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Preface

Some topics related to topological groups are discussed, in connection with
translation-invariant metrics and ultrametrics in particular.
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Chapter 1

Topological groups and
semimetrics

1.1 Metrics and semimetrics

Let X be a set, and let d(z,y) be a nonnegative real-valued function defined for
x,y € X. If d(x,y) satisfies the following three conditions, then d(z,y) is said
to be a semimetric on X. First,

(1.1.1) d(z,x) =0 for every z € X.

Second,

(1.1.2) d(z,y) = d(y,z) for every x,y € X.
Third,

(1.1.3) d(z,z) <d(z,y)+d(y,z) forevery z,y,z € X.

If we also have that
(1.1.4) d(z,y) >0 for every z,y € X with x # y,

then d(-,-) is said to be a metric on X. The discrete metric on X is defined as
usual by putting d(z,y) equal to 1 when x # y, and to 0 when x = y. It is easy
to see that this defines a metric on X.

Let d(x,y) be a semimetric on X. The open ball in X centered at x € X
with radius r > 0 with respect to d(-,-) is defined by

(1.1.5) B(z,r) = By(z,r) ={y € X : d(z,y) <r}.

Similarly, the closed ball in X centered at x € X with radius » > 0 with respect
to d(-,-) is defined by

(1.1.6) B(z,r) = Ba(z,r) ={y € X : d(z,y) <r}.

1



2 CHAPTER 1. TOPOLOGICAL GROUPS AND SEMIMETRICS

A subset U of X is said to be an open set with respect to d(-,-) if for every
x € U there is an r > 0 such that

(1.1.7) B(z,r) CU.

This defines a topology on X, by standard arguments. One can check that
open balls in X with respect to d(-, ) are open sets with respect to the topology
determined by d(-,-), and that closed balls are closed sets. If d(-,-) is a metric
on X, then X is Hausdorff with respect to the topology determined by d(-,-).
Let Y be a subset of X, and observe that the restriction of d(x,y) tox,y € Y
defines a semimetric on Y. Let Bx (z,r) be the open ball in X centered at x € X
with radius r > 0 with respect to d(-,-), and let By (z,r) be the open ball in Y
centered at x € Y with radius r with respect to the restriction of d(-,-) to Y.
Clearly
(1.1.8) By (z,r) = Bx(z,r)NY

for every x € Y and r > 0. It is well known that the topology determined on Y
by the restriction of d(x,y) to x,y € Y is the same as the topology induced on
Y by the topology determined on X by d(-,-). More precisely, if U is an open
subset of X with respect to the topology determined by d(-,-), then it is easy
to see that U NY is an open set in Y with respect to the topology determined
by the restriction of d(z,y) to z,y € Y, using (1.1.8). This implies that every
open set in Y with respect to the induced topology is an open set with respect
to the topology determined on Y by the restriction of d(-,-) to Y. In the other
direction, (1.1.8) is an open set in Y with respect to the induced topology for
every x € Y and r > 0, because Bx(z,r) is an open set in X. If E C Y is
an open set with respect to the topology determined on Y by the restriction
of d(-,-), then E can be expressed as a union of open balls in Y. This means
that FE can be expressed as the union of open subsets of Y with respect to the
induced topology, so that E is an open set with respect to the induced topology
on Y, as desired. Of course, if d(z,y) is a metric on X, then its restriction to
x,y € Y is a metric on Y.
Let € X be given, and consider

(1.1.9) fa(y) = d(z,y)

as a real-valued function of y on X. Note that

(1.1.10) fo(y) < fo(y') +d(y,y")

for every y,3’ € X, by the triangle inequality. Hence

(1.1.11) fo(y) — fo(y') < d(y,y")

for every y,y’ € X, and similarly with the roles of y and y’ exchanged. This
implies that

(1.1.12) |fe(y) — fo(y)| < d(y,y)
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for every y,y’ € X, where |t| is the absolute value of a real number ¢. It follows
that f, is continuous on X with respect to the topology determined on X by
d(-,-), and the standard topology on the real line.

Let us say that d(-,-) is compatible with a topology 7 on X at a point x € X
if for every r > 0 there is an open set V' C X with respect to 7 such that x € V
and
(1.1.13) V C B(x,r).

