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Preface

Some topics related to topological groups are discussed, in connection with
translation-invariant metrics and ultrametrics in particular.
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Chapter 1

Topological groups and
semimetrics

1.1 Metrics and semimetrics

Let X be a set, and let d(x, y) be a nonnegative real-valued function defined for
x, y ∈ X. If d(x, y) satisfies the following three conditions, then d(x, y) is said
to be a semimetric on X. First,

d(x, x) = 0 for every x ∈ X.(1.1.1)

Second,

d(x, y) = d(y, x) for every x, y ∈ X.(1.1.2)

Third,

d(x, z) ≤ d(x, y) + d(y, z) for every x, y, z ∈ X.(1.1.3)

If we also have that

d(x, y) > 0 for every x, y ∈ X with x ̸= y,(1.1.4)

then d(·, ·) is said to be a metric on X. The discrete metric on X is defined as
usual by putting d(x, y) equal to 1 when x ̸= y, and to 0 when x = y. It is easy
to see that this defines a metric on X.

Let d(x, y) be a semimetric on X. The open ball in X centered at x ∈ X
with radius r > 0 with respect to d(·, ·) is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) < r}.(1.1.5)

Similarly, the closed ball in X centered at x ∈ X with radius r ≥ 0 with respect
to d(·, ·) is defined by

B(x, r) = Bd(x, r) = {y ∈ X : d(x, y) ≤ r}.(1.1.6)

1



2 CHAPTER 1. TOPOLOGICAL GROUPS AND SEMIMETRICS

A subset U of X is said to be an open set with respect to d(·, ·) if for every
x ∈ U there is an r > 0 such that

B(x, r) ⊆ U.(1.1.7)

This defines a topology on X, by standard arguments. One can check that
open balls in X with respect to d(·, ·) are open sets with respect to the topology
determined by d(·, ·), and that closed balls are closed sets. If d(·, ·) is a metric
on X, then X is Hausdorff with respect to the topology determined by d(·, ·).

Let Y be a subset of X, and observe that the restriction of d(x, y) to x, y ∈ Y
defines a semimetric on Y . Let BX(x, r) be the open ball inX centered at x ∈ X
with radius r > 0 with respect to d(·, ·), and let BY (x, r) be the open ball in Y
centered at x ∈ Y with radius r with respect to the restriction of d(·, ·) to Y .
Clearly

BY (x, r) = BX(x, r) ∩ Y(1.1.8)

for every x ∈ Y and r > 0. It is well known that the topology determined on Y
by the restriction of d(x, y) to x, y ∈ Y is the same as the topology induced on
Y by the topology determined on X by d(·, ·). More precisely, if U is an open
subset of X with respect to the topology determined by d(·, ·), then it is easy
to see that U ∩ Y is an open set in Y with respect to the topology determined
by the restriction of d(x, y) to x, y ∈ Y , using (1.1.8). This implies that every
open set in Y with respect to the induced topology is an open set with respect
to the topology determined on Y by the restriction of d(·, ·) to Y . In the other
direction, (1.1.8) is an open set in Y with respect to the induced topology for
every x ∈ Y and r > 0, because BX(x, r) is an open set in X. If E ⊆ Y is
an open set with respect to the topology determined on Y by the restriction
of d(·, ·), then E can be expressed as a union of open balls in Y . This means
that E can be expressed as the union of open subsets of Y with respect to the
induced topology, so that E is an open set with respect to the induced topology
on Y , as desired. Of course, if d(x, y) is a metric on X, then its restriction to
x, y ∈ Y is a metric on Y .

Let x ∈ X be given, and consider

fx(y) = d(x, y)(1.1.9)

as a real-valued function of y on X. Note that

fx(y) ≤ fx(y
′) + d(y, y′)(1.1.10)

for every y, y′ ∈ X, by the triangle inequality. Hence

fx(y)− fx(y
′) ≤ d(y, y′)(1.1.11)

for every y, y′ ∈ X, and similarly with the roles of y and y′ exchanged. This
implies that

|fx(y)− fx(y
′)| ≤ d(y, y′)(1.1.12)
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for every y, y′ ∈ X, where |t| is the absolute value of a real number t. It follows
that fx is continuous on X with respect to the topology determined on X by
d(·, ·), and the standard topology on the real line.

Let us say that d(·, ·) is compatible with a topology τ on X at a point x ∈ X
if for every r > 0 there is an open set V ⊆ X with respect to τ such that x ∈ V
and

V ⊆ B(x, r).(1.1.13)

This is the same as saying that (1.1.9) is continuous at x, as a real-valued
function of y on X, and with respect to τ . If d(·, ·) is compatible with τ at
every x ∈ X, then we may simply say that d(·, ·) is compatible with τ on X.
In this case, τ is at least as strong as the topology determined on X by d(·, ·).
More precisely, if U ⊆ X is an open set with respect to the topology determined
on X by d(·, ·), then U can be expressed as a union of open sets in X with
respect to τ , so that U is an open set with respect to τ . Conversely, if every
open subset of X with respect to d(·, ·) is an open set with respect to τ , then
d(·, ·) is compatible with τ on X, because one can take V = B(x, r) in (1.1.13).
If d(·, ·) is compatible with τ on X, then (1.1.9) is continuous as a real-valued
function of y on X with respect to τ for every x ∈ X.

1.2 Topological groups

Let G be a group, in which the group operations are expressed multiplicatively,
and suppose that G is also equipped with a topology. If the group operations are
continuous, then G is said to be a topological group. More precisely, continuity
of multiplication on G means that multiplication is continuous as a mapping
from G×G into G, using the product topology on G×G corresponding to the
given topology on G. Similarly,

x 7→ x−1(1.2.1)

should be continuous as a mapping from G into itself. This implies that (1.2.1) is
a homeomorphism from G onto itself, because (1.2.1) is its own inverse mapping.

Let G be a topological group, and let a, b ∈ G be given. It is easy to see
that the left translation mapping

x 7→ a x(1.2.2)

is continuous as a mapping from G into itself, because of continuity of multipli-
cation on G. In fact, (1.2.2) is a homeomorphism from G onto itself, because
the inverse mapping corresponding to (1.2.2) is given by translation on the left
by a−1. Similarly, the right translation mapping

x 7→ x b(1.2.3)

is a homeomorphism from G onto itself.
Let e be the identity element in G. If {e} is a closed set in G, then every

subset of G with only one element is a closed set, by continuity of translations.
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In this case, G satisfies the first separation condition as a topological space. We
shall be primarily concerned with topological groups with this property, which
is sometimes included in the definition of a topological group.

If G is any group, then G is a topological group with respect to the discrete
topology. Similarly, G is a topological group with respect to the indiscrete
topology, if {e} is not required to be a closed set in G. The real line R is
a commutative topological group with respect to addition and the standard
topology. IfG is a topological group andH is a subgroup, thenH is a topological
group with respect to the topology induced by the topology on G. Note that
the closure of H in G is also a subgroup of G in this case.

Let G be a group, and let A, B be subsets of G. If a, b ∈ G, then put

Ab = {x b : x ∈ A}(1.2.4)

and
aB = {a y : y ∈ B}.(1.2.5)

Also put
AB = {x y : x ∈ A, y ∈ B},(1.2.6)

so that
AB =

∪
a∈A

aB =
∪
b∈B

Ab.(1.2.7)

Similarly, put
A−1 = {x−1 : x ∈ A},(1.2.8)

and let us say that A is symmetric about e in G when

A−1 = A.(1.2.9)

Note that
A ∩A−1(1.2.10)

is automatically symmetric about e in G.
Now let G be a topological group, and let A, B be subsets of G again. If

a, b ∈ G and A, B are open subsets of G, then Ab and aB are open sets as
well, by continuity of translations. If A or B is an open set in G, then it follows
that AB is an open set in G, because AB is a union of open sets in G, as
in (1.2.7). If A is an open set, then A−1 is an open set too, because (1.2.1)
is a homeomorphism on G. This implies that (1.2.10) is an open set in G, so
that every open set that contains e contains an open set that contains e and is
symmetric about e.

If W ⊆ G is an open set with e ∈ W , then there are open sets U, V ⊆ G
such that e ∈ U, V and

U V ⊆ W.(1.2.11)

This follows from the continuity of multiplication on G at (e, e). More precisely,
this also uses the fact that if O is an open set in G × G with respect to the
product topology and (e, e) ∈ O, then there are open sets U, V ⊆ G such that
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e ∈ U, V and U×V ⊆ O. Of course, we can take U = V in (1.2.11), by replacing
U and V with their intersection.

Let x ∈ G and E ⊆ G be given, and remember that x is an element of the
closure E of E in G if and only if for every open set U1 ⊆ G with x ∈ U1, we
have that

U1 ∩ E ̸= ∅.(1.2.12)

This is equivalent to saying that for every open set U0 ⊆ G with e ∈ U0, we
have that

(U0 x) ∩ E ̸= ∅,(1.2.13)

because of continuity of translations. Note that (1.2.13) holds exactly when

x ∈ U−1
0 E.(1.2.14)

Because (1.2.1) is a homeomorphism on G, U−1
0 may be considered as an arbi-

trary open set in G that contains e, It follows that

E =
∩

{U E : U ⊆ G is an open set, with e ∈ U}.(1.2.15)

Similarly,

E =
∩

{E V : V ⊆ G is an open set, with e ∈ V }.(1.2.16)

This could also be obtained from (1.2.15), using the fact that (1.2.1) is a home-
omorphism on G.

1.3 Regular topological spaces

A topological space X is said to be regular in the strict sense if for every x ∈ X
and closed set E ⊆ X with x ̸∈ E there are disjoint open sets U, V ⊆ X such
that x ∈ U and E ⊆ V . This is equivalent to asking that for every x ∈ X and
open set W ⊆ X with x ∈ W there is an open set U ⊆ X such that x ∈ U and
the closure U of U in X is contained in W , by a standard argument. Let us say
that X is regular in the strong sense when X is regular in the strict sense and
X satisfies the first separation condition, in which case we may also say that X
satisfies the third separation condition. This implies that X is Hausdorff, and in
fact it would suffice to ask that X satisfy the 0th separation condition instead
of the first separation condition.

If the topology on X is determined by a semimetric d(·, ·), then it is easy to
see that X is regular in the strict sense. If d(·, ·) is a metric on X, then X is
regular in the strong sense.

Let G be a topological group, and let us check that G is regular as a topo-
logical space in the strict sense. Let W be an open subset of G that contains
the identity element e, and let U , V be open subsets of G that contain e and
satisfy (1.2.11). This implies that

U, V ⊆ W,(1.3.1)
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by (1.2.15) and (1.2.16). One can use continuity of translations to get an anal-
ogous statement for neighborhoods of any element of G, as desired.

If {e} is a closed set in G, then it follows that G is regular as a topological
space in the strong sense, and in particular that G is Hausdorff. One can also
check more directly that G is Hausdorff in this situation, as follows. If y ∈ G,
then {y} is a closed set in G, so that W = G \ {y} is an open set. If y ̸= e, then
e ∈ W , and one can use (1.2.11) to get disjoint open subsets of G that contain
e and y. This implies that G is Hausdorff, using continuity of translations to
deal with any two distinct elements of G.

Let X be a topological space that is regular in the strict sense. If K is a
compact subset of X, W ⊆ X is an open set, and K ⊆ W , then there is an open
set U ⊆ X such that K ⊆ U and U ⊆ W . Indeed, for each x ∈ K, there is an
open set U(x) ⊆ X such that x ∈ U(x) and U(x) ⊆ W , because X is regular
in the strict sense. One can use compactness of K to cover K by finitely many
of these open sets, and it is easy to see that the union U of these finitely many
open sets has the desired properties.

Suppose that the topology on X is determined by a semimetric d(·, ·). If
A ⊆ X and r is a positive real number, then put

Ar =
∪
x∈A

B(x, r),(1.3.2)

where B(x, r) is as in (1.1.5). Thus A ⊆ Ar, and Ar is an open set in X, because
Ar is a union of open sets. It is easy to see that A ⊆ Ar, and in fact

A =
∩
r>0

Ar,(1.3.3)

where more precisely the intersection is taken over all positive real numbers r.
Let K ⊆ X be compact, let W ⊆ X be an open set, and suppose that

K ⊆ W , as before. If x ∈ K, then there is a positive real number r(x) such that

B(x, r(x)) ⊆ W.(1.3.4)

The collection of open balls B(x, r(x)/2) with x ∈ K forms an open covering of
K, so that there are finitely many elements x1, . . . , xn of K such that

K ⊆
n∪

j=1

B(xj , r(xj)/2),(1.3.5)

by compactness. If we put

r = min
1≤j≤n

(r(xj)/2) > 0,(1.3.6)

then one can check that
Kr ⊆ W,(1.3.7)

using the triangle inequality.
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Let G be a topological group, let K be a compact subset of G, let W be an
open subset of G, and suppose that K ⊆ W . If x ∈ K, then x−1 W is an open
subset of G that contains e, and hence there is an open subset U(x) of G such
that e ∈ U(x) and

U(x)U(x) ⊆ x−1 W,(1.3.8)

as in (1.2.11). The collection of open sets of the form U(x)x, x ∈ K, is an open
covering of K, and so there are finitely many elements x1, . . . , xn of K such that

K ⊆
n∪

j=1

U(xj)xj ,(1.3.9)

by compactness. Put

U =

n∩
j=1

U(xj),(1.3.10)

which is an open subset of G that contains e. Observe that

U K ⊆
n∪

j=1

U U(xj)xj ⊆
n∪

j=1

U(xj)U(xj)xj ⊆ W,(1.3.11)

using (1.3.9) in the first step, (1.3.10) in the second step, and (1.3.8) in the third
step. Similarly, there is an open subset V of G such that e ∈ V and

K V ⊆ W.(1.3.12)

This could also be obtained from (1.3.11), using the fact that (1.2.1) is a home-
omorphism on G.

1.4 Translation-invariant semimetrics

Let G be a group, and let d(x, y) be a semimetric on G. If

d(a x, a y) = d(x, y)(1.4.1)

for every a, x, y ∈ G, then d(·, ·) is said to be invariant under left translations
on G. Similarly, if

d(x a, y a) = d(x, y)(1.4.2)

for every a, x, y ∈ G, then d(·, ·) is said to be invariant under right translations
on G. Of course, if G is commutative, then (1.4.1) and (1.4.2) are equivalent,
in which case we may simply say that d(·, ·) is invariant under translations on
G.

If d(·, ·) is invariant under left or right translations on G, then we have that

d(x, e) = d(e, x−1)(1.4.3)
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for every x ∈ G. This is the same as saying that

d(e, x) = d(e, x−1)(1.4.4)

for every x ∈ G, because of (1.1.2). This implies that open and closed balls in
G centered at the identity element e with respect to d are symmetric about e.

If d(·, ·) is any semimetric on G again, then

d̃(x, y) = d(x−1, y−1)(1.4.5)

defines a semimetric on G too. It is easy to see that d(·, ·) is invariant under

left translations on G if and only if d̃(·, ·) is invariant under right translations
on G. Similarly, d(·, ·) is invariant under right translations on G if and only if

d̃(·, ·) is invariant under left translations on G. If d(·, ·) is invariant under both
left and right translations on G, then one can verify that

d̃(x, y) = d(x, y)(1.4.6)

for every x, y ∈ G. More precisely, we have that

d(x, y) = d(x−1 x y−1, x−1 y y−1) = d(y−1, x−1)(1.4.7)

for every x, y ∈ G, using invariance under left translation by x−1 and right
translation by y−1 in the first step.

Let d(·, ·) be a semimetric on G, and let x, y ∈ G be given. If d(·, ·) is
invariant under left translations on G, then

d(e, x y) ≤ d(e, x) + d(x, x y) = d(e, x) + d(e, y).(1.4.8)

Similarly, if d(·, ·) is invariant under right translations on G, then

d(e, x y) ≤ d(e, y) + d(y, x y) = d(y, e) + d(x, e).(1.4.9)

In both cases, we get that

B(e, r)B(e, t) ⊆ B(e, r + t)(1.4.10)

for every r, t > 0, where these open balls are defined as in (1.1.5).
Let d(x, y) be a semimetric on G, and let r > 0 be given. If d(·, ·) is invariant

under left translations on G, then

B(x, r) = xB(e, r)(1.4.11)

for every x ∈ G. If A is a subset of G and Ar is defined as in (1.3.2), then we
get that

Ar =
∪
x∈A

xB(e, r) = AB(e, r).(1.4.12)

Similarly, if d(·, ·) is invariant under right translations on G, then

B(x, r) = B(e, r)x(1.4.13)
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for every x ∈ G. This implies that

Ar =
∪
x∈A

B(e, r)x = B(e, r)A(1.4.14)

for every subset A of G.
Suppose now that G is a topological group, and let d(·, ·) be a semimetric

on G. Suppose that d(·, ·) is compatible with the given topology on G at e, as
in Section 1.1. This means that for every r > 0 there is an open subset Vr of G,
with respect to the topology given on G, such that e ∈ Vr and

Vr ⊆ B(e, r).(1.4.15)

If d(·, ·) is invariant under left translations on G, then it follows that

xVr ⊆ xB(e, r) = B(x, r)(1.4.16)

for every x ∈ G and r > 0. Similarly, if d(·, ·) is invariant under right translations
on G, then

Vr x ⊆ B(e, r)x = B(x, r)(1.4.17)

for every x ∈ G and r > 0. In both cases, we get that d(·, ·) is compatible with
the given topology on G, as in Section 1.1. This implies that d(e, x) is continuous
as a real-valued function of x on G, with respect to the given topology on G, as
in Section 1.1.

If there is a local base for the topology of G at e with only finitely or count-
ably many elements, then a famous theorem states that there is a semimetric
on G that is invariant under left translations on G, and which determines the
same topology on G. If {e} is a closed set in G, then this semimetric on G
is a metric. Of course, there is an analogous statement with invariance under
right translations instead of left translations. Note that the existence of a local
base for the topology of G at e with only finitely or countably many elements
is necessary to have a semimetric on G that determines the same topology on
G. More precisely, if d(·, ·) is a semimetric on a set X and x ∈ X, then the
collection of open balls of the form B(x, 1/j) with j in the set Z+ of positive
integers is a local base for the topology determined on X by d(·, ·) at x.

1.5 Collections of semimetrics

Let X be a set, and let d1, . . . , dn be finitely many semimetrics on X. It is easy
to see that

d(x, y) = max
1≤j≤n

dj(x, y)(1.5.1)

also defines a semimetric on X. If x ∈ X and r > 0, then

Bd(x, r) =

n∩
j=1

Bdj (x, r),(1.5.2)
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where these open balls are defined as in (1.1.5), as usual. Alternatively,

d′(x, y) =

n∑
j=1

dj(x, y)(1.5.3)

is a semimetric on X too, and

d(x, y) ≤ d′(x, y) ≤ nd(x, y)(1.5.4)

for every x, y ∈ X. In particular, this implies that (1.5.1) and (1.5.3) determine
the same topology on X.

Now let M be a nonempty collection of semimetrics on X. Let us say that
U ⊆ X is an open set with respect to M if for every x ∈ U there are finitely
many elements d1, . . . , dn of M and positive real numbers r1, . . . , rn such that

n∩
j=1

Bdj
(x, rj) ⊆ U.(1.5.5)

One can also take the rj ’s to be the same, by replacing them by their minimum.
This defines a topology on X, which contains the topologies determined on X
by each of the elements of M. If M has only finitely many elements, then the
topology determined on X by M is the same as the topology determined by the
semimetric on X obtained by taking the maximum of the elements of M.

One can check that the topology determined on X by M is regular in the
strict sense, as in Section 1.3. Let us say that M is nondegenerate on X if for
every x, y ∈ X with x ̸= y there is a d ∈ M such that

d(x, y) > 0.(1.5.6)

In this case, X is Hausdorff with respect to the topology determined by M. If
M is nondegenerate and M has only finitely many elements, then the sum and
maximum of the elements of M are metrics on X.

Let Y be a subset of X, and for each d ∈ M, let dY (x, y) be the restriction
of d(x, y) to x, y ∈ Y . Thus

MY = {dY : d ∈ M}(1.5.7)

is a nonempty collection of semimetrics on Y , which determines a topology on
Y as before. One can check that the topology determined on Y by MY is the
same as the topology induced on Y by the topology determined on X by M.
This is analogous to the case of a single semimetric, as in Section 1.1. More
precisely, let BX,d(x, r) be the open ball in X centered at x ∈ X with radius
r > 0 with respect to d ∈ M, and let BY,dY

(x, r) be the open ball in Y centered
at x ∈ Y with radius r > 0 with respect to dY . Note that

BY,dY
(x, r) = BX,d(x, r) ∩ Y(1.5.8)

for every x ∈ Y , r > 0, and d ∈ M, as in (1.1.8). Using this, one can verify that
every open subset of Y with respect to the induced topology is also an open set
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with respect to the topology determined by MY . If d ∈ M, x ∈ X, and r > 0,
then BX,d(x, r) is an open set in X with respect to the topology determined
by d, and hence with respect to the topology determined on X by M. This
implies that (1.5.8) is an open set in Y with respect to the topology induced on
Y by the topology determined on X by M. It follows that finite intersections of
subsets of Y of this form are open sets with respect to the induced topology as
well. If E ⊆ Y is an open set with respect to MY , then E can be expressed as a
union of finite intersections of sets of this form. This implies that E is an open
set with respect to the induced topology, as desired. If M is nondegenerate on
X, then MY is clearly nondegenerate on Y .

If G is a topological group, then it is well known that there is a collection
M of semimetrics on G such that every element of M is invariant under left
translations on G, and the topology determined on G by M is the same as
the given topology on G. If {e} is a closed set in G, then M is nondegenerate
on G. As before, there is an analogous statement with invariance under right
translations instead of left translations. Note that if d1, . . . , dn are finitely many
semimetrics on G that are invariant under left translations, then their sum and
maximum are invariant under left translations on G, and similarly for invariance
under right translations.

1.6 Sequences of semimetrics

Let X be a set, and let d(x, y) be a semimetric on X. Also let t be a positive
real number, and put

dt(x, y) = min(d(x, y), t)(1.6.1)

for every x, y ∈ X. One can check that this defines a semimetric on X too,
which is a metric when d(x, y) is a metric. If x ∈ X and r is another positive
real number, then

Bdt(x, r) = Bd(x, r) when r ≤ t(1.6.2)

= X when r > t,

where these open balls are defined as in (1.1.5). This implies that the topologies
determined on X by d and dt are the same. Note that dt(x, y) = 0 exactly when
d(x, y) = 0. In particular, if d(x, y) is a metric on X, then dt(x, y) is a metric
on X.

Now let d1, d2, d3, . . . be an infinite sequence of semimetrics on X, and put

d′j(x, y) = min(dj(x, y), 1/j)(1.6.3)

for every x, y ∈ X and positive integer j. Thus d′j is a semimetric on X that
determines the same topology on X as dj for each j ∈ Z+, as in the preceding
paragraph. More precisely, for each x ∈ X, r > 0, and j ∈ Z+, we have that

Bd′
j
(x, r) = Bdj (x, r) when r ≤ 1/j(1.6.4)

= X when r > 1/j,



12 CHAPTER 1. TOPOLOGICAL GROUPS AND SEMIMETRICS

as in (1.6.2). Put

d(x, y) = max
j≥1

d′j(x, y)(1.6.5)

for each x, y ∈ X, which is equal to 0 when d′j(x, y) = 0 for every j ∈ Z+. If
d′l(x, y) > 0 for some l ∈ Z+, then d′j(x, y) ≤ 1/j ≤ d′l(x, y) for all sufficiently
large j, so that the right side of (1.6.5) reduces to the maximum of finitely many
terms. Thus the right side of (1.6.5) is defined as a nonnegative real number for
every x, y ∈ X, and one can check that (1.6.5) defines a semimetric on X. If the
collection of semimetrics dj , j ∈ Z+, is nondegenerate on X, as in the previous
section, then the collection of semimetrics d′j , j ∈ Z+, is nondegenerate on X,
and (1.6.5) is a metric on X.

If x ∈ X and r > 0, then

Bd(x, r) =

∞∩
j=1

Bd′
j
(x, r),(1.6.6)

by the definition (1.6.5) of d. Let [1/r] be the largest nonnegative integer less
than or equal to 1/r, as usual. Combining (1.6.4) and (1.6.6), we get that

Bd(x, r) =

[1/r]∩
j=1

Bdj (x, r) when r ≤ 1(1.6.7)

= X when r > 1.

Using this, one can check that the topology determined on X by d is the same
as the topology determined on X by the collection of semimetrics dj , j ∈ Z+,
as in the previous section. More precisely, Bdj

(x, r) is an open set in X with
respect to dj for every x ∈ X, r > 0, and j ∈ Z+, as in Section 1.1. This implies
that Bdj (x, r) is an open set in X with respect to the collection of dl’s, l ∈ Z+,
for every x ∈ X, r > 0, and j ∈ Z+. It follows that Bd(x, r) is an open set in
X with respect to the collection of dl’s, l ∈ Z+, for every x ∈ X and r > 0,
because of (1.6.7). If U ⊆ X is an open set with respect to d, then U can be
expressed as a union of open balls in X with respect to d, which implies that
U is an open set with respect to the collection of dl’s, l ∈ Z+. Conversely, if
U ⊆ X is an open set with respect to the collection of dl’s, l ∈ Z+, then one
can verify that U is an open set with respect to d, using (1.6.7).

Let G be a group. If d(x, y) is a semimetric on G that is invariant under left
translations, then (1.6.1) is invariant under left translations for every t > 0, and
similarly for right translations. Now let d1, d2, d3, . . . be an infinite sequence of
semimetrics on G, each of which is invariant under left translations. This implies
that (1.6.3) is invariant under left translations for every j ∈ Z+, and hence that
(1.6.5) is invariant under left translations. Similarly, if dj is invariant under right
translations for every j ∈ Z+, then (1.6.3) is invariant under right translations
for every j ∈ Z+, so that (1.6.5) is invariant under right translations.
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1.7 Continuity conditions on groups

Let G and H be topological groups, and let ϕ be a group homomorphism from
G into H. If ϕ is continuous at the identity element e in G, then it is easy to see
that ϕ is continuous at every point in G, using continuity of translations on G
and H. More precisely, this works when G and H are equipped with topologies
for which left translations are continuous. In this case, left translations on G
and H are homeomorphisms, as before. Similarly, if right translations on G and
H are continuous, and ϕ is continuous at the identity element in G, then ϕ is
continuous at every point in G.

Let G be a group again, and suppose that G is equipped with a topology
τ . In order to check that G is a topological group with respect to τ , it is often
helpful to simplify the continuity conditions that need to be verified. Suppose
for the moment that left and right translations are continuous on G with respect
to τ , which implies that they are homeomorphisms on G with respect to τ , as
before. Under suitable conditions, one would like to show that multiplication
on G is continuous, as a mapping from G × G into G, and with respect to the
corresponding product topology on G. If multiplication on G is continuous as
a mapping from G×G into G at (e, e), then one can use continuity of left and
right translations on G to get that multiplication on G is continuous at every
point in G×G.

Similarly, suppose that x 7→ x−1 is continuous at e as a mapping from G
into itself. Using continuity of left and right translations on G, one can get that
x 7→ x−1 is continuous at every point in G.

Let x ∈ G be given, and put

Cx(y) = x y x−1(1.7.1)

for every y ∈ G. This is a group automorphism on G, which is the inner
automorphism defined by conjugation by x. If left and right translations are
continuous on G, then Cx is a continuous mapping from G into itself for every
x ∈ G. Of course, if Cx is a continuous mapping from G into itself for every
x ∈ G, then Cx is a homeomorphism on G for every x ∈ G, because Cx−1 is the
inverse mapping associated to Cx.

Suppose for the moment that left translations on G are continuous. If Cx is
continuous on G for every x ∈ G, then it follows that right translations on G
are continuous as well. In order to check that Cx is continuous on G for some
x ∈ G, it suffices to verify that Cx is continuous at the identity element e in G,
by the remarks at the beginning of the section. Similarly, if right translations
on G are continuous, and if Cx is continuous at e for some x ∈ G, then Cx is
continuous at every point in G. If this holds for every x ∈ G, then it follows
that left translations are also continuous on G.

Let d(x, y) be a semimetric on G. If d(·, ·) is invariant under left translations
on G, then left translations on G are automatically homeomorphisms with re-
spect to the topology determined on G by d(·, ·). Similarly, if d(·, ·) is invariant
under right translations on G, then right translations on G are automatically



14 CHAPTER 1. TOPOLOGICAL GROUPS AND SEMIMETRICS

homeomorphisms with respect to the topology determined on G by d(·, ·). If
d(·, ·) is invariant under both left and right translations on G, then both left and
right translations on G are automatically homeomorphisms on G with respect
to the topology determined by d(·, ·).

Suppose that d(·, ·) is invariant under left translations on G, or under right
translations on G, or both. In this case, one can use (1.4.4) to get that x 7→ x−1

is continuous at e as a mapping from G into itself, with respect to the topology
determined on G by d(·, ·). Similarly, (1.4.10) implies that multiplication on G
is continuous as a mapping from G × G into G at (e, e), with respect to the
topology determined on G by d(·, ·), and the corresponding product topology
on G×G. If d(·, ·) is invariant under both left and right translations on G, then
it follows that G is a topological group with respect to the topology determined
by d(·, ·).

Now let M be a nonempty collection of semimetrics on G. If every element
of M is invariant under left translations on G, then left translations on G
are automatically homeomorphisms with respect to the topology determined
on G by M as in Section 1.5. Similarly, if every element of M is invariant
under right translations on G, then right translations on G are automatically
homeomorphisms with respect to the topology determined on G by M. In both
cases, x 7→ x−1 is continuous at e as a mapping from G into itself, with respect
to the topology determined on G by M. We also have that multiplication on
G is continuous as a mapping from G × G into G at (e, e) in both situations,
with respect to the topology determined on G by M, and the corresponding
product topology on G × G. If every element of M is invariant under both
left and right translations, then it follows that G is a topological group with
respect to the topology determined by M. Otherwise, one should look at the
continuity properties of the translations on G under which the elements of M
are not necessarily invariant.

If d(·, ·) is a semimetric on G, then

d̃(x, y) = d(x−1, y−1)(1.7.2)

is a semimetric on G as well, as in (1.4.5). Let M be a nonempty collection of
semimetrics on G again, so that

M̃ = {d̃ : d ∈ M}(1.7.3)

is a nonempty collection of semimetrics on G too. If the elements of M are
invariant under left translations on G, then the elements of M̃ are invariant
under right translations on G, as in Section 1.4. Similarly, if the elements of M
are invariant under right translations on G, then the elements of M̃ are invariant
under left translations on G. Remember that d̃ = d when a semimetric d on G
is invariant under left and right translations, as in (1.4.6). In particular, if this
holds for every d ∈ M, then

M̃ = M.(1.7.4)

Of course, this implies that the topologies determined on G by M and M̃ are
the same.
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If M is any nonempty collection of semimetrics on G, then x 7→ x−1 is
automatically a homemorphism from G with the topology determined by M
ontoG with the topology determined by M̃. Thus x 7→ x−1 is a homeomorphism
from G onto itself with respect to the topology determined by M on both the
domain and range if and only if the topologies determined on G by M and M̃
are the same. This is a necessary condition for G to be a topological group with
respect to the topology determined by M. Suppose now that the elements of
M are invariant under left translations on G, or that the elements of M are
invariant under right translations. If the topologies determined on G by M and
M̃ are the same, then it follows that both left and right translations on G are
continuous with respect to this topology. In this case, G is a topological group
with respect to this topology, by the earlier arguments. This condition holds
automatically when the elements of M are invariant under both left and right
translations on G, as before.

1.8 Cartesian products

Let I be a nonempty set, and let Xj be a set for each j ∈ I. Consider the
Cartesian product

X =
∏
j∈I

Xj(1.8.1)

of the Xj ’s, j ∈ I. If x ∈ X and j ∈ I, then xj denotes the jth coordinate of x
in Xj . Similarly, let pj be the natural projection from X into Xj for each j ∈ I,
so that

pj(x) = xj(1.8.2)

for every x ∈ X and j ∈ I.
Let El be a subset of Xl for some l ∈ I. Put Wl = El, and Wj = Xj for

every j ∈ I with j ̸= l. Observe that

p−1
l (El) =

∏
j∈I

Wj(1.8.3)

as subsets of X.
Let dl be a semimetric on Xl for some l ∈ I, and put

d̂l(x, y) = dl(xl, yl)(1.8.4)

for each x, y ∈ X. It is easy to see that d̂l defines a semimetric on X. Let
BXl,dl

(xl, r) be the open ball in Xl centered at xl ∈ Xl with radius r > 0
with respect to dl, as in (1.1.5). Similarly, let B

X,d̂l
(x, r) be the open ball in X

centered at x ∈ X with radius r > 0 with respect to d̂l. If x ∈ X and xl = pl(x),
then

B
X,d̂l

(x, r) = p−1
l (BXl,dl

(xl, r))(1.8.5)

for every r > 0.
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Let Ml be a nonempty collection of semimetrics on Xl for each l ∈ I. Put

M̂l = {d̂l : dl ∈ Ml}(1.8.6)

for every l ∈ I, where d̂l is associated to dl as in (1.8.4). Thus M̂l is a nonempty
collection of semimetrics on X for each l ∈ I, so that

M =
∪
l∈I

M̂l(1.8.7)

is a nonempty collection of semimetrics on X too. Remember that Ml de-
termines a topology on Xl for each l ∈ I, as in Section 1.5, and similarly M
determines a topology on X. One can check that the topology determined on
X by M is the same as the product topology corresponding to the topologies
determined on the Xl’s by the Ml’s, l ∈ I.

Let I be a nonempty set again, and let Gj be a group for each j ∈ I. The
Cartesian product

G =
∏
j∈I

Gj(1.8.8)

is also a group, where the group operations are defined coordinatewise. If Gj is a
topological group for each j ∈ I, then one can verify thatG is a topological group
with respect to the corresponding product topology. Let dl be a semimetric on
Gl for some l ∈ I, and let d̂l be the corresponding semimetric on G, as in (1.8.4).

If dl is invariant under left or right translations on Gl, then d̂l has the analogous
property on G.

1.9 Cauchy sequences

Let X be a set, and let d(x, y) be a semimetric on X. A sequence {xj}∞j=1 of
elements of X is said to be a Cauchy sequence with respect to d(·, ·) if for every
ϵ > 0 there is a positive integer L such that

d(xj , xl) < ϵ(1.9.1)

for every j, l ≥ L. Note that {xj}∞j=1 converges to an element x of X with
respect to the topology determined by d(·, ·) if and only if

lim
j→∞

d(xj , x) = 0.(1.9.2)

This implies that {xj}∞j=1 is a Cauchy sequence with respect to d(·, ·), by a
standard argument. If d(·, ·) is a metric on X, and if every Cauchy sequence of
elements of X with respect to d(·, ·) converges to an element of X with respect
to d(·, ·), then X is said to be complete with respect to d(·, ·).

LetM be a nonempty collection of semimetrics on X. A sequence {xj}∞j=1 of
elements of X is said to be a Cauchy sequence with respect to M if {xj}∞j=1 is a
Cauchy sequence with respect to every d ∈ M. Observe that {xj}∞j=1 converges
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to an element x of X with respect to the topology determined by M if and
only if {xj}∞j=1 converges to x with respect to every d ∈ M. This implies that
{xj}∞j=1 is a Cauchy sequence with respect to M, as before.

If M has only finitely many elements, then the sum and maximum of the
elements of M are semimetrics on X that determine the same topology on X
as M, as in Section 1.5. In particular, the convergence of a sequence {xj}∞j=1 of
elements of X to an element x of X with respect to the topology determined by
M is equivalent to the convergence of {xj}∞j=1 to x with respect to the sum or
maximum of the elements of M. Similarly, the Cauchy condition for a sequence
{xj}∞j=1 of elements of X with respect to M is equivalent to the corresponding
Cauchy conditions for {xj}∞j=1 with respect to the sum and maximum of the
elements of M in this case.

Suppose for the moment thatM is nondegenerate onX. Let us say thatX is
sequentially complete with respect to M if every Cauchy sequence of elements
of X converges to an element of X with respect to the topology determined
by M. If M has only finitely many elements, then this is equivalent to the
completeness of X with respect to the sum or maximum of the elements of M.

Let d(x, y) be a semimetric on X again, and let t be a positive real number.
Remember that

dt(x, y) = min(d(x, y), t)(1.9.3)

is a semimetric on X, which determines the same topology on X as d(x, y). It
is easy to see that a sequence {xj}∞j=1 of elements of X is a Cauchy sequence
with respect to (1.9.3) if and only if {xj}∞j=1 is a Cauchy sequence with respect
to d(·, ·). If d(·, ·) is a metric on X, then (1.9.3) is a metric on X too. In this
case, X is complete with respect to (1.9.3) if and only if X is complete with
respect to d(·, ·).

Let d1, d2, d3, . . . be a sequence of semimetrics on X, and put

d′j(x, y) = min(dj(x, y), 1/j)(1.9.4)

for every x, y ∈ X and j ≥ 1. We have seen that

d(x, y) = max
j≥1

d′j(x, y)(1.9.5)

defines a semimetric on X, and that the topology determined on X by (1.9.5) is
the same as the topology determined by the collection of semimetrics dj , j ≥ 1.
Let r > 0 be given, and let [1/r] be the largest nonnegative integer less than or
equal to 1/r, as usual. Observe that x, y ∈ X satisfy

d(x, y) < r(1.9.6)

if and only if

d′j(x, y) < r(1.9.7)

for every j ≥ 1. Of course, (1.9.7) holds automatically when 1/j < r, which is
to say that j > 1/r. In particular, (1.9.7) holds automatically for every j ≥ 1
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when r > 1. Otherwise, if r ≤ 1, and 1 ≤ j ≤ [1/r], then 1/j ≤ r, and (1.9.7)
holds if and only if

dj(x, y) < r.(1.9.8)

Let {xk}∞k=1 be a sequence of elements ofX. If {xk}∞k=1 is a Cauchy sequence
with respect to (1.9.5), then {xk}∞k=1 is clearly a Cauchy sequence with respect
to d′j for every j ≥ 1. Equivalently, this means that {xk}∞k=1 is a Cauchy
sequence with respect to dj for every j ≥ 1, as before. Conversely, if {xk}∞k=1 is
a Cauchy sequence in X with respect to dj for every j ≥ 1, then one can check
that {xk}∞k=1 is a Cauchy sequence with respect to (1.9.5), using the remarks
in the preceding paragraph.

If the collection of semimetrics dj , j ≥ 1, is nondegenerate on X, then (1.9.5)
is a metric on X. In this case, it follows that X is complete with respect to
(1.9.5) if and only if X is sequentially complete with respect to the collection of
semimetrics dj , j ≥ 1.

1.10 Cauchy sequences and Cartesian products

Let I be a nonempty set, let Xj be a set for each j ∈ I, and let X =
∏

j∈I Xj

be the corresponding Cartesian product. If x ∈ X and l ∈ I, then pl(x) = xl

denotes the lth coordinate of x inXl, as before. LetMl be a nonempty collection
of semimetrics on Xl for each l ∈ I, and put

M̂l = {d̂l : dl ∈ Ml}(1.10.1)

for every l ∈ I, where d̂l is the semimetric on X associated to a semimetric dl
on Xl as in (1.8.4). Thus M =

∪
l∈I M̂l is a nonempty collection of semimetrics

on X, and we have seen that the topology determined on X by M is the same
as the product topology, using the topology determined on Xj by Mj for each
j ∈ I.

Let {x(k)}∞k=1 be a sequence of elements of X, so that pl(x(k)) = xl(k) is the
lth coordinate of x(k) in Xl for every k ≥ 1 and l ∈ I. Observe that {x(k)}∞k=1

is a Cauchy sequence in X with respect to M if and only if {xl(k)}∞k=1 is a
Cauchy sequence in Xl with respect to Ml for every l ∈ I. Similarly, {x(k)}∞k=1

converges to an element x of X with respect to the topology determined by M if
and only if {xl(k)}∞k=1 converges to xl with respect to the topology determined
on Xl by Ml for every l ∈ I.

Suppose that Ml is nondegenerate on Xl for every l ∈ I, which implies that
M is nondegenerate on X. If Xl is sequentially complete with respect to Ml

for every l ∈ I, then it follows that X is sequentially complete with respect to
M.

Suppose for the rest of the section that Ml consists of a single metric dl on
Xl for each l ∈ I. In particular, this implies that M is nondegenerate on X.
Suppose for the moment that I has only finitely many elements. In this case,
the sum and maximum of the corresponding semimetrics d̂l on X, l ∈ I, define
metrics on X, and the topologies determined on X by these metrics are the
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same as the topology determined by M. As in the previous section, the sum
and maximum of d̂l, l ∈ I, also determine the same Cauchy sequences in X as
M. Thus the sequential completeness of X with respect to M is equivalent to
the completeness of X with respect to the sum or maximum of d̂l, l ∈ I, as
before. If Xl is complete with respect to dl for each l ∈ I, then it follows that
X is complete with respect to the sum and maximum of dl, l ∈ I.

Suppose now that I = Z+, so that M consists of the sequence of semimetrics

d̂l, l ∈ Z+. Put

d̂′l(x, y) = min(d̂l(x, y), 1/l)(1.10.2)

for every x, y ∈ X and l ≥ 1, as in (1.9.4). Similarly, put

d(x, y) = max
l≥1

d̂′l(x, y)(1.10.3)

for every x, y ∈ X, as in (1.9.5). Note that the collection of semimetrics (1.10.2)
is nondegenerate on X, because M is nondegenerate on X, and hence (1.10.3)
is a metric on X. Remember that the topology determined on X by (1.10.3)
is the same as the topology determined by M. A sequence of elements of X is
a Cauchy sequence in X with respect to (1.10.3) if and only if it is a Cauchy
sequence with respect to M, as in the previous section. Thus X is complete
with respect to (1.10.3) if and only if X is sequentially complete with respect to
M, as before. If Xl is complete with respect to dl for each l ∈ I, then it follows
that X is complete with respect to (1.10.3).



Chapter 2

Boundedness and
supremum semimetrics

2.1 Bounded sets and mappings

Let Y be a set, and let dY be a semimetric on Y . A subset E of Y is said to be
bounded with respect to dY if the set of nonnegative real numbers of the form
dY (y, z) with y, z ∈ E has an upper bound in R. If y0 is any element of Y , then
this implies that E is contained in a ball in Y centered at y0 with some finite
radius with respect to dY . Conversely, if E is contained in a ball in Y of finite
radius with respect to dY , then it is easy to see that E is bounded, using the
triangle inequality. If E is a compact subset of Y with respect to the topology
determined by dY , and if y0 is any element of Y , then E is contained in an open
ball in Y centered at y0 with respect to dY , so that E is bounded with respect
to dY .

