.3.3). Thus

Υ = {z ∈ EQ : λα(z) ∈ Z for every α ∈ Φ},(32.3.14)

and

Υ = {z ∈ EQ : λα(z) ∈ Z for every α ∈ ∆}(32.3.15)

when Φ is reduced.
Let us check that

Υ = {ν ∈ A′
0 : ν(hα) ∈ Z for every α ∈ Φ}.(32.3.16)

If ν ∈ A′
0 satisfies ν(hα) ∈ Z for every α ∈ Φ, then ν ∈ EQ, by (32.3.10). This

means that ν(hα) = λα(ν) for every α ∈ Φ, as in (32.2.9). It follows that ν ∈ Υ,
by (32.3.14). It is easy to see that Υ is contained in the right side of (32.3.16),
using (32.3.14) and the fact that EQ ⊆ A′

0, by construction. Similarly,

Υ = {ν ∈ A′
0 : ν(hα) ∈ Z for every α ∈ ∆}(32.3.17)

when Φ is reduced as a root system in ER. This uses (32.3.9) and (32.3.15), to
get that the right side is contained in Υ.

As in Section 30.3, we put

Υ+ = Υ+
Φ,∆ = {z ∈ Υ : λα(z) ≥ 0 for every α ∈ ∆}.(32.3.18)

This is the same as

Υ+ = {z ∈ Υ : λα(z) ≥ 0 for every α ∈ Φ+},(32.3.19)

where Φ+ is the set of positive roots with respect to ∆, as usual. Equivalently,

Υ+ = {ν ∈ Υ : ν(hα) ≥ 0 for every α ∈ ∆}(32.3.20)

= {ν ∈ Υ : ν(hα) ≥ 0 for every α ∈ Φ+},

by (32.2.9) and (32.3.13). An element of A′
0 may be called integral if it is in Υ,

and dominant integral if it is in Υ+, as on p112 of [14].
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32.4 Abstract weights and group rings

We continue with the same notation and hypotheses as in the previous three
sections. More precisely, in this section it is enough to have Φ as a root system
in ER, and to let Υ be as in (32.3.11). However, it will be helpful later on to
consider Φ and Υ as being contained in A′

0.
Remember that Υ is a commutative group with respect to addition, which

may be considered as a subgroup of EQ, ER, or A′
0. We would like to consider

the group ring Z[Υ] of Υ with coefficients in Z, which may also be considered as
the group algebra of Υ over Z. Normally the elements of Z[Υ] might be defined
as formal linear combinations of elements of Υ with integer coefficients, where
multiplication in Z[Υ] is defined using the group operation on Υ. Because the
group operation on Υ is addition, it is better to express the embedding of Υ
into Z[Υ] another way.

Thus we take Z[Υ] to be the free module over Z with distinct basis elements
denoted eα, α ∈ Υ. If α, β ∈ Υ, then we put

eα eβ = eα+β ,(32.4.1)

using addition in Υ on the right. This can be used to define multiplication
in Z[Υ], which is bilinear over Z. Note that e0 is the multiplicative identity
element in Z[Υ]. This corresponds to some remarks on p124 of [14], and on p63
of [24].

Alternatively, consider the set c00(Υ,Z) of all Z-valued functions on Υ with
finite support, which is to say that they are equal to 0 at all but finitely many
elements of Υ. This is a commutative group with respect to pointwise addition
of functions. If f, g ∈ c00(Υ,Z), then their convolution product is the Z-valued
function on Υ defined by

(f ∗ g)(γ) =
∑

α+β=γ

f(α) g(β)(32.4.2)

for every γ ∈ Υ. More precisely, the sum on the right is taken over all α, β ∈ Υ
with α + β = γ. This reduces to a finite sum when either f or g has finite
support in Υ. If f and g both have finite support in Υ, then f ∗ g has finite
support in Υ too, and is thus an element of c00(Υ,Z). One can check that
c00(Υ,Z) is a commutative ring with respect to convolution.

If α ∈ Υ, then one can take eα to be the k-valued function on Υ equal to
1 at α, and to 0 at all other elements of Υ. This is an element of c00(Υ,Z),
and c00(Υ,Z) is a free module over Z with basis eα, α ∈ Υ. It is easy to see
that (32.4.1) holds for every α, β ∈ Υ, using the convolution product on the
left side. Note that automorphisms of Υ as a commutative group lead to ring
automorphisms of Z[Υ].

32.5 Homomorphisms and Lie algebras

Let k be a commutative ring with a multiplicative identity element, and let
(A1, [·, ·]A1

), (A2, [·, ·]A2
) be Lie algebras over k. Also let UA1, UA2 be universal
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enveloping algebras of A1, A2, respectively, as in Section 25.4. Thus UA1, UA2

are associative algebras over k with multiplicative identity elements eUA1 , eUA2 ,
respectively. We have Lie algebra homomorphisms iUA1

, iUA2
from A1, A2 into

UA1, UA2, respectively, as well.
Suppose that ξ1 is a Lie algebra homomorphism from A1 into A2. Of course,

this implies that
iUA2 ◦ ξ1(32.5.1)

is a Lie algebra homomorphism from A1 into UA2. It follows that there is a
unique algebra homomorphism η1 from UA1 into UA2 such that η1(eUA1) =
eUA2 and

η1 ◦ iUA1
= iUA2

◦ ξ1,(32.5.2)

as in Section 25.4.
Let (A3, [·, ·]A3

) be another Lie algebra over k, and let UA3 be a univer-
sal enveloping algebra of A3, with multiplicative identity element eUA3

and Lie
algebra homomorphism iUA3

from A3 into UA3. If ξ2 is a Lie algebra homo-
morphism from A2 into A3, then

iUA3 ◦ ξ2(32.5.3)

is a Lie algebra homomorphism from A2 into UA3. This leads to a unique
algebra homomorphism η2 from UA2 into UA3 such that η2(eUA2

) = eUA3
and

η2 ◦ iUA2 = iUA3 ◦ ξ2,(32.5.4)

as before.
It follows that ξ2 ◦ ξ1 is a Lie algebra homomorphism from A1 into A3, so

that
iUA3

◦ ξ2 ◦ ξ1(32.5.5)

is a Lie algebra homomorphism from A1 into UA3. Observe that η2 ◦ η1 is an
algebra homomorphism from UA1 into UA3 with

(η2 ◦ η1)(eUA1) = η2(η1(eUA1)) = η2(eUA2) = eUA3(32.5.6)

and
η2 ◦ η1 ◦ iUA1

= η2 ◦ iUA2
◦ ξ1 = iUA3

◦ ξ2 ◦ ξ1.(32.5.7)

More precisely, η2 ◦ η1 is uniquely determined by these properties, because UA1

is a universal enveloping algebra of A1.
Suppose that A1 = A3, UA1 = UA3, and iUA1

= iUA3
. If ξ2 ◦ ξ1 is the

identity mapping on A1, then it follows that η2 ◦ η1 is the identity mapping on
UA1, by uniqueness.

If ξ1 ◦ ξ2 is the identity mapping on A2, then η1 ◦ η2 is the identity mapping
on UA2, for the same reasons. If ξ1 is a Lie algebra isomorphism from A1 onto
A2, then we get that η1 is an algebra isomorphism from UA1 onto UA2. Of
course, these remarks reduce to those in Section 31.10 when the Lie algebras
are commutative.

Let us now take A1 = A2, UA1 = UA2, and iUA1 = iUA2 . If ξ1 is a Lie
algebra automorphism of A1, then η1 is an algebra automorphism of UA1.
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32.6 Submodules of UA

Let k be a commutative ring with a multiplicative identity element again, and
let (A, [·, ·]A) be a Lie algebra over k. Also let UA be a universal enveloping
algebra of A, as in Section 25.4. As usual, UA is an associative algebra over
k with a multiplicative identity element e = eUA, and we have a Lie algebra
homomorphism i = iUA from A into UA.

If a ∈ A and w ∈ UA, then put

δa(w) = [i(a), w] = i(a)w − w i(a).(32.6.1)

This defines a derivation on UA, as an associative algebra over k, as in Section
2.5. Of course,

δa(i(x)) = [i(a), i(x)] = i([a, x]A)(32.6.2)

for every a, x ∈ A, because i is a Lie algebra homomorphism from A into UA.
In fact, UA is a module over A, as a Lie algebra over k, with respect to

(32.6.1). Remember that UA is a Lie algebra over k, with respect to the com-
mutator bracket defined using multiplication in UA, because UA is an associa-
tive algebra over k. Thus UA may be considered as a module over itself, as
a Lie algebra over k, with respect to the adjoint representation. Equivalently,
the adjoint representation on UA is a Lie algebra homomorphism from UA into
the Lie algebra of homomorphisms from UA into itself, as a module over k. By
construction, a 7→ δa is the same as the composition of i with the Lie algebra
homomorphism just mentioned, and thus defines a Lie algebra homomorphism
from A into the the Lie algebra of module homomorphisms from UA into itself,
as a module over k.

If n is a nonnegative integer, then let UnA be the submodule of UA, as
a module over k, generated by products of at most n elements of i(A), as in
Section 25.9. We interpret e as being a product of 0 elements of i(A), so that
e ∈ UnA for every n ≥ 0, as before. If x1, . . . , xm ∈ A, then

δa(i(x1) · · · i(xm))(32.6.3)

=

m∑
j=1

i(x1) · · · i(xj−1) δa(i(xj)) i(xj+1) · · · i(xm),

because δa is a derivation on UA. This implies that

δa(i(x1) · · · i(xm))(32.6.4)

=

m∑
j=1

i(x1) · · · i(xj−1) i([a, xj ]A) i(xj+1) · · · i(xm),

by (32.6.2). It follows that

UnA is a submodule of UA, as a module over A,(32.6.5)

for every n ≥ 0.
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Remember that
∪∞
n=0 UnA = UA, as in Section 25.9. If A is finitely-

generated as a module over k, then it is easy to see that UnA is finitely-generated
as a module over k for every n ≥ 0. In particular, if k is a field, and A has finite
dimension as a vector space over k, then UnA has finite dimension as a vector
space over k for every n ≥ 0. This corresponds to Exercise 3 on p95 of [14].

32.7 Some automorphisms of UA

Let k be a field of characteristic 0, and let (A, [·, ·]A) be a Lie algebra over
k. Suppose that a ∈ A is ad-nilpotent, so that adA,a is nilpotent as a linear
mapping on A. Thus exp adA,a defines a Lie algebra automorphism of A, as in
Section 14.11.

Let UA be a universal enveloping algebra of A, with multiplicative identity
element e = eUA, and Lie algebra homomorphism i = iUA from A into UA, as
in Section 25.4 again. There is a unique algebra automorphism η of UA such
that η(e) = e and

η ◦ i = i ◦ (exp adA,a),(32.7.1)

as in Section 32.5.

Let δa be defined on UA as in the previous section. If x1, . . . , xm ∈ A, then
it is easy to see that

(δa)
l(i(x1) · · · i(xm)) = 0(32.7.2)

when l is sufficiently large, depending on m. This implies that for each nonneg-
ative integer n, the restriction of δa to UnA is nilpotent, where UnA is as in the
previous section.

In particular, δa is locally nilpotent on UA, as in Section 27.12. It follows
thst exp δa can be defined as a linear mapping from UA into itself, as before.
More precisely, exp δa is invertible as a linear mapping on UA, with inverse
equal to exp(−δa). In fact, exp δa is an algebra automorphism of UA, because
δa is a derivation on UA, as in the previous section. Note that exp δa maps e
to itself.

Clearly δa ◦ i = i ◦ adA,a, by construction. Using this, one can check that

(exp δa) ◦ i = i ◦ (exp adA,a).(32.7.3)

Thus η = exp δa, by uniqueness.

32.8 Polarization

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. If a ∈ k, then let v(a) be the element of kn defined by

v(a) = (1, a, a2, . . . , an−1).(32.8.1)
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If a1, . . . , an are n elements of k, then v(a1), . . . , v(an) make up an n×n matrix
with entries in k. The determinant of this matrix is the well-known Vander-
monde determinant ∏

1≤j<l≤n

(al − aj).(32.8.2)

Suppose now that k is a field, so that kn is a vector space over k, with respect
to coordinatewise addition and scalar multiplication. If a1, . . . , an are distinct
elements of k, then (32.8.2) is not equal to 0. This implies that v(a1), . . . , v(an)
form a basis for kn, as a vector space over k.

Let X, Y be commuting indeterminates, and remember that

(aX + Y )n =

n∑
j=0

(
n

j

)
aj Xj Y n−j(32.8.3)

for every a ∈ k, by the binomial theorem. If k has characteristic 0 and
a1, . . . , an, an+1 are n+1 distinct elements of k, then every homogeneous formal
polynomial in X, Y with coefficients in k and of degree n can be expressed as
a linear combination of (aj X + Y )n, 1 ≤ j ≤ n+ 1. This can be obtained from
the remarks in the preceding paragraph, with n replaced by n + 1, and using
the fact that

(
n
j

)
is nonzero for every j = 0, . . . , n.

Let r be a positive integer, and let T1, . . . , Tr be r commuting indeterminates.
If k has characteristic 0, then it is well known that every formal polynomial in
T1, . . . , Tr with coefficients in k can be expressed as a linear combination of
powers of linear polynomials. This is known as polarization, and can be seen
using induction on r and the remarks in the previous paragraph, as in Exercise
5 on p134 of [14].

More precisely, if E1, . . . , Er are infinite subsets of k, then it suffices to use
powers of linear polynomials for which the coefficient of Tj is an element of
Ej for each j = 1, . . . , r. In particular, it is enough to use powers of linear
polynomials for which the coefficient of Tj corresponds to an integer for each j,
under the natural embedding of Q into k.

Suppose that k has characteristic 0, and let V be a vector space over k of
dimension r. Thus the dual space V ′ of linear functionals on V has dimension
r as well, as a vector space over k. Polynomial functions on V can be obtained
using a basis for V , and formal polynomials in r commuting indeterminates
with coefficients in k. Equivalently, the algebra of polynomial functions on V is
generated by V ′ and the constant functions on V .

Every polynomial function on V can be expressed as a linear combination of
powers of elements of V ′. This follows from the previous remarks about formal
polynomials.

Let λ1, . . . , λr be a basis for V ′, as a vector space over k. Of course, poly-
nomial functions on V can be expressed as polynomials in λ1, . . . , λr, with co-
efficients in k.

Let Λ be the subgroup of V ′, as a group with respect to addition, generated
by λ1, . . . , λr. This consists of the linear combinations of λ1, . . . , λr whose coef-
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ficients correspond to integers, with respect to the natural embedding of Q into
k.

Every polynomial function on V can be expressed as a linear combination
of powers of elements of Λ, by the analogous statement for formal polynomials
mentioned earlier. This corresponds to a remark on p126 of [14].

32.9 The center of UA

Let k be a field of characteristic 0, and let (A, [·, ·]A) be a Lie algebra over k.
Also let UA be a universal enveloping algebra of A, with multiplicative identity
element e = eUA, and Lie algebra homomorphism i = iUA from A into UA, as
in Section 25.4. Consider the center Z of UA, as an associative algebra over k.
Of course, Z is a subalgebra of UA that contains e.

If a ∈ A, then let δa be as in Section 32.6. Note that

δa(z) = 0(32.9.1)

for every a ∈ A and z ∈ Z. More precisely, Z consists exactly of the z ∈ UA such
that (32.9.1) holds for every a ∈ A, because UA is generated as an associative
algebra over k by e and i(A).

Suppose that a is ad-nilpotent in A, so that δa is locally nilpotent on UA,
as in Section 32.7. If z ∈ Z, then

(exp δa)(z) = z,(32.9.2)

by (32.9.1).
Remember that IntA is the subgroup of the group of Lie algebra automor-

phisms of A generated by automorphisms of the form exp adA,a, where a ∈ A
is ad-nilpotent, as in Section 14.11. We have also seen that every Lie algebra
automorphism of A leads to an algebra automorphism of UA, as in Section 32.5.
If a ∈ A is ad-nilpotent, then the algebra automorphism of UA corresponding
to exp adA,a is exp δa, as in Section 32.7. If z ∈ Z, then z is fixed by these
automorphisms on UA, as in (32.9.2). This means that z is fixed by all of the
automorphisms of UA corresponding to elements of IntA, as on p128 of [14].

Suppose that a ∈ A is ad-nilpotent again, so that t a is ad-nilpotent in A for
every t ∈ k. Similarly, δt a = t δa is locally nilpotent on UA for every t ∈ k. If
w ∈ UA satisfies

(exp t δa)(w) = w(32.9.3)

for every t ∈ k, then we would like to show that

δa(w) = 0.(32.9.4)

This corresponds to some remarks on p128f of [14].
Let UnA be as in Section 32.6 for each nonnegative integer n, and let n0 be

a nonnegative integer such that w ∈ Un0
A. Remember that the restriction of
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δa to Un0A is nilpotent, as in Section 32.7. Thus there is a positive integer l0
such that (δa)

l0 = 0 on Un0A. If t ∈ k, then we get that

exp t δa =

l0−1∑
j=0

(tj/j!) (δa)
j(32.9.5)

on Un0
A.

Let t1, . . . , tl0 be l0 distinct elements of k. Under these conditions, there are
l0 elements c1, . . . , cl0 of k such that

l0∑
r=1

cr (exp tr δa) = δa(32.9.6)

on Un0
A. This uses (32.9.5) and the remarks at the beginning of the previous

section.
It follows that

δa(w) =
( l0∑
r=1

cr

)
w,(32.9.7)

by (32.9.3), and because w ∈ Un0
A. This implies (32.9.4), because (δa)

l0(w) =
0.

Suppose that w ∈ UA is invariant under all of the automorphisms of UA
that correspond to elements of IntA, as before. This implies that (32.9.3) holds
for every a ∈ A that is ad-nilpotent, and every t ∈ k. This means that (32.9.4)
holds for every a ∈ A that is ad-nilpotent.

Remember that UA is a module over A, as a Lie algebra over k, with respect
to the action of a ∈ A defined by δa, as in Section 32.6. If (32.9.4) holds for
some collection of a ∈ A, then it holds for every a in the Lie subalgebra of A
generated by this collection.

Suppose that A is generated, as a Lie algebra over k, by ad-nilpotent el-
ements. If w ∈ UA is invariant under all of the automorphisms of UA that
correspond to elements of IntA, then we get that (32.9.4) holds for every a ∈ A.
This means that w ∈ Z, as in the lemma on p128 of [14].

32.10 Constant-coefficient differential operators

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. Also let ∂1, . . . , ∂n be commuting formal symbols, which
may be used to represent partial derivatives in some related commuting inde-
terminates, as in Section 5.11. A formal differential operator in ∂1, . . . , ∂n with
coefficients in k can be expressed as∑

|α|≤N

aα ∂α,(32.10.1)
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where N is a nonnegative integer, the sum is taken over all multi-indices α of
length n with |α| ≤ N , and aα ∈ k for each such α. This is basically the same
as a formal polynomial in ∂1, . . . , ∂n, considered as n commuting indetermi-
nates, with coefficients in k. The usual way of multiplying formal differential
operators corresponds to multiplication of formal polynomials in ∂1, . . . , ∂n with
coefficients in k in this case.

Let T1, . . . , Tn be n commuting indeterminates, so that formal differential
operators in ∂1, . . . , ∂n with coefficients in k[[T1, . . . , Tn]] may be defined as in
Section 5.11. Now ∂1, . . . , ∂n may be used to represent partial derivatives in
T1, . . . , Tn, as before, so that multiplication on k[[T1, . . . , Tn]] may be extended
to

the space of formal differential operators in ∂1, . . . , ∂n(32.10.2)

with coefficients in k[[T1, . . . , Tn]],

as before. Note that

the space of formal differential operators in ∂1, . . . , ∂n(32.10.3)

with coefficients in k

corresponds to a commutative subalgebra of (32.10.2), with respect to multipli-
cation of formal differential operators. Multiplication of formal differential op-
erators in ∂1, . . . , ∂n with coefficients in k, as formal differential operators with
coefficients in k[[T1, . . . , Tn]], corresponds exactly to multiplication of formal
polynomials in ∂1, . . . , ∂n with coefficients in k, as in the preceding paragraph.

If ∂1, . . . , ∂n are simply considered as n commuting indeterminates, then
(32.10.2) may be defined as a module over k as the space

(k[[T1, . . . , Tn]])[∂1, . . . , ∂n](32.10.4)

of formal polynomials in ∂1, . . . , ∂n with coefficients in k[[T1, . . . , Tn]], as a mod-
ule over k, as in Section 5.8. This is essentially the same as in Section 5.11, with
some additional notation. Using this identification, (32.10.3) corresponds to

k[∂1, . . . , ∂n],(32.10.5)

as a submodule of (32.10.4), as a module over k. One may consider (32.10.4) as
a module over k[[T1, . . . , Tn]] too, as a commutative algebra over k, with respect
to multiplication on the left by elements of k[[T1, . . . , Tn]]. This corresponds
to multiplication of an element of k[[T1, . . . , Tn]], considered as an element of
(32.10.2) of order 0, with another element of (32.10.2), as in Section 5.11.

We can also use multiplication on k[[T1, . . . , Tn]] to define multiplication on
(32.10.4) as in Section 5.8, so that ∂1, . . . , ∂n are not considered as being re-
lated to differentiation in T1, . . . , Tn. This defines a commutative algebra over
k, which is a commutative algebra over k[[T1, . . . , Tn]] as well. If ∂1, . . . , ∂n
may be used to represent partial derivatives in some related commuting inde-
terminates, then this would basically correspond to the derivatives of T1, . . . , Tn
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being equal to 0. Of course, (32.10.5) is a subalgebra of (32.10.4) with respect
to this definition of multiplication on (32.10.4). This definition of multiplica-
tion on (32.10.5) corresponds to multiplication of formal differential operators
in ∂1, . . . , ∂n with coefficients in k, as before.

Let L1, L2 be formal differential operators in ∂1, . . . , ∂n with coefficients in
k[[T1, . . . , Tn]] of order

N1, N2 ≥ 0,(32.10.6)

respectively. This means that the coefficients of ∂α in L1, L2 are equal to
zero when α is a multi-index of length n with |α| strictly larger than N1,
N2, respectively. If N1 = N2 = 0, then L1, L2 correspond to elements of
k[[T1, . . . , Tn]], and the product of L1 and L2 as formal differential operators cor-
responds to their product as formal polynomials in ∂1, . . . , ∂n with coefficients
in k[[T1, . . . , Tn]]. Otherwise, the product of L1 and L2 as formal differential
operators corresponds to their product as formal polynomials in ∂1, . . . , ∂n with
coefficients in k[[T1, . . . , Tn]], plus a formal differential operator in ∂1, . . . , ∂n
with coefficients in k[[T1, . . . , Tn]] of order

N1 +N2 − 1.(32.10.7)

In particular, the commutator of L1 and L2 with respect to multiplication of
formal differential operators is a formal differential operator in ∂1, . . . , ∂n with
coefficients in k[[T1, . . . , Tn]] of order (32.10.7).



Part V

Some representation theory
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Chapter 33

Representations and
semisimplicity

33.1 Diagonalizability and roots

Let k be a field of characteristic 0, and let (A, [·, ·]A) be a Lie algebra over k of
positive finite dimension. We would like to consider conditions on A like those in
Section 29.4. More precisely, we shall start here with conditions related to diag-
onalizability, and consider additional conditions related to roots. In particular,
these conditions hold when k is algebraically closed, and A is semisimple.

Suppose that A0 is a Lie subalgebra of A, and that every element of A0 is
ad-diagonalizable as an element of A. This implies that A0 is commutative as a
Lie algebra, as in Section 17.1. Thus A0 is contained in its centralizer CA(A0)
in A, and we ask that

CA(A0) = A0.(33.1.1)

Remember that this holds when k is algebraically closed, A is semisimple, and
A0 is a maximal toral subalgebra of A, as in Section 17.4. Note that (33.1.1)
implies that A0 ̸= {0}, because A ̸= {0}.

Let A′
0 be the dual space of linear functionals on A0, as a vector space over k,

as usual. If α ∈ A′
0, then let Aα be the set of x ∈ A such that adw(x) = α(w)x

for every w ∈ A0, which is a linear subspace of A. The condition (33.1.1) says
exactly that Aα is equal to A0 when α = 0.

Let Φ = ΦA0 be the set of α ∈ A′
0 such that α ̸= 0 and Aα ̸= {0}. Thus A

corresponds to the direct sum of Aα, α ∈ Φ∪{0}, as a vector space over k, as in
Section 17.2. Remember that [Aα, Aβ ] ⊆ Aα+β for every α, β ∈ A′

0, as before.
Under the conditions mentioned so far, the center Z(A) of A as a Lie algebra

is contained in A0, and in fact is the intersection of the kernels of the elements
of Φ. We ask that Z(A) = {0}, which means that A′

0 is spanned by Φ, as a
vector space over k. This implies that Φ ̸= ∅, because A0 ̸= {0}.

We ask that for each α ∈ Φ, Aα have dimension one, as a vector space over
k. We also ask that for every α ∈ Φ there be an element hα of [Aα, A−α] ⊆ A0
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such that α(hα) = 2 = 1 + 1 in k. This determines hα uniquely, because k
has characteristic 0, and [Aα, A−α] has dimension at most one as a vector space
over k. Note that A is semisimple under these conditions, as in Section 17.15.
If α, β ∈ Φ and α+ β ∈ Φ, then we ask that [Aα, Aβ ] = Aα+β .

Let EQ be the linear subspace of A′
0, as a vector space over Q, spanned by

Φ. This leads to a vector space ER over R, as in Section 17.13. More precisely,
EQ corresponds to a linear subspace of ER, as a vector space over Q, and any
basis for EQ, as a vector space over Q, is a basis for ER, as a vector space over
R.

We ask that Φ be a reduced root system in ER, and we let ∆ be a base for
Φ. In particular, this means that ∆ is a basis for ER, as a vector space over R.
This implies that ∆ is a basis for EQ, as a vector space over Q, because EQ is
spanned by ∆, as a vector space over Q.

Note that A′
0 is spanned by ∆, as a vector space over k, because A′

0 is
spanned by Φ, as before. We ask that ∆ be a basis for A′

0, as a vector space
over k, which means that ∆ is linearly independent in A′

0, as a vector space over
k. We also ask that hα, α ∈ ∆, form a basis for A0, as a vector space over k.

Let α ∈ Φ be given, and let σα be the symmetry on ER with vector α that
maps Φ onto itself. Thus there is a linear functional λα on ER so that σα minus
the identity mapping on ER is equal to −λα times α. We ask that

β(hα) = λα(β)(33.1.2)

for every β ∈ Φ, where the right side is an integer by the definition of a root
system, which may be considered as an element of k.

If Ψ0 ⊆ Φ ∪ {0}, then A(Ψ0) denotes the linear subspace of A spanned by
Aα, α ∈ Ψ0, as in Section 22.4. Let Φ+ = Φ∆,+ be the set of positive roots in
Φ with respect to ∆, which is to say the elements of Φ that can be expressed as
linear combinations of elements of ∆ with nonnegative coefficients. Put

B∆ = A(Φ+ ∪ {0}),(33.1.3)

which is the standard Borel subalgebra of A associated to A0 and ∆, as in
Section 22.12.

In particular, the conditions considered in Section 32.1 hold here. Thus the
remarks in Sections 32.2 and 32.3 can be used here too.

33.2 Using a larger field

Let k, k1 be fields, with k ⊆ k1. If V is a vector space over k, then we can get
a vector space Ṽ over k1 from V in a well-known way. Of course, Ṽ may also
be considered as a vector space over k, and V may be considered as a linear
subspace of Ṽ , as a vector space over k. If {vj}j∈I is a basis for V as a vector

space over k, then {vj}j∈I corresponds to a basis for Ṽ as a vector space over

k1 too. In particular, the dimension of Ṽ , as a vector space over k1, is the same
as the dimension of V , as a vector space over k.
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One can use a basis for V to obtain Ṽ in this way, and verify that Ṽ does not
depend on the choice of basis for V , up to isomorphic equivalence. In particular,
every element of Ṽ can be expressed as a finite linear combination of elements
of V , with coefficients in k1. Any collection of linearly independent vectors in
V , as a vector space over k, is linearly independent in Ṽ as well, as a vector
space over k1.

IfW1 is a vector space over k1, thenW1 may be considered as a vector space
over k. Every linear mapping from V into W1 as a vector space over k has a
unique extension to a linear mapping from Ṽ into W1, as vector spaces over
k1. Of course, the restriction of any linear mapping from Ṽ into W1, as vector
spaces over k1, to V is linear as a mapping into W1, as a vector space over k.

If Z is a linear subspace of V , then one can get a vector space Z̃ over k1 in
the same way. More precisely, Z̃ corresponds to a linear subspace of Ṽ , whose
intersection with V is Z. If V is the direct sum of some family of vector spaces
over k, then Ṽ is the direct sum of the corresponding family of vector spaces
over k1.

Let Z be any vector space over k, and let Z̃ be the corresponding vector
space over k1. If W1 is a vector space over k1 again, then any mapping from
V ×Z into W1 that is bilinear over k has a unique extension to a mapping from
Ṽ × Z̃ into W1 that is bilinear over k1.

Let (A, [·, ·]A) be a Lie algebra over k, so that A is a vector space over k in

particular. Thus we can get a corresponding vector space Ã over k1 as before.
The Lie bracket [·, ·]A has a unique extension to a mapping [·, ·]

Ã
from Ã × Ã

into Ã that is bilinear over k1, as in the previous paragraph. One can check that
Ã is a Lie algebra over k1 with respect to [·, ·]

Ã
. Note that Ã may be considered

as a Lie algebra over k, and that A is a Lie subalgebra of Ã, as a Lie algebra
over k.

If B is a Lie subalgebra of A, then B is a linear subspace of A in particular,
and B̃ corresponds to a linear subspace of Ã, as a vector space over k1. It is
easy to see that B̃ is a Lie subalgebra of Ã, as a Lie algebra over k1.

Let V be a vector space over k again, and suppose that V is a module over
A, as a Lie algebra over k. If Ã, Ṽ are as before, then the action of A on V has
a unique extension to a mapping from Ã× Ṽ into Ṽ that is bilinear over k1, as
before. One can verify that this makes Ṽ into a module over Ã, as a Lie algebra
over k1.

33.3 Related spaces of linear mappings

Let k, k1 be fields with k ⊆ k1 again, let V be a vector space over k, and let
W1 be a vector space over k1. Thus W1 may also be considered as a vector
space over k, and we let Lk(V,W1) be the space of linear mappings from V into
W1, as a vector space over k. Of course, the space of all mappings from any
nonempty set intoW1 may be considered as a vector space over k1, with respect
to pointwise addition and scalar multiplication. It is easy to see that Lk(V,W1)
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is a linear subspace of the space of all mappings from V into W1, as a vector
space over k1. This means that Lk(V,W1) may be considered as a vector space
over k1.

There is a natural mapping from Lk(V,W1) into the space Lk1(Ṽ ,W1) of all

linear mappings from Ṽ into W1, as vector spaces over k1. This mapping sends
an element of Lk(V,W1) to its unique extension to an element of Lk1(Ṽ ,W1), as

before. Similarly, there is a natural mapping from Lk1(Ṽ ,W1) into Lk(V,W1),

which sends an element of Lk1(Ṽ ,W1) to its restriction to V . Of course, these
two mappings are inverses of each other. These mappings are also linear over
k1, so that we get

a natural isomorphism from Lk(V,W1) onto Lk1(Ṽ ,W1),(33.3.1)

as vector spaces over k1.

LetW be another vector space over k, and let W̃ be the corresponding vector
space over k1. As before, W̃ may be considered as a vector space over k that
contains W as a linear subspace. A linear mapping from V into W , as vector
spaces over k, may be considered as a linear mapping from V into W̃ , as vector
spaces over k. This may be extended to a unique linear mapping from Ṽ into
W̃ , as vector spaces over k1.

We can take W1 = W̃ in (33.3.1), to get

a natural isomorphism from Lk(V, W̃ ) onto Lk1(Ṽ , W̃ ),(33.3.2)

as vector spaces over k1.

We may also consider W̃ and Lk(V, W̃ ) as vector spaces over k, and the space
Lk(V,W ) of all linear mappings from V into W , as vector spaces over k, is a

linear subspace of Lk(V, W̃ ), as a vector space over k. Thus

Lk(V,W ) corresponds to a linear subspace of Lk1(Ṽ , W̃ ),(33.3.3)

as a vector space over k,

using the natural isomorphism mentioned in (33.3.2).
Suppose that {vj}j∈I is a basis for V as a vector space over k, which may

also be considered as a basis for Ṽ as a vector space over k1. We may as well
suppose that I ̸= ∅, which is to say that V ̸= {0}. Let c(I,W ), c(I, W̃ ) be the

spaces of functions on I with values in W , W̃ , respectively. These are vector
spaces over k, k1, respectively, with respect to pointwise addition and scalar
multiplication.

A linear mapping from V into W is determined by its values on the basis
vectors, and any element of c(I,W ) determines such a linear mapping in this
way. This defines

an isomorphism from Lk(V,W ) onto c(I,W ),(33.3.4)

as vector spaces over k.
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Similarly, we get

an isomorphism from Lk(V, W̃ ) onto c(I, W̃ ),(33.3.5)

as vector spaces over k1.

In the same way, we obtain

an isomorphism from Lk1(Ṽ , W̃ ) onto c(I, W̃ ),(33.3.6)

as vector spaces over k1.

Of course, (33.3.5) and (33.3.6) correspond to each other as in (33.3.2). Note

that c(I, W̃ ) may be considered as a vector space over k, by considering W̃ as
a vector space over k. Clearly

c(I,W ) is a linear subspace of c(I, W̃ ), as a vector space over k,(33.3.7)

becauseW is a linear subspace of W̃ , as a vector space over k. This corresponds
to the fact that Lk(V,W ) may be considered as a linear subspace of Lk(V, W̃ ), as
a vector space over k, using (33.3.4) and (33.3.5). Similarly, (33.3.3) corresponds
to (33.3.7), using (33.3.4) and (33.3.6).

Let V ′, Ṽ ′ be the duals of V , Ṽ , as vector spaces over k, k1, respectively.
Thus V ′ consists of the linear functionals on V , which are linear mappings from
V into k, and Ṽ consists of mappings from Ṽ into k1 that are linear over k1. Of
course, W = k may be considered as a one-dimensional vector space over k, for
which we get W̃ = k1, as a one-dimensional vector space over k1.

The space Lk(V, k1) of linear mappings from V into k1, as a vector space
over k, may be considered as a vector space over k1, as before. There is a
natural isomorphism between this space and Ṽ ′, as vector spaces over k1, as in
(33.3.2). As a vector space over k, Lk(V, k1) contains V ′ as a linear subspace.
This means that

V ′ corresponds to a linear subspace of Ṽ ′, as a vector space over k,(33.3.8)

in a natural way, as in (33.3.3).
Suppose that V has positive finite dimension n, and let v1, . . . , vn be a basis

for V . This may also be considered as a basis for Ṽ , as a vector space over k1,
as before. Using this basis, we can identify V ′ with kn, and Ṽ ′ with kn1 . One

can use this to see that the vector space (̃V ′) over k1 associated to V ′ can be

identified with Ṽ ′.

33.4 Larger fields and toral subalgebras

Let k, k1 be fields with k ⊆ k1 again, and let (A, [·, ·]A) be a Lie algebra over k

of positive finite dimension. This leads to a vector space Ã over k1 of the same
dimension, with A a linear subapce of Ã as a vector space over k, as in Section
33.2. As before, [·, ·]A has a unique extension to a mapping [·, ·]

Ã
from Ã × Ã
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into Ã that is bilinear over k1, and which makes (Ã, [·, ·]
Ã
) into a Lie algebra

over k1.
Suppose that A0 is a Lie subalgebra of A such that every element of A0

is ad-diagonalizable as an element of A, so that A0 is commutative as a Lie
algebra, as in Section 17.1. If α is an element of the dual A′

0 of A0, as a vector
space over k, then let Aα be the set of x ∈ A such that adA,w(x) = α(w)x for
every w ∈ A0, as before. Suppose that A0 is its own centralizer in A, as in
(33.1.1), so that A0 is the same as Aα with α = 0.

Let Φ = ΦA0
be the set of α ∈ A′

0 such that α ̸= 0 and Aα ̸= {0}, as before.
Remember that A corresponds to the direct sum of the linear subspaces Aα,
α ∈ Φ ∪ {0}, as a vector space over k, as in Section 17.2. If α ∈ A′

0, so that Aα

is a linear subspace of A, then let (̃Aα) be the linear subspace of Ã as a vector

space over k1 obtained from Aα as before. Observe that Ã corresponds to the

direct sum of (̃Aα), α ∈ Φ ∪ {0}, as a vector space over k1, as in Section 33.2.

More precisely, (̃A0) is a Lie subalgebra of Ã, as a Lie algebra over k1. If

α ∈ A′
0, then let α̃ be the unique extension of α to a mapping from (̃A0) into

k1 that is linear over k1, so that α̃ is an element of the dual (̃A0)
′
of (̃A0), as a

vector space over k1. It is easy to see that

ad
Ã,w

(x) = [w, x]
Ã
= α̃(w)x(33.4.1)

for every w ∈ (̃A0) and x ∈ (̃Aα), because this holds when w ∈ A0 and x ∈ Aα,
by construction.

In particular, the elements of (̃A0) are ad-diagonalizable in Ã. If β ∈ (̃A0)
′
,

then we can take Ãβ to be the set of x ∈ Ã such that ad
Ã,w

(x) = β(w)x for

every w ∈ (̃A0), as usual. If α ∈ A′
0 and α̃ is the corresponding element of (̃A0)

′
,

then
(̃Aα) ⊆ Ã

α̃
,(33.4.2)

by (33.4.1). Let Φ̃ = Φ̃
(̃A0)

be the set of β ∈ (̃A0)
′
such that β ̸= 0 and

Ãβ ̸= {0}, as usual. Thus
{α̃ : α ∈ Φ} ⊆ Φ̃,(33.4.3)

by (33.4.2).
In fact,

Φ̃ = {α̃ : α ∈ Φ},(33.4.4)

and
Ã
α̃
= (̃Aα)(33.4.5)

for every α ∈ A′
0. This follows from (33.4.1) and the fact that Ã corresponds to

the direct sum of (̃Aα), α ∈ Φ ∪ {0}, as a vector space over k1. In particular, if

α = 0, then α̃ = 0 as an element of (̃A0)
′
, and we get that

Ã0 = (̃A0).(33.4.6)
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Note that (̃A0) is commutative as a Lie algebra over k1, and that it is its own

centralizer in Ã, by (33.4.6).

If α, β ∈ A′
0, then [Aα, Aβ ] ⊆ Aα+β in A, as in Section 17.2. This implies

that [(̃A0), (̃Aβ)] ⊆ ˜(Aα+β) in Ã. If [Aα, Aβ ] = Aα+β in A, then we get that

[(̃Aα), (̃Aβ)] = ˜(Aα+β)(33.4.7)

in Ã.

Every element of (̃A0)
′
can be expressed as a linear combination of elements

of the form α̃, α ∈ A′
0. Suppose that A

′
0 is spanned by Φ, as a vector space over

k. This means that the center Z(A) of A as a Lie algebra over k is trivial, as

in Section 33.1. Under these conditions, we get that (̃A0)
′
is spanned by Φ̃, as

a vector space over k1. This means that Z(Ã) = {0}, as before.
Suppose that for each α ∈ Φ, Aα has dimension one, as a vector space over

k. This implies that (̃Aα) has dimension one, as a vector space over k1. Suppose
also that for every α ∈ Φ there is an element hα of [Aα, A−α] ⊆ A0 such that

α(hα) = 2. Of course, hα may also be considered as an element of [(̃Aα), ˜(A−α)]

in Ã.

Suppose that k has characteristic 0, so that k1 has characteristic 0 as well.
The linear subspace EQ of A′

0, as a vector space over Q, corresponds exactly to

the linear subspace of (̃A0)
′
spanned by Φ̃, as a vector space over Q, because of

(33.4.4). This means that the associated vector space ER over R corresponds

exactly to the analogous vector space over R for (̃A0)
′
.

Suppose that Φ is a reduced root system in ER, so that Φ̃ is a reduced root

system in the analogous vector space over R for (̃A0)
′
. Let ∆ be a base for Φ,

which means that ∆̃ = {α̃ : α ∈ ∆} is a base for Φ̃. If hα, α ∈ ∆, is a basis for

A0, as a vector space over k, then this is also a basis for (̃A0), as a vector space
over k1.

If Z(A) = {0}, then A′
0 is spanned by Φ as a vector space over k, and (̃A0)

′

is spanned by Φ̃ as a vector space over k1, as before. In this case, we get that

A′
0 is spanned by ∆ as a vector space over k, and that (̃A0)

′
is spanned by ∆̃

as a vector space over k1. If ∆ is a basis for A′
0 as a vector space over k, then

∆̃ is a basis for (̃A0)
′
, as a vector space over k1.

If α, β ∈ Φ, then one may ask that β(hα) can be expressed in terms of Φ as

a root system as in (33.1.2). This implies the analogous condition for Φ̃.

If Ψ0 ⊆ Φ ∪ {0}, then A(Ψ0) is the linear subspace of A spanned by Aα,

α ∈ Ψ0, as in Section 33.1. Similarly, if Ψ1 ⊆ Φ̃ ∪ {0}, then let Ã(Ψ1) be the

linear subspace of Ã, as a vector space over k1, spanned by Ãγ , γ ∈ Ψ1, as
before. If Ψ0 ⊆ Φ ∪ {0}, then

Ψ1 = {α̃ : α ∈ Ψ0}(33.4.8)
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is contained in Φ̃ ∪ {0}, and

Ã(Ψ1) = ˜(A(Ψ0)),(33.4.9)

by (33.4.5).
Let Φ+ = Φ∆,+ be the set of positive roots in Φ with respect to ∆, and let

Φ̃+ = Φ̃∆̃,+ be the set of positive roots in Φ̃ with respect to ∆̃. Observe that

Φ̃+ = {β̃ : β ∈ Φ+}.(33.4.10)

Remember that, under the conditions on A and A0 considered in Section
33.1, B∆ = A(Φ+ ∪ {0}) is the standard Borel subalgebra of A associated to

A0 and ∆, as in Section 22.12. In this case, Ã and (̃A0) satisfy the analogous
conditions over k1, and

B̃
∆̃
= Ã(Φ̃+ ∪ {0})(33.4.11)

is the standard Borel subalgebra of Ã, as a Lie algebra over k1, associated to

(̃A0) and ∆̃. We also have that

B̃
∆̃
= ˜(B∆),(33.4.12)

by (33.4.9) and (33.4.10).

33.5 Weights and modules

Let us return to the same notation and hypotheses as in Section 33.1. Let V
be a vector space over k which is a module over A, as a Lie algebra over k. If
µ ∈ A′

0, then put

Vµ = {v ∈ V : w · v = µ(w) v for every w ∈ A0},(33.5.1)

which is a linear subspace of V . An element of Vµ is said to have weight µ with
respect to A0, as on p56 of [24].

The elements of Vµ may also be called eigenvectors of A0 in V with weight µ,
as on p57 of [25]. More precisely, Chapter VII of [25] deals with representations
of sln(k), n ≥ 2. However, all but one of the results discussed there extend to
arbitrary semisimple Lie algebras, as in Remark 1 on p61 of [25].

The dimension of Vµ is called the multiplicity of µ in V , as on p56 of [24],
and Definition 2.3 on p58 of [25]. In particular, µ is said to be a weight of V with
respect to A0 when Vµ ̸= {0}, as on p107 of [14], p56 of [24], and Definition 2.3
on p58 of [25]. In this case, Vµ may be called a weight space of V with respect
to µ, as on p107 of [14].

Let α, µ ∈ A′
0 be given, and suppose that x ∈ Aα, v ∈ Vµ. If w ∈ A0, then

w · (x · v) = x · (w · v) + ([w, x]A) · v = µ(w) (x · v) + α(w) (x · v).(33.5.2)

This shows that
x · v ∈ Vµ+α,(33.5.3)
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as in part (a) of the lemma on p107 of [14], part (a) of Proposition 1 on p56
of [24], and Proposition 2.1 on p57 of [25]. Of course, this can be seen more
directly when α = 0, and it is trivial when α ̸∈ Φ∪{0}, in which case Aα = {0}.