This is the same as saying that (1.1.9) is continuous at z, as a real-valued
function of y on X, and with respect to 7. If d(-,-) is compatible with 7 at
every x € X, then we may simply say that d(-,-) is compatible with 7 on X.
In this case, 7 is at least as strong as the topology determined on X by d(,-).
More precisely, if U C X is an open set with respect to the topology determined
on X by d(-,-), then U can be expressed as a union of open sets in X with
respect to 7, so that U is an open set with respect to 7. Conversely, if every
open subset of X with respect to d(-,-) is an open set with respect to 7, then
d(-,-) is compatible with 7 on X, because one can take V = B(x,r) in (1.1.13).
If d(-,-) is compatible with 7 on X, then (1.1.9) is continuous as a real-valued
function of y on X with respect to 7 for every z € X.

1.2 Topological groups

Let G be a group, in which the group operations are expressed multiplicatively,
and suppose that G is also equipped with a topology. If the group operations are
continuous, then G is said to be a topological group. More precisely, continuity
of multiplication on G means that multiplication is continuous as a mapping
from G x G into G, using the product topology on G x G corresponding to the
given topology on G. Similarly,

(1.2.1) =

should be continuous as a mapping from G into itself. This implies that (1.2.1) is
a homeomorphism from G onto itself, because (1.2.1) is its own inverse mapping.

Let G be a topological group, and let a,b € G be given. It is easy to see
that the left translation mapping

(1.2.2) T ax

is continuous as a mapping from G into itself, because of continuity of multipli-
cation on G. In fact, (1.2.2) is a homeomorphism from G onto itself, because
the inverse mapping corresponding to (1.2.2) is given by translation on the left
by a~!. Similarly, the right translation mapping

(1.2.3) T—=Tb

is a homeomorphism from G onto itself.
Let e be the identity element in G. If {e} is a closed set in G, then every
subset of G with only one element is a closed set, by continuity of translations.
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In this case, G satisfies the first separation condition as a topological space. We
shall be primarily concerned with topological groups with this property, which
is sometimes included in the definition of a topological group.

If G is any group, then G is a topological group with respect to the discrete
topology. Similarly, G is a topological group with respect to the indiscrete
topology, if {e} is not required to be a closed set in G. The real line R is
a commutative topological group with respect to addition and the standard
topology. If G is a topological group and H is a subgroup, then H is a topological
group with respect to the topology induced by the topology on G. Note that
the closure of H in G is also a subgroup of GG in this case.

Let G be a group, and let A, B be subsets of G. If a,b € G, then put

(1.2.4) Ab={zb:z e A}

and

(1.2.5) aB={ay:y € B}.

Also put

(1.2.6) AB={zy:z € A, y € B},

so that

(1.2.7) AB=|JaB=[] Ab.
acA beB

Similarly, put
(1.2.8) ATt ={z7 2 € A},

and let us say that A is symmetric about e in G when

(1.2.9) ATl = A
Note that
(1.2.10) AnAt

is automatically symmetric about e in G.

Now let G be a topological group, and let A, B be subsets of G again. If
a,b € G and A, B are open subsets of GG, then Ab and a B are open sets as
well, by continuity of translations. If A or B is an open set in G, then it follows
that A B is an open set in G, because A B is a union of open sets in G, as
in (1.2.7). If A is an open set, then A~! is an open set too, because (1.2.1)
is a homeomorphism on G. This implies that (1.2.10) is an open set in G, so
that every open set that contains e contains an open set that contains e and is
symmetric about e.

If W C @G is an open set with e € W, then there are open sets U,V C G
such that e € U,V and
(1.2.11) UV CW.

This follows from the continuity of multiplication on G at (e, e). More precisely,
this also uses the fact that if O is an open set in G x G with respect to the
product topology and (e, e) € O, then there are open sets U,V C G such that
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e€ U, Vand UxV C O. Of course, we can take U = V in (1.2.11), by replacing
U and V with their intersection.

Let x € G and FE C G be given, and remember that x is an element of the
closure E of F in G if and only if for every open set Uy C G with z € Uy, we
have that
(1.2.12) U NE #0.

This is equivalent to saying that for every open set Uy C G with e € Uy, we
have that
(1.2.13) (Upz) N E #£ 0,

because of continuity of translations. Note that (1.2.13) holds exactly when

(1.2.14) reUy'E.

Because (1.2.1) is a homeomorphism on G, U ! may be considered as an arbi-
trary open set in G that contains e, It follows that

(1.2.15) E= ﬂ{UE : U C G is an open set, with e € U}.
Similarly,
(1.2.16) E= ﬂ{EV : V' C G is an open set, with e € V'}.