Let X be another set, and let A be a nonempty subset of X. A mapping
f from X into Y is said to be bounded on A if f(A) is a bounded subset of Y
with respect to dY . Let BA(X,Y ) be the space of all mappings from X into Y
that are bounded on A, and let f, g ∈ BA(X,Y ) be given. If y0 is any element
of Y , then

dY (f(x), g(x)) ≤ dY (f(x), y0) + dY (y0, g(x))(2.1.1)

for every x ∈ A, by the triangle inequality. Note that the right side of (2.1.1)
has an upper bound in R, by hypothesis. Put

θA(f, g) = sup
x∈A

dY (f(x), g(x)),(2.1.2)

which is defined as a nonnegative real number. This is equal to 0 when f = g,
and otherwise (2.1.2) is symmetric in f and g, by the corresponding properties
of dY on Y . If h is another element of BA(X,Y ), then

dY (f(x), h(x)) ≤ dY (f(x), g(x)) + dY (g(x), h(x))(2.1.3)

≤ θA(f, g) + θA(g, h)

20
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for every x ∈ A, using the triangle inequality for dY in the first step. This
implies that

θA(f, h) ≤ θA(f, g) + θA(g, h),(2.1.4)

by taking the supremum of the left side of (2.1.3) over x ∈ A. This shows
that θA defines a semimetric on BA(X,Y ), which is the supremum semimetric
associated to A.

A mapping f from X into Y is said to be bounded if it is bounded on X,
and we let B(X,Y ) be the space of all bounded mappings from X into Y . This
corresponds to taking A = X in the preceding paragraph, in which case we may
also drop the subscript A from the left side of (2.1.2). If X ̸= ∅ and dY is a
metric on Y , then θ = θX defines a metric on B(X,Y ), which is the supremum
metric associated to dY . Of course, every mapping from X into Y is bounded
when Y is bounded with respect to dY .

Let X and Y be topological spaces, and let C(X,Y ) be the space of all
continuous mappings from X into Y , as usual. Also let A be a nonempty
compact subset of A. If f ∈ C(X,Y ), then it is well known that f(A) is a
compact subset of Y . Let dY be a semimetric on Y that is compatible with
the given topology on Y , as in Section 1.1. If E is a compact subset of Y with
respect to the given topology on Y , then it follows that E is compact with
respect to the topology determined on Y by dY , and hence that E is bounded
in Y with respect to dY . If f ∈ C(X,Y ), then it follows that f(A) is bounded
in Y with respect to dY , so that f is bounded on A. Thus

C(X,Y ) ⊆ BA(X,Y )(2.1.5)

under these conditions.
Let X be a topological space again, and let Y be a set with a semimetric dY ,

so that Y may be considered as a topological space with respect to the topology
determined by dY . Consider the space

Cb(X,Y ) = C(X,Y ) ∩ B(X,Y )(2.1.6)

of continuous mappings from X into Y that are also bounded on X with respect
to dY on Y . Note that

Cb(X,Y ) = C(X,Y )(2.1.7)

when X is compact, and when Y is bounded with respect to dY , as in the
previous paragraphs.

2.2 Uniform continuity

Let X, Y be sets with semimetrics dX , dY , respectively, and let A be a subset
of X. A mapping f from X into Y is said to be uniformly continuous along A
if for every ϵ > 0 there is a δ > 0 such that

dY (f(x), f(w)) < ϵ(2.2.1)
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for every x ∈ A and w ∈ X with dX(x,w) < δ. If A consists of a single point,
then this is the same as saying that f is continuous at that point. If A has only
finitely many elements, then this condition holds exactly when f is continuous
at every element of A. If A = X, then we simply say that f is uniformly
continuous on X. If f is uniformly continuous along a subset A of X, then the
restriction of f to A is uniformly continuous as a mapping from A into Y , with
respect to the restriction of dX to A. Of course, if f is uniformly continuous
along A ⊆ X, then f is continuous at every element of A, as a mapping from
X into Y .

If f : X → Y is continuous at every point in a compact subset A of X,
then f is uniformly continuous along A, by standard arguments. To see this,
let ϵ > 0 be given. If a ∈ A, then there is a δ(a) > 0 such that

dY (f(a), f(w)) < ϵ/2(2.2.2)

for every w ∈ X such that dX(a,w) < δ(a), because f is continuous at a, by
hypothesis. Let BX(a) be the open ball in X centered at a ∈ A with radius
δ(a)/2 with respect to dX . The collection of these open balls corresponding to
elements a of A forms an open covering of A in X. Because A is compact in X,
by hypothesis, there are finitely many elements a1, . . . , an of A such that

A ⊆
n∪

j=1

BX(aj).(2.2.3)

Put
δ = min

1≤j≤n
(δ(aj)/2) > 0,(2.2.4)

and let x ∈ A and w ∈ X be given, with dX(x,w) < δ. Because x ∈ A, there is
a j = 1, . . . , n such that x ∈ BX(aj), as in (2.2.3). Thus dX(aj , x) < δ(aj)/2,
and hence

dX(aj , w) ≤ dX(aj , x) + dX(x,w) < δ(aj)/2 + δ

≤ δ(aj)/2 + δ(aj)/2 = δ(aj).(2.2.5)

This permits us to apply the continuity condition (2.2.2) with a = aj to x and
to w. It follows that

dY (f(x), f(w)) ≤ dY (f(x), f(aj)) + dY (f(aj), f(w)) < ϵ/2 + ϵ/2 = ϵ,(2.2.6)

as desired.
Let Z be another set with a semimetric dZ . Suppose that a mapping f from

X into Y is uniformly continuous along a subset A of X, and that a mapping
g from Y into Z is uniformly continuous along a subset B of Y . If f(A) ⊆ B,
then it is easy to see that the composition g ◦ f is uniformly continuous along
A as a mapping from X into Z.

Let UC(X,Y ) be the space of all uniformly continuous mappings from X
into Y , and let

UCb(X,Y ) = UC(X,Y ) ∩ B(X,Y )(2.2.7)
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be the space of all bounded uniformly continuous mappings from X into Y . If
X is compact, then every continuous mapping from X into Y is bounded and
uniformly continuous.

2.3 Uniform homeomorphisms

Let X, Y be sets with semimetrics dX , dY , respectively, again. Let us say that
a one-to-one mapping f from X onto Y is a uniform homeomorphism if f is
uniformly continuous as a mapping from X onto Y , and the inverse mapping
f−1 is uniformly continuous as a mapping from Y onto X. Thus a uniform
homeomorphism from X onto Y is automatically a homeomorphism from X
onto Y as topological spaces, with respect to the topologies determined by dX
and dY , respectively. If X and Y are compact, and f is a homeomorphism from
X onto Y , then it follows that f is a uniform homeomorphism.

Let us now take X = Y , and let d be a semimetric on X. Let H(X) be
the collection of all homeomorphisms from X onto itself, with respect to the
topology determined on X by d. This is a group with respect to composition of
mappings, and with the identity mapping on X as the identity element of H(X).
Similarly, let UH(X) be the collection of all uniform homeomorphisms from X
onto itself. This is a subgroup of H(X), because the identity mapping on X is
a uniform homeomorphism, and because compositions of uniformly continuous
mappings are uniformly continuous, as mentioned in the previous section.

Let us suppose from now on in this section that X is nonempty and bounded
with respect to d, and let

θ(f, g) = sup
x∈X

d(f(x), g(x))(2.3.1)

be the corresponding supremum semimetric for mappings f , g of X into itself, as
before. In particular, this defines a semimetric on H(X). It is easy to see that θ
is invariant under right translations on H(X). More precisely, if f, g, h ∈ H(X),
then

θ(f ◦ h, g ◦ h) = sup
x∈X

d(f(h(x)), g(h(x)))(2.3.2)

= sup
y∈X

d(f(y), g(y)) = θ(f, g),

because h maps X onto itself. In fact, this works for all mappings f , g from X
into itself, and all mappings h from X onto itself.

However, θ is not normally invariant under left translations on H(X). As
a partial substitute for this, suppose for the moment that h is a uniformly
continuous mapping from X into itself. Let ϵ > 0 be given, and let δ be a
positive real number such that

d(h(x), h(y)) ≤ ϵ(2.3.3)



24 CHAPTER 2. BOUNDEDNESS AND SUPREMUM SEMIMETRICS

for every x, y ∈ X with d(x, y) ≤ δ. Note that mappings f , g from X into itself
satisfy

θ(f, g) ≤ δ(2.3.4)

exactly when

d(f(x), g(x)) ≤ δ(2.3.5)

for every x ∈ X. In this case, we have that

d(h(f(x)), h(g(x))) ≤ ϵ(2.3.6)

for every x ∈ X, so that

θ(h ◦ f, h ◦ g) ≤ ϵ.(2.3.7)

Let us now consider the restriction of the supremum semimetric θ to UH(X).
The remarks in the preceding paragraph imply that left translations on UH(X)
are uniformly continuous with respect to θ. Using this and the fact that θ is in-
variant under right translations on UH(X), we get that UH(X) is a topological
group with respect to the topology determined by θ, as in Section 1.7.

2.4 Uniform convergence

Let X, Y be nonempty sets, and let dY be a semimetric on Y . Also let {fj}∞j=1

be a sequence of mappings from X into Y , and let f be another mapping from
X into Y . As usual, {fj}∞j=1 is said to converge pointwise to f on X if for every
x ∈ X, {fj(x)}∞j=1 converges to f(x) as a sequence of elements of Y with respect
to the topology determined on Y by dY . If for every ϵ > 0 there is a positive
integer L such that

dY (fj(x), f(x)) < ϵ(2.4.1)

for every x ∈ X and j ≥ L, then {fj}∞j=1 is said to converge uniformly to f on
X. Of course, uniform convergence implies pointwise convergence.

Suppose for the moment that {fj}∞j=1 is a sequence of bounded mappings
from X into Y , and that f is a bounded mapping from X into Y . In this case,
{fj}∞j=1 converges to f uniformly on X if and only if {fj}∞j=1 converges to f
with respect to the supremum semimetric θ on the space B(X,Y ) of bounded
mappings from X into Y that corresponds to dY as in Section 2.1.

Let X be a topological space, and let x be an element of X. Also let
{fj}∞j=1 be a sequence of mappings from X into Y that converges uniformly to
a mapping f from X into Y . If fj is continuous at x for each j, then it follows
that f is continuous at x too, by a standard argument. If {xj}∞j=1 is a sequence
of elements of X that converges to x, then one can check that

{fj(xj)}∞j=1(2.4.2)

converges to f(x) in Y in this situation. This uses the fact that {f(xj)}∞j=1

converges to f(x) in Y , because f is continuous at x.
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Let Cb(X,Y ) be the space of bounded continuous mappings from X into Y ,
as in Section 2.1. This is a closed set in B(X,Y ) with respect to the topology
determined by the supremum semimetric θ. More precisely, if a sequence {fj}∞j=1

of elements of Cb(X,Y ) converges to an element f of B(X,Y ) with respect to
θ, then f is continuous, as in the preceding paragraph.

Suppose now that X is equipped with a semimetric dX , and let A be a subset
of X. Let {fj}∞j=1 be a sequence of mappings from X into Y that converges
uniformly to a mapping f from X into Y again. If fj is uniformly continuous
along A for every j, then one can verify that f is uniformly continuous along
A too. It follows that the space UCb(X,Y ) of bounded uniformly continuous
mappings from X into Y is a closed set in B(X,Y ) with respect to the topology
determined by the supremum semimetric θ.

Let {fj}∞j=1 be a sequence of homeomorphisms from X onto Y . Suppose
that {fj}∞j=1 converges uniformly to a mapping f from X into Y , and that

{f−1
j }∞j=1 converges uniformly to a mapping g from Y into X. Note that f and

g are continuous, as before. Of course, we would like to have that

g(f(x)) = x(2.4.3)

for every x ∈ X, so that g ◦f is the identity mapping on X. Similarly, we would
like to have that

f(g(y)) = y(2.4.4)

for every y ∈ Y , so that f ◦ g is the identity mapping on Y .
To get (2.4.3), we would like to use the fact that f−1

j (fj(x)) = x for every
x ∈ X and j ∈ Z+, and take the limit as j → ∞. The earlier remarks about
(2.4.2) imply that {f−1

j (fj(x))}∞j=1 converges to g(f(x)) in X for every x ∈ X
under these conditions. If dX is a metric on X, then it follows that (2.4.3) holds
for every x ∈ X, because the limit of a convergent sequence in X is unique.
Similarly, if dY is a metric on Y , then (2.4.4) holds for every y ∈ Y . This means
that g is the inverse of f when dX , dY are metrics on X, Y , respectively, so
that f is a homeomorphism from X onto Y .

2.5 Completeness

Let (X, d) be a metric space, and let Z be a subset of X. Thus Z may be
considered as a metric space too, using the restriction of d(·, ·) to Z. Note that
a sequence of elements of Z is a Cauchy sequence in Z if and only if it is a
Cauchy sequence in X. If X is complete with respect to d, then every Cauchy
sequence in Z converges to an element of X. If Z is also a closed set in X with
respect to d, then it follows that Z is complete with respect to the restriction
of d to Z.

Now let X be a nonempty set, and let (Y, dY ) be a metric space. Also let
B(X,Y ) be the space of bounded mappings from X into Y , as in Section 2.1,
and let θ be the corresponding supremum metric on B(X,Y ). If Y is complete
with respect to dY , then it is well known that B(X,Y ) is complete with respect
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to θ. To see this, let {fj}∞j=1 be a Cauchy sequence of bounded mappings from
X into Y with respect to θ. This means that for each ϵ > 0 there is a positive
integer L(ϵ) such that

θ(fj , fl) < ϵ(2.5.1)

for every j, l ≥ L(ϵ). It follows that

dY (fj(x), fl(x)) < ϵ(2.5.2)

for every x ∈ X and j, l ≥ L(ϵ), so that {fj(x)}∞j=1 is a Cauchy sequence in Y
for every x ∈ X. Because Y is complete, {fj(x)}∞j=1 converges to an element
f(x) of Y for every x ∈ X, which defines a mapping f from X into Y . Using
(2.5.2), we get that

dY (f(x), fl(x)) ≤ ϵ(2.5.3)

for every x ∈ X and l ≥ L(ϵ), so that {fl}∞l=1 converges to f uniformly on X.
In particular, this implies that f is a bounded mapping from X into Y , because
fl is bounded for each l, by hypothesis. Note that (2.5.3) is the same as saying
that

θ(f, fl) ≤ ϵ(2.5.4)

for every l ≥ L(ϵ). Thus f ∈ B(X,Y ), and {fl}∞l=1 converges to f with respect
to the supremum metric θ, as desired.

If X is a topological space, then the space Cb(X,Y ) of bounded continuous
mappings fromX into Y is a closed set in B(X,Y ) with respect to the supremum
metric, as in the previous section. This implies that Cb(X,Y ) is complete with
respect to the supremum metric when Y is complete with respect to dY . Simi-
larly, if X is equipped with a semimetric, then the space UCb(X,Y ) of bounded
uniformly continuous mappings from X into Y is a closed set in B(X,Y ) with
respect to the supremum metric, as before. If Y is complete with respect to
dY , then it follows that UCb(X,Y ) is complete with respect to the supremum
metric.

Let (X, d) be a nonempty metric space, and suppose that X is bounded
with respect to d. Also let H(X) be the group of homeomorphisms from X
onto itself, as in Section 2.3, and let θ be the supremum metric on the space of
mappings from X into itself corresponding to d, as in (2.3.1). Note that

θ(f−1, g−1)(2.5.5)

defines a metric on H(X) too, as in (1.4.5). Thus

max(θ(f, g), θ(f−1, g−1))(2.5.6)

and
θ(f, g) + θ(f−1, g−1)(2.5.7)

define metrics on H(X) as well, as in Section 1.5. Of course, (2.5.6) and (2.5.7)
determine the same topologies on H(X), and the same collections of Cauchy
sequences.
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Let {fj}∞j=1 be a sequence of elements of H(X) which is a Cauchy sequence
with respect to (2.5.6) or (2.5.7). This is the same as saying that {fj}∞j=1 is a
Cauchy sequence with respect to θ and (2.5.5), which means that {fj}∞j=1 and

{f−1
j }∞j=1 are Cauchy sequences with respect to θ. Suppose that X is complete

with respect to d. In this case, it follows that {fj}∞j=1 converges uniformly to a

continuous mapping f fromX into itself, and that {f−1
j }∞j=1 converges uniformly

to a continuous mapping g from X into itself. Under these conditions, g is the
inverse of f , as in the previous section. In particular, f ∈ H(X), and {fj}∞j=1

converges to f with respect to (2.5.6) and (2.5.7). Thus H(X) is complete with
respect to (2.5.6) and (2.5.7) when X is complete with respect to d.

Let UH(X) be the subgroup ofH(X) consisting of uniform homeomorphisms
from X onto itself, as in Section 2.3 again. It is easy to see that UH(X) is a
closed set in H(X) with respect to (2.5.6) or (2.5.7), using analogous statements
for uniform continuity and the supremummetric. Hence UH(X) is also complete
with respect to (2.5.6) or (2.5.7) when X is complete with respect to d.

The restriction of (2.5.5) to UH(X) determines the same topology as the
restriction of θ to UH(X), because UH(X) is a topological group with respect
to the topology determined by the restriction of θ to UH(X), as in Section 2.3.
This implies that the restrictions of (2.5.6) and (2.5.7) to UH(X) determine the
same topology on UH(X) as the restriction of θ to UH(X).

2.6 Homeomorphisms on [0, 1]

Let H([0, 1]) be the group of homeomorphisms from the closed unit interval
[0, 1] in the real line R onto itself, as in Section 2.3. This example is mentioned
in (c) on p212 of [14], in connection with completeness issues. Remember that
0, 1 are the only elements x of [0, 1] such that [0, 1] \ {x} is not connected.
This implies that every homeomorphism from [0, 1] onto itself maps {0, 1} onto
itself. The mapping from f ∈ H([0, 1]) to the restriction of f to {0, 1} defines a
group homomorphism from H([0, 1]) into the group of permutations on {0, 1}.
It is easy to see that this homomorphism is surjective. Let H+([0, 1]) be the
collection of f ∈ H([0, 1]) such that f(0) = 0 and f(1) = 1, which is the
kernel of the homomorphism just mentioned. It is well known that the elements
of H+([0, 1]) are strictly increasing on [0, 1], because of the intermediate value
theorem. In fact, H+([0, 1]) is the same as the collection of continuous mappings
from [0, 1] onto itself that are strictly increasing. This uses the well-known fact
that a one-to-one continuous mapping from a compact topological space onto a
Hausdorff topological space is a homeomorphism.

Let C([0, 1],R) be the space of all real-valued continuous functions on [0, 1],
as in Section 2.1. Of course, the elements of C([0, 1],R) are bounded on [0, 1],
because [0, 1] is compact. The supremum metric can be defined on C([0, 1],R)
using the standard metric on R, as in Section 2.1 again. Note that C([0, 1],R)
is complete with respect to the supremum metric, as in Section 2.5, because R
is complete with respect to the standard metric. However, it is easy to see that
H([0, 1]) is not a closed set in C([0, 1],R).
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Let C+([0, 1]) be the space of f ∈ C([0, 1],R) such that f(0) = 0, f(1) =
1, and f increases monotonically on [0, 1]. Thus f maps [0, 1] into itself, by
monotonicity, and in fact f maps [0, 1] onto itself, by the intermediate value
theorem. Observe that

H+([0, 1]) ⊆ C+([0, 1]),(2.6.1)

and that C+([0, 1]) is a closed set in C([0, 1],R). Let us check that C+([0, 1]) is
the closure of H+([0, 1]) in C([0, 1],R). Let f ∈ C+([0, 1]) and ϵ > 0 be given,
and put

fϵ(x) = (1 + ϵ)−1 (f(x) + ϵ x)(2.6.2)

for every x ∈ [0, 1]. Clearly fϵ is continuous on [0, 1], because f is continu-
ous. One can check that fϵ is strictly increasing on [0, 1], because f increases
monotonically on [0, 1]. By construction, fϵ(0) = 0 and fϵ(1) = 1, so that
f ∈ C+([0, 1]). This implies that fϵ maps [0, 1] onto itself, as before. It follows
that fϵ ∈ H+([0, 1]), because f is strictly increasing on [0, 1]. It is easy to see
that fϵ converges to f uniformly on [0, 1] as ϵ → 0, so that f is in the closure of
H([0, 1]) in C([0, 1],R), as desired.

It is well known that C([0, 1],R) is a vector space over the real numbers with
respect to pointwise addition and scalar multiplication of functions. As usual,
a subset E of C([0, 1],R) is said to be convex if for every f, g ∈ E and t ∈ [0, 1]
we have that

t f + (1− t) g(2.6.3)

is an element of E. In particular, this implies that E is connected with respect
to the supremum metric. It is easy to see that C+([0, 1]) is convex as a subset
of C([0, 1],R). Similarly, H+([0, 1]) is a convex subset of C([0, 1],R), because
H+([0, 1]) is the same as the set of f ∈ C+([0, 1]) such that f is strictly increasing
on [0, 1]. This uses the fact that the elements of C+([0, 1]) map [0, 1] onto itself,
as in the previous paragraph. More precisely, if f ∈ C+([0, 1]), g ∈ H+([0, 1]),
and t ∈ [0, 1), then (2.6.3) is in H+([0, 1]).

2.7 Isometric mappings

Let X be a set, and let d be a semimetric on X. A mapping f from X into
itself is said to be an isometry with respect to d if

d(f(x), f(y)) = d(x, y)(2.7.1)

for every x, y ∈ X. In particular, this implies that f is uniformly continuous
with respect to d. Note that the composition of two isometries from X into
itself is an isometry too. If d is a metric on X, then (2.7.1) implies that f is
one-to-one on X.

Let IH(X) be the set of one-to-one isometric mappings f from X onto itself.
If f ∈ IH(X), then f−1 ∈ IH(X) too, so that f is a uniform homeomorphism
from X onto itself. More precisely, IH(X) is a subgroup of the group UH(X)
of uniform homeomorphisms from X onto itself, defined in Section 2.3.
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Let A be a nonempty subset of X, and let BA(X) = BA(X,X) be the space
of mappings from X into itself that are bounded on A, as in Section 2.1. Also
let θA be the corresponding supremum semimetric on BA(X), as in (2.1.2). If
f, g ∈ BA(X) and h is an isometry from X into itself, then

θA(h ◦ f, h ◦ g) = sup
x∈A

d(h(f(x)), h(g(x)))(2.7.2)

= sup
x∈A

d(f(x), g(x)) = θA(f, g).

Let us suppose from now on in this section that X is nonempty and bounded
with respect to d, and let θ(f, g) be the corresponding supremum semimetric
for mappings f , g from X into itself, as in (2.3.1). If f , g are mappings from X
into itself and h is an isometry from X into itself, then

θ(h ◦ f, h ◦ g) = θ(f, g),(2.7.3)

by (2.7.2) with A = X. In particular, this means that the restriction of θ(f, g)
to the group H(X) of all homeomorphisms from X onto itself is invariant under
left translations by elements of IH(X). Remember that θ(f, g) is invariant
under right translations on H(X), as in (2.3.2), so that the restriction of θ(f, g)
to IH(X) is invariant under both left and right translations. It follows that

θ(f−1, g−1) = θ(f, g)(2.7.4)

for all f, g ∈ IH(X), as in Section 1.4.
Let us also suppose from now on in this section that d is a metric on X,

and that X is complete with respect to d. We would like to check that IH(X)
is complete with respect to the supremum metric θ under these conditions.
The space of all mappings from X into itself is complete with respect to the
supremum metric in this situation, as in Section 2.5, and so it suffices to verify
that IH(X) is a closed set in this space. Equivalently, if {fj}∞j=1 is a sequence of
elements of IH(X) that converges to a mapping f from X into itself uniformly
on X, then we would like to show that f ∈ IH(X) too. It is easy to see that
f satisfies the isometric property (2.7.1), because the fj ’s are isometries that
converge to f pointwise on X. In particular, this implies that f is one-to-one
on X, because d is a metric on X, as before. It remains to show that f maps X
onto itself. Observe first that f(X) is dense in X, because fj(X) = X for each
j ≥ 1, and {fj}∞j=1 converges to f uniformly on X. We also have that f(X) is
complete as a metric space with respect to the restriction of d to f(X), because
X is complete, and f is an isometry. This implies that f(X) is a closed set
in X, by a standard argument. It follows that f(X) = X, as desired, because
f(X) is both closed and dense in X.

Alternatively, if {fj}∞j=1 is a Cauchy sequence in IH(X) with respect to

the supremum metric, then {f−1
j }∞j=1 is a Cauchy sequence with respect to the

supremum metric too, by (2.7.4). Hence these sequences converge uniformly to
isometric mappings f , g fromX into itself, respectively, because of completeness.
We also have that f and g are inverses of each other, as in Section 2.4. In
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particular, this implies that f maps X onto itself, so that f is an element of
IH(X), as desired. This is analogous to the completeness properties of H(X)
mentioned in Section 2.5.

If X is compact with respect to the topology determined by d, then IH(X) is
compact with respect to the topology determined by the supremum metric. This
can be obtained from the usual Arzela–Ascoli type of arguments. Of course, X
is complete when X is compact, so that IH(X) is complete, as in the preceding
paragraphs. Thus it is enough to show that IH(X) is totally bounded with
respect to the supremum metric. This can be verified using the fact that X is
totally bounded with respect to d, because X is compact, and the equicontinuity
of the elements of IH(X).

2.8 Subadditive functions on [0,∞)

A real-valued function α on R is an additive function if

α(x+ y) = α(x) + α(y)(2.8.1)

for every x, y ∈ R. This is the same as saying that α is a group homomorphism
from R into itself, where R is considered as a commutative group with respect
to addition. In this case, α(0) = 0, and

α(t x) = t α(x)(2.8.2)

for every t ∈ Z+ and x ∈ R. More precisely, (2.8.2) also holds when t = −1,
and hence when t ∈ Z. Similarly, one can check that (2.8.2) holds when t is a
rational number. If we consider R as a vector space over the field Q of rational
numbers, then α may be considered as a linear mapping from R into itself. If
a ∈ R, then

αa(x) = a x(2.8.3)

defines an additive mapping from R into itself. If α is an additive mapping from
R into itself that is also continuous with respect to the standard topology on
R, then α is of the form (2.8.3), with a = α(1).

Similarly, a real-valued function α on R is said to be subadditive if

α(x+ y) ≤ α(x) + α(y)(2.8.4)

for every x, y ∈ R. Note that α is additive on R if and only if α and −α are
subadditive on R. If α1, . . . , αn are finitely many subadditive functions on R,
then it is easy to see that

α(x) = max(α1(x), . . . , αn(x))(2.8.5)

is subadditive on R as well. If α is any subadditive function on R, then we can
take x = y = 0 in (2.8.4), to get that

α(0) ≥ 0.(2.8.6)
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We also have that

α(nx) ≤ nα(x)(2.8.7)

for every n ∈ Z+ and x ∈ R.

Now let α be a real-valued function on the set [0,∞) of nonnegative real
numbers. Let us say that α is additive if (2.8.1) holds for every x, y ∈ [0,∞). If
α is an additive function on R, then the restriction of α to [0,∞) is an additive
function on [0,∞). Suppose that α is an additive function on [0,∞), and put

α(x) = −α(−x)(2.8.8)

for every x ∈ R with x < 0. One can check that this extension of α to R is
additive on R.

A real-valued function α on [0,∞) is said to be subadditive if (2.8.4) holds for
every x, y ∈ [0,∞). As before, α is additive on [0,∞) if and only if α and −α are
subadditive on [0,∞). If α is a subadditive function on R, then the restriction
of α to [0,∞) is a subadditive function on [0,∞). If α1, . . . , αn are finitely many
subadditive functions on [0,∞), then their maximum (2.8.5) is subadditive on
[0,∞) too. If α is any subadditive function on [0,∞), then (2.8.6) holds, and
(2.8.7) holds for every n ∈ Z+ and x ≥ 0, as before.

Suppose that α is a monotonically increasing subadditive real-valued func-
tion on [0,∞) that satisfies α(0) = 0. Note that α ≥ 0 on [0,∞), because of
monotonicity. If d(x, y) is a semimetric on a set X, then one can verify that

dα(x, y) = α(d(x, y))(2.8.9)

defines a semimetric on X as well. If d is a metric on X, and α > 0 on (0,∞),
then (2.8.9) is a metric on X.

If t is a positive real number, then it is easy to see that

αt(r) = min(r, t)(2.8.10)

defines a subadditive function on [0,∞). Clearly αt(0) = 0, αt is monotonically
increasing on [0,∞), and αt > 0 on (0,∞). If we take α = αt, then (2.8.9) is
the same as (1.6.1).

Let α be a monotonically increasing subadditive real-valued function on
[0,∞) again. Thus

0 ≤ α(r + t)− α(r) ≤ α(t)(2.8.11)

for every r, t ≥ 0. If we also have that

lim
t→0+

α(t) = 0,(2.8.12)

then it follows that α is uniformly continuous on [0,∞), with respect to the
restriction of the standard Euclidean metric on R to [0,∞).
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2.9 Uniformly compatible semimetrics

Let X be a set, and let d1, d2 be semimetrics on X. Let us say that d1 is
uniformly compatible with d2 on X if the identity mapping on X is uniformly
continuous as a mapping from X equipped with d2 into X equipped with d1.
This means that for every ϵ > 0 there is a δ > 0 such that for every x, y ∈ X
with

d2(x, y) < δ,(2.9.1)

we have that
d1(x, y) < ϵ.(2.9.2)

In particular, this implies that d1 is compatible with the topology determined
on X by d2, as in Section 1.1.

Let us say that d1, d2 are uniformly equivalent on X if d1 is uniformly
compatible with d2, and d2 is uniformly compatible with d1. This is the same
as saying that the identity mapping on X is a uniform homeomorphism as a
mapping from X equipped with d1 onto X equipped with d2. In this case, the
topologies determined on X by d1 and d2 are the same.

Let d3 be another semimetric on X. If d1 is uniformly compatible with
d2 on X, and d2 is uniformly compatible with d3 on X, then d1 is uniformly
compatible with d3 on X. Similarly, if d1, d2 are uniformly equivalent on X,
and d2, d3 are uniformly equivalent on X, then d1, d3 are uniformly equivalent
on X.

Let α be a monotonically increasing subadditive real-valued function on
[0,∞) such that α(0) = 0. Also let d be a semimetric on X, so that (2.8.9)
defines a semimetric dα on X, as before. If α satisfies (2.8.12) too, then it is
easy to see that dα is uniformly compatible with d on X.

Let d1, d2 be semimetrics onX again, and let α be a monotonically increasing
nonnegative real-valued function on [0,∞) such that α(0) = 0. Let us say that
d1 is α-bounded by d2 if

α(d1(x, y)) ≤ d2(x, y)(2.9.3)

for every x, y ∈ X. In this case, if x, y ∈ X satisfy

d1(x, y) ≥ ϵ(2.9.4)

for some ϵ > 0, then we have that

d2(x, y) ≥ α(ϵ).(2.9.5)

If we take δ = α(ϵ), then it follows that (2.9.1) implies (2.9.2). Hence d1 is
uniformly compatible with d2 on X when α > 0 on (0,∞).

Suppose that α is also subadditive on [0,∞), and let d be a semimetric on
X. If dα is as in (2.8.9), then d is automatically α-bounded by dα. Thus d is
uniformly compatible with dα on X when α > 0 on (0,∞).

Let d1, d2 be semimetrics on X such that d1 is uniformly compatible with
d2. This means that for each ϵ > 0 there is a δ > 0 such that for every x, y ∈ X
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that satisfy (2.9.4), we have that

d2(x, y) ≥ δ.(2.9.6)

Put

α(ϵ) = inf{d2(x, y) : x, y ∈ X, d1(x, y) ≥ ϵ}(2.9.7)

for each ϵ > 0. More precisely, if there are no x, y ∈ X that satisfy (2.9.4),
then (2.9.7) is interpreted as being +∞. The hypothesis that d1 be uniformly
compatible with d2 on X is the same as saying that

α(ϵ) > 0(2.9.8)

for every ϵ > 0. Let us put α(0) = 0, which is the same as (2.9.7) with ϵ = 0
when X ̸= ∅. It is easy to see that α increases monotonically on [0,∞), because
the set whose infimum is taken on the right side of (2.9.7) gets smaller as ϵ
increases.

In this situation, (2.9.3) holds by construction for every x, y ∈ X. Thus d1
is α-bounded by d2, but where α may take values in the nonnegative extended
real numbers. This can be avoided by taking the minimum of α with any fixed
positive real number.

2.10 Moduli of uniform continuity

LetX, Y be nonempty sets, and let dX , dY be semimetrics on them, respectively.
Also let f be a mapping from X into Y . If r is a positive real number, then we
put

β−
f (r) = sup{dY (f(x), f(x′)) : x, x′ ∈ X, dX(x, x′) < r}(2.10.1)

and

βf (r) = sup{dY (f(x), f(x′)) : x, x′ ∈ X, dX(x, x′) ≤ r},(2.10.2)

where the suprema are defined as nonnegative extended real numbers. We can
also define βf (r) when r = 0 as in (2.10.2). Note that the sets whose suprema
are being taken are nonempty, because one can take x′ = x. These sets get larger
as r increases, which implies that (2.10.1) and (2.10.2) increase monotonically
in r. If r > 0, then

β−
f (r) ≤ βf (r),(2.10.3)

and in fact

β−
f (r) = sup{βf (t) : 0 < t < r}.(2.10.4)

If 0 ≤ r < t, then

βf (r) ≤ β−
f (t).(2.10.5)

It is easy to see that f is bounded as a mapping from X into Y if and only
if (2.10.1), (2.10.2) have finite upper bounds. If dX is a metric on X, then
βf (0) = 0 automatically.
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If f is uniformly continuous as a mapping from X into Y , then (2.10.2) is
finite when r is sufficiently small, and

lim
r→0+

βf (r) = 0.(2.10.6)

In particular, this implies that βf (0) = 0, because (2.10.2) increases monotoni-
cally in r. In the other direction, f is uniformly continuous when

lim
r→0+

β−
f (r) = 0,(2.10.7)

which implicitly includes the condition that (2.10.1) be finite when r is suffi-
ciently small. Of course, the equivalence of (2.10.6) and (2.10.7) follows directly
from (2.10.3) and (2.10.5).

Let β be a nonnegative extended real-valued function on [0,∞), and suppose
that

dY (f(x), f(x
′)) ≤ β(dX(x, x′))(2.10.8)

for every x, x′ ∈ X. If β(0) = 0 and

lim
r→0+

β(r) = 0,(2.10.9)

then f is uniformly continuous as a mapping from X into Y . As usual, these
conditions implicitly include the requirement that β(r) be finite when r is suf-
ficiently small. Of course,

dY (f(x), f(x
′)) ≤ βf (dX(x, x′))(2.10.10)

for every x, x′ ∈ X automatically, by the definition (2.10.2) of βf .
Now let β be any nonnegative extended real-valued function on [0,∞), and

put
β̃(r) = sup{β(t) : 0 ≤ t ≤ r}(2.10.11)

for each r ≥ 0, where the supremum on the right is defined as a nonnegative
extended real number. By construction, β̃(0) = β(0),

β(r) ≤ β̃(r)(2.10.12)

for every r ≥ 0, and β̃ increases monotonically on [0,∞). If β increases mono-

tonically on [0,∞), then β̃ = β. If β satisfies β(0) = 0 and (2.10.9), then

lim
r→0+

β̃(r) = 0,(2.10.13)

which implicitly includes the finiteness of β̃(r) when r is sufficiently small. If
(2.10.8) holds, then

βf (r) ≤ β̃(r)(2.10.14)

for every r ≥ 0.



2.11. RELATING α’S AND β’S 35

2.11 Relating α’s and β’s

Let X, Y be nonempty sets again, with semimetrics dX , dY , respectively. Also
let f be a mapping from X into Y , and let α be a monotonically increasing
nonnegative real-valued function on [0,∞) such that α(0) = 0. Suppose that

α(dY (f(x), f(x
′))) ≤ dX(x, x′)(2.11.1)

for every x, x′ ∈ X. Thus for each ϵ > 0,

dY (f(x), f(x
′)) ≥ ϵ(2.11.2)

implies that
dX(x, x′) ≥ α(ϵ).(2.11.3)

Equivalently, this means that

dY (f(x), f(x
′)) < ϵ(2.11.4)

when
dX(x, x′) < α(ϵ).(2.11.5)

If α > 0 on (0,∞), then it follows that f is uniformly continuous on X. More
precisely, for each ϵ > 0 with α(ϵ) > 0, we get that

β−
f (α(ϵ)) ≤ ϵ,(2.11.6)

where β−
f is as in (2.10.1). This implies that (2.10.7) holds when α > 0 on

(0,∞).
Alternatively, put

α−(r) = sup{α(t) : 0 ≤ t < r}(2.11.7)

for each positive real number r, which is the same as

lim
t→r−

α(t),(2.11.8)

because α increases monotonically. It is convenient to put α−(0) = 0, and to let
(2.11.7) be defined as a nonnegative extended real number when r = +∞. This
defines α− as a nonnegative extended real-valued function on the set [0,∞] of
nonnegative extended real numbers. Note that α− increases monotonically on
[0,∞], and that α− ≤ α on [0,∞). If α > 0 on (0,∞), then α− > 0 on (0,∞].

Let 0 ≤ r < ∞ be given. If x, x′ ∈ X and dX(x, x′) ≤ r, then

α(dY (f(x), f(x
′))) ≤ dX(x, x′) ≤ r,(2.11.9)

by (2.11.1). Using this, one can check that

α−(βf (r)) ≤ r,(2.11.10)
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where βf (r) is as in (2.10.2). If the supremum on the right side of (2.10.2) is
attained, then

α(βf (r)) ≤ r.(2.11.11)

Of course, if 0 < βf (r) < ∞ and α is left-continuous at βf (r), then (2.11.10)
implies (2.11.11) automatically.

Now let β be any nonnegative extended real-valued function on [0,∞), and
let α be a monotonically increasing nonnegative extended real-valued function
on [0,∞]. Suppose that

α(β(r)) ≤ r(2.11.12)

for every r ≥ 0. This implies that for each ϵ > 0 and r ≥ 0 with

β(r) ≥ ϵ,(2.11.13)

we have that
r ≥ α(β(r)) ≥ α(ϵ).(2.11.14)

Equivalently, for each ϵ > 0 and r ≥ 0 with

r < α(ϵ),(2.11.15)

we have that
β(r) < ϵ.(2.11.16)

If α > 0 on (0,∞), then it follows that

β(0) = 0(2.11.17)

and
lim

r→0+
β(r) = 0.(2.11.18)

In particular, this implies that β(r) < ∞ when r ≥ 0 is sufficiently small.
If 0 < t ≤ ∞, then put

β̃−(t) = sup{β(r) : 0 ≤ r < t},(2.11.19)

where the supremum on the right is defined as a nonnegative extended real
number. If ϵ > 0 and α(ϵ) > 0, then we get that

β̃−(α(ϵ)) ≤ ϵ,(2.11.20)

because (2.11.15) implies (2.11.16). Of course, this implies that (2.11.17) and
(2.11.18) hold when α > 0 on (0,∞).

Let β be a nonnegative extended real-valued function on [0,∞) again. If
0 ≤ t ≤ ∞, then put

αβ(t) = inf{u : 0 ≤ u < ∞, β(u) ≥ t},(2.11.21)

where the infimum is interpreted as being +∞ when β(u) < t for every u. This
defines a nonnegative extended real-valued function on [0,∞], with α(0) = 0.
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Note that α increases monotonically on [0,∞], because the set whose infimum
is being taken gets smaller as t increases. If 0 ≤ r < ∞, then

αβ(β(r)) ≤ r,(2.11.22)

because u = r is an element of the set whose infimum is taken in the right side
of (2.11.21) when t = β(r). If 0 ≤ t ≤ ∞ and 0 ≤ u < αβ(t), then

β(u) < t,(2.11.23)

because u is not an element of the set whose infimum is taken in the right side
of (2.11.21). This implies that

β̃−(αβ(t)) ≤ t(2.11.24)

when αβ(t) > 0, where β̃− is as in (2.11.19).
Suppose that β satisfies (2.11.17) and (2.11.18), and let ϵ > 0 be given. By

hypothesis, there is a δ > 0 such that (2.11.16) holds when 0 ≤ r < δ. It follows
that

αβ(ϵ) ≥ δ,(2.11.25)

by the definition (2.11.21) of αβ .

2.12 Compatible supremum semimetrics

Let X, Y be nonempty sets, and let dY , d
′
Y be semimetrics on Y . Suppose that

d′Y is uniformly compatible with dY on Y , as in Section 2.9. Thus for each ϵ > 0
there is a δ > 0 such that for every y, z ∈ Y with

dY (y, z) < δ,(2.12.1)

we have that
d′Y (y, z) < ϵ.(2.12.2)

Let {fj}∞j=1 be a sequence of mappings from X into Y , and let f be a mapping
from X into Y . If {fj}∞j=1 converges to f uniformly on X with respect to dY
on Y , then it is easy to see that {fj}∞j=1 converges to f uniformly on X with
respect to d′Y on Y .

Let BdY
(X,Y ), Bd′

Y
(X,Y ) be the collections of bounded mappings from X

into Y with respect to dY , d
′
Y , respectively, as in Section 2.1. Consider the

corresponding supremum semimetrics

θdY
(f, g) = sup

x∈X
dY (f(x), g(x)),(2.12.3)

θd′
Y
(f, g) = sup

x∈X
d′Y (f(x), g(x))(2.12.4)

on BdY
(X,Y ), Bd′

Y
(X,Y ), respectively. If d′Y is uniformly compatible with dY

on Y , then (2.12.4) is uniformly compatible with (2.12.3) on

BdY
(X,Y ) ∩ Bd′

Y
(X,Y ).(2.12.5)
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Indeed, let ϵ > 0 be given, and let δ > 0 be as in the preceding paragraph, so
that (2.12.1) implies (2.12.2). If f , g are elements of (2.12.5) such that

θdY
(f, g) < δ,(2.12.6)

then
dY (f(x), g(x)) < δ(2.12.7)

for every x ∈ X. This implies that

d′Y (f(x), g(x)) < ϵ(2.12.8)

for every x ∈ X, so that
θd′

Y
(f, g) ≤ ϵ.(2.12.9)

It follows in particular that (2.12.4) is compatible with the topology determined
on (2.12.5) by (2.12.3).

Alternatively, let α be a monotonically increasing nonnegative real-valued
function on [0,∞) such that α(0) = 0 and

α(d′Y (y, z)) ≤ dY (y, z)(2.12.10)

for every y, z ∈ Y . Let α−(r) be defined for r > 0 as in (2.11.7), and put
α−(0) = 0, as before. If f , g are elements of (2.12.5), then

α−(θd′
Y
(f, g)) ≤ sup

x∈X
α(d′Y (f(x), g(x))) ≤ θdY

(f, g).(2.12.11)

If d′Y is uniformly compatible with dY on Y , then we can choose α to be strictly
positive on (0,∞), so that α− > 0 on (0,∞) too. In this case, it follows from
(2.12.11) that (2.12.4) is uniformly compatible with (2.12.3) on (2.12.5).

As another version of this, let β be a monotonically increasing nonnegative
extended real-valued function on [0,∞) such that

d′Y (y, z) ≤ β(dY (y, z))(2.12.12)

for every y, z ∈ Y . If f , g are elements of (2.12.5), then

θd′
Y
(f, g) ≤ sup

x∈X
β(dY (f(x), g(x))) ≤ β(θdY

(f, g)).(2.12.13)

If d′Y is uniformly compatible with dY on Y , then we can choose β so that
β(0) = 0 and β(r) → 0 as r → 0+. Using this condition and (2.12.13), we get
that (2.12.4) is uniformly compatible with (2.12.3) on (2.12.5).