Let V̂ be the linear subspace of V spanned by Vµ, µ ∈ A′
0. In fact,

V̂ corresponds to the direct sum of Vµ, µ ∈ A′
0,(33.5.4)

as a vector space over k.

This means that if µ1, . . . , µr are finitely many distinct elements of A′
0, vj ∈ Vµj

for each j = 1, . . . , r, and
r∑
j=1

vj = 0,(33.5.5)

then vj = 0 for every j = 1, . . . , r. This can be obtained from the fact that
eigenvectors of a linear mapping with distinct eigenvalues are linearly indepen-
dent. This corresponds to the first part of part (b) of the lemma on p107 of [14],
the first part of part (b) of Proposition 1 on p56 of [24], and part of Proposition
2.2 on p57 of [25].

It is easy to see that V̂ is a submodule of V , as a module over A, using
(33.5.3). This corresponds to the second part of part (b) of the lemma on p107
of [14], the second part of part (b) of Proposition 1 on p56 of [24], and a remark
in the proof of Proposition 2.2 on p57 of [25].

As an example, consider A as a module over itself, with respect to the
adjoint representation. In this case, the weights are the roots α ∈ Φ, with the
corresponding weight spaces Aα of dimension 1, and 0. This is Example (1) on
p107 of [14], and Example 2.4 of p58 of [25].

33.6 Primitive or maximal vectors

Let us continue to use the same notation and hypotheses as in Section 33.1. In
particular, ∆ is a base for Φ as a root system, and Φ+ is the set of positive roots
in Φ with respect to ∆. Let V be a vector space over k that is a module over A
as a Lie algebra over k again.

If v ∈ V and E ⊆ A, then put

E · v = {x · v : x ∈ E},(33.6.1)

which is a linear subspace of V when E is a linear subspace of A. Suppose that

E1 · v = E2 · v = {0}(33.6.2)

for some linear subspaces E1, E2 of A. If x1 ∈ E1 and x2 ∈ E2, then we get
that

([x1, x2]A) · v = x1 · (x2 · v)− x2 · (x1 · v) = 0.(33.6.3)

This means that
([E1, E2]) · v = {0}(33.6.4)
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when (33.6.2) holds. If α, β ∈ Φ satisfy Aα · v = Aβ · v = {0} and α + β ∈ Φ,
then it follows that (

Aα+β

)
· v = {0},(33.6.5)

because [Aα, Aβ ] = Aα+β .
If

Aα · v = {0} for every α ∈ ∆,(33.6.6)

then
Aγ · v = {0} for every γ ∈ Φ+.(33.6.7)

This is implicit in a remark on p108 of [14], and on p57 of [24]. To see this,
let γ ∈ Φ+ be given, and remember that γ can be expressed as

∑r
j=1 αj , where

αj ∈ ∆ for each j = 1, . . . , r, and
∑l
j=1 αj ∈ Φ for every l = 1, . . . , r, as in

Section 19.12. Under these conditions, one can check that(
A(∑l

j=1
αj

)) · v = {0}(33.6.8)

for every l = 1, . . . , r, using (33.6.5).
Let µ be a linear functional on A0. We say that v ∈ Vµ is a primitive or

maximal vector of weight µ in V if v ̸= 0 and (33.6.6) or equivalently (33.6.7)
holds, as on p108 of [14], and p57 of [24]. We may simply say that v ∈ V is a
primitive or maximal vector in V if v is primitive or maximal of weight µ for
some µ ∈ A′

0.
Remember that B∆ is the standard Borel subalgebra of A associated to A0

and ∆, as in Section 33.1. Remember also that N∆ = A(Φ+) is a Lie subalgebra
of A that is nilpotent as a Lie algebra over k and whose elements are ad-nilpotent
in A, and that [B∆, B∆] = N∆, as in Sections 22.6 and 24.10. By construction,
B∆ corresponds to the direct sum of A0 and N∆, as a vector space over k.

Let us say that v ∈ V is an eigenvector of x ∈ A if x · v is the multiple of v
by an element of k, which is the corresponding eigenvalue. Of course, this is the
same as saying that v is an eigenvector for the linear mapping corresponding to
x on V , as a module over A. If E ⊆ A and v is an eigenvector of every x ∈ E,
then v is said to be an eigenvector of E. If v is an eigenvector of x1, x2 ∈ A
with eigenvalues c1, c2 ∈ k, then

([x1, x2]A) · v = x1 · (x2 · v)− x2 · (x1 · v)
= c2 (x1 · v)− c1 (x2 · v) = c1 c2 v − c1 c2 v = 0.(33.6.9)

This means that v is an eigenvector of [x1, x2]A, with eigenvalue 0.
If v ∈ V is an eigenvector of B∆, then v is an eigenvector of every element

of N∆ with eigenvalue 0, because [B∆, B∆] = N∆. This is the same as saying
that (33.6.7) holds. More precisely, v ∈ V is an eigenvector of B∆ if and only
if v is an eigenvector of A0 and (33.6.7) holds, as in Proposition 2.5 on p58 of
[25].

Note that a nonzero v ∈ V is an eigenvector of A0 if and only if v ∈ Vµ
for some µ ∈ A′

0, and that µ is unique. Thus a nonzero v ∈ V is primitive
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or maximal if and only if it is an eigenvector of A0 and satisfies (33.6.7), or
equivalently v is an eigenvector of B∆. This corresponds to Definition 2.6 on
p58 of [25], and is also mentioned on p57 of [24].

33.7 Representations and UA

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Also let V be a module over k, which is a
module over A, as a Lie algebra over k. Suppose that UA is a universal envelop-
ing algebra of A with multiplicative identity element e = eUA and associated
mapping i = iUA from A into UA, as in Section 25.4.

Remember that the space Homk(V, V ) of homomorphisms from V into itself,
as a module over k, is an associative algebra over k with respect to composition
of mappings. In particular, Homk(V, V ) is a Lie algebra over k, with respect to
the commutator bracket. To say that V is a module over A as a Lie algebra over
k means that we have a Lie algebra homomorphism from A into Homk(V, V ).

Because UA is a universal enveloping algebra of A, there is a corresponding
homomorphism from UA into Homk(V, V ), as associative algebras over k, that
sends e to the identity mapping on V . This defines a representation of UA, as
an associative algebra over k, on V . Equivalently, V may be considered as a
(left) module over UA, as an associative algebra over k.

If x ∈ A and v ∈ V , then the action of x on v may be denoted x ·v, as usual.
Similarly, if u ∈ UA and v ∈ V , then let the action of u on v be denoted u · v.
It should be clear in practice which is intended, and the two are compatible in
the sense that x · v is the same as i(x) · v for every x ∈ A.

Let v ∈ V be given, and define E · v ⊆ V as in (33.6.1) when E ⊆ A. This is
a submodule of V , as a module over k, when E is a submodule of A, as a module
over k. If E ⊆ UA, then E · v can be defined as a subset of V analogously, and
is a submodule of V as a module over k when E is a submodule of UA as a
module over k. Note that v ∈ E · v when e ∈ E ⊆ UA.

Clearly every submodule of V , as a module over UA, is a submodule of V ,
as a module over A. Conversely, any submodule of V as a module over A is a
submodule of V as a module over UA, because UA is generated by e and i(A),
as an associative algebra over k.

If v ∈ V , then it is easy to see that (UA) ·v is a submodule of V , as a module
over UA, that contains v, and in fact it is the smallest such submodule of V .
Equivalently, (UA) · v is a submodule of V , as a module over A, that contains
v, and is the smallest such submodule.

Remember that i is injective as a mapping from A into UA when A is free
as a module over k, as in Section 25.12. In this case, we may identify A with
i(A) ⊆ UA. In particular, this condition holds when k is a field.
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33.8 Spanning standard cyclic modules

Let us return now to the notation and hypotheses in Section 33.1, so that in
particular k is a field of characteristic 0, and (A, [·, ·]A) is a Lie algebra over k
of positive finite dimension. Let V be a module over A again, as a Lie algebra
over k, and let UA be a universal enveloping algebra of A, so that V may also
be considered as a module over UA, as an associative algebra over k. Suppose
that v ∈ V is a primitive or maximal vector of weight µ ∈ A′

0, as in Section
33.6, and that

V = (UA) · v.(33.8.1)

In this case, V is said to be standard cyclic of weight µ, as on p108 of [14]. Of
course, if (33.8.1) does not hold, (UA) · v is a submodule of V , as a module over
A, which is standard cyclic of weight µ as a module over A.

If α ∈ Φ+, then let xα be a nonzero element of Aα, so that Aα consists of
multiples of xα by elements of k. Also let yα be the unique element of A−α
such that [xα, yα]A = hα. Thus yα ̸= 0, because hα ̸= 0, so that A−α consists
exactly of multiples of yα by elements of k.

Remember that A(−Φ+) is the linear subspace of A spanned by A−α, with
α ∈ Φ+, as in Sections 22.4 and 33.1. More precisely, A(−Φ+) is a Lie subalgebra
of A, as in Section 22.6. Because A(−Φ+) and B∆ are Lie subalgebras of A,
there are natural injective homomorphisms from universal enveloping algebras
UA(−Φ+) and UB∆ of A(−Φ+) and B∆, respectively, into UA, as associative
algebras over k, as in Section 25.12. Thus we may identify UA(−Φ+) and UB∆

with subalgebras of UA in this way.
By construction, A corresponds to the direct sum of A(−Φ+) and B∆,

as a vector space over k. This leads to an isomorphism between UA and
(UA(−Φ+))

⊗
(UB∆), as vector spaces over k, as in Section 25.12. In par-

ticular,

every element of UA can be expressed as a finite sum,(33.8.2)

where each term corresponds to the product of an element

of UA(−Φ+) and an element of UB∆.

Observe that
(UB∆) · v = {t v : t ∈ k},(33.8.3)

because v is an eigenvector of B∆, by hypothesis. This also uses the fact that
UB∆ is generated as an associative algebra over k by its multiplicative identity
element and the image of B∆ in UB∆. It follows that

V = (UA(−Φ+)) · v,(33.8.4)

by (33.8.1) and (33.8.2).
Let β1, . . . , βr be a list of the elements of Φ+, so that yβ1 , . . . , yβr is a basis

for A(−Φ+), as a vector space over k. If m1, . . . ,mr are nonnegative integers,
then

ym1

β1
· · · ymr

βr
(33.8.5)
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corresponds to an element of UA(−Φ+) ⊆ UA. More precisely, yβj is identified
with an element of UA(−Φ+) for each j = 1, . . . , r, so that y

mj

βj
corresponds

to an element of UA(−Φ+) as well. Of course, this is interpreted as being the
multiplicative identity element when mj = 0. Thus the product of y

mj

βj
over

j = 1, . . . , r corresponds to an element of UA(−Φ+) too.
The elements of UA(−Φ+) of the form (33.8.5), where mj is a nonnegative

integer for each j = 1, . . . , r, form a basis for UA(−Φ+) as a vector space over
k, by the Poincaré–Birkhoff–Witt theorem. In particular,

UA(−Φ+) is spanned by elements of the form (33.8.5),(33.8.6)

as a vector space over k.

If mj is a nonnegative integer for each j = 1, . . . , r, then (33.8.5) acts on v
to get an element

(ym1

β1
· · · ymr

βr
) · v(33.8.7)

of V . In fact,

V is spanned by elements of the form (33.8.7),(33.8.8)

as a vector space over k.

This follows from (33.8.4) and (33.8.6). This corresponds to the first part of
part (a) of the theorem on p108 of [14], part (1) of Proposition 2 on p57 of [24],
and part of the proof of Theorem 3.1 on p58 of [25].

If mj is a nonnegative integer for each j = 1, . . . , r, then

(33.8.7) has weight µ−
r∑
j=1

mj βj(33.8.9)

as an element of V , in the sense of Section 33.5. This follows from (33.5.3),
because v ∈ Vµ, by hypothesis. This implies that (33.8.7) has weight of the
form

µ−
∑
α∈∆

cα α,(33.8.10)

where cα is a nonnegative integer for each α ∈ ∆, because βj ∈ Φ+ for every
j = 1, . . . , r.

In particular, V is spanned by its weight spaces, by (33.8.8). This means
that

V corresponds to the direct sum of its weight spaces,(33.8.11)

as a vector space over k,

as in Section 33.5. We also get that

all of the weights of V are of the form mentioned in (33.8.9),(33.8.12)

and thus (33.8.10).



33.9. INDECOMPOSABILITY 699

This corresponds to the second part of part (a) and part (b) of the theorem on
p108 of [14], the first part of part (2) of Proposition 2 on p57 of [24], and part
(b) of Theorem 3.1 on p58 of [25].

Remember that ∆ is supposed to be a basis for A′
0, as a vector space over

k, as in Section 33.1. In particular, the elements of ∆ are linearly independent
in A′

0, as a vector space over k. If cα is a nonnegative integer for each α ∈ ∆,
then there are only finitely many nonnegative integers m1, . . . ,mr such that

r∑
j=1

mj βj =
∑
α∈∆

cα α.(33.8.13)

This uses the facts that βj ∈ Φ+ for every j = 1, . . . , r, and k has characteristic
0, by hypothesis. Similarly, if cα = 0 for every α ∈ ∆, and m1, . . . ,mr are
nonnegative integers, then (33.8.13) holds only when mj = 0 for every j =
1, . . . , r.

It follows that

the weight spaces in V have finite dimension,(33.8.14)

as in the first part of part (c) of the theorem on p108 of [14], and the second
part of part (2) of Proposition 2 on p57 of [24]. We also get that

dimVµ = 1,(33.8.15)

as in the second part of part (c) of the theorem on p108 of [14], part (3) of
Proposition 2 on p57 of [24], and part (c) of Theorem 3.1 on p58 of [25]. Note
that µ may be called the highest weight of V , because all of the weights of V
are of the form (33.8.10), with cα ≥ 0 for every α ∈ ∆.

33.9 Indecomposability

Let us continue with the same notation and hypotheses as in the previous sec-
tion. We would like to show that V is indecomposable as a module over A,
which is to say that it cannot be expressed is the direct sum of two nontrivial
submodules of V . This corresponds to the first part of part (e) of the theorem
on p108 of [14], and to part (4) of Proposition 2 on p57 of [24].

Suppose that V corresponds to the direct sum of two linear subspaces Y
and Z, and that Y and Z are submodules of V , as a module over A. Thus we
get linear projection mappings from V onto Y and Z whose kernels are Z and
Y , respectively, and these projections commute with the action of A on V . If
ν ∈ A′

0, then one can use this to check that these projection mappings send Vν
into Yν and Zν , respectively, where Vν , Yν and Zν are as in Section 33.5. This
means that Vν corresponds to the direct sum of Yν and Zν , as a vector space
over k.

In particular, if we take ν = µ, then we get that one of Yµ or Zµ has
dimension one, by (33.8.15). This implies that v is an element of Y or Z, so
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that Y or Z is all of V , because V is generated by v as a module over A, as in
(33.8.1). Of course, this means that the other of Y or Z is {0}, so that V is
indecomposable, as desired. This is the argument near the top of p58 of [24].

If V has finite dimension as a vector space over k, then it follows that V is
irreducible as a module over A, by Weyl’s theorem. This uses the hypothesis
that k have characteristic 0, as well as the semisimplicity of A, as in Section
33.1. This corresponds to part (d) of Proposition 3 on p60 of [24], and part (a)
of Theorem 3.1 on p58 of [25].

Let Z be any submodule of V as a module over A, so that Z is a linear
subspace of V , and the action of A on V maps Z into itself. Part (d) of the
theorem on p108 of [14] states that

Z corresponds to the direct sum of its weight spaces,(33.9.1)

as a vector space over k.

Of course, it suffices to check that Z is spanned by its weight spaces, as in
Section 33.5.

Suppose for the sake of a contradiction that there is an element of Z that is
not in the linear span of the weight spaces of Z. Because V is spanned by its
weight spaces, every element of Z can be expressed as

z =

n∑
j=1

zj ,(33.9.2)

where for each j = 1, . . . , n, zj ∈ Vνj for some νj ∈ A′
0. Let n be the smallest

positive integer for which there is a z ∈ Z that is not in the linear span of the
weight spaces of Z, and which can be expressed as in (33.9.2). Of course, this
means that n ≥ 2, and that the νj ’s are distinct elements of A′

0. We also have
that zj ̸∈ Z for each j = 1, . . . , n.

Because ν1 ̸= ν2, there is a w ∈ A0 such that ν1(w) ̸= ν2(w). Observe that

w · z =
n∑
j=1

w · zj =
n∑
j=1

νj(w) zj ,(33.9.3)

so that

w · z − ν1(w) z =

n∑
j=2

(νj(w)− ν1(w)) zj .(33.9.4)

The left side is an element of Z, and the minimality of n implies that it is in
the linear span of the weight spaces of Z. Remember that the linear span of the
weight spaces in V corresponds to the direct sum of the weight spaces in V , as
a vector space over k, as in Section 33.5. It follows that the terms in the sum on
the right side of (33.9.4) are elements of Z. This implies that z2 ∈ Z, because
ν2(w) ̸= ν1(w), by construction. This is a contradiction, as in the preceding
paragraph.
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Let Z be a submodule of V as a module over A again, and suppose that
Z ̸= V . This implies that v ̸∈ Z, by (33.8.1), and thus

Z ∩ Vµ = {0},(33.9.5)

by (33.8.15). Let V 0 be the linear subspace of V spanned by the weight spaces
Vν with ν ∈ A′

0 and ν ̸= µ. This is a proper linear subspace of V , because V
corresponds to the direct sum of its weight spaces, and Vµ ̸= {0}, by hypothesis.
Using (33.9.5), we get that

Z ⊆ V 0,(33.9.6)

because Z is spanned by its weight spaces, as before.
Let V 1 be the linear subspace of V spanned by all of the proper submodules

of V , as a module over A. Thus

V 1 ⊆ V 0,(33.9.7)

by (33.9.6). In particular, this implies that V is indecomposable as a module over
A, as on p109 of [14]. More precisely, V is not spanned by proper submodules,
as a module over A.

It is easy to see that V 1 is a submodule of V , as a module over A. In fact,
V 1 is the unique maximal proper submodule of V , as a module over A, as in
part (e) of the theorem on p108 of [14]. The quotient V/V 1 is a module over A
in a natural way, because V 1 is a submodule of V . Observe that

V/V 1 is irreducible, as a module over A,(33.9.8)

as in part (e) of the theorem on p108 of [14], because V 1 is a maximal proper
submodule of V . Of course, V/V 1 ≠ {0}, because V 1 ̸= V .

If the quotient of V by a proper submodule is irreducible as a module over
A, then that submodule of V is maximal. This means that V/V 1 is the only
nontrivial irreducible quotient of V , as a module over A, as in part (e) of the
theorem on p108 of [14].

33.10 Irreducible standard cyclic modules

Let us use the same notation and hypotheses as in Section 33.1 again, and let V
be a module over A, as a Lie algebra over k. Suppose that v ∈ V is a primitive or
maximal vector of weight µ ∈ A′

0, and that V is irreducible as a module over A.
Let UA be a universal enveloping algebra of A, so that (UA) · v is a submodule
of V that contains v. Because V is irreducible, we get that V = (UA) · v, so
that V is standard cyclic of weight µ. This corresponds to the first step in the
proof of Theorem 1 on p58 of [24].

Thus V satisfies the hypotheses in Section 33.8, and so has the same prop-
erties as before. This corresponds to part (b) of Theorem 1 on p58 of [24].

Suppose that v1 ∈ V is another primitive or maximal vector, with weight
µ1 ∈ A′

0. It follows that
V = (UA) · v1,(33.10.1)
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because V is irreducible, as before. This means that the analogues of the state-
ments in Section 33.8 for v1 and µ1 hold as well.

Because µ1 is a weight of V , there are nonnegative integers cα, α ∈ ∆, such
that

µ1 = µ−
∑
α∈∆

cα α,(33.10.2)

as in (33.8.12). Similarly, there are nonnegative integers c1,α, α ∈ ∆, such that

µ = µ1 −
∑
α∈∆

c1,α α,(33.10.3)

by the analogue of (33.8.12) for µ1, and the fact that µ is a weight of V . It
follows that c1,α = −cα for every α ∈ ∆, because ∆ is a basis for A′

0, and k has
characteristic 0, as in Section 33.1. This implies that cα = c1,α = 0 for every
α ∈ ∆, so that

µ1 = µ.(33.10.4)

We also get that
v1 = t1 v for some t1 ∈ k \ {0},(33.10.5)

by (33.8.15).
This corresponds to the corollary on p109 of [14], part (a) of Theorem 1 on

p58 of [24], and part (1) of Theorem 3.2 on p59 of [25]. Note that µ may be
called the highest weight of V , as in [24, 25]. This terminology may also be used
for any standard cyclic module of weight µ, as in [14]. Of course, this refers to
the expression of other weights as in (33.8.10).

Let Z be another irreducible module over A with a primitive or maximal
vector z. If Z is isomorphic to V as a module over A, then Z has highest weight
µ too, because of (33.10.4). Conversely, suppose that Z has highest weight µ,
and let us show that Z is isomorphic to V , as modules over A. This corresponds
to Theorem A on p109 of [14], part (c) of Theorem 1 on p58 of [24], and part
(2) of Theorem 3.2 on p59 of [25].

Let Y be the direct sum of V and Z, which is the same as the Cartesian
product of V and Z, where addition and scalar multiplication are defined co-
ordinatewise. More precisely, Y is a module over A, where the action of A is
defined coordinatewise as well. Observe that

y = (v, z)(33.10.6)

is a primitive or maximal vector of weight µ in Y . Put

E = (UA) · y,(33.10.7)

which is the submodule of Y , as a module over A, generated by y. Thus E is a
standard cyclic module of weight µ, by construction.

Let pV , pZ be the obvious projections from Y onto V , Z, respectively, and
let ϕV , ϕZ be their restrictions to E. Of course, these mappings are module
homomorphisms, and

ϕV (y) = v, ϕZ(y) = z.(33.10.8)
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This implies that
ϕV (E) = V, ϕZ(E) = Z,(33.10.9)

because V , Z are standard cyclic with respect to v, z, respectively, as before.
The kernels of ϕV , ϕZ are

kerϕV = ({0} × Z) ∩ E, kerϕZ = (V × {0}) ∩ E.(33.10.10)

Of course, V × {0} and {0} × Z may be identified with V and Z, respectively,
as modules over A.

Note that the only elements of E of weight µ are multiples of y by elements
of k, as in (33.8.15). Thus there are no nonzero elements of the kernels of ϕV
or ϕZ of weight µ. It follows that (0, z) ̸∈ kerϕV , (v, 0) ̸∈ kerϕZ , so that

kerϕV ̸= {0} × Z, kerϕZ ̸= V × {0}.(33.10.11)

We can identify kerϕV , kerϕZ with submodules of Z, V , respectively, as mod-
ules over A. These submodules are proper, by (33.10.11).

This implies that these submodules are trivial, because V and Z are irre-
ducible, by hypothesis. This means that the kernels of ϕV and ϕZ are trivial,
so that ϕV , ϕZ are isomorphisms from E onto V , Z, respectively, as modules
over A. Of course, this leads to an isomorphism from V onto Z. This is the
argument on p58f of [24].

The argument on p109 of [14] uses the fact that V and Z are isomorphic to
irreducible quotients of E, while there is only one irreducible quotient of E, as
in Section 33.9.

If V and Z have finite dimension as vector spaces over k, then E has finite
dimension too. This implies that E is irreducible as a module over A, because
E is indecomposable, as in the previous section. In this case, one can get that
the kenrels of ϕV and ϕZ are trivial because they are proper submodules of E.
This is the argument used on p59 of [25], where the modules are taken to be
finite-dimensional.

33.11 Representations and left ideals

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over A. Also let UA be a universal enveloping algebra
of A with multiplicative identity element e = eUA and associated mapping
i = iUA from A into UA, as in Section 25.4.

Suppose that I is a left ideal in UA, as an associative algebra over k. The
quotient (UA)/I can be defined as a module over k, and in fact as a left module
over UA. Let qI be the natural quotient mapping from UA onto (UA)/I, so
that qI(e) is an element of the quotient. Of course,

(UA) · qI(e) = (UA)/I,(33.11.1)

by construction. Note that (UA)/I may be considered as a module over A too,
as a Lie algebra over k.
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Suppose that V is a module over k that is a module over A as a Lie algebra
over k. Thus V may be considered as a (left) module over UA, as an associative
algebra over UA, as before. If v ∈ V , then

Iv = {x ∈ UA : x · v = 0}(33.11.2)

is a left ideal in UA. This means that the quotient (UA)/Iv is defined as a left
module over UA. The mapping

x 7→ x · v(33.11.3)

from UA into V leads to an injective homomorphism from (UA)/Iv into V ,
as left modules over UA. More precisely, this mapping sends (UA)/Iv onto
(UA) · v, which is a submodule of V , as a module over UA. If V = (UA) · v,
then we get an isomorphism from (UA)/Iv onto V , as left modules over UA.

Note that quotients of (UA)/I, as a left module over UA, or as a module
over A as a Lie algebra over k, correspond to quotients of UA by left ideals in
UA that contain I. Thus (UA)/I is nontrivial and irreducible as a left module
over UA, or as a module over A as a Lie algebra over k, exactly when I ̸= UA
is maximal as a proper left ideal in UA.

33.12 Tensor products over algebras

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k, with a multiplicative identity element e = eA.
Also let V , W be modules over k, where V is a right module over A, and W
is a left module over A. The tensor product of V and W over A is a module
V
⊗

AW over k with the following two properties.
First, the tensor product is equipped with a mapping from V × W into

V
⊗

AW that is bilinear over k. If v ∈ V and w ∈W , then the image of (v, w)
under this mapping is denoted v⊗w, as usual. This mapping should also satisfy

(v · a)⊗ w = v ⊗ (a · w)(33.12.1)

for every a ∈ A, v ∈ V , and w ∈W .
Second, let Z be any module over k, and let b be a mapping from V ×W

into Z that is bilinear over k. Suppose that

b(v · a,w) = b(v, a · w)(33.12.2)

for every a ∈ A, v ∈ V , and w ∈W . Under these conditions, there should be a
unique homomorphism c from V

⊗
AW into Z, as modules over k, such that

b(v, w) = c(v ⊗ w)(33.12.3)

for every v ∈ V and w ∈W .
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The tensor product can be obtained using a standard construction, and it is
unique up to a suitable isomorphic equivalence. Note that V

⊗
AW is generated

as a module over k by elements of the form v ⊗ w, v ∈ V , w ∈W .
Let I be a nonempty set, and let Vj be a right module over A for every j ∈ I.

Thus
⊕

j∈I Vj is a right module over A too, and one can check that(⊕
j∈I

Vj

)⊗
A
W =

⊕
j∈I

(Vj
⊗

A
W ).(33.12.4)

Similarly, if Wj is a left module over A for every j ∈ I, then
⊕

j∈IWj is a left
module over A, and one can verify that

V
⊗

A

(⊕
j∈I

Wj

)
=

⊕
j∈I

(V
⊗

A
Wj).(33.12.5)

Let V1, V2 be right modules over A, and let W1, W2 be left modules over A.
Suppose that ϕV1 is a homomorphism from V1 into V2, as right modules over
A, and that ϕW1

is a homomorphism from W1 into W2, as left modules over A.
Consider the mapping from V1 ×W1 into V2

⊗
AW2 defined by

(v1, w1) 7→ ϕV1
(v1)⊗ ϕW1

(w1).(33.12.6)

This mapping is bilinear over k, and satisfies

ϕV1
(v1 · a)⊗ ϕW1

(w1) = (ϕV1
(v1) · a)⊗ ϕW1

(w1)

= ϕV1
(v)⊗ (a · ϕW1

(w1)) = ϕV1
(v1)⊗ ϕW1

(a · w1)(33.12.7)

for every a ∈ A, v1 ∈ V1, and w1 ∈ W1. This leads to a unique homomorphism
ϕ from V1

⊗
AW1 into V2

⊗
AW2, as modules over k, such that

ϕ(v1 ⊗ w1) = ϕV1(v1)⊗ ϕW1(w1)(33.12.8)

for every v1 ∈ V1 and w1 ∈W1.
Let V3 be another right module over A, and let W3 be another left module

over A. Suppose that ψV2
is a homomorphism from V2 into V3, as right modules

over A, and that ψW2
is a homomorphism from W2 into W3, as left modules

over A. This leads to a homomorphism ψ from V2
⊗

AW2 into V3
⊗

AW3,
as modules over k, as in the previous paragraph. Of course, ψV2 ◦ ϕV1 is a
homomorphism from V1 into V3, as right modules over A, and ψW2 ◦ ϕW1 is a
homomorphism from W1 into W3, as left modules over A. One can verify that
ψ ◦ ϕ is the same as the homomorphism from V1

⊗
AW1 into V3

⊗
AW3, as

modules over k, obtained from ψV2
◦ ϕV1

, ψW2
◦ ϕW1

as before.

33.13 Using modules over other algebras

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Suppose now that A1 is another associative algebra over k with a multi-
plicative identity element e1 = eA1

. Let V , W be modules over k, where V is a
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left module over A1, V is a right module over A, and W is a left module over
A. More precisely, we suppose that the left and right actions on V commute
with each other, so that

(a1 · v) · a = a1 · (v · a)(33.13.1)

for every a ∈ A, a1 ∈ A1, and v ∈ V . Of course, V
⊗

AW can be defined as a
module over k, as in the previous section.

If a1 ∈ A1, then
v 7→ a1 · v(33.13.2)

defines a mapping from V into itself that is linear over k. In fact, this is a homo-
morphism from V into itself, as a right module over A, because of (33.13.1). Us-
ing this and the identity mapping onW , we get a homomorphism from V

⊗
AW

into itself, as a module over k, as in the previous section. This homomorphism
defines an action of a1 on the left on V

⊗
AW , which is characterized by the

property that
a1 · (v ⊗ w) = (a1 · v)⊗ w(33.13.3)

for every a1 ∈ A1, v ∈ V , and w ∈W . One can check that

V
⊗

A
W becomes a left module over A1(33.13.4)

in this way.
Let Z be a module over k that is a left module over A1, and let b be a

mapping from V ×W into Z that is bilinear over k and satisfies (33.12.2). Thus
there is a unique homomorphism c from V

⊗
AW into Z, as modules over k,

that satisfies (33.12.3), as in the previous section. Suppose now in addition that

a1 · b(v, w) = b(a1 · v, w)(33.13.5)

for every a1 ∈ A1, v ∈ V , and w ∈W . This means that

a1 · c(v ⊗ w) = c(a1 · (v ⊗ w))(33.13.6)

for every a1 ∈ A1, v ∈ V , and w ∈ W . One can use this to check that c is a
homomorphism from V

⊗
AW into Z, as left modules over A1.

Of course, there are analogous statements when W is also a right module
over an associative algebra A2 over k, where the left action on W by elements
of A commutes with the right action by elements of A2.

Note that A1 may be considered as a left and right module over itself. The
left and right actions of A1 on itself commute, by associativity.

Suppose that A1 contains A as a subalgebra, with e1 = e. We may consider
A1 as a left and right module over itself, and over A. Let us consider A1 as a
left module over itself and as a right module over A, and let W be a left module
over A again. Under these conditions,

A1

⊗
A
W(33.13.7)
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becomes a left module over A1, as before.
In particular, we can take A1 = A here, so that A

⊗
AW may be considered

as a left module over A. Of course, we already have a mapping from A ×W
into W that is bilinear over k, given by the action of A on W as a left module
over A. It is easy to see that W satisfies the requirements of the tensor product
A
⊗

AW , as a module over k, with respect to this mapping from A ×W into
W . One can verify that the action of A on A

⊗
AW on the left just mentioned

corresponds exactly to the given action of A on W on the left.

33.14 Existence of standard cyclic modules

Let us return to the notation and hypotheses in Section 33.1. Let µ ∈ A′
0 be

given. We would like to show that there is a standard cyclic module over A
with weight µ.

Remember that ∆ is a base for the root system Φ, and that B∆ is the
standard Borel subalgebra of A associated to A0 and ∆. We also have that B∆

corresponds to the direct sum of A0 and N∆ = A(Φ+) as a vector space over k,
and that [B∆, B∆] = N∆, as before.

Let L(µ) be a one-dimensional vector space over k. We can define an action
of B∆ on L(µ) by putting

(w + x) · u = µ(w)u(33.14.1)

for every w ∈ A0, x ∈ N∆, and u ∈ L(µ). It is easy to see that this makes L(µ)
into a module over B∆, as a Lie algebra over k.

Let UA be a universal enveloping algebra of A, with multiplicative identity
element e = eUA and associated mapping i = iUA from A into UA, as in Section
25.4. We may as well take the universal enveloping algebra UB∆ of B∆ to be
the subalgebra of UA generated by e and i(B∆), as in Section 25.12. We may
also consider L(µ) as a left module over UB∆, as an associative algebra over
k. Remember that i is injective, as in Section 25.12, so that we may as well
identify A with its image in UA.

Of course, UA may be considered as a right module over itself, and thus a
right module over UB∆. Let us take

Z(µ) = (UA)
⊗

UB∆

L(µ),(33.14.2)

where the right side is as in the previous two sections. More precisely, this is a
module over k, and in fact a left module over UA. This means that Z(µ) may
be considered as a module over A, as a Lie algebra over k.

Let u0 be a nonzero element of L(µ), and put

v = e⊗ u0 ∈ Z(µ).(33.14.3)

One can check that
(UA) · v = Z(µ),(33.14.4)
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because L(µ) has dimension one, as a vector space over k. If w ∈ A0, then

w · v = w · (e⊗ u0) = w ⊗ u0 = e⊗ (w · u0)(33.14.5)

= µ(w) (e⊗ u0) = µ(w) v.

Similarly, if x ∈ N∆, then

x · v = x · (e⊗ u0) = x⊗ u0 = e⊗ (x · u0) = 0.(33.14.6)

Remember that A(−Φ+) is a Lie subalgebra of A, and that A corresponds
to the direct sum of A(−Φ+) and B∆, as linear subspaces of A. This leads to
an isomorphism between UA and (UA(−Φ+))

⊗
(UB∆), as vector spaces over

k, as in Section 25.12. One can use this to get that UA is free as a right module
over UB∆. This corresponds to part of Corollary D on p92 of [14], aside from
using right modules here.

More precisely, let xα ∈ Aα and yα ∈ A−α be as in Section 33.8 for each α in
Φ+, and let β1, . . . , βr be a list of the elements of Φ+ again. Thus yβ1 , . . . , yβr

form a basis for A(−Φ+), as a vector space over k, and

{ym1

β1
· · · ymr

βr
: m1, . . . ,mr ∈ Z+ ∪ {0}}(33.14.7)

is a basis for UA(−Φ+), as a vector space over k, by the Poincaré–Birkhoff–Witt
theorem, as before. One can use the Poincaré–Birkhoff–Witt theorem again to
get that UA is free as a right module over UB∆, with basis (33.14.7).

Indeed, the Poincaré–Birkhoff–Witt theorem implies that UA corresponds
to the direct sum of the linear subspaces

ym1

β1
· · · ymr

βr
(UB∆)(33.14.8)

as a vector space over k, where m1, . . . ,mr are nonnegative integers. The
Poincaré–Birkoff–Witt theorem also ensures that

z 7→ ym1

β1
· · · ymr

βr
z(33.14.9)

is a one-to-one linear mapping from UB∆ onto (33.14.8) for all m1, . . . ,mr ≥ 0.
This can be seen by combining yβ1 , . . . , yβr with a basis for B∆, as a vector
space over k, to get a basis for A, as a vector space over k.

Clearly (33.14.8) is a submodule of UA, as a right module over UB∆, for
every m1, . . . ,mr ≥ 0. In fact, (33.14.9) is an isomorphism from UB∆ onto
(33.14.8), as right modules over UB∆, for every m1, . . . ,mr ≥ 0. This means
that UA corresponds to the direct sum of the submodules (33.14.8) as a right
module over UB∆, and that UA is free as a right module over UB∆.

It follows that Z(µ) corresponds to the direct sum of

(ym1

β1
· · · ymr

βr
(UB∆))

⊗
UB∆

L(µ)(33.14.10)

as a vector space over k, where m1, . . . ,mr are nonnegative integers. Note that
(33.14.10) is isomorphic to L(µ) as a vector space over k for every m1, . . . ,mr ≥
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0, as in the previous section. This means that (33.14.10) is a one-dimensional
vector space over k spanned by

(ym1

β1
· · · ymr

βr
) · (e⊗ u0) = (ym1

β1
· · · ymr

βr
) · v(33.14.11)

for every m1, . . . ,mr ≥ 0, where v is as in (33.14.3).
In particular, (33.14.11) is nonzero for all nonnegative integers m1, . . . ,mr.

It follows that v ̸= 0, by taking m1 = · · · = mr = 0. This shows that v is
a primitive or maximal vector in Z(µ) with weight µ. Thus Z(µ) is standard
cyclic of weight µ, as a module over A. We also get that the elements (33.14.11)
of Z(µ), with m1, . . . ,mr ≥ 0, form a basis for Z(µ), as a vector space over k.
This corresponds to some of the remarks on p110 of [14], and on p59 of [24].
This corresponds to part of Exercise 6 on p62 of [25] as well.

Observe that
z 7→ z · (e⊗ u0)(33.14.12)

is a one-to-one linear mapping from UA(−Φ+) onto Z(µ), because (33.14.7)
is a basis for UA(−Φ+), as a vector space over k. Note that Z(µ) may be
considered as a left module over UA(−Φ+), where UA(−Φ+) is identitifed with
a subalgebra of UA in the usual way. In fact, (33.14.12) is an isomorphism from
UA(−Φ+) onto Z(µ), as left modules over UA(−Φ+), as mentioned on p110 of
[14].

As in Section 33.9, Z(µ) has a unique nontrivial irreducible quotient, as a
module over A. It is easy to see that the quotient is also standard cyclic of
weight µ, using the image of v in the quotient. This corresponds to Theorem B
on p110 of [14], Theorem 2 on p59 of [24], and part of Exercise 6 on p62 of [25].

More precisely, Z(µ) is universal as a standard cyclic module of weight µ
over A, as in the next section. These modules are known as Verma modules, as
mentioned on p167 of [14].

33.15 Homomorphisms into other modules

Let us continue with the same notation and hypotheses as in the previous sec-
tion, including those from Section 33.1. Let V be a vector space over k that is a
module over A, as a Lie algebra over k, and suppose that v0 ∈ V is a primitive
or maximal vector of weight µ. Of course, V may also be considered as a module
over B∆, as a Lie algebra over k. The linear span V0 of v0 in V is a submodule
of V , as a module over B∆.

There is a unique linear mapping from L(µ) onto V0 that sends u0 to v0.
This mapping is a homomorphism from L(µ) into V0, as modules over B∆.

We may consider V0 as a left module over UB∆, and V as a left module over
UA, as associative algebras over k. If z ∈ UA and t ∈ k, then put

b(z, t u0) = z · (t v0),(33.15.1)

which is an element of V . This defines b as a mapping from (UA) × L(µ) into
V that is bilinear over k.
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If a ∈ UB∆ and t ∈ k, then a · (t u0) ∈ L(µ), because L(µ) is a left module
over UB∆. If z ∈ UA, then we get that

b(z a, t u0) = (z a) · (t v0) = z · (a · (t v0)) = b(z, a · (t u0)).(33.15.2)

This implies that there is a unique mapping c from Z(µ) = (UA)
⊗

UB∆
L(µ)

into V that is linear over k and satisfies

b(z, t u0) = c(z ⊗ (t u0))(33.15.3)

for every t ∈ k and z ∈ UA, as in Section 33.12.
If a, z ∈ UA and t ∈ k, then

a · b(z, t u0) = a · (z · (t v0)) = (a z) · (t v0) = b(a z, t u0).(33.15.4)

It follows that c is a homomorphism from Z(µ) into V as left modules over UA,
as in Section 33.13. This means that c is a homomorphism from Z(µ) into V
as modules over A, as a Lie algebra over k.

Remember that v = e⊗ u0, as in (33.14.3). Thus

c(v) = b(e, u0) = e · v0 = v0.(33.15.5)

This implies that
c(Z(µ)) = c((UA) · v) = (UA) · v0,(33.15.6)

using (33.14.4) in the first step. It follows that c maps Z(µ) onto V exactly
when

(UA) · v0 = V,(33.15.7)

which means that V is standard cyclic of weight µ, as in Section 33.8.
If m1, . . . ,mr are nonnegative integers, then

c((ym1

β1
· · · ymr

βr
) · v) = (ym1

β1
· · · ymr

βr
) · c(v) = (ym1

β1
· · · ymr

βr
) · v0.(33.15.8)

Note that c is injective if and only if these vectors are linearly independent in
V , as a vector space over k, because the vectors (33.14.11) form a basis for Z(µ)
as a vector space over k, as in the previous section.

One can also obtain Z(µ) as the quotient of UA by a suitable left ideal, as
on p110 of [14]. This gives another way to get the module homomorphism c
from Z(µ) into V .



Chapter 34

Some related examples and
properties

34.1 Some remarks about sl2(k)

Let k be a commutative ring with a multiplicative identity element, and let us
take A = sl2(k), as a Lie algebra over k with respect to the usual commutator
bracket. As usual, we put x =

(
0 1
0 0

)
, y =

(
0 0
1 0

)
, and h =

(
1 0
0 −1

)
, so that sl2(k) is

freely generated as a module over k by x, y, and h. Remember that [x, y] = h,
[h, x] = 2 · x, and [h, y] = −2 · y.

Let A0 be the subset of sl2(k) consisting of multiples of h by elements of k,
which is a commutative Lie subalgebra of sl2(k). Suppose now that k is a field
of characteristic 0, and let us consider the conditions discussed in Section 33.1
in this case. Of course, the elements of A0 are ad-diagonalizable in A, and it is
easy to see that the centralizer of A0 in A is equal to A0. Similarly, the center
of A is trivial.

Let A′
0 be the dual space of linear functionals on A0, which correspond to

multiplication by an element of k, because A0 is one-dimensional as a vector
space over k. If α ∈ A′

0, then

Aα = {z ∈ A : [h, z] = α(h) z}(34.1.1)

here, which is the same as A0 when α = 0. If αx, αy ∈ A′
0 are determined by

αx(h) = 2, αy(h) = −2, then Aαx
, Aαy

are the linear subspaces of A spanned
by x, y, respectively. Note that αy = −αx, and that A corresponds to the direct
sum of A0, Aαx , and Aαy , as a vector space over k. Thus

Φ = ΦA0
= {αx, αy}(34.1.2)

is the set of nonzero α ∈ A′
0 such that Aα ̸= {0}.

The linear subspace EQ of A′
0, as a vector space over Q, spanned by Φ

consists of linear functionals on A0 defined by multiplication by an element ofQ,

711
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with respect to the natural embedding of Q into k. This can be identified with
Q, as a vector space over itself, in the obvious way, so that the corresponding
vector space ER over R can be identified with R. Of course, Φ is a reduced
root system in ER, and

∆ = {αx}(34.1.3)

is a base for Φ.

Using this base, we have that Φ+ = Φ∆,+ = {αx} is the set of positive roots
in Φ. The standard Borel subalgebra B∆ = A(Φ+ ∪ {0}) of A associated to A0

and ∆ is the same as the linear span of x and h in A.

With this notation, we have that hαx
= h and hαy

= −h. The symmetry
σαx

= σαy
on ER corresponds to multiplication by −1. The associated linear

functionals λαx
, λαy

on ER are determined by λαx
(αx) = λαy

(αy) = 2.

The other conditions mentioned in Section 33.1 can be verified directly here.
If V is a module over A, then the basic notions concerning weights and primi-
tive or maximal vectors in Sections 33.5, 33.6 correspond to those discussed in
Sections 15.1, 15.2, respectively.

34.2 Some modules over sl2(k)

Let k be a commutative ring with a multiplicative identity element, and let
µ0 ∈ k be given. Also let Z0(µ0) be a free module over k with generators
v0, v1, v2, v3, . . ., and put v−1 = 0, for convenience. Of course, this does not
depend on µ0, as a module over k.