This could also be obtained from (1.2.15), using the fact that (1.2.1) is a home-
omorphism on G.

1.3 Regular topological spaces

A topological space X is said to be reqular in the strict sense if for every x € X
and closed set E C X with = ¢ FE there are disjoint open sets U,V C X such
that z € U and E C V. This is equivalent to asking that for every € X and
open set W C X with z € W there is an open set U C X such that x € U and
the closure U of U in X is contained in W, by a standard argument. Let us say
that X is regular in the strong sense when X is regular in the strict sense and
X satisfies the first separation condition, in which case we may also say that X
satisfies the third separation condition. This implies that X is Hausdorff, and in
fact it would suffice to ask that X satisfy the Oth separation condition instead
of the first separation condition.

If the topology on X is determined by a semimetric d(-,-), then it is easy to
see that X is regular in the strict sense. If d(-,-) is a metric on X, then X is
regular in the strong sense.

Let G be a topological group, and let us check that G is regular as a topo-
logical space in the strict sense. Let W be an open subset of G that contains
the identity element e, and let U, V be open subsets of G that contain e and
satisfy (1.2.11). This implies that

(1.3.1) U,V Cw,
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by (1.2.15) and (1.2.16). One can use continuity of translations to get an anal-
ogous statement for neighborhoods of any element of G, as desired.

If {e} is a closed set in G, then it follows that G is regular as a topological
space in the strong sense, and in particular that G is Hausdorff. One can also
check more directly that G is Hausdorff in this situation, as follows. If y € G,
then {y} is a closed set in G, so that W = G\ {y} is an open set. If y # e, then
e € W, and one can use (1.2.11) to get disjoint open subsets of G that contain
e and y. This implies that G is Hausdorff, using continuity of translations to
deal with any two distinct elements of G.

Let X be a topological space that is regular in the strict sense. If K is a
compact subset of X, W C X is an open set, and K C W, then there is an open
set U C X such that K C U and U C W. Indeed, for each « € K, there is an
open set U(x) C X such that z € U(z) and U(z) C W, because X is regular
in the strict sense. One can use compactness of K to cover K by finitely many
of these open sets, and it is easy to see that the union U of these finitely many
open sets has the desired properties.

Suppose that the topology on X is determined by a semimetric d(-,-). If
A C X and r is a positive real number, then put

(1.3.2) 4, = Bz, r),
z€A

where B(z,r) is as in (1.1.5). Thus A C A,., and A, is an open set in X, because
A, is a union of open sets. It is easy to see that A C A,., and in fact

(1.3.3) A=) A4,
r>0

where more precisely the intersection is taken over all positive real numbers r.
Let K € X be compact, let W C X be an open set, and suppose that
K C W, as before. If x € K, then there is a positive real number r(x) such that

(1.3.4) B(z,r(z)) CW.

The collection of open balls B(z,r(x)/2) with 2 € K forms an open covering of
K, so that there are finitely many elements z1, ..., z, of K such that

(1.3.5) K C U B(zj,7(x;)/2),

by compactness. If we put

(1.3.6) r= min (r(z;)/2) >0,

1<j<n

then one can check that
(1.3.7) K, CW,

using the triangle inequality.
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Let G be a topological group, let K be a compact subset of G, let W be an
open subset of G, and suppose that K C W. If x € K, then z~! W is an open
subset of G that contains e, and hence there is an open subset U(x) of G such
that e € U(z) and

(1.3.8) Ux)U(z) Ca W,
asin (1.2.11). The collection of open sets of the form U(x) z, x € K, is an open
covering of K, and so there are finitely many elements z1, ..., z, of K such that
(1.3.9) K ¢ |JU(x))x;,

j=1

by compactness. Put
n

(1.3.10) U=()U(x),

j=1

which is an open subset of G that contains e. Observe that
(1.3.11) UKC|JUU(j)z; €| JU () Ulxy)a; €W,
j=1 j=1

using (1.3.9) in the first step, (1.3.10) in the second step, and (1.3.8) in the third
step. Similarly, there is an open subset V' of G such that e € V and

(1.3.12) KV CW.

This could also be obtained from (1.3.11), using the fact that (1.2.1) is a home-
omorphism on G.