Chapter 3

Open subgroups and
semi-ultrametrics

3.1 Semi-ultrametrics

A semimetric d(x, y) on a set X is said to be a semi-ultrametric on X if

d(x, z) ≤ max(d(x, y), d(y, z)) for every x, y, z ∈ X.(3.1.1)

Note that (3.1.1) automatically implies the ordinary triangle inequality (1.1.3).
Similarly, a metric d(x, y) on X is said to be an ultrametric on X if it satisfies
(3.1.1). This discrete metric on X is an ultrametric, for instance. If d(x, y) is a
semi-ultrametric on X and Y is a subset of X, then the restriction of d(x, y) to
x, y ∈ Y is a semi-ultrametric on Y .

Let d(·, ·) be a semi-ultrametric on X, and let r be a positive real number.
Observe that

d(x, y) < r(3.1.2)

defines an equivalence relation on X. The corresponding equivalence classes in
X are the same as the open balls in X with radius r with respect to d. The
complement of an open ball in X of radius r can be expressed as a union of
other open balls of radius r, and in particular is an open set in X with respect
to the topology determined by d. This implies that open balls in X are closed
sets in X with respect to the topology determined by d.

Similarly,

d(x, y) ≤ r(3.1.3)

defines an equivalence relation on X for every nonnegative real number r. The
corresponding equivalence classes in X are the same as the closed balls in X
with radius r with respect to d. If x, y ∈ X satisfy (3.1.3), then it follows that

B(x, r) = B(y, r),(3.1.4)

39
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where these closed balls are as defined in (1.1.6). This implies that closed balls
in X of radius r are open sets in X with respect to the topology determined by
d when r > 0. Note that (3.1.3) defines an equivalence relation on X for every
semimetric d(·, ·) on X when r = 0.

Let P be a partition of X, which is to say a collection of pairwise-disjoint
nonempty subsets of X whose union is equal to X. Put

dP(x, y) = 0(3.1.5)

when x, y ∈ X are contained in the same element of P, and

dP(x, y) = 1(3.1.6)

when x, y ∈ X are contained in different elements of P. One can check that
dP(x, y) defines a semi-ultrametric on X, which we shall call the discrete semi-
ultrametric associated to P. By construction, if 0 < r ≤ 1, then the open balls
in X with radius r with respect to dP are the same as the elements of P. If
0 ≤ r < 1, then the closed balls in X with radius r with respect to dP are the
same as the elements of P too.

Let d(x, y) be any semimetric on X such that for each x, y ∈ X, d(x, y) is
either 0 or 1. It is easy to see that d(x, y) has to be a semi-ultrametric on X in
this case, and we shall call d(x, y) a discrete semi-ultrametric on X. As before,

d(x, y) = 0(3.1.7)

defines an equivalence relation on X, so that X is partitioned by the corre-
sponding collection of equivalence classes. Observe that d(·, ·) is the same as
the discrete semi-ultrametric on X associated to this partition, as in the pre-
ceding paragraph. Of course, the discrete semi-ultrametric associated to any
partition P of X as in (3.1.5) and (3.1.6) is a discrete semi-ultrametric on X in
this sense.

3.2 Translation-invariant semi-ultrametrics

Let G be a group, and let d(·, ·) be a semi-ultrametric on G. If d(·, ·) is invariant
under left translations on G, then

d(e, x y) ≤ max(d(e, x), d(x, x y)) = max(d(e, x), d(e, y))(3.2.1)

for every x, y ∈ G. Similarly, if d(·, ·) is invariant under right translations on G,
then

d(e, x y) ≤ max(d(e, y), d(y, x y)) = max(d(e, y), d(e, x))(3.2.2)

for every x, y ∈ G. It follows in both cases that open balls in G centered at
the identity element e with respect to d are subgroups of G. This also uses the
fact that open balls in G centered at e with respect to e are symmetric about
e, as in Section 1.4. Similarly, closed balls in G centered at e with respect to d
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are subgroups of G in both situations. If d(·, ·) is invariant under both left and
right translations on G, then it is easy to see that open and closed balls in G
centered at e with respect to d are normal subgroups of G.

Let H be a subgroup of G, and put

dL(x, y) = 0 when xH = y H(3.2.3)

= 1 when xH ̸= y H,

where x, y ∈ G. This is the discrete semi-ultrametric on G associated to the
partition of G consisting of the left cosets of H in G, as in the previous section.
Observe that (3.2.3) is invariant under left translations on G, and right transla-
tions by elements of H. If 0 < r ≤ 1, then H is the same as the open ball in G
centered at e with radius r with respect to (3.2.3). If 0 ≤ r < 1, then H is the
same as the open ball in G centered at e with radius r with respect to (3.2.3).

Similarly, if x, y ∈ G, then we put

dR(x, y) = 0 when H x = H y(3.2.4)

= 1 when H x ̸= H y.

This is the discrete semi-ultrametric on G associated to the partition of G
consisting of right cosets of H in G. By construction, (3.2.4) is invariant under
right translations on G, and left translations by elements of H. As before, H
is the same as the open ball in G centered at e with respect to (3.2.4) when
0 < r ≤ 1. If 0 ≤ r < 1, then H is the same as the closed ball in G centered at
e with radius r with respect to (3.2.4).

Note that (xH)−1 = H−1 x−1 = H x−1 for every x ∈ G. If x, y ∈ G, then it
follows that

xH = y H if and only if H x−1 = H y−1.(3.2.5)

This implies that
dR(x

−1, y−1) = dL(x, y)(3.2.6)

for every x, y ∈ G.
If H is a normal subgroup of G, then xH = H x for every x ∈ G. This

implies that
dL(x, y) = dR(x, y)(3.2.7)

for every x, y ∈ G. In particular, (3.2.3) and (3.2.4) are invariant under both
left and right translations on G in this case.

3.3 Open subgroups

Let G be a topological group, and suppose that U is a subgroup of G that is
also an open set. This implies that the cosets of U in G are open sets too,
by continuity of translations. It follows that U is a closed set, because the
complement of U is a union of cosets, and hence an open set. In particular, if G
is connected as a topological space, then G is its only open subgroup. Note that
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{e} is an open set in G if and only if G is equipped with the discrete topology,
because of continuity of translations.

Of course, the set Q of rational numbers is a subgroup of R, as a commu-
tative group with respect to addition. We may also consider Q as a topological
group with respect to addition, and the topology induced on Q by the standard
topology on R. One can check that Q is the only open subgroup of itself, even
though Q is not connected as a topological space.

Let G be a topological group again, and let d(·, ·) be a semi-ultrametric on
G that is invariant under left or right translations on G. Thus open and closed
balls in G with respect to d centered at the identity element e are subgroups of
G, as in the previous section. If d(·, ·) is compatible with the topology on G, as
in Section 1.1, then it follows that open balls in G with respect to d centered
at e are open subgroups of G with respect to the given topology on G. In this
case, closed balls in G with respect to d centered at e with positive radius are
open subgroups of G too. More precisely, closed balls in G with respect to d
with positive radius are open sets with respect to the topology determined by
d, as in Section 3.1, and hence with respect to the given topology on G, because
d is supposed to be compatible with that topology.

Let U be an open subgroup in G again. Using the left and right cosets
of U in G, we get discrete semi-ultrametrics dL and dR on G, as in (3.2.3)
and (3.2.4). Remember that these semi-ultrametrics are invariant under left
and right translations on G, respectively. It is easy to see that dL and dR are
compatible with the given topology on G, because U is an open set. More
precisely, it suffices to verify that dL and dR are compatible with the given
topology on G at e, as in Section 1.4.

Let U be a subgroup of G. If e is an element of the interior of U in G, then
U is an open subgroup of G. This uses the continuity of translations on G.
Similarly, if the interior of U is nonempty, then U is an open subgroup of G.

Now let A be a subset of G that contains e, and suppose that A is symmetric
about e. This can always be arranged by replacing A with A∩A−1, as in Section
1.2. Let us define Aj for each j ∈ Z+ by putting A1 = A and Aj+1 = Aj A
for every j ≥ 1. Equivalently, Aj consists of the elements of G that can be
expressed as the product of exactly j elements of A. Thus

Aj Al = Aj+l(3.3.1)

for every j, l ∈ Z+. Similarly, Aj consists of the elements of G that can be
expressed as the product of at most j elements of A, because e ∈ A. We also
have that

(Aj)−1 = Aj(3.3.2)

for every j ∈ Z+, because A−1 = A, by hypothesis. It follows that

∞∪
j=1

Aj(3.3.3)

is a subgroup of G.



3.4. U -SEPARATED SETS 43

If A is an open subset of G, then Aj is an open subset of G for every j ∈ Z+,
as in Section 1.2. This implies that (3.3.3) is an open subset of G, and hence
an open subgroup of G. Alternatively, if A has nonempty interior, then (3.3.3)
has nonempty interior, which implies that (3.3.3) is an open set, as before.

3.4 U-Separated sets

Let G be a topological group, and let U be an open subset of G that contains
the identity element e. Let us say that subsets A, B of G are left-invariant
U -separated if

(AU) ∩B = ∅.(3.4.1)

It is easy to see that this holds if and only if

A ∩ (BU−1) = ∅.(3.4.2)

Thus A, B are left-invariant U -separated if and only if B, A are left-invariant
U−1-separated. If U is symmetric about e, so that U−1 = U , then A, B are
left-invariant U -separated if and only if B, A are left-invariant U -separated.

Similarly, A, B are right-invariant U -separated if

(U A) ∩B = ∅.(3.4.3)

This holds if and only if

(A−1 U−1) ∩B−1 = ∅,(3.4.4)

because (U A)−1 = A−1 U−1. This means that A, B are right-invariant U -
separated if and only if A−1, B−1 are left-invariant U−1-separated. We shall
focus on left-invariant U -separated sets in this section, for simplicity.

Using the continuity of the group operations on G, we can find an open
subset U1 of G such that e ∈ U1 and

U1 U
−1
1 ⊆ U,(3.4.5)

as in Section 1.2. If A, B are left-invariant U -separated subsets of G, then we
get that

(AU1 U
−1
1 ) ∩B = ∅.(3.4.6)

This is the same as saying that

(AU1) ∩ (BU1) = ∅.(3.4.7)

In particular, this implies that

A ∩B = ∅,(3.4.8)

because of (1.2.16).
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Suppose that A is compact, B is a closed set, and

A ∩B = ∅.(3.4.9)

Under these conditions, there is an open subset U of G such that e ∈ U and A,
B are left-invariant U -separated. This is basically the same as (1.3.12).

If A is a compact open subset of G, then there is an open subset U of G
such that e ∈ U and

AU ⊆ A.(3.4.10)

This follows from the remarks in the preceding paragraph, and can also be
obtained from (1.3.12).

Let A, U be subsets of G such that e ∈ U , U is an open set, and (3.4.10)
holds. As usual, we can take U to be symmetric about e, by replacing U with
U ∩ U−1. Using (3.4.10), we get that

AU j ⊆ A(3.4.11)

for every j ∈ Z+, where U j is as in the previous section. If we put

U0 =

∞∪
j=1

U j ,(3.4.12)

then it follows that
AU0 ⊆ A.(3.4.13)

Of course, A ⊆ AU ⊆ AU0, because e ∈ U , so that AU0 = A.
Note that U0 is an open subgroup of G under these conditions, as in the

previous section. If e ∈ A, then we also have that

U0 ⊆ A,(3.4.14)

by (3.4.13).

3.5 Collections of subgroups

Let G be a group, and let B be a nonempty collection of subgroups of G. We
would like to consider topologies on G such that the elements of B form a local
sub-base at the identity element e, and with other appropriate properties. If
A ∈ B, then let dA,L and dA,R be the discrete semi-ultrametrics on G associated
to the left and right cosets of A in G, as in (3.2.3) and (3.2.4), respectively. Thus

ML(B) = {dA,L : A ∈ B}(3.5.1)

and
MR(B) = {dA,R : A ∈ B}(3.5.2)

are nonempty collections of semi-ultrametrics on G that are invariant under
left and right translations, respectively. Let τL(B) and τR(B) be the topologies
determined on G by ML(B) and MR(B) as in Section 1.5, respectively.
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Equivalently, a subset U of G is an open set with respect to τL(B) if for
every x ∈ U there are finitely many elements A1, . . . , An of B such that

n∩
j=1

(xAj) ⊆ U.(3.5.3)

Similarly, U is an open set with respect to τR(B) if for every x ∈ U there are
finitely many elements A1, . . . , An of B such that

n∩
j=1

(Aj x) ⊆ U.(3.5.4)

One can check directly that these define topologies onG, instead of usingML(B)
and MR(B). It is easy to see that the elements of B are open sets with respect
to τL(B) and τR(B), because the elements of B are subgroups of G. Of course,
B is a local sub-base for each of these topologies at e, by construction. Note
that τL(B) is preserved by left translations on G, and that τR(B) is preserved by
right translations on G. This follows from the fact that the elements of ML(B)
and MR(B) are invariant under left and right translations on G, respectively,
and it can also be obtained from the characterizations of τL(B) and τR(B) just
mentioned.

As in Section 1.7, x 7→ x−1 is continuous as a mapping from G into itself at
e with respect τL(B), and with respect to τR(B). Multiplication on G is also
continuous as a mapping from G×G into G at (e, e), using either τL(B) or τR(B),
and the corresponding product topology. Both statements can be obtained from
the characterizations of τL(B) and τR(B) in the previous paragraph, as well as
from earlier remarks about collections of translation-invariant semimetrics. Note
that a subset U of G is an open set with respect to τL(B) if and only if U−1 is
an open set with respect to τR(B), which is the same as saying that x 7→ x−1 is
a homeomorphism as a mapping from G with τL(B) onto G with τR(B). This
can be obtained from the characterizations of τL(B) and τR(B) in the previous
paragraph, or using (3.2.6).

The elements of B are automatically closed sets with respect to τL(B) and
τR(B). This can be obtained from either of the characterizations of τL(B) and
τR(B), as usual. Let us say that B is nondegenerate if∩

A∈B
A = {e}.(3.5.5)

This implies that ML(B) and MR(B) are nondegenerate as collections of semi-
metrics. In this case, one can verify directly that G is Hausdorff with respect
to τL(B) and τR(B), using the characterizations of these topologies in terms of
(3.5.3) and (3.5.4).

If

τL(B) = τR(B),(3.5.6)
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then left and right translations are continuous with respect to this common
topology. This implies that G is a topological group with respect to this topol-
ogy, as in Section 1.7, because of the properties of these topologies mentioned
earlier. Conversely, if G is a topological group with respect to τL(B) or τR(B),
then x 7→ x−1 is a homeomorphism with respect to that topology. This implies
that (3.5.6) holds, because x 7→ x−1 automatically sends τL(B) onto τR(B), as
before.

Let us say that B is nice if for every x ∈ G and A ∈ B there are finitely
many elements A1, . . . , An of B such that

n∩
j=1

Aj ⊆ xAx−1.(3.5.7)

Equivalently, (3.5.7) means that

n∩
j=1

(x−1 Aj) ⊆ Ax−1,(3.5.8)

and that
n∩

j=1

(Aj x) ⊆ xA.(3.5.9)

If B is nice, then one can check that (3.5.6) holds. This implies that G is a
topological group with respect to (3.5.6), as before.

Conversely, suppose that G is a topological group with respect to τL(B)
or τR(B). In particular, this implies that both left and right translations are
continuous with respect to τL(B) or τR(B). If x ∈ G and A ∈ B, then it follows
that xAx−1 is an open set with respect to τL(B) or τR(B), because A is an open
set with respect to both τL(B) and τR(B). This implies that there are finitely
many elements A1, . . . , An of B such that (3.5.7) holds, because e ∈ xAx−1.
This shows that B is nice under these conditions.

If every element of B is a normal subgroup of G, then B is automatically
nice. In this case, the discrete semi-ultrametrics dA,L and dA,R mentioned at
the beginning of the section are the same for every A ∈ B, as in (3.2.7). In
particular, this implies that (3.5.1) and (3.5.2) are the same. Remember that
these semi-ultrametrics are invariant under both left and right translations in
this situation, as in Section 3.2.

3.6 More on semi-ultrametrics

Let X be a set. If d1, . . . , dn are finitely many semimetrics on X, then we have
seen that

max
1≤j≤n

dj(x, y)(3.6.1)
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and
n∑

j=1

dj(x, y)(3.6.2)

define semimetrics onX too, as in Section 1.5. If d1, . . . , dn are semi-ultrametrics
on X, then one can check that (3.6.1) is a semi-ultrametric on X as well. How-
ever, this does not normally work for the sum (3.6.2).

Similarly, if d(x, y) is a semimetric on X and t is a positive real number,
then we have seen that

min(d(x, y), t)(3.6.3)

defines a semimetric on X, as in Section 1.6. If d(x, y) is a semi-ultrametric on
X, then it is easy to see that (3.6.3) is also a semi-ultrametric on X.

Let d1, d2, d3, . . . be an infinite sequence of semimetrics on X. As before,

d′j(x, y) = min(dj(x, y), 1/j)(3.6.4)

defines a semimetric on X for each positive integer j. We have seen that

max
j≥1

d′j(x, y)(3.6.5)

defines a semi-metric on X too, as in (1.6.5). If dj is a semi-ultrametric on X
for each j ≥ 1, then (3.6.4) is also a semi-ultrametric on X for every j ≥ 1, as
in the preceding paragraph. In this case, one can check that that (3.6.5) is a
semi-ultrametric on X as well.

Let Y be another set, and let dY be a semimetric on Y . Also let A be a
nonempty subset of X, and remember that

θA(f, g) = sup
x∈A

dY (f(x), g(x))(3.6.6)

defines a semimetric on the space BA(X,Y ) of mappings from X into Y that
are bounded on A, as in Section 2.1. If dY is a semi-ultrametric on Y , then
(3.6.6) is a semi-ultrametric on BA(X,Y ). More precisely, if f, g, h ∈ BA(X,Y ),
then

dY (f(x), h(x)) ≤ max
(
dY (f(x), g(x)), dY (g(x), h(x))

)
(3.6.7)

≤ max(θA(f, g), θA(g, h))

for every x ∈ A in this case. It follows that

θA(f, h) ≤ max(θA(f, g), θA(g, h)),(3.6.8)

as desired.
Let X, Y be sets again, and let dY be a semimetric on Y . If ϕ is a mapping

from X into Y , then it is easy to see that

dY (ϕ(x), ϕ(x
′))(3.6.9)

defines a semimetric on X. Similarly, if dY is a semi-ultrametric on Y , then
(3.6.9) is a semi-ultrametric on X. Note that this includes the situation consid-
ered in (1.8.4).
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3.7 Some countable products

Let X1, X2, X3, . . . be an infinite sequence of nonempty sets, and let

X =

∞∏
j=1

Xj(3.7.1)

be their Cartesian product. Thus the elements of X may be considered as
sequences x = {xj}∞j=1, where xj ∈ Xj for each j ∈ Z+. To avoid degeneracies,
one might as well ask that Xj have at least two elements for each j ∈ Z+. If
x, y ∈ X and x ̸= y, then let l(x, y) be the largest nonnegative integer such that

xj = yj when j ≤ l(x, y).(3.7.2)

Equivalently, l(x, y) + 1 is the smallest positive integer j such that xj ̸= yj . In
particular, if x1 ̸= y1, then l(x, y) = 0. If x = y, then we take l(x, y) = +∞, so
that (3.7.2) holds for every x, y ∈ X. Note that l(x, y) is symmetric in x, y. We
also have that

l(x, z) ≥ min(l(x, y), l(y, z))(3.7.3)

for every x, y, z ∈ X. Indeed, if j ∈ Z+ satisfies

j ≤ min(l(x, y), l(y, z)),(3.7.4)

then xj = yj and yj = zj . This implies that xj = zj for these j, and hence that
(3.7.3) holds.

Let {rj}∞j=0 be a strictly decreasing sequence of positive real numbers that
converges to 0, with respect to the standard metric on R. If x, y ∈ X, then put

d(x, y) = rl(x,y) when x ̸= y(3.7.5)

= 0 when x = y.

It is convenient to put r∞ = 0, so that the x = y case may be given by the
same expression as the x ̸= y case. Clearly d(x, y) satisfies the positivity and
symmetry requirements of a metric. If x, y, z ∈ X, then

d(x, z) = rl(x,z) ≤ max(rl(x,y), rl(y,z)) = max(d(x, y), d(y, z)).(3.7.6)

This uses (3.7.3) and the hypothesis that the rj ’s are decreasing in the second
step. It follows that (3.7.5) defines an ultrametric on X.

If x ∈ X and l is a nonnegative integer, then

B(x, rl) = {y ∈ X : d(x, y) ≤ rl}(3.7.7)

is the usual closed ball in X centered at x with radius rl with respect to (3.7.5),
as in (1.1.6). In this situation,

d(x, y) ≤ rl if and only if l(x, y) ≥ l,(3.7.8)
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because the rj ’s are supposed to be strictly decreasing in j. Thus

B(x, rl) = {y ∈ X : l(x, y) ≥ l}.(3.7.9)

Equivalently,
B(x, rl) = {y ∈ X : xj = yj when j ≤ l}.(3.7.10)

All other open and closed balls in X with respect to (3.7.5) can be characterized
using this case.

The topology determined onX by (3.7.5) is the same as the product topology
corresponding to the discrete topology on Xj for each j ∈ Z+. In particular,
a sequence x(1), x(2), x(3), . . . of elements of X converges to an element x of
X with respect to (3.7.5) if and only if for each j ∈ Z+, xj(l) = xj for all
sufficiently large l. Similarly, a sequence x(1), x(2), x(3), . . . of elements of X is
a Cauchy sequence with respect to (3.7.5) if and only if for each j ∈ Z+, the
sequence {xj(l)}∞l=1 of elements of Xj is eventually constant. It follows that
Cauchy sequences in X are convergent, so that X is complete as a metric space
with respect to (3.7.5). If Xj has only finitely many elements for each j, then
X is compact.

3.8 Semi-ultrametrification

Let X be a set, and let d(x, y) be a semimetric on X. If x, y ∈ X, then put

du(x, y) = inf

{
max
1≤j≤n

d(wj , wj−1) : w0, . . . , wn ∈ X,(3.8.1)

w0 = x, wn = y

}
.

More precisely, the infimum is taken over all finite sequences w0, . . . , wn of
elements of X with w0 = x and wn = y, where n is any positive integer. In
particular, one can always take n = 1, w0 = x, and w1 = y, so that this set is
nonempty. One can also allow n = 0 when x = y, with w0 = x = y, and the
maximum on the right side of (3.8.1) interpreted as being equal to 0. Observe
that

0 ≤ du(x, y) ≤ d(x, y)(3.8.2)

for every x, y ∈ X, using the n = 1 case just mentioned to get the second
inequality. Thus

du(x, x) = 0(3.8.3)

for every x ∈ X, which follows from the n = 0 case just mentioned too. We also
have that

du(x, y) = du(y, x)(3.8.4)

for every x, y ∈ X, because finite sequences of elements of X going from x to y
correspond to finite sequences of elements of X going from y to x, by reversing
the order of the indices.
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If x, y, z ∈ X, then

du(x, z) ≤ max(du(x, y), du(y, z)).(3.8.5)

To see this, let m and n be positive integers, let v0, . . . , vm be a finite sequence
of elements of X such that v0 = x and vm = y, and let w0, . . . , wn be a finite
sequence of elements of X such that w0 = y and wn = z. As before, we can
allow m = 0 when x = y, and n = 0 when y = z. If we put

vm+j = wj(3.8.6)

when j = 1, . . . , n, then v0, . . . , vn is a finite sequence of elements of X going
from x to z. Hence

du(x, z) ≤ max
1≤j≤n

d(vj , vj−1).(3.8.7)

In this situation,

max
1≤j≤n

d(vj , vj−1) = max
(

max
1≤j≤m

d(vj , vj−1), max
1≤l≤n

d(wl, wl−1)
)
,(3.8.8)

by (3.8.6), which holds when j = 0 too. It follows that

du(x, z) ≤ max
(

max
1≤j≤m

d(vj , vj−1), max
1≤l≤n

d(wl, wl−1)
)
.(3.8.9)

It is easy to obtain (3.8.5) from (3.8.9), using (3.8.1). This shows that (3.8.1)
defines a semi-ultrametric on X.

Let ρ(x, y) be a semi-ultrametric on X, and suppose that

ρ(x, y) ≤ d(x, y)(3.8.10)

for every x, y ∈ X. Let x, y ∈ X be given, and let w0, . . . , wn be a finite sequence
of elements of X going from x to y. Note that

ρ(x, y) ≤ max
1≤j≤n

ρ(wj , wj−1),(3.8.11)

because ρ(·, ·) is a semi-ultrametric on X. This implies that

ρ(x, y) ≤ max
1≤j≤n

d(wj , wj−1),(3.8.12)

because ρ(wj , wj−1) ≤ d(wj , wj−1) for each j = 1, . . . , n, by hypothesis. It
follows that

ρ(x, y) ≤ du(x, y),(3.8.13)

by the definition (3.8.1) of du(x, y). In particular, if d(x, y) is a semi-ultrametric
on X, then we can apply this to ρ(x, y) = d(x, y). This implies that

du(x, y) = d(x, y)(3.8.14)

for every x, y ∈ X in this case, using also (3.8.2).
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Of course, du(x, y) is compatible with the topology determined on X by
d(x, y), as in Section 1.1, because of (3.8.2). Remember that open and closed
balls in X with respect to du of positive radius are open and closed sets with
respect to the topology determined on X by du, as in Section 3.1. This means
that open and closed balls in X with respect to du of positive radius are open
and closed sets with respect to the topology determined on X by d, because du
is compatible with the topology determined on X by d. If X is connected with
respect to the topology determined by d, then X is the only nonempty subset of
itself that is both open and closed with respect to this topology. In particular,
every open or closed ball in X with respect to du of positive radius is equal to
X in this case. This implies that

du(x, y) = 0(3.8.15)

for every x, y ∈ X when X is connected with respect to the topology determined
by d. If X = Q and d is the restriction of the standard Euclidean metric on R
to Q, then it is easy to see that (3.8.15) holds, directly from the definitions.

3.9 Connection with uniform continuity

Let X, Y be sets, and let dX , dY be semimetrics on them, respectively. Also let
f be a uniformly continuous mapping from X into Y with respect to dX , dY .
Thus for each ϵ > 0 there is a δ(ϵ) > 0 such that

dY (f(x), f(x
′)) < ϵ(3.9.1)

for every x, x′ ∈ X with
dX(x, x′) < δ(ϵ).(3.9.2)

Let dX,u, dY,u be the semi-ultrametrifications of dX , dY on X, Y , respectively,
as in (3.8.1). We would like to check that f is also uniformly continuous with
respect to dX,u, dY,u.

Let ϵ > 0 be given, and suppose that x, x′ ∈ X satisfy

dX,u(x, x
′) < δ(ϵ).(3.9.3)

This means that there is a finite sequence w0, . . . , wn of elements of X such that
w0 = x, wn = x′, and

max
1≤j≤n

dX(wj , wj−1) < δ(ϵ),(3.9.4)

by the definition of dX,u(x, x
′). It follows that

max
1≤j≤n

dY (f(wj), f(wj−1)) < ϵ,(3.9.5)

because of the uniform continuity condition for f with respect to dX , dY . Note
that

dY,u(f(x), f(x
′)) ≤ max

1≤j≤n
dY (f(wj), f(wj−1)),(3.9.6)
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because f(w0), . . . , f(wn) is a finite sequence of elements of Y going from f(x)
to f(x′). Thus

dY,u(f(x), f(x
′)) < ϵ,(3.9.7)

as desired.

Suppose now that f is a uniform homeomorphism from X onto Y with
respect to dX , dY , respectively. Thus f is a one-to-one uniformly continuous
mapping from X onto Y with respect to dX , dY , whose inverse mapping f−1 is
uniformly continuous as a mapping from Y onto X with respect to dY , dX . The
remarks in the previous paragraphs imply that f is also uniformly continuous
as a mapping from X onto Y with respect to dX,u, dY,u, respectively, and that
f−1 is uniformly continuous as a mapping from Y onto X with respect to dY,u,
dX,u. This means that f is a uniform homeomorphism from X onto Y with
respect to dX,u, dY,u, respectively.

Let UHdX
(X) be the group of uniform homeomorphisms from X onto itself

with respect to dX , as in Section 2.3. Similarly, let UHdX,u
(X) be the group of

uniform homeomorphisms from X onto itself with respect to dX,u. The remarks
in the previous paragraph imply that

UHdX
(X) ⊆ UHdX,u

(X).(3.9.8)

The collection IHdX
(X) of one-to-one mappings from X onto itself that are

isometries with respect to dX is a subgroup of UHdX
(X), as in Section 2.7. Let

IHdX,u
(X) be the collection of one-to-one mappings from X onto itself that are

isometries with respect to dX,u, which is a subgroup of UHdX,u
(X). If a one-to-

one mapping f from X onto itself is an isometry with respect to dX , then it is
easy to see that f is also an isometry with respect to dX,u, because of the way
that dX,u is defined. This means that

IHdX
(X) ⊆ IHdX,u

(X).(3.9.9)

3.10 Some related conditions

Let α be a motonically increasing real-valued function on [0,∞) with α(0) = 0.
Thus α ≥ 0 on [0,∞), by monotonicity. If d(x, y) is a semi-ultrametric on a set
X, then it is easy to see that

dα(x, y) = α(d(x, y))(3.10.1)

is a semi-ultrametric on X too. This is a bit simpler than the analogous state-
ment for semimetrics in Section 2.8, and in particular subadditivity of α is not
needed here. If d(x, y) is an ultrametric on X, and α > 0 on (0,∞), then
(3.10.1) is an ultrametric on X.

If

lim
t→0+

α(t) = 0,(3.10.2)
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then (3.10.1) is uniformly compatible with d(x, y) on X, as in Section 2.9. If
α > 0 on (0,∞), then we have also seen that d(x, y) is uniformly compatible
with (3.10.1) on X.

Let X, Y be sets, let dX , dY be semimetrics on them, respectively, and let
f be a mapping from X into Y . Suppose that

α(dY (f(x), f(x
′))) ≤ dX(x, x′)(3.10.3)

for every x, x′ ∈ X. Let dX,u, dY,u be the semi-ultrametrifications of dX , dY on
X, Y , respectively, as in (3.8.1) again. Observe that

α(dY,u(y, y
′)) ≤ α(dY (y, y

′))(3.10.4)

for every y, y′ ∈ Y , because of (3.8.2) applied to dY , and the monotonicity of α.
It follows that

α(dY,u(f(x), f(x
′))) ≤ dX(x, x′)(3.10.5)

for every x, x′ ∈ X, by taking y = f(x), y′ = f(x′), and using (3.10.3).
As in (3.10.1),

α(dY,u(y, y
′))(3.10.6)

defines a semi-ultrametric on Y , because dY,u is a semi-ultrametric on Y . This
implies that

α(dY,u(f(x), f(x
′)))(3.10.7)

is a semi-ultrametric on X, as in (3.6.9). Remember that dX,u is the largest
semi-ultrametric on X that is less than or equal to dX , as in (3.8.13). Thus

α(dY,u(f(x), f(x
′))) ≤ dX,u(x, x

′)(3.10.8)

for every x, x′ ∈ X, because (3.10.7) is a semi-ultrametric on X that is less than
or equal to dX(x, x′), by (3.10.5).

Let r be a positive real number, so that

β−
f (r) = sup{dY (f(x), f(x′)) : x, x′ ∈ X, dX(x, x′) < r}(3.10.9)

is defined as a nonnegative extended real number, as in (2.10.1). By construc-
tion, if x, x′ ∈ X satisfy

dX(x, x′) < r,(3.10.10)

then
dY (f(x), f(x

′)) ≤ β−
f (r).(3.10.11)

Let x, x′ ∈ X be given, and suppose now that

dX,u(x, x
′) < r.(3.10.12)

This means that there is a finite sequence w0, . . . , wn of elements of X such that

max
1≤j≤n

dX(wj , wj−1) < r.(3.10.13)
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It follows that
dY (f(wj), f(wj−1)) ≤ β−

f (r)(3.10.14)

for each j = 1, . . . , n, by definition of β−
f (r). Of course,

dY,u(f(x), f(x
′)) ≤ max

1≤j≤n
dY (f(wj), f(wj−1)),(3.10.15)

by definition of dY,u, and using f(w0), . . . , f(wn) as a finite sequence of elements
of Y going from f(x) to f(x′). This shows that

dY,u(f(x), f(x
′)) ≤ β−

f (r)(3.10.16)

when x, x′ ∈ X satisfy (3.10.12).
Alternatively, let β be a nonnegative extended real-valued function on [0,∞),

and suppose that
dY (f(x), f(x

′)) ≤ β(dX(x, x′))(3.10.17)

for every x, x′ ∈ X. If r is a nonnegative real number, then we put

β̃(r) = sup{β(t) : 0 ≤ t ≤ r},(3.10.18)

which is defined as a nonnegative extended real number, as in (2.10.11). Note
that

β−
f (r) ≤ β̃(r)(3.10.19)

for every r > 0, and indeed (2.10.14) holds. If x, x′ ∈ X satisfy (3.10.10), then

dY,u(f(x), f(x
′)) ≤ β̃(r),(3.10.20)

by (3.10.16).
If 0 ≤ t < ∞, then put

β̃+(t) = inf{β̃(r) : t < r < ∞},(3.10.21)

which is defined as a nonnegative extended real number. This may be considered
as the limit of β̃(r) as r → t+, because β̃(r) increases monotonically, and with
suitable interpretations for extended real numbers. Let x, x′ ∈ X be given, with

dX,u(x, x
′) ≤ t.(3.10.22)

If t < r, then (3.10.12) holds, and hence (3.10.20) holds, as before. It follows
that

dY,u(f(x), f(x
′)) ≤ β̃+(t),(3.10.23)

by taking the infimum over r > t. This implies that

dY,u(f(x), f(x
′)) ≤ β̃+(dX(x, x′))(3.10.24)

for every x, x′ ∈ X, by taking t = dX(x, x′). If β(0) = 0 and

lim
t→0+

β(t) = 0,(3.10.25)
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then β̃(0) = 0 and

lim
r→0+

β̃(r) = 0,(3.10.26)

as in (2.10.13). In this case,

β̃+(0) = lim
t→0+

β̃+(t) = 0.(3.10.27)



Chapter 4

Uniform continuity and
total boundedness

4.1 Uniform continuity on topological groups

Let G be a topological group, let Y be a set, and let dY be a semimetric on Y .
Also let f be a mapping from G into Y , and let A be a subset of G. Let us say
that f is left-invariant uniformly continuous along A if for each ϵ > 0 there is
an open set U in G such that U contains the identity element e and

dY (f(a), f(a x)) < ϵ(4.1.1)

for every a ∈ A and x ∈ U . Similarly, f is right-invariant uniformly continuous
along A if for each ϵ > 0 there is an open set U in G such that e ∈ U and

dY (f(a), f(x a)) < ϵ(4.1.2)

for every a ∈ A and x ∈ U . If A is the whole group G, then we simply say that
f is left or right-invariant uniformly continuous on G, as appropriate.

If f is left or right-invariant uniformly continuous along a subset A of G, then
f is continuous at every element of A, with respect to the topology determined
on Y by dY . If A has only finitely many elements, and f is continuous at each
element of A, then f is left and right-invariant uniformly continuous along A.

Put

f̃(x) = f(x−1)(4.1.3)

for each x ∈ G. It is easy to see that f is left-invariant uniformly continuous
along a subset A of G if and only if f̃ is right-invariant uniformly continuous
along A−1. Similarly, f is right-invariant uniformly continuous along A if and
only if f̃ is left-invariant uniformly continuous along A−1.

Suppose for the moment that the topology on G is determined by a semi-
metric d. If d is invariant under left translations on G, then f is left-invariant

56
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uniformly continuous along a subset A of G if and only if f is uniformly con-
tinuous along A with respect to d, as in Section 2.2. Similarly, if d is invariant
under right translations on G, then f is right-invariant uniformly continuous
along A if and only if f is uniformly continuous along A with respect to d.

Let us say that a semimetric d0 on G is left-invariant uniformly compatible
with the topology on G if the identity mapping on G is left-invariant uniformly
continuous as a mapping into G with respect to d0. Similarly, d0 is right-
invariant uniformly compatible with the topology on G if the identity mapping
on G is right-invariant uniformly continuous as a mapping into G with respect
to d0. If d0 is left or right-invariant uniformly compatible with the topology
on G, then the identity mapping on G is continuous as a mapping into G with
respect to the topology determined by d0, as before. This means that d0 is
compatible with the topology on G, as in Section 1.1.

In the other direction, suppose for the moment that d0 is compatible with
the topology on G at e, as in Section 1.1 again. If d0 is invariant under left
translations, then it follows that d0 is left-invariant uniformly compatible with
the topology on G. This corresponds to (1.4.16). Similarly, if d0 is invariant
under right translations, then d0 is right-invariant uniformly compatible with
the topology on G, as in (1.4.17).

Let Z be another set with a semimetric dZ , and let g be a mapping from
Y into Z that is uniformly continuous along a subset B of Y , as in Section
2.2. Also let f be a mapping from G into Y and let A be a subset of G, as
before, and suppose that f(A) ⊆ B. If f is left-invariant uniformly continuous
along A as a mapping into Y , then one can check that g ◦ f is left-invariant
uniformly continuous along A as a mapping into Z. Similarly, if f is right-
invariant uniformly continuous along A as a mapping into Y , then g ◦ f is
right-invariant uniformly continuous along A as a mapping into Z.

Suppose that A is a compact subset of G, and that f is a mapping from G
into Y that is continuous at each point in A. Under these conditions, it is well
known that f is left-invariant and right-invariant uniformly continuous along A.
Let us briefly sketch the argument in the left-invariant case, which is analogous
to the argument for mappings between semimetric spaces, as in Section 2.2.
The right-invariant case is very similar, and the two cases are equivalent, by
the earlier remarks about (4.1.3). Let ϵ > 0 and a ∈ A be given. Because f is
continuous at a, there is an open subset U(a) of G such that e ∈ U(a) and

dY (f(a), f(a x)) < ϵ/2(4.1.4)

for every x ∈ U(a). Using continuity of multiplication on G at e, we can get an
open subset U1(a) of G such that e ∈ U1(a) and

U1(a)U1(a) ⊆ U(a).(4.1.5)

Note that a ∈ aU1(a) and
U1(a) ⊆ U(a),(4.1.6)

because e ∈ U1(a). In particular, A is covered by the open sets aU1(a), a ∈ A.
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If A is compact, then there are finitely many elements a1, . . . , an of A such that

A ⊆
n∪

j=1

aj U1(aj).(4.1.7)

Put

U =

n∩
j=1

U1(aj),(4.1.8)

so that U is an open set that contains e.
Let a ∈ A and x ∈ U be given, and let us check that (4.1.1) holds. Using

(4.1.7), we get that a ∈ aj U1(aj) for some j, 1 ≤ j ≤ n. Thus

a = aj w(4.1.9)

for some w ∈ U1(aj). Observe that

wx ∈ U1(aj)U ⊆ U1(aj)U1(aj) ⊆ U(aj),(4.1.10)

using the definition (4.1.8) of U in the second step, and the analogue of (4.1.5)
for aj in the third step. It follows that

dY (f(aj), f(a x)) = dY (f(aj), f(aj wx)) < ϵ/2,(4.1.11)

using (4.1.9) in the first step, and (4.1.10) and the analogue of (4.1.4) for aj in
the second step. Similarly,

dY (f(aj), f(a)) = dY (f(aj), f(aj w)) < ϵ/2,(4.1.12)

because w ∈ U1(aj) ⊆ U(aj), by the analogue of (4.1.6) for aj . Combining
(4.1.11) and (4.1.12), we get that

dY (f(a), f(a x)) ≤ dY (f(a), f(aj)) + dY (f(aj), f(a x))(4.1.13)

< ϵ/2 + ϵ/2 = ϵ,

as desired.

4.2 Total boundedness and semimetrics

Let X be a set, and let d(x, y) be a semimetric on X. A subset E of X is said
to be totally bounded with respect to d if for each ϵ > 0, E is contained in the
union of finitely many open balls of radius ϵ in X. This is interpreted as holding
when E = ∅, even if X = ∅. If E ⊆ X is totally bounded with respect to d, then
it is easy to see that E is bounded with respect to d, as in Section 2.1. If E is
compact with respect to the topology determined on X by d, then E is totally
bounded with respect to d.
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If A is a nonempty subset of X, then the diameter of A with respect to d is
the nonnegative extended real number defined by

diamA = diamdA = sup{d(x, y) : x, y ∈ A}.(4.2.1)

This is finite exactly when A is bounded with respect to d. It is convenient to
interpret the diameter of the empty set as being equal to 0. The diameter of
a ball of radius r with respect to d is less than or equal to 2 r, by the triangle
inequality. If d is a semi-ultrametric on X, then the diameter of a ball of radius
r with respect to d is less than or equal to r. If A is a bounded subset of X and
a ∈ A, then

A ⊆ Bd(a,diamA).(4.2.2)

Of course, if A1 ⊆ A2 ⊆ X, then

diamA1 ≤ diamA2.(4.2.3)

If A ⊆ X and A is the closure of A in X with respect to the topology determined
on X by d, then one can check that

diamA = diamA.(4.2.4)

It follows from some of the remarks in the preceding paragraph that E ⊆ X
is totally bounded with respect to d if and only if for every r > 0, E is contained
in the union of finitely many subsets of X with diameter less than or equal to r.
Let X0 be a subset of X, so that the restriction of d(x, y) to x, y ∈ X0 defines
a semimetric on X0. If E ⊆ X0, then one can use the characterization of total
boundedness just mentioned to get that E is totally bounded as a subset of
X if and only if E is totally bounded as a subset of X0, with respect to the
restriction of d(x, y) to x, y ∈ X0.

If E ⊆ X is totally bounded with respect to d, then every subset of E is
totally bounded with respect to d too. In this case, the closure E of E is totally
bounded as well. If E1, E2 ⊆ X are totally bounded, then their union E1 ∪ E2

is totally bounded.
Let Y be another set with a semimetric dY , and let f be a uniformly con-

tinuous mapping from X into Y . If E ⊆ X is totally bounded with respect to
d, then f(E) is totally bounded in Y with respect to dY .

Let d1, . . . , dn be finitely many semimetrics on X, and remember that

d′(x, y) = max
1≤j≤n

dj(x, y)(4.2.5)

defines a semimetric on X, as in Section 1.5. If A ⊆ X, then

diamd′A ≤ max
1≤j≤n

(diamdj
A).(4.2.6)

Suppose that E ⊆ X is totally bounded with respect to dj for each j = 1, . . . , n,
and let us check that E is totally bounded with respect to d′.
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Let r > 0 be given, and for each j = 1, . . . , n, let Ej be a collection of finitely
many subsets of X such that

diamdj
Aj ≤ r(4.2.7)

for each Aj ∈ Ej , and
E ⊆

∪
Aj∈Ej

Aj .(4.2.8)

Let E be the collection of subsets of X of the form

A =

n∩
j=1

Aj ,(4.2.9)

where Aj ∈ Ej for each j = 1, . . . , n. If A is of this form, then

diamd′A ≤ max
1≤j≤n

(diamdj
A) ≤ max

1≤j≤n
(diamdj

Aj) ≤ r,(4.2.10)

using (4.2.7) in the third step. We also have that

E ⊆
n∩

j=1

( ∪
Aj∈Ej

Aj

)
=

∪
A1∈E1

· · ·
∪

An∈En

( n∩
j=1

Aj

)
=

∪
A∈E

A,(4.2.11)

using (4.2.8) in the first step. Clearly E has only finitely many elements, because
Ej has only finitely many elements for each j, as desired.