Put

H(vj) = (µ0 − 2 j) · vj ,(34.2.1)

Y (vj) = (j + 1) · vj+1,(34.2.2)

X(vj) = (µ0 − j + 1) · vj−1(34.2.3)

for each j ≥ 0. More precisely, one can use the natural ring homomorphism
from Z into k here, or interpret multiplication of elements of Z0(µ0) by integers
in the usual way. Let H, Y , and X be the unique homomorphisms from Z0(µ0)
into itself, as a module over k, that satisfy these conditions. We may use Hµ0 ,
Yµ0 , and Xµ0 to indicate the dependence on µ0, and that these are considered
as mappings on Z0(µ0). Note that (34.2.1) and (34.2.2) hold trivially when
j = −1.

The definitions of H, Y , and X are analogous to those in Section 15.4, and
we shall say more about that later. As before, we have that

H(X(vj))−X(H(vj)) = (µ0 − j + 1) ·H(vj−1)− (µ0 − 2 j) ·X(vj)

= (µ0 − j + 1) (µ0 − 2 (j − 1)) · vj−1(34.2.4)

−(µ0 − 2 j)X(vj)

= ((µ0 − 2 (j − 1))− (µ0 − 2 j)) ·X(vj) = 2 ·X(vj)
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for every j ≥ 0. In the same way,

H(Y (vj))− Y (H(vj)) = (j + 1) ·H(vj+1)− (µ0 − 2 j) · Y (vj)

= (j + 1) (µ0 − 2 (j + 1)) · vj+1 − (µ0 − 2 j) · Y (vj)(34.2.5)

= ((µ0 − 2 (j + 1))− (µ0 − 2 j)) · Y (vj) = −2 · Y (vj)

for each j ≥ 0. Similarly,

X(Y (vj))− Y (X(vj)) = (j + 1) ·X(vj+1)− (µ0 − j + 1) · Y (vj−1)

= (j + 1) (µ0 − (j + 1) + 1) · vj(34.2.6)

−(µ0 − j + 1) ((j − 1) + 1) · vj
= ((j + 1) (µ0 − j)− (µ0 − j + 1) j) · vj
= ((µ0 − j)− j) · vj = H(vj)

for each j ≥ 0. Thus

[H,X] = 2 ·X, [H,Y ] = −2 · Y, and [X,Y ] = H,(34.2.7)

as mappings from Z0(µ0) into itself.
Using this, we may consider Z0(µ0) as a module over sl2(k), as a Lie algebra

over k. More precisely, if x, y, h ∈ sl2(k) are as in the previous section, then
their actions on Z0(µ0) are defined by X, Y , and H, respectively. This defines
a representation of sl2(k) on Z0(µ0), by (34.2.7). This corresponds to the first
part of part (a) of Exercise 7 on p34 of [14].

Let m be a nonnegative integer, and let Z0,m(µ0) be the set of z ∈ Z0(µ0)
such that for each j = 0, . . . ,m, the coefficient of vj in z is equal to 0. This is a
submodule of Z0(µ0), as a module over k. Thus the quotient Z0(µ0)/Z0,m(µ0)
is defined as a module over k too. Let qm be the natural quotient mapping from
Z0(µ0) onto Z0(µ0)/Z0,m(µ0). It is easy to see that Z0(µ0)/Z0,m(µ0) is free as
a module over k, with generators qm(vj), j = 0, . . . ,m.

Suppose that
µ0 = m · 1,(34.2.8)

as an element of k. This implies that

x · vm+1 = X(vm+1) = 0,(34.2.9)

by (34.2.3). In this case, one can check that Z0,m(µ0) is a submodule of Z0(µ0),
as a module over sl2(k).

It follows that Z0(µ0)/Z0,m(µ0) is defined as a module over sl2(k) under
these conditions. Observe that

y · qm(vm) = qm(y · vm) = qm(Y (vm)) = 0(34.2.10)

in Z0(µ0)/Z0,m(µ0), by (34.2.2). One can use this to get that Z0(µ0)/Z0,m(µ0)
is isomorphic to the module W (m) discussed in Section 15.4, as modules over
sl2(k). More precisely, qm(vj), j = 0, . . . ,m, correspond to the generators of
W (m), as a module over k, in Section 15.4. This is related to part (b) of Exercise
7 on p34 of [14].
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34.3 Some module homomorphisms

Let k be a field of characteristic 0, and let V be a vector space over k that is a
module over A = sl2(k), as a Lie algebra over k. Also let A0 be the linear span
of h in A, as in Section 34.1. If µ0 ∈ k, then there is a unique linear functional
µ on A0 such that

µ(h) = µ0,(34.3.1)

and every linear functional on A0 is of this form.
Let ρ = ρV be the given representation of sl2(k) on V . An eigenvector of

ρh in V with eigenvalue µ0 ∈ k is the same as an eigenvector of A0 in V with
weight µ ∈ A′

0 as in (34.3.1), as defined in Section 33.5. A nonzero eigenvector
v of this type is primitive or maximal of weight µ0 in the sense of Section 15.2
if x · v = 0, which is the same as saying that v is primitive or maximal of weight
µ in the sense of Section 33.6. Of course, this uses ∆ as in (34.1.3).

Let µ0 ∈ k be given, and let Z0(µ0) be as in the previous section, as a vector
space over k, and a module over sl2(k). Note that v0 is a primitive or maximal
vector of weight µ0 in Z0(µ0), as in Section 15.2. It is easy to see that Z0(µ0)
is standard cyclic with respect to v0, as in Section 33.8.

Suppose that v ∈ V is primitive or maximal of weight µ0 in the sense of
Section 15.2. Observe that there is a unique linear mapping ϕ from Z0(µ0) into
V such that

ϕ(vj) = (1/j!) (ρy)
j(v)(34.3.2)

for every nonnegative integer j. In fact, ϕ is a homomorphism from Z0(µ0) into
V , as modules over sl2(k). This follows from the remarks in Section 15.3, with
λ = µ0.

Of course, ϕ(Z0(µ0)) is the same as the linear subspace of V spanned by
the vectors (34.3.2). This is the same as the submodule of V , as a module over
sl2(k), generated by v. Thus ϕ(Z0(µ0)) = V exactly when V is standard cyclic
with respect to v, as in Section 33.8.

If ϕ is injective as a mapping from Z0(µ0) into V , then (34.3.2) is nonzero for
every j ≥ 0. Conversely, if (34.3.2) is nonzero for every j ≥ 0, then these vectors
are linearly independent in V . This is because these vectors are eigenvectors for
ρh with distinct eigenvalues, as in Section 15.3. In this case, ϕ is injective on
Z0(µ0).

If j = 0, then (34.3.2) is equal to v, which is nonzero by hypothesis. Suppose
now that (34.3.2) is equal to 0 for some j ≥ 1, and thus all larger j. Let m
be the largest nonnegative integer such that (34.3.2) is nonzero when j = m,
which implies that (34.3.2) is nonzero when j ≤ m, and equal to 0 when j > m.
Under these conditions,

µ0 = m,(34.3.3)

with respect to the natural embedding of Q into k, as in Section 15.3.
The vectors (34.3.2) with j = 0, . . . ,m are linearly independent in V , because

they are nonzero eigenvectors of ρh with distinct eigenvalues, as before. This
implies that the kernel of ϕ is equal to the linear subspace Z0,m(µ0) of Z0(µ0)
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defined in the previous section. Remember that Z0,m(µ0) is a submodule of
Z0(µ0), as a module over sl2(k), in this case, which also follows from the fact
that ϕ is a module homomorphism.

Using (34.3.3), we get that (34.2.9) holds, as before. This means that vm+1

is primitive or maximal of weight

µ0 − 2 (m+ 1) = −m− 2(34.3.4)

in Z0(µ0). Note that vm+1 ∈ Z0,m(µ0), so that vm+1 may be considered as
primitive or maximal in Z0,m(µ0), as a module over sl2(k).

If j is a nonnegative integer, then Y j(vm+1) is a nonzero multiple of vm+1+j ,
by (34.2.2). Thus Z0,m(µ0) is spanned by Y j(vm+1), j ≥ 0, as a vector space
over k. This means that Z0,m(µ0) is standard cyclic with respect to vm+1, as a
module over sl2(k).

Let Z0(−m− 2) be as in the previous section, using the natural embedding
of Q into k to identify −m − 2 with an element of k. The same argument as
before leads to an isomorphism from Z0(−m − 2) onto Z0,m(µ0), as modules
over sl2(k). This corresponds to part of part (b) of Exercise 7 on p34 of [14].

34.4 Some properties of Z0(µ0)

Let k be a field of characteristic 0 again, let µ0 ∈ k be given, and let Z0(µ0)
be as in Section 34.2. If z is any element of Z0(µ0), then X

j(x) = 0 when j is
large enough. Suppose that z ̸= 0, and let j1 be the largest nonnegative integer
such that

z1 = Xj1(z) ̸= 0.(34.4.1)

Thus
X(z1) = Xj1+1(z) = 0.(34.4.2)

Let Z1 be a submodule of Z0(µ0), as a module over sl2(k). If Z1 ̸= {0},
then there is a z1 ∈ Z1 such that z1 ̸= 0 and X(z1) = 0, by the remarks in the
preceding paragraph.

Suppose for the moment that µ0 does not correspond to a nonnegative inte-
ger, with respect to the natural embedding of Q into k. If z ∈ Z0(µ0) satisfies

x · z = X(z) = 0,(34.4.3)

then it is easy to see that z is a multiple of v0, using (34.2.3).
If Z1 is a nontrivial submodule of Z0(µ0), as a module over sl2(k), then

it follows that Z1 contains a nonzero multiple of v0. It is easy to see that
Z1 = Z0(µ0) in this case, using the action of y on Z1. This means that Z0(µ0)
is irreducible, as a module over sl2(k). This corresponds to part (c) of Exercise
7 on p34 of [14], and is related to the second part of part (a) of Exercise 7.

Let m be a nonnegative integer, and suppose now that µ0 corresponds to m,
under the natural embedding of Q into k. If z ∈ Z0(µ0) satisfies (34.4.3), then
one can check that z is a linear combination of v0 and vm+1, using (34.2.3).
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Let Z1 be a submodule of Z0(µ0) again, as a module over sl2(k). Suppose
that Z1 ̸= {0}, and let z1 be a nonzero element of Z1 such that X(z1) = 0,
as before. Thus z1 is a linear combination of v0 and vm+1, as in the previous
paragraph. Remember that v0 and vm+1 are eigenvectors of H with distinct
eigenvalues, by (34.2.1). One can use this to get that both the v0 and vm+1

components of z1 are in Z1, because Z1 is a submodule of Z0(µ0).

If Z1 contains a nonzero multiple of v0, then Z1 = Z0(µ0), as before. If
Z1 ̸= Z0(µ0), then it follows that Z1 contains a nonzero multiple of vm+1. This
is related to the second part of part (a) of Exercise 7 on p34 of [14].

Let Z0,m(µ0) be the linear subspace of Z0(µ0) defined in Section 34.2, which
is a submodule of Z0(µ0), as a module over sl2(k), in this case. If Z1 is a
submodule of Z0(µ0), as a module over sl2(k), that contains a nonzero multiple
of vm+1, then one can check that

Z0,m(µ0) ⊆ Z1,(34.4.4)

using the action of y on Z1.

In particular, one can use this to get that Z0,m(µ0) is irreducible as a mod-
ule over sl2(k), which corresponds to part of part (b) of Exercise 7 on p34 of
[14]. This could also be obtained from the fact that Z0,m(µ0) is isomorphic to
Z0(−m− 2), as modules over sl2(k), as in the previous section.

Let Z1 be a nontrivial submodule of Z0(µ0) again, as a module over sl2(k),
so that (34.4.4) holds, as before. If Z1 ̸= Z0,m(µ0), then Z1 = Z0(µ0). Equiva-
lently, this means that Z0(µ0)/Z0,m(µ0) is irreducible as a module over sl2(k).
As in Section 34.2, the quotient is isomorphic to the module W (m) in Section
15.4, whose irreducibility was discussed in Section 15.5. This corresponds to
another part of part (b) of Exercise 7 on p34 of [14].

Alternatively, if Z1 ̸= Z0,m(µ0), then Z1 contains a nonzero element for
which the coefficient of vj is equal to 0 when j ≥ m + 1. One can apply
X to this element repeatedly, if necessary, to get that Z1 contains a nonzero
multiple of v0. This implies that Z1 = Z0(µ0), as before. One could also start
with any z ∈ Z1 \ Z0,m(µ0), and apply X to it repeatedly, as needed, to get
z1 ∈ Z1 \Z0,m(µ0) such that X(z1) = 0. This implies that the v0 component of
z1 is nonzero, and that it is contained in Z1, as before.

Note that Z0(µ0) does not correspond to the direct sum of Z0,m(µ0) and
some other submodule, as a module over sl2(k). This is mentioned in part (b)
of Exercise 7 on p34 of [14] as well.

34.5 Comparison with Z(µ)

Let k be a field of characteristic 0, and let us return to the same notation and
hypotheses as in Section 34.1. Also let µ0 ∈ k be given, and let µ be the linear
functional on the linear span A0 of h in A = sl2(k) with µ(h) = h0, as before.
We would like to review the construction of Z(µ) in Section 33.14 in this case,
and to compare it with Z0(µ0) in Section 34.2.
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As in Section 34.1, αx ∈ A′
0 is defined by αx(h) = 2, ∆ = {αx} is a base for

Φ, Φ+ = Φ∆,+ = {αx}, and the standard Borel subalgebra B∆ = A(Φ+ ∪ {0})
of A associated to A0 and ∆ is the same as the linear span of x and h in A.
Observe that N∆ = A(Φ+) is the linear span of x in A, B∆ corresponds to the
direct sum of A0 and N∆ as a vector space over k, and that [B∆, B∆] = N∆.

As in Section 33.14, we let L(µ) be a one-dimensional vector space over k,
and we can define an action of B∆ on L(µ) by putting

(w + t x) · u = µ(w)u(34.5.1)

for every w ∈ A0, t ∈ k, and u ∈ L(µ). Of course, this means that h · u = µ0 u
and x · u = 0. This makes L(µ) into a module over B∆, as a Lie algebra over k,
as before.

Let UA be a universal enveloping algebra of A, with multiplicative identity
element e = eUA and associated mapping i = iUA from A into UA, as before.
The subalgebra of UA generated by e and i(B∆) is a universal enveloping algebra
of B∆, and we denote it UB∆. Remember that i is injective, and let us identify
A with its image i(A) in UA, as usual. Thus UB∆ is the same as the subalgebra
of UA generated by e, x, and h in this case. We may consider L(µ) as a left
module over UB∆, as an associative algebra over k, as before.

As in Section 33.14, we take

Z(µ) = (UA)
⊗

UB∆

L(µ),(34.5.2)

where UA is considered as a right module over UB∆, and the tensor product is
as in Sections 33.12 and 33.13. This is a vector space over k, a left module over
UA, and thus a module over A, as a Lie algebra over k.

Let u0 be a nonzero element of L(µ), and put v = e⊗ u0 ∈ Z(µ), as before.
Remember that Z(µ) is generated by v, as a left module over UA. If w ∈ A0,
then

w · v = µ(w) v,(34.5.3)

as in Section 33.14. This means that that h · v = µ0 v, and we also have that
x · v = 0, as before.

Remember from Section 34.1 that αy = −αx, so that −Φ+ = {αy}. Thus
A(−Φ+) is spanned by y, and is a Lie subalgebra of A. The elements of Z(µ)
of the form

ym · v,(34.5.4)

where m is a nonnegative integer, form a basis for Z(µ) as a vector space over
k, as in Section 33.14.

It follows that v is a primitive or maximal vector in Z(µ) with weight µ, and
that Z(µ) is standard cyclic of weight µ, as a module over A, as before. This
leads to an isomorphism ϕ from Z0(µ0) onto Z(µ), as modules over A, as in
Section 34.3. Alternatively, one can get a module isomorphism from Z(µ) onto
Z0(µ0) as in Section 33.15. This corresponds to Exercise 4 on p111 of [14].
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34.6 Looking at x in UA

Let k be a commutative ring with a multiplicative identity element and k ̸= {0},
and take A = sl2(k), as in Section 34.1. Also let UA be a universal envelop-
ing algebra of A, with multiplicative identity element e = eUA and associated
mapping i = iUA, as in Section 25.4.

Remember that sl2(k) is freely generated, as a module over k, by the usual
elements x, y, and h. As in Section 25.12, the Poincaré–Birkhoff–Witt theorem
implies that i is an injective mapping from A into UA. Thus we may identify
A with i(A), as before.

In particular, we may consider x, y, and h as elements of UA. If w ∈ UA,
then we would like to check that

w (e− x) ̸= e,(34.6.1)

so that e − x does not have a left inverse in UA. This corresponds to part of
part (c) of Exercise 2 on p111 of [14].

Let us use the ordering y, h, x, for the basis elements of A. The Poincaré–
Birkhoff–Witt theorem implies that the collection of products of the form

yj1 hj2 xj3 ,(34.6.2)

where j1, j2, j3 are nonnegative integers, is a basis for UA as a module over k,
as in Section 25.10. If w ∈ UA is expressed as a linear combination of these
basis elements, then wx can be expressed as a linear combination of these basis
elements in a simple way. One can use this to get (34.6.1), as desired.

Let I be a left ideal in UA, as an associative algebra over k. Thus the
quotient (UA)/I can be defined as a module over k, and as a left module over
UA. Let q = qI be the natural quotient mapping from UA onto (UA)/I, so
that

(UA) · q(e) = (UA)/I,(34.6.3)

by construction, as in Section 33.11. Of course, we may also consider (UA)/I
as a module over A, as a Lie algebra over k, as before.

Suppose that
e− x ∈ I.(34.6.4)

Equivalently, this means that

q(x) = q(e).(34.6.5)

Note that
q(x) = q(x e) = x · q(e),(34.6.6)

using the fact that (UA)/I is a left module over UA in the second step. Thus
(34.6.5) is the same as saying that

x · q(e) = q(e)(34.6.7)

in (UA)/I.
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Observe that
q(e) ̸= 0(34.6.8)

if and only if
I ̸= UA,(34.6.9)

because e ∈ I if and only if I = UA. Clearly

I0 = {w (e− x) : w ∈ UA}(34.6.10)

is a left ideal in UA, which does not contain e, by (34.6.1).

34.7 Some related properties of x and h

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Observe that

(x− e)h = h (x− e)− (hx− xh)(34.7.1)

= h (x− e)− 2 · x = h (x− e)− 2 · (x− e)− 2 · e,

using the fact that [h, x] = 2 · x in the second step. If r is a positive integer,
then we get that

(x− e)r h = (x− e)r−1 h (x− e)− 2 · (x− e)r − 2 · (x− e)r−1.(34.7.2)

It follows that

(x− e)r h = h (x− e)r − (2 r) · (x− e)r − (2 r) · (x− e)r−1(34.7.3)

for every r ≥ 1, by using (34.7.2) repeatedly, or induction.
If r, m are positive integers with r > m, then one can use (34.7.3) to check

that
(x− e)r hm ∈ I0,(34.7.4)

where I0 is as in (34.6.10). Similarly, one can use (34.7.3) to verify that

(x− e)r hr − ((−2)r r!) · e ∈ I0(34.7.5)

for every r ≥ 1. This corresponds to part of part (c) of Exercise 2 on p111 of
[14].

Let V be a module over k that is a module over A = sl2(k), as a Lie algebra
over k. Thus V may be considered as a left module over UA, as an associative
algebra over k. Let v0 be an element of V , and suppose that

x · v0 = v0.(34.7.6)

Equivalently, this means that

(e− x) · v0 = 0.(34.7.7)
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It follows that
I0 · v0 = {0}.(34.7.8)

If r and m are positive integers with r > m, then we get that

((x− e)r hm) · v0 = 0,(34.7.9)

by (34.7.4). We also have that

((x− e)r hr) · v0 = ((−2)r r!) · v0(34.7.10)

for every r ≥ 1, by (34.7.5).
Suppose now that k is a field of characteristic 0, and that v0 ̸= 0. Under

these conditions, one can check that the elements of V of the form hr · v0,
where r is a nonnegative integer, are linearly independent, using (34.7.10). This
corresponds to another part of part (c) of Exercise 2 on p111 of [14].

If I is a proper left ideal in UA that satisfies (34.6.4), then we can take
V = (UA)/I, as in the previous section, with v0 = q(e). If I is also maximal as
a proper left ideal in UA, then (UA)/I is irreducible as a left module over UA,
or a module over A as a Lie algebra over k, as in Section 33.11.

34.8 Irreducibility and weights

Let us return to the notation and hypotheses in Section 33.1, so that k is a field
of characteristic 0, and (A, [·, ·]A) is a Lie algebra over k with the properties
mentioned before. Remember that A0 is a Lie subalgebra of A that is commu-
tative as a Lie algebra. Let V be a vector space over k that is a module over A,
as a Lie algebra over k.

Let V̂ be the linear subspace of V spanned by the weight spaces of V with
respect to A0, as in Section 33.5. Thus V̂ is a submodule of V , as a module
over A, as before. If V̂ ̸= {0}, and V is irreducible as a module over A, then we
get that

V̂ = V.(34.8.1)

This corresponds to part (a) of Exercise 2 on p110 of [14].
If v ∈ V is an eigenvector of A0 of some weight, then the linear span of v

in V is mapped into itself by every element of A0. If v ∈ V̂ , then v can be
expressed as the sum of finitely many eigenvectors of A0. This implies that

there is a finite-dimensional linear subspace of V that contains v(34.8.2)

and is mapped into itself by every element of A0.

If (34.8.1) holds, then it follows that (34.8.2) holds for every v ∈ V . This
corresponds to part of part (b) of Exercise 2 on p111 of [14].

Suppose for the moment that A = sl2(k), as in Section 34.1, and that V is
as in the previous section. If v0 ̸= 0, then we have seen that (34.8.2) does not
hold with v = v0. This means that

V̂ = {0}(34.8.3)
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when V is irreducible, as before. This corresponds to part of part (c) of Exercise
2 on p111 of [14].

Remember that the actions of the elements of A0 on V commute with each
other, because A0 is commutative as a Lie algebra, and V is a module over A,
as a Lie algebra over k. Suppose that U is a linear subspace of V of positive
finite dimension that is mapped into itself by every element of A0. If k is
algebraically closed, then the action of any element of A0 on U has a nontrival
eigenspace. One can use this to get a nontrivial linear subspace of U consisting
of eigenvectors for the actions of all of the elements of A0, because the actions
of the elements of A0 on V commute, as before. This means that

U ∩ V̂ ̸= {0},(34.8.4)

which corresponds to part of part (b) of Exercise 2 on p111 of [14].
Suppose that v ∈ V has the property that

for every w ∈ A0 there is a finite-dimensional linear subspace of V(34.8.5)

that contains v and is mapped into itself by the action of w on V.

Under these conditions, one can check that (34.8.2) holds. This uses the fact
that A0 has finite dimension, as a vector space over k, and that the actions of
the elements of A0 on V commute. This corresponds to another part of part
(b) of Exercise 2 on p111 of [14].

Of course, (34.8.2) implies (34.8.5) automatically.

34.9 Weight spaces in Z(µ)

Let us go back to the notation and hypotheses in Section 33.1 again. More
precisely, let µ ∈ A′

0 be given, and let Z(µ) be the universal standard cyclic
module of weight µ over A constructed in Section 33.14.

Remember that v = e⊗ u0 ∈ Z(µ) is a primitive or maximal vector in Z(µ)
of weight µ, and that (UA) · v = Z(µ). Let β1, . . . , βr be a list of the elements
of Φ+, so that yβ1 , . . . , yβr is a basis for A(−Φ+), as a vector space over k, as
in Section 33.14. We have seen that

{(ym1

β1
· · · ymr

βr
) · v : m1, . . . ,mr ∈ Z+ ∪ {0}}(34.9.1)

form a basis for Z(µ), as a vector space over k.
If m1, . . . ,mr are nonnegative integers, then

(ym1

β1
· · · ymr

βr
) · v has weight µ−

r∑
j=1

mj βj(34.9.2)

as an element of Z(µ) in the sense of Section 33.5, as in Section 33.8. All of the
weights of Z(µ) are of this form, as before.



722 CHAPTER 34. SOME RELATED EXAMPLES AND PROPERTIES

Remember that ∆ is a base for the root system Φ, and that ∆ is a basis for
A′

0, as a vector space over k, as in Section 33.1. If m1, . . . ,mr are nonnegative
integers, then there are nonnegative integers cα, α ∈ ∆, such that

r∑
j=1

mj βj =
∑
α∈∆

cα α,(34.9.3)

because βj ∈ Φ+ for each j = 1, . . . , r, by hypothesis.
If cα is a nonnegative integer for each α ∈ ∆, then there are only finitely

many families of nonnegative integers m1, . . . ,mr such that (34.9.3) holds, as in
Section 33.8. More precisely, this is considered as an equality in A′

0, and uses
the fact that k is a field of characteristic 0.

If ν ∈ A′
0, then let P(ν) be the number of families of nonnegative integers

m1, . . . ,mr such that

ν =

r∑
j=1

mj βj .(34.9.4)

Of course, this number may be 0, but it is finite, as in the preceding paragraph.
Thus P(µ− ν) is the same as the number of families of nonnegative integers

m1, . . . ,mr such that

ν = µ−
r∑
j=1

mj βj .(34.9.5)

Equivalently, this is the number of families of nonnegative integers m1, . . . ,mr

such that
(ym1

β1
· · · ymr

βr
) · v has weight ν,(34.9.6)

by (34.9.2).
Let Z(µ)ν be the linear subspace of Z(µ) consisting of vectors of weight ν,

as in Section 33.5. Under these conditions, we get that

dimZ(µ)ν = P(µ− ν),(34.9.7)

as a vector space over k. More precisely, Z(µ)ν ̸= {0} exactly when P(µ−ν) > 0,
in which case we get a basis for Z(µ)ν using the vectors mentioned in (34.9.6).
This corresponds to Exercise 5 on p111 of [14].
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Formal Laurent series

35.1 Formal Laurent polynomials and series

Let k be a commutative ring with a multiplicative identity element, let A be a
module over k, let n be a positive integer, and let T1, . . . , Tn be n commuting
indeterminates. If α = (α1, . . . , αn) is an n-tuple of integers, then the degree of
α is defined by

deg(α) =

n∑
j=1

αj .(35.1.1)

This is the same as the degree of the corresponding formal Laurent monomial

Tα = Tα1
1 · · ·Tαn

n .(35.1.2)

A formal Laurent series in T1, . . . , Tn with coefficients in A can be expressed as

f(T ) = f(T1, . . . , Tn) =
∑
α∈Zn

fα T
α,(35.1.3)

where fα ∈ A for every α ∈ Zn. A formal power series in T1, . . . , Tn with
coefficients in A may be considered as a formal Laurent series as in (35.1.3),
with fα ̸= 0 only when αj ≥ 0 for each j = 1, . . . , n.

The space
LSA(T1, . . . , Tn) = LS(A)(T1, . . . , Tn)(35.1.4)

of all formal Laurent series in T1, . . . , Tn with coefficients in A can be defined as
the set of all A-valued functions on Zn. This is a module over k with respect to
pointwise addition and scalar multiplication of A-valued functions on Zn, which
corresponds to termwise addition and scalar multiplication of formal Laurent
series as in (35.1.3). Of course, this is the same as the direct product of copies
of A indexed by Zn, as a module over k. The space A[[T1, . . . , Tn]] of formal
power series in T1, . . . , Tn with coefficients in A corresponds to a submodule of
LSA(T1, . . . , Tn), as a module over k.

723
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A formal Laurent polynomial in T1, . . . , Tn with coefficients in A may be
defined as a formal Laurent series as in (35.1.3) such that fα = 0 for all but
finitely many α ∈ Zn. The space

LPA(T1, . . . , Tn) = LP (A)(T1, . . . , Tn)(35.1.5)

of formal Laurent polynomials in T1, . . . , Tn with coefficients in k may be de-
fined as the space of A-valued functions on Zn with finite support. This is a
submodule of LSA(T1, . . . , Tn), as a module over k, which corresponds to the
direct sum of copies of A indexed by Zn. A formal polynomial in T1, . . . , Tn
with coefficients in A may be considered as a formal Laurent polynomial as in
(35.1.3), with fα ̸= 0 only when αj ≥ 0 for each j = 1, . . . , n, and for only finitely
many such α. The space A[T1, . . . , Tn] of formal polynomials in T1, . . . , Tn with
coefficients in A corresponds to a submodule of LPA(T1, . . . , Tn), as a module
over k.

Let l, m be positive integers, and let X1, . . . , Xl, Y1, . . . , Ym be commuting
indeterminates. Let us identify Zl × Zm with Zl+m in the obvious way. Thus
if β ∈ Zl and γ ∈ Zm, then (β, γ) is identified with an element of Zl+m. The
degrees of β, γ, and (β, γ) can be defined as before, so that

deg(β, γ) = deg(β) + deg(γ).(35.1.6)

In this case, we may consider

Xβ Y γ = Xβ1

1 · · ·Xβl

l Y γ11 · · ·Y γmm(35.1.7)

as a formal Laurent monomial in X1, . . . Xl, Y1, . . . , Ym with degree (35.1.6).

We can define LSA(X1, . . . , Xl) as a module over k as before, so that

LS(LSA(X1, . . . , Xl))(Y1, . . . , Ym)(35.1.8)

may be defined as a module over k in the same way. There is an obvious one-
to-one correspondence between (35.1.8) and

LSA(X1, . . . , Xl, Y1, . . . , Ym),(35.1.9)

which associates an A-valued function on Zl+m with a function on Zm that takes
values in the space of A-valued functions on Zl. This defines an isomorphism
between (35.1.8) and (35.1.9), as modules over k. Similarly, we can define
LPA(X1, . . . , Xl) as a module over k as before, so that

LP (LPA(X1, . . . , Xl))(Y1, . . . , Ym)(35.1.10)

may be defined as a module over k too. The one-to-one correspondence between
(35.1.8) and (35.1.9) just mentioned sends (35.1.10) onto

LPA(X1, . . . , Xl, Y1, . . . , Ym).(35.1.11)
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35.2 Multiplication and Laurent series

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If α, β ∈ Zn, then α + β ∈ Zn is defined as usual by coordinatewise
addition, and

deg(α+ β) = deg(α) + deg(β).(35.2.1)

Similarly, multiplication of the corresponding formal Laurent monomials is de-
fined by

Tα T β = Tα+β .(35.2.2)

Let A be an algebra over k in the strict sense, where multiplication of a, b ∈ A
is expressed as a b. Suppose that f(T ) ∈ LSA(T1, . . . , Tn) is as in (35.1.3), and
that

g(T ) =
∑
β∈Zn

gβ T
β(35.2.3)

is another element of LSA(T1, . . . , Tn). If γ ∈ Zn, then we would like to put

hγ =
∑

α+β=γ

fα gβ ,(35.2.4)

where more precisely the sum is taken over all α, β ∈ Zn with α+ β = γ. This
defines an element of A when all but finitely many terms in the sum on the
right are equal to 0. In particular, this happens for every γ ∈ Zn when f(T )
and g(T ) are formal power series in T1, . . . , Tn, as in Section 5.8, and when at
least one of f(T ) and g(T ) is a formal Laurent polynomial in T1, . . . , Tn.

If (35.2.4) is defined as an element of A for every γ ∈ Zn, then

h(T ) =
∑
γ∈Zn

hγ T
γ(35.2.5)

defines an element of LSA(T1, . . . , Tn). In this case, we put

f(T ) g(T ) = h(T ).(35.2.6)

Of course, this agrees with the definition of the product in Section 5.8 when
f(T ), g(T ) ∈ A[[T1, . . . , Tn]]. If f(T ) and g(T ) are both formal Laurent poly-
nomials in T1, . . . , Tn, then we also get that (35.2.4) is equal to 0 for all but
finitely many γ ∈ Zn, so that

h(T ) ∈ LPA(T1, . . . , Tn).(35.2.7)

This makes LPA(T1, . . . , Tn) an algebra over k in the strict sense, which contains
A[T1, . . . , Tn] as a subalgebra.

If A is an associative algebra over k, then one can check that

LPA(T1, . . . , Tn) is an associative algebra over k(35.2.8)
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too. Similarly,

LSA(T1, . . . , Tn) is a left and right module over LPA(T1, . . . , Tn)(35.2.9)

under these conditions. If A has a multiplicative identity element e, then the cor-
responding formal Laurent polynomial in T1, . . . , Tn is the multiplicative identity
element in LPA(T1, . . . , Tn). If A is commutative, then multiplication of formal
Laurent series in T1, . . . , Tn with coefficients in A is commutative when it is
defined. In particular,

LPk(T1, . . . , Tn) is a commutative associative algebra over k.(35.2.10)

Suppose that A is a module over k again, let f(T ) ∈ LSk(T1, . . . , Tn) be as
in (35.1.3), and let g(T ) ∈ LSA(T1, . . . , Tn) be as in (35.2.3). Note that fα gβ is
defined as an element of A for every α, β ∈ Zn, using scalar multiplication on
A. If γ ∈ Zn, then we would like to define hγ as an element of A as in (35.2.4).
As before, this make sense when all but finitely many terms in the sum on the
right side of (35.2.4) are equal to 0. This happens for every γ ∈ Zn when f(T )
and g(T ) are formal power series in T1, . . . , Tn, and when at least one of f(T )
and g(T ) is a formal Laurent polynomial in T1, . . . , Tn.

If (35.2.4) is defined as an element of A for every γ ∈ Zn, then (35.2.5)
defines an element of LSA(T1, . . . , Tn), which we use to define f(T ) g(T ) as in
(35.2.6). In particular, one can check that

LSA(T1, . . . , Tn) is a module over LPk(T1, . . . , Tn)(35.2.11)

in this way. If f(T ) and g(T ) are both formal Laurent polynomials in T1, . . . , Tn,
then (35.2.4) is equal to 0 for all but finitely many γ ∈ Zn, so that (35.2.7) holds.
This means that

LPA(T1, . . . , Tn) is a submodule of LSA(T1, . . . , Tn),(35.2.12)

as a module over LPk(T1, . . . , Tn).

Let l,m ∈ Z+ and X1, . . . , Xl, Y1, . . . , Ym be as in the previous section. If A
is an algebra over k in the strict sense, then LPA(X1, . . . , Xl) is an algebra over k
in the strict sense with respect to multiplication of formal Laurent polynomials,
as before. One can use this to define multiplication on (35.1.10), to get an
algebra over k in the strict sense. Of course, (35.1.11) is an agebra over k in the
strict sense with respect to multiplication of formal Laurent polynomials as well.
One can check that the bijection between (35.1.10) and (35.1.11) mentioned
in the previous section is an algebra isomorphism under these conditions. In
particular,

LP (LPk(X1, . . . , Xl))(Y1, . . . , Ym)(35.2.13)

is a commutative associative algebra over k. This algebra is isomorphic to

LPk(X1, . . . , Xl, Y1, . . . , Ym),(35.2.14)

using the bijection just mentioned.
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Similarly, if A is a module over k, then LSA(X1, . . . , Xl) may be considered
as a module over LPk(X1, . . . , Xl). This permits (35.1.8) to be considered as a
module over (35.2.13). We may also consider (35.1.9) as a module over (35.2.14).
One can check that scalar multiplication on (35.1.8) by elements of (35.2.13)
corresponds to scalar multiplication on (35.1.9) by elements of (35.2.14). More
precisely, this uses the bijection between (35.1.8) and (35.1.9) mentioned in the
previous section, and the analogous bijection between (35.2.13) and (35.2.14).

35.3 Laurent polynomial functions

Let k be a commutative ring with a multiplicative identity element, and let n
be a positive integer. Also let t = (t1, . . . , tn) be an n-tuple of elements of k,
and suppose that tj has a multiplicative inverse in k for each j = 1, . . . , n. If
α ∈ Zn, then

tα = tα1
1 · · · tαn

n(35.3.1)

is defined as an element of k. Note that

tα+β = tα tβ(35.3.2)

for every α, β ∈ Zn.
Let A be a module over k, and let T1, . . . , Tn be commuting indeterminates.

Suppose that f(T ) ∈ LPA(T1, . . . , Tn) is as in (35.1.3). If t ∈ kn is as in the
preceding paragraph, then

f(t) =
∑
α∈Zn

fα t
α(35.3.3)

defines an element of A. More precisely, fα t
α is defined as an element of A for

each α ∈ Zn, using scalar multiplication on A. We also have that fα t
α = 0 for

all but finitely many α ∈ Zn, by hypothesis. The mapping from LPA(T1, . . . , Tn)
into k defined by f(T ) 7→ f(t) is clearly linear over k. If f(T ) ∈ k[T1, . . . , Tn],
then this is the same as the definition of f(t) in Section 5.9.

Suppose for the moment that A is an algebra over k in the strict sense, where
multiplication of a b ∈ A is expressed as a b. If f(T ), g(T ) ∈ LPA(T1, . . . , Tn),
then h(T ) = f(T ) g(T ) is defined as an element of LPA(T1, . . . , Tn), as in the
previous section. If t ∈ kn is as before, then f(t), g(t), and h(t) are defined as
elements of A, as in the preceding paragraph. Under these conditions, one can
verify that

h(t) = f(t) g(t)(35.3.4)

Thus f(T ) 7→ f(t) is a homomorphism from LPA(T1, . . . , Tn) into A, as algebras
over k.

Let A be a module over k again, and let f(T ) ∈ LPk(T1, . . . , Tn) and g(T )
in LPA(T1, . . . , Tn) be given. Remember that h(T ) = f(T ) g(T ) is defined as an
element of LPA(T1, . . . , Tn), as in the previous section. If t ∈ kn is as before,
then f(t) ∈ k, and g(t), h(t) are defined as elements of A. One can verify that
(35.3.4) holds in this case too.
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Now let A be an associative algebra over k with a multiplicative identity
element e, and let An be the space of n-tuples of elements of A, as usual. Suppose
that a = (a1, . . . , an) ∈ An has commuting coordinates, so that aj al = al aj for
every j, l = 1, . . . , n. Of course, this holds trivially when n = 1. Suppose also
that aj is invertible in A for each j = 1, . . . , n. It follows that a−1

j commutes

with al and with a−1
l for every j, l = 1, . . . , n. If α ∈ Zn, then

aα = aα1
1 · · · aαn

n(35.3.5)

defines an element of A. Observe that

aα+β = aα aβ(35.3.6)

for every α, β ∈ Zn. Let f(T ) ∈ LPk(T1, . . . , Tn) be as in (35.1.3) again. One
can define f(a) as an element of A by

f(a) =
∑
α∈Zn

fα a
α,(35.3.7)

as before. One can check that f(T ) 7→ f(a) defines a homomorphism from
LPk(T1, . . . , Tn) into A, as algebras over k.

35.4 Differentiating Laurent series

Let n be a positive integer, let α ∈ Zn be given, and let l be a positive integer
with l ≤ n. As in Section 5.10, we define α+(l) ∈ Zn by

α+
j (l) = αj when j ̸= l(35.4.1)

= αl + 1 when j = l.

Similarly, let us define α−(l) ∈ Zn by

α−
j (l) = αj when j ̸= l(35.4.2)

= αl − 1 when j = l.

This is a bit different from the way that α(l) was defined before, because we are
using n-tuples of arbitrary integers here.

Let k be a commutative ring with a multiplicative identity element, let A be
a module over k, and let T1, . . . , Tn be commuting indeterminates. Also let f(T )
be a formal Laurent series in T1, . . . , Tn with coefficients in A, as in (35.1.3).
The formal partial derivative of f(T ) in Tl can be defined as a formal Laurent
series in T1, . . . , Tn with coefficients in A by

∂lf(T ) =
∂

∂Tl
f(T ) =

∑
α∈Zn

(αl + 1) · fα+(l) T
α.(35.4.3)

This is essentially the same as ∑
α∈Zn

αl · fα Tα
−(l).(35.4.4)
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This agrees with the analogous definition for partial derivatives of formal power
series in T1, . . . , Tn, in Section 5.10. If f(T ) ∈ LPA(T1, . . . , Tn), then these
sums reduce to finite sums, and ∂lf(T ) ∈ LPA(T1, . . . , Tn) too. Note that the
mapping

f(T ) 7→ ∂lf(T )(35.4.5)

is a homomorphism from LSA(T1, . . . , Tn) into itself, as a module over k. One
can verify that

∂l(∂mf(T )) = ∂m(∂lf(T ))(35.4.6)

for every l,m = 1, . . . , n and f(T ) ∈ LSA(T1, . . . , Tn).
Suppose for the moment that A is an algebra in the strict sense, where

multiplication of a, b ∈ A is expressed as a b. Let f(T ) and g(T ) be formal
Laurent series in T1, . . . , Tn with coefficients in A, where at least one of f(T )
and g(T ) is a formal Laurent polynomial in T1, . . . , Tn. Thus f(T ) g(T ) is defined
as an element of LSA(T1, . . . , Tn), as in Section 35.1. Under these conditions,
one can check that

∂l(f(T ) g(T )) = (∂lf(T )) g(T ) + f(T ) (∂lg(T )).(35.4.7)

Note that both terms on the right are defined as elements of LSA(T1, . . . , Tn).
Of course, one can reduce to the case where one of f(T ) and g(T ) is a multiple
of a single Laurent monomial, by linearity. In particular, the partial derivative
defines a derivation on LPA(T1, . . . , Tn), as an algebra over k.

Let A be a module over k again, and let f(T ) ∈ LSk(T1, . . . , Tn) and g(T )
in LSA(T1, . . . , Tn) be given, where at least one of f(T ) and g(T ) is a formal
Laurent polynomial in T1, . . . , Tn. This implies that f(T ) g(T ) is defined as an
element of LSA(T1, . . . , Tn), as in Section 35.1. One can verify that (35.4.7)
holds in this case too. As before, both terms on the right side of (35.4.7) are
defined as elements of LSA(T1, . . . , Tn), and one may as well suppose that one
of f(T ) and g(T ) is a multiple of a single Laurent monomial.

35.5 Derivatives and functions

Let k be a commutative ring with a multiplicative identity element, and let A
be an associative algebra over k with a multiplicative identity element e. Also
let a be an invertible element of A, and let u be another element of A that
commutes with a and satisfies

u2 = 0.(35.5.1)

Of course, u commutes with a−1 too. One can check that a+ u is invertible in
A as well, with

(a+ u)−1 = a−1 − a−2 u.(35.5.2)

If j is any integer, then

(a+ u)j = aj + j · aj−1 u.(35.5.3)
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More precisely, this can be verified directly when j ≥ 0, as in Section 5.7.
Similarly,

(a+ u)−j = (a−1 − a−2 u)j = a−j − j · (a−1)j−1 a−2 u(35.5.4)

= a−j − j · a−j−1 u

for every j ≥ 1.
Now let n be a positive integer, and let a = (a1, . . . , an) be an n-tuple of

commuting invertible elements of A. Let u = (u1, . . . , un) be another n-tuple of
elements of A, with

aj ul = ul aj(35.5.5)

and
uj ul = 0(35.5.6)

for every j, l = 1, . . . , n. It follows that a−1
j commutes with ul for every j, l =

1, . . . , n, as before. Note that al + ul is invertible in A for each l = 1, . . . , n,
with inverse as in (35.5.2). If αl is any integer, then

(al + ul)
αl = aαl

l + αl · aαl−1
l ul,(35.5.7)

as in (35.5.3).
Observe that aj+uj commutes with al+ul for each j, l = 1, . . . , n. If α ∈ Zn,

then aα and (a + u)α can be defined as elements of A as in Section 35.3. One
can check that

(a+ u)α = aα +

n∑
l=1

αl · aα
−(l) ul,(35.5.8)

where α−(l) ∈ Zn is as in the previous section, using (35.5.7). Let T1, . . . , Tn be
n commuting indeterminates, and let f(T ) ∈ LPk(T1, . . . , Tn) be given, so that
∂lf(T ) ∈ LPk(T1, . . . , Tn) is defined as in the previous section. One can verify
that

f(a+ u) = f(a) +

n∑
l=1

(∂lf)(a)ul,(35.5.9)

using (35.5.8), where f(a+ u), f(a), and (∂lf)(a) are defined as elements of A
as in Section 35.3.