1.4 Translation-invariant semimetrics
Let G be a group, and let d(x,y) be a semimetric on G. If
(1.4.1) dlaz,ay) =d(z,y)

for every a,x,y € G, then d(-,-) is said to be invariant under left translations
on G. Similarly, if
(1.4.2) d(za,ya) =d(z,y)

for every a,x,y € G, then d(-,-) is said to be invariant under right translations
on G. Of course, if G is commutative, then (1.4.1) and (1.4.2) are equivalent,
in which case we may simply say that d(-,-) is invariant under translations on

G

If d(-,-) is invariant under left or right translations on G, then we have that

(1.4.3) d(z,e) = d(e,z™")
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for every € G. This is the same as saying that
(1.4.4) d(e,r) = d(e,z™t)

for every x € G, because of (1.1.2). This implies that open and closed balls in
G centered at the identity element e with respect to d are symmetric about e.
If d(-,-) is any semimetric on G again, then

(1.4.5) d(w,y) =d(@"y™")

defines a semimetric on G too. It is easy to see that d(-,-) is invariant under

left translations on G if and only if d(-,-) is invariant under right translations
on G. Similarly, d(-,-) is invariant under right translations on G if and only if

d(-,-) is invariant under left translations on G. If d(-,-) is invariant under both
left and right translations on G, then one can verify that

(1.4.6) d(z,y) = d(z,y)
for every z,y € G. More precisely, we have that
(1.4.7) d(z,y) =d(z zy e lyy ) =dy e

for every x,y € G, using invariance under left translation by z~! and right
translation by y~! in the first step.

Let d(-,-) be a semimetric on G, and let 2,y € G be given. If d(-,-) is
invariant under left translations on G, then

(1.4.8) dle,xy) < d(e,z) + d(z,zy) = d(e,z) + d(e, y).
Similarly, if d(-,-) is invariant under right translations on G, then
(1.4.9) dle,xy) <d(e,y) +d(y,zy) = d(y,e) + d(x,e).
In both cases, we get that

(1.4.10) B(e,r) B(e,t) C Ble,r + 1)

for every r,t > 0, where these open balls are defined as in (1.1.5).
Let d(z,y) be a semimetric on G, and let r > 0 be given. If d(-, -) is invariant
under left translations on G, then

(1.4.11) B(z,r) =z Ble,r)

for every x € G. If A is a subset of G and A, is defined as in (1.3.2), then we
get that
(1.4.12) A, = |J «B(e,r) = AB(e,r).

TEA

Similarly, if d(-,-) is invariant under right translations on G, then

(1.4.13) B(z,r) = B(e,r)x
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for every x € GG. This implies that

(1.4.14) A, = U B(e,r)x = B(e,r) A
€A

for every subset A of G.

Suppose now that G is a topological group, and let d(-,-) be a semimetric
on G. Suppose that d(-,-) is compatible with the given topology on G at e, as
in Section 1.1. This means that for every r > 0 there is an open subset V. of G,
with respect to the topology given on G, such that e € V,. and

(1.4.15) V.. C Ble,r).
If d(-,-) is invariant under left translations on G, then it follows that
(1.4.16) zV, CxzBle,r) = B(x,r)

for every € G and r > 0. Similarly, if d(-, ) is invariant under right translations
on (G, then
(1.4.17) V. x C B(e,r)x = B(z,r)

for every € G and r > 0. In both cases, we get that d(-,-) is compatible with
the given topology on G, as in Section 1.1. This implies that d(e, x) is continuous
as a real-valued function of x on GG, with respect to the given topology on G, as
in Section 1.1.

If there is a local base for the topology of G at e with only finitely or count-
ably many elements, then a famous theorem states that there is a semimetric
on G that is invariant under left translations on G, and which determines the
same topology on G. If {e} is a closed set in G, then this semimetric on G
is a metric. Of course, there is an analogous statement with invariance under
right translations instead of left translations. Note that the existence of a local
base for the topology of G at e with only finitely or countably many elements
is necessary to have a semimetric on G that determines the same topology on
G. More precisely, if d(-,-) is a semimetric on a set X and x € X, then the
collection of open balls of the form B(z,1/j) with 7 in the set Z, of positive
integers is a local base for the topology determined on X by d(:,-) at x.

