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Abstract

Some topics related to Lipschitz mappings are discussed, where the cor-
responding metrics may change in a certain way. This includes bounded
linear mappings between vector spaces over fields with absolute value
functions, where the corresponding norms may change in a similar way.
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Part I

Basic notions

1 q-Semimetrics

Let X be a set, and q be a positive real number. A nonnegative real-valued
function d(x, y) defined for x, y ∈ X is said to be a q-semimetric on X if it
satisfies the following three conditions. First,

d(x, x) = 0(1.1)

for every x ∈ X. Second, d(x, y) should be symmetric in x and y, so that

d(x, y) = d(y, x)(1.2)

for every x, y ∈ X. Third, we ask that

d(x, z)q ≤ d(x, y)q + d(y, z)q(1.3)

for every x, y, z ∈ X, which is the q-semimetric version of the triangle inequality.
If we also have that

d(x, y) > 0(1.4)

for every x, y ∈ X with x ̸= y, then d(x, y) is said to be a q-metric on X. If
q = 1, then this reduces to the usual notion of a semimetric and a metric on
X. Note that d(x, y) is a q-semimetric or q-metric on X exactly when d(x, y)q

is an ordinary semimetric or metric on X, respectively. Observe too that (1.3)
can be reformulated equivalently as saying that

d(x, z) ≤ (d(x, y)q + d(y, z)q)1/q(1.5)

for every x, y, z ∈ X.
Clearly

max(r, t) ≤ (rq + tq)1/q(1.6)

for every positive real number q and nonnegative real numbers r, t. If q1, q2 are
positive real numbers with q1 ≤ q2, then we get that

rq2 + tq2 ≤ max(r, t)q2−q1 (rq1 + tq1)(1.7)

≤ (rq1 + tq1)(q2−q1)/q1+1 = (rq1 + tq1)q2/q1

for every r, t ≥ 0. This implies the well-known inequality

(rq2 + tq2)1/q2 ≤ (rq1 + tq1)1/q1(1.8)
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for r, t ≥ 0 when 0 < q1 ≤ q2 < ∞. If d(x, y) is a q2-semimetric on X for
some q2 > 0, then it follows that d(x, y) is a q1-semimetric on X as well when
0 < q1 ≤ q2, using the reformulation (1.5) of the q-semimetric version of the
triangle inequality. Of course, there is an analogous statement for q-metrics.

A nonnegative real-valued function d(x, y) defined for x, y ∈ X is said to be
a semi-ultrametric on X if it satisfies (1.1), (1.2), and

d(x, z) ≤ max(d(x, y), d(y, z))(1.9)

for every x, y, z ∈ X, instead of (1.3). If d(x, y) satisfies (1.4) too, then d(x, y) is
said to be an ultrametric on X. One can check that a semi-ultrametric on X is
a q-semimetric on X for every q > 0, and similarly for ultrametrics. Remember
that the discrete metric on X is defined by putting

d(x, y) = 1(1.10)

for every x, y ∈ X with x ̸= y, and using (1.1) otherwise. It is easy to see that
this defines an ultrametric on X.

Observe that
(rq + tq)1/q ≤ 21/q max(r, t)(1.11)

for every q > 0 and r, t ≥ 0. Combining this with (1.6), we get that

lim
q→∞

(rq + tq)1/q = max(r, t)(1.12)

for every r, t ≥ 0. Thus semi-ultrametrics and ultrametrics may be considered
as analogues of q-semimetrics and q-metrics with q = ∞. It will sometimes be
convenient to refer to the range 0 < q ≤ ∞ in this way.

2 Open balls

Let X be a set, and let d(x, y) be a q-semimetric on X for some q > 0. The
open ball in X centered at a point x ∈ X with radius r > 0 with respect to
d(·, ·) can be defined as usual by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(2.1)

If z ∈ B(x, r), t > 0, and
d(x, z)q + tq ≤ rq,(2.2)

then it is easy to see that
B(z, t) ⊆ B(x, r),(2.3)

using the q-semimetric version of the triangle inequality (1.3). More precisely,
if z ∈ B(x, r), then d(x, z)q < rq, and so

t = (rq − d(x, z)q)1/q(2.4)

4



is a positive real number. In this case, equality holds in (2.2), and so (2.3) holds
with this choice of t.

Note that
Bdq (x, rq) = Bd(x, r)(2.5)

for each x ∈ X and r > 0. Thus one could also reduce (2.3) to its analogue
for d(·, ·)q, which is an ordinary semimetric on X, as in the previous section. If
d(·, ·) is a semi-ultrametric on X, then we have that

B(z, r) ⊆ B(x, r)(2.6)

when d(x, z) < r. This may be considered as the q = ∞ version of the remarks
in the preceding paragraph, but it is easier to derive (2.6) directly from the
ultrametric version (1.9) of the triangle inequality. It follows that

B(x, r) = B(z, r)(2.7)

when d(x, z) < r, because (2.6) also holds with the roles of x and z exchanged.
Let d(·, ·) be a q-semimetric on X for any q > 0 again. As usual, a subset

U of X is said to be an open set with respect to d(·, ·) if for each x ∈ U there
is an r > 0 such that

B(x, r) ⊆ U.(2.8)

It is easy to see that this defines a topology on X, and the earlier discussion
of (2.3) implies that open balls in X with respect to d(·, ·) are open sets. This
topology on X associated to d(·, ·) is the same as the topology associated to
d(·, ·)q, because of (2.5), which permits one to reduce to the case of ordinary
semimetrics. One can check that this topology on X associated to d(·, ·) is
Hausdorff exactly when d(·, ·) is a q-metric on X.

Suppose that d(·, ·) is a semi-ultrametric on X, and that

B(x, r) ∩B(z, r) ̸= ∅(2.9)

for some x, z ∈ X and r > 0. This implies that

d(x, z) < r,(2.10)

by the ultrametric version of the triangle inequality. It follows that (2.7) holds
under these conditions, as before. In particular, if z is a limit point of B(x, r)
with respect to the topology determined by d(·, ·) on X, then z is an element of
B(x, r). Thus B(x, r) is a closed set in X with respect to this topology in this
situation.

3 Closed balls

Let d(x, y) be a q-semimetric on a set X for some q > 0 again. If x ∈ X and r is
a nonnegative real number, then the closed ball in X centered at x with radius
r with respect to d(·, ·) is defined as usual by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.(3.1)
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One can check that this is always a closed set in X with respect to the topology
determined by d(·, ·) as in the preceding section, by standard arguments. As in
(2.5), we have that

Bdq (x, rq) = Bd(x, r)(3.2)

for every x ∈ X and r ≥ 0. This permits one to reduce the previous statement
about closed balls being closed sets to the case of an ordinary semimetric on X.

Alternatively, if z ∈ X \B(x, r) and t > 0 satisfy

rq + tq ≤ d(x, z)q,(3.3)

then one can verify that

B(z, t) ⊆ X \B(x, r),(3.4)

using the q-semimetric version of the triangle inequality. Of course, if z is not
in B(x, r), then d(x, z) > r, and so

t = (d(x, z)q − rq)1/q > 0.(3.5)

By construction, equality holds in (3.3) with this choice of t, so that (3.4) holds
as well. This implies that X \ B(x, r) is an open set in X with respect to the
topology determined by d(·, ·). Equivalently, B(x, r) is a closed set with respect
to this topology, as before.

Suppose now that d(·, ·) is a semi-ultrametric on X. If z ∈ X \B(x, r), then

B(z, d(x, z)) ⊆ X \B(x, r),(3.6)

which is to say that (3.4) holds with t = d(x, z). More precisely, if x, y, z ∈ X
satisfy

d(y, z) < d(x, z),(3.7)

then the ultrametric version of the triangle inequality (1.9) implies that

d(x, z) ≤ d(x, y).(3.8)

This implies that (3.6) holds when d(x, z) ≥ r, and indeed (3.8) is the same as
(3.6) with r = d(x, z). If x, y, z ∈ X satisfy (3.7), then we also have that

d(x, y) ≤ d(x, z)(3.9)

by the ultrametric version of the triangle inequality, and hence

d(x, y) = d(x, z).(3.10)

If x, z ∈ X satisfy
d(x, z) ≤ r(3.11)

for some r ≥ 0, then it is easy to see that

B(z, r) ⊆ B(x, r),(3.12)
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using the ultrametric version of the triangle inequality. In particular, this implies
that B(x, r) is an open set in X with respect to the topology determined by
d(·, ·) when r > 0 and d(·, ·) is a semi-ultrametric on X. It follows from (3.12)
that

B(x, r) = B(z, r)(3.13)

when (3.11) holds, by interchanging the roles of x and z in (3.12). If x, z ∈ X
satisfy

B(x, r) ∩B(z, r) ̸= ∅(3.14)

for some r ≥ 0, then (3.11) holds, by the ultrametric version of the triangle
inequality. Thus (3.14) implies (3.13) when d(·, ·) is a semi-ultrametric on X.

4 q-Absolute value functions

Let k be a field, and let q be a positive real number. A nonnegative real-valued
function | · | on k is said to be a q-absolute value function on k if it satisfies the
following three conditions. The first condition asks that

|x| = 0 if and only if x = 0.(4.1)

The second and third conditions ask that

|x y| = |x| |y|(4.2)

and
|x+ y|q ≤ |x|q + |y|q(4.3)

for every x, y ∈ k. If | · | satisfies these conditions on k with q = 1, then we
simply say that | · | is an absolute value function on k.

We shall use 1 to denote both the multiplicative identity element in k and
the positive real number, as appropriate. Using (4.2), we get that

|1|2 = |12| = |1|,(4.4)

and hence
|1| = 1,(4.5)

because |1| > 0, by (4.1). If x ∈ k satisfies xn = 1 for some positive integer n,
then it follows that

|x|n = |xn| = 1,(4.6)

so that |x| = 1. In particular, this holds when x = −1 in k, which implies that

| − z| = |z|(4.7)

for every y ∈ k. Using this, (4.1), and (4.3), it is easy to see that

d(x, y) = |x− y|(4.8)
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defines a q-metric on k.
If | · | is a nonnegative real-valued function on k that satisfies (4.1), (4.2),

and
|x+ y| ≤ max(|x|, |y|)(4.9)

for every x, y ∈ k, then | · | is said to be an ultrametric absolute value function on
k. In this case, (4.8) is an ultrametric on k. The trivial absolute value function
on k is defined by putting |0| = 0 and |x| = 1 for every x ∈ k with x ̸= 0. It is
easy to see that this is an ultrametric absolute value function on k, for which
the corresponding ultrametric as in (4.8) is the discrete metric on k. Note that
an ultrametric absolute value function on k is also a q-absolute value function
on k for every q > 0.

As usual, (4.3) is equivalent to saying that

|x+ y| ≤ (|x|q + |y|q)1/q(4.10)

for every x, y ∈ k. If | · | is a q2-absolute value function on k for some q2 > 0,
then | · | is also a q1-absolute value function on k when 0 < q1 ≤ q2, by (1.8).
An ultrametric absolute value function may be considered as a q-absolute value
function with q = ∞, because of (1.12). If q is any positive real number, then a
nonnegative real-valued function | · | on k is a q-absolute value function exactly
when | · |q is an ordinary absolute value function on k. Of course, the standard
absolute value functions on the fields R and C of real and complex numbers,
respectively, are absolute value functions in this sense.

5 q-Seminorms

Let k be a field, let | · | be a qk-absolute value function on k for some qk > 0,
and let V be a vector space over k. A nonnegative real-valued function N on V
is said to be a q-seminorm on V with respect to | · | on k for some positive real
number q if

N(t v) = |t|N(v)(5.1)

for every t ∈ k and v ∈ V , and

N(v + w)q ≤ N(v)q +N(w)q(5.2)

for every v, w ∈ V . In particular, (5.1) implies that N(0) = 0, by taking t = 0.
If we also have that

N(v) > 0(5.3)

for every v ∈ V with v ̸= 0, then N is said to be a q-norm on V . Of course, k
may be considered as a 1-dimensional vector space over itself, and | · | may be
considered as a qk-norm on k as a vector space over itself.

Similarly, a nonnegative real-valued function N on V is said to be a semi-
ultranorm on V with respect to | · | on k if N satisfies (5.1) and

N(v + w) ≤ max(N(v), N(w))(5.4)
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for every v, w ∈ V . As usual, one can check that (5.4) implies (5.2) for every
q > 0, so that a semi-ultranorm on V may be considered as a q-seminorm for
every q > 0. If a semi-ultranorm N on V satisfies (5.3) too, then N is said to be
an ultranorm on V with respect to | · | on k. In this case, N may be considered
as a q-norm on V for every q > 0, as before. If | · | is an ultrametric absolute
value function on k, then | · | may be considered as an ultranorm on k as a vector
space over itself, as in the preceding paragraph.

As in the previous situations, (5.2) can be reformulated as saying that

N(v + w) ≤ (N(v)q +N(w)q)1/q(5.5)

for every v, w ∈ V . If N is a q2-seminorm on V with respect to | · | on k for
some q2 > 0, and if 0 < q1 ≤ q2, then N is a q1-seminorm on V with respect
to | · | on k as well, because of (1.8). This implies the analogous statement for
q2-norms on V . Semi-ultranorms and ultranorms on V may be considered as
q-seminorms and q-norms on V with q = ∞, respectively, because of (1.12).

Suppose for the moment that N is a q-seminorm on V for some q > 0, and
that N(v) > 0 for some v ∈ V . Under these conditions, it is easy to see that
| · | has to satisfy (4.3) on k with the same choice of q. This also works when
q = ∞, in the sense that if N is a semi-ultranorm on V such that N(v) > 0
for some v ∈ V , then | · | should satisfy the ultrametric version of the triangle
inequality (4.9). Thus one may wish to restrict one’s attention to q > 0 such
that | · | is a q-absolute value function on k.

If q = 1, then a q-seminorm or q-norm on V may simply be called a seminorm
or a norm on V , respectively. Remember that | · | is a q-absolute value function
on k for some positive real number q if and only if | · |q is an ordinary absolute
value function on k. In this case, a nonnegative real-valued function N on V
is a q-seminorm with respect to | · | on k if and only if Nq is a seminorm on V
with respect to | · |q as an ordinary absolute value function on k, and similarly
for q-norms.

If N is a q-seminorm on V for some q > 0, then

d(v, w) = dN (v, w) = N(v − w)(5.6)

defines a q-semimetric on V , which is a q-metric on V when N is a q-norm on
V . This uses the fact that | − 1| = 1, as in (4.6), to get that (5.6) is symmetric
in v and w. The previous statement also works when q = ∞, in the sense
that (5.6) is a semi-ultrametric on V when N is a semi-ultranorm on V , and
that (5.6) is an ultrametric on V when N is an ultranorm on V . If | · | is the
trivial absolute value function on k, then the trivial ultranorm is defined on V
by putting N(0) = 0 and N(v) = 1 for every v ∈ V with v ̸= 0. It is easy to see
that this defines an ultranorm on V , for which the corresponding ultrametric as
in (5.6) is the discrete metric.