Let t = (t1, . . . , tn) be an n-tuple of invertible elements of k, and let u =
(u1, . . . , un) be an n-tuple of elements of k such that (35.5.6) holds for every
j, l = 1, . . . , n. Thus tl + ul is invertible in k for each l = 1, . . . , n, with inverse
as in (35.5.2). If α ∈ Zn, then tα and (t + u)α can be defined as elements of
k as in Section 35.3, and (t + u)α can be expressed as in (35.5.8). Let A be a
module over k, and let f(T ) ∈ LPA(T1, . . . , Tn) be given, so that ∂lf(T ) can be
defined as an element of LPA(T1, . . . , Tn) as in the previous section. As before,
one can check that

f(t+ u) = f(t) +

n∑
l=1

(∂lf)(t)ul,(35.5.10)

where f(t + u), f(t), and (∂lf)(t) are defined as elements of A as in Section
35.3.
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35.6 Differential operators and Laurent series

Let k be a commutative ring with a multiplicative identity element, let n be a
positive integer, and let ∂1, . . . , ∂n be commuting formal symbols, which may be
used to represent partial derivatives. Also let α = (α1, . . . , αn) be a multi-index
of length n, which is to say an n-tuple of nonnegative integers, and let

∂α = ∂α1
1 · · · ∂αn

n(35.6.1)

be the corresponding formal product of ∂l’s. Remember that |α| is the same as
the degree of α, as an n-tuple of integers, as in Section 35.1. A formal differential
operator in ∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn) can be expressed as∑

|α|≤N

aα(T ) ∂α,(35.6.2)

where N is a nonnegative integer, the sum is taken over all multi-indices α of
length n with |α| ≤ N , and aα(T ) ∈ LPk(T1, . . . , Tn) for each such α. Remember
that the analogous notions with coefficients in k[T1, . . . , Tn] or k[[T1, . . . , Tn]]
were discussed in Section 5.11.

As before, we can take aα(T ) = 0 when |α| > N , so that aα(T ) is de-
fined for every multi-index α. The space of these formal differential operators
can be defined as the space of functions α 7→ aα(T ) from (Z+ ∪ {0})n into
LPk(T1, . . . , Tn) with aα(T ) = 0 for all but finitely many α. This is a module
over k with respect to pointwise addition and scalar multiplication, which cor-
responds to termwise addition and scalar multiplication of sums as in (35.6.2).
The space of these formal differential operators corresponds to the direct sum
of copies of LPk(T1, . . . , Tn) indexed by (Z+ ∪ {0})n, as a module over k.

We can identify elements of LPk(T1, . . . , Tn) with sums of the form (35.6.2),
with N = 0. Multiplication on LPk(T1, . . . , Tn) can be extended to formal
differential operators, with

∂l(b
β(T )∂β) = (∂lb

β(T )) ∂β + bβ(T ) ∂l ∂
β(35.6.3)

for every l = 1, . . . , n, multi-index β, and bβ(T ) ∈ LPk(T1, . . . , Tn), as before.
Of course,

∂l ∂
β = ∂β

+(l),(35.6.4)

in the notation of Section 35.4. The space of these formal partial differential
operators is an associative algebra over k, which contains LPk(T1, . . . , Tn) as
a subalgebra. The multiplicative identity element in k corresponds to an ele-
ment of LPk(T1, . . . , Tn), and thus a formal differential operator, and this is the
identity element in the space of these formal differential operators.

Let A be a module over k. If α is a multi-index of length n and f(T ) is a
formal Laurent series in T1, . . . , Tn with coefficients in A, then

∂αf(T ) = ∂α1
1 · · · ∂αn

n f(T )(35.6.5)
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defines an element of LSA(T1, . . . , Tn) too, using the definition of partial deriva-
tives on LSA(T1, . . . , Tn) in Section 35.4. This is interpreted as being f(T ) when
α = 0. If (35.6.2) is a formal differential operator in the symbols ∂1, . . . , ∂n with
coefficients in LPk(T1, . . . , Tn), then( ∑

|α|≤N

aα(T ) ∂α
)
f(T ) =

∑
|α|≤N

aα(T ) ∂αf(T )(35.6.6)

defines an element of LSA(T1, . . . , Tn), where the products on the right are as
in Section 35.1. Similarly, if f is a formal Laurent polynomial in T1, . . . , Tn with
coefficients in A, then (35.6.5) is in LPA(T1, . . . , Tn) for each α, so that (35.6.6)
is in LPA(T1, . . . , Tn) as well.

Thus (35.6.2) determines a mapping from LSA(T1, . . . , Tn) into itself that is
linear over k. Of course, the space

Homk(LSA(T1, . . . , Tn), LSA(T1, . . . , Tn))(35.6.7)

of homomorphisms from LSA(T1, . . . , Tn) into itself, as a module over k, is an
associative algebra over k with respect to composition of mappings. One can
verify that the mapping from the space of formal differential operators in the
symbols ∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn) into (35.6.7) just defined
is an algebra homomorphism, with respect to multiplication of formal differential
operators, as described before.

The space of formal differential operators in the symbols ∂1, . . . , ∂n with
coefficients in k[T1, . . . , Tn] may be considered as a subalgebra of the space of
formal differential operators in ∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn).
In particular, formal differential operators in ∂1, . . . , ∂n with coefficients in
k[T1, . . . , Tn] determine mappings on LSA(T1, . . . , Tn) as before. The restric-
tions of these mappings to A[[T1, . . . , Tn]] are the same as the analogous map-
pings discussed in Section 5.11.

Let us now take A = k, as a module over itself, and suppose that for every
m ∈ Z+ and t ∈ k with m · t = 0 in k, we have that t = 0. Of course, this
holds when k = Z, or k is a field of characteristic 0, or at least an algebra over
Q. Under these conditions, one can check that a formal differential operator
(35.6.2) in ∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn) is uniquely determined
by the corresponding mapping on LSk(T1, . . . , Tn). In fact, (35.6.2) is uniquely
determined by the restriction of this mapping to k[T1, . . . , Tn], as in Section
5.11.

As in Section 32.10, the space of formal differential operators in ∂1, . . . , ∂n
with coefficients in LPk(T1, . . . , Tn) is essentially the same, as a module over k,
as the space

(LPk(T1, . . . , Tn))[∂1, . . . , ∂n](35.6.8)

of formal polynomials in ∂1, . . . , ∂n, as n commuting indeterminates, with co-
efficients in LPk(T1, . . . , Tn), as a module over k. We can also use multipli-
cation on LPk(T1, . . . , Tn) to define multiplication on (35.6.8) as in Section
5.8, in which case ∂1, . . . , ∂n are not considered as being related to differenti-
ation in T1, . . . , Tn. This makes (35.6.8) a commutative algebra over k, and
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over LPk(T1, . . . , Tn), as before. If L1, L2 are formal differential operators in
∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn) of order N1, N2 ≥ 0, respectively,
then their product as formal differential operators corresponds to their product
as formal polynomials in ∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn), plus a
formal differential operator in ∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn) of
order N1 +N2 − 1, at least when N1 +N2 ≥ 1. In particular, the commutator
of L1 and L2 with respect to multiplication of formal differential operators is a
formal differential operator in ∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn) of
order N1 +N2 − 1, as before.

35.7 First-order operators

Let k be a commutative ring with a multiplicative identity element, let n be
a positive integer, and let T1, . . . , Tn be n commuting indeterminates. Also let
∂1, . . . , ∂n be n commuting formal symbols, as in the previous section, and let

a(T ) = (a1(T ), . . . , an(T ))(35.7.1)

be an n-tuple of formal Laurent polynomials in T1, . . . , Tn with coefficients in
k. Thus

Da(T ) =

n∑
j=1

aj(T ) ∂j(35.7.2)

defines a formal differential operator in the symbols ∂1, . . . , ∂n with coefficients
in LPk(T1, . . . , Tn), as in the previous section.

Let b(T ) = (b1(T ), . . . , bn(T )) be another n-tuple of formal Laurent poly-
nomials in T1, . . . , Tn with coefficients in k, so that Db(T ) can be defined as in
the preceding paragraph. Under these conditions, Da(T )Db(T ) and Db(T )Da(T )

can be defined as formal differential operators in ∂1, . . . , ∂n with coefficients in
LPk(T1, . . . , Tn) too, as before. One can check that

Da(T )Db(T ) −Db(T )Da(T )(35.7.3)

=

n∑
j=1

n∑
l=1

(aj(T ) ∂jb
l(T )− bj(T ) ∂ja

l(T )) ∂l,

as in Section 5.12. Put

cl(T ) =

n∑
j=1

(aj(T )∂jb
l(T )− bj(T ) ∂ja

l(T ))(35.7.4)

for each l = 1, . . . , n, which is a formal Laurent polynomial in T1, . . . , Tn with
coefficients in k. It follows that

Da(T )Db(T ) −Db(T )Da(T ) = Dc(T ),(35.7.5)

where c(T ) = (c1(T ), . . . , cn(T )).
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If f(T ) ∈ LSk(T1, . . . , Tn), then

Da(T )f(T ) =

n∑
j=1

aj(T ) ∂jf(T )(35.7.6)

defines an element of LSk(T1, . . . , Tn) as well, as in the previous section. Simi-
larly, if f(T ) ∈ LPk(T1, . . . , Tn), then this is an element of LPk(T1, . . . , Tn), as
before. If f(T ), g(T ) ∈ LSk(T1, . . . , Tn), and at least one of f(T ) and g(T ) is
in LPk(T1, . . . , Tn), then f(T ) g(T ) is defined as an element of LSk(T1, . . . , Tn),
and we have that

Da(T )(f(T ) g(T )) = (Da(T )f(T )) g(T ) + f(T ) (Da(T )g(T )).(35.7.7)

In particular, Da(T ) defines a derivation on LPk(T1, . . . , Tn).
Now let δ be any derivation on LPk(T1, . . . , Tn), as an algebra over k. Ob-

serve that
δ(1) = 0,(35.7.8)

because δ(1) = δ(1 · 1) = δ(1) 1 + 1 δ(1) = δ(1) + δ(1). It follows that

δ(T−1
j ) = −T−2

j δ(Tj)(35.7.9)

for every j = 1, . . . , n, because 0 = δ(Tj T
−1
j ) = δ(Tj)T

−1
j + Tj δ(T

−1
j ). Put

aj(T ) = δ(Tj)(35.7.10)

for every j = 1, . . . , n, which is an element of LPk(T1, . . . , Tn), and let a(T ) be
as in (35.7.1). One can check that

δ(f(T )) = Da(T )f(T )(35.7.11)

for every f(T ) ∈ LPk(T1, . . . , Tn) under these conditions.
Put ej(T ) = Tj for each j = 1, . . . , n, so that

e(T ) = (e1(T ), . . . , en(T )) = (T1, . . . , Tn).(35.7.12)

The corresponding formal differential operator

De(T ) =

n∑
j=1

ej(T ) ∂j =

n∑
j=1

Tj ∂j(35.7.13)

is the analogue of the classical Euler operator. It is easy to see that

De(T )(T
α) = (deg(α) · 1)Tα(35.7.14)

for every α ∈ Zn. Let A be a module over k, and let f(T ) =
∑
α∈Zn fα T

α be
a formal Laurent series in T1, . . . , Tn with coefficients in A. Observe that

De(T )f(T ) =
∑
α∈Zn

deg(α) · fα Tα.(35.7.15)
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35.8 Homogeneous Laurent series

Let k be a commutative ring with a multiplicative identity element, let A be a
module over k, and let n be a positive integer. Also let T1, . . . , Tn be n commut-
ing indeterminates for some positive integer n, and let f(T ) =

∑
α∈Zn fα T

α be
a formal Laurent series in T1, . . . , Tn with coefficients in A. We say that f(T )
is homogeneous of degree d for some integer d if

fα = 0 for every α ∈ Zn with deg(α) ̸= d.(35.8.1)

If f(T ) is a formal polynomial in T1, . . . , Tn, and d ≥ 0, then this is equivalent
to the definition of homogeneity of degree d in Section 5.13.

The space LSA,d(T1, . . . , Tn) of formal Laurent series in T1, . . . , Tn with coef-
ficients in A that are homogeneous of degree d ∈ Z is a submodule of the space
LSA(T1, . . . , Tn) of all formal Laurent series in T1, . . . , Tn with coefficients in
A, as a module over k. Observe that LSA,d(T1, . . . , Tn) corresponds to the di-
rect product of copies of A indexed by α ∈ Zn with deg(α) = d, and that
LSA(T1, . . . , Tn) corresponds to the direct product of LSA,d(T1, . . . , Tn) over
d ∈ Z, as modules over k.

Similarly, let

LPA,d(T1, . . . , Tn) = LPA(T1, . . . , Tn) ∩ LSA,d(T1, . . . , Tn)(35.8.2)

be the space of formal Laurent polynomials in T1, . . . , Tn with coefficients in A
that are homogeneous of degree d ∈ Z, as formal Laurent series in T1, . . . , Tn.
This corresponds to the direct sum of copies of A indexed by α ∈ Zn with
deg(α) = d as a module over k, and LPA(T1, . . . , Tn) corresponds to the direct
sum of LPA,d(T1, . . . , Tn) over d ∈ Z.

Let A be an algebra over k in the strict sense, where multiplication of a, b ∈ A
is expressed as a b. Suppose that f(T ) ∈ LSA,d1(T1, . . . , Tn) and g(T ) is in
LSA,d2(T1, . . . , Tn) for some d1, d2 ∈ Z. If f(T ) or g(T ) is a formal Laurent
polynomial in T1, . . . , Tn, then f(T ) g(T ) can be defined as a formal Laurent
series in T1, . . . , Tn with coefficients in A, as in Section 35.1. Under these con-
ditions, it is easy to see that

f(T ) g(T ) ∈ LSA,d1+d2(T1, . . . , Tn).(35.8.3)

If f(T ) and g(T ) are both formal Laurent polynomials in T1, . . . , Tn, then

f(T ) g(T ) ∈ LPA,d1+d2(T1, . . . , Tn).(35.8.4)

Suppose that A is an associative algebra over k, so that LPA(T1, . . . , Tn)
is an associative algebra over k as well, as in Section 35.1. Under these con-
ditions, LSA(T1, . . . , Tn) may be considered as a left and right module over
LPA(T1, . . . , Tn), as before. Note that

LPA,0(T1, . . . , Tn) is a subalgebra of LPA(T1, . . . , Tn),(35.8.5)
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by (35.8.4). Thus LSA(T1, . . . , Tn) may be considered as a left and right module
over LPA,0(T1, . . . , Tn) too. If d is any integer, then

LSA,d(T1, . . . , Tn) is a submodule of LSA(T1, . . . , Tn),(35.8.6)

as a left or right module over LPA,0(T1, . . . , Tn),

by (35.8.3).
Let A be a module over k again, and suppose that f(T ) ∈ LSk,d1(T1, . . . , Tn)

and g(T ) ∈ LSA,d2(T1, . . . , Tn) for some d1, d2 ∈ Z. If f(T ) or g(T ) is a formal
Laurent polynomial in T1, . . . , Tn, then f(T ) g(T ) can be defined as a formal
Laurent series in T1, . . . , Tn with coefficients in A, as in Section 35.1. It is easy
to see that (35.8.3) holds in this case. If f(T ) and g(T ) are both formal Laurent
polynomials in T1, . . . , Tn, then (35.8.4) holds.

Remember that LSA(T1, . . . , Tn) is a module over LPk(T1, . . . , Tn), as in
Section 35.1. We may also consider LSA(T1, . . . , Tn) as a module over the
subalgebra LPk,0(T1, . . . , Tn) of LPk(T1, . . . , Tn). If d ∈ Z, then

LSA,d(T1, . . . , Tn) is a submodule of LSA(T1, . . . , Tn),(35.8.7)

as a module over LPk,0(T1, . . . , Tn).

Similarly, LPA(T1, . . . , Tn) is a submodule of LSA(T1, . . . , Tn), as a module over
LPk(T1, . . . , Tn), and thus as a module over LPk,0(T1, . . . , Tn) too. If d ∈ Z,
then

LPA,d(T1, . . . , Tn) is a submodule of LPA(T1, . . . , Tn),(35.8.8)

as a module over LPk,0(T1, . . . , Tn).

If f(T ) ∈ LSA,d(T1, . . . , Tn) for some d ∈ Z, then it is easy to see that

∂lf(T ) ∈ LSA,d−1(T1, . . . , Tn)(35.8.9)

for every l = 1, . . . , n, where the partial derivative ∂lf(T ) is as in Section 35.4.
Put e(T ) = (T1, . . . , Tn), and let De(T ) =

∑n
j=1 Tj ∂j be the corresponding

first-order differential operator, as in Section 35.7. If f(T ) ∈ LSA,d(T1, . . . , Tn),
then

De(T )f(T ) = d · f(T ),(35.8.10)

by (35.7.15).

35.9 Homogeneity and differential operators

Let k be a commutative ring with a multiplicative identity element, let n be
a positive integer, and let T1, . . . , Tn be n commuting indeterminates. Also let
∂1, . . . , ∂n be n commuting formal symbols, which may be used to represent
partial derivatives, as in Section 35.6. Consider a formal differential operator

L =
∑

|α|≤N

aα(T ) ∂α(35.9.1)
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in ∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn). We say that L is homogeneous
of degree d for some integer d if

aα(T ) ∈ LPk,d+|α|(T1, . . . , Tn)(35.9.2)

for each multi-index α. This agrees with the definition in Section 5.14 when
aα(T ) is a formal polynomial in T1, . . . , Tn for each α.

Let L1, L2 be formal differential operators in ∂1, . . . , ∂n with coefficients in
LPk(T1, . . . , Tn), and suppose that L1, L2 are homogeneous of degree d1, d2 ∈ Z,
respectively. Under these conditions, one can check that their product

L1 L2 is homogeneous of degree d1 + d2.(35.9.3)

More precisely, one can first verify this when L1 is of the form ∂j for some
j = 1, . . . , n, as in Section 5.14. One can use this to get that (35.9.3) holds
when L1 = ∂α for some multi-index α, as before. The analogous statement for
arbitrary L1 can be obtained from this and (35.8.4).

Let L1 be a formal differential operator in ∂1, . . . , ∂n with coefficients in
LPk(T1, . . . , Tn) that is homogeneous of degree d1 ∈ Z again, and let A be a
module over k. If f(T ) is a formal Laurent series in T1, . . . , Tn with coefficients
in A that is homogeneous of degree d ∈ Z, then

L1f(T ) ∈ LSA,d1+d(T1, . . . , Tn).(35.9.4)

This is the same as (35.8.9) when L1 = ∂l for some l = 1, . . . , n. This implies
that (35.9.4) holds when L1 = ∂α for some multi-index α. One can use this and
(35.8.3) to get that (35.9.4) holds for any L1.

Remember that

the space of formal differential operators in ∂1, . . . , ∂n(35.9.5)

with coefficients in LPk(T1, . . . , Tn)

is an associative algebra over k, as in Section 35.6. The space of formal differ-
ential operators in ∂1, . . . , ∂n with coefficients in k[T1, . . . , Tn] is a subalgebra of
(35.9.5), as before.

The space of formal differential operators in ∂1, . . . , ∂n with coefficients
in LPk(T1, . . . , Tn) that are homogeneous of degree d ∈ Z is a submodule of
(35.9.5), as a module over k. In fact,

the space of formal differential operators in ∂1, . . . , ∂n(35.9.6)

with coefficients in LPk(T1, . . . , Tn) that are homogeneous

of degree 0

is a subalgebra of (35.9.5). Of course, the space of formal differential operators
in ∂1, . . . , ∂n with coefficients in k[T1, . . . , Tn] that are homogeneous of degree 0
is a subalgebra of (35.9.6).
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If a(T ) = (a1(T ), . . . , an(T )) is an n-tuple of formal Laurent polynomials in
T1, . . . , Tn with coefficients in k, then put Da(T ) =

∑n
j=1 a

j(T ) ∂j , as in Section
35.7. Observe that

{Da(T ) : a(T ) ∈ (LPk(T1, . . . , Tn))
n}(35.9.7)

is a submodule of (35.9.5), as a module over k. More precisely, (35.9.7) is a Lie
subalgebra of (35.9.5), with respect to the commutator bracket, as in Section
35.7. The space of Da(T ) with a(T ) ∈ (k[T1, . . . , Tn])

n is a Lie subalgebra of
(35.9.7).

Similarly,
{Da(T ) : a(T ) ∈ (LPk,1(T1, . . . , Tn))

n}(35.9.8)

is a Lie subalgebra of (35.9.6), with respect to the commutator bracket. This is
also a subalgebra of (35.9.7), as a Lie algebra over k. Remember that gn(k) is the
space of Da(T ), where a

j(T ) is in the space k1[T1, . . . , Tn] of formal polynomials
in T1, . . . , Tn with coefficients in k that are homogeneous of degree one for each
j = 1, . . . , n, as in Section 5.15. This is a subalgebra of (35.9.8), as a Lie algebra
over k.

If a(T ) ∈ (k1[T1, . . . , Tn])
n, then aj(T ) can be expressed as

∑n
l=1 a

j
l Tl for

each j = 1, . . . , n, where ajl ∈ k for every j, l = 1, . . . , n. Remember that sn(k)

is the space of Da(T ) with a(T ) ∈ (k1[T1, . . . , Tn])
n and

∑n
j=1 a

j
j = 0, as in

Section 5.15. This is a subalgebra of gn(k), as a Lie algebra over k, as before.
In particular, sn(k) may be considered as a subalgebra of (35.9.8), as a Lie
algebra over k.

35.10 Representations and Laurent series

Let k be a commutative ring with a multiplicative identity element, let A be
a module over k, and let n be a positive integer. Also let T1, . . . , Tn be n
commuting indeterminates, and let ∂1, . . . , ∂n be n commuting formal symbols,
which may be used to represent partial derivatives, as before. Remember that
the space LSA(T1, . . . , Tn) of formal Laurent series in T1, . . . , Tn with coeffi-
cients in A is a module over k, with respect to termwise addition and scalar
multiplication, as in Section 35.1.

The space of formal differential operators in ∂1, . . . , ∂n with coefficients in
LPk(T1, . . . , Tn) is an associative algebra over k, as in Section 35.6. These
formal differential operators determine homomorphisms from LSA(T1, . . . , Tn)
into itself, as a module over k, as before. This defines a representation of
(35.9.5), as an associative algebra over k, on LSA(T1, . . . , Tn).

Remember that the mappings from LSA(T1, . . . , Tn) into itself associated to
formal differential operators in ∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn)
send LPA(T1, . . . , Tn) into itself, as in Section 35.6. Thus

LPA(T1, . . . , Tn) is a submodule of LSA(T1, . . . , Tn),(35.10.1)

as a left module over (35.9.5).
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In particular, LSA(T1, . . . , Tn) may be considered as a left module over
(35.9.6), as an associative algebra over k. Similarly, LPA(T1, . . . , Tn) is a sub-
module of LSA(T1, . . . , Tn), as a left module over (35.9.6).

If d ∈ Z, then

LSA,d(T1, . . . , Tn) is a submodule of LSA(T1, . . . , Tn),(35.10.2)

as a left module over (35.9.6), as in the previous section. We also have that

LPA,d(T1, . . . , Tn) is a submodule of LPA(T1, . . . , Tn),(35.10.3)

as a left module over (35.9.6).

Remember that (35.9.7) is a Lie algebra over k, with respect to the commu-
tator bracket. We may consider LSA(T1, . . . , Tn) as a module over (35.9.7), as a
Lie algebra over k. Similarly, we may consider LPA(T1, . . . , Tn) as a submodule
of LSA(T1, . . . , Tn), as a module over (35.9.7).

Remember too that (35.9.8) is a subalgebra of (35.9.7), as a Lie algebra
over k. This permits us to consider LSA(T1, . . . , Tn) as a module over (35.9.8),
as a Lie algebra over k. We may consider LPA(T1, . . . , Tn) as a submodule of
LSA(T1, . . . , Tn), as a module over (35.9.8) as well.

Similarly, gn(k) is a subalgebra of (35.9.8), as a Lie algebra over k, and sn(k)
is a subalgebra of gn(k). Thus

we may consider LSA(T1, . . . , Tn) as a module over gn(k) or sn(k),(35.10.4)

as Lie algebras over k. As usual, LPA(T1, . . . , Tn) may be considered as a
submodule of LSA(T1, . . . , Tn), as a module over gn(k) or sn(k).

If d ∈ Z, then (35.10.2) holds, with LSA(T1, . . . , Tn) considered as a module
over (35.9.8), gn(k), or sn(k). Similarly, (35.10.3) holds, with LPA(T1, . . . , Tn)
considered as a module over (35.9.8), gn(k), or sn(k).

Note that

A[[T1, . . . , Tn]] is a submodule of LSA(T1, . . . , Tn),(35.10.5)

as a module over gn(k) or sn(k). Similarly,

A[T1, . . . , Tn] is a submodule of LPA(T1, . . . , Tn),(35.10.6)

as a module over gn(k) or sn(k). If d is a nonnegative integer, then the space
Ad[T1, . . . , Tn] of formal polynomials in T1, . . . , Tn with coefficients in A that
are homogeneous of degree d is a submodule of A[T1, . . . , Tn], as a module over
gn(k) or sn(k), as in Section 6.15. In this case,

Ad[T1, . . . , Tn] is a submodule of LPA,d(T1, . . . , Tn),(35.10.7)

as a module over gn(k) or sn(k).
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35.11 A linear mapping onto A

Let k be a commutative ring with a multiplicative identity element, and let
A be a module over k. Also let n be a positive integer, and let T1, . . . , Tn be
n commuting indeterminates, as before. If f(T ) =

∑
α∈Zn fα T

α is a formal
Laurent series in T1, . . . , Tn with coefficients in A, then put

I0(f(T )) = f0.(35.11.1)

This defines a homomorphism from LSA(T1, . . . , Tn) onto A, as modules over k.
If β ∈ Zn, then f(T )T β ∈ LSA(T1, . . . , Tn), and

I0(f(T )T
β) = f−β .(35.11.2)

Note that
I0(f) = 0(35.11.3)

when f(T ) is homogeneous of degree d ̸= 0.
Suppose for the moment that A is an algebra over k in the strict sense. In

this case, it is easy to see that the restriction of I0 to A[[T1, . . . , Tn]] defines an
algebra homomorphism from A[[T1, . . . , Tn]] onto A.

If l is a positive integer with l ≤ n, then

Tl ∂lf(T ) =
∑
α∈Zn

αl · fα Tα.(35.11.4)

This implies that
I0(Tl∂lf(T )) = 0.(35.11.5)

Let ∂1, . . . , ∂n be n commuting formal symbols, which may be used to rep-
resent partial derivatives, as usual. Put e(T ) = (T1, . . . , Tn), so that the corre-
sponding formal differential operator De(T ) =

∑n
j=1 Tj ∂j is the analogue of the

classical Euler operator, as in Section 35.7. Thus

I0(De(T )f(T )) = 0,(35.11.6)

by (35.11.5). If k is a field of characteristic 0, then it is easy to see that

De(T ) maps LSA(T1, . . . , Tn) onto the kernel of I0.(35.11.7)

Similarly, De(T ) maps LP (T1, . . . , Tn) onto the kernel of the restriction of I0 to
LPA(T1, . . . , Tn) under these conditions.

35.12 Some related bilinear functionals

Let k be a commutative ring with a multiplicative identity element, let n be
a positive integer, and let T1, . . . , Tn be n commuting indeterminates. Thus
I0 may be defined as a homomorphism from LSk(T1, . . . , Tn) onto k, as mod-
ules over k, as in the previous section. If f(T ) =

∑
α∈Zn fα T

α and g(T ) =
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∑
β∈Zn gβ T

β are formal Laurent series in T1, . . . , Tn with coefficients in k, then
we would like to put

B0(f(T ), g(T )) = I0(f(T ) g(T )),(35.12.1)

when f(T ) g(T ) is defined as an element of LSk(T1, . . . , Tn). In particular, we
can do this when at least one of f(T ) and g(T ) is a Laurent polynomial.

Equivalently,

B0(f(T ), g(T )) =
∑
α∈Zn

fα g−α,(35.12.2)

which is defined as an element of k when fα g−α = 0 for all but finitely many
α ∈ Zn. This holds when at least one of f(T ) and g(T ) is a Laurent polynomial,
as before. We may consider B0 as a k-valued function on

LPk(T1, . . . , Tn)× LSk(T1, . . . , Tn)(35.12.3)

or
LSk(T1, . . . , Tn)× LPk(T1, . . . , Tn).(35.12.4)

We may also simply consider B0 as a k-valued function on

LPk(T1, . . . , Tn)× LPk(T1, . . . , Tn).(35.12.5)

It is easy to see that B0 is bilinear over k in each case.
If at least one of f(T ) and g(T ) is a Laurent polynomial, then

B0(f(T ), g(T )) = B0(g(T ), f(T )).(35.12.6)

This can be obtained from the fact that f(T ) g(T ) = g(T ) f(T ), as in Section
35.2, or from (35.12.2). Similarly, if a(T ) is a Laurent polynomial in T1, . . . , Tn
with coefficients in k, then

B0(a(T ) f(T ), g(T )) = B0(f(T ), a(T ) g(T )).(35.12.7)

If l is a positive integer with l ≤ n, then

I0(Tl ∂l(f(T ) g(T ))) = 0,(35.12.8)

as in (35.11.5). This implies that

B0(Tl ∂lf(T ), g(T )) = −B0(f(T ), Tl ∂lg(T )).(35.12.9)

Observe that
B0(f(T ), T

β) = f−β(35.12.10)

for every β ∈ Zn. If f(T ), g(T ) are homogeneous of degrees d1, d2, respectively,
and d1 + d2 ̸= 0, then

B0(f(T ), g(T )) = 0,(35.12.11)

when the left side is defined.
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35.13 Adjoints of differential operators

Let k be a commutative ring with a multiplicative identity element, and suppose
that for every m ∈ Z+ and t ∈ k with m · t = 0, we have that t = 0. In
particular, this holds when k = Z, or k is a field of characteristic 0, or at
least an algebra over Q. Also let n be a positive integer, let T1, . . . , Tn be n
commuting indeterminates, and let ∂1, . . . , ∂n be n commuting formal symbols,
which may be used to represent partial derivatives, as before. Suppose that L is
a formal differential operator in ∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn).
Let us say that a formal differential operator L∗ in ∂1, . . . , ∂n with coefficients
in LPk(T1, . . . , Tn) is the adjoint of L if

B0(L(f(T )), g(T )) = B0(f(T ), L
∗(g(T )))(35.13.1)

for every f(T ), g(T ) ∈ LSk(T1, . . . , Tn) with at least one of f(T ), g(T ) in
LPk(T1, . . . , Tn).

If (35.13.1) holds for every f(T ), g(T ) ∈ LPk(T1, . . . , Tn), then L
∗(g(T )) is

uniquely determined by L and g(T ) for every g(T ) ∈ LPk(T1, . . . , Tn). This
means that the mapping on LPk(T1, . . . , Tn) corresponding to L∗ is uniquely
determined by L. It follows that L∗ is uniquely determined by L under these
conditions, as in Section 35.6.

If L is of order 0, then L corresponds to multiplication by an element of
LPk(T1, . . . , Tn), and one can take L∗ = L, as in (35.12.7). If L = Tl ∂l for some
l = 1, . . . , n, then one can take L∗ = −Tl ∂l, as in (35.12.9).

Let L1, L2 be formal differential operators in ∂1, . . . , ∂n with coefficients
in LPk(T1, . . . , Tn), and suppose that L∗

1, L
∗
2 are formal differential operators

in ∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn) that are adjoints of L1, L2,
respectively. It is easy to see that L∗

1 +L∗
2 is the adjoint of L1 +L2 in this case.

Similarly, if a ∈ k, then aL∗
1 is the adjoint of aL1. If f(T ), g(T ) are elements

of LSk(T1, . . . , Tn), at least one of which is in LPk(T1, . . . , Tn), then

B0(L2(L1(f(T ))), g(T )) = B0(L1(f(T )), L
∗
2(g(T )))(35.13.2)

= B0(f(T ), L
∗
1(L

∗
2(g(T )))).

This means that the product of L∗
1 and L∗

2 is the adjoint of the product of L1

and L2.
If L is any formal differential operator in ∂1, . . . , ∂n with coefficients in

LPk(T1, . . . , Tn), then one can use the remarks in the previous two paragraphs
to get that there is a formal differential operator L∗ in ∂1, . . . , ∂n with coef-
ficients in LPk(T1, . . . , Tn) that is the adjoint of L. More precisely, L can be
expressed as a sum of products of formal differential operators of order 0, and
formal differential operators of the form Tl ∂l, 1 ≤ l ≤ n. The adjoints of each
of these can be obtained as before, which can be used to get the adjoint of L.
Note that

(L∗)∗ = L,(35.13.3)

so that L 7→ L∗ is an involution on the algebra of formal differential operators
in ∂1, . . . , ∂n with coefficients in LPk(T1, . . . , Tn). If L is homogeneous of degree
d, then one can verify that L∗ is homogeneous of degree d as well.



Chapter 36

Formal Laurent series, 2

36.1 Laurent series and sl2(k)

Let k be a commutative ring with a multiplicative identity element, and let A
be a module over k. We would like to consider formal Laurent polynomials and
series with coefficients in A, as in the previous chapter, with n = 2. Thus we let
T1, T2 be commuting indeterminates, and we let ∂1, ∂2 be commuting formal
symbols, which may be used to represent partial derivatives, as before.

Put

H = T1 ∂1 − T2 ∂2,(36.1.1)

X = T1 ∂2,(36.1.2)

Y = T2 ∂1,(36.1.3)

which are formal differential operators in ∂1, ∂2 with coefficients in k1[T1, T2].
Note that H, X, and Y are homogeneous of degree 0, as in Sections 5.14 and
35.9. In fact,

H,X, Y ∈ s2(k),(36.1.4)

where s2(k) is as in Sections 5.15 and 35.9. More precisely, s2(k) is freely
generated by H, X, and Y , as a module over k.

Remember that s2(k) is a Lie algebra over k, with respect to the commutator
bracket corresponding to products of formal differential operators. It is easy to
see that

[X,Y ] = H,(36.1.5)

[H,X] = 2 ·X,(36.1.6)

[H,Y ] = −2 · Y.(36.1.7)

Thus s2(k) is isomorphic to sl2(k), as a Lie algebra over k, where the usual
elements h, x, and y of sl2(k) as in Section 34.1 correspond to H, X, and Y ,
repsectively. This is related to some of the remarks in Section 5.15.

743
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We may consider the space LSA(T1, T2) of formal Laurent series in T1, T2
with coefficients in A as a module over s2(k), as a Lie algebra over k, as in Section
35.10. This may be considered as a representation of sl2(k), as a Lie algebra over
k, on LSA(T1, T2), using the isomorphism mentioned in the preceding paragraph.
That is to say, the actions of h, x, and y on LSA(T1, T2) under this representation
are given by H, X, and Y , respectively.

The space LPA(T1, T2) of formal Laurent polynomials in T1, T2 with coeffi-
cients in A is a submodule of LSA(T1, T2), as a module over sl2(k). Similarly,
A[[T1, T2]] is a submodule of LSA(T1, T2), and A[T1, T2] is a submodule of each
of A[[T1, T2]] and LPA(T1, T2), as modules over sl2(k).

If d ∈ Z, then LSA,d(T1, T2), LPA,d(T1, T2) are submodules of LSA(T1, T2),
LPA(T1, T2), respectively, as modules over s2(k), as in Section 35.10. If d ≥ 0,
then Ad[T1, T2] is a submodule of A[T1, T2] and LPA,d(T1, T2), as modules over
s2(k), as before.

Let d ∈ Z and f(T ) ∈ LSA,d(T1, T2) be given. Thus

f(T ) =

∞∑
j=−∞

fj T
j
1 T

d−j
2 ,(36.1.8)

where fj ∈ A for every j. Of course, f(T ) ∈ LPA,d(T1, T2) exactly when fj = 0
for all but finitely many integers j.

Observe that

(Hf)(T ) =

∞∑
j=−∞

(j − (d− j)) · fj T j1 T
d−j
2(36.1.9)

=

∞∑
j=−∞

(2 j − d) · fj T j1 T
d−j
2 .

Similarly,

(Xf)(T ) =

∞∑
j=−∞

(d− j) · fj T j+1
1 T d−j−1

2(36.1.10)

=

∞∑
j=−∞

(d− j + 1) · fj−1 T
j
1 T

d−j
2

and

(Y f)(T ) =

∞∑
j=−∞

j · fj T j−1
1 T d−j+1

2(36.1.11)

=

∞∑
j=−∞

(j + 1) · fj+1 T
j
1 T

d−j
2 .
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36.2 Some submodules of LSA,d(T1, T2)

Let us continue with the same notation and hypotheses as in the previous sec-
tion. In particular, if f(T ) ∈ LSA,d(T1, T2) and j ∈ Z, then we let fj be the

coefficient in A of T j1 T
d−j
2 in f(T ), as in (36.1.8).

If l ∈ Z, then put

LSl,+A,d(T1, T2) = {f(T ) ∈ LSA,d(T1, T2) : fj = 0 for every j < l}.(36.2.1)

Similarly, put

LSl,−A,d(T1, T2) = {f(T ) ∈ LSA,d(T1, T2) : fj = 0 for every j > l}.(36.2.2)

Note that these are submodules of LSA,d(T1, T2), as a module over k. If r ∈ Z
and l ≤ r, then

LSr,+A,d(T1, T2) ⊆ LSl,+A,d(T1, T2),(36.2.3)

LSl,−A,d(T1, T2) ⊆ LSr,−A,d(T1, T2).(36.2.4)

Let us also put

LP l,+A,d(T1, T2) = LSl,+A,d(T1, T2) ∩ LPA,d(T1, T2)
= {f(T ) ∈ LPA,d(T1, T2) : fj = 0 for every j < l}(36.2.5)

and

LP l,−A,d(T1, T2) = LSl,−A,d(T1, T2) ∩ LPA,d(T1, T2)
= {f(T ) ∈ LPA,d(T1, T2) : fj = 0 for every j > l}.(36.2.6)

These are submodules of LPA,d(T1, T2), as a module over k. If l ≤ r, then

LP r,+A,d (T1, T2) ⊆ LP l,+A,d(T1, T2),(36.2.7)

LP l,−A,d(T1, T2) ⊆ LP r,−A,d (T1, T2),(36.2.8)

as before.
Observe that

H(LSl,+A,d(T1, T2)) ⊆ LSl,+A,d(T1, T2),(36.2.9)

H(LSl,−A,d(T1, T2)) ⊆ LSl,−A,d(T1, T2)(36.2.10)

for every l ∈ Z, by (36.1.9). Similarly,

H(LP l,+A,d(T1, T2)) ⊆ LP l,+A,d(T1, T2),(36.2.11)

H(LP l,−A,d(T1, T2)) ⊆ LP l,−A,d(T1, T2)(36.2.12)

for every l ∈ Z.
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One can check that

X(LSl,+A,d(T1, T2)) ⊆ LSl+1,+
A,d (T1, T2),(36.2.13)

X(LSl,−A,d(T1, T2)) ⊆ LSl+1,−
A,d (T1, T2)(36.2.14)

for every l ∈ Z, using (36.1.10). Similarly,

X(LP l,+A,d(T1, T2)) ⊆ LP l+1,+
A,d (T1, T2),(36.2.15)

X(LP l,−A,d(T1, T2)) ⊆ LP l+1,−
A,d (T1, T2)(36.2.16)

for each l ∈ Z.
If l ∈ Z, then one can check that

Y (LSl,+A,d(T1, T2)) ⊆ LSl−1,+
A,d (T1, T2),(36.2.17)

Y (LSl,−A,d(T1, T2)) ⊆ LSl−1,−
A,d (T1, T2),(36.2.18)

using (36.1.11). Similarly,

Y (LP l,+A,d(T1, T2)) ⊆ LP l−1,+
A,d (T1, T2),(36.2.19)

Y (LP l,−A,d(T1, T2)) ⊆ LP l−1,−
A,d (T1, T2)(36.2.20)

for every l ∈ Z.
If l ∈ Z, then LSA,d(T1, T2) corresponds to the direct sum of LSl,+A,d(T1, T2)

and LSl−1,−
A,d (T1, T2), as a module over k. Similarly, LPA,d(T1, T2) corresponds

to the direct sum of LP l,+A,d(T1, T2) and LP
l−1,−
A,d (T1, T2), as a module over k.

36.3 Submodules over s2(k)

Let us continue with the same notation and hypotheses as in the previous two
sections. If l = d, then we can improve (36.2.14) and (36.2.16). More precisely,
one can verify that

X(LSd,−A,d (T1, T2)) ⊆ LSd,−A,d (T1, T2),(36.3.1)

X(LP d,−A,d (T1, T2)) ⊆ LP d,−A,d (T1, T2),(36.3.2)

using (36.1.10). Similarly, if l = 0, then we can improve (36.2.17) and (36.2.19).
That is to say, one can verify that

Y (LS0,+
A,d(T1, T2)) ⊆ LS0,+

A,d(T1, T2),(36.3.3)

Y (LP 0,+
A,d (T1, T2)) ⊆ LP 0,+

A,d (T1, T2),(36.3.4)

using (36.1.11).
It follows that

LSd,−A,d (T1, T2) is a submodule of LSA,d(T1, T2),(36.3.5)

as a module over s2(k),
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by (36.2.10), (36.3.1), and (36.2.18). Similarly,

LP d,−A,d (T1, T2) is a submodule of LPA,d(T1, T2),(36.3.6)

as a module over s2(k),

by (36.2.12), (36.3.2), and (36.2.20). We also get that

LS0,+
A,d(T1, T2) is a submodule of LSA,d(T1, T2),(36.3.7)

as a module over s2(k),

by (36.2.9), (36.2.13), and (36.3.3). Similarly,

LP 0,+
A,d (T1, T2) is a submodule of LPA,d(T1, T2),(36.3.8)

as a module over s2(k),

by (36.2.11), (36.2.15), and (36.3.4).
Note that

LSd,−A,d (T1, T2) ∩ LS
0,+
A,d(T1, T2)(36.3.9)

= LP d,−A,d (T1, T2) ∩ LP
0,+
A,d (T1, T2)

= Ad[T1, T2] when d ≥ 0

= {0} when d < 0.

Let us now take d = −1. Observe that

LSA,−1(T1, T2) corresponds to the direct sum of(36.3.10)

LS0,+
A,−1(T1, T2) and LS

−1,−
A,−1 (T1, T2), as a module over s2(k).

Similarly,

LPA,−1(T1, T2) corresponds to the direct sum of(36.3.11)

LP 0,+
A,−1(T1, T2) and LP

−1,−
A,−1 (T1, T2), as a module over s2(k).

36.4 Characteristic 0, A = k

Let us continue with the same notation and hypotheses as in the previous three
sections, now with k a field of characterisctic 0, and A = k, as a module over
itself. If j ∈ Z, then T j1 T

d−j
2 ∈ LPk,d(T1, T2), and

H(T j1 T
d−j
2 ) = (2 j − d)T j1 T

d−j
2 .(36.4.1)

This means that T j1 T
d−j
2 has weight 2 j − d in LPk,d(T1, T2), as a module over

s2(k), or equivalently sl2(k), as in Section 15.1.
Observe that

X(T d1 ) = 0.(36.4.2)
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Thus T d1 is a maximal or primitive vector of weight d in LPk,d(T1, T2), as in
Section 15.2. More precisely, T d1 may be considered as a maximal or primitive

vector of weight d in the submodule LP d,−k,d (T1, T2) of LPk,d(T1, T2).

If d ≥ 0, then T d1 may be considered as a maximal or primitive vector of

weight d in the submodule kd[T1, T2] of LP
d,−
k,d (T1, T2). In this case, it is easy

to see that Y l(T d1 ), l = 0, . . . , d, forms a basis for kd[T1, T2], as a vector space
over k, while Y d+1(T d1 ) = 0. As in Section 15.5, this implies that kd[T1, T2]
is isomorphic as a module over sl2(k) to the module discussed in Section 15.4,
with m = d.

If d < 0, then Y l(T d1 ), l ≥ 0, forms a basis for LP d,−k,d (T1, T2), as a vector
space over k. Let Z0(µ0) be as in Section 34.2, and let us take

µ0 = d · 1(36.4.3)

in k. Under these conditions, we get that LP d,−k,d (T1, T2) is isomorphic to Z0(µ0),
as a module over sl2(k), as in Section 34.3.