4.3 Total boundedness in topological groups

Let G be a topological group, and let E be a subset of G. Let us say that E is
left-invariant totally bounded in G if for every open subset U of G that contains
the identity element e there are finitely many elements a1, . . . , an of G such that

E ⊆
n∪

j=1

(aj U).(4.3.1)

Similarly, E is right-invariant totally bounded in G if for every open subset U
of G with e ∈ U there are finitely many elements b1, . . . , bn of G such that

E ⊆
n∪

j=1

(U bj).(4.3.2)

It is easy to see that E is left-invariant totally bounded in G if and only if E−1 is
right-invariant totally bounded in G. Equivalently, E is right-invariant totally
bounded in G if and only if E−1 is left-invariant totally bounded in G.

If E is a compact subset of G, then E is both left and right-invariant totally
bounded in G. More precisely, if U is an open subset of G with e ∈ U , then E
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is covered by the families of left and right translates of U . This implies that E
can be covered by finitely many left and right translates of U , by compactness.

If E is either left or right-invariant totally bounded, then every subset of E
has the same property. If E1, E2 are subsets of G that are both left-invariant
totally bounded in G, or both right-invariant totally bounded, then their union
E1 ∪ E2 has the same property.

If E is either left or right-invariant totally bounded, then the closure E of E
in G has the same property. To see this, let an open subset U of G with e ∈ U
be given. Remember that there is an open subset V of G such that e ∈ V and
V ⊆ U , as in Section 1.3. By hypothesis, E can be covered by finitely many left
or right translates of V , as appropriate. This implies that E is covered by the
corresponding translates of V , and hence by the corresponding translates of U ,
as desired.

Suppose for the moment that the topology on G is determined by a semi-
metric d. If d is invariant under left translations, then E is left-invariant totally
bounded if and only if E is totally bounded with respect to d. Similarly, if d is
invariant under right translations, then E is right-invariant totally bounded if
and only if E is totally bounded with respect to d.

Let Y be a set with a semimetric dY , and let f be a mapping from G
into Y . If E is left-invariant totally bounded, and f is left-invariant uniformly
continuous, as in Section 4.1, then f(E) it totally bounded in Y with respect to
dY . Similarly, if E is right-invariant totally bounded, and f is right-invariant
uniformly continuous, then f(E) is totally bounded in Y .

Let d0 be a semimetric on G. If E is left-invariant totally bounded, and
d0 is left-invariant uniformly compatible with the topology on G, as in Section
4.1, then E is totally bounded with respect to d0. This follows from the corre-
sponding statement about left-invariant uniformly continuous mappings in the
preceding paragraph. Similarly, if E is right-invariant totally bounded, and d0 is
right-invariant uniformly compatible with the topology on G, then E is totally
bounded with respect to d0.

Let M be a nonempty collection of semimetrics on G, and suppose that the
topology on G is determined by M, as in Section 1.5. Suppose for the moment
that the elements of M are invariant under left translations. This implies that
each element of M is left-invariant uniformly compatible with the topology on
G, as in Section 4.1. if E is left-invariant totally bounded, then it follows that
E is totally bounded with respect to every element of M. Conversely, suppose
that E is totally bounded with respect to every element of M. This implies
that E is totally bounded with respect to the maximum of any finite number
of elements of M, as in the previous section. Using this, one can check that E
is right-invariant totally bounded. Similarly, if the elements of M are invariant
under right translations, then E is right-invariant totally bounded if and only
if E is totally bounded with respect to each element of M.
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4.4 U-Small sets

Let G be a topological group, and let U be an open subset of G that contains
the identity element e. Let us say that a subset A of G is left-invariant U -small
if

A ⊆ aU(4.4.1)

for every a ∈ A. Equivalently, this means that

a−1 A ⊆ U(4.4.2)

for every a ∈ A, which is the same as saying that

A−1 A ⊆ U.(4.4.3)

Similarly, A is right-invariant U -small if

A ⊆ U a(4.4.4)

for every a ∈ A. This means that

Aa−1 ⊆ U(4.4.5)

for every a ∈ A, so that
AA−1 ⊆ U.(4.4.6)

Observe that A is left-invariant U -small if and only if A−1 is right-invariant
U -small. Thus A is right-invariant U -small if and only if A−1 is left-invariant
U -small. Of course,

(AB)−1 = B−1 A−1(4.4.7)

for all subsets A, B of G, which implies that A−1 A and AA−1 are symmetric
about e. It follows that A is left or right-invariant U -small if and only if A is
left or right-invariant U−1-small, respectively.

If A is left-invariant U -small, then every left translate of A is left-invariant
U -small. Similarly, if A is right-invariant U -small, then every right translate of
A is right-invariant U -small. If A is left or right-invariant U -small, then every
subset of A has the same property.

Let V be an open subset of G such that e ∈ V and

V −1 V ⊆ U,(4.4.8)

so that V is left-invariant U -small. If E is a left-invariant totally bounded
subset of G, then E is contained in the union of finitely many left translates
of V . Each of these left translates of V is left-invariant U -small, so that E is
contained in the union of finitely many left-invariant U -small sets. In the other
direction, if E is contained in the union of finitely many left-invariant U -small
sets, then E is contained in the union of finitely many left translates of U . This
uses the fact that every left-invariant U -small set is contained in a left translate
of U . It follows that E is left-invariant totally bounded if and only if for every
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open subset U of G with e ∈ U , E is contained in the union of finitely many
left-invariant U -small sets.

Similarly, E is right-invariant totally bounded if and only if for every open
subset U of G with e ∈ U , E is contained in the union of finitely many right-
invariant U -small sets. This uses the fact that for each such U there is an open
subset W of G such that e ∈ W and

W W−1 ⊆ U,(4.4.9)

so that W is right-invariant U -small. If E is right-invariant totally bounded,
then E is contained in the union of finitely many right translates of W , each of
which is right-invariant U -small.

Let H be a subgroup of G, equipped with the topology induced by the one
on G. If U is an open subset of G that contains e, then U ∩ H is a relatively
open set that contains e, and every relatively open subset of H that contains e
is of this form. If A is a subset of H, then A is left-invariant U -small in G if
and only if A is left-invariant (U ∩H)-small in H. Similarly, A is right-invariant
U -small in G if and only if A is right-invariant (U ∩H)-small in H. It follows
that a subset E of H is left or right-invariant totally bounded in H if and only
if E is left or right-invariant totally bounded in G, respectively.

Let d0 be a semimetric on G that is compatible with the topology on G.
Also let r be a positive real number, so that Bd0(e, r) is an open subset of G
that contains e. If d0 is invariant under left translations, then a subset A of G
is left-invariant Bd0

(e, r) small if and only if

d0(x, y) < r(4.4.10)

for every x, y ∈ A. Similarly, if d0 is invariant under right translations, then A
is right-invariant Bd0

(e, r)-small if and only if (4.4.10) holds for every x, y ∈ A.
Let U1, . . . , Un be finitely many open subsets of G, each containing e. Thus∩n

j=1 Uj is an open set that contains e too. If a subset A of G is left-invariant Uj-

small for each j = 1, . . . , n, then A is left-invariant
(∩n

j=1 Uj

)
-small. Similarly,

if A is right-invariant Uj-small for each j = 1, . . . , n, then A is right-invariant(∩n
j=1 Uj

)
-small.

4.5 Uniform continuity and open subgroups

Let G be a topological group, let Y be a set with a semimetric dY , and let f
be a mapping from G into Y . Suppose for the moment that f is left-invariant
uniformly continuous, as in Section 4.1, and that dY is a semi-ultrametric on
Y . Let ϵ > 0 be given, and let U be an open subset of G such that e ∈ U and

dY (f(a), f(a x)) < ϵ(4.5.1)

for every a ∈ G and x ∈ U . We may as well ask that U be symmetric about e,
since otherwise we can replace U with U ∩ U−1. Let a ∈ G and x1, . . . , xn ∈ U
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be given, and observe that

dY (f(a x1 · · ·xj−1), f(a x1 · · ·xj−1 xj)) < ϵ(4.5.2)

for each j = 1, . . . , n, by (4.5.1). This implies that

dY (f(a), f(a x1 · · ·xn)) < ϵ,(4.5.3)

by the ultrametric version of the triangle inequality. Thus, for each positive
integer n, (4.5.1) holds for every a ∈ G and x ∈ Un. Here Un = U · · ·U , with n
U ’s on the right side, as in Section 3.3. Put

U0 =

∞∪
n=1

Un,(4.5.4)

which is an open subgroup of G, as in Section 3.3 again. It follows that (4.5.1)
holds for every a ∈ G and x ∈ U0.

Let B0 be the collection of all open subgroups of G. If A is an open subgroup
of G and x is an element of G, then xAx−1 is an open subgroup of G as well.
This implies that B0 is nice, in the sense of Section 3.5. Note that the intersection
of finitely many elements of B0 is also an element of B0. Let τ0 be the topology
τL(B0) = τR(B0) on G associated to B0 as in Section 3.5. Remember that the
elements of B0 are open sets with respect to τ0, and that B0 forms a local sub-
base for τ0 at e, by construction. In this situation, B0 is a local base for τ0 at
e, because B0 is closed under finite intersections. Of course, the given topology
τ on B is automatically at least as strong as τ0, because the elements of B0 are
open sets with respect to τ . As before, G is a topological group with respect to
τ0, because B0 is nice.

Let f be a mapping from G into Y again, and suppose that dY is a semi-
ultrametric on Y . If f is left-invariant uniformly continuous with respect to τ ,
then f is left-invariant uniformly continuous with respect to τ0, by the earlier
argument. Similarly, if f is right-invariant uniformly continuous with respect
to τ , then f is right-invariant uniformly continuous with respect to τ0. This
can be shown in essentially the same way, or by reducing to the previous case
applied to the mapping (4.1.3).

Now let dY be any semimetric on Y , and let dY,u be the corresponding semi-
ultrametrification of dY on Y , as in (3.8.1). Thus dY,u ≤ dY on Y , as in (3.8.2).
If a mapping f from G into Y is left or right-invariant uniformly continuous
with respect to τ on G and dY on Y , then f is left or right-invariant uniformly
continuous with respect to τ on G and dY,u on Y , as appropriate. This implies
that f is left or right-invariant uniformly continuous with respect to τ0 on G
and dY,u on Y , as appropriate, by the remarks in the preceding paragraph.

4.6 Invariantization of semimetrics

Let G be a group, and let d be a semimetric on G. Put

dL(x, y) = sup
a∈G

d(a x, a y)(4.6.1)
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for each x, y ∈ G, where the supremum on the right is defined as a nonnegative
extended real number. Similarly, put

dR(x, y) = sup
a∈G

d(x a, y a)(4.6.2)

for every x, y ∈ G, where the supremum on the right is also defined as a nonneg-
ative extended real number. It is easy to see that (4.6.1) and (4.6.2) satisfy the
requirements of a semimetric on G, except that they may take values in [0,∞].
Of course,

d(x, y) ≤ dL(x, y), dR(x, y)(4.6.3)

for every x, y ∈ G. If
d(x, y) ≤ A(4.6.4)

for some A ≥ 0 and every x, y ∈ G, then

dL(x, y), dR(x, y) ≤ A(4.6.5)

for every x, y ∈ G. By construction, (4.6.1) is invariant under left translations
on G, and (4.6.2) is invariant under right translations on G. If d is a semi-
ultrametric on G, then (4.6.1) and (4.6.2) satisfy the ultrametric version of the
triangle inequality.

Suppose that G is a topological group with respect to a topology τ , and that
d is left-invariant uniformly compatible with τ , as in Section 4.1. This means
that for each ϵ > 0 there is an open subset U(ϵ) of G such that e ∈ U(ϵ) and

d(x, y) < ϵ(4.6.6)

for every x, y ∈ G such that y ∈ xU(ϵ). If x, y ∈ G satisfy y ∈ xU(ϵ), then
a y ∈ a xU(ϵ) for every a ∈ G, so that

d(a x, a y) < ϵ.(4.6.7)

It follows that
dL(x, y) ≤ ϵ(4.6.8)

for every x, y ∈ G such that y ∈ xU(ϵ). If (4.6.1) is finite for every x, y ∈ G,
so that (4.6.1) defines a semimetric on G, then this semimetric is left-invariant
uniformly compatible with τ on G. Conversely, if (4.6.1) is left-invariant uni-
formly compatible with τ on G, then d is left-invariant uniformly compatible
with τ on G, because of (4.6.3). There are analogous statements for (4.6.2) and
right-invariant uniform compatibility.

Suppose for the moment that d is a semi-ultrametric on G that is invariant
under left or right translations. If d is compatible with τ on G, then open balls
in G centered at e with respect to d are open subgroups with respect to τ , as
in Section 3.3. This implies that d is compatible with the topology τ0 defined
on G as in the previous section, using open subgroups of G with respect to τ .

Now let d be any semi-ultrametric on G. If d is left-invariant uniformly
compatible with τ , and (4.6.1) is finite, then (4.6.1) is a semi-ultrametric on
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G that is invariant under left translations and compatible with τ . This im-
plies that (4.6.1) is compatible with τ0 on G, as in the preceding paragraph.
More precisely, (4.6.1) is left-invariant uniformly compatible with τ0, because
of invariance under left translations. It follows that d is left-invariant uniformly
compatible with τ0, because of (4.6.3). Similarly, if d is right-invariant uniformly
compatible with τ , and (4.6.2) is finite, then (4.6.2) is a semi-ultrametric on G
that is invariant under right translations and compatible with τ . This implies
that (4.6.2) is compatible with τ0 on G, and hence that d is right-invariant
uniformly compatible with τ0 on G, as before.

4.7 Invariance under conjugations

Let G be a group. If U is a subset of G, then put

C(U) = {a ∈ G : aU a−1 = U} = {a ∈ G : aU = U a}.(4.7.1)

It is easy to see that C(U) is a subgroup of G. If C(U) = G, then U is said to
be invariant under conjugations on G. Note that

C(U1) ∩ C(U2) ⊆ C(U1 ∩ U2)(4.7.2)

for all subsets U1, U2 of G, and in particular that U1 ∩ U2 is invariant under
conjugations when U1 and U2 have this property.

Let G be a topological group, and let U be an open subset of G that contains
the identity element e and is invariant under conjugations. If A is any subset
of G, then A is left-invariant U -small, as in Section 4.4, if and only if A is
right-invariant U -small. Suppose that there is a local base for the topology of G
at e consisting of open sets that are invariant under conjugations. In this case,
the left and right-invariant uniform continuity conditions discussed in Section
4.1 are equivalent. Similarly, the left and right total boundedness conditions
discussed in Section 4.3 are equivalent in this situation.

Let d be a semimetric on G, and put

L(d) = {a ∈ G : d(a x, a y) = d(x, y) for every x, y ∈ G},(4.7.3)

R(d) = {a ∈ G : d(x a, y a) = d(x, y) for every x, y ∈ G}.(4.7.4)

One can check that these are subgroups of G. Similarly,

C(d) = {a ∈ G : d(a x a−1, a y a−1) = d(x, y) for every x, y ∈ G}(4.7.5)

is a subgroup of G. If C(d) = G, then d is said to be invariant under conjuga-
tions on G. Observe that

L(d) ∩R(d) ⊆ C(d),(4.7.6)

L(d) ∩ C(d) ⊆ R(d),(4.7.7)

R(d) ∩ C(d) ⊆ L(d).(4.7.8)
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Thus

L(d) = R(d) when C(d) = G,(4.7.9)

L(d) = C(d) when R(d) = G,(4.7.10)

R(d) = C(d) when L(d) = G.(4.7.11)

In particular, if d is invariant under both left and right translations, then d is
invariant under conjugations. If d is invariant under conjugations, then open
and closed balls centered at e with respect to d are invariant under conjugations.

Let M be a nonempty collection of semimetrics on G, which determines a
topology on G as in Section 1.5. By construction, the open balls centered at e
with respect to elements of M form a local sub-base for this topology at e. Of
course, one can get a local base for the topology at e by taking finite intersections
of these balls. If the elements of M are invariant under conjugations, then
these balls centered at e are invariant under conjugations, as in the preceding
paragraph. In this case, the finite intersections of these balls are invariant under
conjugations too.

Let G be a topological group again, and suppose that there is a local base
for the topology of G at e consisting of open sets that are invariant under
conjugations. Under these conditions, it is well known that there is a collection
M of semimetrics on G that determines the given topology on G, and for which
each element of M is invariant under both left and right translations. If there
is also a local base for the topology of G at e with only finitely or countably
many elements, then the topology on G is determined by a single semimetric
that is invariant under both left and right translations.

4.8 Equicontinuity of conjugations

Let G be a topological group, and put

Cx(y) = x y x−1(4.8.1)

for every x, y ∈ G, as before. This defines an inner automorphism on G for each
x ∈ G, which is also a homeomorphism. Let E be a subset of G, and put

C(E) = {Cx : x ∈ E}.(4.8.2)

Let us say that C(E) is equicontinuous at the identity element e if for every
open subset W of G with e ∈ W there is an open subset V of G such that e ∈ V
and

Cx(V ) = xV x−1 ⊆ W(4.8.3)

for every x ∈ E. If E has only finitely many elements, then this condition can
be obtained from the continuity of Cx for each x ∈ E. If W is invariant under
conjugations, then V = W satisfies (4.8.3) for every x ∈ G. If there is a local
base for the topology of G at e consisting of open sets that are invariant under
conjugations, then it follows that C(G) is equicontinuous at e.
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Conversely, suppose that C(G) is equicontinuous at e, and let us show that
there is a local base for the topology of G at e consisting of open sets that are
invariant under conjugations. Let an open subset W of G with e ∈ W be given,
so that there is an open subset V of G such that e ∈ V and (4.8.3) holds for
every x ∈ G. Equivalently, (4.8.3) says that

V ⊆ x−1 W x(4.8.4)

for every x ∈ G. Of course, ∩
x∈G

(x−1 W x)(4.8.5)

is automatically invariant under conjugations. This set contains e, because
e ∈ W , and is contained in W , because we can take x = e in the intersection.
We also have that V is contained in (4.8.5), by (4.8.4). Let W0 be the interior
of (4.8.5), so that e ∈ W0 and W0 ⊆ W . It is easy to see that W0 is invariant
under conjugations, as desired.

Let E be a right-invariant totally bounded subset of G, and let us check that
C(E) is equicontinuous at e. Let an open subset W of G with e ∈ W be given,
and let U1, U2, U3 be open subsets of G that contain e and satisfy

U1 U2 U3 ⊆ W.(4.8.6)

In particular, this means that

y U2 y
−1 ⊆ W(4.8.7)

for every y ∈ U1 ∩U−1
3 . Because E is right-invariant totally bounded, there are

finitely many elements b1, . . . , bn of G such that

E ⊆
n∪

j=1

((U1 ∩ U−1
3 ) bj),(4.8.8)

as in Section 4.3. Put

V =

n∩
j=1

(b−1
j U2 bj),(4.8.9)

which is an open set that contains e. Let x ∈ E be given, so that x can be
expressed as y bj for some y ∈ U1 ∩ U−1

3 and 1 ≤ j ≤ n. Observe that

xV x−1 = y bj V b−1
j y−1 ⊆ y U2 y

−1 ⊆ W,(4.8.10)

as desired.

4.9 Local compactness and total boundedness

A topological space X is said to be locally compact if for every x ∈ X there is
an open set U ⊆ X and a compact set K ⊆ X such that x ∈ U and U ⊆ K. If
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X is Hausdorff, then it is well known that compact subsets of X are closed sets.
In this case, if U ⊆ K ⊆ X and K is compact, then it follows that the closure
U of U in X is contained in K. This implies that U is compact, because closed
sets contained in compact sets are compact as well. Thus local compactness of
a Hausdorff topological space X is often formulated equivalently as saying that
for every x ∈ X there is an open set U ⊆ X such that x ∈ U and U is compact.

Now let X be a set with a semimetric d(·, ·). Let us say that X is locally to-
tally bounded if for every x ∈ X there is an r > 0 such that the open ball B(x, r)
in X centered at x with radius r with respect to d(·, ·) is totally bounded with
respect to d(·, ·). If X is locally compact with respect to the topology deter-
mined by d(·, ·), then X is locally totally bounded with respect to d(·, ·), because
compact subsets of X are totally bounded, and subsets of totally bounded sets
are totally bounded.

Let G be a topological group. In order to check that G is locally compact,
it suffices to find an open set U ⊆ G and a compact set K ⊆ G such that e ∈ U
and U ⊆ K, by continuity of translations. If {e} is a closed set in G, so that G
is Hausdorff as a topological space, then this is the same as saying that there is
an open set U ⊆ G such that e ∈ U and the closure U of U in G is compact.

Let us say that G is locally totally bounded as a topological group if there is
an open set U ⊆ G such that e ∈ U and U is either left or right-invariant totally
bounded in G, as a topological group. Of course, if U is left or right-invariant
totally bounded in G, then U−1 is right or left-invariant totally bounded in G,
respectively. This implies that U ∩ U−1 is both left and right-invariant totally
bounded in G. Thus G is locally totally bounded as a topological group if and
only if there is an open set U ⊆ G such that e ∈ U and U is both left and
right totally bounded in G. In this situation, we get that for each x ∈ G, xU is
left-invariant totally bounded in G, U x is right-invariant totally bounded in G,
and hence (xU) ∩ (U x) is both left and right-invariant totally bounded in G.

If G is locally compact, then G is locally totally bounded as a topological
group, because compact subsets of G are left and right-invariant totally bounded
in G. If the topology on G is determined by a semimetric d(·, ·) that is invariant
under left or right translations, then G is locally totally bounded as a topological
group if and only if G is locally totally boounded with respect to d(·, ·). More
precisely, this holds if and only if there is a positive real number r such that
the open ball in G centered at e with radius r with respect to d(·, ·) is totally
bounded with respect to d(·, ·). This condition automatically implies that every
open ball in G with radius r with respect to d(·, ·) is totally bounded with
respect to d(·, ·), using invariance of d(·, ·) under left or right translations, as
appropriate.

4.10 Cauchy sequences and topological groups

Let X be a set, and let dX be a semimetric on X. If {xj}∞j=1 is a Cauchy
sequence in X with respect to dX , then the set of xj ’s, j ∈ Z+, is totally
bounded with respect to dX . More precisely, for each r > 0, all but finitely
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many terms in the sequence are contained in a ball of radius r.
Let Y be another set with a semimetric dY , and let f be a uniformly con-

tinuous mapping from X into Y . If a sequence {xj}∞j=1 of elements of X is a
Cauchy sequence with respect to dX , then it is easy to see that {f(xj)}∞j=1 is a
Cauchy sequence in Y with respect to dY .

Let G be a topological group, and let {xj}∞j=1 be a sequence of elements of
G. Let us say that {xj}∞j=1 satisfies the left-invariant Cauchy condition if for
every open set U ⊆ G with e ∈ U there is a positive integer L such that

x−1
j xl ∈ U(4.10.1)

for every j, l ≥ L. Equivalently, (4.10.1) means that

xl ∈ xj U(4.10.2)

for every j, l ≥ L. Similarly, {xj}∞j=1 satisfies the right-invariant Cauchy condi-
tion if for every open set U ⊆ G with e ∈ U there is an L ∈ Z+ such that

xl x
−1
j ∈ U(4.10.3)

for every j, l ≥ L. This is the same as saying that

xl ∈ U xj(4.10.4)

for every j, l ≥ L, as before. IfG is commutative, then the left and right-invarant
Cauchy conditions are the same. One can check that {xj}∞j=1 satisfies the left-

invariant Cauchy condition if and only if {x−1
j }∞j=1 satisfies the right-invariant

Cauchy condition.
Suppose that {xj}∞j=1 satisfies the left-invariant Cauchy condition. This

implies that the set of xj ’s, j ∈ Z+, is left-invariant totally bounded in G. If d
is a left-invariant semimetric on G that is compatible with the topology on G at
e, then {xj}∞j=1 is a Cauchy sequence with respect to d. If M is a collection of
left-invariant semimetrics on G that determines the same topology on G, then
{xj}∞j=1 satisfies the left-invariant Cauchy condition in G as a topological group
if and only if {xj}∞j=1 is a Cauchy sequence with respect to M. Let Y be a set
with a semimetric dY , and let f be a mapping fromG into Y that is left-invariant
uniformly continuous. If {xj}∞j=1 satisfies the left-invariant Cauchy condition,
then {f(xj)}∞j=1 is a Cauchy sequence in Y with respect to dY . Similarly, let H
be another topological group, and let ϕ be a continuous homomorphism from
G into H. If {xj}∞j=1 satisfies the left-invariant Cauchy condition in G, then
{ϕ(xj)}∞j=1 satisfies the left-invariant Cauchy condition in H. Of course, there
are analogous statements for the right-invariant Cauchy condition.



Chapter 5

Equicontinuity and
isometrization

5.1 Pointwise equicontinuity

Let X be a nonempty topological space, and let Y be a set with a semimetric
dY . Also let E be a collection of mappings from X into Y , and let x be an
element of X. As usual, E is said to be equicontinuous at x if for every ϵ > 0
there is an open set U ⊆ X such that x ∈ U and

dY (f(x), f(w)) < ϵ(5.1.1)

for every f ∈ E and w ∈ U . This condition implies that each f ∈ E is continuous
at x, with respect to the topology determined on Y by dY . If E has only finitely
many elements, each of which is continuous at x, then E is equicontinuous at x.

Suppose for the moment that each element of E is bounded onX with respect
to dY on Y , as in Section 2.1. Let θ(f, g) be the supremum semimetric on the
space B(X,Y ) of bounded mappings from X into Y corresponding to dY , as
before. Suppose that E is totally bounded as a subset of B(X,Y ) with respect
to θ, as in Section 4.2. This means that for each r > 0, E is contained in the
union of finitely many sets with diameter less than or equal to r with respect
to θ, as before. If each element of E is continuous at x, then it follows that E is
equicontinuous at x, by a standard argument.

Now let E be any collection of mappings fromX into Y that is equicontinuous
at every x ∈ X. Let ϵ > 0 be given, so that for each x ∈ X there is an
open set U(x, ϵ) ⊆ X such that x ∈ U(x, ϵ) and (5.1.1) holds for every f ∈ E
and w ∈ U(x, ϵ). Suppose that X is compact, so that there are finitely many
elements x1, . . . , xn of X such that

X ⊆
n∪

j=1

U(xj , ϵ).(5.1.2)

71
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If f, g ∈ E , then

dY (f(w), g(w)) < 2 ϵ+ max
1≤j≤n

dY (f(xj), g(xj))(5.1.3)

for every w ∈ X. More precisely, if w ∈ X, then w ∈ U(xj , ϵ) for some j,
1 ≤ j ≤ n, by (5.1.2). In this case, we have that

dY (f(w), g(w)) ≤ dY (f(w), f(xj)) + dY (f(xj), g(xj)) + dY (g(xj), g(w))

< 2 ϵ+ dY (f(xj), g(xj)),(5.1.4)

using (5.1.1) for f and g in the second step, with x = xj . This implies (5.1.3),
as desired. Note that the elements of E are bounded as mappings from X to Y
in this situation. Using (5.1.4), we get that

θ(f, g) ≤ 2 ϵ+ max
1≤j≤n

dY (f(xj), g(xj)),(5.1.5)

by taking the supremum of the left side of (5.1.3) over w ∈ X.
Put

E(x) = {f(x) : f ∈ E}(5.1.6)

for each x ∈ X, which is a subset of Y . Suppose now that E(x) is totally
bounded with respect to dY on Y for each x ∈ X, as in Section 4.2 again. In
particular, this holds automatically when Y is totally bounded with respect to
dY . This implies that for each j = 1, . . . , n, E(xj) can be expressed as the union
of finitely many subsets with diameter less than or equal to ϵ. Equivalently, this
means that for each j = 1, . . . , n, E can be expressed as the union of finitely
many subsets, where

dY (f(xj), g(xj)) ≤ ϵ(5.1.7)

for each f , g in the same subset. Using this, one can express E as the union of
finitely many subsets, where

max
1≤j≤n

dY (f(xj), g(xj)) ≤ ϵ(5.1.8)

for each f , g in the same subset. Combining this with (5.1.5), we get that

θ(f, g) ≤ 3 ϵ(5.1.9)

when f , g are in the same one of these finitely many subsets of E . This means
that E is totally bounded as a subset of B(X,Y ) with respect to θ, as in the
usual Arzela–Ascoli type of arguments.

5.2 Uniform equicontinuity

Let X, Y be nonempty sets with semimetrics dX , dY , respectively, let A be a
subset of X, and let E be a collection of mappings from X into Y . Let us say
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that E is uniformly equicontinuous along A if for every ϵ > 0 there is a δ > 0
such that

dY (f(x), f(w)) < ϵ(5.2.1)

for every f ∈ E , x ∈ A, and w ∈ X with dX(x,w) < δ. This implies that
each element of E is uniformly continuous along A as a mapping from X into
Y , as in Section 2.2. If E has only finitely many elements, each of which is
uniformly continuous as a mapping from X into Y along A, then E is uniformly
equicontinuous along A.

If A = X, then we may simply say that E is uniformly equicontinuous on X.
If E is uniformly equicontinuous along a subset A of X, then the restrictions of
the elements of E to A are uniformly equicontinuous on A, with respect to the
restriction of dX to A.

If A consists of a single point, then uniform equicontinuity along A is the
same as equicontinuity at that point, as in the previous section. If E is uniformly
equicontinuous along any subset A of X, then E is equicontinuous at each point
in A. If A has only finitely many elements, and E is equicontinuous at each
point in A, then E is uniformly equicontinuous along A.

Suppose for the moment that each element of E is bounded on X with
respect to dY . Let θ(f, g) be the supremum semimetric on the space B(X,Y )
of bounded mappings from X into Y corresponding to dY again, as in Section
2.1. Suppose that E is totally bounded with respect to θ, as in Section 4.2. If
each element of E is uniformly continuous along a subset A of X as a mapping
from X into Y , then one can check that E is uniformly equicontinuous along
A. This is analogous to the argument for pointwise equicontinuity mentioned
in the previous section.

Let E be any uniformly equicontinuous collection of mappings from X into
Y . Let ϵ > 0 be given, so that there is a δ > 0 such that (5.2.1) holds for every
f ∈ E and x,w ∈ X with dX(x,w) < δ. Suppose now that X is totally bounded
with respect to dX , so that there are finitely many elements x1, . . . , xn of X
such that

X ⊆
n∪

j=1

BX(xj , δ).(5.2.2)

Here BX(x, r) denotes the open ball in X centered at a point x ∈ X with radius
r > 0 with respect to dX . Under these conditions, we have that

dY (f(w), g(w)) < 2 ϵ+ max
1≤j≤n

dY (f(xj), g(xj))(5.2.3)

for every f, g ∈ E and w ∈ X. Indeed, if w ∈ X, then dX(xj , w) < δ for some
j = 1, . . . , n, by (5.2.2). This implies that (5.1.4) holds in this situation, now
using (5.2.1) for f and g in the second step, with x = xj . It follows that (5.2.3)
holds for every f, g ∈ E and w ∈ X, as desired. Note that the elements of E
are bounded as mappings from X to Y in this case. As before, we can take the
supremum of the left side of (5.2.3) over w ∈ X to get that

θ(f, g) ≤ 2 ϵ+ max
1≤j≤n

dY (f(xj), g(xj))(5.2.4)
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for every f, g ∈ E .
Let E(x) ⊆ Y be as in (5.1.6) for each x ∈ X again. Suppose that E(x) is

totally bounded in Y with respect to dY for every x ∈ X, as in Section 4.2,
in addition to the hypotheses in the preceding paragraph. In particular, this
means that E(xj) is totally bounded in Y for each j = 1, . . . , n. Using this
and (5.2.4), we get that E can be expressed as a union of finitely many subsets,
each of which has diameter less than or equal to 3 ϵ with respect to θ, as in the
previous section. This implies that E is totally bounded as a subset of B(X,Y )
with respect to θ, as before.

Now let E be any collection of mappings from X into Y , and suppose that E
is equicontinuous at each point in a subset A of X, with respect to the topology
determined on X by dX . This means that for each ϵ > 0 and x ∈ X there is
a δ > 0 such that (5.2.1) holds for every f ∈ E and w ∈ X with dX(x,w) < δ.
If A is compact with respect to the topology determined by dX , then it follows
that E is uniformly equicontinuous along A, by a standard argument. This is
very similar to the argument used to show that if a mapping f from X into Y
is continuous at each point in A, then f is uniformly continuous along A, as in
Section 2.2.

5.3 Some reformulations

Let X, Y be sets with semimetrics dX , dY , respectively, and let E be a col-
lection of mappings from X into Y . Also let α be a monotonically increasing
nonnegative real-valued function on [0,∞) such that α(0) = 0, and suppose that

α(dY (f(x), f(x
′))) ≤ dX(x, x′)(5.3.1)

for every x, x′ ∈ X. If
dY (f(x), f(x

′)) ≥ ϵ(5.3.2)

for some ϵ > 0, f ∈ E , and x, x′ ∈ X, then we have that

dX(x, x′) ≥ α(ϵ),(5.3.3)

by (5.3.1). Equivalently, if
dX(x, x′) < α(ϵ)(5.3.4)

for some ϵ > 0 and x, x′ ∈ X, then

dY (f(x), f(x
′)) < ϵ(5.3.5)

for every f ∈ E . If α > 0 on (0,∞), then it follows that E is uniformly equicon-
tinuous on X.

Put

αE(ϵ) = inf{dX(x, x′) : x, x′ ∈ X, dY (f(x), f(x
′)) ≥ ϵ for some f ∈ E}(5.3.6)

for each ϵ > 0. This is interpreted as being +∞ when there are no x, x′ ∈ X
such that (5.3.2) holds for some f ∈ E . Let us put αE(0) = 0, which is the same
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as (5.3.6) when X and E are nonempty. Observe that α increases monotonically
on [0,∞), because the set whose infimum is taken on the right side of (5.3.6)
gets smaller as ϵ increases. By construction,

αE(dY (f(x), f(x
′))) ≤ dX(x, x′)(5.3.7)

for every x, x′ ∈ X and f ∈ E . It is easy to see that E is uniformly equicontinuous
on X if and only if

αE(ϵ) > 0(5.3.8)

for every ϵ > 0. Of course, one can replace αE(ϵ) with its minimum with any
fixed positive real number to get a function that is finite on [0,∞).

Suppose that X, Y , and E are nonempty, and put

β−
E (r) = sup{dY (f(x), f(x′)) : f ∈ E , x, x′ ∈ X, dX(x, x′) < r}(5.3.9)

for every positive real number r, and

βE(r) = sup{dY (f(x), f(x′)) : f ∈ E , x, x′ ∈ X, dX(x, x′) ≤ r}(5.3.10)

for every nonnegative real number r. These suprema are defined as nonnega-
tive extended real numbers, and the sets whose suprema are being taken are
nonempty, because one can take x = x′. These sets get larger as r increases, so
that (5.3.9) and (5.3.10) increase monotonically in r. If 0 ≤ r < t < ∞, then

βE(r) ≤ β−
E (t) ≤ βE(t).(5.3.11)

Note that βE(0) = 0 automatically when dX is a metric on X. If E is uniformly
equicontinuous on X, then

βE(r) < ∞ when r ≥ 0 is sufficiently small(5.3.12)

and
βE(0) = lim

r→0+
βE(r) = 0.(5.3.13)

In the other direction, if

β−
E (r) < ∞ when r > 0 is sufficiently small(5.3.14)

and
lim

r→0+
β−
E (r) = 0,(5.3.15)

then E is uniformly equicontinuous on X. Of course, the equivalence of (5.3.12),
(5.3.13) and (5.3.14), (5.3.15) follows directly from (5.3.11).

Let β be a nonnegative extended real-valued function on [0,∞), and suppose
that

dY (f(x), f(x
′)) ≤ β(dX(x, x′))(5.3.16)

for every f ∈ E and x, x′ ∈ X. If

β(r) < ∞ when r ≥ 0 is sufficiently small(5.3.17)
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and

β(0) = lim
r→0+

β(r) = 0,(5.3.18)

then E is uniformly equicontinuous on X. Put

β̃(r) = sup{β(t) : 0 ≤ t ≤ r},(5.3.19)

for each nonnegative real number r, where the supremum is defined as a non-
negative extended real number. Note that β̃ increases monotonically on [0,∞),
by construction, and that

βE(r) ≤ β̃(r)(5.3.20)

for every r ≥ 0, because of (5.3.16). If (5.3.17) and (5.3.18) hold, then

β̃(r) < ∞ when r ≥ 0 is sufficiently small(5.3.21)

and

β̃(0) = lim
r→0+

β̃(r) = 0.(5.3.22)

This implies that (5.3.12) and (5.3.13) hold, because of (5.3.20). Of course,
(5.3.16) holds automatically when β = βE , in which case (5.3.17) and (5.3.18)
correspond to (5.3.12) and (5.3.13).

5.4 Connection with semi-ultrametrification

Let X, Y be sets with semimetrics dX , dY , respectively, and let E be a collection
of mappings fromX into Y again. Suppose that E is equicontinuous with respect
to dX , dY , so that for each ϵ > 0 there is a δ(E , ϵ) > 0 such that

dY (f(x), f(x
′)) < ϵ(5.4.1)

for every f ∈ E and x, x′ ∈ X with dX(x, x′) < δ(E , ϵ). Let dX,u, dY,u be the
semi-ultrametrifications of dX , dY on X, Y , respectively, as in Section 3.8. If
f ∈ E , then it follows that

dY,u(f(x), f(x
′)) < ϵ(5.4.2)

for every x, x′ ∈ X with dX,u(x, x
′) < δ(E , ϵ), as in Section 3.9. Thus E is also

uniformly equicontinuous with respect to dX,u, dY,u on X, Y , respectively.
Alternatively, let α be a monotonically increasing nonnegative real-valued

function on [0,∞) such that α(0) = 0 and

α(dY (f(x), f(x
′))) ≤ dX(x, x′)(5.4.3)

for every f ∈ E and x, x′ ∈ X. This implies that

α(dY,u(f(x), f(x
′))) ≤ dX,u(x, x

′)(5.4.4)
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for every f ∈ E and x, x′ ∈ X, as in Section 3.10. If E is uniformly equicontinu-
ous with respect to dX , dY on X, Y , respectively, then we can choose α so that
α > 0 on (0,∞), as in the previous section. In this case, (5.4.4) implies that E
is uniformly equicontinuous with respect to dX,u, dY,u on X, Y , respectively, as
before.

Let r be a positive real number, and let β−
E (r) be as in (5.3.9). If f ∈ E and

x, x′ ∈ X satisfy dX,u(x, x
′) < r, then

dY,u(f(x), f(x
′)) ≤ β−

E (r),(5.4.5)

as in Section 3.10. Put

β−
E,u(r) = sup{dY,u(f(x), f(x′)) : f ∈ E , x, x′ ∈ X, dX,u(x, x

′) < r},(5.4.6)

where the supremum is defined as a nonnegative extended real number. This is
the analogue of β−

E (r) using dX,u, dY,u instead of dX , dY , and we have that

β−
E,u(r) ≤ β−

E (r),(5.4.7)

by (5.4.5). If E is uniformly equicontinuous with respect to dX , dY on X, Y ,
respectively, then (5.3.14) and (5.3.15) hold, as in the previous section. This
implies that

β−
E,u(r) < ∞ when r > 0 is sufficiently small(5.4.8)

and
lim

r→0+
βE,u(r) = 0,(5.4.9)

by (5.4.7). It follows that E is uniformly equicontinuous with respect to dX,u,
dY,u on X, Y , respectively, as before.

Let β be a nonnegative extended real-valued function on [0,∞), and suppose

that (5.3.16) holds for every f ∈ E and x, x′ ∈ X. Also let β̃(r) be defined for
r ≥ 0 as in (5.3.19), and put

β̃+(t) = inf{β̃(r) : t < r < ∞}(5.4.10)

for every nonnegative real number t, where the infimum is defined as a nonneg-
ative extended real number. If f ∈ E , then

dY,u(f(x), f(x
′)) ≤ β̃+(dX(x, x′))(5.4.11)

for every x, x′ ∈ X, as in Section 3.10 again. If β satisfies (5.3.17) and (5.3.18),

then β̃ satisfies (5.3.21) and (5.3.22), as before. In this case,

β̃+(t) < ∞ when t ≥ 0 is sufficiently small,(5.4.12)

and
β̃+(0) = lim

t→0+
β̃+(t) = 0.(5.4.13)

If E is uniformly equicontinuous with respect to dX , dY on X, Y , respectively,
then one can find β satisfying (5.3.16), (5.3.17), and (5.3.18), as in the previous
section. We have also seen that (5.4.11), (5.4.12), and (5.4.13) imply that E is
uniformly equicontinuous with respect to dX,u, dY,u on X, Y , respectively.
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5.5 Equicontinuity on topological groups

Let G be a topological group, and let Y be a set with a semimetric dY . Also
let E be a collection of mappings from X into Y , and let A be a subset of G.
Let us say that E is left-invariant uniformly equicontinuous along A if for every
ϵ > 0 there is an open subset U of G that contains the identity element e and
has the property that

dY (f(a), f(a x)) < ϵ(5.5.1)

for every f ∈ E , a ∈ A, and x ∈ U . Similarly, E is right-invariant uniformly
equicontinuous along A if for every ϵ > 0 there is an open subset U of G with
e ∈ U and

dY (f(a), f(x a)) < ϵ(5.5.2)

for every f ∈ E , a ∈ A, and x ∈ U . We may simply say that E is left or
right-invariant equicontinuous on G, as appropriate, when A is the whole group
G.

If A has only one element, then left and right-invariant uniform equiconti-
nuity along A are both the same as equicontinuity at that point, as in Section
5.1. If E is left or right-invariant uniformly equicontinuous along any subset A
of G, then E is equicontinuous at each point in A. If A has only finitely many
elements, and E is equicontinuous at each point in A, then E is both left and
right-invariant uniformly equicontinuous along A.

If E is left or right-invariant uniformly equicontinuous along a subset A of
G, then each element of E if left or right-invariant uniformly continuous along
A, as appropriate, as in Section 4.1. If E has only finitely many elements, each
of which is left-invariant uniformly continuous along A, then E is left-invariant
uniformly equicontinuous along A, and similarly for the right-invariant case.

Put
f̃(x) = f(x−1)(5.5.3)

for every f ∈ E and x ∈ G, and

Ẽ = {f̃ : f ∈ E}.(5.5.4)

One can check that E is left-invariant uniformly equicontinuous along a subset
A of G if and only if Ẽ is right-invariant uniformly equicontinuous along A−1.
Similarly, E is right-invariant uniformly equicontinuous along A if and only if Ẽ
is left-invariant uniformly equicontinuous along A−1.

Suppose for the moment that the topology on G is determined by a semimet-
ric d, and let A be a subset of G again. If d is invariant under left translations
on G, then E is left-invariant uniformly equicontinuous along A if and only if E
is uniformly equicontinuous along A with respect to d, as in Section 5.2. Sim-
ilarly, if d is invariant under right translations on G, then E is right-invariant
uniformly equicontinuous along A if and only if E is uniformly equicontinuous
along A with respect to d.