Suppose now that N is a semi-ultranorm on V , and observe that

N(v) ≤ max(N(w), N(v − w))(5.7)
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for every v, w ∈ V . If
N(v − w) < N(v),(5.8)

then this implies that
N(v) ≤ N(w).(5.9)

It is easy to see that the reverse inequality also holds when v, w ∈ V satisfy
(5.8), so that

N(v) = N(w)(5.10)

under these conditions. This is basically the same as (3.10) in this situation,
using the semi-ultrametric (5.6) corresponding to N on V . In particular, if
x, y ∈ k satisfy |x− y| < |x|, then we get that

|x| = |y|,(5.11)

for the same reasons.

6 Lipschitz mappings

Let X, Y be sets, and suppose that dX , dY are qX , qY -semimetrics on X, Y ,
respectively, for some qX , qY > 0. A mapping f from X into Y is said to be
Lipschitz of order α > 0 if there is a nonnegative real number C such that

dY (f(x), f(x
′)) ≤ C dX(x, x′)α(6.1)

for every x, x′ ∈ X. Of course, constant mappings satisfy this condition with
C = 0. If dY is a qY -metric on Y , and if f satisfies (6.1) with C = 0, then f is
constant on X.

Let Z be another set, and let dZ be a qZ-semimetric on Z for some qZ > 0.
Suppose that f : X → Y is Lipschitz of order α > 0 with constant C(f) ≥ 0,
and that g : Y → Z is Lipschitz of order β > 0 with constant C(g) ≥ 0. Thus
the composition g ◦ f of f and g is defined as a mapping from X into Z, and

dZ((g ◦ f)(x′), (g ◦ f)(x′)) = dZ(g(f(x)), g(f(x
′)))(6.2)

≤ C(g) dY (f(x), f(x
′))β

≤ C(g)C(f)β dX(x, x′)αβ

for every x, x′ ∈ X. This shows that g ◦f is Lipschitz of order αβ with constant
C(f)β C(g) as a mapping from X into Z under these conditions.

To simplify notation, let us now take X to be a set with a q-semimetric d
for some q > 0. Let x0 ∈ X be given, and put

f0(x) = d(x, x0)
q(6.3)

for every x ∈ X, so that f0 defines a real-valued function on X. Observe that

f0(x)− f0(x
′) ≤ d(x, x′)q(6.4)
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for every x, x′ ∈ X, by the q-semimetric version of the triangle inequality (1.3).
Similarly,

f0(x
′)− f0(x) ≤ d(x, x′)q(6.5)

for every x, x′ ∈ X, by exchanging the roles of x and x′ in (6.4). Combining
(6.4) and (6.5), we get that that

|f0(x)− f0(x
′)| ≤ d(x, x′)q(6.6)

for every x, x′ ∈ X, using the standard absolute value function on the real line
on the left side of this inequality. This shows that f0 is Lipschitz of order q
with constant C = 1 as a mapping from X into the real line, using the standard
metric on R in the range of this mapping. If 0 < q0 ≤ q, then d is also a q0-
semimetric on X, as in Section 1. In this case, the preceding argument implies
that

d(x, x0)
q0(6.7)

is Lipschitz of order q0 with constant C = 1 as a real-valued function of x ∈ X.
Now let | · | be a q-absolute value function on a field k for some q > 0, so

that
|x− y|(6.8)

defines a q-metric on k, as in (4.8). If 0 < q0 ≤ q, then we can apply the
argument in the previous paragraph with x0 = 0, to get that

|x|q0(6.9)

is Lipschitz of order q0 with constant C = 1 on k with respect to (6.8). Similarly,
let V be a vector space over k, and let N be a q-seminorm on V with respect
to | · | on k, so that

N(v − w)(6.10)

is a q-semimetric on V , as in (5.6). As before, if 0 < q0 ≤ q, then we can apply
the argument in the previous paragraph with x0 = 0, to get that

N(v)q0(6.11)

is Lipschitz of order q0 with constant C = 1 on V with respect to (6.10).

7 Uniform continuity and completeness

Let X, Y be sets with qX , qY -semimetrics dX , dY again, respectively, and for
some qX , qY > 0. One can define uniform continuity for mappings from X into
Y with respect to dX and dY , in the same way as for ordinary metric spaces.
As usual, one can reduce to the case where qX = qY = 1, by replacing dX , dY
with their qXth, qY th powers, respectively, and this would lead to an equivalent
formulation of uniform continuity. Of course, uniformly continuous mappings
are continuous with respect to the topologies associated to the corresponding
semimetrics, and it is easy to see that compositions of uniformly continuous
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mappings are uniformly continuous. Observe that Lipschitz mappings of any
positive order are uniformly continuous.

One can define the notion of a Cauchy sequence of elements of a q-metric
space for any q > 0 in the same way as for ordinary metric spaces, or reduce to
that case in the usual way. Similarly, a q-metric space is said to be complete if
every Cauchy sequence of elements of the space converges to an element of the
space. Any q-metric space can be embedded isometrically onto a dense subset
of a complete q-metric space, and this completion is unique up to isometric
equivalence. As before, this can be derived from the analogous statement for
ordinary metric spaces by replacing the q-metric on X with its qth power, or
obtained using the same type of arguments. Note that the completion of an
ultrametric space is an ultrametric space as well, which corresponds to taking
q = ∞, in which case the ultrametric is already an ordinary metric.

Let X, Y be qX , qY -metric spaces for some qX , qY > 0, and let E be a
dense subset of X. Suppose that f is a uniformly continuous mapping from
E into Y , with respect to the restriction of the qX -metric on X to E. If Y
is complete, then there is a unique extension of f to a uniformly continuous
mapping from X into Y . This is well known for ordinary metric spaces, and
otherwise one can reduce to that case in the usual way, or use essentially the
same arguments in this situation. More precisely, uniqueness of the extension
only requires ordinary continuity, instead of uniform continuity.

Let k be a field, and let |·| be a q-absolute value function on k for some q > 0,
which leads to a q-metric on k as in (4.8). If k is not already complete with
respect to this q-metric, then one can pass to a completion of k as a q-metric
space, as before. It is well known that addition and multiplication on k can be
extended to the completion in a natural way, so that the completion becomes a
field. This will be discussed further in the next paragraph. The extension of the
q-metric to the completion of k includes an extension of | · | to the completion,
since this function is the same as the distance to 0 with respect to the q-metric.
This extension of | · | to the completion of k is a q-absolute value function on
the completion, and the extension of the q-metric to the completion is the same
as the q-metric associated to the extension of | · | to the completion. If | · | is an
ultrametric absolute value function on k, then its extension to the completion
of k is an ultrametric absolute value function too.

More precisely, it is easy to see that addition on k is continuous as a mapping
from k × k into k, using the corresponding product topology on k × k. In fact,
addition on k is uniformly continuous as a mapping from k × k into k, with
respect to the q-metric on k×k obtained by taking the maximum of the distances
in the two coordinates. The extension of addition to the completion of k can
be obtained from this uniform continuity as before. Similarly, multiplication on
k is continuous as a mapping from k × k into k, and it is uniformly continuous
on products of balls in k. This can be used to extend multiplication to the
completion of k. The mapping

x 7→ 1/x(7.1)

is continuous on k \ {0}, and uniformly continuous on the set of x ∈ k with
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|x| ≥ c for any c > 0. This permits one to extend (7.1) to nonzero elements of
the completion of k.

Let V be a vector space over k, and let N be a q-norm on V , so that (5.6)
is a q-metric on V . If V is not already complete as a q-metric space, then one
can pass to a completion, as before. Addition and scalar multiplication can be
extended to the completion in a natural way, so that the completion is also a
vector space over k. The extension of addition can be obtained from the uniform
continuity of addition on V as a mapping from V ×V into V , using the q-metric
on V × V given by the maximum of the distances in the two coordinates. To
extend scalar multiplication to the completion of V , one can use the uniform
continuity of

v 7→ t v(7.2)

as a mapping from V into itself for each t ∈ k. The distance to 0 in the
completion of V defines an extension of N to the completion of V , and this
extension of N is a q-norm on the completion of V , which corresponds to the
extension of the q-metric to the completion of V in the usual way. If N is an
ultranorm on V , then the extension of N to the completion of V is an ultranorm.

If V is complete with respect to the q-metric associated to N , but k is not
complete with respect to the q-metric associated to | · |, then one can extend
scalar multiplication on V to the completion of k in a natural way. This can be
obtained from the uniform continuity of

t 7→ t v(7.3)

as a mapping from k into V for each v ∈ V . Using this extension of scalar
multiplication, V becomes a vector space over the completion of k. Similarly, N
is a q-norm on V as a vector space over the completion of k, and with respect to
the extension of | · | to the completion of k discussed earlier. This includes the
case where q = ∞, which corresponds to ultranorms and ultrametric absolute
value functions.

8 Infinite series

Let k be a field, and let | · | be a q-absolute value function on k for some q > 0.
Also let V be a vector space over k, and let N be a q-norm on V with respect to
| · | on k. As usual, an infinite series

∑∞
j=1 vj with terms in V is said to converge

in V if the corresponding sequence of partial sums

l∑
j=1

vj(8.1)

converges to an element of V with respect to the q-metric (5.6) corresponding
to N . In this case, the value of the sum

∑∞
j=1 vj is defined to be the limit of

the sequence of partial sums (8.1) in V . In particular, the partial sums (8.1) are
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bounded in V with respect to N when they converge, and one can check that

N
( ∞∑

j=1

vj

)
≤ sup

l≥1
N
( l∑

j=1

vj

)
.(8.2)

If
∑∞

j=1 vj converges in V and t ∈ k, then
∑∞

j=1 t vj converges in V , and

∞∑
j=1

t vj = t

∞∑
j=1

vj ,(8.3)

by continuity of scalar multiplication on V . Similarly, if
∑∞

j=1 vj ,
∑∞

j=1 wj are

convergent infinite series with terms in V , then
∑∞

j=1(vj +wj) converges in V ,
and

∞∑
j=1

(vj + wj) =

∞∑
j=1

vj +

∞∑
j=1

wj ,(8.4)

by continuity of addition on V .
Let

∑∞
j=1 vj be an infinite series with terms in V again. The sequence

of partial sums (8.1) is a Cauchy sequence in V with respect to the q-metric
associated to N if and only if for each ϵ > 0 there is a positive integer L = L(ϵ)
such that

N
( r∑

j=l

vj

)
< ϵ(8.5)

for every r ≥ l ≥ L. This implies in particular that

lim
j→∞

N(vj) = 0,(8.6)

by taking l = r in (8.5). Of course, if
∑∞

j=1 vj converges in V , then the sequence
of partial sums (8.1) is a Cauchy sequence in V .

Let us say that
∑∞

j=1 vj converges q-absolutely if q < ∞ and

∞∑
j=1

N(vj)
q(8.7)

converges as an infinite series of nonnegative real numbers. The q-norm version
(5.2) of the triangle inequality implies that

N
( r∑

j=l

vj

)q

≤
r∑

j=l

N(vj)
q(8.8)

for every r ≥ l ≥ 1. If
∑∞

j=1 vj converges q-absolutely, then it follows that the
sequence of partial sums (8.1) is a Cauchy sequence in V with respect to N .
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If V is complete with respect to the q-metric associated to N , then this means
that

∑∞
j=1 vj converges in V . In this case, we get that

N
( ∞∑

j=1

vj

)q

≤
∞∑
j=1

N(vj)
q,(8.9)

by combining (8.2) and (8.8).
Suppose now that N is an ultranorm on V , which corresponds to q = ∞.

Thus

N
( r∑

j=l

vj

)
≤ max

l≤j≤r
N(vj)(8.10)

for every r ≥ l ≥ 1, by the ultranorm version (5.4) of the triangle inequality. If
{vj}∞j=1 converges to 0 in V with respect to N , as in (8.6), then the sequence of
partial sums (8.1) is a Cauchy sequence in V with respect to N . This implies
that

∑∞
j=1 vj converges in V if V is also complete with respect to the ultrametric

associated to N . Under these conditions, we have that

N
( ∞∑

j=1

vj

)
≤ max

j≥1
N(vj),(8.11)

by combining (8.2) and (8.10). More precisely, the existence of the maximum
on the right side of (8.11) is trivial when vj = 0 for every j. Otherwise, if vj ̸= 0
for some j, and hence N(vj) > 0 for some j, then the right side of (8.11) reduces
to the maximum of finitely many terms, because of (8.6).

9 Bounded sets and mappings

Let Y be a set, and let d(·, ·) be a q-semimetric on Y for some q > 0. A subset
E of Y is said to be bounded with respect to d(·, ·) if

{d(y, z) : y, z ∈ E}(9.1)

has a finite upper bound in R. If E is bounded and w is any element of Y ,
then it is easy to see that E is contained in a ball of finite radius about w with
respect to d(·, ·). Conversely, if E is contained in an open or closed ball of finite
radius in Y with respect to d(·, ·), then E is bounded in Y . Note that the union
of finitely many bounded subsets of Y with respect to d(·, ·) is also bounded
with respect to d(·, ·).

A mapping f from a setX into Y is said to be bounded with respect to d(·, ·) if
f(X) is bounded as a subset of Y with respect to d(·, ·). Let B(X,Y ) = Bd(X,Y )
be the space of bounded mappings from X into Y with respect to d(·, ·). If f ,
g are bounded mappings from X into Y , then

d(f(x), g(x))(9.2)
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is bounded as a nonnegative real-valued function on X. This implies that the
supremum

sup
x∈X

d(f(x), g(x))(9.3)

is defined as a nonnegative real number when X ̸= ∅. One can check that
(9.3) defines a q-semimetric on B(X,Y ), which is the supremum q-semimetric
associated to d(·, ·) on Y . If d(·, ·) is a q-metric on Y , then (9.3) is a q-metric on
B(X,Y ), and may be called the supremum q-metric associated to d(·, ·) on Y .
There are analogous statements for semi-ultrametrics and ultrametrics, which
correspond to q = ∞.

Suppose that d(·, ·) is a q-metric on Y , and that Y is complete as a q-metric
space with respect to d(·, ·). If X is any nonempty set, then B(X,Y ) is complete
with respect to the corresponding supremum q-metric (9.3). This is well known
when q = 1, and otherwise one can reduce to this case in the usual way, or
use essentially the same arguments as wehn q = 1. More precisely, if {fj}∞j=1

is a Cauchy sequence in B(X,Y ) with respect to the supremum q-metric, then
{fj(x)}∞j=1 is a Cauchy sequence in Y for every x ∈ X. If Y is complete, then it
follows that for each x ∈ X, there is an element f(x) of Y such that {fj(x)}∞j=1

converges to f(x) with respect to d(·, ·) on Y . One can check that f is bounded
as a mapping from X into Y , because {fj}∞j=1 is a Cauchy sequence with respect
to the supremum q-metric, and hence bounded with respect to the supremum
q-metric. Similarly, one can use the Cauchy condition for {fj}∞j=1 again to show
that this sequence converges to f with respect to the supremum q-metric.