36.5 Some helpful projections

Let us return to the notation and hypotheses in Sections 36.1 and 36.2. Thus
k is a commutative ring with a multiplicative identity element again, and A is
a module over k. Let f(T ) =

∑∞
j=−∞ fj T

j
1 T

d−j
2 ∈ LSA,d(T1, T2) be given. If

l ∈ Z, then put

Pl,+(f(T )) =

∞∑
j=l

fj T
j
1 T

d−j
2 ,(36.5.1)

Pl,−(f(T )) =

l∑
j=−∞

fj T
j
1 T

d−j
2 .(36.5.2)

These define homomorphisms from LSA,d(T1, T2) into itself, as a module over
k.

Note that

Pl,+(LSA,d(T1, T2)) = LSl,+A,d(T1, T2),(36.5.3)

Pl,−(LSA,d(T1, T2)) = LSl,−A,d(T1, T2)(36.5.4)

for each l ∈ Z. Similarly,

Pl,+(LPA,d(T1, T2)) = LP l,+A,d(T1, T2),(36.5.5)

Pl,−(LPA,d(T1, T2)) = LP l,−A,d(T1, T2)(36.5.6)

for every l ∈ Z. More precisely, Pl,+ is equal to the identity mapping on

LSl,+A,d(T1, T2), and Pl,− is equal to the identity mapping on LSl,−A,d(T1, T2).
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We also have that

the kernel of Pl,+ on LSA,d(T1, T2)(36.5.7)

is equal to LSl−1,−
A,d (T1, T2)

and

the kernel of Pl,− on LSA,d(T1, T2)(36.5.8)

is equal to LSl+1,+
A,d (T1, T2)

for every l ∈ Z. It follows that

the kernel of Pl,+ on LPA,d(T1, T2)(36.5.9)

is equal to LP l−1,−
A,d (T1, T2)

and

the kernel of Pl,− on LPA,d(T1, T2)(36.5.10)

is equal to LP l+1,+
A,d (T1, T2)

for every l ∈ Z.

If l ∈ Z, then we may consider the quotients

LSA,d(T1, T2)/LS
l,+
A,d(T1, T2)(36.5.11)

and

LSA,d(T1, T2)/LS
l,−
A,d(T1, T2)(36.5.12)

as modules over k. We may consider the quotients

LPA,d(T1, T2)/LP
l,+
A,d(T1, T2)(36.5.13)

and

LPA,d(T1, T2)/LP
l,−
A,d(T1, T2)(36.5.14)

as modules over k too. The natural inclusion mapping from LPA,d(T1, T2) into
LSA,d(T1, T2) leads to injective homomorphisms from (36.5.13) into (36.5.11),
and from (36.5.14) into (36.5.12), as modules over k.

We can use Pl−1,− to identify (36.5.11) with LSl−1,−
A,d (T1, T2), as a module

over k, in which case (36.5.13) corresponds to LP l−1,−
A,d (T1, T2). Similarly, we

can use Pl+1,+ to identify (36.5.12) with LSl+1,+
A,d (T1, T2), as a module over k,

so that (36.5.14) corresponds to LP l+1,+
A,d (T1, T2).
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36.6 Projections and H, X, Y

Let us continue with the same notation and hypotheses as in the previous sec-
tion. It is easy to see that

H ◦ Pl,+ = Pl,+ ◦H,(36.6.1)

H ◦ Pl,− = Pl,− ◦H(36.6.2)

on LSA,d(T1, T2) for each l ∈ Z, using (36.1.9). If l ∈ Z, then H maps each

of LSl,+A,d(T1, T2), LS
l,−
A,d(T1, T2), LP

l,+
A,d(T1, T2), and LP l,−A,d(T1, T2) into itself,

as in Section 36.2. This means that H induces a mapping on each of the
quotients (36.5.11), (36.5.12), (36.5.13), and (36.5.14), that is linear over k.

These induced mappings correspond to H on LSl−1,−
A,d (T1, T2), LS

l+1,+
A,d (T1, T2),

LP l−1,−
A,d (T1, T2), and LP

l+1,+
A,d (T1, T2), respectively, with respect to the identifi-

cations mentioned before, by (36.6.1) and (36.6.2).
Remember that

X(LSl,+A,d(T1, T2)) ⊆ LSl+1,+
A,d (T1, T2) ⊆ LSl,+A,d(T1, T2)(36.6.3)

for each l ∈ Z, as in Section 36.2. Of course, there are analogous inclusions
for Laurent polynomials, so that X induces a mapping on each of the quotients
(36.5.11) and (36.5.13) that is linear over k. If l ∈ Z, then

Pl−1,− ◦X = 0 on LSl−1,+
A,d (T1, T2),(36.6.4)

because of the first inclusion in (36.6.3), with l replaced by l− 1. We also have
that

Pl−1,− ◦X = X on LSl−2,−
A,d (T1, T2),(36.6.5)

becauseX(LSl−2,−
A,d (T1, T2)) ⊆ LSl−1,−

A,d (T1, T2), as in (36.2.14). This determines
Pl−1,− ◦X on LSA,d(T1, T2).

As before, we can use Pl−1,− to identify the quotients (36.5.11) and (36.5.13)

with LSl−1,−
A,d (T1, T2) and LP

l−1,−
A,d (T1, T2), respectively, as modules over k. Us-

ing this, the mapping induced byX on each of these quotients corresponds to the
restriction of Pl−1,− ◦X to LSl−1,−

A,d (T1, T2) and LP
l−1,−
A,d (T1, T2), respectively.

Similarly,

Y (LSl,−A,d(T1, T2)) ⊆ LSl−1,−
A,d (T1, T2) ⊆ LSl,−A,d(T1, T2)(36.6.6)

for each l ∈ Z, as in Section 36.2 again. It follows that Y induces a mapping
on each of the quotients (36.5.12) and (36.5.14) that is linear over k, using also
the analogue of (36.6.6) for Laurent polynomials. If l ∈ Z, then

Pl+1,+ ◦ Y = 0 on LSl+1,−
A,d (T1, T2),(36.6.7)

because of the first inclusion in (36.6.6), with l replaced with l+1. In addition,

Pl+1,+ ◦ Y = Y on LSl+2,+
A,d (T1, T2),(36.6.8)
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because Y (LSl+2,+
A,d (T1, T2)) ⊆ LSl+1,+

A,d (T1, T2), as in (36.2.17). This determines
Pl+1,+ ◦ Y on LSA,d(T1, T2).

As usual, we can use Pl+1,+ to identify the quotients (36.5.12) and (36.5.14)

with LSl+1,+
A,d (T1, T2) and LP

l+1,+
A,d (T1, T2), respectively, as modules over k. The

mapping induced by Y on each of these quotients corresponds to the restriction
of Pl+1,+ ◦ Y to LSl+1,+

A,d (T1, T2) and LP
l+1,+
A,d (T1, T2), respectively.

One can check that

X ◦ Pd+1,+ = Pd+1,+ ◦X(36.6.9)

on LSA,d(T1, T2), using (36.1.10). Alternatively, both sides are equal to 0 on

LSd,−A,d (T1, T2), by definition of Pd+1,+, and because X maps LSd,−A,d (T1, T2) into

itself, as in Section 36.3. Both sides are equal to X on LSd+1,+
A,d (T1, T2), by

definition of Pl+1,+, and because X maps LSd+1,+
A,d (T1, T2) into itself, as in

Section 36.2.
Similarly, one can verify that

Y ◦ P−1,− = P−1,− ◦ Y(36.6.10)

on LSA,d(T1, T2), using (36.1.11). Alternatively, both sides are equal to 0 on

LS0,+
A,d(T1, T2), by definition of P−1,−, and because Y maps LS0,+

A,d(T1, T2) into

itself, as in Section 36.3 again. Both sides are equal to Y on LS−1,−
A,d (T1, T2),

by definition of P−1,−, and because Y maps LS−1,−
A,d (T1, T2) into itself, as in

Section 36.2.

36.7 Some related quotient modules

Let us continue with the same notation and hypotheses as in the previous two
sections. Remember that s2(k) is a Lie algebra over k, as in Section 36.1, and

that LSd,−A,d (T1, T2) and LS0,+
A,d(T1, T2) are submodules of LSA,d(T1, T2), as a

module over s2(k), as in Section 36.3. Thus the quotients

LSA,d(T1, T2)/LS
d,−
A,d (T1, T2)(36.7.1)

and
LSA,d(T1, T2)/LS

0,+
A,d(T1, T2)(36.7.2)

may be considered as modules over s2(k) as well. We may identify these quo-

tients with LSd+1,+
A,d (T1, T2) and LS−1,−

A,d (T1, T2), respectively, as modules over
k, using Pd+1,+ and P−1,−, respectively, as in Section 36.5.

Remember that the actions of H induced on these quotients by the action of
H on LSA,d(T1, T2) correspond to the usual actions ofH on LSd+1,+

A,d (T1, T2) and

LS−1,−
A,d (T1, T2), as in (36.6.1) and (36.6.2). Similarly, the action of X induced

on (36.7.1) by the action of X on LSA,d(T1, T2) corresponds to the usual action

of X on LSd+1,+
A,d (T1, T2), because of (36.6.9). We also have that the action of
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Y induced on (36.7.2) by the action of Y on LSA,d(T1, T2) corresponds to the

usual action of Y on LS−1,−
A,d (T1, T2), because of (36.6.10).

The action of Y induced on (36.7.1) by the action of Y on LSA,d(T1, T2)
corresponds to

the restriction of Pd+1,+ ◦ Y to LSd+1,+
A,d (T1, T2),(36.7.3)

as in the previous section. This mapping is described by (36.6.7) and (36.6.8),
with l = d. Similarly, the action of X induced on (36.7.2) by the action of X
on LSA,d(T1, T2) corresponds to

the restriction of P−1,− ◦X to LS−1,−
A,d (T1, T2),(36.7.4)

as before. This mapping is described by (36.6.4) and (36.6.5), with l = 0.
Of course, LPA,d(T1, T2) is a submodule of LSA,d(T1, T2), as a module over

s2(k). Remember that LP d,−A,d (T1, T2) and LP 0,+
A,d (T1, T2) are submodules of

LPA,d(T1, T2), as a module over s2(k), as in Section 36.3. This means that
the quotients

LPA,d(T1, T2)/LP
d,−
A,d (T1, T2)(36.7.5)

and
LPA,d(T1, T2)/LP

0,+
A,d (T1, T2)(36.7.6)

may be considered as modules over s2(k), as before. Note that (36.7.5) and
(36.7.6) may be considered as submodules of (36.7.1) and (36.7.2), respec-
tively, as modules over s2(k). We may also identify (36.7.5) and (36.7.6) with

LP d+1,+
A,d (T1, T2) and LP−1,−

A,d (T1, T2), respectively, as modules over k, using
Pd+1,+ and P−1,−, respectively, as before.

Suppose for the moment that d ≥ 0, so that

LSd,−A,d (T1, T2) ∩ LS
0,+
A,d(T1, T2)(36.7.7)

= LP d,−A,d (T1, T2) ∩ LP
0,+
A,d (T1, T2) = Ad[T1, T2],

as in Section 36.3. In particular, Ad[T1, T2] is a submodule of LSd,−A,d (T1, T2),

LS0,+
A,d(T1, T2), LP

d,−
A,d (T1, T2), and LP

0,+
A,d (T1, T2), as modules over s2(k). This

means that the quotients

LS0,+
A,d(T1, T2)/Ad[T1, T2],(36.7.8)

LSd,−A,d (T1, T2)/Ad[T1, T2],(36.7.9)

LP 0,+
A,d (T1, T2)/Ad[T1, T2],(36.7.10)

LP d,−A,d (T1, T2)/Ad[T1, T2],(36.7.11)

may be considered as modules over s2(k) too. Of course, (36.7.10) and (36.7.11)
correspond to submodules of (36.7.8) and (36.7.9), respectively, as modules over
s2(k).
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It is easy to see that these modules are isomorphic to (36.7.1), (36.7.2),
(36.7.5), and (36.7.6), respectively, in a natural way, as modules over s2(k).
Indeed, the natural quotient mapping from LSA,d(T1, T2) onto (36.7.1) maps

LS0,+
A,d(T1, T2) onto (36.7.1) under these conditions, because LSA,d(T1, T2) is

generated by LS0,+
A,d(T1, T2) and LSd,−A,d (T1, T2), as a module over k. The ker-

nel of the restriction to LS0,+
A,d(T1, T2) of the natural quotient mapping from

LSA,d(T1, T2) onto (36.7.1) is equal to Ad[T1, T2], by (36.7.7). This leads to the
desired module isomorphism, and the other cases are analogous.

Suppose now that d < 0, so that

LSd,−A,d (T1, T2) ∩ LS
0,+
A,d(T1, T2)(36.7.12)

= LP d,−A,d (T1, T2) ∩ LP
0,+
A,d (T1, T2) = {0},

as in Section 36.3 again. This implies that the restriction to LS0,+
A,d(T1, T2)

of the natural quotient mapping from LSA,d(T1, T2) onto (36.7.1) is injective.

Thus LS0,+
A,d(T1, T2) corresponds to a submodule of the quotient (36.7.1), as a

module over s2(k). Similarly, LSd,−A,d (T1, T2), LP
0,+
A,d (T1, T2), and LP

d,−
A,d (T1, T2)

correspond to submodules of (36.7.2), (36.7.5), and (36.7.6), respectively, as
modules over s2(k), in this case. If d = −1, then each of these submodules is
the same as the corresponding quotient module.

36.8 Quotients and characteristic 0, A = k

Let us continue with the same notation and hypotheses as in the previous three
sections, and take k to be a field of characteristic 0, and A = k, as a module
over itself. Observe that T−1

1 T d+1
2 is an element of LP−1,−

k,d (T1, T2), with

H(T−1
1 T d+1

2 ) = (−d− 2)T−1
1 T d+1

2 ,(36.8.1)

as in (36.4.1). We also have that

X(T−1
1 T d+1

2 ) = (d+ 1)T d2 ∈ LP 0,+
k,d (T1, T2).(36.8.2)

The image of T−1
1 T d+1

2 in

LPk,d(T1, T2)/LP
0,+
k,d (T1, T2)(36.8.3)

under the natural quotient mapping from LPk,d(T1, T2) is clearly nonzero. It
follows that the image of T−1

1 T d+1
2 in (36.8.3) is a maximal or primitive vector

of weight −d− 2, as in Section 15.2.
One can check that Y l(T−1

1 T d+1
2 ), l ≥ 0, form a basis for LP−1,−

k,d (T1, T2),
as a vector space over k. This means that the images of these vectors in the
quotient (36.8.3) form a basis there. Let Z0(µ0) be as in Section 34.2, and let
us take

µ0 = (−d− 2) · 1(36.8.4)
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in k. Thus (36.8.3) is isomorphic to Z0(µ0), as modules over sl2(k), as in Section
34.3.

If d ≥ 0, then kd[T1, T2] is a submodule of LP d,−k,d (T1, T2), as a module over
s2(k). In this case, (36.8.3) is isomorphic to

LP d,−k,d (T1, T2)/kd[T1, T2](36.8.5)

as modules over s2(k), as in the previous section. If d < 0, then LP d,−k,d (T1, T2)
corresponds to a submodule of (36.8.3), as a module over s2(k), as before. In
particular, if d = −1, then (36.8.3) is isomorphic to LP−1,−

k,−1 (T1, T2), as a module
over s2(k). Note that the remarks in the preceding paragraph correspond to
some of those in Section 36.4 in this case.

If d ≤ −2, so thatm = −d−2 ≥ 0, then we get a proper submodule Z0,m(µ0)
of Z0(µ0), as a module over sl2(k), as in Section 34.2. One can verify that this

corresponds to LP d,−k,d (T1, T2) as a submodule of (36.8.3) under these conditions.

36.9 Some more submodules and quotients

Let k be a commutative ring with a multiplicative identity element, and let B
be a Lie algebra over k. Also let V be a module over k that is a module over
B, as a Lie algebra over k, and let W , Z be submodules of V , as a module over
k and B. Thus W + Z and W ∩ Z are submodules of V as well, as a module
over k and B.

The quotients V/W , V/Z may be considered as modules over k and B too,
as usual. The natural quotient mapping from V onto V/W maps Z and W +Z
onto (W +Z)/W , and the kernel of the restriction to Z of the quotient mapping
is equal toW∩Z. Thus (W+Z)/W is isomorphic in a natural way to Z/(W∩Z),
as a module over k and B. Similarly, (W + Z)/Z is isomorphic to W/(W ∩ Z)
in a natural way, as a module over k and B.

Of course,

(W/(W ∩ Z)) ∩ (Z/(W ∩ Z)) = {0}(36.9.1)

in V/(W ∩ Z). This implies that

(W + Z)/(W ∩ Z) = (W/(W ∩ Z)) + (Z/(W ∩ Z))(36.9.2)

corresponds to the direct sum of W/(W ∩Z) and Z/(W ∩Z) in V/(W ∩Z), as
a module over k and B.

The natural quotient mapping from V onto V/(W + Z) has kernel W + Z,
which leads to natural homomorphisms from V/W and V/Z onto V/(W + Z),
as modules over k and B. The kernels of these homomorphisms are (W +Z)/W
and (W + Z)/Z, respectively. This leads to natural isomorphisms from

(V/W )/((W + Z)/W ), (V/Z)/((W + Z)/Z)(36.9.3)

onto V/(W + Z), as modules over k and B.
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Let us now return to the same notation and hypotheses as in Section 36.7.
Thus k is still a commutative ring with a multiplicative identity element, and A
is a module over k. Suppose for the moment that d ≥ 0, so that (36.7.7) holds.
We may consider

LPA,d(T1, T2)/Ad[T1, T2](36.9.4)

and
LSA,d[T1, T2]/Ad[T1, T2](36.9.5)

as modules over s2(k), as a Lie algebra over k, because Ad[T1, T2] is a submodule
of LPA,d[T1, T2] and LSA,d(T1, T2), as modules over s2(k). Note that (36.9.4)
may be considered as a submodule of (36.9.5), as a module over s2(k).

It is easy to see that

LPA,d(T1, T2) = LP 0,+
A,d (T1, T2) + LP d,−A,d (T1, T2)(36.9.6)

and
LSA,d(T1, T2) = LS0,+

A,d(T1, T2) + LSd,−A,d (T1, T2),(36.9.7)

because d ≥ 0. In fact, (36.9.4) corresponds to the direct sum of (36.7.10) and
(36.7.11), as a module over s2(k). Similarly, (36.9.5) corresponds to the direct
sum of (36.7.8) and (36.7.9), as a module over s2(k). This follows from the
analogous statement for (36.9.2) mentioned earlier.

Suppose now that d < 0, so that (36.7.12) holds. We may consider

LPA,d(T1, T2)/(LP
0,+
A,d (T1, T2) + LP d,−A,d (T1, T2))(36.9.8)

and
LSA,d(T1, T2)/(LS

0,+
A,d(T1, T2) + LSd,−A,d (T1, T2))(36.9.9)

as modules over s2(k), as a Lie algebra over k. If d = −1, then (36.9.6) and
(36.9.7) hold, and so (36.9.8) and (36.9.9) are equal to 0. Otherwise, we have
that

LSA,d(T1, T2) = LS0,+
A,d(T1, T2) + LSd,−A,d (T1, T2) + LPA,d(T1, T2).(36.9.10)

This implies that (36.9.8) is isomorphic to (36.9.9), as modules over s2(k).
Under these conditions, (36.9.8) can be described as in (36.9.3). This means

that (36.9.8) is isomorphic in a natural way to quotients of (36.7.5) and (36.7.6)

by submodules corresponding to LP 0,+
A,d (T1, T2) and LP

d,−
A,d (T1, T2), respectively,

as a module over s2(k).

36.10 Some additional submodules

Let k be a field of characteristic 0, and let us continue with the same notation
and hypotheses as in Sections 36.1 and 36.2, with A = k. Put

f0(T ) = exp(T−1
1 T2) =

∞∑
j=0

(1/j!)T−j
1 T j2 ,(36.10.1)
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which is an element of LSk,0(T1, T2), using the natural embedding of Q into k.

More precisely, f0(T ) ∈ LS0,−
k,0 (T1, T2), in the notation of Section 36.2.

It is easy to see that

∂1f0(T ) = −T−2
1 T2 f0(T )(36.10.2)

and
∂2f0(T ) = T−1

1 f0(T ).(36.10.3)

This implies that

H(f0(T )) = −2T−1
1 T2 f0(T ),(36.10.4)

X(f0(T )) = f0(T ),(36.10.5)

Y (f0(T )) = −T−2
1 T 2

2 f0(T ).(36.10.6)

Note that

H(T−m
1 Tm2 ) = −2mT−m

1 Tm2 ,(36.10.7)

X(T−m
1 Tm2 ) = mT 1−m

1 Tm−1
2 ,(36.10.8)

Y (T−m
1 Tm2 ) = −mT−m−1

1 Tm+1
2(36.10.9)

for every m ∈ Z.
Put

fm(T ) = T−m
1 Tm2 f0(T )(36.10.10)

for every m ∈ Z, which is the same as f0(T ) when m = 0. By construction,

fm(T ) ∈ LS−m,−
k,0 (T1, T2)(36.10.11)

for every m ∈ Z, using the notation in Section 36.2 again. We also have that the
coefficient of T−m

1 Tm2 in fm(T ) is equal to 1. One can check that the fm(T )’s
are linearly independent in LSk,0(T1, T2), using these two properties.

If m ∈ Z, then

H(fm(T )) = H(T−m
1 Tm2 ) f0(T ) + T−m

1 Tm2 H(f0(T ))

= −2mT−m
1 Tm2 f0(T ) + T−m

1 Tm2 (−2T−1
1 T2 f0(T ))(36.10.12)

= −2mfm(T )− 2 fm+1(T ).

Similarly,

X(fm(T )) = X(T−m
1 Tm2 ) f0(T ) + T−m

1 Tm2 X(f0(T ))

= mT 1−m
1 Tm−1

2 f0(T ) + T−m
1 Tm2 f0(T )(36.10.13)

= mfm−1(T ) + fm(T ).

In the same way,

Y (fm(T )) = Y (T−m
1 Tm2 ) f0(T ) + T−m

1 Tm2 Y (f0(T ))

= −mT−m−1
1 Tm+1

2 f0(T ) + T−m
1 Tm2 (−T−2

1 T 2
2 f0(T ))(36.10.14)

= −mfm+1(T )− fm+2(T ).
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Let Ek(T1, T2) be the linear span of the fm(T )’s, m ∈ Z, in LSk,0(T1, T2), as
a vector space over k. This is a submodule of LSk,0(T1, T2), as a module over
s2(k), as in the preceding paragraph.

Similarly, let E0
k(T1, T2) be the linear span of the fm(T )’s, m ≥ 0. It is easy

to see that this is a submodule of Ek(T1, T2), as a module over s2(k).
One can check that there is no nonzero eigenvector of H in Ek(T1, T2), using

(36.10.12) and the linear independence of the fm(T )’s.
One can verify that E0

k(T1, T2) is irreducible as a module over s2(k). To see
this, observe that

(X − I)(fm(T )) = mfm−1(T )(36.10.15)

for every m ∈ Z, where I is the identity mapping. This implies that every
nonzero element of E0

k(T1, T2) is mapped to a nonzero multiple of f0(T ) by a
suitable power of X − I. It follows that any nonzero submodule of E0

k(T1, T2)
contains fm(T ) for every m ≥ 0, because of (36.10.12).

This is related to part (c) of Exercise 2 on p111 of [14].



Chapter 37

Formal Laurent series, 3

37.1 Some commutativity conditions

Let k be a commutative ring with a multiplicative identity element, let m,
n be positive integers, and let T1, . . . , Tn, R1, . . . , Rm, be n + m commuting
indeterminates. Also let A be a module over k, and let us use

f(T,R) = f(T1, . . . , Tn, R1, . . . , Rm)(37.1.1)

to denote a formal Laurent series in T1, . . . , Tn, R1, . . . , Rm with coefficients
in A. The corresponding formal derivatives of f(T,R) in Tj and Rl may be
expressed as

∂Tj
f(T,R) =

∂

∂Tj
f(T,R), ∂Rl

f(T,R) =
∂

∂Rl
f(T,R),(37.1.2)

respectively, for each j = 1, . . . , n, l = 1, . . . ,m.

Let ∂T1
, . . . , ∂Tn

, ∂R1
, . . . , ∂Rm

be n+m commuting formal symbols, which
may be used to represent partial derivatives in the Tj ’s and Rl’s. Suppose that
for each j = 1, . . . , n and l = 1, . . . ,m,

ζj,l(T,R) = ζj,l(T1, . . . , Tn, R1, . . . , Rm)(37.1.3)

is a formal Laurent polynomial in T1, . . . , Tn, R1, . . . , Rm with coefficients in k.
Put

δj = ∂Tj
+

m∑
l=1

ζj,l(T,R) ∂Rl
(37.1.4)

for each j = 1, . . . , n. This is a formal first-order differential operator in
∂T1

, . . . , ∂Tn
, ∂R1

, . . . , ∂Rm
with coefficients in

LSk(T,R) = LPk(T1, . . . , Tn, R1, . . . , Rm).(37.1.5)

758
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Let 1 ≤ j1, j2 ≤ n be given, and observe that

δj1 δj2 − δj2 δj1 =

m∑
l=1

(δj1(ζ
j2,l(T,R))− δj2(ζ

j1,l(T,R))) ∂Rl
.(37.1.6)

Thus

δj1 δj2 = δj2 δj1(37.1.7)

if and only if

δj1(ζ
j2,l(T,R)) = δj2(ζ

j1,l(T,R))(37.1.8)

for every l = 1, . . . ,m.

Let f(T,R) be a formal Laurent series in T1, . . . , Tn, R1, . . . , Rm with co-
efficients in A, and suppose that we were interested in substituting Rl with
something that depends on T1, . . . , Tn, for each l = 1, . . . ,m. In order to dif-
ferentiate the result in Tj for some j = 1, . . . , n, we should differentiate f in
Tj , and add to that the derivative of f in Rl times the derivative in Tj of the
expression being substituted for Rl for each l = 1, . . . ,m. This corresponds to
δj(f(T,R)), where the derivative in Tj of the expression being substituted for
Rl is given by ζj,l(T,R). The commutativity condition (37.1.7) says exactly
that these total derivatives in Tj1 and Tj2 should commute. This holds exactly
when the total derivatives in Tj1 and Tj2 of the expression being substituted for
Rl commute for each l = 1, . . . ,m, as in (37.1.8).

Let us suppose for the rest of the section that (37.1.8) holds for every j1, j2 =
1, . . . , n and l = 1, . . . ,m. Of course, we may identify LSA(T1, . . . , Tn) with a
submodule of

LSA(T,R) = LSA(T1, . . . , Tn, R1, . . . , Rm),(37.1.9)

as a module over k, in the obvious way. The restriction of the mapping on
LSA(T,R) determined by δj to LSA(T1, . . . , Tn) is the same as ∂Tj

for each
j = 1, . . . , n, by construction. If α = (α1, . . . , αn) is a multi-index of length n,
then let

δα = δα1
1 · · · δαn

n(37.1.10)

be the corresponding product of the δj ’s. This is a formal differential operator
in ∂T1 , . . . , ∂Tn , ∂R1 , . . . , ∂Rm with coefficients in LPk(T,R).

Let β be a multi-index of length n, and let bβ(T,R) be a formal Laurent
polynomial in T1, . . . , Tn, R1, . . . , Rm with coefficients in k. If 1 ≤ j ≤ n, then

δj (b
β(T,R) δβ) = (δj(b

β(T,R))) δβ + bβ(T,R) δj δ
β ,(37.1.11)

as a formal differential operator in ∂T1 , . . . , ∂Tn , ∂R1 , . . . , ∂Rn with coefficients
in LPk(T,R). If bβ(T ) is a formal Laurent polynomial in T1, . . . , Tn with coef-
ficients in k, then we get that

δj (b
β(T ) δβ) = (∂Tj

(bβ(T ))) δβ + bβ(T ) δj δ
β .(37.1.12)
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Let a(T ) = (a1(T ), . . . , an(T )) be an n-tuple of formal Laurent polynomials
in T1, . . . , Tn with coefficients in k, and put

D̃a(T ) =

n∑
j=1

aj(T ) δj .(37.1.13)

This is a formal first-order differential operator in ∂T1 , . . . , ∂Tn , ∂R1 , . . . , ∂Rn

with coefficients in LPk(T,R). If b(T ) = (b1(T ), . . . , bn(T )) is another n-tuple
of formal Laurent polynomials in T1, . . . , Tn with coefficients in k, then

D̃a(T ) D̃b(T ) − D̃b(T ) D̃a(T )(37.1.14)

=

n∑
j=1

n∑
r=1

(aj(T ) ∂Tj
br(T )− bj(T ) ∂Tj

ar(T )) δr,

as in Section 35.7. Put

cr(T ) =

n∑
j=1

(aj(T ) ∂Tj
br(T )− bj(T ) ∂Tj

ar(T ))(37.1.15)

for each r = 1, . . . , n, which defines a formal Laurent polynomial in T1, . . . , Tn
with coefficients in k, as before. Thus

D̃a(T ) D̃b(T ) − D̃b(T ) D̃a(T ) = D̃c(T ),(37.1.16)

where c(T ) = (c1(T ), . . . , cn(T )).

Put

g̃n(k) = {D̃a(T ) : a(T ) ∈ (k1[T1, . . . , Tn])
n},(37.1.17)

which is a Lie subalgebra of the algebra of formal differential operators in
∂T1 , . . . , ∂Tn , ∂R1 , . . . , ∂Rn with coefficients in LPk(T,R). Remember that if
a(T ) ∈ (k1[T1, . . . , Tn])

n, then aj(T ) can be expressed as
∑n
r=1 a

j
r Tr for each

j = 1, . . . , n, where ajr ∈ k for every j, r = 1, . . . , n. Put

s̃n(k) =

{
D̃a(T ) : a(T ) ∈ (k1[T1, . . . , Tn])

n,

n∑
j=1

ajj = 0

}
,(37.1.18)

which is a Lie subalgebra of g̃n(k). As in Section 5.15, g̃n(k) is isomorphic
to gln(k) as a Lie algebra over k, and s̃n(k) corresponds to sln(k) under this
isomorphism. In particular,

[g̃n(k), g̃n(k)] ⊆ s̃n(k),(37.1.19)

as before.
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37.2 Simpler coefficients

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Suppose now that θj,l(T ) is a formal Laurent polynomial in T1, . . . , Tn
with coefficients in k for each j = 1, . . . , n and l = 1, . . . ,m. We would like to
consider the remarks in the previous section with

ζj,l(T,R) = θj,l(T )Rl(37.2.1)

for every j = 1, . . . , n and l = 1, . . . ,m. Thus we take

δj = ∂Tj +

m∑
l=1

θj,l(T )Rl ∂Rl
(37.2.2)

for each j = 1, . . . , n. We also ask that

δj1(θ
j2,l(T )Rl) = δj2(θ

j1,l(T )Rl)(37.2.3)

for every j1, j2 = 1, . . . , n and l = 1, . . . ,m, as in (37.1.8). In this case, this
reduces to asking that

∂Tj1
θj2,l(T ) = ∂Tj2

θj1,l(T )(37.2.4)

for every j1, j2 = 1, . . . , n and l = 1, . . . ,m. This means that δj1 commutes with
δj2 , as before.

Let γ ∈ Zm be given, so that Rγ is defined as a formal Laurent monomial
in R1, . . . , Rm. Note that

LSA(T1, . . . , Tn)R
γ = {f(T )Rγ : f(T ) ∈ LSA(T1, . . . , Tn)}(37.2.5)

is a submodule of LSA(T,R), as a module over k. More precisely, this is a
submodule of LSA(T,R), as a module over LPk(T1, . . . , Tn). It is easy to see
that

δj(LSA(T1, . . . , Tn)R
γ) ⊆ LSA(T1, . . . , Tn)R

γ(37.2.6)

for every j = 1, . . . , n. Similarly,

LPA(T1, . . . , Tn)R
γ = {f(T )Rγ : f(T ) ∈ LPA(T1, . . . , Tn)}(37.2.7)

is a submodule of LPA(T,R), as a module over k, and over LPk(T1, . . . , Tn).
We also have that

δj(LPA(T1, . . . , Tn)R
γ) ⊆ LPA(T1, . . . , Tn)R

γ(37.2.8)

for every j = 1, . . . , n. If a(T ) = (a1(T ), . . . , an(T )) is an n-tuple of elements of

LPk(T1, . . . , Tn), and D̃a(T ) is as in (37.1.13), then we get that

D̃a(T )(LSA(T1, . . . , Tn)R
γ) ⊆ LSA(T1, . . . , Tn)R

γ(37.2.9)
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and
D̃a(T )(LPA(T1, . . . , Tn)R

γ) ⊆ LPA(T1, . . . , Tn)R
γ .(37.2.10)

Suppose that
θj,l(T ) ∈ LPk,−1(T1, . . . , Tn)(37.2.11)

for every j = 1, . . . , n and l = 1, . . . ,m, in the notation of Section 35.8. One
can check that

δj(LSA,d(T1, . . . , Tn)R
γ) ⊆ LSA,d−1(T1, . . . , Tn)R

γ(37.2.12)

for every j = 1, . . . , n and d ∈ Z. Similarly,

δj(LPA,d(T1, . . . , Tn)R
γ) ⊆ LPA,d−1(T1, . . . , Tn)R

γ(37.2.13)

for every j = 1, . . . , n and d ∈ Z. If d(a(T )) ∈ Z and

aj(T ) ∈ LPk,d(a(T ))(T1, . . . , Tn)(37.2.14)

for every j = 1, . . . , n, then it follows that

D̃a(T )(LSA,d(T1, . . . , Tn)R
γ) ⊆ LSA,d(a(T ))+d−1(T1, . . . , Tn)R

γ(37.2.15)

and

D̃a(T )(LPA,d(T1, . . . , Tn)R
γ) ⊆ LPA,d(a(T ))+d−1(T1, . . . , Tn)R

γ(37.2.16)

for every d ∈ Z. In particular, if d(a(T )) = 1, then

D̃a(T )(LSA,d(T1, . . . , Tn)R
γ) ⊆ LSA,d(T1, . . . , Tn)R

γ(37.2.17)

and
D̃a(T )(LPA,d(T1, . . . , Tn)R

γ) ⊆ LPA,d(T1, . . . , Tn)R
γ(37.2.18)

for every d ∈ Z.
Suppose for the moment that δj is as in the previous section again, where

the coefficients satisfy (37.1.8), as before. Under these conditions,

we may consider LSA(T,R) as a module over g̃n(k) or s̃n(k),(37.2.19)

as Lie algebras over k, and

LPA(T,R) is a submodule of LSA(T,R),(37.2.20)

as a module over g̃n(k) or s̃n(k). Note that

LSA(T1, . . . , Tn) is a submodule of LSA(T,R)(37.2.21)

and
LPA(T1, . . . , Tn) is a submodule of LPA(T,R),(37.2.22)
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as modules over g̃n(k) or s̃n(k). The actions of g̃n(k), s̃n(k) on LSA(T1, . . . , Tn)
correspond exactly to the actions of gn(k), sn(k), respectively, as in Section
35.10, in a natural way, by construction.

With δj as in (37.2.2), we get that

LSA(T1, . . . , Tn)R
γ is a submodule of LSA(T,R)(37.2.23)

and
LPA(T1, . . . , Tn)R

γ is a submodule of LPA(T,R),(37.2.24)

as modules over g̃n(k) or s̃n(k). Of course, these reduce to (37.2.21) and
(37.2.22), respectively, when γ = 0. If (37.2.11) holds, then we obtain that

LSA,d(T1, . . . , Tn)R
γ is a submodule of LSA(T1, . . . , Tn)R

γ(37.2.25)

and
LPA,d(T1, . . . , Tn)R

γ is a submodule of LPA(T1, . . . , Tn)R
γ(37.2.26)

for every d ∈ Z, as modules over g̃n(k) or s̃n(k).

37.3 Some actions on LSA(T1, T2, R)

Let k be a commutative ring with a multiplicative identity element, let A be a
module over k, and let T1, T2, and R be commuting indeterminates. We would
like to consider formal Laurent polynomials and series in T1, T2, and R with
coefficients in k or A, as in the previous two sections, with n = 2 and m = 1. If
f(T1, T2, R) is a formal Laurent series in T1, T2, R with coefficients in A, then
its formal derivatives in T1, T2, and R may be expressed as ∂Tj

f(T1, T2, R) =
∂
∂Tj

f(T1, T2, R), j = 1, 2, and ∂Rf(T1, T2, R) =
∂
∂Rf(T1, T2, R), as before.

Let ∂T1
, ∂T2

, and ∂R be commuting formal symbols, which may be used to
represent partial derivatives in T1, T2, and R, respectively, as usual. Let ν0 ∈ k
be given, and put

δ1 = ∂T1
+ ν0 T

−1
1 R∂R, δ2 = ∂T2

.(37.3.1)

Note that δ1 and δ2 commute, as formal differential operators in ∂T1
, ∂T2

, and
∂R with coefficients in LPk(T1, T2, R).

If f(T1, T2, R) ∈ LSA(T1, T2, R), then we may be interested in trying to
substitute R with something that depends on T1 and T2, as in Section 37.1.
The derivative of the result in Tj , j = 1, 2, should include the derivative of f in
R times the derivitive in Tj of the expression being substituted for R, as before.
Here we think of substituting R with an expression whose derivative in T1 is
ν0 T

−1
1 R, and whose derivative in T2 is equal to 0. In effect, we may think of

substituting R with T1 to the power ν0, formally.
Note that δ1, δ2 satisfy the conditions mentioned at the beginning of the

previous section. As in Section 37.1, we may identify LSA(T1, T2) with a sub-
module of LSA(T1, T2, R), as a module over k, in the obvious way. If γ ∈ Z,
then

LSA(T1, T2)R
γ = {f(T1, T2)Rγ : f(T1, T2) ∈ LSA(T1, T2)}(37.3.2)
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is a submodule of LSA(T1, T2, R) too, as a module over k. In fact, this is a
submodule of LSA(T1, T2, R), as a module over LPk(T1, T2), as before. Similarly,

LPA(T1, T2)R
γ = {f(T1, T2)Rγ : f(T1, T2) ∈ LPA(T1, T2)}(37.3.3)

is a submodule of LPA(T1, T2, R), as a module over k, and over LPk(T1, T2).
It is easy to see that

δj(LSA(T1, T2)R
γ) ⊆ LSA(T1, T2)R

γ(37.3.4)

for j = 1, 2, as in the previous section. Similarly,

δj(LPA(T1, T2)R
γ) ⊆ LPA(T1, T2)R

γ(37.3.5)

for j = 1, 2. If a(T ) = (a1(T ), a2(T )) is an ordered pair of elements of formal
Laurent polynomials in T1, T2 with coefficients in k, then put

D̃a(T ) = a1(T ) δ1 + a2(T ) δ2,(37.3.6)

as in Section 37.1. Under these conditions,

D̃a(T )(LSA(T1, T2)R
γ) ⊆ LSA(T1, T2)R

γ(37.3.7)

and
D̃a(T )(LPA(T1, T2)R

γ) ⊆ LPA(T1, T2)R
γ .(37.3.8)

More precisely, if d ∈ Z, then

δj(LSA,d(T1, T2)R
γ) ⊆ LSA,d−1(T1, T2)R

γ(37.3.9)

for j = 1, 2, using the notation in Section 35.8. Similarly,

δj(LPA,d(T1, T2)R
γ) ⊆ LPA,d−1(T1, T2)R

γ(37.3.10)

for j = 1, 2, as in the previous section. In these inclusions, we use the same type
of notation as in (37.3.2) and (37.3.3). If d(a(T )) ∈ Z and

aj(T ) ∈ LPk,d(a(T ))(T1, T2)(37.3.11)

for j = 1, 2, then we get that

D̃a(T )(LSA,d(T1, T2)R
γ) ⊆ LSA,d(a(T ))+d−1(T1, T2)R

γ(37.3.12)

and
D̃a(T )(LPA,d(T1, T2)R

γ) ⊆ LPA,d(a(T ))+d−1(T1, T2)R
γ ,(37.3.13)

as before.
Remember that

g̃2(k) = {D̃a(T ) : a(T ) ∈ (k1[T1, T2])
2},(37.3.14)
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as in Section 37.1. If a(T ) ∈ (k1[T1, T2])
2, then aj(T ) can be expressed as

aj1 T1 + aj2 T2 for j = 1, 2, where ajl ∈ k for j, l = 1, 2, and

s̃2(k) = {D̃a(T ) : a(T ) ∈ (k1[T1, T2])
2, a11 + a22 = 0},(37.3.15)

as before. As in the previous section,

we may consider LSA(T1, T2, R) as a module over g̃2(k) or s̃2(k),(37.3.16)

as Lie algebras over k, and

LPA(T1, T2, R) is a submodule of LSA(T1, T2, R),(37.3.17)

as a module over g̃2(k) or s̃2(k). We also have that

LSA(T1, T2)R
γ is a submodule of LSA(T1, T2, R)(37.3.18)

and
LPA(T1, T2)R

γ is a submodule of LPA(T1, T2, R),(37.3.19)

as modules over g̃2(k) or s̃2(k). If d ∈ Z, then

LSA,d(T1, T2)R
γ is a submodule of LSA(T1, T2)R

γ(37.3.20)

and
LPA,d(T1, T2)R

γ is a submodule of LPA(T1, T2)R
γ ,(37.3.21)

as modules over g̃2(k) and s̃2(k).

37.4 The action of s̃2(k)

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Put

H̃ = T1 δ1 − T2 δ2 = T1∂T1 + ν0R∂R − T2 ∂T2 ,(37.4.1)

X̃ = T1 δ2 = T1 ∂T2
,(37.4.2)

Ỹ = T2 δ1 = T2 ∂T1
+ ν0 T

−1
1 T2R∂R,(37.4.3)

which are formal differential operators in ∂T1 , ∂T2 , and ∂R with coefficients in
LPk,1(T1, T2, R), in the notation of Section 35.8. Note that

H̃, X̃, Ỹ ∈ s̃2(k),(37.4.4)

and that s̃2(k) is freely generated by H̃, X̃, and Ỹ , as a module over k.
Remember that s̃2(k) is a Lie subalgebra of g̃2(k), as a Lie algebra over k,

as in Section 37.1. One can check that

[X̃, Ỹ ] = H̃,(37.4.5)

[H̃, X̃] = 2 · X̃,(37.4.6)

[H̃, Ỹ ] = −2 · Ỹ .(37.4.7)
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This shows that s̃2(k) is isomorphic to sl2(k) as a Lie algebra over k, where H̃,

X̃, and Ỹ correspond to the usual elements h, x, and y of sl2(k) as in Section
34.1, respectively. This is basically the same as in Section 36.1 when ν0 = 0.

As in the previous section, we may consider LSA(T1, T2, R) as a module
over s̃2(k), as a Lie algebra over k. Thus LSA(T1, T2, R) may be considered as
a module over sl2(k), as a Lie algebra over k, using the isomorphism mentioned
in the preceding paragraph. This means that the actions of h, x, and y on
LSA(T1, T2, R) are given by H̃, X̃, and Ỹ , respectively. Note that LSA(T1, T2) is
a submodule of LSA(T1, T2, R), as a module over s̃2(k) or sl2(k). More precisely,

the actions of H̃, X̃, and Ỹ on LSA(T1, T2), as a submodule of LSA(T1, T2, R),
as a module over k, are the same as the actions of H, X, and Y from Section
36.1, respectively.

Remember that LPA(T1, T2, R) is a submodule of LSA(T1, T2, R), as a mod-
ule over s̃2(k), or equivalently sl2(k). Let γ and d be integers, as in the pre-
vious section, so that LSA,d(T1, T2)R

γ is a submodule of LSA(T1, T2, R), as
a module over s̃2(k) or sl2(k). Similarly, LPA,d(T1, T2)R

γ is a submodule of
LPA(T1, T2, R), as a module over s̃2(k) or sl2(k).