1.5 Collections of semimetrics

Let X be a set, and let dy,...,d, be finitely many semimetrics on X. It is easy
to see that

1.5.1 = ;

(1.5.1) d(z,y) = max d;(z,y)

also defines a semimetric on X. If x € X and r > 0, then

(1.5.2) Ba(x,r) = () Ba, (x,7),
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where these open balls are defined as in (1.1.5), as usual. Alternatively,

n

(153) dl(xay) = Zdj(xay)

j=1
is a semimetric on X too, and
(1.5.4) d(z,y) < d'(z,y) < nd(z,y)

for every x,y € X. In particular, this implies that (1.5.1) and (1.5.3) determine
the same topology on X.

Now let M be a nonempty collection of semimetrics on X. Let us say that
U C X is an open set with respect to M if for every z € U there are finitely

many elements d,...,d, of M and positive real numbers rq,...,r, such that
(1.5.5) () Ba, (z,75) CU.
j=1

One can also take the r;’s to be the same, by replacing them by their minimum.
This defines a topology on X, which contains the topologies determined on X
by each of the elements of M. If M has only finitely many elements, then the
topology determined on X by M is the same as the topology determined by the
semimetric on X obtained by taking the maximum of the elements of M.

One can check that the topology determined on X by M is regular in the
strict sense, as in Section 1.3. Let us say that M is nondegenerate on X if for
every x,y € X with x # y there is a d € M such that

(1.5.6) d(z,y) > 0.

In this case, X is Hausdorff with respect to the topology determined by M. If
M is nondegenerate and M has only finitely many elements, then the sum and
maximum of the elements of M are metrics on X.

Let Y be a subset of X, and for each d € M, let dy (x,y) be the restriction
of d(z,y) to x,y € Y. Thus

(1.5.7) My ={dy :d € M}

is a nonempty collection of semimetrics on Y, which determines a topology on
Y as before. One can check that the topology determined on Y by My is the
same as the topology induced on Y by the topology determined on X by M.
This is analogous to the case of a single semimetric, as in Section 1.1. More
precisely, let Bx q4(z,7) be the open ball in X centered at € X with radius
r > 0 with respect to d € M, and let By 4, (z,r) be the open ball in Y centered
at x € Y with radius r > 0 with respect to dy. Note that

(1.5.8) By.4y (z,7) = Bx 4(z,7)NY

foreveryz € Y, r >0, and d € M, as in (1.1.8). Using this, one can verify that
every open subset of Y with respect to the induced topology is also an open set
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with respect to the topology determined by My. If d € M, z € X, and r > 0,
then Bx q4(z,r) is an open set in X with respect to the topology determined
by d, and hence with respect to the topology determined on X by M. This
implies that (1.5.8) is an open set in Y with respect to the topology induced on
Y by the topology determined on X by M. It follows that finite intersections of
subsets of Y of this form are open sets with respect to the induced topology as
well. If E C Y is an open set with respect to My, then E can be expressed as a
union of finite intersections of sets of this form. This implies that F is an open
set with respect to the induced topology, as desired. If M is nondegenerate on
X, then My is clearly nondegenerate on Y.

If G is a topological group, then it is well known that there is a collection
M of semimetrics on G such that every element of M is invariant under left
translations on G, and the topology determined on G by M is the same as
the given topology on G. If {e} is a closed set in G, then M is nondegenerate
on (. As before, there is an analogous statement with invariance under right
translations instead of left translations. Note that if dq, ..., d, are finitely many
semimetrics on G that are invariant under left translations, then their sum and
maximum are invariant under left translations on G, and similarly for invariance
under right translations.

1.6 Sequences of semimetrics

Let X be a set, and let d(x,y) be a semimetric on X. Also let ¢ be a positive
real number, and put

(1.6.1) dy(x,y) = min(d(z,y), t)

for every z,y € X. One can check that this defines a semimetric on X too,

which is a metric when d(z,y) is a metric. If x € X and r is another positive
real number, then

(1.6.2) By, (z,r) = Bg(z,r) whenr <t
X when r > t,

where these open balls are defined as in (1.1.5). This implies that the topologies
determined on X by d and d; are the same. Note that d;(x,y) = 0 exactly when
d(z,y) = 0. In particular, if d(z,y) is a metric on X, then d;(z,y) is a metric
on X.