If A is a compact subset of G, and E is equicontinuous at each point in A,
then E is both left and right-invariant uniformly equicontinuous along A. This
is very similar to the case of a single mapping, as in Section 4.1.
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Suppose for the moment that there is a local base for the topology of G at e
consisting of open sets that are invariant under conjugation, as in Section 4.7.
In this situation, left and right-invariant uniform equicontinuity conditions are
equivalent.

Suppose for the moment again that every element of E is bounded on G
with respect to dY , and let θ(f, g) be the supremum semimetric on the space
B(G,Y ) of bounded mappings from G into Y corresponding to dY , as in Section
2.1. Suppose also that E is totally bounded with respect to θ, as in Section 4.2.
If every element of E is left-invariant uniformly continuous along a subset A of
G, then one can verify that E is left-invariant uniformly equicontinuous along
A. This is analogous to arguments mentioned in Sections 5.1 and 5.2. Similarly,
if every element of E is right-invariant uniformly continuous along A, then E is
right-invariant uniformly continuous along A in this case.

Suppose now that G is left-invariant totally bounded, as in Section 4.3. This
is equivalent to right-invariant total boundedness, because G is automatically
symmetric about e. It follows that there is a local base for the topology of G
at e that is invariant under conjugations, as in Sections 4.7 and 4.8. Suppose
that E is left-invariant uniformly equicontinuous on G, and let ϵ > 0 be given.
Thus there is an open subset U of G such that e ∈ U and (5.5.1) holds for every
f ∈ E , a ∈ G, and x ∈ U . Left-invariant total boundedness implies that there
are finitely many elements a1, . . . , an of G such that

G =

n∪
j=1

(aj U).(5.5.5)

Let us check that

dY (f(w), g(w)) < 2 ϵ+ max
1≤j≤n

dY (f(aj), g(aj))(5.5.6)

for every f, g ∈ E and w ∈ G. If w ∈ G, then w ∈ aj U for some j, 1 ≤ j ≤ n,
and hence

dY (f(w), g(w)) ≤ dY (f(w), f(aj)) + dY (f(aj), g(aj)) + dY (g(aj), g(w))

< 2 ϵ+ dY (f(aj), g(aj))(5.5.7)

for every f, g ∈ E . This uses (5.5.1) for f and g in the second step, with a = aj .
This implies (5.5.6). Note that the elements of E are bounded as mappings from
G into Y under these conditions. It follows that

θ(f, g) ≤ 2 ϵ+ max
1≤j≤n

dY (f(aj), g(aj))(5.5.8)

for every f, g ∈ E , by taking the supremum of the left side of (5.5.6) over w. If

E(a) = {f(a) : f ∈ E}(5.5.9)

is totally bounded in Y with respect to dY for each a ∈ G, then one can use
(5.5.8) to get that E is totally bounded in B(G,Y ) with respect to θ, as in
Sections 5.1 and 5.2.
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Suppose that E is left-invariant uniformly equicontinuous on G again, and
that dY is a semi-ultrametric on Y . Let ϵ > 0 be given, so that there is an
open subset U of G such that e ∈ U and (5.5.1) holds for every f ∈ E , a ∈ G,
and x ∈ U . As usual, we may as well that U be symmetric about e too. It
follows that for each positive integer n, (5.5.1) holds for every f ∈ E , a ∈ G,
and x ∈ Un, as in Section 4.5. If

U0 =

∞∪
n=1

Un,(5.5.10)

then U0 is an open subgroup of G, and (5.5.1) holds for every f ∈ E , a ∈ G,
and x ∈ U0, as before.

Let B0 be the collection of open subgroups of G, and let τ0 be the topology
on G associated to B0 as in Section 4.5. Remember that the given topology
τ on G is at least as strong as τ0. If dY is a semi-ultrametric on Y , and E is
left-invariant uniformly equicontinuous on G with respect to τ , then E is left-
invariant uniformly equicontinuous on G with respect to τ0, by the remarks in
the preceding paragraph. Similarly, if dY is a semi-ultrametric on Y , and E
is right-invariant uniformly equicontinuous on G with respect to τ , then E is
right-invariant uniformly equicontinuous on G with respect to τ0.

Let dY be any semimetric on Y , and let dY,u be the semi-ultrametrification
of dY on Y , as in Section 3.8. Thus dY,u ≤ dY on Y , as before. If E is left or
right-invariant uniformly equicontinuous with respect to τ on G and dY on Y ,
then E is left or right-invariant uniformly equicontinuous with respect to τ on
G and dY,u on Y , as appropriate. This implies that E is left or right-invariant
uniformly equicontinuous with respect to τ0 on G and dY,u, as appropriate, by
the previous remarks.

5.6 Equicontinuity and pointwise convergence

Let X be a nonempty set, and let Y be a topological space. The space M(X,Y )
of all mappings from X into Y is the same as the Cartesian product of a family
of copies of Y indexed by X. The topology of pointwise convergence on M(X,Y )
corresponds in this way to the product topology on the product of copies of Y
indexed by X, using the given topology on Y . If x1, . . . , xn are finitely many
elements of X, and V1, . . . , Vn are open subsets of Y , then

U = {f ∈ M(X,Y ) : f(xj) ∈ Vj for each j = 1, . . . , n}(5.6.1)

is an open subset of M(X,Y ) with respect to the topology of pointwise conver-
gence. The collection of open sets U of this form is a base for the topology of
pointwise convergence on M(X,Y ).

Let dY be a semimetric on Y , and let us suppose from now on in this section
that Y is equipped with the topology determined by dY . If x ∈ X, then

dx,Y (f, g) = dY (f(x), g(x))(5.6.2)
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defines a semimetric on M(X,Y ). In this situation, the topology of pointwise
convergence on M(X,Y ) is the same as the topology determined on M(X,Y )
by the collection of semimetrics

{dx,Y : x ∈ X},(5.6.3)

as in Section 1.5. Note that (5.6.3) is nondegenerate on M(X,Y ) when dY is a
metric on Y . If dY is a semi-ultrametric on Y , then (5.6.2) is a semi-ultrametric
on M(X,Y ) for every x ∈ X.

Suppose now that X is equipped with a topology, and let E be a collection
of mappings from X into Y . Suppose also that E is equicontinuous at a point
x ∈ X, as in Section 5.1. This is equivalent to saying that for each ϵ > 0 there
is an open set U(ϵ) ⊆ X such that x ∈ U(ϵ) and

dY (f(x), f(w)) ≤ ϵ(5.6.4)

for every f ∈ E and w ∈ U(ϵ). Let E be the closure of E inM(X,Y ), with respect
to the topology of pointwise convergence. Observe that (5.6.4) also holds for
every f ∈ E and w ∈ U(ϵ), because f can be approximated by elements of E on
x, w. Thus E is equicontinuous at x too. In particular, this implies that every
f ∈ E is continuous at x.

Suppose that E is equicontinuous at every x ∈ X, so that E is equicontin-
uous at every x ∈ X as well. Thus E is contained in the space C(X,Y ) of
continuous mappings from X into Y . The topology induced on C(X,Y ) by
the topology of pointwise convergence on M(X,Y ) may be described as the
topology of pointwise convergence on C(X,Y ). If x ∈ X, then the restriction
of (5.6.2) to f, g ∈ C(X,Y ) defines a semimetric on C(X,Y ), as in Section 1.1.
The topology determined on C(X,Y ) by the collection of the restrictions of
these semimetrics to C(X,Y ) is the same as the topology induced on C(X,Y )
by the corresponding topology on M(X,Y ), as in Section 1.5. This is another
description of the topology of pointwise convergence on C(X,Y ). Note that
E is the same as the closure of E in C(X,Y ) with respect to the topology of
pointwise convergence in this case.

Similarly, let us refer to the topology induced on E by the topology of point-
wise convergence on M(X,Y ) or C(X,Y ) as the topology of pointwise con-
vergence on E . If x ∈ X, then the restriction of (5.6.2) to f, g ∈ E defines a
semimetric on E , as before. The topology determined on E by the collection of
the restrictions of these semimetrics to E is the same as the topology induced
on E by the corresponding topology on M(X,Y ) or C(X,Y ), as in Section 1.5
again. This is another description of the topology of pointwise convergence on
E .

Let A be a nonempty subset of X, so that

{dx,Y : x ∈ A}(5.6.5)

is a nonempty collection of semimetrics on M(X,Y ). This collection determines
a topology on M(X,Y ), as in Section 1.5. Let us refer to this as the topology of
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pointwise convergence along A on M(X,Y ). The topologies induced on C(X,Y )
and E by this topology on M(X,Y ) may be described as the topologies of point-
wise convergence along A on these spaces. These are the same as the topologies
determined by the corresponding collections of restrictions of dx,Y , x ∈ X, to
these spaces, as before. Of course, the topology of pointwise convergence on
M(X,Y ) is automatically at least as strong as the topology of pointwise con-
vergence along A, and similarly for the corresponding topologies on C(X,Y )
and E . If A is dense in X and dY is a metric on Y , then the collection of
restrictions of dx,Y , x ∈ A, to C(X,Y ) is nondegenerate on C(X,Y ).

Suppose that A is dense in X, and let x ∈ X and ϵ > 0 be given. As before,
there is an open set U(ϵ) ⊆ X such that x ∈ U(ϵ) and (5.6.4) holds for every
f ∈ E and w ∈ U(ϵ). It follows that

dx,Y (f, g) = dY (f(x), g(x))

≤ dY (f(x), f(w)) + dY (f(w), g(w)) + dY (g(w), g(x))(5.6.6)

≤ 2 ϵ+ dw,Y (f, g)

for every f, g ∈ E and w ∈ U(ϵ). In particular, we can take w ∈ A∩U(ϵ), because
A is dense in X. This implies that the topology of pointwise convergence on E
is the same as the topology of pointwise convergence along A on E .

Let B(X,Y ) be the space of bounded mappings from X into Y with respect
to dY on Y , as in Section 2.1, and let θ be the supremum semimetric on B(X,Y )
corresponding to dY on Y . Thus

dx,Y (f, g) = dY (f(x), g(x)) ≤ θ(f, g)(5.6.7)

for every f, g ∈ B(X,Y ) and x ∈ X. Let us refer to the topology induced on
B(X,Y ) by the topology of pointwise convergence onM(X,Y ) as the topology of
pointwise convergence on B(X,Y ). This is the same as the topology determined
on B(X,Y ) by the collection of restrictions of the semimetrics dx,Y , x ∈ X, to
B(X,Y ), as usual. The topology determined on B(X,Y ) by the supremum
semimetric θ is automatically at least as strong as the topology of pointwise
convergence, because of (5.6.7).

Suppose for the moment that X is compact, so that continuous mappings
from X into Y are automatically bounded with respect to dY on Y . Under these
conditions, one can check that the topology determined on E by the restriction
of θ(f, g) to f, g ∈ E is the same as the topology of pointwise convergence on E .
This uses some of the remarks in Section 5.1.

Let dX be a semimetric on X, and suppose that X is equipped with the
topology determined by dX . Also let A be a subset of X, and suppose now that
E is uniformly equicontinuous along A with respect to dX on X, as in Section
5.2. This is equivalent to saying that for each ϵ > 0 there is a δ(ϵ) > 0 such
that (5.6.4) holds for every f ∈ E , x ∈ A, and w ∈ X with dX(x,w) ≤ δ(ϵ).
As before, the same condition holds for every element of the closure E of E in
M(X,Y ), with respect to the topology of pointwise convergence. Thus E is
uniformly equicontinuous along A as well.
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Suppose that E is uniformly equicontinuous on X with respect to dX , which
corresponds to taking A = X in the preceding paragraph. Thus E is uniformly
equicontinuous on X too, and in particular every element of E is uniformly
continuous on X. Suppose that X is also totally bounded with respect to X, as
in Section 4.2. If f ∈ E , then it follows that f(X) is totally bounded in Y , and
hence that f(X) is bounded in Y . One can check that the topology determined
on E by the restriction of the supremum semimetric θ(f, g) to f, g ∈ E is the
same as the topology of pointwise convergence on E in this situation, using some
of the remarks in Section 5.2.

Let G be a topological group, and let E be a collection of mappings from
G into Y . Also let A be a subset of G, and suppose that E is left-invariant
uniformly equicontinuous along A, as in the previous section. This is equivalent
to saying that for each ϵ > 0 there is an open subset U(ϵ) of G that contains
the identity element e and has the property that

dY (f(a), f(a x)) ≤ ϵ(5.6.8)

for every f ∈ E , a ∈ A, and x ∈ U(ϵ). Let E be the closure of E in the
space of all mappings from G into Y , with respect to the topology of pointwise
convergence, as before. It is easy to see that (5.6.8) holds for every f ∈ E ,
a ∈ A, and x ∈ U , by approximating f by elements of E on a, a x. Hence
E is left-invariant uniformly equicontinuous along A too. Of course, there are
analogous statements for right-invariant uniform equicontinuity along A.

Suppose that E is left-invariant uniformly equicontinuous on G, so that E
is left-invariant uniformly equicontinuous on G as well. Suppose also that G is
left-invariant totally bounded, as in Section 4.3. In this case, every f ∈ E is
bounded on G, because f is left-invariant uniformly continuous on G. Let θ be
the supremum semimetric on the space of all bounded mappings from G into
Y corresponding to dY . One can verify that the topology determined on E by
the restriction of θ(f, g) to f, g ∈ E is the same as the topology of pointwise
convergence on E , using some of the remarks in the previous section.

5.7 Continuity of compositions

Let W , X be nonempty sets, and let Y be a nonempty topological space. Thus
the topologies of pointwise convergence can be defined on the spaces M(W,Y ),
M(X,Y ) of all mappings from W , X into Y , respectively, as in the previous
section. If b is a mapping from W into X, and f is a mapping from X into Y ,
then the composition f ◦ b of b and f defines a mapping from W into Y , so that

Rb(f) = f ◦ b(5.7.1)

defines a mapping from M(X,Y ) into M(W,Y ). It is easy to see that Rb is
continuous with respect to the topologies of pointwise convergence on M(W,Y ),
M(X,Y ).

Let Z be another topological space, so that the topology of pointwise con-
vergence can also be defined on the space M(X,Z) of all mappings from X into
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Z. If a is a mapping from Y into Z, and f is a mapping from X into Y , then
the composition a ◦ f of a and f defines a mapping from X into Z, so that

La(f) = a ◦ f(5.7.2)

defines a mapping from M(X,Y ) into M(X,Z). If a is a continuous mapping
from Y into Z, then one can check that La is continuous with respect to the
topologies of pointwise convergence on M(X,Y ), M(X,Z).

Let dY be a semimetric on Y , and suppose for the moment that Y is equipped
with the topology determined by dY . If x ∈ X, then

dx,X,Y (f, g) = dY (f(x), g(x))(5.7.3)

defines a semimetric on M(X,Y ), as in (5.6.2). Similarly, if w ∈ W , then

dw,W,Y (h, k) = dY (h(w), k(w))(5.7.4)

defines a semimetric on M(W,Y ). The topologies of pointwise convergence
on M(X,Y ) and M(X,Y ) are the same as the topologies determined by the
collections of semimetrics dx,X,Y , x ∈ X, on M(X,Y ) and dw,W,Y , w ∈ W , on
M(W,Y ), respectively, as before. If b is a mapping from W into X and f , g are
mappings from X into Y , then

dw,W,Y (Rb(f), Rb(g)) = dw,W,Y (f ◦ b, g ◦ b)(5.7.5)

= dY (f(b(w)), g(b(w))) = db(w),X,Y (f, g)

for every w ∈ W .
Let dZ be a semimetric on Z, and suppose that Z is equipped with the

topology determined by dZ . If x ∈ X and y ∈ Y , then

dx,X,Z(f, g) = dZ(f(x), g(x))(5.7.6)

defines a semimetric on M(X,Z), and

dy,Y,Z(h, k) = dZ(h(y), k(y))(5.7.7)

defines a semimetric on M(Y, Z). As usual, the topologies of pointwise conver-
gence on M(X,Z) and M(Y, Z) are the same as the topologies determined by
the collections of semimetrics dx,X,Z , x ∈ X, on M(X,Z), and dy,Y,Z , y ∈ Y ,
on M(Y, Z), respectively.

If f is a mapping from X into Y , and g is a mapping from Y into Z, then
their composition g ◦ f defines a mapping from X into Z. Thus

(f, g) 7→ g ◦ f(5.7.8)

defines a mapping from M(X,Y )×M(Y, Z) into M(X,Z). Let f0 be a mapping
from X into Y , let g0 be a mapping from Y into Z, and let x be an element of
X. Observe that

dx,X,Z(g ◦ f, g0 ◦ f0) = dZ(g(f(x)), g0(f0(x)))

≤ dZ(g(f(x)), g(f0(x))) + dZ(g(f0(x)), g0(f0(x)))(5.7.9)

= dZ(g(f(x)), g(f0(x))) + df0(x),Y,Z(g, g0)
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for all mappings f , g from X, Y into Y , Z, respectively.
Let E be a collection of mappings from Y into Z, and suppose that E is

equicontinuous at f0(x), as in Section 5.1. Let ϵ > 0 be given, so that there is
an open set V (ϵ) ⊆ Y such that f0(x) ∈ V (ϵ) and

dZ(g(f0(x)), g(y)) < ϵ(5.7.10)

for every g ∈ E and y ∈ V (ϵ). If f is a mapping from X into Y ,

f(x) ∈ V (ϵ),(5.7.11)

and g ∈ E , then

dx,X,Z(g ◦ f, g0 ◦ f0) = dZ(g(f(x)), g0(f0(x)))(5.7.12)

< ϵ+ dZ(g(f0(x)), g0(f0(x)))

= ϵ+ df0(x),Y,Z(g, g0),

as in (5.7.9). If we also ask that

df0(x),Y,Z(g, g0) = dZ(g(f0(x)), g0(f0(x))) < ϵ,(5.7.13)

then we get that

dx,Y,Z(g ◦ f, g0 ◦ f0) = dZ(g(f(x)), g0(f0(x))) < 2 ϵ.(5.7.14)

Suppose now that E is equicontinuous at every point y ∈ Y . As in the
previous section, the topology of pointwise convergence on E is the topology
induced on E by the topology of pointwise convergence on M(Y, Z). Using the
previous remarks, one can check that the restriction of (5.7.8) to M(X,Y )× E
is continuous as a mapping into M(X,Z), using the topologies of pointwise con-
vergence onM(X,Y ), E , andM(X,Z), and the corresponding product topology
on M(X,Y )× E .

5.8 Continuity of inverses

Let X be a nonempty set with a semimetric d. If f , g are mappings from X
into itself and x ∈ X, then put

dx(f, g) = d(f(x), g(x)),(5.8.1)

as in (5.6.2). This defines a semimetric on the space M(X) = M(X,X) of all
mappings from X into itself, as before. The topology of pointwise convergence
on M(X) is the same as the topology determined on M(X) by the collection of
these semimetrics dx, x ∈ X, as in Section 1.5.

Let E1 be a collection of one-to-one mappings from X onto itself. Also let
f0, f be elements of E1, and let x be an element of X. Observe that

dx(f
−1, f−1

0 ) = d(f−1(x), f−1
0 (x))(5.8.2)

= d(f−1(f0(f
−1
0 (x))), f−1(f(f−1

0 (x)))).
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Put
E2 = {f−1 : f ∈ E1},(5.8.3)

and suppose that E2 is equicontinuous at x, as in Section 5.1. Let ϵ > 0 be
given, so that there is a δ > 0 such that

d(f−1(x), f−1(y)) < ϵ(5.8.4)

for every f ∈ E1 and y ∈ X with d(x, y) < δ. If f ∈ E1 satisfies

d(f0(f
−1
0 (x)), f(f−1

0 (x))) = d(x, f(f−1
0 (x))) < δ,(5.8.5)

then it follows that

d(f−1(f0(f
−1
0 (x))), f−1(f(f−1

0 (x))))(5.8.6)

= d(f−1(x), f−1(f(f−1
0 (x)))) < ϵ,

by taking y = f(f−1
0 (x)) in (5.8.4). Equivalently, this means that

dx(f
−1, f−1

0 ) = d(f−1(x), f−1
0 (x)) < ϵ,(5.8.7)

by (5.8.2).
As before, the topology of pointwise convergence on E1 is the topology in-

duced on E1 by the topology of pointwise convergence on M(X). Suppose that
E2 is equicontinuous at every point in X. One can check that f 7→ f−1 is con-
tinuous as a mapping from E1 into M(X), with respect to the corresponding
topologies of pointwise convergence, using the previous remarks.

Let H(X) be the group of all homeomorphisms from X onto itself, as in Sec-
tion 2.3. Let G be a subgroup of H(X), and suppose that G is equicontinuous
at every point in X. Under these conditions, the group operations on G are
continuous, with respect to the topology of pointwise convergence. More pre-
cisely, the continuity of composition of mappings as multiplication on G follows
from the remarks in the previous section. Similarly, the continuity of f 7→ f−1

on G follows from the remarks in the preceding paragraph.
Let IH(X) be the subgroup of H(X) consisting of one-to-one mappings from

X onto itself that are isometries with respect to d, as in Section 2.7. Of course,
IH(X) is equicontinuous on X. Note that the semimetrics (5.8.1) are invariant
under left translations on IH(X).

5.9 Isometrization

Let X be a nonempty set with a semimetric d, and let G be a subgroup of the
group H(X) of homeomorphisms on X. Put

d1(x, y) = sup
f∈G

d(f(x), f(y))(5.9.1)

for every x, y ∈ X, where the supremum is defined as a nonnegative extended
real number. Clearly

d(x, y) ≤ d1(x, y)(5.9.2)
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for every x, y ∈ X, because the identity mapping on X is an element of G. If
there is a nonnegative real number A such that

d(x, y) ≤ A(5.9.3)

for every x, y ∈ X, then we have that

d1(x, y) ≤ A(5.9.4)

for every x, y ∈ X. One can check that (5.9.1) satisfies the requirements of
a semimetric on X, except that it may take values in [0,∞]. In particular, if
(5.9.3) holds, then (5.9.1) is a semimetric on X. If d is a semi-ultrametric on
X, then (5.9.1) satisfies the ultrametric version of the triangle inequality too.

Let x, y ∈ X and g ∈ G be given. Observe that

d1(g(x), g(y)) = sup
f∈G

d(f(g(x)), f(g(y))) = sup
f∈G

d(f(x), f(y)) = d(x, y),(5.9.5)

because G is a group with respect to composition, by hypothesis. Of course, if
d is already invariant under G, then d1 = d.

Suppose that G is equicontinuous at every point in X with respect to d, as
in Section 5.1. This means that for each x ∈ X and ϵ > 0 there is a δ(x, ϵ) > 0
such that

d(f(x), f(y)) < ϵ(5.9.6)

for every f ∈ G and y ∈ X with d(x, y) < δ(x, ϵ). It follows that

d1(x, y) ≤ ϵ(5.9.7)

for every y ∈ X with d(x, y) < δ(x, ϵ). Similarly, if G is uniformly equicontin-
uous on X with respect to d, as in Section 5.2, then for each ϵ > 0 there is a
δ(ϵ) > 0 such that (5.9.6) holds for every f ∈ G and x, y ∈ X with d(x, y) < δ(ϵ).
This implies that (5.9.7) holds for every x, y ∈ X with d(x, y) < δ(ϵ).

Suppose that (5.9.1) is finite for every x, y ∈ X, so that it defines a semimet-
ric on X. Of course, the topology determined on X by d1 is automatically at
least as strong as the topology determined on X by d, because of (5.9.2). If G
is equicontinuous at every point in X with respect to d, then d1 determines the
same topology on X as d, by the remarks in the preceding paragraph. Similarly,
if G is uniformly equicontinuous on X with respect to d, then d1 is uniformly
equivalent to d on X, as in Section 2.9.

Let A be a positive real number, and put

d′(x, y) = min(d(x, y), A)(5.9.8)

for every x, y ∈ X. We have seen that this defines a semimetric on X, which
is uniformly equivalent to d on X. If G is equicontinuous at a point x ∈ X
with respect to d, then it is easy to see that G is also equicontinuous at x with
respect to d′. Similarly, if G is uniformly equicontinuous on X with respect to
d, then G is uniformly equicontinuous with respect to d′.
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5.10 Invariantization and isometrization

Let X be a nonempty set with a semimetric d again, and put

dx(f, g) = d(f(x), g(x))(5.10.1)

for all x ∈ X and mappings f , g from X into itself, as in (5.8.1). Also let G be
a subgroup of the group H(X) of homeomorphisms from X onto itself, and let
d1(x, y) be defined for x, y ∈ X as in (5.9.1). Put

d1,x(f, g) = d1(f(x), g(x))(5.10.2)

for all x ∈ X and mappings f , g from X into itself, which is the analogue of
(5.10.1) for d1 in place of d. Note that

dx(f, g) ≤ d1,x(f, g)(5.10.3)

for all x ∈ X and mappings f , g from X into itself, by (5.9.2). If a ∈ G, then

d1,x(a ◦ f, a ◦ g) = d1(a(f(x)), a(g(x)))(5.10.4)

= d1(f(x), g(x)) = d1,x(f, g)

for all x ∈ X and mappings f , g from X into itself, using (5.9.5) in the second
step.

Equivalently,

d1,x(f, g) = sup
a∈G

d(a(f(x)), a(g(x))) = sup
a∈G

dx(a ◦ f, a ◦ g)(5.10.5)

for all x ∈ X and mappings f , g from X into itself. This uses the definitions
(5.10.2) of d1,x and (5.9.1) of d1 in the first step, and the definition (5.10.1) of
dx in the second step. If f, g ∈ G, then the right side of (5.10.5) corresponds to
the left-invariantization of dx on G, as in (4.6.1).

Suppose that G is equicontinuous at every point in X with respect to d, as
in Section 5.1, and let ϵ > 0 be given. Thus for each w ∈ X there is a δ(w, ϵ) > 0
such that

d1(w, y) ≤ ϵ(5.10.6)

for every y ∈ X with d(w, y) < δ(x, ϵ), as in the previous section. It follows that

d1,x(f, g) = d1(f(x), g(x)) ≤ ϵ(5.10.7)

for all x ∈ X and mappings f , g from X into itself such that

dx(f, g) = d(f(x), g(x)) < δ(f(x), ϵ),(5.10.8)

by taking w = f(x) and y = g(x) in the previous statement. Similarly, if G is
uniformly equicontinuous on X with respect to d, as in Section 5.2, then there
is a δ(ϵ) > 0 such that (5.10.6) holds for every w, y ∈ X with d(w, y) < δ(ϵ), as
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before. This implies that (5.10.7) holds for all x ∈ X and mappings f , g from
X into itself such that

dx(f, g) = d(f(x), g(x)) < δ(ϵ).(5.10.9)

Suppose that d1 is finite onX, so that d1 defines a semimetric onX, as in the
previous section. This implies that (5.10.2) is finite for all x ∈ X and mappings
f , g from X into itself. In this case, (5.10.2) defines a semimetric on the space
M(X) of mappings from X into itself for every x ∈ X, as before. Of course,
for each x ∈ X, the topology determined on M(X) by d1,x is at least as strong
as the topology determined by dx, because of (5.10.3). If G is equicontinuous
at every point in X with respect to d, then dx and d1,x determine the same
topology on M(X) for every x ∈ X, by the remarks in the preceding paragraph.
Similarly, if G is uniformly equicontinuous on X with respect to d, then dx and
d1,x are uniformly equivalent on M(X) for every x ∈ X, as in Section 2.9, by
(5.10.3) and the remarks in the preceding paragraph. These statements could
also be obtained from the corresponding statements for d and d1 on X in the
previous section.

5.11 Some related continuity conditions

Let (X, τ) be a nonempty topological space, and let G be a subgroup of the
group H(X) of homeomorphisms from X onto itself. Also let x be an element
of X, and let Ex be the evaluation map on G associated to x, defined by

Ex(f) = f(x)(5.11.1)

for every f ∈ G. If U is a subset of X, then

E−1
x (U) = {f ∈ G : f(x) ∈ U}(5.11.2)

is a subset of G. Thus

τx = {E−1
x (U) : U ∈ τ}(5.11.3)

is a collection of subsets of G, which defines a topology on G. Of course, Ex is
a continuous mapping from G into X with respect to this topology.

If g ∈ G and U ⊆ X, then

g E−1
x (U) = {g ◦ f : f ∈ E−1

x (U)}(5.11.4)

is the left translate of E−1
x (U) by g, as usual. Note that f ∈ E−1

x (U) if and only
if g(f(x)) ∈ g(U), which is the same as saying that g ◦ f ∈ E−1

x (g(U)). Thus

g E−1
x (U) = E−1

x (g(U)).(5.11.5)

It follows that τx is invariant under left translation by g, because g is a homeo-
morphism on X.
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Similarly,
E−1

x (U) g = {f ◦ g : f ∈ E−1
x (U)}(5.11.6)

is the right translate of E−1
x (U) by g. Observe that

E−1
x (U) g = Eg−1(x)(U).(5.11.7)

This means that right translation by g sends τx onto τg−1(x).
Suppose now that τ is determined by a semimetric d on X. As before,

dx(f, g) = d(f(x), g(x)) = d(Ex(f), Ex(g))(5.11.8)

defines a semimetric on G. It is easy to see that τx is the topology determined
on G by dx in this situation.

Suppose that G is equicontinuous at x, as in Section 5.1. Thus for each ϵ > 0
there is a δ(x, ϵ) > 0 such that

d(a(x), a(y)) < ϵ(5.11.9)

for every a ∈ G and y ∈ X with d(x, y) < δ(x, ϵ). It follows that

d(a(x), a(f(x))) < ϵ(5.11.10)

for every a, f ∈ G with d(x, f(x)) < δ(x, ϵ), by taking y = f(x) in (5.11.9). This
is the same as saying that

d(Ex(a), Ex(a ◦ f)) < ϵ(5.11.11)

for every a, f ∈ G with d(x, f(x)) < δ(x, ϵ). Note that d(x, f(x)) is the same as
the distance between f and the identity mapping on X with respect to dx.

Under these conditions, we get that Ex satisfies the left-invariant version of
uniform continuity on G with respect to τx, as in Section 4.1. Although this
was discussed earlier in the context of topological groups, the same definition
makes sense here.

If G is equicontinuous at every point in X, then G is a topological group
with respect to the topology of pointwise convergence, as in Section 5.8. In this
case, Ex is left-invariant uniformly continuous on G with respect to the topology
of pointwise convergence for every x ∈ X.

5.12 Separability

Remember that a topological space X is said to be separable if there is a dense
set E ⊆ X such that E has only finitely or countably many elements. If there is
a base for the topology of X with only finitely or countably many elements, then
it is well known that X is separable. If the topology on X is determined by a
semimetric d(·, ·), and if X is separable, then there is a base for the topology of
X with only finitely or countably many elements. More precisely, if E ⊆ X is a
dense set, then the collection of open balls Bd(x, 1/j) with x ∈ E and j ∈ Z+ is
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a base for the topology of E. If E has only finitely or countably many elements,
then there are only finitely or countably many of these balls.

Let X be a set with a semimetric d(·, ·) again. If E ⊆ X is a dense set with
respect to d(·, ·), then it is easy to see that∪

x∈E

Bd(x, r) = X(5.12.1)

for every r > 0. Suppose now that E1, E2, E3, . . . is a sequence of subsets of X
such that ∪

x∈Ej

Bd(x, 1/j) = X(5.12.2)

for every j ≥ 1. Under these conditions, one can check that
∪∞

j=1 Ej is dense in
X. If Ej also has only finitely or countably many elements for each j ≥ 1, then∪∞

j=1 Ej has only finitely or countably many elements, and hence X is separable
with respect to the topology determined by d(·, ·). Using these remarks, one can
verify that X is separable with respect to the topology determined by d(·, ·) if
and only if for every r > 0, X can be covered by finitely or countably many
sets with diameter less than or equal to r. In particular, if X is totally bounded
with respect to d, then X is separable.

Let X, Y be nonempty sets with semimetrics dX , dY , respectively, and let
θ(f, g) be the supremum semimetric on the space B(X,Y ) of bounded mappings
from X into Y corresponding to dY , as in Section 2.1. Suppose that X is totally
bounded with respect to dX , so that every uniformly continuous mapping f from
X into Y is bounded, because f(X) is totally bounded in Y with respect to dY .
If Y is separable with respect to dY , then the space UC(X,Y ) of uniformly
continuous mappings from X into Y is separable with respect to θ. To see this,
it suffices to show that UC(X,Y ) can be covered by finitely or countably many
sets with arbitrarily small diameter with respect to θ, as before. Of course, if
X is compact, then X is totally bounded, and every continuous mapping from
X into Y is uniformly continuous.

Let ϵ > 0 be given, and for each δ > 0, let E(ϵ, δ) be the collection of
uniformly continuous mappings f from X into Y such that

dY (f(x), f(w)) < ϵ(5.12.3)

for every x,w ∈ X with dX(x,w) < δ. Let δ > 0 be given, and let E(δ) be a
finite subset of X such that

X ⊆
∪

x∈E(δ)

BX(x, δ),(5.12.4)

where BX(x, δ) is the open ball in X centered at x with radius δ with respect to
dX . Of course, this uses the hypothesis that X be totally bounded with respect
to dX . If f, g ∈ E(ϵ, δ), then

θ(f, g) ≤ 2 ϵ+ max
x∈E(δ)

dY (f(x), g(x)),(5.12.5)
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as in (5.2.4). Thus
θ(f, g) ≤ 3 ϵ(5.12.6)

whenever f, g ∈ E(ϵ, δ) satisfy

max
x∈E(δ)

dY (f(x), g(x)) ≤ ϵ.(5.12.7)

Because Y is separable, Y can be covered by finitely or countably many
subsets with diameter less than or equal to ϵ with respect to dY . Using this,
one can cover E(ϵ, δ) by finitely or countably many subsets, in such a way that
(5.12.7) holds when f and g are in the same subset. This implies that E(ϵ, δ) can
be covered by finitely or countably many subsets with diameter less than or equal
to 3 ϵ with respect to θ, as in the preceding paragraph. Note that UC(X,Y )
is the union of E(ϵ, 1/l) over l ∈ Z+, by the definition of uniform continuity.
It follows that UC(X,Y ) can be covered by finitely or countably many subsets
with diameter less than or equal to 3 ϵ with respect to θ, as desired.



Chapter 6

Absolute values, norms, and
seminorms

6.1 Absolute value functions

A nonnegative real-valued function | · | defined on a field k is said to be an
absolute value function on k if it satisfies the following three conditions. First,

|x| = 0 if and only if x = 0.(6.1.1)

Second,
|x y| = |x| |y| for every x, y ∈ k.(6.1.2)

Third,
|x+ y| ≤ |x|+ |y| for every x, y ∈ k.(6.1.3)

The standard absolute value functions on the fields R of real numbers and C of
complex numbers are absolute value functions in this sense.

Let | · | be a nonnegative real-valued function on a field k that satisfies (6.1.1)
and (6.1.2). It is easy to see that |1| = 1, where the first 1 is the multiplicative
identity element in k, and the second 1 is the multiplicative identity element in
R. This uses the fact that 0 < |1| = |12| = |1|2. Similarly, if x ∈ k satisfies
xn = 1 for some positive integer n, then |x| = 1, because |x|n = |xn| = 1. In
particular, it follows that | − 1| = 1, where −1 is the additive inverse of 1 in k,
because (−1)2 = 1.

If | · | is an absolute value function on k, then

d(x, y) = |x− y|(6.1.4)

defines a metric on k. This uses the fact that | − 1| = 1, to get that (6.1.4) is
symmetric in x and y.

A nonnegative real-valued function | · | on k is said to be an ultrametric
absolute value function on k if it satisfies (6.1.1), (6.1.2), and

|x+ y| ≤ max(|x|, |y|) for every x, y ∈ k.(6.1.5)

93
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This implies that | · | is an absolute value function on k, because (6.1.5) implies
(6.1.3). In this case, it is easy to see that (6.1.4) is an ultrametric on k.

The trivial absolute value function on k is defined by putting |0| = 0 and
|x| = 1 when x ̸= 0. This is an ultrametric absolute value function on k, for
which the corresponding ultrametric (6.1.4) is the discrete metric on k.

If p is a prime number, then the p-adic absolute value of a rational number
x is defined as follows. Of course, we put |0|p = 0. Otherwise, if x ̸= 0, then x
can be expressed as pj (a/b) for some integers a, b, and j, where a, b ̸= 0 and
neither a nor b is an integer multiple of p, and we put

|x|p = p−j .(6.1.6)

This defines an ultrametric absolute value function on the field Q of rational
numbers, and the corresponding ultrametric

dp(x, y) = |x− y|p(6.1.7)

is known as the p-adic metric on Q.
Let k be a field, and let |·| be an absolute value function on k. The associated

metric (6.1.4) determines a topology on k, as usual. One can check that addition
and multiplication on k are continuous, in the sense that the corresponding
mappings from k × k into k are continuous, using the product topology on
k × k. Similarly, x 7→ 1/x defines a continuous mapping from k \ {0} into
itself, with respect to the topology induced on k \ {0} by the topology on k
just mentioned. Thus k is a topological group with respect to addition and the
topology determined by the metric associated to | · |, and k \{0} is a topological
group with respect to multiplication and the corresponding induced topology.

If k is not already complete with respect to (6.1.4), then one can pass to a
completion, by standard arguments. More precisely, the completion of k is also
a field with an absolute value function, which contains k as a dense subfield.
The completion of k is unique up to a suitable isomorphic equivalence. If | · |
is an ultrametric absolute value function on k, then the extension of | · | to the
completion of k is an ultrametric absolute value function on the completion of
k. If p is a prime number, then the field Qp of p-adic numbers is obtained by
completing Q with respect to the p-adic absolute value.

6.2 Equivalent absolute values

If a is a positive real number with a ≤ 1, then it is well known that

(r + t)a ≤ ra + ta(6.2.1)

for all nonnegative real numbers r and t. To see this, observe first that

max(r, t) ≤ (ra + ta)1/a.(6.2.2)

Using this, we get that

r + t ≤ max(r, t)1−a (ra + ta) ≤ (ra + ta)(1−a)/a+1 = (ra + ta)1/a,(6.2.3)
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which implies (6.2.1), as desired.
If d(x, y) is a semimetric on a set X, then it is easy to see that

d(x, y)a(6.2.4)

also defines a semimetric on X when 0 < a ≤ 1, using (6.2.1). Similarly, if
d(x, y) is a metric on X, then (6.2.4) is a metric on X when 0 < a ≤ 1. If
d(x, y) is a semi-ultrametric on X, then one can check that (6.2.4) is a semi-
ultrametric on X for every a > 0. If d(x, y) is an ultrametric on X, then it
follows that (6.2.4) is an ultrametric on X for every a > 0.

Let d(x, y) be a semimetric on X, and suppose that (6.2.4) is also a semi-
metric on X for some a > 0. Observe that

Bda(x, ra) = Bd(x, r)(6.2.5)

for every x ∈ X and r > 0, where these open balls in X corresponding to d(·, ·)
and (6.2.4) are as defined in (1.1.5). Similarly,

Bda(x, ra) = Bd(x, r)(6.2.6)

for every x ∈ X and r ≥ 0, where these closed balls are defined as in (1.1.6). In
particular, the topologies determined on X by d(·, ·) and (6.2.4) are the same,
because of (6.2.5).

Let k be a field, and let | · | be an absolute value function on k. It is easy to
see that

|x|a(6.2.7)

defines an absolute value function on k too when 0 < a ≤ 1, using (6.2.1). If
| · | is an ultrametric absolute value function on k, then (6.2.7) is an ultrametric
absolute value function for every a > 0. If (6.2.7) is an absolute value function
on k for some a > 0, then the associated metric is the same as the ath power of
the metric associated to | · |.

Let | · |1 and | · |2 be absolute value functions on k. If there is a positive real
number a such that

|x|2 = |x|a1(6.2.8)

for every x ∈ k, then | · |1 and | · |2 are said to be equivalent on k. This implies
that the topologies determined on k by the metrics associated to | · |1 and | · |2
are the same, as before. Conversely, if the topologies determined on k by the
metrics associated to | · |1 and | · |2 are the same, then it is well known that | · |1
and | · |2 are equivalent on k in this sense.

6.3 The archimedean property and discreteness

Let k be a field. If x ∈ k and n is a positive integer, then let n · x be the sum
of n x’s in k. An absolute value function | · | on k is said to be archimedean if
there are n ∈ Z+ such that |n · 1| can be arbitrarily large, where 1 refers to the
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multiplicative identity element in k. Thus | · | is non-archimedean on k if there
is a finite upper bound for |n · 1|, n ∈ Z+. If |n · 1| > 1 for some n ∈ Z+, then
| · | is archimedean on k, because

|nj · 1| = |(n · 1)j | = |n · 1|j → ∞(6.3.1)

as j → ∞. This means that |n · 1| ≤ 1 for every n ∈ Z+ when | · | is non-
archimedean on k. If | · | is an ultrametric absolute value function on k, then
it is easy to see that | · | is non-archimedean on k. Conversely, if | · | is non-
archimedean on k, then it is well known that | · | is an ultrametric absolute value
function on k.

A famous theorem of Ostrowski states that an absolute value function on the
field Q of rational numbers is either equivalent to the standard absolute value
function, or is the trivial absolute value function, or is equivalent to the p-adic
absolute value function for some prime p. Another famous theorem of Ostrowski
states that if k is a field with an archimedean absolute value function | · |, and
if k is complete with respect to the associated metric, then k is isomorphic to
R or C, in such a way that | · | corresponds to an absolute value function on R
or C that is equivalent to the standard absolute value function.

Let | · | be an absolute value function on a field k, and observe that

{|x| : x ∈ k, x ̸= 0}(6.3.2)

is a subgroup of the multiplicative group R+ of positive real numbers. If 1 is
not a limit point of (6.3.2) with respect to the standard topology on R, then
| · | is said to be discrete on k. Put

ρ1 = sup{|x| : x ∈ k, |x| < 1},(6.3.3)

so that 0 ≤ ρ1 ≤ 1. One can check that ρ1 = 0 if and only if | · | is the trivial
absolute value function, and that ρ1 < 1 if and only if | · | is discrete on k. If
| · | is nontrivial and discrete on k, then it is not too difficult to show that the
supremum in (6.3.3) is attained, and that (6.3.2) consists of the integer powers
of ρ1.

If k has positive characteristic, then there are only finitely many elements
of k of the form n · 1, and hence | · | is non-archimedean on k. Suppose that | · |
is archimedean on k, so that k has characteristic 0. This implies that there is a
natural embedding of Q into k, so that | · | induces an absolute value function
on Q. This induced absolute value function on Q is archimedean, because | · |
is archimedean on k. The first theorem of Ostrowski mentioned earlier implies
that the induced absolute value function on Q is equivalent to the standard
absolute value function on Q. It follows that | · | is not discrete on k, because
the standard absolute value function on Q is not discrete. If | · | is a discrete
absolute value function on k, then we get that | · | is non-archimedean on k.

Let | · | be an ultrametric absolute value function on a field k. If x, y ∈ k
satisfy

|x− y| < |x|,(6.3.4)
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then
|x| = |y|.(6.3.5)

More precisely,
|y| ≤ max(|x|, |x− y|) = |x|(6.3.6)

when |x−y| ≤ |x|, by the ultrametric version of the triangle inequality. We also
have that

|x| ≤ max(|y|, |x− y|),(6.3.7)

using the ultrametric version of the triangle inequality. If (6.3.4) holds, then
(6.3.7) implies that |x| ≤ |y|, as desired.