Let k be a field with a q-absolute value function | · | for some q > 0, and
let V be a vector space over k with a q-seminorm N with respect to | · | on k.
Thus N determines a q-semimetric on V , as in (5.6). Let X be a nonempty
set, and observe that a V -valued function f on X is bounded with respect
to this q-semimetric if and only if N(f(x)) is bounded as a nonnegative real-
valued function on X. In this case, the space of bounded V -valued functions
on X may also be denoted ℓ∞(X,V ), and it is easy to see that this is a vector
space over k with respect to pointwise addition and scalar multiplication. If
f is a bounded V -valued function on X, then the corresponding supremum
q-seminorm is defined by

∥f∥∞ = ∥f∥ℓ∞(X,V ) = sup
x∈X

N(f(x)).(9.4)

One can verify that this is a q-seminorm on ℓ∞(X,V ) under these conditions, for
which the corresponding q-semimetric is the same as the supremum q-semimetric
associated to the q-semimetric on V determined by N . If N is a q-norm on V ,
then (9.4) is a q-norm on ℓ∞(X,V ), which may be called the supremum q-norm
on ℓ∞(X,V ) associated to N on V . As before, there are analogous statements
for semi-ultranorms and ultranorms, which correspond to q = ∞.
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10 r-Summable functions

Let X be a nonempty set, and let f be a nonnegative real-valued function
defined on X. Of course, if X has only finitely many elements, then the sum∑

x∈X

f(x)(10.1)

can be defined in the usual way. Otherwise, (10.1) can be defined as a nonneg-
ative extended real number as the supremum of∑

x∈A

f(x)(10.2)

over all finite subsets A of X. Thus (10.1) is finite if and only if there is a
finite upper bound for the finite subsums (10.2), in which case f is said to be
summable on X. If g is another nonnegative real-valued function on X, then∑

x∈X

(f(x) + g(x)) =
∑
x∈X

f(x) +
∑
x∈X

g(x),(10.3)

with the usual conventions for sums of nonnegative extended real numbers.
Similarly, if a is a positive real number, then∑

x∈X

a f(x) = a
∑
x∈X

f(x),(10.4)

where the right side is interpreted as being +∞ when (10.1) is infinite. If a = 0,
then the right side of (10.4) should be interpreted as being equal to 0, even when
(10.1) is infinite. If X is the set Z+ of positive integers, then this definition of
(10.1) is equivalent to taking the supremum of the partial sums from 1 to n.

Let k be a field with a q-absolute value function for some q > 0, let V be a
vector space over k with a q-seminorm N with respect to | · | on k, and let r be
a positive real number. A V -valued function f on X is said to be r-summable
on X with respect to N if N(f(x))r is summable as a nonnegative real-valued
function on X. Let ℓr(X,V ) be the space of r-summable V -valued functions on
X with respect to N . If f is such a function, then we put

∥f∥r = ∥f∥ℓr(X,V ) =
( ∑

x∈X

N(f(x))r
)1/r

,(10.5)

and otherwise we may interpret the right side as being +∞ when N(f(x))r is
not summable on X. Observe that

∥t f∥r = |t| ∥f∥r(10.6)

for every t ∈ k and V -valued function f on X, with the usual interpretations
when f is not r-summable on V with respect to N .
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If f , g are V -valued functions on X, then

∥f + g∥rr ≤ ∥f∥rr + ∥g∥rr(10.7)

when 0 < r ≤ q, and
∥f + g∥qr ≤ ∥f∥qr + ∥g∥qr(10.8)

when r ≥ q. Of course, (10.7) and (10.8) are the same when r = q, in which
case one can simply use the q-seminorm version of the triangle inequality for N .
If r ≤ q, then N is also an r-seminorm on V , as in Section 5, and so one can use
the same argument as when r = q. If r ≥ q, then (10.8) can be verified using
Minkowski’s inequality for sums, corresponding to the exponent r/q ≥ 1. Both
(10.7) and (10.8) are trivial unless f and g are r-summable on X with respect
to N , in which case f + g is r-summable on X as well. It follows that ℓr(X,V )
is a vector space with respect to pointwise addition and scalar multiplication
for every r > 0, and that (10.5) defines a q-seminorm on ℓr(X,V ) when r ≥ q,
and an r-seminorm when r ≤ q. If N is a q-norm on V , then (10.5) is a q or
r-norm on ℓr(X,V ), as appropriate.

If a V -valued function f on X is r-summable with respect to N for some
r > 0, then f is bounded with respect to N too, and

∥f∥∞ ≤ ∥f∥r.(10.9)

Suppose that N is a q-norm on V , and that V is complete with respect to the
corresponding q-metric, so that ℓ∞(X,V ) is complete with respect to the corre-
sponding supremum q-metric, as in the previous section. Under these conditions,
ℓr(X,V ) is complete with respect to the q or r-metric associated to (10.5), as
appropriate. Of course, any Cauchy sequence in ℓr(X,V ) is a Cauchy sequence
in ℓ∞(X,V ) as well, because of (10.9), and hence converges in ℓ∞(X,V ). To
show that ℓr(X,V ) is complete, one should check that the limit of the sequence
is r-summable on X with respect to N , and that the sequence converges with
respect to (10.5).

11 Vanishing at infinity

Let k be a field with a q-absolute value function for some q > 0, let V be a
vector space over k with a q-seminorm N with respect to | · | on k, and let X
be a nonempty set. A V -valued function f on X is said to vanish at infinity on
X with respect to N if for each ϵ > 0 there are only finitely many x ∈ X such
that

N(f(x)) ≥ ϵ.(11.1)

Let c0(X,V ) be the space of these functions on X. It is easy to see that c0(X,V )
is a linear subspace of ℓ∞(X,V ), and that c0(X,V ) is a closed set in ℓ∞(X,V )
with respect to the corresponding supremum q-semimetric. IfX has only finitely
many elements, then every V -valued function on X automatically vanishes at
infinity on X. If X is the set Z+ of positive integers, then a V -valued function
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on X is the same as a sequence of elements of V . In this case, vanishing at
infinity on X corresponds to the sequence converging to 0 in V with respect to
N .

The support of a V -valued function f on X is defined to be the set of
x ∈ X such that f(x) ̸= 0. Let c00(X,V ) be the space of V -valued functions
on X whose support has only finitely many elements. This is a linear subspace
of c0(X,V ), and in fact c00(X,V ) is dense in c0(X,V ) with respect to the
supremum q-semimetric associated to N . If f is a V -valued function on X that
vanishes at infinity on X with respect to N , then the support of N(f(x)) has
only finitely or countably many elements. If N is a q-norm on V , then it follows
that the support of f has only finitely or countably many elements.

If a V -valued function f on X is r-summable with respect to N for some
positive real number r, then f vanishes at infinity on X with respect to N , so
that

ℓr(X,V ) ⊆ c0(X,V ).(11.2)

Of course, if a V -valued function f onX has finite support, then f is r-summable
with respect to N for every r > 0, which is to say that

c00(X,V ) ⊆ ℓr(X,V ).(11.3)

One can check that c00(X,V ) is dense in ℓr(X,V ) for every positive real number
r, with respect to the q or r-seminorm associated to (10.5), as appropriate. If f ,
g are r-summable V -valued functions on X with respect to N for some r > 0,
and if the supports of f , g are disjoint in X, then

∥f + g∥rr = ∥f∥rr + ∥g∥rr.(11.4)

Similarly, if f , g are bounded V -valued functions on X with respect to N , and
if the supports of f , g are disjoint in X, then

∥f + g∥∞ = max(∥f∥∞, ∥g∥∞),(11.5)

which is the analogue of (11.4) for r = ∞.
Let r1, r2 be positive real numbers with r1 ≤ r2, and let f be a V -valued

function on X that is r1-summable with respect to N . This implies that f is
bounded with respect to N , as in the previous section. Thus∑

x∈X

N(f(x))r2 ≤ ∥f∥r2−r1
∞

∑
x∈X

N(f(x))r1 < ∞,(11.6)

so that f is r2-summable on X with respect to N as well. It follows that

ℓr1(X,V ) ⊆ ℓr2(X,V ).(11.7)

We also get that
∥f∥r2r2 ≤ ∥f∥r2−r1

∞ ∥f∥r1r1 ≤ ∥f∥r2r1 ,(11.8)

using (11.6) in the first step, and (10.9) in the second step. Hence

∥f∥r2 ≤ ∥f∥r1 .(11.9)

Note that (11.9) reduces to (1.8) when X has exactly two elements.
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12 q-Absolute value functions, continued

Let k be a field, and let | · | be a q-absolute value function on k for some q > 0.
If x ∈ k and n is a positive integer, then let n · x denote the sum of n x’s in k.
If there are n ∈ Z+ such that |n · 1| is arbitrarily large, then | · | is said to be
archimedian on k. Otherwise, | · | is said to be non-archimedian on k. Observe
that

|nj · 1| = |(n · 1)j | = |n · 1|j(12.1)

for all j, n ∈ Z+, and that (12.1) tends to infinity as j → ∞ when |n · 1| > 1. It
follows that

|n · 1| ≤ 1(12.2)

for every n ∈ Z+ when | · | is non-archimedian on k. If | · | is an ultrametric
absolute value function on k, then it is easy to see that (12.2) holds for every
n ∈ Z+, so that | · | is non-archimedian on k. Conversely, if a q-absolute value
function | · | is non-archimedian on k, then it is well known that | · | is an
ultrametric absolute value function on k.

If |·| is any q-absolute value function on a field k again, then the set of positive
values of | · | on k is a subgroup of the group R+ of positive real numbers with
respect to multiplication. If 1 is not a limit point of this set with respect to the
standard topology on R, then | · | is said to be discrete on k. In this case, one
can show that the set of positive values of | · | on k is the same as the set of
integer powers of a single positive real number. If | · | is not discrete on k, then
one can check that the set of positive values of | · | on k is dense in R+ with
respect to the standard topology on R.

If k has positive characteristic, then any q-absolute value function on k is
non-archimedian, and hence an ultrametric absolute value function. Suppose
that k has characteristic 0, so that there is a natural embedding from the field
Q of rational numbers into k. If | · | is a q-absolute value function on k for some
q > 0, then this embedding induces a q-absolute value function on Q. Note
that | · | is archimedian on k if and only if the induced q-absolute value function
on Q is archimedian. A famous theorem of Ostrowski implies that the only
archimedian q-absolute value functions on Q are given by positive powers of
the standard absolute value function on Q. In particular, these absolute value
functions on Q are not discrete, which implies that any archimedian q-absolute
value function on a field k is not discrete. Equivalently, any discrete q-absolute
value function on a field k is non-archimedian, and hence an ultrametric absolute
value function.

Let | · | be an archimedian q-absolute value function on a field k again, for
some q > 0. Suppose that k is also complete with respect to the q-metric
associated to | · | as in (4.8). Under these conditions, another famous theorem of
Ostrowski implies that k is isomorphic as a field to R or C, in such a way that
| · | corresponds to a positive power of the standard absolute value function on
R or C, as appropriate, using this isomorphism. Of course, if k is not complete
with respect to the q-metric associated to | · |, then one can simply pass to a
completion, as in Section 7.
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13 Bounded linear mappings

Let k be a field, let | · | be a q-absolute value function on k for some q > 0, and
let V , W be vector spaces over k. Suppose that NV , NW are qV , qW -seminorms
on V , W , respectively, and for some qV , qW > 0. One may as well ask that
qV , qW ≤ q here, since | · | should be a qV , qW -absolute value function on k,
unless NV or NW is identically 0. A linear mapping T from V into W is said
to be bounded with respect to NV , NW if there is a nonnegative real number C
such that

NW (T (v)) ≤ C NV (v)(13.1)

for every v ∈ V . Of course, this implies that

NW (T (v)− T (v′)) = NW (T (v − v′)) ≤ C NV (v − v′)(13.2)

for every v, v′ ∈ V , so that T is Lipschitz of order 1 with respect to the qV ,
qW -semimetrics on V , W associated to NV , NW as in (5.6), respectively. In
particular, this means that T is uniformly continuous, and hence continuous. If
| · | is nontrivial on k, and if a linear mapping T from V into W is continuous
at 0, then it is easy to see that T is bounded. More precisely, it suffices that T
be bounded with respect to NW on a ball of positive radius in V with respect
to NV .

Let T be a bounded linear mapping from V into W , and put

∥T∥op = ∥T∥op,VW = inf{C ≥ 0 : (13.1) holds},(13.3)

which is to say that one takes the infimum of all nonnegative real numbers C
such that (13.1) holds for every v ∈ V . It is easy to see that the infimum has the
same property, so that (13.1) holds with C = ∥T∥op. Note that the boundedness
of T implies that

NW (T (v)) = 0(13.4)

for every v ∈ V such that NV (v) = 0. If NV (v) > 0 for some v ∈ V , then

∥T∥op = sup

{
NW (T (v))

NV (v)
: v ∈ V, NV (v) > 0

}
.(13.5)

Otherwise, ∥T∥op = 0 when NV (v) = 0 for every v ∈ V .
Let BL(V,W ) be the space of bounded linear mappings from V into W ,

with respect to NV , NW , as before. One can check that BL(V,W ) is a vector
space over k, and that ∥T∥op is a qW -seminorm on BL(V,W ), because NW

is a qW -seminorm on W . If NW is a qW -norm on W , then ∥T∥op is a qW -
norm on BL(V,W ). In this case, if W is complete with respect to the qW -
metric associated to NW , then BL(V,W ) is complete with respect to the q-
metric associated to ∥ · ∥op. We may also use the notation BL(V ) for the space
of bounded linear mappings from V into itself, with respect to the same qV -
seminorm NV on both the domain and range.

Let Z be another vector space over k, and suppose that NZ is a qZ-seminorm
on Z for some qZ > 0. If T1 is a bounded linear mapping from V into W , and
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T2 is a bounded linear mapping from W into Z, then their composition T2 ◦ T1

is a bounded linear mapping from V into Z, and

∥T2 ◦ T1∥op,V Z ≤ ∥T1∥op,VW ∥T2∥op,WZ .(13.6)

In particular, BL(V ) is an algebra with respect to composition of linear map-
pings. The identity mapping I = IV on V is bounded as a linear mapping from
V into itself, with

∥IV ∥op,V V = 1(13.7)

as long as NV (v) > 0 for some v ∈ V .

14 r-Summable functions, continued

Let k be a field with a q-absolute value function | · | for some q > 0, and let V , W
be vector spaces over k with qV , qW -norms NV , NW , respectively. Also let V0 be
a linear subspace of V , and let T be a bounded linear mapping from V0 into W ,
using the restriction of NV to V0. Thus T is uniformly continuous on V0, as in
the previous section. If V0 is dense in V with respect to the qV -metric associated
to NV , and if W is complete with respect to the qW -metric associated to NW ,
then there is a unique extension of T to a uniformly continuous mapping from V
into W , as in Section 7. In this situation, one can check that this extension of T
to V is a bounded linear mapping from V into W , and with the same operator
norm on V as on V0.

Let k be a field again, and let V be a vector space over k. Also let X be a
nonempty set, and let c00(X,V ) be the space of V -valued functions on X with
finite support, as in Section 11. If f is such a function, then the sum∑

x∈X

f(x)(14.1)

can be defined as an element of V in a natural way, by reducing to a finite sum.
This defines a linear mapping from c00(X,V ) into V . Let | · | be a q-absolute
value function on k for some q > 0, and let N be a q-seminorm on V . Using the
q-seminorm version of the triangle inequality, it is easy to see that

N
( ∑

x∈X

f(x)
)
≤ ∥f∥ℓq(X,V )(14.2)

for every f ∈ c00(X,V ). Here ∥f∥ℓq(X,V ) is as in (10.5) when 0 < q < ∞,
and is as in (9.4) when q = ∞. Thus the mapping from f to the sum (14.1)
defines a bounded linear mapping from c00(X,V ) into V , using the q-seminorm
∥f∥ℓq(X,V ) on c00(X,V ) and N on V .