Now let dy,ds,ds, ... be an infinite sequence of semimetrics on X, and put

(1.6.3) d;(x,y) = min(d;(z,y),1/5)

for every z,y € X and positive integer j. Thus d} is a semimetric on X that
determines the same topology on X as d; for each j € Z, as in the preceding
paragraph. More precisely, for each x € X, r > 0, and j € Z,, we have that
(1.6.4) Ba (r,r) = Bag;(z,r) whenr<1/j

= X when r > 1/7,
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as in (1.6.2). Put
(1.6.5) d(z,y) = max d;(z,y)

for each x,y € X, which is equal to 0 when d’;(z,y) = 0 for every j € Z,. If
dj(z,y) > 0 for some | € Z, then d}(z,y) < 1/j < dj(z,y) for all sufficiently
large j, so that the right side of (1.6.5) reduces to the maximum of finitely many
terms. Thus the right side of (1.6.5) is defined as a nonnegative real number for
every =,y € X, and one can check that (1.6.5) defines a semimetric on X. If the
collection of semimetrics dj;, j € Z4, is nondegenerate on X, as in the previous
section, then the collection of semimetrics d;-, j € Z,, is nondegenerate on X,
and (1.6.5) is a metric on X.

If x € X and r > 0, then
(1.6.6) Bqy(z,7) = ﬂle; (x,7),
j=

by the definition (1.6.5) of d. Let [1/r] be the largest nonnegative integer less
than or equal to 1/r, as usual. Combining (1.6.4) and (1.6.6), we get that

(1/7]

(1.6.7) Bi(z,r) = Bg,;(z,r) when r <1
j=1

= X when r > 1.

Using this, one can check that the topology determined on X by d is the same
as the topology determined on X by the collection of semimetrics d;, j € Z4,
as in the previous section. More precisely, By, (x,7) is an open set in X with
respect to d; for every x € X, r > 0, and j € Z_, as in Section 1.1. This implies
that Bg, (x,7) is an open set in X with respect to the collection of d;’s, | € Z,
for every x € X, r > 0, and j € Z. It follows that By(x,r) is an open set in
X with respect to the collection of d;’s, | € Z,, for every x € X and r > 0,
because of (1.6.7). If U C X is an open set with respect to d, then U can be
expressed as a union of open balls in X with respect to d, which implies that
U is an open set with respect to the collection of d;’s, I € Z,. Conversely, if
U C X is an open set with respect to the collection of d;’s, I € Z, then one
can verify that U is an open set with respect to d, using (1.6.7).

Let G be a group. If d(z,y) is a semimetric on G that is invariant under left
translations, then (1.6.1) is invariant under left translations for every ¢ > 0, and
similarly for right translations. Now let dy,ds2, ds, ... be an infinite sequence of
semimetrics on G, each of which is invariant under left translations. This implies
that (1.6.3) is invariant under left translations for every j € Z, and hence that
(1.6.5) is invariant under left translations. Similarly, if d; is invariant under right
translations for every j € Z,, then (1.6.3) is invariant under right translations
for every j € Z,, so that (1.6.5) is invariant under right translations.
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1.7 Continuity conditions on groups

Let G and H be topological groups, and let ¢ be a group homomorphism from
G into H. If ¢ is continuous at the identity element e in G, then it is easy to see
that ¢ is continuous at every point in G, using continuity of translations on G
and H. More precisely, this works when G and H are equipped with topologies
for which left translations are continuous. In this case, left translations on G
and H are homeomorphisms, as before. Similarly, if right translations on G and
H are continuous, and ¢ is continuous at the identity element in G, then ¢ is
continuous at every point in G.

Let G be a group again, and suppose that G is equipped with a topology
7. In order to check that G is a topological group with respect to 7, it is often
helpful to simplify the continuity conditions that need to be verified. Suppose
for the moment that left and right translations are continuous on G with respect
to 7, which implies that they are homeomorphisms on G with respect to 7, as
before. Under suitable conditions, one would like to show that multiplication
on G is continuous, as a mapping from G x G into GG, and with respect to the
corresponding product topology on G. If multiplication on G is continuous as
a mapping from G X G into G at (e, e), then one can use continuity of left and
right translations on G to get that multiplication on G is continuous at every
point in G x G.

Similarly, suppose that x +— z =" is continuous at e as a mapping from G
into itself. Using continuity of left and right translations on G, one can get that
x +— 271 is continuous at every point in G.

Let x € G be given, and put

1

(1.7.1) Coly) =zyz™!

for every y € G. This is a group automorphism on G, which is the inner
automorphism defined by conjugation by x. If left and right translations are
continuous on G, then C, is a continuous mapping from G into itself for every
x € G. Of course, if C, is a continuous mapping from G into itself for every
z € G, then C,, is a homeomorphism on G for every z € G, because C,—1 is the
inverse mapping associated to C,.