6.4 p-Adic integers

Let k be a field, and let | · | be an absolute value function on k. If x ∈ k and n
is a nonnegative integer, then

(1− x)

n∑
j=0

xj = 1− xn+1,(6.4.1)

where xj is interpreted as being the multiplicative identity element 1 in k when
j = 0, as usual. If x ̸= 1, then it follows that

n∑
j=0

xj =
1− xn+1

1− x
(6.4.2)

for every n ≥ 0. If |x| < 1, then we get that

n∑
j=0

xj → 1

1− x
(6.4.3)

as n → ∞ with respect to the metric on k associated to | · |, because |xn+1| =
|x|n+1 → 0 as n → ∞.

Let p be a prime number, and let | · |p be the p-adic absolute value function
on the field Qp of p-adic numbers, whose restriction to Q was defined in Section
6.1. If y is an integer, then x = p y satisfies

|x|p = p−1 |y|p ≤ 1/p < 1,(6.4.4)

so that the remarks in the preceding paragraph can be applied. It follows that
1/(1 − x) can be approximated by integers with respect to the p-adic metric,
because

∑n
j=0 x

j is an integer for every nonnegative integer n.
If w ∈ Q satisfies |w|p ≤ 1, then w can be expressed as a/b, where a and b

are integers, b ̸= 0, and b is not a multiple of p. Note that there is an integer c
such that b c ≡ 1 modulo p, because Z/pZ is a field. Thus b c can be expressed
as 1 − p y for some integer y, and w = a/b = (a c)/(b c) = a c (1 − p y)−1.
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This implies that w can be approximated by integers with respect to the p-adic
metric, because of the corresponding property of (1− p y)−1, mentioned in the
previous paragraph.

The set of p-adic integers is defined by

Zp = {x ∈ Qp : |x|p ≤ 1}.(6.4.5)

This is the same as the closed unit ball in Qp with respect to the p-adic metric,
and in particular this is a closed set with respect to the p-adic metrics. The set
Z of all integers is contained in Zp, by the definition of | · |p on Q. Hence Zp

contains the closure of Z in Qp with respect to the p-adic metric. Let us check
that Zp is in fact the same as the closure of Z in Qp.

By construction, Q is dense in Qp with respect to the p-adic metric, because
Qp is supposed to be the completion of Q. Let z ∈ Zp be given. If w ∈ Qp

satisfies |z − w|p ≤ 1, then |w|p ≤ 1, by the ultrametric version of the triangle
inequality. In particular, we can approximate z by w ∈ Q, because Q is dense
in Qp, as before. This shows that we can approximate z by w ∈ Q with |w|p ≤ 1
with respect to the p-adic metric. We have also seen that w ∈ Q with |w|p ≤ 1
can be approximated by integers with respect to the p-adic metric. It follows
that z can be approximated by integers with respect to the p-adic metric as
well. This implies that Zp is the closure of Z in Qp, as desired.

6.5 The residue field

Let k be a field, and let | · | be an ultrametric absolute value function on k. If
r is a positive real number, then it is easy to see that the open ball

B(0, r) = {x ∈ k : |x| < r}(6.5.1)

in k centered at 0 with radius r with respect to the ultrametric associated to
| · | is a subgroup of k with respect to addition. Similarly, for each nonnegative
real number r, the closed ball

B(0, r) = {x ∈ k : |x| ≤ r}(6.5.2)

in k centered at 0 with radius r is a subgroup of k with respect to addition.
The closed unit ball B(0, 1) is a subring of k, that contains the multiplicative
identity element 1 in k in particular. If r ≤ 1, then (6.5.1) and (6.5.2) are ideals
in B(0, 1).

The quotient
B(0, 1)/B(0, 1)(6.5.3)

is in fact a field, which is the residue field associated to | · | on k. More precisely,
every nonzero element of (6.5.3) comes from an element x of B(0, 1) not in
B(0, 1), which means that |x| = 1. This implies that |1/x| = 1/|x| = 1, so that
1/x is in B(0, 1). The image of 1/x in (6.5.3) is the multiplicative inverse of the
image of x in (6.5.3), as desired. If | · | is the trivial absolute value function on
k, then B(0, 1) = k, B(0, 1) = {0}, and the residue field reduces to k itself.
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Let p be a prime number, and let us consider the case where k is the field Qp

of p-adic numbers, with the p-adic absolute value function |·|p. In this situation,
the closed unit ball is the same as the set Zp of p-adic integers, discussed in the
previous section. In particular, Zp is a subring of Qp, as before. Put

pj Zp = {pj x : x ∈ Zp}(6.5.4)

for each integer j. Equivalently,

pj Zp = {y ∈ Qp : |y|p ≤ p−j}(6.5.5)

is the closed ball in Qp centered at 0 with radius p−j with respect to the p-adic
metric for every j ∈ Z. If x ∈ Qp and x ̸= 0, then |x|p is an integer power of
p, as one can show by approximating x by elements of Q. This implies that all
open and closed balls in Qp centered at 0 with positive radius can be expressed
as pj Zp for some j ∈ Z.

Let j ∈ Z+ be given, and note that pj Zp is an ideal in Zp, so that the
quotient

Zp/p
j Zp(6.5.6)

may be considered as a commutative ring. There is a natural ring homomor-
phism from Z into (6.5.6), which is the composition of the natural inclusion of
Z into Zp with the quotient mapping from Zp onto (6.5.6). One can check that
this ring homomorphism from Z into (6.5.6) is surjective, because Z is dense in
Zp with respect to the p-adic metric. The kernel of this ring homomorphism
from Z onto (6.5.6) is Z ∩ (pj Zp). This is the same as

pj Z = {pj x : x ∈ Z},(6.5.7)

by the definition of | · |p on Q. It follows that (6.5.6) is isomorphic as a ring to
Z/pj Z. The residue field corresponds to taking j = 1, because the open unit
ball in Qp is the same as pZp.

6.6 Local total boundedness

Let k be a field, and let | · | be an absolute value function on k. Let us say that
k is locally totally bounded with respect to | · | if there is a positive real number
r such that B(0, r) is totally bounded with respect to the metric associated to
| · | on k. This is equivalent to saying that k is locally totally bounded with
respect to the metric associated to | · |, or that k is locally totally bounded as a
topological group with respect to addition and the topology determined by the
metric associated to | · |, as in Section 4.9. In particular, if k is locally compact
with respect to the topology determined by the metric associated to | · |, then k
is locally totally bounded with respect to | · |, as before.

If k is complete with respect to the metric associated to | · |, and k is locally
totally bounded with respect to | · |, then k is locally compact. More precisely,
if k is locally totally bounded, then B(0, r1) is totally bounded for some r1 > 0.
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If k is complete, then subsets of k that are both closed and totally bounded are
compact, so that B(0, r1) is compact.

If t ∈ k and E ⊆ k, then put

t E = {t x : x ∈ E}.(6.6.1)

Note that
tB(0, r) = B(0, |t| r)(6.6.2)

for every r > 0 when t ̸= 0, and that

tB(0, r) = B(0, |t| r)(6.6.3)

for every r ≥ 0. If E ⊆ k is compact with respect to the topology determined
by the metric associated to | · |, then t E is compact for every t ∈ k, because
multiplication by t defines a continuous mapping from k into itself. If E ⊆ k is
totally bounded with respect to the metric associated to | · |, then it is easy to
see that t E is totally bounded for every t ∈ k.

If | · | is the trivial absolute value function on k, then the associated metric
is the discrete metric, and k is clearly locally compact. Let us suppose from
now on in this section that | · | is nontrivial on k. This means that there is an
x ∈ k such that x ̸= 0 and |x| ̸= 1. It follows that there are y, z ∈ k such that
0 < |y| < 1 and 1 < |z|, using x and 1/x. Note that

|yj | = |y|j → 0 and |zj | = |z|j → ∞(6.6.4)

as j → ∞.
If k is locally compact with respect to the topology determined by the metric

associated to | · |, then B(0, r0) is compact for some r0 > 0. This implies that
B(0, r) is compact for some arbitrarily large values of r, using (6.6.3) and the
nontriviality of | · | on k. It follows that B(0, r) is compact for every r ≥ 0, and
in fact that all subsets of k that are both closed and bounded are compact.

Similarly, if k is locally totally bounded with respect to | · |, then B(0, r0) is
totally bounded with respect to the metric associated to | · | for some r0 > 0.
Hence B(0, r) is totally bounded for some arbitrarily large values of r, using
(6.6.2) and the nontriviality of | · | on k. This implies that B(0, r) is totally
bounded for every r > 0, and that all bounded subsets of k are totally bounded.

Let us also suppose from now on in this section that | · | is an ultrametric
absolute value function on k. Suppose for the moment that k is locally totally
bounded with respect to | · |. This implies that B(0, 1) is totally bounded with
respect to the metric associated to | · |, as in the preceding paragraph. In
particular, this implies that the residue field associated to | · | has only finitely
many elements. One can also use the total boundedness of B(0, 1) to get that
| · | is discrete on k, by showing that (6.3.3) is strictly less than 1.

Conversely, if the residue field associated to | · | is finite, and if | · | is discrete
on k, then k is locally totally bounded. To see this, let ρ1 be as in (6.3.3) again,
so that 0 < ρ1 < 1. In this case, the finiteness of the residue field implies that
B(0, 1) is the union of finitely many closed balls of radius ρ1. It follows that for
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each j ∈ Z, B(0, ρj1) is the union of finitely many closed balls of radius ρj+1
1 .

One can repeat the process to get that B(0, ρj1) is the union of finitely many

closed balls of radius ρj+l
1 for any l ∈ Z+, as desired.

6.7 Norms and seminorms

Let k be a field with an absolute value function | · |, and let V be a vector space
over k. A nonnegative real-valued function N on V is said to be a seminorm
on V with respect to | · | or k if it satisfies the following two conditions. First,

N(t v) = |t|N(v) for every v ∈ V and t ∈ k.(6.7.1)

Second,
N(v + w) ≤ N(v) +N(w) for every v, w ∈ V.(6.7.2)

Note that (6.7.1) implies that N(0) = 0. If we also have that

N(v) > 0 for every v ∈ V with v ̸= 0,(6.7.3)

then N is said to be a norm on V . Of course, k may be considered as a one-
dimensional vector space over itself, and | · | may be considered as a norm on k
with respect to itself.

A nonnegative real-valued function N on V is said to be a semi-ultranorm
on V with respect to | · | on k if it satisfies (6.7.1) and

N(v + w) ≤ max(N(v), N(w)) for every v, w ∈ V.(6.7.4)

Clearly (6.7.4) implies (6.7.2), so that a semi-ultranorm is a seminorm in par-
ticular. If N satisfies (6.7.3) as well, then N is said to be an ultranorm on V . If
N is a semi-ultranorm on V with respect to | · | on k, and if N(v) > 0 for some
v ∈ V , then it is easy to see that | · | is an ultrametric absolute value function
on k. If | · | is an ultrametric absolute value function on k, then | · | may be
considered as an ultranorm on k with respect to itself, where k is considered as
a vector space over itself.

If N is a seminorm on V with respect to | · | on k, then

d(v, w) = dN (v, w) = N(v − w)(6.7.5)

defines a semi-metric on V , which is a metric on V when N is a norm on V . If
N is a semi-ultranorm on V , then (6.7.5) is a semi-ultrametric in V .

Suppose for the moment that | · | is the trivial absolute value function on k.
The trivial ultranorm is defined on V by putting N(0) = 0 and N(v) = 1 for
every v ∈ V with v ̸= 0. It is easy to see that this is an ultranorm on V , for
which the corresponding ultrametric (6.7.5) is the discrete metric on V .

Let n be a positive integer, and let kn be the space of n-tuples of elements
of k, as usual. This is a vector space over k, with respect to coordinatewise
addition and scalar multiplication. Put

∥v∥1 =

n∑
j=1

|vj |(6.7.6)
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and

∥v∥∞ = max
1≤j≤n

|vj |(6.7.7)

for every v ∈ kn. It is easy to see that (6.7.6) and (6.7.7) are norms on kn with
respect to | · | on k. If | · | is an ultrametric absolute value function on k, then
(6.7.7) is an ultrametric on kn.

Clearly

∥v∥∞ ≤ ∥v∥1 ≤ n ∥v∥∞(6.7.8)

for every v ∈ kn. Let

d1(v, w) = ∥v − w∥1(6.7.9)

and

d∞(v, w) = ∥v − w∥∞(6.7.10)

be the metrics on kn associated to (6.7.6) and (6.7.7) as in (6.7.5). Thus

d∞(v, w) ≤ d1(v, w) ≤ nd∞(v, w)(6.7.11)

for every v, w ∈ kn, by (6.7.8).
Let a be a positive real number, and suppose that | · |a is an absolute value

function on k too. This holds automatically when a ≤ 1, and when | · | is an
ultrametric absolute value function on k, as in Section 6.2. Let V be a vector
space over k again, and let N be a nonnegative real-valued function on V . If N
satisfies (6.7.1), then Na satisfies the analogous condition with respect to | · |a
on k. If N satisfies (6.7.2) and a ≤ 1, then

N(v + w)a ≤ (N(v) +N(w))a ≤ N(v)a +N(w)a(6.7.12)

for every v, w ∈ V , using (6.2.1) in the second step. If N satisfies (6.7.4), then
Na satisfies the analogous condition for every a > 0. Of course, the analogue of
(6.7.5) for Na is the same as the ath power of (6.7.5).

6.8 Invertible matrices

Let R be a ring, and let n be a positive integer. The space Mn(R) of n × n
matrices with entries in R is a ring as well, with respect to entrywise addition
of matrices, and the usual matrix multiplication. Suppose now that R has a
multiplicative identity element e. The corresponding identity matrix I ∈ Mn(R)
is the matrix whose diagonal entries are equal to e and whose off-diagonal entries
are the additive identity element 0 in R. This is the multiplicative identity
element in Mn(R). An element A of Mn(R) is said to be invertible if A has a
multiplicative inverse in Mn(A). The multiplicative group of invertible elements
of Mn(R) is denoted GLn(R).

If R is commutative, then the determinant detA of A ∈ Mn(R) can be
defined as an element of R in the usual way. It is well known that A has a
multiplicative inverse in Mn(R) if and only if detA has a multiplicative inverse
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in R. In this case, A−1 can be given in terms of the entries of A using Cramer’s
rule.

Let k be a field, so that A ∈ Mn(k) is invertible exactly when detA ̸= 0.
Also let | · | be an absolute value function on k, which leads to a metric on k as

before. This leads to a topology on Mn(k), by identifying Mn(k) with kn
2

, and
using the product topology corresponding to the topology determined on k by
the metric associated to | · |. It is easy to see that matrix multiplication is con-
tinuous as a mapping from Mn(k)×Mn(k) into Mn(k), using the corresponding
product topology on the domain. This uses the analogous continuity proper-
ties of addition and multiplication on k. Similarly, the determinant defines a
continuous mapping from Mn(k) into k. In particular, GLn(k) is an open set
in Mn(k), because of the characterization of GLn(k) in terms of the determi-
nant. One can check that A 7→ A−1 is continuous as a mapping from GLn(k)
into itself, with respect to the topology induced on GLn(k) by the one already
mentioned on Mn(k), using Cramer’s rule. Thus GLn(k) is a topological group
with respect to this topology.

If n = 1, then Mn(k) reduces to k, and GLn(k) reduces to k\{0}. Of course,

{x ∈ k : |x| = 1}(6.8.1)

is a subgroup of k \ {0}, and hence a topological group with respect to the
topology induced on (6.8.1) by the usual ones on k or k \ {0}. Note that (6.8.1)
is a closed set in k, and thus a relatively closed set in k \ {0}. If x ∈ k and
x ̸= 0, then

|1− 1/x| = |x− 1|/|x|.(6.8.2)

In particular,
|1− 1/x| = |x− 1|(6.8.3)

when |x| = 1.
Suppose from now on in this section that | · | is an ultrametric absolute value

function on k. If x, y ∈ k, |x| = 1, and |x−y| < 1, then |y| = 1, as in (6.3.5). Let
B(x, r) and B(x, r) be the usual open and closed balls in k centered at x ∈ k
with radii r > 0 with respect to the metric associated to | · |. The previous
statement implies that (6.8.1) is an open set in k, which could also be obtained
from the facts that B(0, 1) is an open set in k, and B(0, 1) is a closed set in k.
More precisely, the previous statement also implies that B(1, 1) is contained in
(6.8.1). If x, y ∈ k, then

|x y − 1| = |x (y − 1) + x− 1| ≤ max(|x| |y − 1|, |x− 1|),(6.8.4)

using the ultrametric version of the triangle inequality in the second step. In
particular,

|x y − 1| ≤ max(|y − 1|, |x− 1|)(6.8.5)

when |x| = 1. One can use (6.8.3), (6.8.5), and the fact that B(1, 1) is contained
in (6.8.1) to get that B(1, r) is a subgroup of (6.8.1) when 0 < r ≤ 1. Similarly,
B(1, r) is a subgroup of (6.8.1) when 0 < r < 1.
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Remember that B(0, 1) is a subring of k. Let n be a positive integer again,
so that Mn(B(0, 1)) is a subring of Mn(k). Of course, I ∈ Mn(B(0, 1)), because
1 ∈ B(0, 1). Note that Mn(B(0, 1)) is both open and closed in Mn(k), because
B(0, 1) is both open and closed in k. The group GLn(B(0, 1)) of invertible
elements of Mn(B(0, 1)) is a subgroup of GLn(k). As before, GLn(B(0, 1))
consists of A ∈ Mn(B(0, 1)) such that detA has a multiplicative inverse in
B(0, 1). It is easy to see that x ∈ B(0, 1) has a multiplicative inverse in B(0, 1)
if and only if |x| = 1, in which case one can use the multiplicative inverse 1/x
of x in k. Thus

GLn(B(0, 1)) = {A ∈ Mn(B(0, 1)) : |detA| = 1}.(6.8.6)

This is both open and closed in Mn(B(0, 1)), because (6.8.1) is both open and
closed in k, and because of the continuity of the determinant.

Consider

{A ∈ Mn(B(0, 1)) : A− I has entries in B(0, r)}(6.8.7)

when 0 < r ≤ 1, and

{A ∈ Mn(B(0, 1)) : A− I has entries in B(0, r)}(6.8.8)

when 0 < r < 1. Clearly I is an element of (6.8.7) and (6.8.8). One can check
that the product of two elements of (6.8.7) is in (6.8.7) too, and similarly for
(6.8.8). If A is in (6.8.7), then one can verify that

detA ∈ B(1, r).(6.8.9)

Similarly, if A is in (6.8.8), then

detA ∈ B(1, r).(6.8.10)

In both cases, one can use Cramer’s rule to get that A−1 is in (6.8.7) or (6.8.8),
as appropriate. It follows that (6.8.7) and (6.8.8) are subgroups of GLn(B(0, 1)),
because B(1, r) is contained in (6.8.1) when 0 < r ≤ 1, and B(0, r) is contained
in (6.8.1) when 0 < r < 1, as before. Note that (6.8.7) and (6.8.8) are each both
open and closed in Mn(B(0, 1)).

6.9 Bounded linear mappings

Let k be a field with an absolute value function | · |, and let V , W be vector
spaces over k. Also let NV , NW be seminorms on V , W , respectively, and with
respect to | · | on k. A linear mapping T from V into W is said to be bounded
with respect to NV , NW if there is a nonnegative real number C such that

NW (T (v)) ≤ C NV (v)(6.9.1)

for every v ∈ V . This implies that

NW (T (u)− T (v)) = NW (T (u− v)) ≤ C NV (u− v)(6.9.2)
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for every u, v ∈ V . In particular, this means that T is uniformly continuous with
respect to the semimetrics on V , W associated to NV , NW , respectively. If | · |
is nontrivial on k, and if T is continuous at 0 with respect to these semimetrics,
then one can check that T is bounded. More precisely, it suffices to know that
NW (T (v)) is bounded on a ball of positive radius in V in this case.

If T is a bounded linear mapping from V into W , then put

∥T∥op = ∥T∥op,VW = inf{C ≥ 0 : (6.9.1) holds},(6.9.3)

where more precisely the infimum is taken over all nonnegative real numbers C
for which (6.9.1) holds. This is the operator seminorm of T associated to NV

and NW . It is easy to see that (6.9.1) holds with C = ∥T∥op, which is to say
that the infimum on the right side of (6.9.3) is attained. Let BL(V,W ) be the
space of bounded linear mappings from V into W . One can check that this is
a vector space over k with respect to pointwise addition and multiplication of
mappings from V into W , and that (6.9.3) defines a seminorm on BL(V,W )
with respect to | · | on k. If NW is a norm on W , then (6.9.3) is a norm on
BL(V,W ). If NW is a semi-ultranorm on W , then (6.9.3) is a semi-ultranorm
on BL(V,W ).

Let Z be another vector space over k, and let NZ be a seminorm on Z with
respect to | · | on k. If T1 is a bounded linear mapping from V into W , and T2

is a bounded linear mapping from W into Z, then it is easy to see that their
composition T2 ◦ T1 is bounded as a linear mapping from V into W , with

∥T2 ◦ T1∥op,V Z ≤ ∥T1∥op,VW ∥T2∥op,WZ .(6.9.4)

More precisely,

NZ((T2 ◦ T1)(v)) = NZ(T2(T1(v))) ≤ ∥T2∥op,WZ NW (T1(v))

≤ ∥T1∥op,VW ∥T2∥op,WZ NV (v)(6.9.5)

for every v ∈ V .
Let n be a positive integer, and suppose that V = kn, the space of n-tuples

of elements of k. Let e1, . . . , en be the standard basis vectors in kn, so that the
jth coordinate of el is equal to 1 when j = l, and to 0 when j ̸= l. If T is a
linear mapping from kn into W , then

NW (T (v)) = NW

( n∑
j=1

vl T (el)
)
≤

n∑
l=1

|vl|NW (T (el))(6.9.6)

for every v ∈ kn. If we take kn to be equipped with the norm ∥v∥1 =
∑n

j=1 |vj |,
then it follows that T is a bounded linear mapping from kn intoW , with operator
seminorm less than or equal to

max
1≤l≤n

NW (T (el)).(6.9.7)

In fact, the operator seminorm of T is equal to (6.9.7), because ∥el∥1 = 1 for
each l = 1, . . . , n.
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Let us now take kn to be equipped with the norm ∥v∥∞ = max1≤j≤n |vj |.
Let T be a linear mapping from kn into W again, and observe that T is bounded
with respect to ∥ · ∥∞ on kn, with operator seminorm less than or equal to

n∑
l=1

NW (T (el)).(6.9.8)

If NW is a semi-ultranorm on W with respect to | · | on k, then

NW (T (v)) = NW

( n∑
l=1

vl T (el)
)
≤ max

1≤l≤n
(|vl|NW (T (el)))(6.9.9)

for every v ∈ kn. This implies that the operator seminorm of T with respect to
∥·∥∞ on kn is less than or equal to (6.9.7). As before, the operator seminorm of T
is actually equal to (6.9.7) in this case, because ∥el∥∞ = 1 for every l = 1, . . . , n.

6.10 Submultiplicative seminorms

Let k be a field, and let A be an (associative) algebra over k. This means that A
is a vector space over k with a binary operation of multiplication, where multipli-
cation is both bilinear over k and satisfies the associative law. If multiplication
on A also satisfies the commutative law, then A is said to be a commutative
algebra over k.

Let | · | be an absolute value function on k, and let N be a seminorm on A
with respect to | · | on A. If

N(x y) ≤ N(x)N(y)(6.10.1)

for every x, y ∈ A, then N is said to be submultiplicative on A.
Suppose that A has a multiplicative identity element e. If N is submulti-

plicative on A, then
N(e) = N(e2) ≤ N(e)2.(6.10.2)

This implies that N(e) ≥ 1 when N(e) > 0. Otherwise, if N(e) = 0, then
N(x) = 0 for every x ∈ A, by (6.10.1).

Let V be a vector space over k, and let NV be a seminorm on V with respect
to |·| on k. Also let BL(V ) = BL(V, V ) be the space of bounded linear mappings
from V into itself, with respect to NV on both the domain and the range. This
is an algebra over k, with composition of linear mappings as multiplication.
The corresponding operator seminorm ∥ · ∥op is submultiplicative on BL(V ), as
in the preceding section. Of course, the identity mapping I = IV on V is the
multiplicative identity element in BL(V ). It is easy to see that I is bounded
with respect to NV , with

∥I∥op = 1(6.10.3)

as long as NV (v) > 0 for some v ∈ V . Otherwise, if NV (v) = 0 for every
v ∈ V , then every linear mapping from V into itself is bounded, with operator
seminorm equal to 0.
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If n is a positive integer, then the space kn of n-tuples of elements of k is
a vector space over k, with respect to coordinatewise addition and scalar mul-
tiplication. Similarly, the space Mn(k) of n × n matrices with entries in k is a
vector space over k, with respect to entrywise addition and scalar multiplication.
More precisely, Mn(k) is an algebra over k, with respect to matrix multiplica-
tion. This can be identified with the algebra of linear mappings from kn into
itself in the usual way.

Let A be an algebra over k again, and let N be a submultiplicative seminorm
on A with respect to | · | on k. One can check that multiplication on A is
continuous as a mapping from A × A into A, with respect to the topology
determined on A by the semimetric associated to N , and the corresponding
product topology on A×A.

Suppose that A has a multiplicative identity element e. As usual, a ∈ A is
said to be invertible if there is a b ∈ A such that

a b = b a = e.(6.10.4)

In this case, b is unique, and denoted a−1. The collection of invertible elements
of A is a group with respect to multiplication.

If x, y ∈ A are invertible, then

x−1 − y−1 = x−1 y y−1 − x−1 x y−1 = x−1 (y − x) y−1.(6.10.5)

This implies that

N(x−1 − y−1) ≤ N(x−1)N(y−1)N(x− y).(6.10.6)

Suppose for the moment that

N(x−1)N(x− y) < 1.(6.10.7)

Observe that

N(y−1) ≤ N(x−1) +N(y−1 − x−1)(6.10.8)

≤ N(x−1) +N(x−1)N(x− y)N(y−1),

and hence
(1−N(x−1)N(x− y))N(y−1) ≤ N(x−1).(6.10.9)

It follows that

N(y−1) ≤ (1−N(x−1)N(x− y))−1 N(x−1)(6.10.10)

when (6.10.7) holds. Combining this with (6.10.6), we get that

N(x−1 − y−1) ≤ (1−N(x−1)N(x− y))−1 N(x−1)2 N(x− y)(6.10.11)

when (6.10.7) holds. Using this, one can check that x 7→ x−1 is a continuous
mapping from the set of invertible elements in A into itself, with respect to the
restriction of the semimetric associated to N to that set.
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Suppose now that N is also a semi-ultranorm on A. In this case, we have
that

N(y−1) ≤ max(N(x−1), N(y−1 − x−1))(6.10.12)

≤ max(N(x−1), N(x−1)N(x− y)N(y−1)),

using (6.10.6) in the second step. If (6.10.7) holds, then we get that

N(y−1) ≤ N(x−1).(6.10.13)

This implies that
N(x−1 − y−1) ≤ N(x−1)2 N(x− y)(6.10.14)

when (6.10.7) holds, by (6.10.6).

6.11 Banach spaces and algebras

Let k be a field with an absolute value function | · |, and let V be a vector space
over k with a norm NV with respect to | · | on k. If V is complete with respect to
the metric associated to NV , then V is said to be a Banach space with respect
to NV . Otherwise, one can pass to a suitable completion of V , by standard
arguments.

Let W be another vector space over k, and let NW be a norm on W with
respect to | · | on k. Also let ∥ · ∥op be the operator norm on the space BL(V,W )
of bounded linear mappings from V into W corresponding to NV and NW , as in
Section 6.9. If W is complete with respect to the metric associated to NW , then
it is well known that BL(V,W ) is complete with respect to the metric associated
to ∥ · ∥op, by standard arguments.

LetA be an algebra over k with a submultiplicative normN . IfA is complete
with respect to the metric associated to N , then A is said to be a Banach algebra
with respect to N . As usual, if A is not complete, then one can pass to a suitable
completion of A. The condition that A have a multiplicative identity element e
with N(e) = 1 is sometimes included in the definition of a Banach algebra.

If V is a Banach space with respect to NV , then the algebra BL(V ) of
bounded linear mappings from V into itself is a Banach algebra with respect to
the corresponding operator norm ∥ · ∥op. One may also ask that V ̸= {0}, to
get that the identity operator on V has operator norm equal to 1.

Let A be an algebra over k again, and suppose that A has a multiplicative
identity element e. If a ∈ A and n is a nonnegative integer, then

(e− a)

n∑
j=0

aj =
( n∑

j=0

aj
)
(e− a) = e− an+1,(6.11.1)

where aj is interpreted as being equal to e when j = 0. Let N be a submulti-
plicative norm on A, and suppose that

N(a) < 1.(6.11.2)
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If j ∈ Z+, then N(aj) ≤ N(a)j , by submultiplicativity, and hence N(aj) → 0
as j → ∞. One can also check that the sequence of partial sums

∑n
j=0 a

j is a
Cauchy sequence in A with respect to the metric associated to N in this case. If
A is complete with respect to the metric associated to N , then this sequence of
partial sums converges in A, and the limit is denoted

∑∞
j=0 a

j , as usual. Under
these conditions, we get that

(e− a)

∞∑
j=0

aj =
( ∞∑

j=0

aj
)
(e− a) = e,(6.11.3)

by taking the limit as n → ∞ in (6.11.1). This means that e− a is invertible in
A, with

(e− a)−1 =

∞∑
j=0

aj .(6.11.4)

Suppose that x ∈ A is invertible, and that y ∈ A satisfies

N(x−1)N(x− y) < 1(6.11.5)

Observe that

y = x− (x− y) = x (e− x−1 (x− y)),(6.11.6)

and that N(x−1 (x− y)) < 1, by (6.11.5). If A is complete with respect to the
metric associated to N , then it follows that e − x−1 (x − y) is invertible in A,
as before. This implies that y is invertible in A too, by (6.11.6). Thus the set
of invertible elements of A is an open set with respect to the metric associated
to N when A is complete.

Let {xj}∞j=1 be a sequence of invertible elements of A whose inverses are
bounded with respect to N , so that

N(x−1
j ) ≤ C(6.11.7)

for some nonnegative real number C and every j ≥ 1. Suppose that {xj}∞j=1

also converges to some x ∈ A with respect to the metric associated to N . Note
that

N(x−1
j − x−1

l ) ≤ N(x−1
j )N(x−1

l )N(xj − xl) ≤ C2 N(xj − xl)(6.11.8)

for every j, l ≥ 1, using (6.10.6) in the first step, and (6.11.7) in the second step.
This implies that {x−1

j }∞j=1 is a Cauchy sequence in A with respect to the metric
associated to N , because {xj}∞j=1 is a Cauchy sequence, since it converges. If
A is complete with respect to the metric associated to N , then it follows that
{x−1

j }∞j=1 converges in A. One can check that x in invertible in A under these

conditions, with inverse equal to the limit of {x−1
j }∞j=1. This uses continuity of

multiplication on A, to get that the product of two convergent sequences in A
converges to the product of the limits of the two sequences.
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6.12 Some subgroups

Let k be a field with an absolute value function | · |, and let A be an algebra over
k with a multiplicative identity element e and a submultiplicative seminorm N
with respect to | · | on k. If x is an invertible element of A, then

N(e) = N(xx−1) ≤ N(x)N(x−1).(6.12.1)

Let us suppose from now on in this section that

N(e) = 1.(6.12.2)

Consider the collection of invertible elements x of A such that

N(x), N(x−1) ≤ 1.(6.12.3)

In this case, we have that

N(x) = N(x−1) = 1,(6.12.4)

because of (6.12.1). Of course, e has this property, by (6.12.2). If x ∈ A is in
this collection, then x−1 is in this collection too, because (x−1)−1 = x. If y ∈ A
is another element of this collection, then it is easy to see that x y is in this
collection as well, using the submultiplicativity of N . Hence this collection is a
subgroup of the group of invertible elements in A.

Let us suppose from now on in this section that N is a semi-ultranorm on
A. In this case, the subgroup of the group of invertible elements of A described
in the preceding paragraph is a relatively open set with respect to the metric
associated to N . If x ∈ A, then we let B(x, r) be the open ball in A centered at
x with radius r > 0 with respect to the semi-ultrametric associated to N , and
B(x, r) be the closed ball in A centered at x with radius r ≥ 0, as usual. Note
that

B(e, 1) = B(0, 1),(6.12.5)

because of (6.12.2) and the ultrametric version of the triangle inequality. If N
is a norm on A, and A is complete with respect to the metric associated to A,
then every element of B(e, 1) is invertible in A, as in the previous section.

If x, y ∈ A, then

N(x y − e) = N(x (y − e) + x− e) ≤ max(N(x (y − e)), N(x− e))

≤ max(N(x)N(y − e), N(x− e)),(6.12.6)

using the ultrametric version of the triangle inequality in the second step, and
the submultiplicativity of N in the third step. Thus

N(x y − e) ≤ max(N(x− e), N(y − e))(6.12.7)

when N(x) ≤ 1. If 0 < r ≤ 1 and x, y ∈ B(e, r), then it follows that

x y ∈ B(e, r).(6.12.8)
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This also uses the fact that B(e, r) ⊆ B(0, 1) when r ≤ 1, by (6.12.5). Similarly,
if 0 ≤ r ≤ 1 and x, y ∈ B(e, r), then

x y ∈ B(e, r),(6.12.9)

by (6.12.7) and the fact that B(e, r) ⊆ B(0, 1).
If x ∈ B(e, 1) and x is invertible in A, then

N(x−1) ≤ 1,(6.12.10)

by (6.10.13) applied to y = x, and using (6.12.2). We also have that

N(x−1 − e) ≤ N(x− e),(6.12.11)

by (6.10.14) applied to y = x. If 0 < r ≤ 1 and x ∈ B(e, r), then we get that

x−1 ∈ B(e, r).(6.12.12)

Similarly, if 0 ≤ r < 1 and x ∈ B(e, r), then

x−1 ∈ B(e, r).(6.12.13)

6.13 Related conditions on linear mappings

Let k be a field with an absolute value function | · |, and let V , W be vector
spaces over k, with seminorms NV , NW , respectively, with respect to | · | on k.
Let T be a linear mapping from V into W , and suppose that

cNV (v) ≤ NW (T (v))(6.13.1)

for some c > 0 and every v ∈ V . Let R be a bounded linear mapping from V
into W with respect to NV , NW , with

∥R∥op,VW < c.(6.13.2)

If v ∈ V , then

NW (T (v)) ≤ NW (T (v) +R(v)) +NW (R(v))(6.13.3)

≤ NW (T (v) +R(v)) + ∥R∥op,VW NV (v).

Combining this with (6.13.1), we get that

(c− ∥R∥op,VW )NV (v) ≤ NW (T (v) +R(v))(6.13.4)

for every v ∈ V .
Suppose for the moment that NW is a semi-ultranorm on W . In this case,

we have that

NW (T (v)) ≤ max(NW (T (v) +R(v)), NW (R(v)))(6.13.5)

≤ max(NW (T (v) +R(v)), ∥R∥op,VW NV (v))
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for every v ∈ V . This implies that

cNV (v) ≤ NW (T (v) +R(v))(6.13.6)

for every v ∈ V . More precisely, (6.13.6) is trivial when NV (v) = 0, and
otherwise

∥R∥op,VW NV (v) < cNV (v)(6.13.7)

when NV (v) > 0, by (6.13.2). This permits (6.13.6) to be obtained from (6.13.1)
and (6.13.5), as desired.

If T is a one-to-one linear mapping from V onto W , then (6.13.1) is the same
as saying that

NV (T
−1(w)) ≤ (1/c)NW (w)(6.13.8)

for every w ∈ W . This means that the inverse mapping T−1 is bounded as a
linear mapping from W into V , with

∥T−1∥op,WV ≤ 1/c.(6.13.9)

If NV is a norm on V , then (6.13.1) implies that the kernel of T is trivial, so
that T is injective. If V and W are finite-dimensional vector spaces over k with
the same dimension, then it is well known that any injective linear mapping
from V into W is surjective as well.

A linear mapping T from V into W is said to be an isometry with respect
to NV and NW if

NW (T (v)) = NV (v)(6.13.10)

for every v ∈ V . This is the same as saying that T is a bounded linear mapping
from V into W , with

∥T∥op,VW ≤ 1,(6.13.11)

and that (6.13.1) holds with c = 1. A one-to-one linear mapping from V onto
W is an isometry if and only if T is a bounded linear mapping from V into W
that satisfies (6.13.11), and T−1 is a bounded linear mapping from W into V
with

∥T−1∥op,WV ≤ 1.(6.13.12)

In this case, T−1 is an isometric linear mapping from W into V .

Of course, the identity mapping I on V is an isometric linear mapping from
V into itself, using NV on both the domain and the range. The collection of
one-to-one isometric linear mappings from V onto itself is a group with respect
to composition of mappings. If NV is a norm on V , then isometric linear map-
pings from V into itself are automatically injective, as before. If V has finite
dimension, then injective linear mappings from V into itself are automatically
surjective.
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6.14 Multiplicative total boundedness

Let k be a field with an absolute value function | · |, and let A be an algebra over
k with a multiplicative identity element e and a submultiplicative seminorm N
with respect to | · | on k. We have seen that the group of invertible elements of
A is a topological group, with respect to the topology induced by the topology
determined on A by the semimetric associated to N . More precisely, multipli-
cation is continuous on A, and in particular on the group of invertible elements
in A, with respect to the induced topology. We have also seen that x 7→ x−1 is
continuous as a mapping from the group of invbertible elements into itself, with
respect to the induced topology.

Let E be a set of invertible elements of A. The notions of left and right-
invariant total boundedness of E in the group of invertible elements of A can
be defined as in Section 4.3. These notions can be reformulated equivalently
in this situation as follows. If x ∈ A and r > 0, then the open ball in A
centered at x with radius r with respect to the semimetric associated to N is
denoted B(x, r), as usual. The open balls centered at e form a local base for
the topology determined on A by the semimetric associated to N at e, and so
their intersections with the group of invertible elements forms a local base for
the induced topology at e. It follows that E is left-invariant totally bounded
in the group of invertible elements of A if and only if for every r > 0 there are
finitely many invertible elements x1, . . . , xn of A such that

E ⊆
n∪

j=1

xj B(e, r).(6.14.1)

Similarly, E is right-invariant totally bounded in the group of invertible elements
of A if and only if for every r > 0 there are finitely many invertible elements
x1, . . . , xn in A such that

E ⊆
n∪

j=1

B(e, r)xj .(6.14.2)

Of course, these conditions become more restrictive as r decreases, and so it
suffices to consider small r.

Let us suppose from now on in this section that N(e) > 0, which means that
N(e) ≥ 1, as before. Otherwise, if N(e) = 0, then N(x) = 0 for every x ∈ A,
and the total boundedness conditions mentioned in the preceding paragraph
hold trivially. In particular, N(x) > 0 for every invertible element x of A,
because N(e) > 0. Let x ∈ A be given, with N(x) > 0, and observe that

xB(e, r), B(e, r)x ⊆ B(x, r N(x))(6.14.3)

for every r > 0. If y ∈ B(x, r N(x)), then

N(y) ≤ N(x) +N(y − x) < (1 + r)N(x).(6.14.4)

If r < 1, then
N(x) ≤ N(y) +N(x− y) < N(y) + r N(x)(6.14.5)
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for every y ∈ B(x, r N(x)), and hence

(1− r)N(x) < N(y).(6.14.6)

If E is left or right-invariant totally bounded in the group of invertible elements
in A, then it is easy to see that E is bounded with respect to N , using (6.14.3)
and (6.14.4).

In the definitions of left and right-invariant total boundedness, one can take
the points x1, . . . , xn to be elements of E. This follows from the characterization
of total boundedness in terms of coverings by small sets, as in Section 4.4.
In the present situation, this implies that N(x1), . . . , N(xn) are bounded, as
before. Alternatively, we may require that E intersects xj B(e, r) or B(e, r)xj ,
as appropriate, for each j = 1, . . . , n, since the xj ’s for which this does not hold
are not needed in (6.14.1) or (6.14.2), as appropriate. This leads to an upper
bound for N(xj) when r < 1, using (6.14.6) and the boundedness of N on E.

If E is left or right-invariant totally bounded in the group of invertible ele-
ments of A, then E is totally bounded with respect to the semimetric associated
to N on A. This uses (6.14.3) and the fact that we can take the xj ’s in (6.14.1)
or (6.14.2), as appropriate, so that N(xj) is bounded. One can also take r ≤ 1/2
here, for the second argument in the previous paragraph.

If y is an invertible element of A, 0 < r < 1/N(e), and y ∈ B(e, r), then

N(y−1) ≤ (1−N(e) r)−1 N(e),(6.14.7)

by (6.10.10). If E is left or right-invariant totally bounded in the group of
invertible elements of A, then one can check that the inverses of the elements
of E are bounded with respect to N , using (6.14.1) or (6.14.2), as appropriate,
with r = 1/2N(e).

If x is an invertible element of A, then

x−1 B(x, t), B(x, t)x−1 ⊆ B(e, tN(x−1))(6.14.8)

for every t > 0. Equivalently, this means that

B(x, t) ⊆ xB(e, tN(x−1)), B(e, tN(x−1))x(6.14.9)

for every t > 0.
Suppose that E is totally bounded with respect to the semimetric associated

to N on A, and that the inverses of the elements of E are bounded with respect
to N . We would like to verify that E is both left and right-invariant totally
bounded in the group of invertible elements ofA. If t is any positive real number,
then there are finitely many elements x1, . . . , xn of A such that

E ⊆
n∪

j=1

B(xj , t),(6.14.10)

by hypothesis. If x1, . . . , xn are invertible elements of A, then it follows that

E ⊆
n∪

j=1

xj B(e, tN(x−1
j )),

n∪
j=1

B(e, tN(x−1
j ))xj .(6.14.11)
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If N(x−1
1 ), . . . , N(x−1

n ) are also bounded, independently of t, then we can get
the left and right-invariant total boundedness conditions for E from this.

In fact, we can choose x1, . . . , xn to be elements of E. This follows from the
characterization of total boundedness with respect to semimetrics in terms of
coverings by sets of small diameter, as in Section 4.2. If x1, . . . , xn ∈ E, then
the xj ’s are invertible elements of A whose inverses are bounded with respect
to N , by hypothesis.

Let {xj}∞j=1 be a sequence of invertible elements of A. Observe that

N(x−1
j xl − e) = N(x−1

j (xl − xj)) ≤ N(x−1
j )N(xl − xj)(6.14.12)

for every j, l ≥ 1. Similarly,

N(xl x
−1
j − e) = N((xl − xj)x

−1
j ) ≤ N(xl − xj)N(x−1

j )(6.14.13)

for every j, l ≥ 1. If {xj}∞j=1 is a Cauchy sequence with respect to the semimetric

on A associated to N , and if {x−1
j }∞j=1 is bounded with respect to N , then it

follows that {xj}∞j=1 satisfies the left and right-invariant Cauchy conditions in
the group of invertible elements of A, as in Section 1.9.