Suppose now thatN is a q-norm on V , and that V is complete with respect to
the corresponding q-metric. If 0 < q < ∞, then the mapping from f ∈ c00(X,V )
to the sum (14.2) can be extended to a bounded linear mapping from ℓq(X,V )
into V , by the remarks at the beginning of the section. This uses the fact that
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c00(X,V ) is dense in ℓq(X,V ) when q < ∞, as in Section 11. Similarly, if q = ∞,
then the mapping from f ∈ c00(X,V ) to the sum (14.1) can be extended to a
bounded linear mapping from c0(X,V ) into V , using the supremum norm on
c0(X,V ) corresponding to N on V , as before. This uses the fact that c00(X,V )
is dense in c0(X,V ) with respect to the supremum norm.

Of course, if X has only finitely many elements, then the sum (14.1) is
already defined for all V -valued functions f on X. Otherwise, if X has infinitely
many elements, then the extensions discussed in the preceding paragraph can
be used to define (14.1) for f ∈ ℓq(X,V ) when q < ∞, and for f ∈ c0(X,V )
when q = ∞, under the conditions mentioned earlier. In both cases, (14.2) still
holds for all such f . If X is the set Z+ of positive integers, then the sum (14.1)
can also be considered as an infinite series, as in Section 8. More precisely, this
corresponds to q-absolute convergence when q < ∞, and to infinite series with
terms converging to 0 when q = ∞. One can check that these two approaches to
defining the sum (14.1) are equivalent under these conditions, by approximating
the sum by finite sums. If X is any set and f is a V -valued function that
vanishes at infinity on X, then the support of f has only finitely or countably
many elements, as in Section 11. This permits the sum (14.1) to either be
reduced to a finite sum, or to be considered as an infinite series. Remember
that q-summable functions on X vanish at infinity when q < ∞, so that the
previous remark applies to all q > 0.

15 Mappings on c00(X, k)

Let k be a field, and let X be a nonempty set. If y ∈ X, then let δy(x) be the
k-valued function on X which is equal to 1 when x = y, and to 0 otherwise.
Thus δy ∈ c00(X, k) for every y ∈ X, and the collection of these functions forms
a basis for c00(X, k) as a vector space over k. Let V be a vector space over k,
and let a be a V -valued function on X. If f ∈ c00(X, k), then put

Ta(f) =
∑
y∈X

a(y) f(y),(15.1)

where the sum on the right reduces to a finite sum in V . This defines a linear
mapping from c00(X, k) into V , and every linear mapping from c00(X, k) into
V is of this form. Equivalently, Ta is the unique linear mapping from c00(X, k)
into V such that

Ta(δy) = a(y)(15.2)

for every y ∈ X.
Let | · | be a q-absolute value function on k for some q > 0, which may be

considered as a q-norm on k as a one-dimensional vector space over itself. This
leads to the supremum q-norm ∥f∥∞ on ℓ∞(X, k) as in (9.4), and to the q or
r-norm ∥f∥r on ℓr(X, k) as in (10.5) when 0 < r < ∞, depending on whether
r ≥ q or r ≤ q. Note that

∥δy∥r = 1(15.3)
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for every y ∈ X and r > 0, where δy is as defined in the preceding paragraph.
Let a be a V -valued function on X, and let Ta be the corresponding linear
mapping from c00(X, k) into V , as in (15.1). Suppose for the moment that Ta

is bounded with respect to ∥f∥r on c00(X, k) for some r > 0 and a q-seminorm
N on V . This means that there is a nonnegative real number C such that

N(Ta(f)) ≤ C ∥f∥r(15.4)

for every f ∈ c00(X, k), as in (13.1). In particular, this implies that

N(a(y)) ≤ C(15.5)

for every y ∈ X, because of (15.2) and (15.3).
Suppose now that a is a V -valued function onX that is bounded with respect

to N on V , so that (15.5) holds for some C ≥ 0 and every y ∈ X. Of course,
if X has only finitely many elements, then every V -valued function on X is
bounded with respect to N on V . It follows from (15.5) that

N(Ta(f)) ≤ C ∥f∥q(15.6)

for every f ∈ c00(X,V ), using the q-semimetric version of the triangle inequality.
This could also be derived from (14.2), applied to

a f(15.7)

as a V -valued function on X. As before, (15.6) says that Ta is bounded as a
linear mapping from c00(X, k) into V , with respect to the ℓq q-norm on c00(X, k),
and N on V . Suppose in addition that N is a q-norm on V , and that V is
complete with respect to the corresponding q-metric on V . If q < ∞, then Ta

can be extended to a bounded linear mapping from ℓq(X, k) into V , using the
remarks at the beginning of the previous section. Similarly, if q = ∞, then Ta

can be extended to a bounded linear mapping from c0(X, k) into V , using the
supremum norm on c0(X, k).

Alternatively, if a is any V -valued function on X, then

f 7→ a f(15.8)

defines a linear mapping from c00(X, k) into c00(X,V ), and Ta is the same as the
composition of this mapping with the mapping from c00(X,V ) into V defined
by summing over X. If a is bounded on X with respect to N on V , then (15.8)
defines a bounded linear mapping from ℓr(X, k) into ℓr(X,V ) for every r > 0,
and this mapping sends c0(X, k) into c0(X,V ). Thus the boundedness of Ta with
respect to the ℓq q-norm on c00(X,V ) follows from the boundedness of (15.8)
with respect to the ℓq q-norms on c00(X, k) and c00(X,V ), and the boundedness
of the mapping from c00(X,V ) into V defined by summation overX with respect
to the ℓq q-norm on c00(X,V ), as in the previous section. If N is a q-norm on
V , V is complete with respect to the corresponding q-metric, and q < ∞, then
the extension of Ta to a bounded linear mapping from ℓq(X, k) into V can be
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obtained by composing (15.8) as a bounded linear mapping from ℓq(X, k) into
ℓq(X,V ) with the mapping from ℓq(X,V ) into V defined by summation over
X, as before. Similarly, if q = ∞, then the extension of Ta to a bounded
linear mapping from c0(X, k) with the supremum norm into V can be obtained
by composing (15.8) as a bounded linear mapping from c0(X, k) into c0(X,V )
with respect to the supremum norm with the mapping from c0(X,V ) into V
defined by summation over X.

16 q-Semimetrification

Let X be a set, and let d(·, ·) be a nonnegative real-valued function defined on
X×X that satisfies (1.1) and (1.2). If z1, . . . , zn is a finite sequence of elements
of X and q is a positive real number, then let us define the (d, q)-length of
z1, . . . , zn to be ( n−1∑

j=1

d(zj , zj+1)
q
)1/q

.(16.1)

As usual, we can extend this to q = ∞ by taking

max
1≤j≤n−1

d(zj , zj+1).(16.2)

Both (16.1) and (16.2) should be interpreted as being 0 when n = 1, and one
can also simply restrict one’s attention to n ≥ 2 here. Clearly (16.2) is less than
or equal to (16.1) for every q > 0. We also have that (16.1) is monotonically
decreasing in q, as in (11.9). If d(·, ·) is a q-semimetric on X for some q > 0,
then

d(z1, zn) ≤ (d, q)-length of z1, . . . , zn(16.3)

for every finite sequence of elements z1, . . . , zn of X, by the q-semimetric version
of the triangle inequality.

If x, x′ ∈ X and 0 < q ≤ ∞, then we put

dq(x, x
′) = inf{(d, q)-lengths of finite sequences z1, . . . , zn(16.4)

of elements of X such that z1 = x and zn = x′}.

Thus
0 ≤ dq(x, x

′) ≤ d(x, x′),(16.5)

since we can take n = 2, z1 = x, and z2 = x′ in the infimum on the right
side of (16.4). In particular, (16.4) is equal to 0 when x = x′, in which case
one could also take n = 1. It is easy to see that (16.4) is symmetric in x
and x′, because d(·, ·) is symmetric by hypothesis. By construction, (16.4)
satisfies the q-semimetric version of the triangle inequality, and hence defines a
q-semimetric on X. Note that (16.4) is monotonically decreasing in q, because
of the corresponding property of (d, q)-lengths of finite sequences of elements of
X. If d(·, ·) is a q-semimetric on X for some q > 0, then

d(x, x′) ≤ dq(x, x
′)(16.6)
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for every x, x′ ∈ X, because of (16.3). Combining this with (16.5), we get that

dq(x, x
′) = d(x, x′)(16.7)

for every x, x′ ∈ X in this case.
Let ρ(·, ·) be another nonnegative real-valued function onX×X that vanishes

on the diagonal and is symmetric, as in (1.1) and (1.2). Thus the (ρ, q)-length
of any finite sequence of elements of X can be defined for every q > 0 in the
same way as before. Suppose that

ρ(x, x′) ≤ d(x, x′)(16.8)

for every x, x′ ∈ X. If z1, . . . , zn is any finite sequence of elements of X, then

(ρ, q)-length of z1, . . . , zn ≤ (d, q)-length of z1, . . . , zn(16.9)

for every q > 0. Let ρq(·, ·) be the q-semimetrification of ρ(·, ·) on X, as in
(16.4). Observe that

ρq(z1, zn) ≤ (ρ, q)-length of z1, . . . , zn ≤ (d, q)-length of z1, . . . , zn(16.10)

for every finite sequence z1, . . . , zn of elements of X, using the definition of
ρq(·, ·) in the first step, and (16.9) in the second step. It follows that

ρq(x, x
′) ≤ dq(x, x

′)(16.11)

for every x, x′ ∈ X, by the definition (16.4) of dq(x, x
′). In particular, if ρ(·, ·)

is a q-semimetric on X for some q > 0, then ρq = ρ, as in (16.7). In this case,
we get that

ρ(x, x′) ≤ dq(x, x
′)(16.12)

for every x, x′ ∈ X, so that dq(·, ·) is the largest q-semimetric on X that is less
than or equal to d(·, ·).

As a basic example, suppose that X is the real line, and that

d(x, x′) = |x− x′|(16.13)

is the standard metric on R, associated to the standard absolute value function
| · |. If q > 1, then it is easy to see that

dq(x, x
′) = 0(16.14)

for every x, x′ ∈ R, using finite sequences z1, . . . , zn such that zj+1− zj is small
for each j.

17 Lipschitz conditions

Let X, Y be sets, and let dX , dY be nonnegative real-valued functions on
X×X, Y ×Y , respectively, that vanish on the corresponding diagonals and are
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symmetric, as in (1.1) and (1.2). Also let f be a mapping from X into Y , and
observe that

dY (f(x), f(x
′))(17.1)

is another nonnegative real-valued function on X × X that vanishes on the
diagonal and is symmetric, as in (1.1) and (1.2). If dY is a q-semimetric on Y
for some q > 0, then it is easy to see that (17.1) is a q-semimetric on X.

Let α be a positive real number, and suppose that f is Lipschitz of order α
with respect to dX , dY . As in Section 6, this means that there is a nonnegative
real number C such that

dY (f(x), f(x
′)) ≤ C dX(x, x′)α(17.2)

for every x, x′ ∈ X. Of course, the present discussion is a bit different from the
previous one, since we are not asking that dX , dY be qX , qY -semimetrics for
some qX , qY > 0. In the following, it will sometimes be convenient to restrict
our attention to C > 0, although we can still take C to be arbitrarily small.
Note that (17.2) holds with C = 0 if and only if

dY (f(x), f(x
′)) = 0(17.3)

for every x, x′ ∈ X, which does not involve α or dX .
Let q > 0 be given, and let dY,q be the q-semimetrification of dY on Y , as in

the previous section. In particular, dY,q is a q-semimetric on Y , and

0 ≤ dY,q(y, y
′) ≤ dY (y, y

′)(17.4)

for every y, y′ ∈ Y , as in (16.5). Combining this with (17.2), we get that

dY,q(f(x), f(x
′)) ≤ C dX(x, x′)α(17.5)

for every x, x′ ∈ X. If C = 0, then this says that

dY,q(f(x), f(x
′)) = 0(17.6)

for every x, x′ ∈ X, which could also be derived from (17.3) and (17.4). Other-
wise, if C > 0, then (17.5) can be reformulated as saying that

C−1/α dY,q(f(x), f(x
′))1/α ≤ dX(x, x′)(17.7)

for every x, x′ ∈ X.
It is easy to see that

dY,q(y, y
′)1/α(17.8)

is a (q α)-semimetric on Y , because dY,q is a q-semimetric on Y . Hence

dY,q(f(x), f(x
′))1/α(17.9)

defines a (q α)-semimetric on X, as in (17.1). If C > 0, then C−1/α times (17.9)
is a (q α)-semimetric on X as well. Let dX,q α be the (q α)-semimetrification of
dX on X, as in the preceding section again. If C > 0, then (17.7) implies that

C−1/α dY,q(f(x), f(x
′))1/α ≤ dX,q α(x, x

′)(17.10)
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for every x, x′ ∈ X, as in (16.12). Equivalently, this means that

dY,q(f(x), f(x
′)) ≤ C dX,q α(x, x

′)α(17.11)

for every x, x′ ∈ X under these conditions. Note that (17.11) still works when
C = 0, either by applying this argument to C small and positive, or using (17.6).

18 Repeated semimetrification

Let X be a set, and let dX be a nonnegative real-valued function on X × X
that satisfies (1.1) and (1.2). Also let dX,q be the q-semimetrification of dX on
X for each q > 0, as in (16.4). In particular, dX,q satisfies (1.1) and (1.2) too,
and so we can repeat the process. Thus, for each q1, q2 > 0, we let dX,q1,q2 be
the q2-semimetrification of dX,q1 , as in (16.4) again.