Let f(T1, T2) =
∑∞
j=−∞ fj T

j
1 T

d−j
2 ∈ LSA(T1, T2) be given, so that

f(T1, T2)R
γ =

∞∑
j=−∞

fj T
j
1 T

d−j
2 Rγ(37.4.8)

is an element of LSA,d(T1, T2)R
γ . Thus fj ∈ A for every j, and f(T1, T2) is an

element of LPA(T1, T2) exactly when fj = 0 for all but finitely many j. It is
easy to see that

H̃(f(T1, T2)R
γ) =

∞∑
j=−∞

(j + ν0 γ − (d− j)) · fj T j1 T
d−j
2 Rγ

=

∞∑
j=−∞

(2 j − d+ ν0 γ) · fj T j1 T
d−j
2 Rγ .(37.4.9)

Here we are implicitly using the natural ring homomorphism from Z into k,
which sends an integer to the corresponding multiple of the multiplicative iden-
tity element in k. Similarly,

X̃(f(T1, T2)R
γ) =

∞∑
j=−∞

(d− j) · fj T j+1
1 T d−j−1

2 Rγ

=

∞∑
j=−∞

(d− j + 1) · fj−1 T
j
1 T

d−j
2 Rγ(37.4.10)

and

Ỹ (f(T1, T2)R
γ) =

∞∑
j=−∞

(j + ν0 γ) · fj T j−1
1 T d−j+1

2 Rγ
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=

∞∑
j=−∞

(j + 1 + ν0 γ) · fj+1 T
j
1 T

d−j
2 Rγ .(37.4.11)

Note that these expressions correspond to those in Section 36.1 when γ = 0,
and when ν0 = 0.

37.5 Some submodules of LSA,d(T1, T2)R
γ

We continue with the same notation and hypotheses as in the previous two
sections. In particular, if f(T1, T2) ∈ LSA,d(T1, T2) and j ∈ Z, then

fj denotes the coefficient in A of T j1 T
d−j
2 in f(T1, T2),(37.5.1)

as before.
If l ∈ Z, then LSl,+A,d(T1, T2) is the space of f(T1, T2) ∈ LSA,d(T1, T2) such

that fj = 0 for every j > l, as in Section 36.2. Similarly, LSl,−A,d(T1, T2) is the
space of f(T1, T2) ∈ LSA,d(T1, T2) such that fj = 0 for every j > l, as before.
Of course, these ars submodules of LSA,d(T1, T2), as a module over k. Remem-

ber that LP l,+A,d(T1, T2) and LP l,−A,d(T1, T2) are defined to be the intersections

of LSl,+A,d(T1, T2) and LS
l,−
A,d(T1, T2) with LPA,d(T1, T2), respectively. These are

submodules of LPA,d(T1, T2), as a module over k.
Thus

LSl,+A,d(T1, T2)R
γ , LSl,−A,d(T1, T2)R

γ(37.5.2)

are submodules of LSA,d(T1, T2)R
γ , as a module over k, using the same type of

notation for the former as before. More precisely, LSA,d(T1, T2)R
γ corresponds

to the direct sum of these two submodules, as a module over k. Similarly,

LP l,+A,d(T1, T2)R
γ , LP l,−A,d(T1, T2)R

γ(37.5.3)

are submodules of LPA,d(T1, T2)R
γ , as a module over k, and LPA,d(T1, T2)R

γ

corresponds to the direct sum of these two submodules.
If r ∈ Z and l ≤ r, then

LSr,+A,d(T1, T2)R
γ ⊆ LSl,+A,d(T1, T2)R

γ ,(37.5.4)

LSl,−A,d(T1, T2)R
γ ⊆ LSr,−A,d(T1, T2)R

γ ,(37.5.5)

as in Section 36.2. Similarly,

LP r,+A,d (T1, T2)R
γ ⊆ LP l,+A,d(T1, T2)T

γ ,(37.5.6)

LP l,−A,d(T1, T2)R
γ ⊆ LP r,−A,d (T1, T2)R

γ .(37.5.7)

It is easy to see that

H̃(LSl,+A,d(T1, T2)R
γ) ⊆ LSl,+A,d(T1, T2)R

γ ,(37.5.8)

H̃(LSl,−A,d(T1, T2)R
γ) ⊆ LSl,−A,d(T1, T2)R

γ(37.5.9)
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for every l ∈ Z, using (37.4.9). Similarly,

H̃(LP l,+A,d(T1, T2)R
γ) ⊆ LP l,+A,d(T1, T2)R

γ ,(37.5.10)

H̃(LP l,−A,d(T1, T2)R
γ) ⊆ LP l,−A,d(T1, T2)R

γ(37.5.11)

for every l ∈ Z.
One can verify that

X̃(LSl,+A,d(T1, T2)R
γ) ⊆ LSl+1,+

A,d (T1, T2)R
γ ,(37.5.12)

X̃(LSl,−A,d(T1, T2)R
γ) ⊆ LSl+1,−

A,d (T1, T2)R
γ(37.5.13)

for every l ∈ Z, using (37.4.10). Similarly,

X̃(LP l,+A,d(T1, T2)R
γ) ⊆ LP l+1,+

A,d (T1, T2)R
γ ,(37.5.14)

X̃(LP l,−A,d(T1, T2)R
γ) ⊆ LP l+1,−

A,d (T1, T2)R
γ(37.5.15)

for each l ∈ Z.
One can also verify that

Ỹ (LSl,+A,d(T1, T2)R
γ) ⊆ LSl−1,+

A,d (T1, T2)R
γ ,(37.5.16)

Ỹ (LSl,−A,d(T1, T2)R
γ) ⊆ LSl−1,−

A,d (T1, T2)R
γ(37.5.17)

for every l ∈ Z, using (37.4.11). Similarly,

Ỹ (LP l,+A,d(T1, T2)R
γ) ⊆ LP l−1,+

A,d (T1, T2)R
γ ,(37.5.18)

Ỹ (LP l,−A,d(T1, T2)R
γ) ⊆ LP l−1,−

A,d (T1, T2)R
γ(37.5.19)

for each l ∈ Z. Of course, these inclusions are analogous to those in Section
36.2.

37.6 Submodules over s̃2(k)

Let us continue with the same notation and hypotheses as in the previous three
sections. If l = d, then we can improve (37.5.13) and (37.5.15), as in Section
36.3. Indeed, one can check that

X̃(LSd,−A,d (T1, T2)R
γ) ⊆ LSd,−A,d (T1, T2)R

γ ,(37.6.1)

X̃(LP d,−A,d (T1, T2)R
γ) ⊆ LP d,−A,d (T1, T2)R

γ ,(37.6.2)

using (37.4.10). It follows that

LSd,−A,d (T1, T2)R
γ is a submodule of LSA,d(T1, T2)R

γ ,(37.6.3)

as a module over s̃2(k),
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by (37.5.9), (37.6.1), and (37.5.17). Similarly,

LP d,−A,d (T1, T2)R
γ is a submodule of LPA,d(T1, T2)R

γ ,(37.6.4)

as a module over s̃2(k),

by (37.5.11), (37.6.2), and (37.5.19).
Suppose that there is an integer m such that

m · 1 + γ · ν0 = 0(37.6.5)

in k. In particular, this holds with m = 0 when γ = 0 or ν0 = 0. Under these
conditions, we can improve (37.5.16) and (37.5.18) when l = m, as in Section
36.3. More precisely, one can check that

Ỹ (LSm,+A,d (T1, T2)R
γ) ⊆ LSm,+A,d (T1, T2)R

γ ,(37.6.6)

Ỹ (LPm,+A,d (T1, T2)R
γ) ⊆ LPm,+A,d (T1, T2)R

γ ,(37.6.7)

using (37.4.11).
In this case, we get that

LSm,+A,d (T1, T2)R
γ is a submodule of LSA,d(T1, T2)R

γ ,(37.6.8)

as a module over s̃2(k),

by (37.5.8), (37.5.12), and (37.6.6). Similarly,

LPm,+A,d (T1, T2)R
γ is a submodule of LPA,d(T1, T2)R

γ ,(37.6.9)

as a module over s̃2(k),

by (37.5.10), (37.5.14), and (37.6.7).
Consider the mapping from LSA,d(T1, T2)R

γ into LSA,d−m(T1, T2) with

f(T1, T2)R
γ 7→ f(T1, T2)T

−m
1(37.6.10)

for every f(T1, T2) ∈ LSA(T1, T2). Equivalently, this mapping is defined by
multiplication by T−m

1 R−γ . This is an isomorphism from LSA,d(T1, T2)R
γ onto

LSA,d−m(T1, T2), as modules over k. This mapping also sends LPA,d(T1, T2)R
γ

onto LPA,d−m(T1, T2).

Let f(T1, T2) =
∑∞
j=−∞ fj T

j
1 T

d−j
2 ∈ LSA,d(T1, T2) be given, so that

f(T1, T2)T
−m
1 =

∞∑
j=−∞

fj T
j−m
1 T d−j2 =

∞∑
j=−∞

fj−m T
j
1 T

d−m−j
2 .(37.6.11)

Remember that H, X, and Y are as defined in Section 36.1. Observe that

H(f(T1, T2)T
−m
1 ) =

∞∑
j=−∞

((j −m)− (d− j)) · fj T j−m1 T d−j2

=

∞∑
j=−∞

(2 j −m− d) · fj T j−m1 T d−j2 .(37.6.12)
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Similarly,

X(f(T1, T2)T
−m
1 ) =

∞∑
j=−∞

(d− j) · fj T j−m+1
1 T d−j−1

2(37.6.13)

=

∞∑
j=−∞

(d− j + 1) · fj−1 T
j−m
1 T d−j2

and

Y (f(T1, T2)T
−m
1 ) =

∞∑
j=−∞

(j −m) · fj T j−m−1
1 T d−j+1

2(37.6.14)

=

∞∑
j=−∞

(j + 1−m) · fj+1 T
j−m
1 T d−j2 .

Let us compare these expressions with (37.4.9), (37.4.10), and (37.4.11),
using (37.6.5). It is easy to see that

H̃(f(T1, T2)R
γ)T−m

1 R−γ = H(f(T1, T2)T
−m
1 ),(37.6.15)

X̃(f(T1, T2)R
γ)T−m

1 R−γ = X(f(T1, T2)T
−m
1 ),(37.6.16)

Ỹ (f(T1, T2)R
γ)T−m

1 R−γ = Y (f(T1, T2)T
−m
1 ).(37.6.17)

This shows that (37.6.10) defines an isomorphism from LSA,d(T1, T2)R
γ

onto LSA,d−m(T1, T2), as modules over sl2(k). More precisely, this uses the
isomorphisms between sl2(k) and s2(k), s̃2(k), as Lie algebras over k, mentioned
in Sections 36.1, 37.4, respectively. Similarly, (37.6.10) defines an isomorphism
from LPA,d(T1, T2)R

γ onto LPA,d−m(T1, T2), as modules over sl2(k).

37.7 Characteristic 0 and LPk,d(T1, T2)R
γ

Let us continue with the same notation and hypotheses as in the previous four
sections, and suppose now that k is a field of characteristic 0, and that A = k,
as a module over itself. Observe that

H̃(T j1 T
d−j
2 Rγ) = (2 j − d+ γ ν0)T

j
1 T

d−j
2 Rγ(37.7.1)

for each j ∈ Z, by the definition (37.4.1) of H̃. This can be obtained from

(37.4.9) as well. Thus T j1 T
d−j
2 Rγ has weight

2 j − d+ γ ν0(37.7.2)

in LPk,d(T1, T2)R
γ , as a module over sl2(k), as in Section 15.1. Of course,

this uses the isomorphism between sl2(k) and s̃2(k), as Lie algebras over k,
mentioned in Section 37.4.
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Using the definition (37.4.2) of X̃, we get that

X̃(T d1 R
γ) = 0.(37.7.3)

This means that T d1 R
γ is a maximal or primitive vector of weight

d+ γ ν0(37.7.4)

in LPk,d(T1, T2)R
γ , as a module over sl2(k), as in Section 15.2. Remember that

LP d,−k,d (T1, T2)R
γ is a submodule of LPk,d(T1, T2)R

γ , as a module over s̃2(k),
or equivalently sl2(k), as in the previous section. Clearly

T d1 R
γ ∈ LP d,−k,d (T1, T2)R

γ .(37.7.5)

Thus T d1 R
γ may be considered as a maximal or primitive vector of weight

(37.7.4) in LP d,−k,d (T1, T2)R
γ , as a module over sl2(k).

Note that

Ỹ (T j1 T
d−j
2 Rγ) = (j + γ ν0)T

j−1
1 T d−j+1

2 Rγ(37.7.6)

for every integer j, by the definition (37.4.3) of Ỹ . If l is a nonnegative integer,

then Ỹ l(T d1 R
γ) is a multiple of T d−l1 T l2R

γ by an element of k. Suppose that

d+ γ ν0 does not correspond to a nonnegative integer,(37.7.7)

under the natural embedding of Q into k. Under these conditions, we get that
Ỹ l(T d1 R

γ) is a nonzero multiple of T d−l1 T l2R
γ for each l ≥ 0. This implies that

Ỹ l(T d1 R
γ), l ≥ 0, is a basis for LP d,−k,d (T1, T2)R

γ , as a vector space over k.

Let Z0(µ0) be as in Section 34.2, and let us take

µ0 = d · 1 + γ · ν0(37.7.8)

in k. If (37.7.7) holds, then we get that LP d,−k,d (T1, T2)R
γ is isomorphic to

Z0(µ0), as a module over sl2(k), as in Section 34.3.

Of course, d + γ ν0 corresponds to an integer under the natural embed-
ding of Q into k if and only if γ ν0 corresponds to an integer. In this case,
if m is an integer that satisfies (37.6.5), then LPk,d(T1, T2)R

γ is isomorphic to
LPk,d−m(T1, T2) as modules over sl2(k), as in the previous section. This permits
us to use the remarks in Section 36.4, with d replaced with d−m.

37.8 Helpful projections on LSA,d(T1, T2)R
γ

Let us return to the notation and hypotheses in Section 37.6, so that k is
a commutative ring with a multiplicative identity element again, and A is a
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module over k. Let f(T1, T2) =
∑∞
j=−∞ fj T

j
1 T

d−j
2 ∈ LSA,d(T1, T2) and l ∈ Z

be given, and put

P γl,+(f(T1, T2)R
γ) =

∞∑
j=l

fj T
j
1 T

d−j
2 Rγ ,(37.8.1)

P γl,−(f(T1, T2)R
γ) =

l∑
j=−∞

fj T
j
1 T

d−j
2 Rγ .(37.8.2)

Equivalently,

P γl,+(f(T1, T2)R
γ) = Pl,+(f(T1, T2))R

γ ,(37.8.3)

P γl,−(f(T1, T2)R
γ) = Pl,−(f(T1, T2))R

γ ,(37.8.4)

in the notation of Section 36.5. Note that these define homomorphisms from
LSA,d(T1, T2)R

γ into itself, as a module over k.
Clearly

P γl,+(LSA,d(T1, T2)R
γ) = LSl,+A,d(T1, T2)R

γ ,(37.8.5)

P γl,−(LSA,d(T1, T2)R
γ) = LSl,−A,d(T1, T2)R

γ .(37.8.6)

In fact, P γl,+ is the same as the identity mapping on LSl,+A,d(T1, T2)R
γ , and P γl,−

is the identity mapping on LSl,−A,d(T1, T2)R
γ . Similarly,

P γl,+(LPA,d(T1, T2)R
γ) = LP l,+A,d(T1, T2)R

γ ,(37.8.7)

P γl,−(LPA,d(T1, T2)R
γ) = LP l,−A,d(T1, T2)R

γ .(37.8.8)

By construction,

the kernel of P γl,+ on LSA,d(T1, T2)R
γ(37.8.9)

is equal to LSl−1,−
A,d (T1, T2)R

γ ,

and

the kernel of P γl,− on LSA,d(T1, T2)R
γ(37.8.10)

is equal to LSl+1,+
A,d (T1, T2)R

γ .

Similarly,

the kernel of P γl,+ on LPA,d(T1, T2)R
γ(37.8.11)

is equal to LP l−1,−
A,d (T1, T2)R

γ ,

and

the kernel of P γl,− on LPA,d(T1, T2)R
γ(37.8.12)

is equal to LP l+1,+
A,d (T1, T2)R

γ .
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The quotients

(LSA,d(T1, T2)R
γ)/(LSl,+A,d(T1, T2)R

γ)(37.8.13)

and
(LSA,d(T1, T2)R

γ)/(LSl,−A,d(T1, T2)R
γ)(37.8.14)

can be defined as modules over k in the usual way. Similarly, the quotients

(LPA,d(T1, T2)R
γ)/(LP l,+A,d(T1, T2)R

γ)(37.8.15)

and
(LPA,d(T1, T2)R

γ)/(LP l,−A,d(T1, T2)R
γ)(37.8.16)

are defined as modules over k too. The natural inclusion mapping

from LPA,d(T1, T2)R
γ into LSA,d(T1, T2)R

γ(37.8.17)

leads to natural injective homomorphisms from (37.8.15) into (37.8.13), and
from (37.8.16) into (37.8.14), as modules over k.

We can use P γl−1,− to identify (37.8.13) with LSl−1,−
A,d (T1, T2)R

γ , as a module

over k, as in Section 36.5. Of course, (37.8.15) corresponds to LP l−1,−
A,d (T1, T2)

with respect to this identification. Similarly, we can use P γl+1,+ to identify

(37.8.14) with LSl+1,+
A,d (T1, T2)R

γ , as a module over k, in which case (37.8.16)

corresponds to LP l+1,+
A,d (T1, T2)R

γ .

37.9 Projections and H̃, X̃, Ỹ

We continue with the same notation and hypotheses as in the previous section.
Observe that

H̃ ◦ P γl,+ = P γl,+ ◦ H̃,(37.9.1)

H̃ ◦ P γl,− = P γl,− ◦ H̃(37.9.2)

on LSA,d(T1, T2)R
γ , by (37.4.9). Remember that H̃ maps each of

LSl,+A,d(T1, T2)R
γ , LSl,−A,d(T1, T2)R

γ , LP l,+A,d(T1, T2)R
γ ,(37.9.3)

and LP l,−A,d(T1, T2)R
γ

into itself, as in Section 37.5. This implies that H̃ induces a mapping on
each of the quotients (37.8.13), (37.8.14), (37.8.15), and (37.8.16) that is lin-

ear over k. These induced mappings correspond to H̃ on LSl−1,−
A,d (T1, T2)R

γ ,

LSl+1,+
A,d (T1, T2)R

γ , LP l−1,−
A,d (T1, T2)R

γ , and LP l+1,+
A,d (T1, T2)R

γ , respectively,
with respect to the identifications mentioned in the prevous section, by (37.9.1)
and (37.9.2).
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As in Section 37.5,

X̃(LSl,+A,d(T1, T2)R
γ) ⊆ LSl+1,+

A,d (T1, T2)R
γ ⊆ LSl,+A,d(T1, T2)R

γ ,(37.9.4)

and similarly for the corresponding spaces of formal Laurent polynomials. Thus
X̃ induces mappings on the quotients (37.8.13) and (37.8.15) that are linear
over k. Note that

P γl−1,− ◦ X̃ = 0 on LSl−1,+
A,d (T1, T2)R

γ ,(37.9.5)

because of the first inclusion in (37.9.4), with l replaced with l − 1. It is easy
to see that

P γl−1,− ◦ X̃ = X̃ on LSl−2,−
A,d (T1, T2)R

γ ,(37.9.6)

because X̃ maps LSl−2,−
A,d (T1, T2)R

γ into LSl−1,−
A,d (T1, T2)R

γ , as in (37.5.13). Of

course, P γl−1,− ◦ X̃ is determined on LSA,d(T1, T2)R
γ by (37.9.5) and (37.9.6).

We can use P γl−1,− to identify the quotients (37.8.13) and (37.8.15) with

LSl−1,−
A,d (T1, T2)R

γ and LP l−1,−
A,d (T1, T2)R

γ , respectively, as modules over k, as

in the previous section. It is easy to see that the mappings induced by X̃ on
these quotients correspond to the restrictions of P γl−1,−◦X̃ to LSl−1,−

A,d (T1, T2)R
γ

and LP l−1,−
A,d (T1, T2)R

γ , respectively, with respect to these identifications.
Similarly,

Ỹ (LSl,−A,d(T1, T2)R
γ) ⊆ LSl−1,−

A,d (T1, T2)R
γ ⊆ LSl,−A,d(T1, T2)R

γ ,(37.9.7)

as in Section 37.5, and there are analogous inclusions for the corresponding
spaces of formal Laurent polynomials. This implies that Ỹ induces mappings
on the quotients (37.8.14) and (37.8.16) that are linear over k. Observe that

P γl+1,+ ◦ Ỹ = 0 on LSl+1,−
A,d (T1, T2)R

γ ,(37.9.8)

because of the first inclusion in (37.9.7), with l replaced with l + 1. We also
have that

P γl+1,+ ◦ Ỹ = Ỹ on LSl+2,+
A,d (T1, T2)R

γ ,(37.9.9)

because Ỹ maps LSl+2,+
A,d (T1, T2)R

γ into LSl+1,+
A,d (T1, T2), as in (37.5.16). As

before, P γl+1,+ ◦ Ỹ is determined on LSA,d(T1, T2)R
γ by (37.9.8) and (37.9.9).

We can use P γl+1,+ to identify the quotients (37.8.14) and (37.8.16) with

LSl+1,+
A,d (T1, T2)R

γ and LP l+1,+
A,d (T1, T2)R

γ , respectively, as modules over k,

as in the previous section again. The mappings induced by Ỹ on these quo-
tients correspond to the restrictions of P γl+1,+ ◦ Ỹ to LSl+1,+

A,d (T1, T2)R
γ and

LP l+1,+
A,d (T1, T2)R

γ , respectively, with respect to these identifications.
One can verify that

X̃ ◦ P γd+1,+ = P γd+1,+ ◦ X̃(37.9.10)
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on LSA,d(T1, T2)R
γ , using (37.4.10). This can also be obtained using the fact

that both sides of (37.9.10) are equal to 0 on LSd,−A,d (T1, T2)R
γ , by definition

of P γd+1,+, and because X̃ maps LSd,−A,d (T1, T2)R
γ into itself, as in Section 37.6.

Similarly, both sides of (37.9.10) are equal to X̃ on LSd+1,+
A,d (T1, T2)R

γ , by

definition of P γd+1,+, and because X̃ maps LSd+1,+
A,d (T1, T2)R

γ into itself, as in
Section 37.5.

Suppose for the moment that there is an integer m such that m ·1+γ ·ν0 = 0
in k, as in Section 37.6. In this case, one can check that

Ỹ ◦ P γm−1,− = P γm−1,− ◦ Ỹ(37.9.11)

on LSA,d(T1, T2)R
γ , using (37.4.11). Alternatively, both sides of (37.9.11) are

equal to 0 on LSm,+A,d (T1, T2)R
γ , by definition of P γm−1,−, and because Ỹ maps

LSm,+A,d (T1, T2)R
γ into itself, as in Section 37.6. Both sides of (37.9.11) are

equal to Ỹ on LSm−1,−
A,d (T1, T2)R

γ , by definition of P γm−1,−, and because Ỹ

maps LSm−1,−
A,d (T1, T2)R

γ into itself, as in Section 37.5.

37.10 Related quotients over s̃2(k)

Let us continue with the same notation and hypotheses as in the previous two
sections. Remember that LSd,−A,d (T1, T2)R

γ is a submodule of LSA,d(T1, T2)R
γ ,

as a module over s̃2(k), as in Section 37.6. This means that the quotient

(LSA,d(T1, T2)R
γ)/(LSd,−A,d (T1, T2)R

γ)(37.10.1)

may be considered as a module over s̃2(k) as well. As a module over k, this

quotient can be identified with LSd+1,+
A,d (T1, T2)R

γ using P γd+1,+, as in Section
37.8.

The action of H̃ induced on (37.10.1) by the action of H̃ on LSA,d(T1, T2)R
γ

corresponds to the usual action of H̃ on LSd+1,+
A,d (T1, T2)R

γ , as in (37.9.1).

Similarly, the action of X̃ induced on (37.10.1) corresponds to the usual action of

X̃ on LSd+1,+
A,d (T1, T2)R

γ , as in (37.9.10). The action of Ỹ induced on (37.10.1)

by the action of Ỹ on LSA,d(T1, T2)R
γ corresponds to

the restriction of P γd+1,+ ◦ Ỹ to LSd+1,+
A,d (T1, T2)R

γ ,(37.10.2)

as in the previous section. This mapping is described by (37.9.8) and (37.9.9),
with l = d.

Remember that LPA,d(T1, T2)R
γ is a submodule of LSA,d(T1, T2)R

γ , as

a module over s̃2(k). We also have that LP d,−A,d (T1, T2)R
γ is a submodule of

LPA,d(T1, T2)R
γ , as a module over s̃2(k), as in Section 37.6. It follows that the

quotient

(LPA,d(T1, T2)R
γ)/(LP d,−A,d (T1, T2)R

γ)(37.10.3)
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may be considered as a module over s̃2(k) as well. This may be considered as
a submodule of (37.10.1), as a module over s̃2(k). This can also be identified

with LP d+1,+
A,d (T1, T2)R

γ , as a module over k, using P γd+1,+, as before.

If there is an integerm such thatm·1+γ ·ν0 = 0 in k, then LSm,+A,d (T1, T2)R
γ

is a submodule of LSA,d(T1, T2)R
γ , as a module over s̃2(k), as in Section 37.6.

In this case, the quotient

(LSA,d(T1, T2)R
γ)/(LSm,+A,d (T1, T2)R

γ)(37.10.4)

may be considered as a module over s̃2(k), which can be described more precisely
as before. One can also use the isomorphism mentioned in Section 37.6 to get
that this quotient is isomorphic to the analogous one in Section 36.7, with d
replaced with d−m.



Chapter 38

Representations and
semisimplicity, 2

38.1 Weights and finite dimension

As before, we use the same notation and hypotheses as in Section 33.1. In
particular, (A, [·, ·]A) is a semisimple Lie algebra of positive finite dimension
over a field k of characteristic 0, and A0 is a Lie subalgebra of A consisting of
ad-diagonalizable elements of A. We also let ∆ be a base for the root system
Φ, and B∆ be the standard Borel subalgebra of A associated to A0 and ∆, as
before.

Let V be a vector space over k that is a module over A, as a Lie algebra
over k. If µ ∈ A′

0, then Vµ is the linear subspace of V consisting of v ∈ V such
that w · v = µ(w) v for every w ∈ A0, as in Section 33.5.

In this section, we suppose also that k is algebraically closed, and that V
has finite dimension, as a vector space over k. Under these conditions, it is well
known that

V corresponds to the direct sum of Vµ for(38.1.1)

finitely many µ ∈ A′
0, as a vector space over k.

This is mentioned on p107 of [14], and corresponds to part (a) of Proposition 3
on p60 of [24], and to Proposition 2.2 on p57 of [25].

To see this, note that for each w ∈ A0,

v 7→ w · v(38.1.2)

is diagonalizable on V , as in Section 14.9. These linear mappings on V commute
with each other, because A0 is commutative as a Lie subalgebra of A, and V is
a module over A. This implies (38.1.1), which is the same as saying that the
linear mappings (38.1.2) with w ∈ A0 can be simultaneously diagonalized on V .
This is the argument indicated in [14, 24].

777
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Alternatively, let V̂ be the linear subspace of V spanned by the Vµ’s, µ ∈ A′
0,

as in Section 33.5. Remember that V̂ corresponds to the direct sum of the Vµ’s,

and that V̂ is a submodule of V , as a module over A, as before. If V̂ ̸= V ,
then Weyl’s theorem implies that V corresponds to the direct sum of V̂ and a
nonzero submodule Y , as a module over A.

If w ∈ A0, then (38.1.2) maps Y into itself, because Y is a submodule of
V , as a module over A. This implies that (38.1.2) has a nonzero eigenvector in
Y , because k is algebraically closed, and Y is a vector space over k of positive
finite dimension. It follows that there is a nonzero element y of Y that is a
simultaneous eigenvector of (38.1.2) for every w ∈ A0, because these linear
mappings commute on V and thus Y , as before. This means that y ∈ Vµ for

some µ ∈ A′
0, so that y ∈ V̂ , which is a contradiction. This is the argument

used in the proof of Proposition 2.2 on p57 of [25].

If V ̸= {0}, then V has a primitive or maximal vector, in the sense of
Section 33.6. This is mentioned on p108 of [14], and corresponds to part (c) of
Proposition 3 on p60 of [24], and to Proposition 2.7 on p58 of [25]. To see this,
remember that B∆ is solvable as a Lie algebra over k, so that there is a nonzero
element v of V that is an eigenvector of the action of every element of B∆ on
V , by Lie’s theorem. This implies that v is a primitive or maximal vector, as
before.

Another argument is mentioned on p58 of [25], as follows. Remember that
µ ∈ A′

0 is said to be a weight of V with respect to A0 when Vµ ̸= {0}. In this
case, the set of weights is finite, because V has finite dimension, and the set of
weights is nonempty, because V ̸= {0}. One can use this to find a weight µ of
V such that for each α ∈ ∆, µ+ α is not a weight of V . This implies that any
nonzero element of Vµ is primitive or maximal, because of (33.5.3), as desired.

Remember that for each α ∈ Φ, there is a unique element hα of [Aα, A−α]
such that α(hα) = 2 = 1 + 1 in k, as in Section 33.1. Note that h−α = −hα for
every α ∈ Φ. If α ∈ Φ and ν ∈ A′

0 is a weight of V , then

ν(hα) ∈ Z,(38.1.3)

using the natural embedding of Q into k. This is part (b) of Proposition 3 on
p60 of [24], which corresponds to a remark after the statement of the theorem
on p112 of [14]. It suffices to verify this when α is an element of the set Φ+ of
positive roots with respect to ∆.

Let α ∈ Φ+ be given, let xα be a nonzero element of Aα, and let yα be an
element of A−α such that [xα, yα]A = hα. The linear span of xα, yα, and hα in
A is a Lie subalgebra of A that is isomorphic to sl2(k). We may consider V as a
module over this subalgebra of A, as a Lie algebra over k. The eigenvalues of the
action of hα on V correspond to integers, as in Section 15.9. These eigenvalues
are the same as the values of the weights of V at hα, as desired.

The condition (38.1.3) is also mentioned in Exercise 2 on p62 of [25], and
could be obtained from Theorem 3.1 on p58 and Theorem 4.1 on p59 of [25].
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38.2 Weights and a larger field

Let us continue with the same notation and hypotheses as in the previous sec-
tion, except that we no longer ask k to be algebraically closed. Let k1 be an
algebraically closed field with k ⊆ k1.

Remember that we can get a vector space Ṽ over k1 from V as in Section
33.2. In particular, the dimension of Ṽ as a vector space over k1 is the same as
the dimension of V as a vector space over k, which is finite, by hypothesis. As
before, we may consider V as a linear subspace of Ṽ , as a vector space over k.

If T is a linear mapping from V into itself, then T may be considered as
a linear mapping from V into Ṽ , as a vector space over k. This has a unique
extension to a linear mapping T̃ from Ṽ into itself, as a vector space over k1.

Suppose for the moment that T̃ is diagonalizable on Ṽ , with distinct eigen-
values λ1, . . . , λl ∈ k1. This implies that

l∏
j=1

(T̃ − λj IṼ ) = 0(38.2.1)

as a linear mapping on Ṽ , where I
Ṽ

is the identity mapping on Ṽ . If

λ1, . . . , λl ∈ k,(38.2.2)

then it follows that
l∏

j=1

(T − λj IV ) = 0(38.2.3)

on V , where IV is the identity mapping on V . This means that T is diagonal-
izable on V , by standard results.

We also get a Lie algebra (Ã, [·, ·]
Ã
) over k1 from A, as in Section 33.2. The

action of A on V has a unique extension to an action of Ã on Ṽ , that makes Ṽ
a module over Ã, as a Lie algebra over k1, as before.

The conditions on A discussed in Section 33.1 lead to analogous properties
of Ã, as in Section 33.4. In particular, Ã is semisimple as a Lie algebra over k1,
which could also be obtained from the semisimplicity of A as in Section 11.5.

Let (̃A0) be the linear subspace of Ã corresponding to A0, which is a Lie

subalgebra of Ã that is commutative as a Lie algebra over k1, as in Section 33.4.

Remember that the elements of (̃A0) are ad-diagonalizable in Ã.

Let (̃A0)
′
be the dual of (̃A0), as a vector space over k1, as before. If

µ ∈ (̃A0)
′
, then we take Ṽµ to be the set of v ∈ Ṽ such that w · v = µ(w) v for

every w ∈ (̃A0), as in Section 33.5. Because k1 is algebraically closed, we have

that Ṽ corresponds to the direct sum of Ṽµ for finitely many µ ∈ (̃A0)
′
, as in

the previous section.

If α ∈ A′
0, then let α̃ be the unique extension of α to an element of (̃A0)

′
, as

in Section 33.4. Remember that the analogue Φ̃ of Φ for Ã and (̃A0) consists of
α̃, α ∈ Φ.
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If α ∈ Φ, then hα is the unique element of [Aα, A−α] with α(hα) = 2, as in

Section 33.1. We may also consider hα as an element of Ã, and indeed it is the

unique element of [Ã
α̃
, Ã−α̃] = [(̃Aα), ˜(A−α)] with α̃(hα) = 2.

If α ∈ Φ and ν ∈ (̃A0)
′
is a weight of Ṽ , then ν(hα) corresponds to an

integer, as in the previous section. This means that the action of hα on Ṽ is
diagonalizable, and that the eigenvalues of this action correspond to integers,
and thus elements of k.

The action of hα on Ṽ is the same as the unique extension of the action of
hα on V to a linear mapping from Ṽ into itself, by construction. It follows that
the action of hα on V is diagonalizable too, as before.

Remember that A0 is spanned by the hα’s, α ∈ Φ, as in Section 33.1. This
means that the action of any element of A0 on V is diagonalizable, because the
action of hα is diagonalizable for every α ∈ Φ.

The actions of the elements of A0 on V commute with each other, because
A0 is commutative as a Lie subalgebra of A, and V is a module over A, as a Lie
algebra over k. This implies that the actions of the elements of A0 on V can be
simultaneously diagonalized, as in the previous section.

This shows that (38.1.1) holds, even if k is not necessarily algebraically
closed. This corresponds to part of Exercise 2 on p62 of [25].

If V ̸= {0}, then one can check that V has a primitive or maximal vector,
using the statement in the preceding paragraph, and the second argument for
the analogous assertion in the previous section. This corresponds to another
part of Exercise 2 on p62 of [25].

If V ̸= {0} and V is irreducible as a module over A, then it follows that V
is standard cyclic as a module over A, as in the remarks at the beginning of
Section 33.10. This corresponds to the corollary to Proposition 3 on p60 of [24],
and is mentioned in the proof of part (1) of Theorem 3.2 on p59 of [25]. This
also corresponds to some remarks on p108f of [14].

38.3 Conditions for finite dimension

We continue to use the same notation and hypotheses as in Section 33.1. Let
V be a vector space over k that is a module over A, as a Lie algebra over k. In
this section, we suppose that V is irreducible as a module over A, and that V
is standard cyclic of weight µ ∈ A′

0.
Suppose for the moment that V has finite dimension, as a vector space over

k. We would like to show that

for every α ∈ Φ+, µ(hα) is a nonnegative integer.(38.3.1)

This corresponds to the theorem on p112 of [14], to part of Theorem 3 on p60
of [24], and part of Theorem 4.1 on p59 of [25].

Let α ∈ Φ+ be given. Remember that µ(hα) corresponds to an integer, using
the natural embedding of Q into k, as in (38.1.3). This also uses the remarks
in the previous section, when k is not necessarily algebraically closed.
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As before, let xα be a nonzero element of Aα, and let yα be an element of
A−α such that [xα, yα]A = hα, so that the linear span of xα, yα, and hα in A
is a Lie subalgebra of A isomorphic to sl2(k). Thus V may be considered as a
module over sl2(k) as well.

By hypothesis, there is a v ∈ V that is primitive or maximal of weight µ in
V , as a module over A. This implies that v is primitive or maximal of weight
µ(hα) in V as a module over the linear span of xα, yα, and hα, as in Section
15.2. It follows that µ(hα) ≥ 0, as in Section 15.3.

Conversely, it is well known that (38.3.1) implies that the dimension of V is
finite under these conditions. This corresponds to part of the theorem on p113
of [14], to part of Theorem 3 on p60 of [24], and part of Theorem 4.1 on p59
of [25] when A = sln(k). Before we begin the proof of this, let us review some
facts related to inverse roots.

Remember from Section 33.1 that Φ is a reduced root system in the finite-
dimensional vector space ER over the real numbers. If α ∈ Φ, then λα is the
linear functional on ER associated to the symmetry on ER with vector α that
maps Φ onto itself in the usual way. We have seen that the collection Φ′ of λα,
α ∈ Φ, is a root system in the dual E′

R of ER, as in Section 19.8. Remember
that ∆ is a base for Φ, and let ∆′ be the set of λα, α ∈ ∆. We have also seen
that ∆′ is a base for Φ′, because Φ is reduced, as in Section 19.13.

Using ∆′, we can define (Φ′)+ = (Φ′)+,∆
′
to be the set of dual roots in Φ′

that are positive with respect to ∆′, which is to say that they can be expressed as
linear combinations of the elements of ∆′ with nonnegative coefficients. Equiv-
alently, (Φ′)+ consists exactly of λα, α ∈ Φ+, as in Section 30.3.

If α ∈ Φ, then

γ(hα) = λα(γ)(38.3.2)

for every γ ∈ Φ, as in (33.1.2). More precisely, the right side is an integer, by
the definition of a root system, which corresponds to an element of k under the
natural embedding of Q into k. Remember that hα is uniquely determined by
(38.3.2), because A′

0 is spanned by Φ, as in Section 33.1.

If α ∈ Φ, then λα can be expressed as a linear combination of λβ , β ∈ ∆,
with integer coefficients, because ∆′ is a base for Φ′. This implies that hα
can be expressed as a linear combination of hβ , β ∈ ∆, with the same integer
coefficients, because hα is uniquely determined by (38.3.2). Similarly, if α ∈ Φ+,
then λα can be expressed as a linear combination of λβ , β ∈ ∆, with nonnegative
integer coefficients, because λα ∈ Φ+, as before. This means that hα can be
expressed as a linear combination of hβ , β ∈ ∆, with the same nonnegative
integer coefficients.

It follows that (38.3.1) holds when µ(hβ) is a nonnegative integer for every
β ∈ ∆. This corresponds to a remark just after Theorem 3 on p60 of [24].
Similarly, if ν ∈ A′

0, then ν(hα) corresponds to an integer for every α ∈ Φ if and
only if ν(hβ) corresponds to an integer for every β ∈ ∆.
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38.4 Some initial steps

We continue to use the same notation and hypotheses as in Section 33.1. If α
is in the base ∆ for Φ, then let xα be a nonzero element of Aα, and let yα be
an element of A−α such that [xα, yα]A = hα, as before. If α, β ∈ ∆ and α ̸= β,
then [xα, yβ ]A = 0, as in Section 23.5. Indeed, it is easy to see that α − β ̸∈ Φ
in this case, so that Aα−β = {0}.

Let UA be a universal enveloping algebra of A again, and let us identify
A with its image in UA under the associated Lie algebra homomorphism, as
before. If α, β ∈ ∆ and α ̸= β, then

[xα, y
l
β ] = 0(38.4.1)

for every positive integer l. More precisely, ylβ is defined as an element of UA,
and the left side uses the commutator bracket associated to multiplication in
UA. Of course, (38.4.1) holds when l = 1 as in the preceding paragraph, which
implies the analogous statement for l ≥ 2. This corresponds to part (a) of the
lemma on p113 of [14].

If α, β ∈ ∆, then
[hα, y

l
β ] = −l β(hα) ylβ(38.4.2)

for every positive integer l. If l = 1, then this reduces to the fact that [hα, yβ ]A =
−β(hα), because hα ∈ A0 and yβ ∈ A−β . Otherwise, one can use induction and
the fact that the commutator with hα defines a derivation on UA, as in Section
2.5. This corresponds to part (b) of the lemma on p113 of [14].

If α ∈ ∆, then
[xα, y

l
α] = −l yl−1

α ((l − 1) · e− hα)(38.4.3)

for every positive integer l, where e = eUA is the multiplicative identity element
in UA. If l = 1, then yl−1

α is interpreted as being equal to e, and (38.4.3) follows
from the way that yα was chosen. Otherwise, if l ≥ 2, then

[xα, y
l
α] = [xα, yα] y

l−1
α + yα [xα, y

l−1
α ] = hα y

l−1
α + yα [xα, y

l−1
α ],(38.4.4)

because the commutator with xα defines a derivation on UA, as before. Using
induction, we may suppose that the analogue of (38.4.3) for l − 1 holds, to get
that

[xα, y
l
α] = hα y

l−1
α − (l − 1) yl−1

α ((l − 2) · e− hα).(38.4.5)

Observe that

hα y
l−1
α = [hα, y

l−1
α ] + yl−1

α hα = −2 (l − 1) yl−1
α + yl−1

α hα,(38.4.6)

by (38.4.2). One can combine this with (38.4.5) to get (38.4.3), as desired. This
corresponds to part (c) of the lemma on p113 of [14].

Let V be a vector space over k that is a module over A, as a Lie algebra
over k. Suppose that V is irreducible as a module over A, that V is standard
cyclic of weight µ ∈ A′

0, and that

mα = µ(hα)(38.4.7)
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is a nonnegative integer for every α ∈ ∆. We would like to show that V has
finite dimension, as in the previous section.

By hypothesis, there is a primitive or maximal vector v ∈ V of weight µ
such that V = (UA) · v. Let α ∈ ∆ be given, and put

vα = ymα+1
α · v.(38.4.8)

If β ∈ ∆ and α ̸= β, then

xβ · vα = ymα+1
α · (xβ · v) = 0.(38.4.9)

This uses (38.4.1) in the first step, and the fact that v is primitive or maximal
in the second step.

Observe that

xα · vα = ([xα, y
mα+1
α ]) · v + ymα+1

α · (xα · v)(38.4.10)

= −(mα + 1) ymα
α · ((mα · e− hα) · v),

using (38.4.3) and the fact that xα · v = 0 in the second step. However,

(mα · e− hα) · v = mα v − hα · v = mα v − µ(hα) v = 0,(38.4.11)

because v has weight µ in V . Thus

xα · vα = 0.(38.4.12)

Note that vα has weight µ − (mα + 1)α with respect to A0, as in Section
33.5. If vα ̸= 0, then vα would be a primitive or maximal vector in V , because
of (38.4.9) and (38.4.12). This is not possible, because V is irreducible as a
module over A and mα ̸= −1, as in Section 33.10. This shows that

ymα+1
α · v = vα = 0,(38.4.13)

as in step (1) on p113 of [14].
Alternatively, the linear span of xα, yα, and hα in A is a Lie subalgebra of A

that is isomorphic to sl2(k). Thus V may be considered as a module over this
subalgebra, and v is primitive or maximal of weight mα in the sense of Section
15.2. One can use this to get (38.4.12) as in Section 15.3. This is the argument
used on p61 of [24].

Using (38.4.13), we get that

the linear subspace of V spanned by yjα · v, j = 0, . . . ,mα,(38.4.14)

is a submodule of V , as a module over the Lie subalgebra of A

spanned by xα, yα, and hα.

This follows from the remarks in Section 15.3, as on p61 of [24]. Alternatively,
this linear subspace of V is mapped into itself by the action of yα, because of
(38.4.13). This linear subspace of V is also mapped into itself by the action of
hα, because y

j
α · v has weight µ − j α in V for each j ≥ 0, as in Section 33.5.

One can check that this linear subspace of V is mapped into itself by the action
of xα, using (38.4.3) and the fact that xα · v = 0. This is the argument used
in step (2) on p113 of [14]. Note that this linear subspace of V is nontrivial,
because v ̸= 0.
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38.5 Submodules over subalgebras

Let k be a commutative ring with a multiplicative identity element, and let
(A, [·, ·]A) be a Lie algebra over k. Suppose that V is a module over k that is a
module over A, as a Lie algebra over k. Let C be a Lie subalgebra of A, so that
V may be considered as a module over C as well. Also let Z be a submodule of
V , as a module over k, that is a submodule of V , as a module over C as well.