Conversely, suppose that {xj}∞j=1 satisfies the left or right-invariant Cauchy
condition in the group of invertible elements of A. In particular, this implies
that the set E of xj ’s, j ∈ Z+, is left or right-invariant totally bounded in the
group of invertible elements in A, as in Section 1.9. It follows that {xj}∞j=1 and

{x−1
j }∞j=1 are bounded with respect to N , as before. One can check that {xj}∞j=1

is also a Cauchy sequence with respect to the semimetric on A associated to N ,
using the boundedness of {xj}∞j=1 with respect to N .



Chapter 7

Haar measure and
integration

7.1 Haar measure

LetG be a locally compact topological group such that {e} is a closed set, so that
G is Hausdorff. It is well known that there is a nonnegative Borel measure HL

on G, known as left-invariant Haar measure on G, with the following properties.
First, HL(U) > 0 for every nonempty open set U ⊆ G. Second, HL(K) < ∞
when K ⊆ G is compact, in which case K is a closed set, and hence a Borel set.
Third, HL is invariant under left translations, in the sense that

HL(aE) = HL(E)(7.1.1)

for every Borel set E ⊆ G and a ∈ G. Note that translates of Borel subsets
of G are also Borel sets, because of continuity of translations. There are some
additional regularity conditions that HL should satisfy, that will be discussed
in a moment. It is well known that HL is unique, up to multiplication by a
positive real number.

Similarly, there is a nonnegative Borel measure HR on G, known as right-
invariant Haar measure on G, with the following properties. As before, HR(U)
is positive when U is a nonempty open subset of G, HR(K) is finite when
K ⊆ G is compact, and HR should satisfy some additional regularity conditions.
Invariance under right translations means that

HR(E a) = HR(E)(7.1.2)

for every Borel set E ⊆ G and a ∈ G. Any other nonnegative Borel measure
on G with these properties is equal to HR times a positive real number. Of
course, invariance under left and right translations on G are the same when G
is commutative.

If G is any group equipped with the discrete topology, then counting measure
on G satisfies the requirements of left and right-invariant Haar measure. If

116
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G = Rn for some positive integer n, as a commutative topological group with
respect to addition and the standard topology, then n-dimensional Lebesgue
measure satisfies the requirements of Haar measure. If G is a Lie group, then
left and right-invariant Haar measures on G can be obtained using left and right-
invariant volume forms on G, respectively. If G is a locally compact topological
group such that {e} is a closed set, and if HL is a left-invariant Haar measure
on G, then HL(E

−1) satisfies the requirements of right-invariant Haar measure
on G. Similarly, if HR is a right-invariant Haar measure on G, then HR(E

−1)
satisfies the requirements of left-invariant Haar measure on G.

Let X be a locally compact Hausdorff topological space, and let µ be a
nonnegative Borel measure on X. As usual, µ is said to be outer regular on X
if

µ(E) = inf{µ(U) : U ⊆ X is an open set, and E ⊆ U}(7.1.3)

for every Borel set E ⊆ X. A related inner regularity property for a Borel set
E ⊆ X is that

µ(E) = sup{µ(K) : K ⊆ X is compact, and K ⊆ E}.(7.1.4)

The additional regularity properties for Haar measure mentioned earlier are
outer regularity, and inner regularity for open sets, and for Borel sets of finite
measure.

7.2 Haar integrals

Let X be a topological space, and let f be a real or complex-valued function
on X. The support of f in X is defined to be the closure in X of the set of
x ∈ X such that f(x) ̸= 0. Let Ccom(X,R) and Ccom(X,C) be the spaces
of continuous real and complex-valued functions on X with compact support,
respectively. These are vector spaces over R and C, respectively, with respect
to pointwise addition and scalar multiplication of functions. If X is a locally
compact Hausdorff space, K ⊆ X is compact, U ⊆ X is an open set, and
K ⊆ U , then a version of Urysohn’s lemma implies that there is a nonnegative
real-valued continuous function f on X with compact support contained in U
such that f(x) = 1 for every x ∈ K, and f(x) ≤ 1 for every x ∈ X.

Let G be a topological group, and let f be a real or complex-valued function
on G. If a ∈ G, then let La(f) be the real or complex-valued function defined
on G by

(La(f))(x) = f(a x)(7.2.1)

for every x ∈ G. Similarly, let Ra(f) be the real or complex-valued function
defined on G by

(Ra(f))(x) = f(x a)(7.2.2)

for every x ∈ G. If f is continuous on G, then La(f) and Ra(f) are continuous
on G for every a ∈ G, by continuity of translations. If f has compact support
in G, then La(f) and Ra(f) have compact support for every a ∈ G as well.
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Suppose from now on in this section that G is locally compact, and that {e}
is a closed set in G. A left-invariant Haar integral on G is a linear functional IL
on the space of continuous real or complex-valued functions on G with compact
support with the following properties. More precisely, IL may be considered as
a real-linear mapping from Ccom(G,R) into R, or as a complex-linear mapping
from Ccom(G,C) into C. In the first case, IL has a natural extension to a
complex-linear functional on Ccom(G,C). In the second case, IL(f) should be
a real number when f is a real-valued continuous function on G with compact
support. In both cases, IL should be invariant under left translations, in the
sense that

IL(La(f)) = IL(f)(7.2.3)

for every continuous real or complex-valued function f on G with compact
support, and every a ∈ G. This linear functional should be nonnegative in the
sense that

IL(f) ≥ 0(7.2.4)

when f is a nonnegative real-valued continuous function on G with compact
support. If we also have that f(x) > 0 for some x ∈ G, then we ask that

IL(f) > 0.(7.2.5)

If HL is a left-invariant Haar measure on G, then

IL(f) =

∫
G

f dHL(7.2.6)

defines a left-invariant Haar integral on G. Conversely, if IL is a left-invariant
Haar integral onG, then one can get a corresponding left-invariant Haar measure
using the Riesz representation theorem. It is well known that a left-invariant
Haar integral is unique up to multiplication by a positive real number.

Similarly, a right-invariant Haar integral on G is a linear functional IR on the
space of continuous real or complex-valued functions on G with compact support
with the following properties. As before, IR(f) should be a real number for every
f ∈ Ccom(G,R), with IR(f) ≥ 0 when f ≥ 0 on G, and IR(f) > 0 when we also
have that f(x) > 0 for some x ∈ G. Invariance under right translations means
that

IR(Ra(f)) = IR(f)(7.2.7)

for every continuous real or complex-valued function f on G with compact
support, and every a ∈ G. If HR is a right-invariant Haar measure on G, then

IR(f) =

∫
G

f dHR(7.2.8)

is a right-invariant Haar integral on G, and conversely a right-invariant Haar
measure on G can be obtained from a right-invariant Haar integral on G using
the Riesz representation theorem. As usual, it is well known that a right-
invariant Haar integral is unique up to multiplication by a positive real number.



7.3. COMPARING LEFT AND RIGHT TRANSLATIONS 119

If f is a continuous real or complex-valued function on G with compact support,
then f(x−1) is a continuous function onG with compact support as well, because
x 7→ x−1 is a homeomorphism from G onto itself. This can be used to go from
a left-invariant Haar integral to a right-invariant Haar integral, and vice-versa.
If G is commutative, then invariance under left and right translations are the
same.

7.3 Comparing left and right translations

Let G be a locally compact topological group such that {e} is a closed set, and
let HL be a left-invariant Haar measure on G. If a ∈ G, then it is easy to see
that HL(E a) also satisfies the requirements of a left-invariant Haar measure
on G. The uniqueness of left-invariant Haar measure implies that there is a
positive real number λ(a) such that

HL(E a) = λ(a)HL(E)(7.3.1)

for all Borel sets E ⊆ G. Remember that HL(U) is positive and finite when
U is an open subset of G that contains e and is contained in a compact set.
This implies that λ(a) is uniquely determined by (7.3.1). One can check that
λ defines a group homomorphism from G into the multiplicative group R+ of
positive real numbers. By construction, λ(a) = 1 for every a ∈ G exactly when
HL is invariant under right translations on G as well. In particular, this holds
automatically when G is commutative. Note that λ does not depend on the
choice of HL.

If f is a nonnegative Borel measurable function on G and a ∈ G, then f(x a)
is also Borel measurable, by continuity of translations, and∫

G

f(x a) dHL(x) = (1/λ(a))

∫
G

f dHL.(7.3.2)

To see this, suppose first that f is the indicator function 1E(x) associated to a
Borel set E ⊆ G, which is equal to 1 when x ∈ E and to 0 when x ̸∈ E. In this
case,

1E(x a) = 1E a−1(x),(7.3.3)

so that (7.3.2) follows from (7.3.1). Otherwise, one can approximate f by non-
negative Borel measurable simple functions, as usual. If f is a real or complex-
valued function on G that is integrable with respect to HL, then it follows that
f(x a) is integrable with respect to HL too, and that (7.3.2) holds.

Alternatively, let IL be a left-invariant Haar integral on G. If a ∈ G, then
IL(Ra(f)) satisfies the requirements of a left-invariant Haar integral on G as
well. The uniqueness of left-invariant Haar integrals implies that there is a
positive real number λ(a) such that

IL(Ra(f)) = (1/λ(a)) IL(f)(7.3.4)
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for all continuous real or complex-valued functions f on G with compact sup-
port. There is a nonnegative real-valued continuous function f on G with com-
pact support such that f(e) > 0, because of the version of Urysohn’s lemma
mentioned earlier. In this case, IL(f) is a positive real number, so that λ(a)
is uniquely determined by (7.3.4). As before, one can use (7.3.4) to verify that
λ defines a group homomorphism from G into R+, and λ does not depend on
the choice of IL. This characterization of λ is equivalent to the previous one,
because of the relationship between left-invariant Haar measures and integrals.

One can use (7.3.4) to show that λ is continuous as a mapping from G into
R+, with respect to the topology induced on R+ by the standard topology
on R. It suffices to check that λ is continuous at e, because λ is a group
homomorphism. Let f be a nonnegative real-valued continuous function on G
with compact support such that f(e) > 0, so that IL(f) > 0. It is enough
to verify that IL(Ra(f)) is continuous as a real-valued function of a ∈ G at
e, because of (7.3.4). Let U be an open subset of G that contains e and is
contained in a compact set. There is a compact set K ⊆ G that contains the
support of Ra(f) for every a ∈ U . This uses the fact that if A,B ⊆ G are
compact, then AB is compact, because of the compactness of A × B and the
continuity of multiplication. To get that IL(Ra(f)) is close to IL(f) when a is
sufficiently close to e, one can use uniform continuity along compact sets, as in
Section 4.1.

If G is compact, then one can verify directly that λ(a) = 1 for every a ∈ G,
so that a left-invariant Haar measure or integral on G is invariant under right
translations too. If G0 is a compact subgroup of G, then λ maps G0 onto a
compact subgroup of R+, because of the continuity of λ. However, the only
compact subgroup of R+ is the trivial subgroup {1}. This means that λ(a) =
1 for every a ∈ G0, so that a left-invariant Haar measure or integral on G
is invariant under right translations by elements of G0. Of course, we could
have started with a right-invariant Haar measure or integral on G instead, and
considered its behavior with respect to left translations.

7.4 Some additional comparisons

Let G be a locally compact topological group such that {e} is a closed set again,
let HL be a left-invariant Haar measure on G, and let λ be as in the previous
section. If f is a nonnegative Borel measurable function on G, and a ∈ G, then∫

G

f(x a) (1/λ(x)) dHL(x) =

∫
G

f(x a) (1/λ(x a))λ(a) dHL(x)(7.4.1)

=

∫
G

f(x) (1/λ(x)) dHL(x),

using (7.3.2) in the second step. This implies that

E 7→
∫
E

(1/λ(x)) dHL(x)(7.4.2)



7.4. SOME ADDITIONAL COMPARISONS 121

is invariant under right translations, and one can check that this satisfies the
other requirements of a right-invariant Haar measure on G. Alternatively, if IL
is a left-invariant Haar integral on G, f is a continuous real or complex-valued
function on G with compact support, and a ∈ G, then

IL(Ra(f)/λ) = IL(Ra(f/λ))λ(a) = IL(f),(7.4.3)

using (7.3.4) in the second step. This means that IL(f/λ) is invariant under
right translations, and it is easy to see that IL(f/λ) satisfies the other require-
ments of a right-invariant Haar integral on G.

IfHL is a left-invariant Haar measure on G, then we have seen thatHL(E
−1)

satisfies the requirements of a right-invariant Haar measure on G. It follows that
there is a positive real number c such that∫

E

(1/λ(x)) dHL(x) = cHL(E
−1)(7.4.4)

for all Borel sets E ⊆ G, by the uniqueness of right-invariant Haar measure. It
is not too difficult to show that

c = 1.(7.4.5)

Let U be an open subset of G such that e ∈ U , U is contained in a compact set,
and U is symmetric about e. The latter condition can always be arranged by
replacing U with U ∩ U−1, as usual. In this case, HL(U) is positive and finite,
and (7.4.4) implies that∫

U

(1/λ(x)) dHL(x) = cHL(U).(7.4.6)

Of course, λ(e) = 1, by definition of λ, and we have seen that λ is continuous
on G. This means that we can choose U so that λ is as close to 1 as we want
on U . We can use (7.4.6) to get that c has to be as close to 1 as we want, so
that (7.4.5) holds.

If f is a real or complex-valued function on G, then put

f̃(x) = f(x−1)(7.4.7)

for every x ∈ G. Note that f̃ is continuous and has compact support when f
is continuous and has compact support, by the continuity of x 7→ x−1. If IL
is a left-invariant Haar integral on G, then IL(f̃) satisfies the requirements of
a right-invariant Haar integral on G. The uniqueness of right-invariant Haar
integrals implies that

IL(f/λ) = c IL(f̃)(7.4.8)

for some c > 0 and all real or complex-valued continuous functions f on G
with compact support, because IL(f/λ) is a right-invariant Haar integral on G
too. One can check directly that c = 1 in this situation, using the same type
of argument as before. More precisely, let us say that a real or complex-valued
function f on G is symmetric about e if

f̃ = f.(7.4.9)
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In order to show that c = 1, one can use nonnegative real-valued continuous
functions on G that are symmetric about e, positive at e, and have compact
support contained in a small neighborhood of e.

In particular, ifHL is a left-invariant Haar measure onG that is also invariant
under right translations, then

HL(E) = HL(E
−1)(7.4.10)

for all Borel sets E ⊆ G. This can be seen more directly, using the fact that
HL(E

−1) is invariant under left translations. Uniqueness of left-invariant Haar
measure implies that HL(E

−1) is a constant multiple of H(E), and one would
like to show that this constant is equal to 1. To do this, one can take E to be an
open set that contains e, is contained in a compact set, and is symmetric about
e, so that HL(E) is positive and finite, and (7.4.10) holds. Similarly, if IL is
a left-invariant Haar integral on G that is invariant under right translations as
well, then one can verify more directly that

IL(f) = IL(f̃)(7.4.11)

for every real or complex-valued continuous function f on G with compact
support, using uniqueness of left-invariant Haar integrals, and nonnegative real-
valued continuous functions on G with compact support that are symmetric
about e and positive at e.

7.5 Automorphisms and Haar measure

If G is a topological group, then an automorphism of G as a topological group
is a group automorphism of G that is also a homeomorphism. The collection
of these automorphisms is a group with respect to composition of mappings. If
a ∈ G, then

Ca(x) = a x a−1(7.5.1)

defines an automorphism on G as a topological group, which is the inner auto-
morphism associated to a. Note that a 7→ Ca defines a group homomorphism
from G into the group of automorphisms on G as a topological group.

Let G be a locally compact topological group such that {e} is a closed set,
and let HL be a left-invariant Haar measure on G. If α is an automorphism
of G as a topological group, then HL(α(E)) satisfies the requirements of left-
invariant Haar measure on G. This implies that there is a positive real number
Λ(α) such that

HL(α(E)) = Λ(α)HL(E)(7.5.2)

for all Borel sets E ⊆ G, by the uniqueness of left-invariant Haar measure. Of
course, Λ(α) is uniquely determined by (7.5.2), because there are Borel sets
E such that HL(E) is positive and finite. It is easy to see that Λ defines a
homomorphism from the group of automorphisms of G as a topological group
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into the multiplicative group R+ of positive real numbers, and that Λ does not
depend on the choice of HL. If a ∈ G, then

HL(Ca(E)) = HL(aE a−1) = HL(E a−1)(7.5.3)

for all Borel sets E ⊆ G, using invariance under left translations in the second
step. This implies that

Λ(Ca) = λ(a−1) = 1/λ(a),(7.5.4)

where λ is as in Section 7.3.

Let α be an automorphism of G as a topological group again. If f is a
nonnegative Borel measurable function on G, then f ◦ α is Borel measurable
too, and ∫

G

f ◦ αdHL = (1/Λ(α))

∫
G

f dHL.(7.5.5)

Indeed, if f is the indicator function 1E of a Borel set E ⊆ G, then (7.5.5)
follows from (7.5.2) applied to α−1, because

1E ◦ α = 1α−1(E).(7.5.6)

Otherwise, one can reduce to this case, by approximating f by nonnegative
Borel measurable simple functions. If f is a real or complex-valued function on
G that is integrable with respect to HL, then it follows that f ◦ α is integrable
with respect to HL as well, and that (7.5.5) holds.

Alternatively, let IL be a left-invariant Haar integral on G, and let α be an
automorphism of G as a topological group. If f is a continuous real or complex-
valued function on G with compact support, then f ◦α is a continuous function
on G with compact support too. It is easy to see that IL(f ◦ α) also satisfies
the requirements of a left-invariant Haar integral on G. The uniqueness of left-
invariant Haar integrals implies that there is a positive real number Λ(α) such
that

IL(f ◦ α) = (1/Λ(α)) IL(f)(7.5.7)

for all continuous real or complex-valued functions f on G with compact sup-
port. As usual, Λ(α) is uniquely determined by (7.5.7), because there are such
functions f such that IL(f) ̸= 0. One can use this to check that Λ is a ho-
momorphism from the group of all automorphisms of G as a topological group
into R+, and that Λ does not depend on the choice of IL. This characteriza-
tion of Λ is equivalent to the previous one, because of the relationship between
left-invariant Haar measures and integrals.

If G is compact, then it is easy to see that Λ(α) = 1 for every automorphism
α of G as a topological group, using either of the previous characterizations of
Λ(α).



124 CHAPTER 7. HAAR MEASURE AND INTEGRATION

7.6 More on regularity conditions

Let X be a locally compact Hausdorff topological space, and let µ be a nonneg-
ative Borel measure on X such that µ(K) < ∞ for every compact set K ⊆ X.
Remember that compact subsets of X are closed sets, because X is Hausdorff.
If every Borel set E ⊆ X has the inner regularity property (7.1.4), then µ is
said to be inner regular on X. If µ is both inner and outer regular on X, then
µ is said to be regular on X.

A Borel set E ⊆ X is said to be σ-finite with respect to µ if E can be
expressed as the union of a sequence of Borel sets with finite measure with
respect to µ. If the inner regularity condition (7.1.4) holds for all Borel subsets
of X with finite measure with respect to µ, then one can check that (7.1.4) holds
for all Borel subsets of X that are σ-finite with respect to µ. Of course, if X is
σ-finite with respect to µ, then all Borel subsets of X are σ-finite with respect
to µ. Thus if X is σ-finite with respect to µ, and if (7.1.4) holds for all Borel
subsets of X with finite measure with respect to µ, then µ is inner regular on
X.

A subset E of X is said to be σ-compact if E can be expressed as the union
of a sequence of compact subsets of X. In particular, this implies that E is
σ-finite with respect to µ, because of the hypothesis that compact subsets of
X have finite measure with respect to µ. If E is σ-compact, then it is easy
to see that E satisfies the inner regularity condition (7.1.4) with respect to
µ. More precisely, if E is σ-compact, then E can be expressed as the union
of an increasing sequence of compact sets, because the union of finitely many
compact sets is compact too. In this case, the measures of these compact sets
with respect to µ tend to µ(E).

A milder inner regularity property for a Borel set E ⊆ X is that

µ(E) = sup{µ(A) : A ⊆ X is a closed set, and A ⊆ E}.(7.6.1)

The inner regularity condition (7.1.4) automatically implies this one, because
compact subsets of X are closed sets. If X is compact, then every closed set in
X is compact, and (7.6.1) implies (7.1.4).

If µ(X) < ∞, then one can check that (7.6.1) holds for every Borel set
E ⊆ X if and only if µ is outer regular on X, in the sense that (7.1.3) holds
for every Borel set E ⊆ X. More precisely, (7.6.1) corresponds to the outer
regularity condition (7.1.3) applied to X \ E in this situation.

If X is σ-compact, then every closed set in X is σ-compact as well. This
implies that closed subsets of X satisfy (7.1.4), as before. One can use this to
check that (7.6.1) implies (7.1.4) for every Borel set E ⊆ X in this case.

A subset of X is said to be an Fσ set if it can be expressed as the union of a
sequence of closed sets. Of course, Fσ sets are Borel sets, and σ-compact subsets
of X are Fσ sets, because X is Hausdorff. If E ⊆ X is an Fσ-set, then E can
be expressed as the union of an increasing sequence of closed sets, because the
union of finitely many closed sets is closed as well. This implies that E satisfies
(7.6.1), as before. If X is σ-compact, then Fσ sets in X are σ-compact.
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A subset of X is said to be a Gδ set if it can be expressed as the intersection
of a sequence of open sets. Thus Gδ sets are Borel sets, and a subset of X is
an Fσ set if and only if its complement in X is a Gδ set. If the topology on X
is determined by a metric, then it is well known that every closed set in X is a
Gδ set. This can be obtained as in (1.3.3), but using the intersection over r of
the form 1/j, with j ∈ Z+. It follows that open subsets of X are Fσ sets in this
case.

If every open subset ofX is σ-compact, then µ is automatically regular onX,
as in Theorem 2.18 on p50 in [21]. This condition on X is equivalent to asking
that X be σ-compact, and that every open subset of X be an Fσ set, because σ-
compact sets in X are Fσ sets, and because Fσ sets in X are σ-compact when X
is σ-compact. If the topology on X is determined by a metric, then every open
set in X is an Fσ set, and so it suffices to ask that X be σ-compact. It is well
known that compact metric spaces are separable, which implies that σ-compact
metric spaces are separable as well. Remember that separable metric spaces
have bases for their topologies with only finitely or countably many elements.

Suppose now that X has a base for its topology with only finitely or count-
ably many elements. This implies that X is σ-compact, because X is locally
compact, and using Lindelöf’s theorem. It is well known that X is regular as
a topological space, because X is locally compact and Hausdorff. If W ⊆ X is
an open set and x ∈ W , then it follows that there is an open set U ⊆ X such
that x ∈ U , the closure U of U in X is contained in W , and U is compact. This
implies that W is σ-compact, using Lindelöf’s theorem again.

If a topological space is regular in the strong sense, and has a base for its
topology with only finitely or countably many elements, then there is a metric
that determines the topology, by famous theorems of Urysohn and Tychonoff.
One can use Lindelöff’s theorem to check directly that open sets are Fσ sets in
this case.

7.7 Haar measure and products

Let G1, . . . , Gn be finitely many locally compact topological groups, in which the
set containing only the identity element is a closed set. Under these conditions,

G =

n∏
j=1

Gj(7.7.1)

is a locally compact topological group with respect to the corresponding product
topology, where the group operations are defined coordinatewise, and for which
the set containing only the identity element is a closed set. Suppose for the
moment that for each j = 1, . . . , n there is a base for the topology of Gj with
only finitely or countably many elements. This implies that there is a base
for the topology of G with only finitely or countably many elements, using
products of the elements of the bases for the Gj ’s. If HL,j is a left-invariant
Haar measure on Gj for each j = 1, . . . , n, then one can get a left-invariant
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Haar measure HL on G using the standard product measure construction. Note
that open subsets of G can be expressed as countable unions of products of
open subsets of the Gj ’s, because of the hypothesis about countable bases. This
implies that open subsets of G are measurable in the standard product measure
construction, so that Borel sets in G are measurable in the standard product
measure construction too.

If the Gj ’s are not asked to have countable bases for their topologies, then
one should be more careful about the construction of a Borel product measure
with suitable regularity properties. Alternatively, if IL,j is a left-invariant Haar
integral on Gj for each j = 1, . . . , n, then one can get a left-invariant Haar
integral IL on G. More precisely, if f is a continuous real or complex-valued
function on G with compact support, then one can get IL(f) using IL,j in each
variable separately. Of course, there are analogous statements for right-invariant
Haar measures and integrals.

Now let I be a nonempty set, and let Gj be a compact topological group for
each j ∈ I, in which the set containing the identity element is a closed set. In
this case,

G =
∏
j∈I

Gj(7.7.2)

is a compact topological group with respect to the corresponding product topol-
ogy, where the group operations are defined coordinatewise, and for which the
set containing only the identity element is a closed set. Of course, this reduces
to the previous situation when I has only finitely many elements. Suppose for
the moment that I is countably infinite, and that for each j ∈ I there is a base
Bj for the topology of Gj with only finitely or countably many elements. Let B
be the collection of subsets of G of the form U =

∏
j∈I Uj , where Uj = Gj for

all but finitely many j ∈ I, and Uj ∈ Bj otherwise. It is well known and not
too difficult to show that B is a base for the product topology on G with only
finitely or countably many elements. Let Hj be Haar measure on Gj for each
j ∈ I, which is invariant under both left and right translations, because Gj is
compact, and normalized so that

Hj(Gj) = 1.(7.7.3)

One can get Haar measure H on G using a standard product construction for
probability measures. Open subsets of G are measurable with respect to this
type of product measure construction, because they can be expressed as unions
of elements of B. This implies that Borel subsets of G are measurable with
respect to the product measure construction as well.

Otherwise, one should be more careful about the construction of a Borel
product measure with suitable regularity properties again. As before, one could
start with a Haar integral on Gj for each j ∈ I, and get a Haar integral on
G. The Haar integral on Gj is invariant under both left and right translations,
because Gj is compact, and should normalized to be equal to 1 for the constant
function on Gj equal to 1. If f is a continuous real or complex-valued function
on G, then one would like to define the Haar integral of f on G using the Haar
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integral on Gj in each variable separately. To do this, one can first use the Haar
integral on Gj for finitely many j ∈ I, and then pass to a suitable limit.

7.8 Haar measure and open subgroups

Let X be a topological space, and let Y be a subset of X, so that Y may
be considered as a topological space with respect to the induced topology. If
E is a Borel subset of X, then E ∩ Y is a Borel set in Y , with respect to
the induced topology on Y . This can be obtained from the continuity of the
natural inclusion mapping from Y into X. One can argue more directly that the
collection of subsets E of X such that E∩Y is a Borel set in Y is a σ-algebra of
subsets of X. This σ-algebra contains the open subsets of X, and hence contains
the Borel sets in X.

Suppose now that Y is a Borel set in X. The collection of subsets A of Y
such that A is a Borel set in X is a σ-algebra of subsets of Y . If A ⊆ Y is
relatively open in Y , then A = V ∩Y for some open set V in X, and hence A is
a Borel set in X. If A ⊆ Y is a Borel set in Y , then it follows that A is a Borel
set in X too. Of course, if E ⊆ X is a Borel set, then E ∩Y is a Borel set in X.

Let G be a locally compact topological group such that {e} is a closed set,
and let U be an open subgroup of G. Thus U is also a topological group with
respect to the induced topology, and U is a closed set in G, as in Section 3.3.
It is easy to see that U is locally compact with respect to the induced topology
as well. As in the previous paragraphs, a subset E of U is a Borel set in G if
and only if E is a Borel set in U , where U is considered as a topological space
with respect to the induced topology. The restriction of left or right-invariant
Haar measure on G to Borel subsets of U satisfies the requirements of left or
right-invariant Haar measure on U , as appropriate.

Let HL,U be a left-invariant Haar measure on U , and let us look at how this
can be used to get a left-invariant Haar measure HL on G. Let E ⊆ G be a
Borel set, and let a ∈ G be given. Observe that a−1 (E ∩ aU) is a Borel set in
G that is contained in U , and hence is a Borel set in U , as before. Thus

HL,U (a
−1 (E ∩ aU))(7.8.1)

is defined. If b ∈ G satisfies aU = bU , then (7.8.1) is equal to

HL,U (b
−1 (E ∩ bU)) = HL,U (b

−1 (E ∩ aU)),(7.8.2)

because HL,U is invariant under left translations on U . This means that (7.8.1)
only depends on the coset aU of U inG, and not on the particular representation
aU of this coset. One might like to define HL(E) to be the sum of (7.8.1) over
all left cosets aU of U in G. This works when there are only finitely or countably
many left cosets of U in G, or when E ∩ (aU) ̸= ∅ for only finitely or countably
many left cosets aU of U in G. Otherwise, one should put HL(E) = +∞,
in order to get outer regularity. Of course, there are analogous statements for
right-invariant Haar measure.
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If f is a continuous real or complex-valued function on U with compact
support, then f can be extended to a continuous function on G with compact
support, by putting f = 0 on the complement of U . Given a left or right-
invariant Haar integral on G, one can get a left or right-invariant Haar integral
on U , as appropriate, by applying the Haar integral on G to this extension of
f . This corresponds to restricting left or right-invariant Haar measure on G to
U , as before.

Let f be a continuous real or complex-valued function on G with compact
support. Note that the support of f can be covered by finitely many left cosets
of U in G. The restriction of f to each left coset of U in G has compact support
in that coset, because the cosets of U are closed sets in G. Let IL,U be a left-
invariant Haar integral on U . If a ∈ U , then the restriction of f(a x) to x ∈ U is
a continuous function on U with compact support, to which we can apply IL,U .
If b ∈ G and aU = bU , then the restriction of f(b x) to x ∈ U corresponds to
translating the restriction of f(a x) to x ∈ U on the left by an element of U .
This means that IL,U applied to the restriction of f(a x) to x ∈ U is the same
as IL,U applied to the restriction of f(b x) to x ∈ U when aU = bU . We can
define IL(f) by applying IL,U to the restriction of f(a x) to x ∈ U for each left
coset aU of U in G, and then summing over the left cosets. This sum reduces
to a finite sum, because the support of f is covered by finitely many left cosets
of U in G. One can check that this satisfies the requirements of a left-invariant
Haar integral on G, and there are analogous statements for right-invariant Haar
integrals.

Let G be a locally compact topological group again, and let K be a compact
subset of G such that e is an element of the interior of K. We may also ask
that K be symmetric about e, by replacing K with K ∪K−1, if necessary. As
before, we define Kj for j ∈ Z+ by putting K1 = K and Kj+1 = Kj K for
every k ≥ 1. Under these conditions,

∞∪
j=1

Kj(7.8.3)

is a subgroup of G, as in Section 3.3. In fact, (7.8.3) is an open subgroup of G,
because e is an element of the interior of K. One can check that Kj is compact
for every j ∈ Z+, using continuity of multiplication on G, and induction. Hence
(7.8.3) is σ-compact.

7.9 Real and complex numbers

Of course, the real line R is a commutative topological group with respect to
addition and the standard topology. Let HR be one-dimensional Lebesgue mea-
sure on R, which satisfies the requirements of Haar measure on R, as mentioned
in Section 7.1. If t ∈ R \ {0}, then

αt(x) = t x(7.9.1)
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defines an automorphism of R as a topological group with respect to addition.
It is well known that

HR(αt(E)) = |t|HR(E)(7.9.2)

for all Borel sets E ⊆ R, where | · | is the standard absolute value function on
R.

We may also consider R \ {0} as a locally compact commutative topological
group with respect to multiplication and the topology induced by the standard
topology on R. It is easy to see that

E 7→
∫
E

|x|−1 dx(7.9.3)

satisfies the requirements of Haar measure on R \ {0}, where dx refers to one-
dimensional Lebesgue measure on R. Note that R \ {0} is isomorphic as a
topological group to R+ × {±1}, where R+ is the multiplicative group of posi-
tive real numbers, equipped with the topology induced by the standard topology
on R, and the multiplicative group {±1} is equipped with the discrete topology.
The exponential function is an isomorphism from R as a topological group with
respect to addition onto R+ as a topological group with respect to multiplica-
tion.

The complex plane C is a commutative topological group with respect to
addition and the standard topology as well. This can be identified with R2

as a commutative topological group with respect to addition and the standard
topology. Let HC = HR2 be 2-dimensional Lebesgue measure on R2, which
satisfies the requirements of Haar measure on C = R2, as in Section 7.1. If
t ∈ C \ {0}, then

αt(z) = t z(7.9.4)

defines an automorphism on C as a topological group with respect to addition.
In this case, we have that

HC(αt(E)) = |t|2 HC(E)(7.9.5)

for all Borel sets E ⊆ C, where | · | is the standard absolute value function on
C.

As before, C \ {0} is a locally compact commutative topological group with
respect to multiplication and the topology induced by the standard topology on
C. One can check that

E 7→
∫
E

|z|−2 dHC(z)(7.9.6)

satisfies the requirements of Haar measure on C \ {0}. Let

T = {z ∈ C : |z| = 1}(7.9.7)

be the unit circle in C, which is a compact subgroup of C. Thus T is a commu-
tative topological group with respect to multiplication and the topology induced
by the standard topology on C. Observe that C \ {0} is isomorphic as a topo-
logical group to R+ × T, equipped with the corresponding product topology.
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The usual arclength measure on T satisfies the requirements of Haar measure.
As in Section 7.7, one can get Haar measure on R+×T using Haar measures on
R+ and T and the standard product measure construction. This corresponds
to looking at Haar measure on C \ {0} in terms of polar coordinates.

7.10 Other fields

Let k be a field, and let | · | be an ultrametric absolute value function on k.
If | · | is the trivial absolute value function on k, then the associated metric is
the discrete metric, which determines the discrete topology on k. In this case,
counting measure on k satisfies the requirements of Haar measure on k, as a
commutative topological group with respect to addition. Similarly, counting
measure on k \ {0} satisfies the requirements of Haar measure on k \ {0}, as a
commutative topological group with respect to multiplication. Let us suppose
from now on in this section that | · | is nontrivial on k.

Let us also suppose from now on in this section that k is complete with
respect to the ultrametric associated to | · |, that | · | is discrete on k, and that
the residue field associated to | · | has a finite number N of elements. As in
Section 6.3, the discreteness and nontriviality of | · | on k means that if ρ1 is
the nonnegative real number defined in (6.3.3), then 0 < ρ1 < 1. We have
also seen that the positive values of | · | are the same as the integer powers of
ρ1 in this case. In particular, the open unit ball B(0, 1) in k with respect to
the ultrametric associated to | · | is the same as the closed ball B(0, ρ1). The
condition on the residue field means that the closed unit ball B(0, 1) is the
union of N pairwise-disjoint translates of B(0, 1). This is the same as saying
that B(0, 1) is the union of N pairwise-disjoint closed balls of radius ρ1 in this
situation. It follows that for every x ∈ k and j ∈ Z+, B(x, ρj1) can be expressed

as N pairwise-disjoint closed balls of radius ρj+1
1 .

Repeating the process, we get that for every x ∈ k, j ∈ Z, and l ∈ Z+,
B(x, ρj1) can be expressed as the union of N l pairwise-disjoint closed balls of

radius ρj+l
1 . In particular, closed balls in k are totally bounded with respect

to the ultrametric associated to | · |, as in Section 6.6. This implies that closed
balls in k are compact, because k is complete with respect to the ultrametric
associated to | · |, as before. Thus k is locally compact with respect to the
topology determined by the ultrametric associated to | · |.

Let Hk be Haar measure on k, as a locally compact commutative topological
group with respect to addition. We can normalize Hk so that

Hk(B(0, 1)) = 1,(7.10.1)

by dividing by the Haar measure of B(0, 1), which is positive and finite. Using
this normalization, we get that

Hk(B(x, ρj1)) = N−j(7.10.2)

for every x ∈ k and j ∈ Z. More precisely, the left side of (7.10.2) does not
depend on x, because of translation-invariance of Haar measure. Thus (7.10.2)
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follows from (7.10.1) when j = 0. If j ≥ 1, then (7.10.2) follows from (7.10.1)
and the fact that B(0, 1) can be expressed as the union of N j pairwise-disjoint
closed balls of radius ρj1. Similarly, if j ≤ −1, then (7.10.2) follows from (7.10.1)

and the fact that B(x, ρj1) can be expressed as the union of N−j closed balls of
radius 1.

Let t ∈ k \ {0} be given, so that

|t| = ρj01(7.10.3)

for some j0 ∈ Z. Note that
αt(x) = t x(7.10.4)

defines an automorphism on k as a topological group with respect to addition.
If E ⊆ k is a Borel set, then

Hk(αt(E)) = N−j0 Hk(E).(7.10.5)

More precisely, if E is a closed ball in k of radius ρj1 for some j ∈ Z, then

αt(E) is a closed ball of radius ρj+j0
1 , and (7.10.5) reduces to (7.10.2). One can

get the same conclusion for all Borel sets E using uniqueness of Haar measure.
Remember that N ≥ 2, so that there is a positive real number a such that

ρ1 = N−a.(7.10.6)

Thus |t| = N−j0 , so that (7.10.5) is the same as saying that

Hk(αt(E)) = |t|a Hk(E)(7.10.7)

for all Borel sets E ⊆ k.
In this situation,

{x ∈ k : |x| = 1}(7.10.8)

is a compact subset of k. This is also an open set in k, because | · | is an
ultrametric absolute value function on k. Of course, (7.10.8) is a commutative
group with respect to multiplication, and in fact a topological group with respect
to the topology determined by the restriction to (7.10.8) of the ultrametric
on k associated to | · |. One can check that the restriction of Hk to (7.10.8)
satisfies the requirements of Haar measure on (7.10.8), as a compact topological
group with respect to multiplication. More precisely, the invariance of Hk under
multiplicative translations on (7.10.8) corresponds to (7.10.5) with |t| = 1, so
that j0 = 0.

We can also consider k\{0} as a commutative topological group with respect
to multiplication, and the topology determined by the restriction to k \ {0} of
the ultrametric on k associated to | · |. This is isomorphic as a topological group
to the product of (7.10.8) and

{ρj1 : j ∈ Z},(7.10.9)

where (7.10.9) is considered as a commutative topological group with respect
to multiplication and the discrete topology. Of course, (7.10.9) is isomorphic as
a topological group to Z, considered as a commutative topological group with
respect to addition and the discrete topology.
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7.11 Estimating λ, Λ

Let G be a locally compact topological group such that {e} is a closed set, and
let HL be a left-invariant Haar measure on G. Suppose that E1, E2 ⊆ G are
Borel sets such that HL(E1) > 0 and HL(E2) < ∞. If a ∈ G satisfies

E1 a ⊆ E2,(7.11.1)

then
HL(E1 a) ≤ HL(E2).(7.11.2)

Let λ(a) > 0 be as in Section 7.3, so that

HL(E1 a) = λ(a)HL(E1).(7.11.3)

It follows that
λ(a) ≤ HL(E2)/HL(E1)(7.11.4)

when (7.11.1) holds.
Suppose now that E1 is compact, E2 is an open set, and

E1 ⊆ E2.(7.11.5)

Of course, we can get HL(E1) > 0 by taking E1 to have nonempty interior, and
in particular one might take E1 to contain e in its interior. Similarly, we can
get HL(E2) < ∞ by taking E2 to be contained in a compact set, which can be
obtained using local compactness. As in Section 1.3, there is an open set V ⊆ G
such that e ∈ V and

E1 V ⊆ E2.(7.11.6)

This means that (7.11.4) holds for every a ∈ V . If a ∈ V −1, then we can apply
the previous statement to a−1 ∈ V , to get that

1/λ(a) = λ(a−1) ≤ HL(E2)/HL(E1).(7.11.7)

Thus
HL(E1)/HL(E2) ≤ λ(a) ≤ HL(E2)/HL(E1)(7.11.8)

when a ∈ V ∩ V −1. This gives another way to look at the continuity of λ at e,
by choosing E1 and E2 so that HL(E1) and HL(E2) are very close to each other.
More precisely, one can start with a compact set E1 such that HL(E1) > 0, and
use outer regularity to get open sets E2 containing E1 such that HL(E2) is as
close as one wants to HL(E1). Alternatively, one can start with a nonempty
open set E2 such that HL(E2) < ∞, and use inner regularity for open sets to
get compact sets E1 contained in E2 such that HL(E1) is as close as one wants
to HL(E2).

Let E1 be a compact set with HL(E1) > 0 again, and let K be a nonempty
compact subset of G. Suppose that

E1 K ⊆ E2,(7.11.9)
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where HL(E2) < ∞. Note that E1 K is compact, because of continuity of
multiplication on G, and so we could simply take E2 = E1 K. If a ∈ K, then
(7.11.4) holds, as before. Similarly, (7.11.7) holds when a ∈ K−1, and hence
(7.11.8) holds when a ∈ K ∩K−1. Of course, one could also use the continuity
of λ to get that λ(K) is a compact subset of R+. If K is a compact subgroup
of G, then it follows that λ(a) = 1 for every a ∈ K, because λ(K) is a bounded
subgroup of R+, and the trivial subgroup {1} is the only bounded subgroup of
R+. This could be obtained as well from the fact that E1 K is invariant under
translations on the right by elements of K in this case.

Let E1, E2 be Borel sets with HL(E1) > 0 and HL(E2) < ∞ again. If α is
an automorphism of G as a topological group such that

α(E1) ⊆ E2,(7.11.10)

then
HL(α(E1)) ≤ HL(E2).(7.11.11)

Let Λ(α) > 0 be as in Section 7.5, so that

HL(α(E1)) = Λ(α)HL(E1).(7.11.12)

Thus
Λ(α) ≤ HL(E2)/HL(E1)(7.11.13)

when (7.11.10) holds.
Let A be a collection of automorphisms of G as a topological group. Let us

say that A is equicontinuous at e if for every open set W ⊆ G with e ∈ W there
is an open set U ⊆ G such that e ∈ U and

α(U) ⊆ W(7.11.14)

for every α ∈ A. In particular, if W is contained in a compact set, then it
follows that Λ is bounded on A, as in the preceding paragraph. Of course, if A
is a subgroup of the group of automorphisms of G as a topological group, then
Λ(A) is a subgroup of R+, because Λ is a group homomorphism. If Λ is also
bounded on A, then Λ(α) = 1 for every α ∈ A, because {1} is the only bounded
subgroup of R+.

7.12 Haar measure on kn

In this section, we let k be a field with an absolute value function | · |, which is
in one of the following four cases.

Case 1. k = R with the standard absolute value function.

Case 2. k = C with the standard absolute value function.

Case 3. | · | is a nontrivial discrete ultrametric absolute value function on k,
k is complete with respect to the ultrametric associated to | · |, and the
residue field associated to | · | on k is finite.
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Case 4. | · | is the trivial absolute value function on k.

In each of these four cases, k may be considered as a locally compact com-
mutative topological group with respect to addition, and using the topology
determined by the metric associated to k. Let Hk be Haar measure on k, as in
Sections 7.9 and 7.10.

Note that k is separable as a metric space in the first three cases, with respect
to the metric associated to | · |. This is well known in the first two cases. In
the third case, this follows from the fact that closed balls in k centered at 0 are
totally bounded, and that k is the union of a sequence of such balls. It follows
that there is a countable base for the topology of k in the first three cases.

Let n be a positive integer, and let kn be the space of n-tuples of elements of
k, as usual. This may be considered as a locally compact commutative topologi-
cal group with respect to addition, using the product topology corresponding to
the topology determined on k by the metric associated to | · |. Let Hkn be Haar
measure on kn. In the first three cases, Hkn can be obtained from Hk using
the standard product measure construction. In the fourth case, the product
topology on kn is the discrete topology, and we can take Hkn to be counting
measure on kn.