Of course, dX,q1 is a q1-semimetric on X, by construction, as in Section 16.
If 0 < q ≤ q1, then it follows that dX,q1 is a q-semimetric on X as well, as in
Section 1. This implies that

dX,q1,q2 = dX,q1(18.1)

when 0 < q2 ≤ q1, because the q-semimetrification of a q-semimetric on X is
equal to itself, as in (16.7). Similarly, we would like to check that

dX,q1,q2 = dX,q2(18.2)

when 0 < q1 ≤ q2. Let us begin by observing that

dX,q1,q2 ≤ dX,q1 ≤ dX(18.3)

for any q1, q2 > 0, where both steps correspond to (16.5). This implies that

dX,q1,q2 ≤ dX,q2 ,(18.4)

as in (16.12), because dX,q1,q2 is a q2-semimetric on X. In the other direction,
we have that

dX,q2 ≤ dX ,(18.5)

using (16.5) again. Remember that dX,q2 is a q2-semimetric on X, and hence
a q-semimetric on X for every q ≤ q2, as in Section 1. In particular, dX,q2 is a
q1-semimetric on X when q1 ≤ q2. Thus (18.5) implies that

dX,q2 ≤ dX,q1(18.6)

in this situation, as in (16.12). It follows that

dX,q2 ≤ dX,q1,q2 ,(18.7)

as in (16.12) again, because dX,q2 is a q2-semimetric on X. This shows that
(18.2) holds when q1 ≤ q2, by combining (18.4) and (18.7).
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Let Y be another set, and let dY be a nonnegative real-valued function on Y×
Y that satisfies (1.1) and (1.2). As before, we let dY,q be the q-semimetrification
of dY on Y for each q > 0, as in (16.4). Suppose that f is a mapping from X
into Y that satisfies

dY (f(x), f(x
′)) ≤ C dX(x, x′)α(18.8)

for some α > 0 and C ≥ 0, and for every x, x′ ∈ X, as in (17.2). This implies
that (17.11) holds for every q > 0, as in the previous section. Let q > 0 be
given, and let C(q) be the smallest nonnegative real number such that

dY,q(f(x), f(x
′)) ≤ C(q) dX,q α(x, x

′)α(18.9)

for every x, x′ ∈ X. More precisely, one can take C(q) to be the infimum of
the set of nonnegative real numbers for which such an estimate holds. This set
contains C, because of (17.11). It follows that the infimum exists, and satisfies

C(q) ≤ C(18.10)

for every q > 0.
We would like to check that

C(q2) ≤ C(q1)(18.11)

when 0 < q1 ≤ q2, so that C(q) is monotonically decreasing in q. By definition
of C(q1), we have that

dY,q1(f(x), f(x
′)) ≤ C(q1) dX,q1 α(x, x

′)α(18.12)

for every x, x′ ∈ X, which is the same as (18.9) with q = q1. In order to get
(18.11), it suffices to verify that

dY,q2(f(x), f(x
′)) ≤ C(q1) dX,q2 α(x, x

′)α(18.13)

for every x, x′ ∈ X when q1 ≤ q2, since C(q2) is supposed to be the smallest
nonnegative real number for which such an estimate holds. Let dY,q1,q2 be the
q2-semimetrification of dY,q1 on Y , as before. Using (18.12), one can check that

dY,q1,q2(f(x), f(x
′)) ≤ C(q1) dX,q1 α,q2 α(x, x

′)α(18.14)

for every x, x′ ∈ X. More precisely, this follows from (17.11), with dY,q1 in place
of dY , dX,q1 α in place of dX , C(q1) in place of C, q2 in place of q, and (18.12)
in place of (17.2). If q1 ≤ q2, then we also have that

dY,q1,q2 = dY,q2 and dX,q1 α,q2 α = dX,q2 α,(18.15)

as in (18.2). Thus (18.14) is the same as (18.13), as desired.
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19 q-Seminormification

Let k be a field, and let | · | be a qk-absolute value function on k for some qk > 0.
Also let V be a vector space over k, and let N be a nonnegative real-valued
function on V that satisfies the homogeneity condition (5.1) with respect to
| · | on k. If v1, . . . , vl is a finite sequence of vectors in V , then define their
(N, q)-sum to be ( l∑

j=1

N(vj)
q
)1/q

(19.1)

when 0 < q < ∞, and
max
1≤j≤l

N(vj)(19.2)

when q = ∞. Note that (19.2) is less than or equal to (19.1) for each q, and
that (19.1) is monotonically decreasing in q, as in (11.9). If N is a q-seminorm
on V for some q > 0, then

N
( l∑

j=1

vj

)
≤ (N, q)-sum of v1, . . . , vl(19.3)

for every finite sequence v1, . . . , vl of vectors in V , by the q-seminorm version of
the triangle inequality.

If v ∈ V and 0 < q ≤ ∞, then put

Nq(v) = inf

{
(N, q)-sums of finite sequences v1, . . . , vl(19.4)

of vectors in V such that v =

l∑
j=1

vl

}
.

Observe that
0 ≤ Nq(v) ≤ N(v)(19.5)

for every v ∈ V and q > 0, since we can take l = 1 and v1 = v in the infimum
on the right side of (19.4). We also have that

Nq(t v) = |t|Nq(v)(19.6)

for every v ∈ V , t ∈ k, and q > 0, because of the analogous hypothesis on
N . It is easy to see that Nq satisfies the q-seminorm version of the triangle
inequality for every q > 0, by construction, so that Nq is a q-seminorm on V
for each q > 0. The monotonicity of (N, q)-sums in q mentioned in the previous
paragraph implies that Nq(v) is monotonically decreasing in q for each v ∈ V
as well. If N is a q-seminorm on V for some q > 0, then

N(v) ≤ Nq(v)(19.7)
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for every v ∈ V , by (19.3). This implies that

Nq(v) = N(v)(19.8)

for every v ∈ V in this case, using also (19.5).

Let Ñ be another nonnegative real-valued function on V that satisfies the
homogeneity condition

Ñ(t v) = |t| Ñ(v)(19.9)

for every v ∈ V and t ∈ k, and suppose that

Ñ(v) ≤ N(v)(19.10)

for every v ∈ V . If v1, . . . , vl is a finite sequence of vectors in V , then

(Ñ , q)-sum of v1, . . . , vl ≤ (N, q)-sum of v1, . . . , vl(19.11)

for every q > 0, where (Ñ , q)-sums are defined in the same way as before, using

Ñ . This implies that
Ñq(v) ≤ Nq(v)(19.12)

for every v ∈ V and q > 0, where Ñq is defined as in (19.4). If Ñ is a q-seminorm

on V for some q > 0, so that Ñq = Ñ , as in (19.8), then we get that

Ñ(v) ≤ Nq(v)(19.13)

for every v ∈ V . Thus Nq is the largest q-seminorm on V that is less than or
equal to N .

The homogeneity condition (5.1) implies in particular that N(0) = 0 and
N(−v) = N(v) for each v ∈ V , since |0| = 0 and |−1| = 1, as in (4.1) and (4.6).
Hence

d(v, v′) = N(v − v′)(19.14)

defines a nonnegative real-valued function on V×V that vanishes on the diagonal
and is symmetric in v and v′, as in (1.1) and (1.2). Let z1, . . . , zl be a finite
sequence of elements of V , whose (d, q)-length can be defined for every q > 0 as
in Section 16. If we put

vj = zj+1 − zj(19.15)

for each j = 1, . . . , l − 1, then

d(zj , zj+1) = N(zj+1 − zj) = N(vj)(19.16)

for every j = 1, . . . , l − 1, and

zl − z1 =

l−1∑
j=1

vj ,(19.17)
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where the sum on the right side of (19.17) is interpreted as being equal to 0
when l = 1. It follows that

(d, q)-length of z1, . . . , zl = (N, q)-sum of v1, . . . , vl−1(19.18)

for every q > 0, where both sides of (19.18) are interpreted as being equal to
0 when l = 1. Similarly, if v1, . . . , vl−1 is any finite sequence of elements of V ,
then put z1 = 0 and

zr =

r−1∑
j=1

vj(19.19)

for r = 2, . . . , l. This defines a finite sequence z1, . . . , zl of elements of V that
satisfies (19.15) for each j = 1, . . . , l − 1, so that (19.18) holds for every q > 0.
It follows that

dq(v, v
′) = Nq(v − v′)(19.20)

for every v, v′ ∈ V and q > 0, where dq(v, v
′) is as in (16.4).

20 q-Seminormification, continued

Let k be a field with a qk-absolute value function | · | for some qk > 0 again, and
let V , W be vector spaces over k. Also let NV , NW be nonnegative real-valued
functions on V , W , respectively, that satisfy the homogeneity condition (5.1)
with respect to | · | on k. If T is a linear mapping from V into W , then

NW (T (v))(20.1)

is another nonnegative real-valued function on V that satisfies the homogeneity
condition (5.1). If NW is a q-seminorm on W for some q > 0, then (20.1) is a
q-seminorm on V too.

Suppose that T is bounded with respect to NV and NW , in the sense that
there is a nonnegative real number C such that

NW (T (v)) ≤ C NV (v)(20.2)

for every v ∈ V . This is the same as in Section 13, except that NV , NW are not
required to be q-seminorms for any q > 0. Let q > 0 be given, and let NW,q be
the q-seminormification of NW on W , as in the previous section. Thus NW,q is
a q-seminorm on W which is less than or equal to NW , so that

NW,q(T (v)) ≤ C NV (v)(20.3)

for every v ∈ V , by (20.2). Let us now use this to verify that

NW,q(T (v)) ≤ C NV,q(v)(20.4)

for every v ∈ V , where NV,q is the q-seminormification of NV on V , as before.
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If C = 0, then (20.3) implies (20.4) trivially, and so we may as well restrict
our attention to C > 0. In this case, (20.3) is the same as saying that

C−1 NW,q(T (v)) ≤ NV (v)(20.5)

for every v ∈ V . Note that
C−1 NW,q(T (v))(20.6)

is a q-seminorm on V , because NW,q is a q-seminorm on W . Using this and
(20.6), we get that

C−1 NW,q(T (v)) ≤ NV,q(v)(20.7)

for every v ∈ V , as in (19.13). More precisely, here we take N to be NV in

(19.13), and we take Ñ to be (20.6). Of course, (20.7) implies (20.4), as desired.
This argument is analogous to the one in Section 17, and one could reduce the
previous version using (19.20).

Let X be a nonempty set, and let ℓr(X, k) be the space of r-summable k-
valued functions on X for each r > 0, as in Section 10. More precisely, we use
the given qk-absolute value function | · | on k as a qk-norm on k, where k is
considered as a one-dimensional vector space over itself. Remember that

ℓr(X, k) ⊆ ℓq(X, k)(20.8)

when r ≤ q, as in (11.7), in which case we have that

∥f∥q ≤ ∥f∥r(20.9)

for every f ∈ ℓr(X, k), as in (11.9). If r ≤ qk, then ∥f∥r is an r-norm on
ℓr(X, k), as in Section 10, and similarly ∥f∥q is a q-norm on ℓq(X, k) when
q ≤ qk. If r ≤ q ≤ qk, then it follows that ∥f∥q is less than or equal to the
q-seminormification of ∥f∥r on ℓr(X, k), because of (20.9). One can also check
directly that the q-seminormification of ∥f∥r on ℓr(X, k) is less than or equal to
∥f∥q when r ≤ q. This is simpler when f has finite support in X, and otherwise
one can basically approximate f ∈ ℓr(X, k) by functions with finite support on
X. Thus the q-seminormification of ∥f∥r on ℓr(X, k) is equal to ∥f∥q when
r ≤ q ≤ qk.

21 Repeated seminormification

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let V
be a vector space over k. Also let NV be a nonnegative real-valued function on
V that satisfies the homogeneity condition (5.1) with respect to | · | on k, and
let NV,q be the q-seminormification of NV on V for each q > 0, as in (19.4). As
before, we can repeat the process, to define the q2-seminormification NV,q1,q2 of
NV,q1 for every q1, q2 ≥ 0. We would like to check that

NV,q1,q2 = NV,q1(21.1)
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when q2 ≤ q1, and
NV,q1,q2 = NV,q2(21.2)

when q1 ≤ q2. Of course, this is analogous to the earlier discussion for semimet-
rics, and one could reduce to that situation using (19.20).

Remember that NV,q1 is a q1-seminorm on V , by construction, as in Section
19. This implies that NV,q1 is a q-seminorm on V when 0 < q ≤ q1, as in Section
5. If q2 ≤ q1, then it follows that (21.1) holds, because the q-seminormification
of a q-seminorm is itself, as in (19.8). In order to deal with the case where
q1 ≤ q2, observe first that

NV,q1,q2 ≤ NV,q1 ≤ NV(21.3)

for every q1, q2 > 0, where both steps correspond to (19.5). This implies that

NV,q1,q2 ≤ NV,q2 ,(21.4)

as in (19.13), since NV,q1,q2 is a q2-seminorm on V . To get the opposite inequal-
ity, observe that

NV,q2 ≤ NV ,(21.5)

using (19.5) again. If q1 ≤ q2, then NV,q2 is a q1-seminorm on V , as in Section
5, and because NV,q2 is a q2-seminorm on V . Hence (21.5) implies that

NV,q2 ≤ NV,q1 ,(21.6)

as in (19.13). Using (19.13) again, we get that

NV,q2 ≤ NV,q1,q2 ,(21.7)

since NV,q2 is a q2-seminorm on V . Combining (21.4) and (21.7), we get that
(21.2) holds when q1 ≤ q2, as desired.

Let W be another vector space over k, and let NW be a nonnegative real-
valued function on W that satisfies the usual homogeneity condition (5.1) with
respect to | · | on k. Also let NW,q be the q-seminormification of NW on W for
each q > 0, as in (19.4), and let NW,q1,q2 be the q2-semimetrification of NW,q1

for any q1, q2 > 0. Of course, NW,q1,q2 can be characterized as in (21.1) and
(21.2), as before. Consider the space

BLq(V,W )(21.8)

of bounded linear mappings from V into W with respect to NV,q on V and NW,q

on W , for each q > 0. This is a vector space over k, as in Section 13, and we let

∥T∥op,q = ∥T∥op,VW,q(21.9)

be the corresponding operator q-seminorm of such a linear mapping T .
If a linear mapping T from V into W satisfies (20.2) for some C ≥ 0 and

every v ∈ V , then T is an element of BLq(V,W ) for every q > 0, and

∥T∥op,q ≤ C,(21.10)
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by (20.4). Similarly, suppose that T ∈ BLq1(V,W ) for some q1 > 0, so that

NW,q1(T (v)) ≤ ∥T∥op,q1 NV,q1(v)(21.11)

for every v ∈ V . If q1 ≤ q2, then it follows that

NW,q2(T (v)) ≤ ∥T∥op,q1 NV,q2(v)(21.12)

for every v ∈ V , as in (20.4) again. More precisely, (21.11) plays the role of
(20.2) here, and we are also using (21.2) and its analogue for W . This shows
that

BLq1(V,W ) ⊆ BLq2(V,W ),(21.13)

when q1 ≤ q2, and that
∥T∥op,q2 ≤ ∥T∥op,q1 .(21.14)

for every T ∈ BLq1(V,W ).

22 Some simple quotient spaces

Let X be a set, and let dX(·, ·) be a qX -semimetric on X for some qX > 0. If
x, x′ ∈ X satisfy

dX(x, x′) = 0,(22.1)

then put
x ∼X x′.(22.2)

This defines a binary relation on X, which is in fact an equivalence relation on
X. Let

X̂ = X/ ∼X(22.3)

be the corresponding quotient space, which is the set of equivalence classes in
X determined by (22.2). If x ∈ X, then let [x]X be the equivalence class in X
that contains x. Of course, if dX(·, ·) is a q-metric on X, then (22.1) holds if

and only if x = x′. In this case, [x] = {x} for every x ∈ X, and X̂ is essentially
the same as X.