Consider the subset A · Z of V consisting of finite sums of elements of the
form a · z, where a ∈ A and z ∈ Z. This is clearly a submodule of V , as a
module over k. Let us check that A · Z is a submodule of V as a module over
C. This corresponds to part of the argument in step (3) on p113 of [14], and to
a remark on p61 of [24].

If a ∈ A, c ∈ C, and z ∈ Z, then

c · (a · z) = ([c, a]A) · z + a · (c · z).(38.5.1)

Of course, ([c, a]A) · z ∈ A · Z automatically, and c · z ∈ Z, because Z is a
submodule of V , as a module over C. It follows that c · (a · z) ∈ A · Z, which
implies that A · Z is a submodule of V , as a module over C.

Suppose now that k is a field, and that A has finite dimension, as a vector
space over k. Let V (C) be the linear subspace of V spanned by all finite-
dimensional linear subspaces Z of V such that Z is a submodule of V , as a
module over C. We would like to verify that V (C) is a submodule of V , as a
module over A. This corresponds to another part of the argument in step (3)
on p113 of [14], and to another remark on p61 of [24].

Let Z be a finite-dimensional linear subspace of V that is a submodule of
V , as a module over C. Thus A · Z is a submodule of V , as a module over C,
as before. It is easy to see that A ·Z has finite dimension as a vector space over
k, because A and Z have finite dimension. This implies that

A · Z ⊆ V (C).(38.5.2)

One can use this to check that V (C) is a submodule of V , as a module over A.
If Z1, . . . , Zn are finitely many finite-dimensional linear subspaces of V that

are submodules of Z, as a module over C, then it is easy to see that the linear
subspace of V spanned by Z1, . . . , Zn has finite dimension and is a submodule
of V , as a module over C. This implies that every element of V (C) is contained
in a finite-dimensional linear subspace of V that is a submodule of V , as a
module over C. Similarly, every finite-dimensional linear subspace of V (C) is
contained in a finite-dimensional linear subspace of V that is a submodule of V ,
as a module over C.

Let us return now to the same notation and hypotheses as in Section 33.1,
so that A is a finite-dimensional Lie algebra over a field k of characteristic 0
in particular. Let V be a vector space over k that is a module over A again,
as a Lie algebra over k, and suppose that V is irreducible as a module over A,
that V is standard cyclic of weight µ ∈ A′

0, and that µ(hα) corresponds to a
nonnegative integer for each α ∈ ∆, with respect to the standard embedding
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of Q into k, as in the previous section. If α ∈ ∆, then let xα and yα be as
before, and let Cα be the linear span of xα, yα, and hα in A. Thus Cα is a Lie
subalgebra of A that is isomorphic to sl2(k).

Under these conditions, there is a nontrivial finite-dimensional linear sub-
space of V that is a submodule of V , as a module over Cα, as in the previous
section. This means that V (Cα) ̸= {0}, where V (Cα) is as defined earlier. It
follows that

V (Cα) = V,(38.5.3)

because V (Cα) is a submodule of V , as a module over A, as before. This
corresponds to step (3) on p113 of [14], and to an argument on p61 of [24].

38.6 Some related exponentials on V

Let us continue with the same notation and hypotheses as in the previous sec-
tion, including those from Section 33.1. Thus V is a vector space over k that is
a module over A, as a Lie algebra over k, V is irreducible as a module over A,
V is standard cyclic of weight µ ∈ A′

0, and µ(hα) corresponds to a nonnegative
integer for every α ∈ ∆, with respect to the standard embedding of Q into k,
as before. If α ∈ ∆, then we let xα, yα ∈ A be as before, so that the linear span
Cα of xα, yα, and hα in A is a Lie subalgebra of A that is isomorphic to sl2(k).

Let ρ be the representation of A on V , so that ρa(v) = a · v for every a ∈ A
and v ∈ V . If Z is a finite-dimensional linear subspace of V that is a submodule
of V , as a module over Cα, then ρxα

and ρyα are nilpotent on Z. Indeed, Z
is isomorphic as a module over Cα to a direct sum of finitely many irreducible
finite-dimensional modules over Cα, by Weyl’s theorem. Every irreducible finite-
dimensional module over Cα is isomorphic to the module W (m) described in
Section 15.4 for some nonnegative integer m, as in Sections 15.5 and 15.9. It
follows that ρxα and ρyα are nilpotent on Z, because of the analogous statement
forW (m), as in Section 15.8. This implies that ρxα

and ρyα are locally nilpotent
on V , as in Section 27.12, because of (38.5.3). This corresponds to step (4) on
p114 of [14].

Of course, ρ−yα = −ρyα is locally nilpotent on V as well. Thus exp ρxα

and exp ρ−yα are defined as linear mappings from V into itself, as in Section
27.12. More precisely, these are one-to-one linear mappings from V onto itself,
as before. It follows that

θα = (exp ρxα) ◦ (exp ρ−yα) ◦ (exp ρxα)(38.6.1)

defines a one-to-one linear mapping from V onto itself, as in step (5) on p114
of [14].

Let us check that
ρhα

◦ θα = −θα ◦ ρhα
(38.6.2)

on V . It suffices to verify that this holds on any finite-dimensional linear sub-
space Z of V that is a submodule of V , as a module over Cα, because of (38.5.3).
Remember that Z is isomorphic as a module over Cα to the direct sum of finitely
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many irreducible finite-dimensional modules over Cα, each of which is isomor-
phic to a module of the form W (m) as in Section 15.4. Thus (38.6.2) follows
from the analogous statement for W (m), as in Section 15.8.

If h ∈ A0 and α(h) = 0, then [h, xα]A = [h, yα]A = 0. This means that ρh
commutes with ρxα

and ρyα on V , and thus with exp ρxα
, exp ρ−yα . It follows

that

ρh ◦ θα = θα ◦ ρh(38.6.3)

on V under these conditions.
Let ν ∈ A′

0 be given, and let Vν be the linear subspace of V consisting of
vectors with weight ν with respect to A0, as in Section 33.5. Thus Vν consists
of z ∈ V such that ρh(z) = ν(h) z for every h ∈ A0. More precisely, it suffices
to check this when h = hα, and when α(h) = 0, because A0 is spanned by
hα and the kernel of α, as a vector space over k. This uses the fact that
α(hα) = 2 = 1 + 1 ̸= 0 in k, because k has characteristic 0, by hypothesis.

Put

τα(ν) = ν − ν(hα)α,(38.6.4)

which is also an element of A′
0. Note that τα(ν) = ν on the kernel of α, that

(τα(ν))(hα) = −ν(hα), and that τα(ν) is uniquely determined in A′
0 by these

conditions. One can check that

θα(Vν) = Vτα(ν),(38.6.5)

using (38.6.2) and (38.6.3). This corresponds to step (6) on p114 of [14], and to
part of Remark (1) on p62 of [24].

It follows that

dimVν = dimVτα(ν),(38.6.6)

as vector spaces over k. In particular, Vν ̸= {0} exactly when Vτα(ν) ̸= {0}.
This is the same as saying that ν is a weight of V with respect to A0 if and only
if τα(ν) is a weight of V .

Alternatively, suppose that Vν ̸= {0}, and let z be a nonzero element of Vν .
Because V is standard cyclic of weight µ as a module over A, ν can be expressed
as µ minus a linear combination of roots with integer coefficients, as in Section
33.8. In particular, this implies that ν(hα) corresponds to an integer, under the
standard embedding of Q into k, because µ(hα) corresponds to an integer, by
hypothesis.

Let Z be a finite-dimensional linear subspace of V that is a submodule of
V , as a module over Cα, such that z ∈ Z, as in the previous section. Put

u = (ρyα)
ν(hα)(z) when ν(hα) ≥ 0,(38.6.7)

= (ρxα
)−ν(hα)(z) when ν(hα) ≤ 0,

which is an element of Z. One can verify that u ̸= 0, because Z is isomorphic
as a module over Cα to the direct sum of finitely many modules over Cα of the
form W (m) as in Section 15.4, as before.
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We also have that u has weight (38.6.4) in V with respect to A0, as in Section
33.5. This implies that Vτα(ν) ̸= {0}, as before. Conversely, if Vτα(ν) ̸= {0},
then the same argument shows that Vν ̸= {0}, because τα(τα(ν)) = ν. This
corresponds to an argument on p61 of [24].

38.7 Weights and the Weyl group

We continue to use the same notation and hypotheses as in Section 33.1. Re-
member that Φ is a root system in ER, which is a vector space over the real
numbers of positive finite dimension, and that EQ is the same as the linear span
of Φ in ER as a vector space over Q, as in Section 32.3. In particular, every
automorphism of Φ maps EQ onto itself.

As before, we let V be a vector space over k that is a module over A, as a Lie
algebra over k, with V irreducible as a module over A, and standard cyclic with
weight µ ∈ A′

0, and se suppose that µ(hα) corresponds to a nonnegative integer
for each α ∈ ∆, with respect to the standard embedding of Q into k. If ν ∈ A′

0

is a weight of V with respect to A0, then it follows that ν(hα) corresponds to an
integer for every α ∈ ∆, as in the previous section. This implies that ν ∈ EQ,
as in Section 32.3.

If α ∈ Φ, then we let σα be the symmetry on ER with vector α that maps
Φ onto itself, and λα be the corresponding linear functional on ER, as usual.
Remember that λα maps EQ into Q, because λα takes integer values on Φ. If
ν ∈ EQ ⊆ A′

0, then

λα(ν) = ν(hα),(38.7.1)

by (33.1.2), and using the natural embedding of Q into k. This implies that

σα(ν) = ν − λα(ν)α = ν − ν(hα)α.(38.7.2)

If ν ∈ EQ and σ is in the Weyl group of Φ, then we would like to check
that ν is a weight of V with respect to A0 if and only if σ(ν) has this property.
If σ = σα for some α ∈ ∆, then this follows from the remarks in the previous
section, because (38.7.2) is the same as (38.6.4). Otherwise, one can use the
fact that the Weyl group of Φ is generated byσα, α ∈ ∆, as in Section 19.14.
Similarly,

dimVν = dimVσ(ν)(38.7.3)

for every σ in the Weyl group of Φ. More precisely, this is the same as (38.6.6)
when σ = σα for some α ∈ ∆.

The weights of V with respect to A0 are elements of EQ, as before. The
Weyl group of Φ maps the set of weights of V with respect to A0 onto itself, as
in the preceding paragraph. This and (38.7.3) correspond to step (7) on p114
of [14], and are included in the theorem on p113 of [14]. These statements also
correspond to Remark (1) on p62 of [24].

We would like to show that there are only finitely many weights of V with
respect to A0. If ν is a weight of V , then ν can be expressed as µ minus a linear
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combination of the elements of ∆ with nonnegative integer coefficients, as in
Section 33.8. This means that ν ⪯ µ, in the notation of Section 30.5.

If ν is a weight of V , then ν(hα) corresponds to an integer for every α ∈ ∆,
so that ν ∈ Υ, as in Section 32.3. In this case, there is an element σ of the Weyl
group of Φ such that σ(ν) ∈ Υ+, as in Section 30.4. Note that σ(ν) is a weight
of V as well, so that σ(ν) ⪯ µ, as before.

However, there are only finitely many elements ρ of Υ+ such that ρ ⪯ µ,
as in Section 30.6. This implies that there are only finitely many weights of
V , because there are only finitely many elements of the Weyl group of Φ. This
corresponds to step (8) on p114 of [14].

Alternatively, if ν is a weight of V , then ν can be expressed as µ minus a
linear combination of the elements of ∆ with nonnegative integer coefficients,
as before. In order to show that there are only finitely many weights of V , it
suffices to find upper bounds for these coefficients that do not depend on ν, as
on p61 of [24].

Of course, µ ∈ EQ, because µ(hα) corresponds to an integer for every α ∈ ∆,
by hypothesis. Remember that ∆ is a basis for EQ as a vector space over Q, as
in Section 33.1. Thus ν can be expressed in a unique way as a linear combination
of elements of ∆ with coefficients in Q, and we would like to find lower bounds
for these coefficients that do not depend on ν.

Remember that −∆ is a base for Φ too, so that there is an element σ of the
Weyl group of Φ such that σ(∆) = −∆, as in Section 19.14. We also have that
σ(ν) is a weight of V , because ν is a weight of V , as before. This means that
σ(ν) can be expressed as µ minus a linear combination of elements of ∆ with
nonnegative integer coefficients, as in Section 33.8 again.

It follows that ν can be expressed as σ−1(µ) minus a linear combination of
the elements of σ−1(∆) with nonnegative integer coefficients. Equivalently, ν
can be expressed as σ−1(µ) plus a linear combination of elements of ∆ with
nonnegative integer coefficients. In particular, the coefficients of ν with respect
to ∆ are greater than or equal to the coefficients of σ−1(µ).

This implies that the coefficients of ν with respect to ∆ have lower bounds
that do not depend on ν, because there are only finitely many elements of the
Weyl group. It follows that there are only finitely many weights of V , as before.

Remember that V is spanned by its weight spaces, each of which has finite
dimension, as in Section 33.8. This means that V has finite dimension, because
there are only finitely many weights of V . This corresponds to step (9) on p114
of [14], and to the last step in the proof on p61 of [24].

38.8 Sums of weights

Let us continue to use the same notation and hypotheses as in Section 33.1. Let
V 1, V 2 be vector spaces over k that are modules over A, as a Lie algebra over
k. Consider the tensor product V 1

⊗
V 2, initially as a vector space over k. As

in Section 7.12, V 1
⊗
V 2 may be considered as a module over A, where

a · (z1 ⊗ z2) = (a · z1)⊗ z2 + z1 ⊗ (a · z2)(38.8.1)
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for every a ∈ A, z1 ∈ V 1, and z2 ∈ V 2.
Let ν1, ν2 ∈ A′

0 be given, and remember that V 1
ν1 , V

2
ν2 consist of elements of

V 1, V 2 with weight ν1, ν2, respectively, with respect to A0, as in Section 33.5.
If w ∈ A0, z1 ∈ V 1

ν1 , and z2 ∈ V 2
ν2 , then

w · (z1 ⊗ z2) = (w · z1)⊗ z2 + z1 ⊗ (w · z2)(38.8.2)

= (ν1(w) z1)⊗ z2 + z1 ⊗ (ν2(w) z2)

= (ν1(w) + ν2(w)) (z1 ⊗ z2).

This means that z1 ⊗ z2 is in the set
(
V 1

⊗
V 2

)
ν1+ν2

of elements of V 1
⊗
V 2

with weight ν1 + ν2 with respect to A0. The tensor product V 1
ν1

⊗
V 2
ν2 may be

considered as a linear subspace of V 1
⊗
V 2, and we get that

V 1
ν1

⊗
V 2
ν2 ⊆

(
V 1

⊗
V 2

)
ν1+ν2

.(38.8.3)

Let µ1, µ2 ∈ A′
0 be given, and suppose that

v1 ∈ V 1, v2 ∈ V 2 are primitive or maximal vectors(38.8.4)

of weight µ1, µ2, respectively,

as in Section 33.6. Under these conditions, it is easy to see that

v1 ⊗ v2 is a primitive or maximal vector in V 1
⊗

V 2(38.8.5)

of weight µ1 + µ2.

If UA is a universal enveloping algebra of A, then

V = (UA) · (v1 ⊗ v2)(38.8.6)

is the submodule of V 1
⊗
V 2, as a module over A, generated by v1 ⊗ v2, as

before. Thus
V is standard cyclic of weight µ1 + µ2,(38.8.7)

as a module over A.
If V 1, V 2 have finite dimension as vector spaces over k, then V 1

⊗
V 2 has

finite dimension as well, which implies that V has finite dimension too. This
shows that

if there are standard cyclic modules over A with weights(38.8.8)

µ1, µ2 that are finite dimensional as vector spaces over k,

then there is a standard cyclic module over A with weight

µ1 + µ2 that is finite dimensional as a vector space over k,

as in Proposition 4.4 on p61 of [25]. Of course, this also follows from the
characterization of weights of finite-dimensional standard cyclic modules stated
in Section 38.3. This more direct argument for sums is used in [25] to obtain
the sufficiency of the condition in Section 38.3 when A = sln(k).
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38.9 Weights and tensor products

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If V is a vector space over k that is a module over A, then put

Π(V ) = {ν ∈ A′
0 : Vν ̸= {0}},(38.9.1)

which is the set of weights of V with respect to A0. Observe that

{ν1 + ν2 : ν1 ∈ Π(V 1), ν2 ∈ Π(V 2)} ⊆ Π
(
V 1

⊗
V 2

)
,(38.9.2)

by (38.8.3).
Suppose that

V 1, V 2 correspond to the direct sums of their(38.9.3)

weight spaces, as vector spaces over k.

This implies that

V 1
⊗

V 2 corresponds to the direct sum of V 1
ν1

⊗
V 2
ν2 ,(38.9.4)

ν1 ∈ Π(V 1), ν2 ∈ Π(V 2), as a vector space over k,

as in Section 7.14.
Under these conditions, we get that

Π
(
V 1

⊗
V 2

)
= {ν1 + ν2 : ν1 ∈ Π(V 1), ν2 ∈ Π(V 2)},(38.9.5)

using (38.8.3). More precisely, if ν ∈ A′
0, then(

V 1
⊗

V 2)ν corresponds to the direct sum of V 1
ν1

⊗
V 2
ν2 ,(38.9.6)

where ν1 ∈ Π(V 1), ν2 ∈ Π(V 2), and ν1 + ν2 = ν,

as a vector space over k.

Note that

V 1
⊗

V 2 corresponds to the direct sum of(38.9.7)

its weight spaces, as a vector space over k,

in this case.
If V 1, V 2 have finite dimension as vector spaces over k, then Π(V 1), Π(V 2)

have only finitely many elements. This implies that Π
(
V 1

⊗
V 2

)
has only

finitely many elements as well, by (38.9.5). If ν ∈ Π
(
V 1

⊗
V 2

)
, then we get

that
dim

(
V 1

⊗
V 2

)
ν
=

∑
ν1+ν2=ν

(dimV 1
ν1) (dimV 2

ν2),(38.9.8)

where more precisely the sum is taken over all ν1 ∈ Π(V 1) and ν2 ∈ Π(V 2) with
ν1 + ν2 = ν.
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Suppose now that

V 1, V 2 are standard cyclic of weights µ1, µ2 ∈ A′
0,(38.9.9)

respectively, as modules over A.

In particular, this implies that (38.9.3) holds, as in Section 33.8. Remember
that the elements of Π(V 1), Π(V 2) can be expressed as µ1, µ2 minus linear
combinations of elements of ∆ with nonnegative integer coefficients, respectively,
as in Section 33.8. It follows that

the elements of Π
(
V 1

⊗
V 2

)
can be expressed as(38.9.10)

µ1 + µ2 minus linear combinations of elements of ∆

with nonnegative integer coefficients.

If ν1 ∈ Π(V 1), ν2 ∈ Π(V 2), then we get that

ν1 + ν2 = µ1 + µ2 only when ν1 = µ1, ν2 = µ2.(38.9.11)

This implies that (
V 1

⊗
V 2)µ1+µ2

= V 1
µ1

⊗
V 2
µ2
,(38.9.12)

as in (38.9.6). Remember that V 1
µ1
, V 2

µ2
have dimension one as vector spaces

over k, as in Section 33.8. This means that

dim
(
V 1

⊗
V 2

)
µ1+µ2

= 1,(38.9.13)

by (38.9.12).
If ν ∈ Π

(
V 1

⊗
V 2

)
, then one can check that

ν = ν1 + ν2 for only finitely many ν1 ∈ Π(V 1), ν2 ∈ Π(V 2),(38.9.14)

because ν1, ν2 can be expressed as µ1, µ2 minus linear combinations of elements
of ∆ with nonnegative integer coefficients, as before. Remember that V 1

ν1 , V
2
ν2

have finite dimensions as vector spaces over k for every ν1, ν2 ∈ A′
0, as in Section

33.8. Thus (
V 1

⊗
V 2

)
ν
has finite dimension(38.9.15)

as a vector space over k, because it corresponds to the direct sum of finitely
many finite-dimensional subspaces, by (38.9.6). More precisely, the dimension
of

(
V 1

⊗
V 2

)
ν
can be expressed as in (38.9.8) again.

This corresponds to Exercise 7 on p117 of [14], and to part of part (b) of
Proposition 5 on p63 of [24].

38.10 Fundamental weights and modules

Let us return to some connections with abstract weights, as in Section 32.3.
Remember that the collection Φ′ of λα, α ∈ Φ, is a root system in the dual E′

R
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of ER, and that the set ∆′ of λα, α ∈ ∆, is a base for Φ′, because Φ is reduced
as a root system in ER. In particular, ∆′ is a basis for E′

R, as a vector space
over R, and if α ∈ ∆, then there is a unique element µα of ER such that

λβ(µα) = 1 when β = α(38.10.1)

= 0 for every β ∈ ∆ with β ̸= α,

as in Section 30.1. The µα’s, α ∈ ∆, form a basis for ER dual to the λβ ’s,
β ∈ ∆, as before.

Remember that Υ consists of z ∈ ER such that λβ(z) ∈ Z for every β ∈ Φ,
or equivalently for every β ∈ ∆, because ∆′ is a base for Φ′. Thus µα ∈ Υ for
every α ∈ ∆, as in Section 30.1. We also have that Υ ⊆ EQ, as in Section 32.3,
so that µα ∈ EQ ⊆ A′

0 for every α ∈ ∆.
Similarly, Υ+ consists of z ∈ Υ such that λβ(z) ≥ 0 for every β ∈ ∆,

or equivalently for every β ∈ Φ. Clearly µα ∈ Υ+ for every α ∈ ∆, as in
Section 30.3. Remember that the µα’s, α ∈ ∆, are called the fundamental
(dominant) weights with respect to ∆, as in Section 30.1. It is easy to see that
Υ+ consists exactly of linear combinations of the µα’s, α ∈ ∆, whose coefficients
are nonnegative integers.

As in Section 32.3, Υ consists exactly of ν ∈ A′
0 such that ν(hβ) corresponds

to an integer for every β ∈ ∆, or equivalently for every β ∈ Φ. Similarly, Υ+

consists exactly of µ ∈ A′
0 such that µ(hβ) corresponds to a nonnegative integer

for every β ∈ ∆, or equivalently β ∈ Φ. This is the same as the set of µ ∈ A′
0 for

which there is a finite-dimensional standard cyclic module over A with weight
µ, as in Section 38.3. The modules associated to µα, α ∈ ∆, in this way are
called the fundamental modules over A, or the fundamental representations of
A, as in Remark (2) on p62 of [24].

If µ ∈ Υ+, then µ can be expressed as a sum of µα’s, α ∈ ∆, with suitable
repetitions. One can use this to get a finite-dimensional standard cyclic module
over A with weight µ as a submodule of a tensor product of fundamental modules
over A, with suitable repetitions, as in Exercise 8 on p117 of [14]. This is
analogous to the argument discussed in Section 38.8. This type of argument is
used on p61 of [25], to get the existence of finite-dimensional standard cyclic
modules over A = sln(k) with any weight µ ∈ Υ+.

38.11 Simple transitivity

Let us continue with the same notation and hypotheses as in Section 33.1. In
particular, Φ is a reduced root system in the vector space ER over R of positive
finite dimension, and ∆ is a base for Φ. Remember that any reduced root system
can be as in Section 33.1, because of Serre’s theorem, as in Section 27.8.

If σ is an element of the Weyl group of Φ such that

σ(∆) = ∆,(38.11.1)

then σ is the identity mapping on ER. This was discussed in Section 20.1, and
it can also be obtained using results about representations of the Lie algebra A,
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as in Proposition 4 on p62 of [24]. This corresponds to Exercise 1 on p116 of
[14].

If β ∈ Φ, then
λσ(β) = λβ ◦ σ−1,(38.11.2)

because σ is an automorphism of Φ, as in Section 19.4. Let µα, α ∈ ∆, be the
fundamental weights with respect to ∆, as in the previous section. If α, β ∈ ∆,
then

λσ(β)(σ(µα)) = λβ(µα) = 1 when β = α(38.11.3)

= 0 when β ̸= α,

by (38.11.2) and (38.10.1). This implies that

σ(µα) = µσ(α)(38.11.4)

for every α ∈ ∆, because of (38.11.1).
Let α ∈ ∆ be given, and let V α be a finite-dimensional standard cyclic

module over A with weight µα. In particular, µα is a weight of V α, which
implies that (38.11.4) is a weight of V α too, as in Section 38.7. It follows that

µα − σ(µα) = µα − µσ(α)(38.11.5)

can be expressed as a linear combination of the elements of ∆, with coefficients
that are nonnegative integers, as in Section 33.8.

Of course, the sum of (38.11.5) over α ∈ ∆ is equal to 0, by (38.11.1). This
implies that (38.11.5) is equal to 0 for every α ∈ ∆, because ∆ is a basis for
ER, and the coefficients of (38.11.5) with respect to ∆ are all nonnegative. It
follows that σ is the identity mapping on ER, as desired.

38.12 Weights and saturated sets

We continue with the same notation and hypotheses as in Section 33.1. Let V
be a finite-dimensional vector space over k, and suppose that V is a standard
cyclic module over A of weight µ ∈ A′

0. If ν ∈ A′
0, then let Vν be the linear

subspace of V consisting of vectors of weight ν with respect to A0, as in Section
33.5. Put

Π = Π(V ) = {ν ∈ A′
0 : Vν ̸= {0}}.(38.12.1)

Note that Π has only finitely many elements, because V has finite dimension,
by hypothesis.

If ν ∈ Π and α ∈ Φ, then ν(hα) corresponds to an integer under the standard
embedding of Q into k, as in Sections 38.1 and 38.2. This means that

Π ⊆ Υ,(38.12.2)

where Υ is as in Section 32.3. We would like to show that

Π is saturated as a subset of Υ,(38.12.3)
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in the sense of Section 30.7. This corresponds to the first part of the proposition
on p114 of [14].

Let ν ∈ Π and α ∈ Φ be given, and remember that ν ∈ EQ and ν(hα) =
λα(ν), as in Sections 32.2 and 32.3. Let xα be a nonzero element of Aα, and let
yα be an element of A−α such that [xα, yα]A = hα, as usual. The linear span of
xα, yα, and hα in A is a Lie subalgebra of A that is isomorphic to sl2(k), as a
Lie algebra over k.

Let Z be the linear subspace of V spanned by the subspaces of the form

Vν+j·α, j ∈ Z.(38.12.4)

It is easy to see that Z is a submodule of V , as a module over the linear span
of xα, yα, and hα in A, using the remarks in Section 33.5.

Suppose that j1, j2 ∈ Z satisfy j1 ≤ j2 and

ν + j1 · α, ν + j2 · α ∈ Π.(38.12.5)

If j ∈ Z and j1 ≤ j ≤ j2, then we would like to verify that

ν + j · α ∈ Π.(38.12.6)

Of course, Z has finite dimension as a vector space over k, because V has
finite dimension, by hypothesis. Thus we can use Weyl’s theorem to get that Z
corresponds to the direct sum of irreducible modules over the linear span of xα,
yα, and hα in A. Each of these irreducible modules is isomorphic to W (m) in
Section 15.4 for some nonnegativem, as a module over sl2(k), as in Sections 15.5
and 15.9. One can use this to get (38.12.6), because of the analogous property
of W (m).

Remember that elements of the Weyl group of Φ map Π onto itself, as in
Section 38.7. In particular, σα(ν) ∈ Π, where σα is the symmetry on ER with
vector α that maps Φ onto itself, as usual. Equivalently,

ν − λα(ν)α ∈ Π,(38.12.7)

where λα(ν) = ν(hα) corresponds to an integer under the natural embedding
of Q into k, as before. If j ∈ Z is between 0 and λα(ν), then (38.12.6) holds,
because ν ∈ Π, by hypothesis. This implies (38.12.3), as desired.

Let r, q be the largest integers such that

ν − r · α, ν + q · α ∈ Π,(38.12.8)

so that q, r ≥ 0, because ν ∈ Π. It follows that (38.12.6) holds for some j ∈ Z
if and only if −r ≤ j ≤ q. The sequence of elements of Π of the form

ν + j · α,(38.12.9)

with j ∈ Z and −r ≤ j ≤ q, is called the α-string through ν, as on p114 of
[14]. It is easy to see that σα maps this sequence onto itself, but in the opposite
order. This implies that

r − q = λα(ν),(38.12.10)
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as on p114 of [14].
Of course, µ ∈ Π, and µ(hα) corresponds to a nonnegative integer for every

α ∈ Φ+, as in Section 38.3. This means that µ ∈ Υ+, as in Section 32.3. In
fact,

Π has highest weight µ,(38.12.11)

in the sense of Section 30.7. Indeed, if ν ∈ Π, then ν can be expressed as µminus
a linear combination of elements of ∆ with nonnegative integer coefficients, as
in Section 33.8. Thus ν ⪯ µ, in the notation of Section 30.5.

If ρ ∈ Υ+ and ρ ⪯ µ, then
ρ ∈ Π,(38.12.12)

as in Section 30.8. This implies that

σ(ρ) ∈ Π(38.12.13)

for every element σ of the Weyl group of Φ, as before.
If ν ∈ Π and σ is an element of the Weyl group of Φ, then σ(ν) ∈ Π, so that

σ(ν) ⪯ µ,(38.12.14)

as before. Conversely, if ν ∈ Υ and (38.12.14) holds for every element σ of the
Weyl group of Φ, then ν ∈ Π. Indeed, if ν ∈ Υ, then there is an element σ of
the Weyl group of Φ such that σ(ν) ∈ Υ+, as in Section 30.4. This implies that
σ(ν) ∈ Π, and thus ν ∈ Π, as in the preceding paragraph. This corresponds to
the second part of the proposition on p114 of [14].

38.13 Formal characters in Z[Υ]

Let us continue with the same notation and hypotheses as in Section 33.1, and
let Υ be as in Section 32.3 again. Remember that Z[Υ] is the group ring of Υ
with coefficients in Z, and that eν , ν ∈ Υ, are the standard basis elements of
Z[Υ], as in Section 32.4.

Let V be a finite-dimensional vector space over k that is a module over A,
as a Lie algebra over k. If ν ∈ A′

0, then Vν is the linear subspace of V consisting
of vectors of weight ν with respect to A0, as in Section 33.5. Remember that
Vν = {0} unless ν ∈ Υ, as in (38.12.2).

The formal character of V is defined as an element of Z[Υ] by

ch(V ) =
∑
ν∈Υ

(dimVν) eν ,(38.13.1)

as on p124 of [14], and p63 of [24]. More precisely, the dimension of Vν as a
vector space over k is a nonnegative integer for every ν ∈ Υ, which is equal to
zero for all but finitely many ν ∈ Υ, because V has finite dimension. Thus the
right side of (38.13.1) is an element of Z[Υ].

Let V 1, V 2 be finite-dimensional vector spaces over k that are modules over
A, as a Lie algebra over k. Under these conditions, the direct sum V 1

⊕
V 2 is
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also a finite-dimensional vector space over k that is a module over A, and it is
easy to see that

ch
(
V 1

⊕
V 2

)
= ch(V 1) + ch(V 2).(38.13.2)

Similarly, the tensor product V 1
⊗
V 2 is a finite-dimensional vector space over

k and a module over A, and one can check that

ch
(
V 1

⊗
V 2

)
= ch(V 1) · ch(V 2),(38.13.3)

using the remarks in Section 38.9. This corresponds to Proposition B on p125
of [14], and part (b) of Proposition 5 on p63 of [24].

Remember that any automorphism of Φ in ER maps Υ onto itself, as in
Section 30.4. In fact, the restriction of any automorphism of Φ to Υ is an
automorphism of Υ, as a commutative group with respect to addition. In par-
ticular, elements of the Weyl group of Φ determine automorphisms of Υ. These
automorphisms of Υ lead to ring automorphisms of Z[Υ], as in Section 32.4.

If V is irreducible as a module over A, then V is standard cyclic as a module
over A, as in Section 38.2. In this case, we have seen that elements of the Weyl
group of Φ map the set of weights of V to itself, and preserve the dimensions of
the corresponding weight spaces, as in Section 38.7. It is easy to see that this
holds when V is not necessarily irreducible as a module over A too, because
V corresponds to the direct sum of finitely many irreducible submodules, by
Weyl’s theorem. This implies that

ch(V ) is invariant under the action of the Weyl group on Z[Υ].(38.13.4)

This corresponds to a remark on p125 of [14], and to part (a) of Proposition 5
on p63 of [24].

Let V , W be finite-dimensional vector spaces over k that are modules over
A. If V and W are isomorphic as modules over A, then

ch(V ) = ch(W ).(38.13.5)

Conversely, if (38.13.5) holds, then V and W are isomorphic as modules over A.
This is part (c) of Proposition 5 on p63 of [24], which corresponds to a remark
about Proposition A on p125 of [14].

Let Π(V ), Π(W ) be the sets of weights of V , W , respectively, as in (38.12.1).
Suppose that (38.13.5) holds, which implies in particular that

Π(V ) = Π(W )(38.13.6)

and

dimV = dimW.(38.13.7)

To show that V is isomorphic to W , one can use induction on the common
dimension of V and W . Of course, this is trivial when the dimension if 0, and
so we may suppose that the dimension is positive.
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Observe that Π(V ) ̸= ∅, because V ̸= {0}. One can find µ ∈ Π(V ) such that
for each α ∈ ∆, µ+α ̸∈ Π(V ), because Π(V ) has only finitely many elements, as
in Section 38.1. Let v be a nonzero element of Vµ, and note that v is primitive
or maximal of weight µ, as in Section 38.1 again.

Let UA be a universal enveloping algebra of A, and put

V 1 = (UA) · v.(38.13.8)

This is the submodule of V , as a module over A, generated by v, as in Section
33.7. By construction, V 1 is standard cyclic of weight µ, as a module over A,
as in Section 33.8. Of course, V 1 has finite dimension as a vector space over k,
because V has finite dimension. This implies that V 1 is irreducible as a module
over A, as in Section 33.9.

Note that µ ∈ Π(W ) too, by (38.13.6). Let w be a nonzero element of Wµ,
so that w is primitive or maximal of weight µ, as before. Put

W 1 = (UA) · w,(38.13.9)

which is the submodule of W , as a module over A, generated by w. Thus W 1

is standard cyclic of weight µ, as a module over A. We also have that W 1 is
irreducible as a module over A, because it has finite dimension, as a vector space
over k.

Under these conditions, V 1 and W 1 are isomorphic as modules over A, as
in Section 33.10. This implies that

ch(V 1) = ch(W 1),(38.13.10)

as before. Using Weyl’s theorem, we get that there are submodules V 2, W 2 of
V , W , respectively, as modules over A, such that V , W correspond to V 1

⊕
V 2,

W 1
⊕
W 2, respectively, as modules over W . This means that

ch(V ) = ch(V 1) + ch(V 2), ch(W ) = ch(W 1) + ch(W 2),(38.13.11)

as in (38.13.2). It follows that

ch(V 2) = ch(W 2),(38.13.12)

by (38.13.10).
The common dimension of V 2 and W 2 is strictly less than the common

dimension of V and W , by construction. Thus we get that V 2 and W 2 are
isomorphic as modules over A, by induction. This implies that V and W are
isomorphic as modules over A, because of the analogous statement for V 1 and
W 1, as desired.

38.14 Invariant elements of Z[Υ]

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Remember that elements of the Weyl group W of Φ in ER determine ring
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automorphisms on Z[Υ], as before. Let Z[Υ]W be the subring of Z[Υ] consisting
of elements that are invariant under the action ofW . If V is a finite-dimensional
vector space over k that is a module over A, as a lie algebra over k, then

ch(V ) ∈ Z[Υ]W ,(38.14.1)

as in (38.13.4).
Let

z =
∑
ν∈Υ

zν eν(38.14.2)

be an element of Z[Υ], so that zν ∈ Z for every ν ∈ Υ, and zν = 0 for all but
finitely many ν ∈ Υ. Suppose that z ∈ Z[Υ]W , which means that

zσ(ν) = zν(38.14.3)

for every ν ∈ Υ. This permits us to arrange the sum in (38.14.2) into a sum
over orbits of W in Υ.

Remember that Υ+ consists of the µ ∈ Υ such that µ(hα) ≥ 0 for every
α ∈ Φ+, where Φ+ is the set of positive roots with respect to the base ∆ for Φ,
as in Section 32.3. If µ ∈ Υ+, then put

O(µ) = {σ(µ) : σ ∈W},(38.14.4)

which is the orbit of W in Υ that contains ν. Every orbit of W in Υ contains
exactly one element of Υ+, as in Section 30.4. This means that every orbit of
W in Υ is of the form (38.14.4) for exactly one ν ∈ Υ+. Thus

z =
∑
µ∈Υ+

zµ

( ∑
ν∈O(µ)

eν

)
,(38.14.5)

by (38.14.3).
If µ ∈ Υ+, then there is a finite-dimensional module V (µ) over A that is

standard cyclic of weight µ, as in Section 38.3. In particular, ch(V (µ)) ∈ Z[Υ]W ,
as in (38.14.1). Note that V (λ) is irreducible as a module over A, as in Section
33.9, and unique up to isomorphism, as in Section 33.10. Thus ch(V (µ)) only
depends on µ, and not the choice of V (µ).

Proposition A on p125 of [14] says that every element of Z[Υ] can be ex-
pressed in a unique way as a linear combination of finitely many ch(V (µ))’s,
µ ∈ Υ+, with coefficients in Z. This is related to the corollary on p64 of [24].
To see this, let z ∈ Z[Υ]W be given, and let us show first that z can be expressed
in this way.

Let ⪯ be the partial ordering defined on ER as in Section 30.5, although
we shall only use it on Υ here. If γ ∈ Υ+, then there are only finitely many
β ∈ Υ+ such that β ⪯ γ, as in Section 30.6. Of course, there are only finitely
many γ ∈ Υ such that zγ ̸= 0. Put

Mz = {β ∈ Υ+ : β ⪯ γ for some γ ∈ Υ+ such that zγ ̸= 0}.(38.14.6)
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Note that Mz has only finitely many elements, by the previous statements.
To show that z can be expressed as before, we use induction on the number

of elements of Mz. If Mz = ∅, then zγ = 0 for every γ ∈ Υ+. This implies that
z = 0, as in (38.14.5).

Suppose now that Mz ̸= ∅, so that zγ ̸= 0 for some γ ∈ Υ+. Let µ be an
element of Υ+ such that zµ ̸= 0, and µ is maximal among γ ∈ Υ+ with zγ ̸= 0
with respect to ⪯. Also let V (µ) be as before, and put

z̃ = z − zµ ch(V (µ)).(38.14.7)

Clearly z̃ ∈ Z[Υ]W , and we let M
z̃
⊆ Υ+ be defined as before.

If ν ∈ Υ is a weight of V (µ), then ν ⪯ µ, as in Section 33.8. Equivalently,
this means that eν has nonzero coefficient in ch(V (µ)) only when ν ⪯ µ. This
implies that

M
z̃
⊆Mz,(38.14.8)

because µ ∈ Υ+ and zµ ̸= 0, by construction.
The dimension of the weight space in V (µ) corresponding to µ is equal to

one, as in Section 33.8. This means that the coefficient of eµ in ch(V (µ)) is equal
to one. It follows that the coefficient of eµ in z̃ is equal to zero, by construction.
One can use this to check that

µ ̸∈M
z̃
,(38.14.9)

because of (38.14.8) and the maximality property of µ. This implies that

M
z̃
̸=Mz,(38.14.10)

because µ ∈Mz, by construction.
Thus the number of elements of M

z̃
is strictly less than than the number of

elements ofMz. This permits us to use induction to get that z̃ can be expressed
in the desired way. It follows that z can be expressed similarly, by the definition
of z̃.

To get uniqueness, let µ1, . . . , µr be finitely many distinct elements of Υ+,
and let c1, . . . , cr be finitely many nonzero integers. We would like to check that

r∑
j=1

cj ch(V (µj))(38.14.11)

is nonzero as an element of Z[Υ]. Let l be a positive integer such that l ≤ r and
µl is maximal among µ1, . . . , µr, with respect to ⪯. Thus the coefficient of eµl

in ch(V (µj)) is equal to one when j = l, and to 0 otherwise, as in Section 33.8.
This means that the coefficient of eµl

in (38.14.11) is cl ̸= 0, so that (38.14.11)
is not zero.



Chapter 39

Dimensions of weight spaces

39.1 Casimir elements in UA

Let k be a field, and let (A, [·, ·]A) be a Lie algebra over k that has positive
finite dimension, as a vector space over k. Also let b(·, ·) be a nondegenerate
symmetric bilinear form on A, and suppose that b(·, ·) is associative on A, or
equivalently invariant with respect to the adjoint representation on A. Thus

b([x,w]A, y) = b(x, [w, y]A)(39.1.1)

for every w, x, y ∈ A, as in Sections 6.10 and 7.7. Let u1, . . . , un be a basis for
A as a vector space over k, and let w1, . . . , wn be the corresponding dual basis
for A with respect to b(·, ·), so that

b(uj , wl) = δj,l(39.1.2)

for every j, l = 1, . . . , n. As usual, δj,l ∈ k is equal to 1 when j = l, and to 0
otherwise.

Let UA be a universal enveloping algebra of A, with multiplicative identity
element e = eUA and mapping i = iUA from A into UA, as in Section 25.4.
Remember that i is injective, by the Poincaré–Birkhoff–Witt theorem, as in
Section 25.12, so that we may as well identify A with a Lie subalgebra of UA.
The Casimir element of UA associated to b is

cA(b) =

n∑
j=1

uj wj ,(39.1.3)

as on p46 of [25]. This corresponds to some remarks on p118 of [14], and was
also mentioned in Section 13.4.

More precisely, remember that b leads to a one-to-one linear mapping from
A onto its dual A′ as a vector space over k, as in Section 13.4. This lead to a
one-to-one linear mapping from A

⊗
A onto A

⊗
A′, and thus onto the space

L(A) of linear mappings from A into itself, as a vector space over k, as before.

800
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The uj ’s and wj ’s were used to define an element of A
⊗
A, that corresponds

to the identity mapping as an element of L(A). In particular, this element of
A
⊗
A does not depend on the choice of uj ’s, from which the wj ’s were obtained

using b, as before.
There is a natural mapping from A × A into UA that is bilinear over k,

which is defined using the natural mapping from A into UA and multiplication
in UA. This leads to a mapping from A

⊗
A into UA that is linear over k, as

usual. By construction, (39.1.3) is the image under this mapping of the element
of A

⊗
A defined in Section 13.4 using the uj ’s and wj ’s. Note that (39.1.3)

does not depend on the choice of uj ’s, as on p46 of [25]. This corresponds to
the second part of Exercise 2 on p125 of [14].

We also have that

cA(b) is in the center of UA,(39.1.4)

as an algebra over k, which is to say that cA(b) commutes with every element
of UA. To see this, it suffices to check that cA(b) commutes with every element
of A, because UA is generated as an algebra over k by A and e. This property
corresponds to the fact that the analogous element of A

⊗
A is invariant with

respect to the representation of A on A
⊗
A obtained from the adjoint repre-

sentation of A on itself, as in Section 13.4. One can get this from the fact that
the identity mapping on A is invariant with respect to the representation on
L(A) obtained from the adjoint representation of A on itself, as on p46 of [25].
This corresponds to the first part of Exercise 2 on p125 of [14].

Let V be a vector space over k that is a module over A, as a Lie algebra
over k. Thus V may be considered as a left module over UA, as an associative
algebra over k, as in Section 25.6. The action of cA(b) on V is the same as
the Casimir element of the space L(V ) of linear mappings from V into itself
associated to b as in Section 13.3, as mentioned in Section 13.4.

Using (39.1.4), we get that

the action of cA(b) on V commutes with the actions of(39.1.5)

all other elements of UA on V,

which is the same as saying that the action of cA(b) on V commutes with the
actions of all elements of A on V . This was verified directly in Section 13.3, and
(39.1.4) can be obtained in the same way, as in the first part of Exercise 2 on
p125 of [14].