Let a(k) > 0 be as follows. In the first two cases, we put

a(R) = 1, a(C) = 2.(7.12.1)

This would have to be adjusted if we used a different power of the standard
absolute value function on R or C. In the third case, we take a = a(k) to be as
in (7.10.6). In the fourth case, we can take a(k) = 1.

Of course, kn is also a vector space over k with respect to coordinatewise
addition and scalar multiplication. Let T be a one-to-one linear mapping from
kn onto itself. This may also be considered as an automorphism on kn as a
topological group, because linear mappings from kn into itself are continuous
with respect to the product topology. Let us check that

Hkn(T (E)) = |detT |a(k) Hkn(E)(7.12.2)

for every Borel set E ⊆ kn. This is the same as saying that

|Λ(T )| = |detT |a(k),(7.12.3)

where Λ(T ) > 0 is as in Section 7.5. This is trivial in the fourth case, and so
we need only consider the first three cases. The argument is basically the same
as in the classical case of real numbers.

It is well known that T can be expressed as the composition of finitely many
“elementary” linear mappings, corresponding to elementary matrices. Thus it
suffices to show that (7.12.2) holds when T is one of these elementary linear
mappings, of which there are three types. The first type of elementary linear
mapping corresponds to interchanging two coordinates of an element of kn,
which preserves Haar measure on kn. The second type of elementary linear
mapping corresponds to a diagonal matrix in which all but one diagonal entry
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is equal to 1, which can be handled using the remarks about the n = 1 case in
Sections 7.9 and 7.10. The third type of elementary linear mapping corresponds
to a matrix which is the same as the identity matrix except for one off-diagonal
term, and this type of linear mapping also preserves Haar measure.

Let T be a linear mapping from Cn into itself, and let detC T be the usual
complex determinant of T . If we identify C with R2 as a vector space over
R in the usual way, then we can identify Cn with R2n, and consider T as a
real-linear mapping from R2n into itself. It is well known that

detRT = |detCT |2,(7.12.4)

where detR T ∈ R is the determinant of T as a real-linear mapping from R2n

into itself, and | · | is the standard absolute value function on C. See Proposition
1.4.10 in [18].

7.13 Matrices and Haar measure

Let k be a field with an absolute value function | · |, which is in one of the four
cases mentioned at the beginning of the previous section. Also let n be a positive
integer, and let Mn(k) be the space of n×n matrices with entries in k, as before.
This is a vector space over k with respect to coordinatewise addition and scalar
multiplication, and in particular Mn(k) is a commutative group with respect
to addition. Using the topology determined on k by the metric associated to
| · |, we get a corresponding product topology on Mn(k). In fact, Mn(k) is a
commutative topological group with respect to addition and this topology. Note
that Mn(k) is locally compact with respect to the product topology, because k is
locally compact in this situation. Let HMn(k) be Haar measure on Mn(k). More

precisely, Mn(k) can be identified with kn
2

in a suitable way, so that HMn(k)

corresponds to Hkn2 . Thus HMn(k) can be obtained from Hk using a standard
product measure construction in the first three cases, as in the previous section,
and we can take HMn(k) to be counting measure on Mn(k) in the fourth case.

If A,B, T ∈ Mn(k), then put

αA(T ) = AT(7.13.1)

and

βB(T ) = T B,(7.13.2)

where AT, T B ∈ Mn(k) are defined using matrix multiplication. Note that αA

and βB define linear mappings from Mn(k) into itself, as a vector space over k.
Suppose that A, B are invertible with respect to matrix multiplication, so that
αA, βB are invertible as linear mappings on Mn(k). In particular, αA and βB

may be considered as automorphisms of Mn(k) as a commutative topological
group with respect to addition. If E ⊆ Mn(k) is a Borel set, then

HMn(k)(αA(E)) = |detA|a(k)n HMn(k)(E)(7.13.3)
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and
HMn(k)(βB(E)) = |detB|a(k)n HMn(k)(E),(7.13.4)

where a(k) > 0 is as in the previous section. This is the same as saying that

Λ(αA) = |detA|a(k)n(7.13.5)

and
Λ(βB) = |detB|a(k)n,(7.13.6)

where Λ is as in Section 7.5. These statements may be considered as versions
of the analogous statements in the previous section, using also the fact that the
determinant of a matrix is equal to the determinant of its transpose.

If f is a nonnegative real-valued Borel measurable function on Mn(k), then∫
Mn(k)

f ◦ αA dHMn(k) = |detA|−a(k)n

∫
Mn(k)

f dHMn(k)(7.13.7)

and ∫
Mn(k)

f ◦ βB dHMn(k) = |detB|−a(k)n

∫
Mn(k)

f dHMn(k),(7.13.8)

as in Section 7.5. Similarly, if f is a real or complex-valued function on Mn(k)
that is integrable with respect to HMn(k), then f ◦αA and f ◦βB are integrable
with respect to Hn(k) too, and (7.13.7) and (7.13.8) hold, as before. Alter-
natively, if f is a continuous real or complex-valued function on Mn(k) with
compact support, then the corresponding Haar integral IMn(k)(f) can be de-
fined more directly. More precisely, in the first two cases for k in the previous
section, IMn(k)(f) can be obtained from an ordinary Riemann integral. One
can basically obtain IMn(k)(f) from a Riemann-type integral in the third case
as well. In the fourth case, Mn(k) is equipped with the discrete topology, and
IMn(k)(f) reduces to a finite sum when f has compact support. Of course, f ◦αA

and f ◦ βB are continuous functions on Mn(k) with compact support, and we
have that

IMn(k)(f ◦ αA) = |detA|−a(k)n IMn(k)(f)(7.13.9)

and
IMn(k)(f ◦ βB) = |detB|−a(k)n IMn(k)(f).(7.13.10)

Let GLn(k) be the group of invertible elements of Mn(k) with respect to
matrix multiplication, as in Section 6.8. Remember that GLn(k) is an open
set in Mn(k) with respect to the product topology mentioned earlier, and that
GLn(k) is a topological group with respect to the topology induced by this
topology on Mn(k). In this situation, GLn(k) is locally compact, because k is
locally compact. If E ⊆ GLn(k) is a Borel set, then put

HGLn(k)(E) =

∫
E

|detT |−a(k)n dHMn(k)(T ).(7.13.11)

One can check that this satisfies the requirements of left and right-invariant
Haar measure on GLn(k).
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The invariance of (7.13.11) under left and right translations on GLn(k) is ba-
sically the same as saying that if f is a nonnegative real-valued Borel measurable
function on GLn(k) and A,B ∈ GLn(k), then∫

GLn(k)

f(AT ) |detT |−a(k)n dHMn(k)(7.13.12)

=

∫
GLn(k)

f(T ) |detT |−a(k)n dHMn(k)

and ∫
GLn(k)

f(T B) |detT |−a(k)n dHMn(k)(7.13.13)

=

∫
GLn(k)

f(T ) |detT |−a(k)n dHMn(k).

It is easy to get (7.13.12) and (7.13.13) from (7.13.7) and (7.13.8), respectively.
As usual, there are analogous statements for real and complex-valued functions
on GLn(k) that are integrable with respect to HGLn(k). One can also look at
this in terms of Haar integrals. Let f be a continuous real or complex-valued
function onGLn(k) with compact support. We can extend f to a continuous real
or complex-valued function on Mn(k) by putting f(T ) = 0 when T ∈ Mn(k)
satisfies detT = 0. The condition that f have compact support in GLn(k)
implies that this extension has compact support in Mn(k), and that the support
of this extension does not contain any T ∈ Mn(k) with detT = 0. If we interpret

f(T ) |detT |−a(k)n(7.13.14)

as being equal to 0 when detT = 0, then (7.13.14) defines a continuous function
on Mn(k) with compact support. The Haar integral IGLn(k)(f) of f on GLn(k)
can be defined by applying the Haar integral IMn(k) on Mn(k) to (7.13.14) as a
continuous function on Mn(k) with compact support. The invariance of IGLn(k)

under left and right translations on GLn(k) can be obtained from (7.13.9) and
(7.13.10), as before.



Chapter 8

Spaces of continuous
functions

8.1 Supremum semimetrics and compact sets

Let X be a nonempty topological space, and let Y be a nonempty set with a
semimetric dY . Consider the space Bcom(X,Y ) of mappings f from X into Y
that are bounded on compact subsets of X, so that f(A) is a bounded subset of
Y with respect to dY for every compact set A ⊆ X. Of course, if X is compact,
then Bcom(X,Y ) is the same as the space B(X,Y ) of all bounded mappings
from X into Y . If A is a nonempty compact subset of X and f, g ∈ Bcom(X,Y ),
then put

θA(f, g) = sup
x∈A

dY (f(x), g(x)),(8.1.1)

as in Section 2.1. This is the supremum semimetric on Bcom(X,Y ) associated
to A and dY .

Consider the collection

{θA : A ⊆ X is nonempty and compact}(8.1.2)

of all supremum semimetrics (8.1.1) associated to nonempty compact subsets of
X, as a collection of semimetrics on Bcom(X,Y ). Note that (8.1.2) is nonempty,
because finite subsets of X are compact. As in Section 1.5, (8.1.2) determines a
topology on Bcom(X,Y ). If dY is a metric on Y , then (8.1.2) is nondegenerate
on Bcom(X,Y ), because finite subsets of X are compact.

Let A1, . . . , An be finitely many nonempty compact subsets of X, so that
A =

∪n
j=1 Aj is a nonempty compact subset of X as well. It is easy to see that

θA(f, g) = max
1≤j≤n

θAj (f, g)(8.1.3)

for every f, g ∈ Bcom(X,Y ). Similarly, if A, B are nonempty compact subsets
of X and A ⊆ B, then

θA(f, g) ≤ θB(f, g)(8.1.4)

138
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for every f, g ∈ Bcom(X,Y ).
Let C be a nonempty collection of nonempty compact subsets of X, so that

{θC : C ∈ C}(8.1.5)

defines a nonempty collection of semimetrics on Bcom(X,Y ). Suppose that for
every nonempty compact set A ⊆ X there are finitely many elements C1, . . . , Cn

of C such that

A ⊆
n∪

j=1

Cj .(8.1.6)

This implies that
θA(f, g) ≤ max

1≤j≤n
θCj

(f, g)(8.1.7)

for every f, g ∈ Bcom(X,Y ), as in (8.1.3) and (8.1.4). It follows that the topology
determined on Bcom(X,Y ) by (8.1.5) is the same as the topology determined
by the collection of supremum semimetrics (8.1.2). If X is compact, then we
can take C = {X}.

If X is locally compact, then every compact set K ⊆ X is contained in an
open set U ⊆ X such that U is contained in a compact subset of X. More
precisely, for each x ∈ K there is an open set U(x) ⊆ X such that x ∈ U(x)
and U(x) is contained in a compact set, because X is locally compact. The
compactness of K implies that K is contained in the union U of finitely many
such open sets, and U is contained in the union of finitely many compact sets,
which is compact too.

Suppose that X is σ-compact, so that there is a sequence K1,K2,K3, . . . of
compact subsets of X such that

X =

∞∪
j=1

Kj .(8.1.8)

Of course, we may as well ask that Kj ̸= ∅ for every j ≥ 1. We may also ask

that Kj ⊆ Kj+1 for every j, since otherwise we can replace Kj with
∪j

l=1 Kj .
If X is locally compact too, then we can replace the Kj ’s by somewhat larger

compact sets, so that Kj is contained in the interior of Kj+1 for every j ≥ 1.
In particular, the interior of Kj is contained in the interior of Kj+1 for every
j ≥ 1, and the union of the interiors of the Kj ’s is equal to X.

If A ⊆ X is compact, then it follows that A is contained in the interior of
Kj for some j, and hence that A ⊆ Kj . This means that the collection of Kj ’s
satisfies the condition mentioned earlier, so that the corresponding collection
of supremum seminorms θKj determines the same topology on Bcom(X,Y ) as
(8.1.2).

8.2 Continuity on compact sets

Let X and Y be topological spaces, and let Ccom(X,Y ) of mappings f from X
into Y that are continuous on compact subsets of X. More precisely, this means
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that if K is a compact subset of X, then the restriction of f to K is continuous
with respect to the topology induced on K by the given topology on X. Of
course, if f is continuous as a mapping from X into Y , then the restriction of
f to any subset E of X is continuous with respect to the induced topology on
E. Thus

C(X,Y ) ⊆ Ccom(X,Y ),(8.2.1)

where C(X,Y ) is the space of all continuous mappings from X into Y , as before.
If X is locally compact, then it is easy to see that

Ccom(X,Y ) = C(X,Y ).(8.2.2)

A mapping f from X into Y is said to be sequentially continuous at a
point x ∈ X if for every sequence {xj}∞j=1 of elements of X that converges to
x, {f(xj)}∞j=1 converges to f(x) in Y . If f is continuous at x, then it is well
known and easy to verify that f is sequentially continuous at x. Suppose for the
moment that there is a local base for the topology of X at x with only finitely or
countably many elements. In this case, if f is sequentially continuous at x, then
it is well known that f is continuous at x. More precisely, let V ⊆ Y be an open
set such that f(x) ∈ V . One would like to find an open set U ⊆ X such that
x ∈ U and f(U) ⊆ V . By hypothesis, there is a sequence U1, U2, U3, . . . of open
subsets of X containing x that form a local base for the topology of X at x.
We may also ask that Uj+1 ⊆ Uj for each j ≥ 1, by replacing Uj with

∩j
l=1 Ul.

If f(Uj) ̸⊆ V for any j ≥ 1, then there is a sequence {xj}∞j=1 of elements of X
such that xj ∈ Uj and f(xj) ̸∈ V for each j ≥ 1. This implies that {xj}∞j=1

converges to x in X, and that {f(xj)}∞j=1 does not converge to f(x) in Y .
Let Cseq(X,Y ) be the space of mappings f from X into Y that are sequen-

tially continuous, in the sense that f is sequentially continuous at every point
in X. Of course,

C(X,Y ) ⊆ Cseq(X,Y ),(8.2.3)

because continuous mappings are sequentially continuous, as in the preceding
paragraph. If X satisfies the first countability condition, so that there is a local
base for the topology of X at every x ∈ X with only finitely or countably many
elements, then

Cseq(X,Y ) = C(X,Y ),(8.2.4)

as before.
Let {xj}∞j=1 be a sequence of elements of X that converges to an element x of

X. It is easy to see that the set K consisting of the xj ’s, j ∈ Z+, together with
x, is compact in X. Let f be a mapping from X into Y whose restriction to k is
continuous. This implies that the restriction of f toK is sequentially continuous,
and hence that {f(xj)}∞j=1 converges to f(x) in Y . If the restriction of f to
every compact subset of X is continuous, then it follows that f is sequentially
continuous on X. This means that

Ccom(X,Y ) ⊆ Cseq(X,Y ).(8.2.5)

If X satisfies the first countability condition, then we get that (8.2.2) holds,
because of (8.2.1) and (8.2.4).



8.3. CLOSURE AND COMPLETENESS 141

8.3 Closure and completeness

Let X be a nonempty topological space, and let Y be a nonempty set with a
semimetric dY . Thus Y is also a topological space with respect to the topology
determined by dY . If a mapping f from X into Y is continuous on compact
sets, then f(A) is a compact subset of Y for every compact set A ⊆ X. This
implies that f is bounded on compact subsets of X, because compact subsets
of Y are bounded with respect to dY . It follows that

Ccom(X,Y ) ⊆ Bcom(X,Y ),(8.3.1)

where Bcom(X,Y ) is as in Section 8.1, and Ccom(X,Y ) is as in the previous
section.

If A is a nonempty compact subset ofX, then we let θA denote the supremum
semimetric on Bcom(X,Y ) associated to A and dY as in (8.1.1). The collection
(8.1.2) of all such semimetrics determines a topology on Bcom(X,Y ) in the
usual way. It is easy to see that Ccom(X,Y ) is a closed set in Bcom(X,Y ) with
respect to this topology. More precisely, if f ∈ Bcom(X,Y ) is in the closure
of Ccom(X,Y ) with respect to this topology, then the restriction of f to any
nonempty compact set A ⊆ X can be uniformly approximated by continuous
mappings from A into Y , where A is equipped with the topology induced by the
given topology on X. This implies that the restriction of f to A is continuous,
as desired.

Let us suppose from now on in this section that dY is a metric on Y . If
Y is complete with respect to dY , then Bcom(X,Y ) is sequentially complete
with respect to the collection (8.1.2) of supremum semimetrics associated to
nonempty compact subsets of X. To see this, let {fj}∞j=1 be a Cauchy sequence
of elements of Bcom(X,Y ) with respect to (8.1.2). In particular, this implies
that {fj(x)}∞j=1 is a Cauchy sequence in Y for every x ∈ X, because {x} is a
compact subset of X. It follows that {fj}∞j=1 converges pointwise to a mapping
f from X into Y , because Y is complete. If A ⊆ X is nonempty and compact,
then one can check that {fj}∞j=1 converges uniformly to f on A, and that f is
bounded on A, by standard arguments. This means that f ∈ Bcom(X,Y ), and
that {fj}∞j=1 converges to f with respect to the topology determined by (8.1.2),
as desired.

Let C be a collection of nonempty compact subsets of X, and suppose that
every compact subset of X is contained in the union of finitely many elements
of C. Remember that the collection (8.1.5) of supremum semimetrics associated
to elements of C determines the same topology on Bcom(X,Y ) as the collection
(8.1.2) of supremum semimetrics associated to all nonempty compact subsets
of X, as in Section 8.1. Similarly, if {fj}∞j=1 is a Cauchy sequence of elements
of Bcom(X,Y ) with respect to (8.1.5), then it is easy to see that {fj}∞j=1 is a
Cauchy sequence with respect to (8.1.2). If Y is complete with respect to dY ,
then it follows that Bcom(X,Y ) is sequentially complete with respect to (8.1.5).

Note that Ccom(X,Y ) is a closed set in Bcom(X,Y ) with respect to the
topology determined by (8.1.5) under the conditions mentioned in the preceding
paragraph. If Y is complete with respect to dY , then we get that Ccom(X,Y ) is
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sequentially complete with respect to the restrictions of the elements of (8.1.5)
to Ccom(X,Y ).

8.4 Compatible semimetrics

Let Y be a nonempty set, and let d, d′ be semimetrics on Y . Suppose that
d′ is compatible with the topology determined on Y by d, as in Section 1.1.
This means that the topology determined on Y by d is at least as strong as the
topology determined on Y by d′, or equivalently that the identity mapping on
Y is continuous as a mapping from Y equipped with d into Y equipped with
d′. If K is a compact subset of Y with respect to the topology determined by
d, then it follows that the identity mapping on Y is uniformly continuous along
K as a mapping from Y equipped with d into Y equipped with d′, as in Section
2.2. Thus for each ϵ > 0 there is a δ(K, ϵ) > 0 such that

d′(y, z) < ϵ(8.4.1)

for every y ∈ K and z ∈ Y with d(y, z) < δ(K, ϵ).
Let X be a nonempty topological space, and let

Ccom(X, (Y, d)) and Ccom(X, (Y, d′))(8.4.2)

be the spaces of mappings from X into Y whose restrictions to compact subsets
of X are continuous with respect to the topologies determined on Y by d and
d′, respectively, as in Section 8.2. Thus

Ccom(X, (Y, d)) ⊆ Ccom(X, (Y, d′)),(8.4.3)

because d′ is supposed to be compatible with d on Y . Let A be a nonempty
compact subset of X, so that

θA(f, g) = sup
x∈A

d(f(x), g(x))(8.4.4)

defines a semimetric on Ccom(X, (Y, d)), as before. Similarly, let

θ′A(f, g) = sup
x∈A

d′(f(x), g(x))(8.4.5)

be the supremum semimetric on Ccom(X, (Y, d′)) associated to A and to d′

on Y . Of course, the restriction of (8.4.5) to f, g ∈ Ccom(X, (Y, d)) defines a
semimetric on Ccom(X, (Y, d)).

Let f ∈ Ccom(X, (Y, d)) and ϵ > 0 be given, and note that f(A) is a compact
subset of Y with respect to d. This implies that there is a δ(f(A), ϵ) > 0 such
that

d′(f(x), z) < ϵ(8.4.6)

for every x ∈ A and z ∈ Y with d(f(x), z) < δ(f(A), ϵ), as in (8.4.1). If
g ∈ Ccom(X, (Y, d)) satisfies

θA(f, g) < δ(f(A), ϵ),(8.4.7)
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then we have that
d′(f(x), g(x)) < ϵ(8.4.8)

for every x ∈ A, by (8.4.6). This implies that

θ′A(f, g) < ϵ.(8.4.9)

More precisely, one can check that d′(f(x), g(x)) is continuous as a real-valued
function of x on A, because f and g are continuous on A as mappings into Y
equipped with d′. This implies that the supremum in (8.4.5) is attained, because
A is compact. This permits us to get the strict inequality in (8.4.9) from the one
in (8.4.8), although a non-strict inequality could also be used here. It follows
that θ′A is compatible with θA on Ccom(X, (Y, d)).

Suppose now that d and d′ determine the same topology on Y . In this
case, Ccom(X, (Y, d)) and Ccom(X, (Y, d′)) are the same, and this space may be
denoted simply Ccom(X,Y ), as before. If A is a nonempty compact subset of
X, then we get that θA and θ′A determine the same topologies on Ccom(X,Y ).

8.5 Total boundedness conditions

Let X be a set, and let M be a nonempty collection of semimetrics on X.
Let us say that a subset E of X is totally bounded with respect to M if E is
totally bounded with respect to every d ∈ M, as in Section 4.2. In this case,
if d1, . . . , dn are finitely many elements of M, then E is totally bounded with
respect to their maximum, as before. In particular, if M has only finitely many
elements, then E is totally bounded with respect to M if and only if E is totally
bounded with respect to the maximum of the elements of M. More precisely,
the “if” part of this statement can be verified directly, and the “only if” part
follows from the previous statement.

Let d(x, y) be a semimetric on X, and let t be a positive real number.
Remember that

dt(x, y) = min(d(x, y), t)(8.5.1)

defines a semimetric on X too. One can check that E ⊆ X is totally bounded
with respect to d(x, y) if and only if E is totally bounded with respect to dt(x, y).

Let d1, d2, d3, . . . be an infinite sequence of semimetrics on X, and put

d′j(x, y) = min(dj(x, y), 1/j)(8.5.2)

for every x, y ∈ X and j ≥ 1. Remember that

d(x, y) = max
j≥1

d′j(x, y)(8.5.3)

defines a semimetric on X, for which the corresponding topology on X is the
same as the topology determined by the collection of semimetrics dj , j ≥ 1. If
E ⊆ X is totally bounded with respect to (8.5.3), then it is easy to see that
E is totally bounded with respect to (8.5.2) for every j ≥ 1. This implies that
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E is totally bounded with respect to dj for every j ≥ 1, as in the preceding
paragraph.

In order to deal with the converse, let r > 0 be given, and consider the set
of x, y ∈ X such that

d(x, y) < r.(8.5.4)

This is the same as the set of x, y ∈ X such that

d′j(x, y) < r(8.5.5)

for every j ≥ 1, by the definition (8.5.3) of d(x, y). Note that (8.5.5) holds for
every x, y ∈ X when r > 1/j. In particular, (8.5.4) holds for every x, y ∈ X
when r > 1. Suppose that r ≤ 1, and let [1/r] be the largest integer less than or
equal to 1/r, as usual. If 1 ≤ j ≤ [1/r], then r ≤ 1/j, and (8.5.5) holds exactly
when

dj(x, y) < r,(8.5.6)

as in Section 1.9. In this case, we get that (8.5.4) holds exactly when

max
1≤j≤[1/r]

dj(x, y) < r.(8.5.7)

Suppose that E ⊆ X is totally bounded with respect to dj for every positive
integer j. This implies that E is totally bounded with respect to the maximum
of d1, . . . , dn for any positive integer n, as before. One can use this and the
remarks in the previous paragraph to get that E is totally bounded with respect
to (8.5.3).

8.6 Separate continuity of composition

LetX be a nonempty set with a semimetric d(x, y), which determines a topology
on X, as usual. If A is a nonempty compact subset of X, then

θA(f, g) = sup
x∈A

d(f(x), g(x))(8.6.1)

defines a semimetric on the space C(X,X) of continuous mappings from X into
itself, as before. The collection

{θA : A ⊆ X is nonempty and compact}(8.6.2)

determines a topology on C(X,X) in the usual way, as in Section 8. Let an
element h of C(X,X) be given, and let us consider the continuity properties of

f 7→ f ◦ h(8.6.3)

and
f 7→ h ◦ f,(8.6.4)

as mappings from C(X,X) into itself.
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Let A be a nonempty compact subset of X, so that h(A) is a nonempty
compact subset of X as well. If f, g ∈ C(X,X), then

θA(f ◦ h, g ◦ h) = sup
x∈A

d(f(h(x)), g(h(x)))(8.6.5)

= sup
y∈h(A)

d(f(y), g(y)) = θh(A)(f, g).

In particular, this implies that (8.6.3) is continuous as a mapping from C(X,X)
into itself, with respect to the topology determined by (8.6.2).

Let f0 ∈ C(X,X) be given, and let us consider the continuity of (8.6.4) at f0.
Let A be a nonempty compact subset of X again, which implies that f0(A) is a
nonempty compact subset of X too. Remember that h is uniformly continuous
along f0(A), as in Section 2.2, because h is continuous at every point in f0(A),
and f0(A) is compact. Let ϵ > 0 be given, so that there is a δ > 0 such that

d(h(y), h(w)) < ϵ(8.6.6)

for every y ∈ f0(A) and w ∈ X such that d(y, w) < δ. Equivalently, this means
that

d(h(f0(x)), h(w)) < ϵ(8.6.7)

for every x ∈ A and w ∈ X such that d(f0(x), w) < δ.
Let f ∈ C(X,X) be given, and suppose that

θA(f0, f) < δ,(8.6.8)

so that d(f0(x), f(x)) < δ for every x ∈ A. This implies that

d(h(f0(x)), h(f(x))) < ϵ(8.6.9)

for every x ∈ A, by taking w = f(x) in (8.6.7). Hence

θA(h ◦ f0, h ◦ f) < ϵ.(8.6.10)

More precisely, this uses the fact that the supremum is attained in (8.6.1) for
continuous mappings, because A is compact. However, the non-strict version of
(8.6.10) would also suffice here.

Using the remarks in the previous paragraphs, one can check that (8.6.4) is
continuous as a mapping from C(X,X) into itself. Note that the open balls in
C(X,X) with respect to the supremum semimetrics (8.6.1) form a base for the
topology determined by (8.6.2), because finitely many of these semimetrics can
be combined into a single semimetric, as in (8.1.3). This makes it a bit easier to
verify that (8.6.4) is continuous on C(X,X), because continuity at f0 ∈ C(X,X)
follows more directly from the condition in the preceding paragraph.

8.7 Joint continuity properties

Let X be a nonempty set with a semimetric d(x, y) again, and consider the
topology determined on the space C(X,X) of continuous mappings from X into
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itself by the collection of supremum semimetrics (8.6.1) associated to nonempty
compact subsets A of X. We would like to consider continuity properties of

(f, g) 7→ f ◦ g,(8.7.1)

as a mapping from C(X,X)×C(X,X) into C(X,X). More precisely, this uses
the product topology on C(X,X)×C(X,X), corresponding to the topology on
C(X,X) just mentioned. Let f0, g0 ∈ C(X,X) be given, and let us consider
continuity properties of (8.7.1) at (f0, g0). Thus, if f, g ∈ C(X,X) are close to
f0, g0, respectively, then we would like to be able to show that f ◦ g is close to
f0 ◦ g0, under suitable conditions.

Let A be a nonempty compact subset of X, and let f, g ∈ C(X,X) be given.
Observe that

θA(f0 ◦ g0, f ◦ g) ≤ θA(f0 ◦ g0, f0 ◦ g) + θA(f0 ◦ g, f ◦ g),(8.7.2)

by the triangle inequality. This implies that

θA(f0 ◦ g0, f ◦ g) ≤ θA(f0 ◦ g0, f0 ◦ g) + θg(A)(f0, f),(8.7.3)

where the second term on the right side of (8.7.2) has been reexpressed as in
(8.6.5). Let B be another nonempty compact subset of X, and suppose that

g(A) ⊆ B.(8.7.4)

In this case, we get that

θA(f0 ◦ g0, f ◦ g) ≤ θA(f0 ◦ g0, f0 ◦ g) + θB(f0, f),(8.7.5)

where the second term on the right side of (8.7.3) is estimated as in (8.1.4).
Let us suppose from now on in this section that X is locally compact with

respect to the topology determined by d(·, ·). Note that g0(A) is compact in X,
because A is compact and g0 is continuous. Using local compactness, we can
get an open set U ⊆ X and a compact set B ⊆ X such that

g0(A) ⊆ U ⊆ B.(8.7.6)

More precisely, local compactness implies that every element of g0(A) is con-
tained in an open set that is contained in a compact set. To get U and B, one
can use compactness of g0(A) to cover g0(A) by finitely many open sets that
are contained in compact sets.

If E ⊆ X and r > 0, then put

Er =
∪
x∈E

B(x, r),(8.7.7)

which is an open set in X that contains E. Remember that there is an r0 > 0
such that

(g0(A))r0 ⊆ U,(8.7.8)
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as in Section 1.3, because g0(A) is compact, U is an open set, and g0(A) ⊆ U .
If g ∈ C(X,X) satisfies

θA(g0, g) < r0,(8.7.9)

then it is easy to see that
g(A) ⊆ (g0(A))r0 .(8.7.10)

Thus (8.7.9) implies (8.7.4), because of (8.7.8) and (8.7.10). Hence (8.7.5) holds
when g satisfies (8.7.9), where B is as in the preceding paragraph.

Of course, we can make the second term on the right side of (8.7.5) as small
as we like, by taking f close to f0 in C(X,X). We can also make the first
term on the right side of (8.7.5) as small as we like, by taking θA(g0, g) to
be sufficiently small. This uses the fact that f0 is uniformly continuous along
g0(A), as in the previous section, and indeed this corresponds to the continuity
of (8.6.4) on C(X,X), as before. It follows that the left side of (8.7.5) is as
small as we like when f and g are sufficiently close to f0 and g0, respectively, in
C(X,X), which includes the condition (8.7.9). Using this, one can check that
(8.7.1) is continuous as a mapping from C(X,X)×C(X,X) into C(X,X) when
X is locally compact.

8.8 Inverse mappings and homeomorphisms

Let X be a nonempty set with a semimetric d(x, y), and let H(X) be the group
of homeomorphisms from X onto itself with respect to the topology determined
by d(·, ·), as before. If A ⊆ X is nonempty and compact, then let θA be the
supremum semimetric on the space C(X,X) of continuous mappings from X
into itself associated to A and d(·, ·), as in (8.6.1). Thus the restriction of
θA(f, g) to f, g ∈ H(X) defines a semimetric on H(X). We would like to
consider continuity properties of

f 7→ f−1(8.8.1)

as a mapping from H(X) to itself, related to these supremum semimetrics.
Let us consider

{θA : A ⊆ X is nonempty and compact}(8.8.2)

as a collection of semimetrics on H(X), using the restriction of θA(f, g) to
f, g ∈ H(X), as before. If A ⊆ X is nonempty and compact, then

θ̃A(f, g) = θA(f
−1, g−1)(8.8.3)

defines a semimetric on H(X) as well. Thus

{θ̃A : A ⊆ X is nonempty and compact}(8.8.4)

is another collection of semimetrics onH(X). Both (8.8.2) and (8.8.4) determine
topologies on H(X), as in Section 1.5. Similarly, the union of (8.8.2) and (8.8.4)
determines a topology on H(X).
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Of course, (8.8.1) defines a homeomorphism from H(X) with the topology
determined by (8.8.2) onto H(X) with the topology determined by (8.8.4). We
can also consider (8.8.1) as a homeomorphism from H(X) onto itself, using the
topology determined on H(X) by the union of (8.8.2) and (8.8.4) on both the
domain and the range.

In the previous two sections, we considered continuity properties of compo-
sition on C(X,X), with respect to the topology determined on C(X,X) by the
collection of supremum semimetrics associated to nonempty compact subsets of
X. In particular, these continuity properties can be used for compositions on
H(X), with respect to the topology determined by (8.8.2).

If f, g ∈ H(X), then

(f ◦ g)−1 = g−1 ◦ f−1,(8.8.5)

as usual. One can use this to get continuity properties for composition on
H(X) with respect to the topology determined by (8.8.4), from the continuity
properties for composition on H(X) with respect to (8.8.2).

More precisely, left and right translations on H(X) are continuous with
respect to the topology determined by (8.8.2), as in Section 8.6. Using this, one
can get that left and right translations on H(X) are continuous with respect
to the topology determined by (8.8.4), as in the preceding paragraph. One can
also check that left and right translations on H(X) are continuous with respect
to the topology determined by the union of (8.8.2) and (8.8.4).

Suppose for the moment that X is locally compact. In this case, compo-
sition of homeomorphisms defines a continuous mapping from H(X) × H(X)
into H(X), with respect to the topology determined on H(X) by (8.8.2) and
the corresponding product topology on H(X) ×H(X), as in the previous sec-
tion. One can use this and (8.8.5) to get that composition of homeomorphisms
defines a continuous mapping from H(X) ×H(X) into H(X), with respect to
the topology determined on H(X) by (8.8.4) and the corresponding product
topology on H(X) × H(X). Using the previous two statements, one can ver-
ify that composition of homeomorphisms defines a continuous mapping from
H(X) × H(X) into H(X), with respect to the topology determined on H(X)
by the union of (8.8.2) and (8.8.4), and the corresponding product topology on
H(X)×H(X). This implies that H(X) is a topological group with respect to
the topology determined by the union of (8.8.2) and (8.8.4), because (8.8.1) is
continuous with respect to this topology on H(X).

If d(·, ·) is a metric on X, then (8.8.2) is nondegenerate on H(X), because
finite subsets of X are compact. Similarly, (8.8.4) is nondegenerate on H(X) in
this situation. In particular, this implies that the union of (8.8.2) and (8.8.4) is
nondegenerate on H(X).

Let C be a collection of nonempty compact subsets of X, and suppose that
every nonempty compact subset of X is contained in the union of finitely many
elements of C. This implies that

{θC : C ∈ C}(8.8.6)
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determines the same topology on H(X) as (8.8.2), as before. Similarly,

{θ̃C : C ∈ C}(8.8.7)

determines the same topology on H(X) as (8.8.4). In the same way, the union
of (8.8.6) and (8.8.7) determines the same topology on H(X) as the union of
(8.8.2) and (8.8.4).

8.9 One-point compactification

Let (Y, d) be a nonempty compact metric space. If f and g are mappings from
Y into itself, then put

θY (f, g) = sup
y∈Y

d(f(y), g(y)),(8.9.1)

as usual. Remember that continuous mappings from Y into itself are uniformly
continuous with respect to d, because Y is compact. Thus the group H(Y ) of
homeomorphisms from Y onto itself is the same as the group UH(Y ) of uniform
homeomorphisms from Y onto itself. It follows that H(Y ) is a topological group
with respect to the topology determined by the restriction of (8.9.1) to H(Y ),
as in Section 2.3.

Let p be an element of Y , and suppose that p is a limit point of Y . Thus
X = Y \ {p} is a dense open set in Y , and X is not compact. Note that
X is locally compact with respect to the induced topology, which is the same
as the topology determined by the restriction of d to X. In this situation, Y
corresponds to the usual one-point compactification of X.

If f is a homeomorphism from X onto itself, then let f̂ be the extension of
f to a mapping from Y into itself defined by putting

f̂(p) = p.(8.9.2)

One can check that f̂ defines a homeomorphism from Y onto itself. The mapping

f 7→ f̂(8.9.3)

defines an injective group homomorphism from the group H(X) of all homeo-
morphisms from X onto itself into H(Y ). This mapping sends H(X) onto the
subgroup of H(Y ) consisting of homeomorphisms on Y that send p to itself.

If f and g are mappings from X into itself, then put

θX(f, g) = sup
x∈X

d(f(x), g(x)).(8.9.4)

If f, g ∈ H(X) and f̂ , ĝ ∈ H(Y ) are as in (8.9.2), then it is easy to see that

θX(f, g) = θY (f̂ , ĝ).(8.9.5)
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Note that f ∈ H(X) is uniformly continuous with respect to the restriction of

d to X, because f̂ is uniformly continuous on Y . Similarly, f−1 is uniformly
continuous on X when f ∈ H(X), so that H(X) = UH(X). It follows that
H(X) is a topological group with respect to the restriction of (8.9.4) to H(X),
which corresponds to the subgroup of H(Y ) of homeomorphisms on Y that send
p to itself as a topological group with respect to the restriction of (8.9.1) to this
subgroup.

Let A be a nonempty subset of X, and put

θA(f, g) = sup
x∈A

d(f(x), g(x))(8.9.6)

for all mappings f , g from X into itself, as before. Clearly

θA(f, g) ≤ θX(f, g)(8.9.7)

for all f , g. If f, g ∈ H(X), then put

θ̃A(f, g) = θA(f
−1, g−1),(8.9.8)

as in the previous section. Note that

θ̃A(f, g) ≤ θX(f−1, g−1) = θ̃X(f, g)(8.9.9)

for every f, g ∈ H(X), by (8.9.7).
The topology onH(X) determined by θX is at least as strong as the topology

determined on H(X) by the collection (8.8.2) of θA, with A ⊆ X nonempty and
compact, because of (8.9.7). Similarly, the topology determined on H(X) by

θ̃X is at least as strong as the topology determined on H(X) by the collection

(8.8.4) of θ̃A, with A ⊆ X nonempty and compact, by (8.9.9).
Remember that f 7→ f−1 is a continuous mapping from H(X) into itself

with respect to the topology determined on H(X) by θX , because H(X) is a
topological group with respect to this topology. More precisely, f 7→ f−1 is a
homeomorphism from H(X) onto itself with respect to the topology determined
by θX , because this mapping is its own inverse. This means that the topology
determined on H(X) by θ̃X is the same as the topology determined on H(X)
by θX .

It follows from the remarks in the previous two paragraphs that the topology
determined on H(X) by θX is at least as strong as the topology determined on
H(X) by the union of the collections (8.8.2) and (8.8.4). In the next section,
we shall show that these two topologies on H(X) are the same.

8.10 The other direction

Let us continue with the same notation and hypotheses as in the previous sec-
tion. If A is a nonempty proper subset of X, then

θX(f, g) = max(θA(f, g), θX\A(f, g))(8.10.1)
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for all mappings f , g from X into itself. In particular, if A is compact, then A
is a proper subset of X, because X is not compact. Of course,

d(f(x), g(x)) ≤ d(f(x), p) + d(p, g(x))(8.10.2)

for all mappings f , g from X into itself and p ∈ X, by the triangle inequality.
This implies that

θX\A(f, g) ≤ sup
x∈X\A

d(f(x), p) + sup
x∈X\A

d(p, g(x))(8.10.3)

for all mappings f , g from X into itself.
Let BY (p, r) be the open ball in Y centered at p with radius r for each

r > 0. This is an open set in Y , so that Y \BY (p, r) is a closed set, and hence
compact, because Y is compact. We also have that Y \ BY (p, r) ⊆ X, because
p ∈ BY (p, r). Let f ∈ H(X) and r1, r2 > 0 be given. Observe that

f(X ∩BY (p, r1)) ⊆ X ∩BY (p, r2)(8.10.4)

exactly when
X \BY (p, r2) ⊆ f(X \BY (p, r1)),(8.10.5)

because f is a one-to-one mapping from X onto itself. Of course, (8.10.5) is the
same as saying that

f−1(X \BY (p, r2)) ⊆ X \BY (p, r1).(8.10.6)

Let f0 ∈ H(X) and r2 > 0 be given. Because f̂0 is continuous on Y at p,
there is an r1 > 0 such that

f0(X ∩BY (p, r1)) ⊆ X ∩BY (p, r2).(8.10.7)

This implies that

f−1
0 (X \BY (p, r2)) ⊆ X \BY (p, r1),(8.10.8)

as in the preceding paragraph. Put

A(r) = X \BY (p, r) = Y \BY (p, r)(8.10.9)

for every r > 0, which is a compact subset of X, as before. Suppose for the
moment that A(r2) ̸= ∅, and that f ∈ H(X) satisfies

θA(r2)(f
−1, f−1

0 ) = θ̃A(r2)(f, f0) ≤ r1/2.(8.10.10)

If x ∈ A(r2), then
d(f−1

0 (x), p) ≥ r1,(8.10.11)

by (8.10.8), and
d(f−1(x), f−1

0 (x)) ≤ r1/2,(8.10.12)
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by (8.10.10). This implies that

r1 ≤ d(f−1
0 (x), p) ≤ d(f−1

0 (x), f−1(x)) + d(f−1(x), p)(8.10.13)

≤ r1/2 + d(f−1(x), p),

and hence
r1/2 ≤ d(f−1(x), p).(8.10.14)

It follows that

f−1(X \BY (p, r2)) = f−1(A(r2)) ⊆ X \BY (p, r1/2).(8.10.15)

This means that

f(X ∩BY (p, r1/2)) ⊆ X ∩BY (p, r2),(8.10.16)

as before. Note that (8.10.16) holds automatically when A(r2) = ∅, because
Y = BY (p, r2).

Suppose for the moment that A(r1/2) ̸= ∅, and note that

X \A(r1/2) = X ∩BY (p, r1/2),(8.10.17)

by the definition (8.10.9) of A(r1). Thus

θX(f0, f) = max(θA(r1/2)(f0, f), θX∩BY (p,r2)(f0, f)),(8.10.18)

by (8.10.1) with A = A(r1). If x ∈ X ∩BY (p, r1/2), then

d(f0(x), f(x)) ≤ d(f0(x), p) + d(p, f(x)) ≤ r2 + r2 = 2 r2,(8.10.19)

using (8.10.7) and (8.10.16) in the second step. This implies that

θX∩BY (p,r1/2)(f0, f) ≤ 2 r2,(8.10.20)

so that
θX(f0, f) ≤ max(θA(r1/2)(f0, f), 2 r2),(8.10.21)

because of (8.10.18). If A(r1/2) = ∅, then X = X ∩BY (p, r1/2), and we simply
get that

θX(f0, f) ≤ 2 r2,(8.10.22)

by (8.10.20).
Remember that f0 ∈ H(X) is fixed, and that the previous statements hold

for all f ∈ H(X) such that (8.10.10) holds when A(r2) ̸= ∅. If A(r2) = ∅, then
(8.10.16) holds automatically, and (8.10.21) or (8.10.22) holds for all f ∈ H(X),
as appropriate.

Using (8.10.21) or (8.10.22), as appropriate, we can get that f is as close to f0
as we want with respect to θX , by taking f sufficiently close to f0 with respect
to the topology determined on H(X) by the union of the collections (8.8.2)
and (8.8.4) of semimetrics. This means that the topology determined on H(X)
by the union of the collections (8.8.2) and (8.8.4) is at least as strong as the
topology determined on H(X) by θX . It follows that the topology determined
on H(X) by θX is the same as the topology determined on H(X) by the union
of the collections (8.8.2) and (8.8.4), by the remarks in the previous section.
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