If x, x′, w, w′ ∈ X satisfy x ∼X x′ and w ∼X w′, then it is easy to see that

dX(x,w) = dX(x′, w′),(22.4)

using the q-semimetric version of the triangle inequality. This implies that there
is a nonnegative real-valued function d

X̂
(·, ·) defined on X̂ × X̂ such that

d
X̂
([x]X , [w]X) = dX(x,w)(22.5)

for every x,w ∈ X. One can also check that d
X̂
(·, ·) is a qX -semimetric on

X̂, because of the corresponding properties of dX(·, ·) on X. If x,w ∈ X and
[x] ̸= [w], then (22.5) is strictly positive, by construction. This means that

d
X̂
(·, ·) is a q-metric on X̂.
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Let Y be another set with a qY -semimetric dY (·, ·) for some qY > 0. Thus we

can define an equivalence relation ∼Y on Y as before, and we let Ŷ = Y/ ∼Y be
the corresponding quotient space of equivalence classes in Y . If y ∈ Y , then we
let [y]Y be the equivalence class in Y determined by ∼Y that contains y, and we

let d
Ŷ
(·, ·) be the qY -metric induced on Ŷ by dY (·, ·) on Y as in the preceding

paragraph. Let f be a mapping from X into Y , and let f̃ be the composition
of f with the natural quotient mapping from Y onto Ŷ . Thus f̃ is the mapping
from X into Ŷ defined by putting

f̃(x) = [f(x)]Y(22.6)

for each x ∈ X. Suppose that for every x, x′ ∈ X with x ∼X x′, we have that

f(x) ∼Y f(x′),(22.7)

which is the same as saying that

f([x]X) ⊆ [f(x)]Y(22.8)

for every x ∈ X. Equivalently, this means that f̃ is constant on the equivalence
classes in X determined by ∼X . This implies that there is a mapping f̂ from
X̂ into Ŷ such that

f̂([x]X) = f̃(x)(22.9)

for every x ∈ X.
Let f be a mapping from X into Y again. Suppose that f is continuous

at a point x ∈ X, with respect to the topologies determined on X and Y by
dX and dY , respectively. This implies that (22.7) holds for every x′ ∈ X with
x ∼X x′, which is the same as saying that (22.8) holds. If f is a continuous
mapping from X into Y , then this holds for every x ∈ X. This implies that
there is a mapping f̂ from X̂ into Ŷ as in (22.9), as before. In this case, one can

check that f̂ is also continuous as a mapping from X̂ into Ŷ , with respect to
the topologies determined on X̂ and Ŷ by d

X̂
and d

Ŷ
, respectively. Similarly,

if f is uniformly continuous with respect to dX and dY , then f̂ is uniformly
continuous with respect to d

X̂
and d

Ŷ
. If f satisfies a Lipschitz condition with

respect to dX and dY , then f̂ satisfies the same type of condition with respect
to d

X̂
and d

Ŷ
.

23 Simple quotient spaces, continued

Let k be a field with a qk-absolute value function for some qk > 0, and let V be
a vector space over k with a qV -seminorm NV with respect to | · | on k for some
qV > 0. Under these conditions, it is easy to see that

V0 = {v ∈ V : NV (v) = 0}(23.1)
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is a linear subspace of V . This leads to an equivalence relation on V , where
v, v′ ∈ V are equivalent with respect to this relation if and only if

v − v′ ∈ V0.(23.2)

If v ∈ V , then the equivalence class in V that contains v is

v + V0 = {v + u : u ∈ V0}.(23.3)

Let V/V0 be the corresponding quotient space of equivalence classes in V . It is
well known that V/V0 is also a vector space over k in a natural way, so that the
quotient mapping

v 7→ v + V0(23.4)

is linear as a mapping from V onto V/V0. Remember that NV determines a
q-semimetric on V , as in (5.6). In this situation, the equivalence relation on
V determined by (23.2) is the same as the one determined by the q-semimetric
associated to NV , as in the previous section. If NV is a q-norm on V , then
V0 = {0}, and V/V0 is essentially the same as V .

If v, v′ ∈ V satisfy (23.2), then one can check that

NV (v) = NV (v
′),(23.5)

using the qV -semimetric version of the triangle inequality. It follows that there
is a nonnegative real-valued function NV/V0

on V/V0 such that

NV/V0
(v + V0) = NV (v)(23.6)

for every v ∈ V . One can also verify that NV/V0
is a qV -seminorm on V/V0,

using the corresponding properties of NV on V . More precisely, NV/V0
is a

qV -norm on V/V0, by construction. The q-metric on V/V0 associated to NV/V0

corresponds exactly to the quotient q-metric determined by the q-semimetric
associated to NV on V as in the previous section.

Let W be another vector space over k, and let NW be a qW -seminorm on W
with respect to | · | on k for some qW > 0. This leads to a linear subspace

W0 = {w ∈ W : NW (w) = 0}(23.7)

of W as before, and the corresponding quotient vector space W/W0 over k.
If w ∈ W , then w + W0 is the equivalence class in W corresponding to the
equivalence relation associated to W0 that contains w, which is an element of
W/W0. Let NW/W0

be the qW -norm on W/W0 determined by NW on W as in
the preceding paragraph, so that

NW/W0
(w +W0) = NW (w)(23.8)

for every w ∈ W . If T is a linear mapping from V into W that satisfies

T (V0) ⊆ W0,(23.9)
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then there is an induced linear mapping T̂ from V/V0 into W/W0 such that

T̂ (v + V0) = T (v) +W0(23.10)

for every v ∈ V .
Suppose that T is a bounded linear mapping from V into W , with respect

to NV and NW , respectively, so that

NW (T (v)) ≤ C NV (v)(23.11)

for some C ≥ 0 and every v ∈ V . This implies that (23.9) holds, and hence that

there is an induced linear mapping T̂ from V/V0 into W/W0 as in (23.10). Note
that

NW/W0
(T̂ (v + V0)) = NW/W0

(T (v) +W0) = NW (T (v))(23.12)

for every v ∈ V , because of (23.8) and (23.10). It follows that

NW/W0
(T̂ (v + V0)) ≤ C NV/V0

(v + V0)(23.13)

for every v ∈ V , using the same constant C as in (23.11). Conversely, if (23.13)
holds for some C ≥ 0, then it is easy to see that (23.11) holds with the same
C. More precisely, this works for any linear mapping T from V into W that
satisfies (23.9), so that T̂ can be defined as in (23.10). Under these conditions,
we get that T is a bounded linear mapping from V into W with respect to NV

and NW if and only if T̂ is bounded as a linear mapping from V/V0 into W/W0

with respect to NV/V0
and NW/W0

, in which case the operator norms of T and

T̂ are the same.

Part II

Invertible linear mappings

24 Preliminary remarks

Let k be a field, and let V , W be vector spaces over k. If T is a one-to-one linear
mapping from V onto W , then the inverse T−1 of T is also linear as a mapping
from W into V . Let |·| be a qk-absolute value function on k for some qk > 0, and
let NV , NW be qV , qW -seminorms on V , W , respectively, for some qV , qW > 0,
and with respect to | · | on k. Also let T be a bounded linear mapping from
V into W with respect to NV and NW , as in Section 13. If T is a one-to-one
mapping from V onto W , and if the inverse mapping T−1 is bounded as a linear
mapping from W into V , then T is considered to be invertible as a bounded
linear mapping from V onto W .

Let T be a linear mapping from V into W again, and suppose that there is
a nonnegative real number C such that

NV (v) ≤ C NW (T (v))(24.1)
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for every v ∈ V . If NV is a qV -norm on V , then (24.1) implies that T is one-
to-one on V . If T is one-to-one on V , then the inverse mapping T−1 can be
defined as a linear mapping from T (V ) ⊆ W onto V . In this case, (24.1) says
exactly that T−1 is bounded as a linear mapping from T (V ) onto V , using the
restriction of NW to T (V ) as the domain of T−1. Of course, if V and W are
finite-dimensional vector spaces over k with the same dimension, and if T is a
one-to-one linear mapping from V into W , then T maps V onto W .

Let V0, W0 be the linear subspaces of V and W defined in (23.1), (23.7).
If T is a bounded linear mapping from V into W , then T satisfies (23.9), and

T induces a linear mapping T̂ from V/V0 into W/W0 as in (23.10), as before.
Similarly, if T is a one-to-one mapping from V onto W , and if the inverse
mapping T−1 is bounded from W into V , then T−1 maps W0 into V0, and

induces a linear mapping ̂(T−1) from W/W0 into V/V0. Under these conditions,
we get that

T (V0) = W0,(24.2)

and that T̂ is a one-to-one mapping from V/V0 onto W/W0. More precisely,
(24.2) implies that

T−1(W0) = V0(24.3)

here, because T is injective, and (24.3) implies that T̂ is injective too. The

inverse of T̂ as a mapping from V/V0 onto W/W0 is the same as the mappinĝ(T−1) from W/W0 onto V/V0 induced by T−1, which is to say that

T̂−1 = ̂(T−1).(24.4)

The boundedness of T and T−1 between V and W imply the boundedness of

T̂ and ̂(T−1) between V/V0 and W/W0, as in the previous section. Thus we

get that T̂ is a bounded linear mapping from V/V0 onto W/W0 with bounded
inverse in this situation, because of (24.4).

Let T be a linear mapping from V into W that satisfies (24.1) for some
C ≥ 0 again. In particular, this means that

NW (T (v)) = 0 implies NV (v) = 0(24.5)

for every v ∈ V , so that
T−1(W0) ⊆ V0.(24.6)

Suppose that T (V0) ⊆ W0, so that T induces a linear mapping T̂ from V/V0

into W/W0, as before. In this case, (24.1) implies that

NV/V0
(v + V0) ≤ C NW/W0

(T̂ (v + V0))(24.7)

for every v ∈ V , by (23.6) and (23.12). Conversely, (24.7) implies (24.1) when
T satisfies (23.9), for essentially the same reasons.
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25 Density and surjectivity

Let X be a set with a q-metric d(·, ·) for some q > 0, and let Y be a subset of
X. Thus Y may also be considered as a q-metric space, using the restriction
of d(·, ·) to elements of Y . If X is complete as a q-metric space, and if Y is
a closed set in X with respect to the topology determined by d(·, ·), then it
is easy to see that Y is complete as a q-metric space too. Conversely, if Y is
complete as a q-metric space, then Y has to be a closed set in X. To see this,
let {yj}∞j=1 be a sequence of elements of Y that converges to an element x of X.
This implies that {yj}∞j=1 is a Cauchy sequence in X, and hence in Y as well.
If Y is complete, then {yj}∞j=1 converges to an element y of Y . The limit of
a convergent sequence in a q-metric space is unique, as in the case of ordinary
metric spaces, so that x = y ∈ Y , as desired.

Now let k be a field with a qk-absolute value function | · | for some qk > 0,
and let V , W be vector spaces over k with qV , qW -norms NV , NW , respectively,
for some qV , qW > 0, and with respect to | · | on k. Also let T be a bounded
linear mapping from V into W that satisfies (24.1) for some C ≥ 0 and every
v ∈ V . We have already seen that (24.1) implies that T is injective on V in
this situation, and that T−1 is bounded on T (V ), as in the previous section. If
T (V ) = W , then it follows that T is invertible as a bounded linear mapping
from V into W . In particular, this holds when V and W are finite-dimensional
vector spaces over k, with the same dimension.

If T is a bounded linear mapping from V into W that satisfies (24.1), and
if V is complete with respect to the qV -metric associated to NV , then it is easy
to see that T (V ) is complete with respect to the qW -metric associated to the
restriction of NW to T (V ). More precisely, any sequence of elements of T (V )
can be expressed as {T (vj)}∞j=1 for some sequence {vj}∞j=1 of elements of V . If
{T (vj)}∞j=1 is a Cauchy sequence in T (V ), then (24.1) implies that {vj}∞j=1 is a
Cauchy sequence in V . If V is complete, then it follows that {vj}∞j=1 converges
to some v ∈ V . If T is bounded, then {T (vj)}∞j=1 converges to T (v) in T (V ),
as desired. This implies that T (V ) is a closed set in W with respect to the
qW -metric associated to NW , by the remarks at the beginning of the section. If
T (V ) is also dense in W with respect to the qW -metric associated to NW , then
it follows that T (V ) = W under these conditions.

Let us now give a criterion for a linear subspace W1 of W to be dense in
W . In this discussion, we can let NW be a qW -seminorm on W , instead of a
qW -norm. Let a be a real number with 0 ≤ a < 1. Suppose that for each w ∈ W
there is a u1 ∈ W1 such that

NW (w − u1) ≤ aNW (w).(25.1)

We can also apply this condition to w − u1 instead of w, to get that there is a
u2 ∈ W1 such that

NW (w − u1 − u2) ≤ aNW (w − u1) ≤ a2 NW (w).(25.2)

Continuing in this way, it follows that for each positive integer l, there are
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elements u1, . . . , ul of W1 such that

NW

(
w −

l∑
j=1

uj

)
≤ al NW (w).(25.3)

This implies thatW1 is dense inW with respect to the qW -semimetric associated
to NW , since

∑l
j=1 uj ∈ W1 for each l, and al → 0 as l → ∞.

26 Small perturbations

Let k be a field with a qk-absolute value function | · | for some qk > 0 again, and
let V , W be vector spaces over k with qV , qW -seminorms NV , NW , respectively,
for some qV , qW > 0, and with respect to | · | on k. Also let T be a linear
mapping from V into W that satisfies (24.1) for some C ≥ 0, and let R be a
bounded linear mapping from V into W . We would like to verify that R + T
satisfies a condition like (24.1) when

C ∥R∥op,VW < 1,(26.1)

where ∥R∥op,VW is the operator qW -seminorm of R corresponding to NV on V
and NW on W , as in Section 13.

If qW < ∞, then

NV (v)
qW ≤ CqW NW (T (v))qW(26.2)

≤ CqW (NW (R(v) + T (v))qW +NW (R(v))qW )

≤ CqW NW ((R+ T )(v))qW + CqW ∥R∥qWop,VW NV (v)
qW

for every v ∈ V . This uses (24.1) in the first step, the qW -seminorm version of
the triangle inequality for NW in the second step, and the boundedness of R in
the third step. It follows that

(1− CqW ∥R∥qWop,VW )NV (v)
qW ≤ CqW NW ((R+ T )(v))qW(26.3)

for every v ∈ V . If (26.1) holds, then we get that

NV (v) ≤ C (1− Cqw ∥R∥qWop,VW )−1/qW NW ((R+ T )(v))(26.4)

for every v ∈ V .
Similarly, if qW = ∞, then

NV (v) ≤ C NW (T (v))(26.5)

≤ C max(NW (R(v) + T (v)), NW (R(v)))

≤ max(C NW ((R+ T )(v)), C ∥R∥op,VW NV (v))

for every v ∈ V . This uses (24.1) in the first step, the ultrametric version of the
triangle inequality in the second step, and the boundedness of R in the third
step. If (26.1) holds, then (26.5) implies that

NV (v) ≤ C NW ((R+ T )(v))(26.6)
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for every v ∈ V . More precisely, (26.6) is trivial when NV (v) = 0, and so it
suffices to check (26.6) when NV (v) > 0. In this case, (26.1) implies that

C ∥R∥op,VW NV (v) < NV (v),(26.7)

so that (26.6) follows from (26.5).
Observe that

NW (R(v)) ≤ ∥R∥op,VW NV (v) ≤ C ∥R∥op,VW NW (T (v))(26.8)

for every v ∈ V , using the boundedness of R in the first step, and (24.1) in the
second step. This implies that

NW (T (v)− (R+ T )(v)) = NW (R(v)) ≤ C ∥R∥op,VW NW (T (v))(26.9)

for every v ∈ V . Put
W1 = (R+ T )(V )(26.10)

and
a = C ∥R∥op,VW ,(26.11)

so that (26.1) says exactly that a < 1. If T (V ) = W , then (26.9) implies that
(25.1) holds, and it follows that (26.10) is dense in W with respect to the qW -
semimetric associated to NW , as in the previous section. Similarly, if T (V ) is
dense in W , and (26.1) holds, then one can check that (26.10) is dense in W
too.