39.2 Casimir elements and nice bases

Let us return now to the same notation and hypotheses as in Section 33.1. Also
let b(·, ·) be a nondegenerate symmetric bilinear form on A that is associative
on A, as in the previous section. If α, β ∈ A′

0 and α+ β ̸= 0, then

b(x, y) = 0 for every x ∈ Aα, y ∈ Aβ ,(39.2.1)
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as in Section 17.3. This implies that the restriction of b(·, ·) to A0 is nondegen-
erate, as before.

Let α ∈ Φ and x ∈ Aα be given. If w ∈ A0 and y ∈ A−α, then

b(w, [x, y]A) = α(w) b(x, y),(39.2.2)

as in Section 17.3 again. If x ̸= 0, then there is a y ∈ A−α such that b(x, y) ̸= 0,
as before. Of course, this means that b(x, y) ̸= 0 for every y ∈ A−α with y ̸= 0,
because A−α has dimension one as a vector space over k.

Remember that ∆ is a base for Φ, and that hα, α ∈ ∆, is a basis for A0, as
a vector space over k. If β ∈ ∆, then there is a unique wβ ∈ A0 such that

b(hα, wβ) = 1 when α = β(39.2.3)

= 0 for every α ∈ ∆ with α ̸= β,

because the restriction of b(·, ·) to A0 is nondegenerate. Note that wβ , β ∈ ∆,
is a basis for A0, as a vector space over k.

Let xα be a nonzero element of Aα for each α ∈ Φ. This leads to a unique
zα ∈ A−α such that

b(xα, zα) = 1(39.2.4)

for each α ∈ Φ.
Observe that

{hα : α ∈ ∆} ∪ {xα : α ∈ Φ}(39.2.5)

is a basis for A, as a vector space over k. Similarly,

{wα : α ∈ ∆} ∪ {zα : α ∈ Φ}(39.2.6)

is a basis for A. These two bases are dual to each other with respect to b(·, ·),
by construction.

If α ∈ A′
0, then there is a unique tb,α ∈ A0 such that

α(w) = b(w, tb,α)(39.2.7)

for every w ∈ A0, because the restriction of b(·, ·) to A0 is nondegenerate, as in
Section 17.5. If α ∈ Φ, then

[xα, zα]A = tb,α,(39.2.8)

by (39.2.2) and (39.2.4). Note that

α(tb,α) = b(tb,α, tb,α)(39.2.9)

for every α ∈ A′
0.

If α ∈ Φ, then there is a unique yα ∈ A−α such that yα ̸= 0 and [xα, yα]A =
hα, as usual. This implies that

hα = [xα, yα]A = b(xα, yα) tb,α,(39.2.10)
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by (39.2.2). It follows that

b(xα, yα)α(tb,α) = α(hα) = 2,(39.2.11)

and in particular that b(xα, yα), α(tb,α) ̸= 0. We also have that

yα = b(xα, yα) zα,(39.2.12)

because A−α has dimension one as a vector space over k.
Let UA be a universal enveloping algebra of A again, and let cA(b) be the

Casimir element of UA associated to b, as in the previous section. In this case,
we can use the dual bases (39.2.5) and (39.2.6) to express cA(b) as

cA(b) =
∑
α∈∆

hα wα +
∑
α∈Φ

xα zα,(39.2.13)

as on p118 of [14].

39.3 Adjusted bases for sl2(k) modules

Let us continue with the same notation and hypotheses as in the previous sec-
tion. Let α ∈ Φ be given, and remember that the linear span of xα, yα, and hα
in A is a Lie subalgebra of A, that is isomorphic to sl2(k), as a Lie algebra over
k. Of course, this is the same as the linear span of xα, zα, and tb,α in A.

Let m be a nonnegative integer, and letW (m) be the module over the linear
span of xα, yα, and hα in A, as a Lie algebra over k, discussed in Section 15.4.
Thus W (m) is a vector space over k with a basis v0, v1, . . . , vm, and we put
v−1 = vm+1 = 0 for convenience. The actions of xα, yα, and hα on W (m) are
defined by

hα · vj = (m− 2 j) vj ,(39.3.1)

yα · vj = (j + 1) vj+1,(39.3.2)

xα · vj = (m− j + 1) vj−1(39.3.3)

for j = 0, 1, . . . ,m, as before.
It will be convenient to use another basis for W (m), to deal with the actions

of xα, zα, and tb,α on W (m), as on p119 of [14]. Note that

zα = (α(tb,α)/2) yα,(39.3.4)

tb,α = (α(tb,α)/2)hα,(39.3.5)

by (39.2.10), (39.2.11), and (39.2.12). Put

uj = j! (α(tb,α)
j/2j) vj(39.3.6)

for j = 0, 1, . . . ,m, so that u0, u1, . . . , um is a basis for W (m), as a vector space
over k. As before, it is convenient to put u−1 = um+1 = 0.
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It is easy to see that

tb,α · uj = (m− 2 j) (α(tb,α)/2)uj ,(39.3.7)

zα · uj = uj+1,(39.3.8)

xα · uj = j (m− j + 1) (α(tb,α)/2)uj−1(39.3.9)

for j = 0, 1, . . . ,m. It follows that

xα · (zα · uj) = (m− j) (j + 1) (α(tb,α)/2)uj(39.3.10)

for j = 0, 1, . . . ,m, as on p119 of [14].

39.4 Some preliminary subspaces

We continue with the same notation and hypotheses as in the previous two
sections. Let V be a vector space over k of positive finite dimension that is an
irreducible module over A, as a Lie algebra over k. Remember that if ν ∈ A′

0,
then Vν is the linear subspace of V consisting of vectors of weight ν with respect
to A0, as in Section 33.5.

Let ρ be the given representation of A on V , and let α ∈ Φ be given, as in
the previous section. If ν ∈ A′

0, then

ρzα(Vν) ⊆ Vν−α,(39.4.1)

because zα ∈ A−α, as in Section 33.5. Similarly,

ρxα
(Vν−α) ⊆ Vν ,(39.4.2)

because xα ∈ Aα. Thus
ρxα(ρzα(Vν)) ⊆ Vν .(39.4.3)

We would like to consider the trace of ρxα ◦ ρzα as a linear mapping from Vν
into itself, as on p119 of [14].

Let ν ∈ A′
0 be a weight of V with respect to A0, and suppose that

ν + α is not a weight of V.(39.4.4)

This implies that the α-string of weights through ν is of the form

ν, ν − α, . . . , ν −mα,(39.4.5)

where m is a nonnegative integer given by

m = λα(ν),(39.4.6)

as in Section 38.12.
Let W be the linear subspace of V spanned by

Vν , Vν−α, . . . , Vν−mα.(39.4.7)



39.4. SOME PRELIMINARY SUBSPACES 805

More precisely, W corresponds to the direct sum of these linear subspaces, as a
vector space over k, as in Section 33.5. Remember that the linear span of xα,
yα, and hα in A is a Lie subalgebra of A that is isomorphic to sl2(k), as a Lie
algebra over k. It is easy to see that

W is a submodule of V , as a module over the linear span(39.4.8)

of xα, yα, and hα in A,

using the remarks in Section 33.5.
If j is an integer, then

(ν − j α)(hα) = ν(hα)− 2 j,(39.4.9)

and these values are distinct in k, because k has characteristic 0. Of course, the
elements of Vν−j α are eigenvectors of ρhα , with eigenvalue (39.4.9). It follows
that any nonzero eigenvector of ρhα in W has eigenvalue of the form (39.4.9)
for some integer j with 0 ≤ j ≤ m, and that the eigenvector is in Vν−j α.

Remember that ν(hα) corresponds to an integer under the natural embed-
ding of Q into k, as in Sections 38.1 and 38.2. We also have that ν ∈ EQ and
ν(hα) = λα(ν), as in Sections 32.2 and 32.3. Thus

ν(hα) = m,(39.4.10)

by (39.4.6), so that
(ν − j α)(hα) = m− 2 j(39.4.11)

for every integer j.
Let Z be a nontrivial linear subspace of W that is a submodule of W , as a

module over the linear span of xα, yα, and hα in A. Suppose that Z is irreducible
as a module over the linear span of xα, yα, and hα in A, as a Lie algebra over
k. This implies that Z is isomorphic as a module over the linear span of xα,
yα, and hα in A to a module of the form W (mZ) as in the previous section for
some nonnegative integer mZ , as in Section 15.9.

Note that mZ is the largest eigenvalue of ρhα
on Z, because of the analogous

property of W (mZ). In particular, mZ is an eigenvalue of ρhα
on W , so that

mZ = m− 2 jZ(39.4.12)

for some nonnegative integer jZ , as before. We also have that

2 jZ ≤ m,(39.4.13)

because mZ ≥ 0.
Of course, Z corresponds to the direct sum of one-dimensional eigenspaces

of ρhα , as a vector space over k, with eigenvalues mZ − 2 l, l = 0, 1, . . . ,mZ .
Equivalently, these eigenvalues are equal to m−2 jZ−2 l, l = 0, 1, . . . ,mZ . This
means that the eigenvalues are as in (39.4.11), with

jZ ≤ j ≤ m− jZ .(39.4.14)
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It follows that
Z ∩ Vν−j α(39.4.15)

has dimension one when (39.4.14) holds, and that Z corresponds to their direct
sum, as a vector space over k.

Weyl’s theorem implies that W corresponds to the direct sum of finitely
many irreducible submodules, as a module over the linear span of xα, yα, and
hα in A. Each of these irreducible submodules corresponds to the direct sum of
its intersections with the Vν−j α’s, as a vector space over k, as in the preceding
paragraph.

It follows that Vν−j α, j = 0, 1, . . . ,m, corresponds to the direct sum of its
intersections with the irreducible submodules of W whose direct sum is W ,
as in the preceding paragraph, as a vector space over k. More precisely, Vν−j α
corresponds to the direct sum of its intersection with the irreducible submodules
of W whose direct sum is W for which the corresponding jZ as in (39.4.12)
satisfies (39.4.14).

If j is a nonnegative integer with 2 j ≤ m and Z is as before, then j ≤ m−jZ ,
by (39.4.13). This means that (39.4.14) reduces to asking that jZ ≤ j. In
this case, we get that Vν−j α corresponds to the direct sum of its intersections
with the irreducible submodules of W whose direct sum is W for which the
corresponding jZ is less than or equal to j, as a vector space over k.

If l is a nonnegative integer with 2 l ≤ m, then let nl be the number of
these irreducible submodules of W whose direct sum is W , and for which the
corresponding jZ as in is equal to l. It follows that

dimVν−j α =

j∑
l=0

nl(39.4.16)

for j = 0, 1, . . . , [m/2], where [m/2] is the integer part of m/2, as on p120 of
[14].

39.5 Some traces of ρxα ◦ ρzα
Let us continue with the same notation and hypotheses as in the previous sec-
tions. Let l be a nonnegative integer with l ≤ m. We would like to compute the
trace of ρxα ◦ ρzα on Vν−l α, as on p120f of [14].

Let Z be a nontrivial linear subspace of W that is an irreducible submodule
of W , as a module over the linear span of xα, yα, and hα, as in the previous
section. Let jZ be as in (39.4.12), and suppose that

jZ ≤ l ≤ m− jZ .(39.5.1)

This implies that Z ∩ Vν−l α has dimension one as a vector space over k, as
before. More precisely, Z ∩ Vν−l α is spanned by an eigenvector of ρhα , with
eigenvalue

(ν − l α)(hα) = m− 2 l = mZ − 2 (l − jZ).(39.5.2)
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Remember that Z is isomorphic as a module over the linear span of xα,
yα, and hα in A to a module of the form W (mZ) in Section 39.3. Using this
isomorphism, Z ∩ Vν−l α corresponds to the linear span of vj in W (mZ), with
j = l − jZ . This is the same as the span of uj in W (mZ), with j = l − jZ . We
have seen that xα · (zα ·uj) can be expressed as a multiple of uj , as in (39.3.10).

It follows that the restriction of ρxα
◦ ρzα to Z ∩ Vν−l α is equal to multipli-

cation by
(mZ − (l − jZ)) (l − jZ + 1) (α(tb,α)/2).(39.5.3)

This is the same as

(m− l − jZ) (l − jZ + 1) (α(tb,α)/2),(39.5.4)

by (39.4.12).
Suppose that

2 l ≤ m.(39.5.5)

This implies that l ≤ m− jZ , by (39.4.13), so that (39.5.1) reduces to the con-
dition that jZ ≤ l, as before. Remember that W corresponds to the direct sum
of finitely many irreducible submodules, as a module over the linear span of xα,
yα, and hα in A, as in the previous section. We have also seen that Vν−l α corre-
sponds to the direct sum of its intersections with these irreducible submodules
ofW , as a vector space over k. More precisely, in this case Vν−l α corresponds to
the direct sum of its intersections with the irreducible submodules of W whose
direct sum is W and for which the corresponding jZ is less than or equal to l.

If j is a nonnegative integer with 2 j ≤ m, then nj is the number of the
irreducible submodules of W whose direct sum is W and for which the corre-
sponding jZ is equal to j, as before. Remember that ρxα

◦ ρzα maps Vν−l α into
itself, as in the previous section. The trace of the restriction of ρxα

◦ ρzα to
Vν−l α is equal to

trVν−l α
(ρxα

◦ ρzα) =
l∑

j=0

nj (m− l − j) (l − j + 1) (α(tb,α)/2).(39.5.6)

More precisely, for each j = 0, 1, . . . , l, there are nj terms in the trace of the
form (39.5.4), with jZ = j.

Observe that
nj = dimVν−j α − dimVν−(j−1)α(39.5.7)

for each j = 0, 1, . . . , [m/2], by (39.4.16). This uses (39.4.4) when j = 0, which
says that

dimVν+α = 0.(39.5.8)

It follows that

trVν−l α
(ρxα

◦ ρzα) =

l∑
j=0

(dimVν−j α − dimVν−(j−1)α)(39.5.9)

·(m− l − j) (l − j + 1) (α(tb,α)/2).
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The right side of (39.5.9) is equal to

l∑
j=0

(dimVν−j α) (m− l − j) (l − j + 1) (α(tb,α)/2)(39.5.10)

minus
l∑

j=0

(dimVν−(j−1)α) (m− l − j) (l − j + 1) (α(tb,α)/2).(39.5.11)

Note that the j = 0 term in (39.5.11) is equal to 0, by (39.5.8). It is easy to see
that (39.5.11) is equal to

l∑
j=0

(dimVν−j α) (m− l − j − 1) (l − j) (α(tb,α)/2),(39.5.12)

because the j = l term in this sum is equal to 0.
Observe that

(m− l − j) (l − j + 1)− (m− l − j − 1) (l − j)(39.5.13)

= (m− l − j) (l − j) + (m− l − j)

−(m− l − j) (l − j) + (l − j)

= m− 2 j

for each j = 0, 1, . . . , l. Using this, we get that

trVν−l α
(ρxα

◦ ρzα) =
l∑

j=0

(dimVν−j α) (m− 2 j) (α(tb,α)/2).(39.5.14)

More precisely, the right side is obtained by taking (39.5.10) minus (39.5.12),
and using (39.5.13) for the factors in the middle of the terms in the sums.
Remember that this holds when 2 l ≤ m, as in (39.5.5).

39.6 The case where 2 l > m

We continue with the same notation and hypotheses as in the previous sections.
In particular, l is a nonnegative integer with l ≤ m, as in the preceding section,
and we suppose that

2 l > m(39.6.1)

in this section. We would like to compute the trace of ρxα ◦ ρzα on Vν−l α, as
on p121 of [14].

Let us check that

dimVν−j α = dimVν−(m−j)α(39.6.2)
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for j = 0, 1, . . . ,m. Remember that the α-string of weights through ν is as in
(39.4.5). The α-string through ν is mapped to itself by the symmetry σα on ER

that maps Φ onto itself, as in Section 38.12. More precisely, σα maps ν − j α to
ν−(m−j)α for each j = 0, 1, . . . ,m, by (39.4.6). This implies (39.6.2), because
the dimensions of the weight spaces are invariant under the action of the Weyl
group of Φ on the weights of V , as in Section 38.7.

Let Z be a nontrivial linear subspace of W that is an irreducible submodule
of W , as a module over the linear span of xα, yα, and hα in A, as in Section
39.4. If jZ is as in (39.4.12), then 2 jZ ≤ m, as in (39.4.13), so that jZ < l, by
(39.6.1). This means that (39.5.1) holds exactly when l ≤ m− jZ , which is the
same as saying that

jZ ≤ m− l.(39.6.3)

In this case, Z ∩ Vν−l α has dimension one as a vector space over k, as in the
previous two sections. The restriction of ρxα

◦ ρzα to Z ∩ Vν−l α is equal to
multiplication by (39.5.4), as before.

Remember thatW corresponds to the direct sum of finitely many irreducible
submodules, as a module over the linear span of xα, yα, and hα in A, as in
Section 39.4. We also have that Vν−l α corresponds to the direct sum of its
intersections with these irreducible submodules of W , as a vector space over k,
as before. In this case we get more precisely that V corresponds to the direct
sum of its intersections with the irrducible submodules of W whose direct sum
is W and for which the corresponding jZ satisfies (39.6.3). Note that

m− l < m/2,(39.6.4)

by (39.6.1).
If j is a nonnegative integer with j ≤ m − l, then j < m/2, by (39.6.4).

Remember that nj is the number of the irreducible submodules of W whose
direct sum is W and for which the corresponding jZ is equal to j, as in the
previous two sections. Of course, ρxα

◦ ρzα maps Vν−l α into itself, as in Section
39.4. The trace of the restriction of ρxα

◦ ρzα to Vν−l α is equal to

trVν−l α
(ρxα

◦ ρzα) =
m−l∑
j=0

nj (m− l − j) (l − j + 1) (α(tb,α)/2).(39.6.5)

Indeed, for each j = 0, 1, . . . ,m− l, there are nj terms in the trace of the form
(39.5.4), with jZ = j, as before.

Observe that the j = m− l term in the sum on the right side of (39.6.5) is
equal to 0. Thus

trVν−l α
(ρxα ◦ ρzα) =

m−l−1∑
j=0

nj (m− l − j) (l − j + 1) (α(tb,α)/2).(39.6.6)

More precisely, if l = m, then the sum on the right should be interpreted as
being equal to 0.
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As in the previous section, we can use (39.5.7) to express the sum as

m−l−1∑
j=0

(dimVν−j α) (m− l − j) (l − j + 1) (α(tb,α)/2)(39.6.7)

minus
m−l−1∑
j=0

(dimVν−(j−1)α) (m− l − j) (l − j + 1) (α(tb,α)/2).(39.6.8)

The j = 0 term in (39.6.8) is equal to 0, by (39.5.8), as before. One can check
that (39.6.8) is equal to

m−l−1∑
j=0

(dimVν−j α) (m− l − j − 1) (l − j) (α(tb,α)/2),(39.6.9)

because the j = m− l− 1 term in this sum is equal to 0. Of course, all of these
sums should be interpreted as being equal to 0 when l = m, as in the preceding
paragraph.

As before, we can use (39.5.13) to get that

trVν−l α
(ρxα ◦ ρzα) =

m−l−1∑
j=0

(dimVν−j α) (m− 2 j) (α(tb,α)/2).(39.6.10)

The right side is obtained by taking (39.6.7) minus (39.6.9), and using (39.5.13)
for the factors in the middle of the terms in the sums again. The sum on the
right should be interpreted as being equal to 0 when l = m, as usual.

39.7 Some related expressions for traces

Let us continue with the same notations and hypotheses as in the previous
sections. Let us check that

trVν−l α
(ρxα ◦ ρzα) =

l∑
j=0

(dimVν−j α) (m− 2 j) (α(tb,α)/2)(39.7.1)

for every l = 0, 1, . . . ,m, as on p121 of [14]. This is the same as (39.5.14), which
we have seen holds when 2 l ≤ m.

If 2 l > m, then l > m− l, and we would like to verify that

l∑
j=m−l

(dimVν−j α) (m− 2 j) = 0.(39.7.2)

It is easy to see that (39.7.1) follows from (39.6.10) and (39.7.2). Observe that

m− 2 (m− j) = −(m− 2 j)(39.7.3)
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for every j. This implies that

(dimVν−(m−j)α) (m− 2 (m− j)) = −(dimVν−j α) (m− 2 j)(39.7.4)

for j = 0, 1, . . . ,m, by (39.6.2). One can get (39.7.2) from (39.7.4), using also
the fact that the j = m/2 term in the sum on the left side of (39.7.2) is equal
to 0 when m is even.

Let α ∈ Φ be given again, and suppose now that ν ∈ A′
0 is any weight of V

with respect to A0. We do not ask that ν+α not be a weight of V , as in (39.4.4).
As in Section 38.12, we can take r, q to be the largest integers such that ν− r α
and ν + q α are weights of V , so that q, r ≥ 0, by hypothesis. Remember that
r− q = λα(ν), as before. Thus the previous remarks hold for ν + q α in place of
ν, and with

m = r + q = λα(ν + q α).(39.7.5)

It follows that

trVν+(q−l)α
(ρxα

◦ ρzα) =
l∑

j=0

(dimVν+(q−j)α) (m− 2 j) (α(tb,α)/2)(39.7.6)

for every l = 0, 1, . . . ,m, as in (39.7.1). In particular, we can take l = q, to get
that

trVν
(ρxα

◦ ρzα) =
q∑
j=0

(dimVν+(q−j)α) (m− 2 j) (α(tb,α)/2).(39.7.7)

Equivalently,

trVν (ρxα ◦ ρzα) =
q∑
j=0

(dimVν+j α) (m− 2 (q − j)) (α(tb,α)/2).(39.7.8)

Observe that

m− 2 (q − j) = r − q + 2 j = λα(ν) + 2 j = ν(hα) + 2 j,(39.7.9)

where the last step is as in Sections 32.2 and 32.3. This implies that

trVν
(ρxα

◦ ρzα) =
q∑
j=0

(dimVν+j α) (ν(hα) + 2 j) (α(tb,α)/2).(39.7.10)

If j > q, then ν + j α is not a weight of V , so that dimVν+j α = 0. Thus

trVν (ρxα ◦ ρzα) =
∞∑
j=0

(dimVν+j α) (ν(hα) + 2 j) (α(tb,α)/2),(39.7.11)

where the sum on the right reduces to a finite sum. This corresponds to some
remarks on p121 of [14].
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39.8 Related identities for suitable ν

Let us continue with the same notation and hypotheses as in the previous sec-
tions, and let Υ be as in Section 32.3. Let α ∈ Φ be given again, and suppose
that ν ∈ A′

0 has the property that

ν + j0 α is a weight of V with respect to A0(39.8.1)

for some integer j0. This implies that ν + j0 α ∈ Υ, as in Section 38.12. It
follows that ν ∈ Υ, because Υ is a group with respect to addition that contains
Φ.

Let q0, r0 be the maximal and minimal integers such that

ν + q0 α, ν + r0 α are weights of V with respect to A0,(39.8.2)

respectively. Thus r0 ≤ j0 ≤ q0. If j ∈ Z and r0 ≤ j ≤ q0, then

ν + j α is a weight of V with respect to A0,(39.8.3)

as in Section 38.12. Equivalently,

ν + r0 α, . . . , ν + q0 α,(39.8.4)

is the α-string through any of its terms, as before.
Of course,

σα(ν + j α) = ν + j α− (λα(ν) + j λα(α))α = ν − (λα(ν) + j)α(39.8.5)

for every j ∈ Z. Remember that the set of weights of V is invariant under the
Weyl group of Φ, as in Section 38.7. This means that σα maps (39.8.4) onto
itself, in the opposite order, as before. In particular,

σα(ν + r0 α) = ν + q0 α(39.8.6)

It follows that

−r0 − q0 = λα(ν),(39.8.7)

which could also be obtained from the analogous statement in Section 38.12.
Note that

dimVν+j α = dimVσα(ν+j α)(39.8.8)

for every j ∈ Z, because the dimensions of the weight spaces are invariant under
elements of the Weyl group of Φ, as in Section 38.7 again. Thus

dimVν+j α = dimVν−(λα(ν)+j)α(39.8.9)

for every j ∈ Z, which is the same as (39.6.2) when q0 = 0. We also have that

λα(ν)− 2 (λα(ν) + j) = −(λα(ν) + 2 j)(39.8.10)
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for every j ∈ Z. It follows that

(dimVν−(λα(ν)+j)α) (λα(ν)− 2 (λα(ν) + j))(39.8.11)

= −(dimVν+j α) (λα(ν) + 2 j)

for every j ∈ Z, which is the same as (39.7.4) when q0 = 0.
Let us check that

∞∑
j=−∞

(dimVν+j α) (λα(ν) + 2 j) = 0.(39.8.12)

More precisely, the sum on the left reduces to a finite sum, because dimVν+j α =
0 unless ν + j α is a weight of V . If λα(ν) is an even integer, then the term
in the sum corresponding to j = −λα(ν)/2 is automatically equal to 0. If
j ∈ Z and j ̸= −λα(ν)/2, then the terms in the sum corresponding to j and to
−(λα(ν) + j) cancel with each other, because of (39.8.11). This means that the
terms corresponding to j > −λα(ν)/2 and j < −λα(ν)/2 cancel in the sum.

Remember that λα(ν) = ν(hα), as in Sections 32.2 and 32.3. Thus (39.8.12)
is the same as saying that

∞∑
j=−∞

(dimVν+j α) (ν(hα) + 2 j) = 0.(39.8.13)

In fact, this holds for every ν ∈ A′
0. Indeed, if ν ∈ A′

0 and ν+j α is not a weight
of V for any j ∈ Z, then dimVν+j α = 0 for every j ∈ Z, and (39.8.13) holds
trivially. This basically corresponds to (10) on p122 of [14].

If ν ∈ A′
0 is not a weight of V , then

∞∑
j=1

(dimVν+j α) (ν(hα) + 2 j) = 0,(39.8.14)

where the sum on the left reduces to a finite sum as before. This holds trivially
when ν + j α is not a weight of V for any positive integer j, as in the preceding
paragraph. Otherwise, suppose that (39.8.1) holds for some j0 ≥ 1, and let r0
be as in (39.8.2). In this case, r0 ≥ 1, because of (39.8.3). This means that
(39.8.14) follows from (39.8.13), as on p121f of [14].

39.9 Some remarks about dual bases

We continue with the same notation and hypotheses as in the previous sections.
Remember that ∆ is a base for Φ, and that hα, α ∈ ∆, is a basis for A0, as a
vector space over k.

If β ∈ ∆, then there is a unique µβ ∈ A′
0 such that

µβ(hα) = 1 when α = β(39.9.1)

= 0 for every α ∈ ∆ with α ̸= β.
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The µβ ’s, β ∈ ∆, form a basis for A′
0, as a vector space, which is the dual basis

associated to hα, α ∈ ∆.
If ν ∈ A′

0, then there is a unique tb,ν ∈ A0 such that

ν(w) = b(w, tb,ν)(39.9.2)

for every w ∈ A0, because the restriction of b(·, ·) to A0 is nondegenerate, as in
Section 39.2. More precisely, ν 7→ tb,ν is a one-to-one linear mapping from A′

0

onto A0.
In Section 39.2, we took wβ , β ∈ ∆, to be the basis for A0 that is dual to

hα, α ∈ ∆, with respect to the bilinear form b(·, ·) on A0. If α, β ∈ ∆, then

µβ(hα) = b(hα, wβ)(39.9.3)

by construction. This means that

b(hα, tb,µβ
) = b(hα, wβ)(39.9.4)

for every α, β ∈ ∆, by (39.9.2). It follows that

tb,µβ
= wβ(39.9.5)

for every β ∈ ∆.
If ν ∈ A′

0, then

ν(hα) =
∑
β∈∆

ν(hβ)µβ(hα)(39.9.6)

for every α ∈ ∆. This implies that

ν =
∑
β∈∆

ν(hβ)µβ ,(39.9.7)

as elements of A′
0. Thus

tb,ν =
∑
β∈∆

ν(hβ) tb,µβ
=

∑
β∈∆

ν(hβ)wβ .(39.9.8)

If ν1, ν2 ∈ A′
0, then put

b′(ν1, ν2) = b(tb,ν1 , tb,ν2).(39.9.9)

This defines a nondegenerate bilinear form on A′
0, as in Section 17.10. Note

that
b′(ν1, ν2) = ν2(tb,ν1)(39.9.10)

for every ν1, ν2 ∈ A′
0, by (39.9.2). It follows that

b′(ν1, ν2) =
∑
β∈∆

ν1(hβ) ν2(wβ)(39.9.11)
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for every ν1, ν2 ∈ A′
0, by (39.9.8). This corresponds to some remarks on p121

of [14].

If α ∈ Φ, then

b′(α, α) = α(tb,α) ̸= 0,(39.9.12)

as in Section 39.2. We also have that

hα = (2/α(tb,α)) tb,α = (2/b′(α, α)) tb,α,(39.9.13)

because hα is a multiple of tb,α, and α(hα) = 2. If ν ∈ A′
0, then we get that

ν(hα) = (2/α(tb,α)) ν(tb,α) = (2/α(tb,α)) b
′(α, ν).(39.9.14)

39.10 Traces and b′

Let us continue with the same notation and hypotheses as in the previous sec-
tions, and let ν ∈ A′

0 be a weight of V with respect to A0 again. If w ∈ A0,
then the action of w on Vν is the same as multiplication by ν(w), by definition
of Vν . If α ∈ ∆, then it follows that ρhα

◦ ρwα
corresponds to multiplication by

ν(hα) ν(wα) on Vν . In particular, ρhα
◦ ρwα

maps Vν into itself, with trace

trVν
(ρhα

◦ ρwα
) = (dimVν) ν(hα) ν(wα).(39.10.1)

This implies that∑
α∈∆

trVν (ρhα ◦ ρwα) = (dimVν)
∑
α∈∆

ν(hα) ν(wα).(39.10.2)

Thus ∑
α∈∆

trVν (ρhα ◦ ρwα) = (dimVν) b
′(ν, ν),(39.10.3)

where b′(·, ·) is as in (39.9.9), by (39.9.11). This corresponds to (8) on p121 of
[14].

Let α ∈ Φ be given, and let us rewrite (39.7.11) using b′(·, ·). Namely,

trVν
(ρxα

◦ ρzα) =
∞∑
j=0

(dimVν+j α) b
′(α, ν + j α),(39.10.4)

by (39.9.12) and (39.9.14). This corresponds to (7) on p121 of [14].

Let cA(b) be the Casimir element of UA associated to b, as in Section 39.1.
The action of cA(b) on V leads to a linear mapping cA,V (b) from V into itself.
Using the expression (39.2.13) for cA(b), we get that

cA,V (b) =
∑
α∈∆

ρhα
◦ ρwα

+
∑
α∈Φ

ρxα
◦ ρzα .(39.10.5)
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Thus

trVν
cA,V (b) = (dimVν) b

′(ν, ν)(39.10.6)

+
∑
α∈Φ

∞∑
j=0

(dimVν+j α) b
′(α, ν + j α),

by (39.10.3) and (39.10.4). This corresponds to some remarks on p121 of [14].
Observe that ∑

α∈Φ

b′(α, ν) = 0,(39.10.7)

because the term corresponding to any α ∈ Φ cancels with the term correspond-
ing to −α. This permits us to drop the j = 0 term from the sum on the right
side of (39.10.6), to get that

trVν
cA,V (b) = (dimVν) b

′(ν, ν)(39.10.8)

+
∑
α∈Φ

∞∑
j=1

(dimVν+j α) b
′(α, ν + j α).

This corresponds to some more remarks on p121 of [14].
If ν ∈ A′

0 is not a weight of V , then

∞∑
j=1

(dimVν+j α) b
′(α, ν + j α) = 0(39.10.9)

for every α ∈ Φ. This follows from (39.8.14), using (39.9.12) and (39.9.14). Of
course, Vν = {0} in this case, so that the left side of (39.10.8) and the first
term on the right side are equal to 0. In fact, (39.10.8) also holds under these
conditions, because of (39.10.9). This corresponds to some remarks on p121f of
[14].

Similarly, if ν ∈ A′
0 and α ∈ Φ, then

∞∑
j=−∞

(dimVν+j α) b
′(α, ν + j α) = 0.(39.10.10)

This follows from (39.8.13), using (39.9.12) and (39.9.14) again. Equivalently,

∞∑
j=1

(dimVν−j α) b
′(−α, ν − j α)(39.10.11)

= (dimVν) b
′(α, ν) +

∞∑
j=1

(dimVν+j α) b
′(α, ν + j α).

Remember that ∆ is a base for Φ, and that Φ+ is the set of positive roots
in Φ with respect to ∆. The sum over α ∈ Φ in the right side of (39.10.8) can
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be expressed as

∑
α∈Φ+

∞∑
j=1

(dimVν+j α) b
′(α, ν + j α)(39.10.12)

+
∑
α∈Φ+

∞∑
j=1

(dimVν−j α) b
′(−α, ν − j α).

Thus we can use (39.10.11) to get that

trVν
cA,V (b) = (dimVν) b

′(ν, ν) +
∑
α∈Φ+

(dimVν) b
′(α, ν)(39.10.13)

+2
∑
α∈Φ+

∞∑
j=1

(dimVν+j α) b
′(α, ν + j α).

Put

δ =
1

2

∑
α∈Φ+

α,(39.10.14)

which was denoted ρ in Section 30.6. Using this, we get that

trVν
cA,V (b) = (dimVν) b

′(ν + 2 δ, ν)(39.10.15)

+2
∑
α∈Φ+

∞∑
j=1

(dimVν+j α) b
′(α, ν + j α).

This corresponds to some remarks on p122 of [14].

39.11 Using an algebraically closed field

We continue with the same notations and hypotheses as in the previous sections,
and suppose also for the moment that k is algebraically closed.

Remember that the Casimir element cA(b) of UA associated to b is in the
center of UA, as in Section 39.1. This implies that the associated linear mapping
cA,V (b) on V commutes with the action of any element of A on V .

Remember that V is supposed to be irreducible as a module over A, as in
Section 39.4. Thus we can use Schur’s lemma to get that

cA,V (b) = c(A, b, V ) IV(39.11.1)

for some c(A, b, V ) ∈ k, where IV is the identity mapping on V , as in Section
6.14.

Of course, V is supposed to have positive finite dimension as a vector space
over k too. This implies that V has a primitive or maximal vector of some
weight µ ∈ A′

0, as in Section 38.1. It follows that V is standard cyclic of weight
µ, because V is irreducible as a module over A, as in Section 33.10.
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Remember that the weight space Vµ corresponding to µ has dimension one
as a vector space over k, as in Section 33.8. This implies that

trVµ
cA,V (b) = c(A, b, V ).(39.11.2)

If α ∈ Φ+ and j ∈ Z+, then µ + j α is not a weight of V , as in Section 33.8
again. Thus we can use (39.10.15) to get that

c(A, b, V ) = b′(µ+ 2 δ, µ).(39.11.3)

This corresponds to some remarks on p122 of [14].
Otherwise, if we do not ask that k be algebraically closed, then let k1 be

an algebraically closed field that contains k as a subfield, as usual. We can get
a vector space Ṽ over k1 from V as in Section 33.2, as well as a Lie algebra
(Ã, [·, ·]

Ã
) over k1. Remember that the action of A on V has a unique extension

to an action of Ã on Ṽ so that Ṽ becomes a module over Ã, as a Lie algebra
over k1, as before. We have also seen that the conditions on A discussed in
Section 33.1 lead to analogous properties of Ã, as in Section 33.4.

Let (̃A0) be the linear subspace of Ã that corresponds to A0, and let (̃A0)
′

be the dual of (̃A0), as a vector space over k1, as before. If ν ∈ A′
0, then let ν̃

be the unique extension of ν to an element of (̃A0)
′
.

Remember that V is standard cyclic of some weight µ ∈ A0, as a module
over A, as in Section 38.2. This uses the hypotheses that V have positive finite
dimension as a vector space over k, and that V is irreducible as a module over
A, as in Section 39.4.

It is easy to see that a primitive or maximal vector in V of weight µ is also
primitive or maximal of weight µ̃ in Ṽ , as a module over Ã. Using this, one can
check that Ṽ is standard cyclic of weight µ̃, as a module over Ã. This implies
that Ṽ is irreducible as a module over Ã, because Ṽ has finite dimension as a
vector space over k1, as in Section 33.9.

The bilinear form b(·, ·) on A considered in Section 39.2 has a unique exten-

sion to a bilinear form b̃(·, ·) on Ã. One can verify that this extension satisfies
the analogues of the conditions on b(·, ·) mentioned earlier. The basis for A and
corresponding dual basis for A with respect to b(·, ·) mentioned in Section 39.2

can be used in Ã too.
One can use b̃(·, ·) to get an associated Casimir element c̃

Ã
(̃b) as in Section

39.1. This can be expressed in terms of the bases for Ã mentioned in the
preceding paragraph as in Section 39.2. This leads to a linear mapping c̃

Ã,Ṽ
(̃b)

from V into itself, as in the previous section. This linear mapping can be
expressed in terms of the bases for Ã mentioned in the preceding paragraph
in the same way as before. In particular, c̃

Ã,Ṽ
(̃b) is the same as the natural

extension of cA,V (b) to a mapping from Ṽ into itself that is linear over k1.
Because k1 is algebraically closed, we can use Schur’s lemma to get that

c̃
Ã,Ṽ

(̃b) = c̃(Ã, b̃, Ṽ ) I
Ṽ

(39.11.4)
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for some c̃(Ã, b̃, Ṽ ) ∈ k1, where IṼ is the identity mapping on Ṽ , as before. We
also get that

tr
Ṽ
µ̃

c̃
Ã,Ṽ

(̃b) = c̃(Ã, b̃, Ṽ ),(39.11.5)

where Ṽ
µ̃
is the weight space in Ṽ associated to µ̃, as before.

If γ ∈ (̃A0)
′
, then there is a unique element t̃̃

b,γ
of (̃A0) such that

γ(w) = b̃(w, t̃̃
b,γ

)(39.11.6)

for every w ∈ (̃A0), because the restriction of b̃(·, ·) to (̃A0) is nondegenerate,

as before. Note that γ 7→ t̃̃
b,γ

is a one-to-one linear mapping from (̃A0)
′
onto

(̃A0), as before. If ν ∈ A′
0, and ν̃ is its unique extension to an element of (̃A0)

′
,

then it is easy to see that
t̃̃
b,ν̃

= tb,ν .(39.11.7)

If γ1, γ2 ∈ (̃A0)
′
, then put

b̃′(γ1, γ2) = b̃(t̃̃
b,γ1

, t̃̃
b,γ2

),(39.11.8)

which defines a bilinear form on (̃A0)
′
, as before. If ν1, ν2 ∈ A′

0 and ν̃1, ν̃2 are

their unique extensions to elements of (̃A0)
′
, then

b̃′(ν̃1, ν̃2) = b′(ν1, ν2),(39.11.9)

by (39.11.7).

Remember that the analogue Φ̃ of Φ for Ã and (̃A0) consists of α̃, α ∈ Φ,

as in Section 33.4. Similarly, the collection ∆̃ of α̃, α ∈ ∆, is a base for Φ̃, as
before. We have also seen that the collection Φ̃+ of positive roots in Φ̃ with
respect to ∆̃ consists exactly of β̃, β ∈ Φ+. Thus the analogue of (39.10.14) for

Φ̃ and ∆̃ is

δ̃ =
1

2

∑
α∈Φ+

α̃.(39.11.10)

This is the same as the unique extension of (39.10.14) to an element of (̃A0)
′
.

Remember that V is standard cyclic of weight µ ∈ A′
0, and that Ṽ is standard

cyclic of weight µ̃. It follows that

c̃(Ã, b̃, Ṽ ) = b̃′(µ̃+ 2 δ̃, µ̃),(39.11.11)

as in (39.11.3). This implies that

c̃(Ã, b̃, Ṽ ) = b′(µ+ 2 δ, µ),(39.11.12)

by (39.11.9). In particular, this means that c̃(Ã, b̃, Ṽ ) is an element of k.

Remember that c̃
Ã,Ṽ

(̃b) is the same as the natural extension of cA,V (b) to a

mapping from Ṽ to itself that is linear over k. Thus we get that (39.11.1) holds,
where c(A, b, V ) is as in (39.11.3), by (39.11.4) and (39.11.12).
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39.12 Freudenthal’s formula

Let us continue with the same notation and hypotheses as in the previous sec-
tions, where k is not asked to be algebraically closed. Thus

cA,V (b) = b′(µ+ 2 δ, µ) IV ,(39.12.1)

by (39.11.1), (39.11.3), and their extensions to the case where k is not necessarily
algebraically closed.

If ν ∈ A′
0, then we get that

trVν cA,V (b) = (dimVν) b
′(µ+ 2 δ, µ).(39.12.2)

Combining this with (39.10.15), we obtain that

(dimVν) b
′(µ+ 2 δ, µ) = (dimVν) b

′(ν + 2 δ, ν)

+2
∑
α∈Φ+

∞∑
j=1

(dimVν+j α) b
′(α, ν + j α).(39.12.3)

Equivalently, this means that

(dimVν) (b
′(µ+ 2 δ, µ)− b′(ν + 2 δ, ν))(39.12.4)

= 2
∑
α∈Φ+

∞∑
j=1

(dimVν+j α) b
′(α, ν + j α).

This is Freudenthal’s formula, as on p122 of [14].
Of course, (39.12.4) is trivial unless ν + j α is a weight of V for some non-

negative integer j. In this case, ν ∈ Υ, as in Section 39.8. In particular, this
means that ν ∈ EQ, as in Section 32.3.

Suppose from now on in this section that

b(·, ·) is the Killing form bA(·, ·) on A.(39.12.5)

Note that this satisfies the conditions mentioned in Section 39.2, including non-
degeneracy, because A is semisimple.

Let b′A(·, ·) be the corresponding bilinear form on A′
0, as in Section 39.9. If

ν1, ν2 ∈ Φ, then b′A(ν1, ν2) corresponds to an element of Q, under the natu-
ral embedding of Q into k, as in Section 17.11. This implies that b′A(ν1, ν2)
corresponds to an element of Q when ν1, ν2 ∈ EQ.

Let (·, ·)EQ
be the restriction of b′A(·, ·) to EQ, considered as taking values

in Q, as in Section 17.12. More precisely, this is a bilinear form on EQ, as a
vector space over Q. Note that (·, ·)EQ

is symmetric on EQ, because bA(·, ·) is
symmetric on A, and thus b′A(·, ·) is symmetric on A′

0.
Let (·, ·)ER

be the natural extension of (·, ·)EQ
to a bilinear form on ER, as

a vector space over R. Of course, (·, ·)ER
is symmetric on ER, and in fact it is

an inner product on ER, as a vector space over R, as in Section 17.13.
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If α ∈ Φ, then the symmetry on ER with vector α that maps Φ onto itself is
the same as the reflection on ER associated to α with respect to (·, ·)ER

, as in
Section 22.1. This means that (·, ·)ER

is invariant under the Weyl group of Φ.
Remember that V is standard cyclic of weight µ ∈ A′

0, as in the previous
section. In particular, µ is a weight of V , so that µ ∈ Υ, and thus µ ∈ EQ. Of
course, δ ∈ EQ too, and it is easy to see that

b′A(µ+ 2 δ, µ)− b′A(ν + 2 δ, ν) = (µ+ 2 δ, µ)ER
− (ν + 2 δ, ν)ER

= (µ+ δ, µ+ δ)ER
− (ν + δ, ν + δ)ER

(39.12.6)

for every ν ∈ EQ. Combining this with (39.12.4), we get that

(dimVν) ((µ+ δ, µ+ δ)ER
− (ν + δ, ν + δ)ER

)(39.12.7)

= 2
∑
α∈Φ+

∞∑
j=1

(dimVν+j α) (α, ν + j α)ER

for every ν ∈ EQ.
Let Π = Π(V ) be the set of ν ∈ A′

0 such that ν is a weight of V , so that
Π ⊆ Υ. Remember that Π is saturated as a subset of Υ, with highest weight µ,
as in Section 38.12.

If ν ∈ Π, then

(ν + δ, ν + δ)ER
≤ (µ+ δ, µ+ δ)ER

,(39.12.8)

with equality only when ν = µ, as in Section 30.11. This means that the left
side of (39.12.7) is a positive number times the dimension of Vν when ν ∈ Π
and ν ̸= µ. This corresponds to some remarks on p122 of [14].
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