27 Small perturbations, continued

Let k be a field, and let V be a vector space over k. If T is a linear mapping
from V into itself, then we let T j be the jth power of T on V with respect
to composition for each positive integer j, and we interpret this as being the
identity operator I on V when j = 0. It is well known and easy to see that

(I − T )

n∑
j=0

T j =
( n∑

j=0

T j
)
(I − T ) = I − Tn+1(27.1)

for each nonnegative integer n, using composition of mappings as multiplication.
If I − T is invertible on V , then it follows that

n∑
j=0

T j = (I − T )−1 (I − Tn+1) = (I − Tn+1) (I − T )−1(27.2)

for each nonnegative integer n. This implies that

(I − T )−1 −
n∑

j=0

T j = Tn+1 (I − T )−1 = (I − T )−1 Tn+1(27.3)
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for each n ≥ 0.
Let | · | be a q-absolute value function on k for some q > 0, and let N be

a q-seminorm on V with respect to | · | on k. Remember that BL(V ) denotes
the corresponding vector space of bounded linear mappings on V , as in Section
13, equipped with the associated operator q-seminorm ∥ · ∥op. If T is a bounded
linear mapping on V , then

∥T j∥op ≤ ∥T∥jop(27.4)

for every positive integer j, by (13.6). This holds when j = 0 too, as in (13.7),
with the right side of (27.4) interpreted as being equal to 1. In particular, if

∥T∥op < 1,(27.5)

then it follows that
lim
j→∞

∥T j∥op = 0.(27.6)

If q < ∞, then ∥∥∥∥ n∑
j=0

T j

∥∥∥∥q
op

≤
n∑

j=0

∥T j∥qop ≤
n∑

j=0

∥T∥q j
op(27.7)

for each n ≥ 0, using (27.4) in the second step. Of course,

∞∑
j=0

∥T∥q j
op = (1− ∥T∥qop)−1(27.8)

when T satisfies (27.5), by the usual formula for the sum of a geometric series.
Thus ∥∥∥∥ n∑

j=0

T j

∥∥∥∥
op

≤ (1− ∥T∥qop)−1/q(27.9)

for every n ≥ 0 when q < ∞ and (27.5) holds. If q = ∞, then∥∥∥∥ n∑
j=0

T j

∥∥∥∥
op

≤ max
0≤j≤n

∥T j∥op ≤ max
0≤j≤n

∥T∥jop(27.10)

for each n ≥ 0, using (27.4) in the second step again. This implies that∥∥∥∥ n∑
j=0

T j

∥∥∥∥
op

≤ 1(27.11)

for every n ≥ 0 when q = ∞ and ∥T∥op ≤ 1.
Suppose for the moment that I − T is invertible on V , with a bounded

inverse. If T satisfies (27.5) and hence (27.6), then

lim
n→∞

∥∥∥∥(I − T )−1 −
n∑

j=0

T j

∥∥∥∥
op

= 0,(27.12)
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by (27.3). It follows that

∥(I − T )−1∥op ≤ (1− ∥T∥qop)−1/q(27.13)

when q < ∞ and (27.5) holds, because of (27.9). If q = ∞, then we get that

∥(I − T )−1∥op ≤ 1(27.14)

when (27.5) holds, using (27.11). These estimates for the operator q-seminorm
of (I − T )−1 could also be obtained from the discussion in Sections 24 and 26
under these conditions.

28 Convergence of the series

Let k be a field with a q-absolute value function | · | for some q > 0, and let V
be a vector space over k with a q-norm N with respect to | · | on k. Thus ∥ · ∥op
defines a q-norm on BL(V ) too, as in Section 13. Let T be a bounded linear
mapping from V into itself that satisfies

∥T∥op < 1(28.1)

again. If I − T has a bounded inverse on V , then

(I − T )−1 =

∞∑
j=0

T j ,(28.2)

by (27.12). More precisely, (27.12) says exactly that the sequence of partial
sums

∑n
j=0 T

j converges to (I − T )−1 with respect to the q-metric on BL(V )
associated to the operator q-norm. In the context of the previous section, this
was only a q-semimetric on BL(V ), and so the limit was not necessarily unique.
Here the limit is unique, because ∥ · ∥op is a q-norm on BL(V ), and the conver-
gence of the infinite series is defined in terms of the convergence of the sequence
of partial sums, as in Section 8.

Suppose now that T is a bounded linear operator on V such that

∞∑
j=0

T j(28.3)

converges in BL(V ) with respect to the operator q-norm ∥ · ∥op, as in Section 8.
In particular, this implies that

lim
j→∞

∥T j∥op = 0,(28.4)

as in (8.6). This permits us to take the limit as n → ∞ in (27.1), to get that

(I − T )

∞∑
j=0

T j =
( ∞∑

j=0

T j
)
(I − T ) = I.(28.5)
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This also uses the hypothesis that N and hence ∥ · ∥op be q-norms, and not just
q-seminorms, in order to have uniqueness of limits. It follows that I − T has
a bounded inverse on V under these conditions, with the inverse given as in
(28.2).

Suppose that V is complete with respect to the q-metric associated to N ,
so that BL(V ) is complete with respect to the q-metric associated to ∥ · ∥op, as
in Section 13. If T is a bounded linear operator on V that satisfies (28.1) and
q < ∞, then we have that

∞∑
j=0

∥T j∥qop ≤
∞∑
j=0

∥T∥q j
op = (1− ∥T∥qop)−1,(28.6)

as in (27.4) and (27.8). This means that (28.3) converges q-absolutely with
respect to the operator q-norm ∥·∥op, and hence that (28.3) converges in BL(V )
with respect to the operator q-norm, because of completeness, as in Section 8.
Of course, if T satisfies (28.1), then (28.4) holds, because of (27.4). If q = ∞,
then (28.4) implies that (28.3) converges in BL(V ) with respect to the operator
ultranorm ∥ · ∥op, because of completeness, as in Section 8 again. In both cases,
the convergence of (28.3) implies that I − T has a bounded inverse on V , as
before. The invertibility of I−T on V when T satisfies (28.1) and V is complete
could also be derived from the discussion in Sections 24, 25, and 26.

If (28.3) converges in BL(V ) with respect to the operator q-norm ∥ · ∥op,
then we have that

(I − T )−1 − I =

∞∑
j=1

T j ,(28.7)

by subtracting the j = 0 term from both sides of (28.2). If q < ∞ and T satisfies
(28.1), then it follows that

∥(I − T )−1 − I∥qop ≤
∞∑
j=1

∥T j∥qop ≤
∞∑
j=1

∥T∥q j
op = ∥T∥qop (1− ∥T∥qop)−1,(28.8)

using (27.4) in the second step. Similarly, if q = ∞ and T satisfies (28.1), then
we get that

∥(I − T )−1 − I∥op ≤ max
j≥1

∥T j∥op ≤ max
j≥1

∥T∥jop ≤ ∥T∥op,(28.9)

using (27.4) in the second step again. These estimates could also be obtained in
the context of the previous section, assuming that I − T has a bounded inverse
on V instead of the convergence of (28.3), and using (27.12). Another version
of this will be considered in Section 31.

29 Some variants

Let k be a field, let V , W be vector spaces over k. If R is a linear mapping
from V into W and T is a linear mapping from W into V , then the composition
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T ◦R is defined as a linear mapping from V into itself, and R ◦ T is defined as
a linear mapping from W into itself. As usual, we say that T1 : W → V is a
left-inverse of R if

T1 ◦R = IV ,(29.1)

and that T2 : W → V is a right-inverse of R if

R ◦ T2 = IW ,(29.2)

where IV , IW are the identity mappings on V and W , respectively. If R has
both a left-inverse T1 and a right-inverse T2, then

T1 = T1 ◦ (R ◦ T2) = (T1 ◦R) ◦ T2 = T2,(29.3)

which implies that R is invertible as a mapping from V into W . Note that the
left-invertibility of R implies that R is injective, and the right-invertibility of R
implies that R is surjective. If V , W are finite-dimensional vector spaces over k
with the same dimension, then a linear mapping R from V into W is injective
if and only if it is surjective. In this case, it follows that R is invertible when R
is left-invertible or right-invertible.

Let R : V → W and T : W → V be linear mappings, and suppose that T ◦R
is invertible as a linear mapping from V into itself. This implies that

((T ◦R)−1 ◦ T ) ◦R = (T ◦R)−1 ◦ (T ◦R) = IV ,(29.4)

and
T ◦ (R ◦ (T ◦R)−1) = (T ◦R) ◦ (T ◦R)−1 = IV(29.5)

so that R is left-invertible and T is right-invertible. Similarly, if R◦T is invertible
on W , then

R ◦ (T ◦ (R ◦ T )−1) = (R ◦ T ) ◦ (R ◦ T )−1 = IW(29.6)

and
((R ◦ T )−1 ◦R) ◦ T = (R ◦ T )−1 ◦ (R ◦ T ) = IW ,(29.7)

which implies that R is right-invertible and T is left-invertible. If R ◦ T and
T ◦ R are both invertible, then it follows that R and T are both invertible. If
V and W are finite-dimensional vector spaces over k with the same dimension,
and if R ◦ T or T ◦ R are invertible, then R and T are invertible, because they
each have a one-sided inverse, as before.

Let us now take V = W , and let R and T be linear mappings from V into
itself. If there is a one-sided inverse to R on V that commutes with R, then
R is invertible on V . If R is invertible on V , then it is easy to see that R−1

commutes with any linear mapping on V that commutes with R. If R and T
are commuting linear mappings on V , then the invertibility of R ◦ T and T ◦R
are the same. In this case, R ◦ T commutes with R and T , so that (R ◦ T )−1

commutes with R and T as well when R ◦ T is invertible on V .
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Let T be a linear mapping from V into itself again, and suppose that

I − Tn+1(29.8)

is invertible on V for some nonnegative integer n. Of course, powers of T
commute with each other, which implies that (29.8) commutes with powers of
T . It follows that the inverse of (29.8) commutes with powers of T too, as well
as with finite sums of powers of T . Using (27.1), we get that I − T is also
invertible on V under these conditions, with

(I − T )−1 =
( n∑

j=0

T j
)
(I − Tn+1)−1 = (I − Tn+1)−1

n∑
j=0

T j .(29.9)

Let |·| be a q-absolute value function on k for some q > 0, let N be a q-seminorm
on V with respect to | · | on k, and let ∥ · ∥op be the corresponding operator
q-seminorm on the space BL(V ) of bounded linear mappings on V with respect
to N , as in Section 13. If T is a bounded linear mapping on V with respect to
N , and if (29.8) has a bounded inverse on V for some n ≥ 0, then (29.9) implies
that I − T has a bounded inverse on V too. More precisely, we get that

∥(I − T )−1∥op ≤ ∥(I − Tn+1)−1∥op
∥∥∥∥ n∑
j=0

T j

∥∥∥∥
op

(29.10)

under these conditions. Remember that the second factor on the right side of
(29.10) can be estimated as in (27.7) when q < ∞, and as in (27.10) when
q = ∞.

30 Some variants, continued

Let k be a field with a q-absolute value function | · | for some q > 0 again, and
let V be a vector space over k with a q-seminorm N with respect to | · | on k.
This leads to the corresponding operator q-seminorm ∥ ·∥op on the space BL(V )
of bounded linear mappings from V into itself with respect to N , as in Section
13. Let T be a bounded linear mapping on V with respect to N , and suppose
that

lim
j→∞

∥T j∥op = 0.(30.1)

In particular, this implies that ∥T j∥op < 1 for all but finitely many positive
integers j. Conversely, suppose that

∥T j0∥op < 1(30.2)

for some j0 ∈ Z+. Observe that

∥T j0 l+r∥op ≤ ∥T j0∥lop ∥T∥rop(30.3)
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for all nonnegative integers l, r, with the usual conventions when l = 0 or r = 0.
This implies that (30.1) holds, since it suffices to consider r < j0.

Suppose now that N is a q-norm on V , so that ∥ · ∥op is a q-norm on BL(V ).
Suppose also that V is complete with respect to the q-metric associated to N ,
so that BL(V ) is complete with respect to the q-metric associated to ∥ · ∥op, as
in Section 13. Let T be a bounded linear mapping on V that satisfies (30.1)
again. If q = ∞, then it follows that (28.3) converges in BL(V ) with respect to
∥ · ∥op, as in Section 8. This implies that I − T has a bounded inverse on V ,
with the inverse given in (28.2), as in Section 28.

If q < ∞, then let j0 be a positive integer such that (30.2) holds, as before.
Note that every nonnegative integer can be expressed in a unique way as

j = j0 l + r,(30.4)

where l, r are nonnegative integers, and r < j0. This implies that

∞∑
j=0

∥T j∥qop =

j0−1∑
r=0

∞∑
l=0

∥T j0 l+r∥qop.(30.5)

Using (30.3), we get that this is less than or equal to

( j0−1∑
r=0

∥T∥q r
op

)( ∞∑
l=0

∥T j0∥q l
op

)
.(30.6)

The sum over r is obviously finite, and the sum over l is a convergent geometric
series, because of (30.2). Thus

∞∑
j=0

∥T j∥qop < ∞,(30.7)

which means that (28.3) converges q-absolutely with respect to ∥·∥op. It follows
that (28.3) converges in BL(V ) with respect to ∥·∥op under these conditions, by
completeness, as in Section 8. This implies that (I − T ) has a bounded inverse
on V in this case too, as in Section 28.

Alternatively, we can use (30.2) and completeness to get that

I − T j0(30.8)

has a bounded inverse on V , as in Section 28. This implies that I − T has a
bounded inverse on V , as in the previous section.

31 Small perturbations, revisited

Let k be a field, and let V , W be vector spaces over k. Also let T1, T2 be
one-to-one linear mappings from V onto W . Thus the corresponding inverse
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mappings T−1
1 , T−1

2 are defined as linear mappings from W onto V . Observe
that

T−1
1 − T−1

2 = T−1
1 T2 T

−1
2 − T−1

1 T1 T
−1
2 = T−1

1 (T2 − T1)T
−1
2 ,(31.1)

as linear mappings from W into V . Let | · | be a qk-absolute value function on k
for some qk > 0, and let NV , NW be a qV , qW -seminorms on V , W , respectively,
for some qV , qW > 0, and with respect to | · | on k. This leads to corresponding
spaces BL(V,W ) and BL(W,V ) of bounded linear mappings from V into W
and from W into V , as in Section 13, with their associated operator qW , qV -
seminorms ∥ · ∥op,VW and ∥ · ∥op,WV , respectively. Suppose that T1, T2 are
bounded linear mappings from V onto W with bounded inverses. In this case,
(31.1) implies that

∥T−1
1 − T−1

2 ∥op,WV ≤ ∥T−1
1 ∥op,WV ∥T2 − T1∥op,VW ∥T−1

2 ∥op,WV .(31.2)

Suppose for the moment that

∥T−1
1 ∥op,WV ∥T1 − T2∥op,VW < 1.(31.3)

We would like to use the discussion in Section 26 with T = T1 and R = T2−T1,
so that R + T = T2. In this situation, (24.1) holds with C = ∥T−1

1 ∥op,WV , and
hence (31.3) corresponds to (26.1). If qW < ∞, then we have that

∥T−1
2 ∥op,WV ≤ ∥T−1

1 ∥op,WV (1− ∥T−1
1 ∥qWop,WV ∥T1 − T2∥qWop,VW )−1/qW ,(31.4)

as in (26.4). Combining this with (31.2), we get that

∥T−1
1 − T−1

2 ∥op,WV(31.5)

≤ ∥T−1
1 ∥2op,WV (1− ∥T−1

1 ∥qWop,WV ∥T1 − T2∥qWop,VW )−1/qW ∥T1 − T2∥op,VW

when (31.3) holds. Similarly, if qW = ∞ and (31.3) holds, then

∥T−1
2 ∥op,WV ≤ ∥T−1

1 ∥op,WV ,(31.6)

as in (26.6). Combining this with (31.2) again, we get that

∥T−1
1 − T−1

2 ∥op,WV ≤ ∥T−1
1 ∥2op,WV ∥T1 − T2∥op,VW(31.7)

in this case.
Suppose now that NV is a qV -norm on V , so that ∥ · ∥op,WV is a qV -norm on

BL(W,V ). Let T1 be a bounded linear mapping from V onto W with bounded
inverse again. Note that this implies that NW is a qW -norm on W , and hence
that ∥ · ∥VW is a qW -norm on BL(V,W ). Also let T2 be a bounded linear
mapping from V into W that satisfies (31.3). Under these conditions, T2 is
injective, the inverse of T2 is bounded on T2(V ), and T2(V ) is dense in W with
respect to the qW -metric associated to NW , as in Sections 24 and 26. If V
has finite dimension, then W has finite dimension equal to the dimension of V ,
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because of the invertibility of T1. In this case, the injectivity of T2 implies that
T2 is surjective. Similarly, if V is complete, then the surjectivity of T2 follows
from the discussion in Section 25 in this situation.

Let us now consider the case where V = W , with NV = NW and qV = qW .
Of course, the identity mapping I = IV on V is a bounded linear mapping with
bounded inverse, and so the previous remarks can be applied to T1 = I. This
is closely connected to the discussion in Sections 27 and 28. Note that one can
reduce to this case, by composing T2 with T−1

1 .

32 Isometric linear mappings

Let k be a field with a qk-absolute value function | · | for some qk > 0, and let
V , W be vector spaces over k with qV , qW -seminorms NV , NW , respectively,
for some qV , qW > 0, and with respect to | · | on k. Also let ∥ · ∥op,VW and
∥ · ∥op,WV be the corresponding operator qW and qV -seminorms on BL(V,W )
and BL(W,V ), respectively, as in Section 13. A linear mapping T from V into
W is said to be an isometry with respect to NV and NW if

NW (T (v)) = NV (v)(32.1)

for every v ∈ V . Of course, this is the same as saying that

NW (T (v)) ≤ NV (v)(32.2)

and
NV (v) ≤ NW (T (v))(32.3)

for every v ∈ V . The first condition (32.2) means exactly that T is a bounded
linear mapping from V into W , with

∥T∥op,VW ≤ 1.(32.4)

If T is injective, then the second condition (32.3) means that T−1 is a bounded
linear mapping from T (V ) onto V , using the restriction of NW to T (V ), and
that the corresponding operator qV -seminorm of T−1 is less than or equal to 1.
In particular, if T is a one-to-one linear mapping from V onto W , then (32.4)
is the same as saying that T−1 is bounded, with

∥T−1∥op,WV ≤ 1.(32.5)

Note that (32.3) implies that T is injective when NV is a qV -norm on V .
Suppose that T1, T2 are one-to-one linear mappings from V onto W . If T1,

T2 are isometries too, then (31.2) implies that

∥T−1
1 − T−1

2 ∥op,WV ≤ ∥T1 − T2∥op,VW ,(32.6)

since the operator qV -seminorms of T−1
1 , T−1

2 are less than or equal to 1, as in
(32.5). In fact, we have that

∥T−1
1 − T−1

2 ∥op,WV = ∥T1 − T2∥op,VW(32.7)
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under these conditions. This is because the reverse inequality in (32.6) can be
obtained by applying the analogous inequality to T−1

1 , T−1
2 . One can also derive

(32.7) more directly from (31.1) in this situation.
Suppose now that qW = ∞, so that NW is a semi-ultranorm on W , and

∥ · ∥op,VW is a semi-ultranorm on BL(V,W ). Let T be an isometric linear
mapping from V into W , and let R be a bounded linear mapping from V into
W such that

∥R∥op,VW < 1.(32.8)

This implies that R + T is a bounded linear mapping from V into W as well,
with

∥R+ T∥op,VW ≤ max(∥R∥op,VW , ∥T∥op,VW ) ≤ 1.(32.9)

We also have that
NV (v) ≤ NW ((R+ T )(v))(32.10)

for every v ∈ V in this situation, as in (26.6). More precisely, T satisfies (24.1)
with C = 1, so that (26.1) reduces to (32.8). This permits us to get (32.10), as
in Section 26. It follows that R+ T is also an isometric linear mapping from V
into W under these conditions.

Let us now take V = W , NV = NW , and qV = qW = ∞. Let R1, R2 be
bounded linear mappings on V , and observe that

(I +R1) ◦ (I +R2) = I +R1 +R2 +R1 ◦R2.(32.11)

If ∥ · ∥op denotes the corresponding operator semi-ultranorm on BL(V ), then we
get that

∥R1 +R2 +R1 ◦R2∥op ≤ max(∥R1∥op, ∥R2∥op, ∥R1 ◦R2∥op)(32.12)

≤ max(∥R1∥op, ∥R2∥op, ∥R1∥op ∥R2∥op).

If we also ask that
min(∥R1∥op, ∥R2∥op) ≤ 1,(32.13)

then it follows that

∥R1 +R2 +R1 ◦R2∥op ≤ max(∥R1∥op, ∥R2∥op).(32.14)

In particular, if ∥R1∥op, ∥R2∥op < 1, then the left side of (32.14) is strictly less
than 1 too.

33 Groups of linear mappings

Let k be a field, and let V be a vector space over k. It is well known that the
collection GL(V ) of one-to-one linear mappings from V onto itself is a group,
with composition of mappings as multiplication, and the identity operator I
on V as the identity element. Let | · | be a q-absolute value function on k for
some q > 0, and let N be a q-seminorm on V with respect to | · | on k. The
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collection BGL(V ) of one-to-one bounded linear mappings from V onto itself
with bounded inverse with respect to N on V is also a group, which may be
considered as a subgroup of GL(V ).

Let ∥·∥op be the operator q-seminorm on the space BL(V ) of bounded linear
mappings on V associated to N as in Section 13. This leads to a q-semimetric
on BL(V ) in the usual way, and thus a topology on BL(V ). Using this topology,
one can define the corresponding product topology on

BL(V )× BL(V ).(33.1)

Note that composition of linear mappings on V defines a mapping from (33.1)
into BL(V ), which is being used here as multiplication on BL(V ). One can
check that this mapping is continuous with respect to the product topology on
(33.1), by standard arguments.

Similarly,
T 7→ T−1(33.2)

defines a mapping from GL(V ) into itself, which sends BGL(V ) to itself. Let
us take BGL(V ) to be equipped with the topology induced by the topology on
BL(V ) corresponding to ∥ · ∥op as in the previous paragraph. We have already
seen that (33.2) is continuous as a mapping on BGL(V ) with respect to this
topology in Section 31. More precisely, the continuity of this mapping at a
point T1 ∈ BGL(V ) follows from (31.5) when qW < ∞, and from (31.7) when
qW = ∞. In both cases, we ask that T2 ∈ BGL(V ) be sufficiently close to T1,
as in (31.3).

Let us also take
BL(V ) ∩ GL(V )(33.3)

to be equipped with the topology induced by the one on BL(V ) corresponding
to ∥ · ∥op as before. The discussion in Sections 24 and 26 implies that BGL(V )
is a relatively open set in (33.3). Suppose for the moment that N is a q-norm
on V , so that ∥ · ∥op is a q-norm on BL(V ). If V has finite dimension over k, or
if V is complete with respect to the q-metric associated to N , then BGL(V ) is
already an open set in BL(V ). This was basically mentioned in Section 31, in
slightly different terms.

34 Subgroups of linear isometries

Let k be a field with a q-absolute value function for some q > 0, and let V be a
vector space over k with a q-seminorm N with respect to |·| on k. The collection
of one-to-one isometric linear mappings from V onto itself is a subgroup of the
group BGL(V ) of bounded linear mappings on V with bounded inverses on V
defined in the previous section. Of course, if N is a q-norm on V , then every
isometric linear mapping from V into itself is injective, as in Section 32. If V
has finite dimension over k, then every injective linear mapping from V into
itself is a surjection. Thus every isometric linear mapping from V into itself is
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a one-to-one mapping from V onto itself when N is a q-norm on V and V has
finite dimension over k.

Suppose from now on in this section that N is a semi-ultranorm on V .
In this case, we have seen in Section 32 that the collection of isometric linear
mappings from V into itself is an open set in BL(V ) with respect to the topology
corresponding to the operator q-seminorm ∥ · ∥op associated to N . This implies
that the collection of one-to-one isometric linear mappings from V onto itself
is relatively open in (33.3). Suppose for the moment that N is an ultranorm
on V , so that isometric linear mappings from V into itself are injective. If V
has finite dimension over k, then isometric linear mappings from V into itself
are bijective, and the collection of these mappings is an open set in BL(V ).
Otherwise, if V is complete with respect to the ultranorm associated to N , then
BGL(V ) is an open set in BL(V ), as in the previous section. In this situation,
we get that the collection of isometric linear mappings from V onto itself is an
open set in BL(V ).

Consider the set
{T ∈ BL(V ) : ∥T − I∥op < 1}.(34.1)

Because N is a semi-ultranorm on V , every element of (34.1) is an isometry
on V , as in Section 32. We have also seen in Section 32 that the composition
of two elements of (34.1) is an element of (34.1) as well. If a one-to-one linear
mapping T from V onto itself is an element of (34.1), then T−1 is an element
of (34.1) too, by (32.7). It follows that

{T ∈ BL(V ) ∩ GL(V ) : ∥T − I∥op < 1}(34.2)

is a subgroup of the group of one-to-one isometric linear mappings from V onto
itself. Suppose for the moment again that N is an ultranorm on V , which
implies that the elements of (34.1) are injective. If V has finite dimension over
k, then the elements of (34.1) are surjective as well, so that (34.1) is the same
as (34.2). Similarly, if V is complete with respect to the ultrametric associated
to N , then the elements of (34.1) are surjective, as in Section 31. This implies
that (34.1) is the same as (34.2) in this case too.

Of course,
{T ∈ BL(V ) : ∥T − I∥op < r}(34.3)

is contained in (34.1) when 0 < r ≤ 1, and

{T ∈ BL(V ) : ∥T − I∥op ≤ r}(34.4)

is contained in (34.1) when 0 < r < 1. Thus the elements of (34.3) are isometries
on V when 0 < r ≤ 1, and the elements of (34.4) are isometries on V when
0 < r < 1. It is easy to see that (34.3) and (34.4) are closed under compositions
when r ≤ 1, using (32.14). If a one-to-one linear mapping T from V onto V is
an element of (34.3) for some r ≤ 1, or an element of (34.4) for some r < 1, then
T−1 has the same property, because of (32.7). This implies that the intersection
of (34.3) with GL(V ) is a subgroup of the group of one-to-one isometric linear
mappings from V onto itself when 0 < r ≤ 1, and that the intersection of (34.4)
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with GL(V ) is a subgroup of the same group when 0 < r < 1. If N is an
ultranorm on V , and if V has finite dimension over k, then (34.3) is contained
in GL(V ) for each r ≤ 1, and (34.4) is contained in GL(V ) for every r < 1,
as in the preceding paragraph. The same conclusions also hold when N is an
ultranorm on V and V is complete with respect to the associated ultrametric,
as before.

35 Some additional remarks

Let k be a field with a qk-absolute value function for some qk > 0, and let V , W
be vector spaces over k with qV , qW -seminorms NV , NW , respectively, for some
qV , qW > 0, and with respect to | · | on k. This leads to the corresponding spaces
BL(V,W ) and BL(W,V ) of bounded linear mappings from V into W and from
W into V , respectively, with their associated operator qW and qV -seminorms
∥·∥op,VW and ∥·∥op,WV , respectively, as in Section 13. Similarly, for each q > 0,
let NV,q and NW,q be the q-seminormifications of NV and NW on V and W ,
respectively, as in (19.4). As before, this leads to the corresponding spaces

BLq(V,W ) and BLq(W,V )(35.1)

of bounded linear mappings from V into W and from W into V with respect to
NV,q and NW,q for each q > 0, with their associated operator q-seminorms

∥ · ∥op,VW,q and ∥ · ∥op,WV,q,(35.2)

respectively. If T ∈ BL(V,W ), then T ∈ BLq(V,W ) for every q > 0, and

∥T∥op,VW,q ≤ ∥T∥op,VW .(35.3)

This follows from the fact that (20.2) implies (20.4) for every q > 0. In partic-
ular,

BL(V,W ) ⊆ BLq(V,W )(35.4)

for each q > 0. Of course, there are analogous statements with the roles of V
and W exchanged.

Suppose now that T is a one-to-one linear mapping from V onto W . If

T ∈ BL(V,W ) and T−1 ∈ BL(W,V ),(35.5)

then
T ∈ BLq(V,W ) and T−1 ∈ BLq(W,V )(35.6)

for every q > 0, as in the preceding paragraph. We also get that (35.3) holds
for every q > 0, and similarly that

∥T−1∥op,WV,q ≤ ∥T−1∥op,WV(35.7)

for each q > 0. If T is also an isometry with respect to NV and NW on V and
W , respectively, then

∥T∥op,VW , ∥T−1∥op,WV ≤ 1,(35.8)
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as in (32.4) and (32.5). This implies that

∥T∥op,VW,q, ∥T−1∥op,WV,q ≤ 1(35.9)

for every q > 0, by (35.3) and (35.7), so that T is an isometry with respect to
NV,q on V and NW,q on W for each q > 0 too.

Let us now restrict our attention to the case where V = W , with qV = qW
andNV = NW . As usual, we let BL(V ) be the space of bounded linear mappings
from V into itself with respect to NV , and we put

BLq(V ) = BLq(V, V )(35.10)

for each q > 0. Also let BGL(V ) be the group of one-to-one linear mappings T
from V onto itself such that T and T−1 are bounded with respect to NV , as in
Section 33, and let

BGLq(V )(35.11)

be the analogous group of mappings with respect to NV,q for each q > 0. Thus

BGL(V ) ⊆ BGLq(V )(35.12)

for every q > 0, since (35.5) implies (35.6). There is an analogous inclusion for
the corresponding subgroups of isometries on V , by the remarks in the previous
paragraph.

There are also appropriate monotonicity properties in q in this discussion,
as in Section 21.
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