Suppose for the moment that left translations on G are continuous. If C,, is
continuous on G for every x € G, then it follows that right translations on G
are continuous as well. In order to check that C, is continuous on G for some
x € G, it suffices to verify that C, is continuous at the identity element e in G,
by the remarks at the beginning of the section. Similarly, if right translations
on G are continuous, and if C, is continuous at e for some x € G, then C, is
continuous at every point in G. If this holds for every = € G, then it follows
that left translations are also continuous on G.

Let d(z,y) be a semimetric on G. If d(-, -) is invariant under left translations
on G, then left translations on G are automatically homeomorphisms with re-
spect to the topology determined on G by d(-,-). Similarly, if d(-, ) is invariant
under right translations on G, then right translations on G are automatically
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homeomorphisms with respect to the topology determined on G by d(-,-). If
d(-,-) is invariant under both left and right translations on G, then both left and
right translations on G are automatically homeomorphisms on G with respect
to the topology determined by d(-, ).

Suppose that d(-,-) is invariant under left translations on G, or under right
translations on G, or both. In this case, one can use (1.4.4) to get that z — ™!
is continuous at e as a mapping from G into itself, with respect to the topology
determined on G by d(-,-). Similarly, (1.4.10) implies that multiplication on G
is continuous as a mapping from G x G into G at (e, e), with respect to the
topology determined on G by d(-,-), and the corresponding product topology
on G x G. If d(-,-) is invariant under both left and right translations on G, then
it follows that G is a topological group with respect to the topology determined
by d(-,-).

Now let M be a nonempty collection of semimetrics on G. If every element
of M is invariant under left translations on G, then left translations on G
are automatically homeomorphisms with respect to the topology determined
on G by M as in Section 1.5. Similarly, if every element of M is invariant
under right translations on G, then right translations on G are automatically
homeomorphisms with respect to the topology determined on G by M. In both
cases, x — x ! is continuous at e as a mapping from G into itself, with respect
to the topology determined on G by M. We also have that multiplication on
G is continuous as a mapping from G x G into G at (e, e) in both situations,
with respect to the topology determined on G by M, and the corresponding
product topology on G x G. If every element of M is invariant under both
left and right translations, then it follows that G is a topological group with
respect to the topology determined by M. Otherwise, one should look at the
continuity properties of the translations on G under which the elements of M
are not necessarily invariant.

If d(-,-) is a semimetric on G, then

(1.7.2) d(z,y) = d(z",y™")

is a semimetric on G as well, as in (1.4.5). Let M be a nonempty collection of
semimetrics on G again, so that

(1.7.3) M={d:de M}

is a nonempty collection of semimetrics on G too. If the elements of M are
invariant under left translations on G, then the elements of M are invariant
under right translations on G, as in Section 1.4. Similarly, if the elements of M
are invariant under right translations on G, then the elements of M are invariant
under left translations on G. Remember that d = d when a semimetric d on G
is invariant under left and right translations, as in (1.4.6). In particular, if this
holds for every d € M, then -

(1.7.4) M =M.

Of course, this implies that the topologies determined on G by M and M are
the same.
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If M is any nonempty collection of semimetrics on G, then = — z7! is

automatically a homemorphism from G _with the topology determined by M
onto G with the topology determined by M. Thus x — ! is a homeomorphism
from G onto itself with respect to the topology determined by M on both the
domain and range if and only if the topologies determined on G by M and M
are the same. This is a necessary condition for G to be a topological group with
respect to the topology determined by M. Suppose now that the elements of
M are invariant under left translations on G, or that the elements of M are
invariant under right translations. If the topologies determined on G by M and
M are the same, then it follows that both left and right translations on G are
continuous with respect to this topology. In this case, G is a topological group
with respect to this topology, by the earlier arguments. This condition holds
automatically when the elements of M are invariant under both left and right
translations on G, as before.

1.8 Cartesian products

Let I be a nonempty set, and let X; be a set for each j € I. Consider the
Cartesian product
(1.8.1) x=1[x
JeI

of the X;’s, j € I. If x € X and j € I, then x; denotes the jth coordinate of x
in X;. Similarly, let p; be the natural projection from X into X; for each j € I,
so that
(1.8.2) pj(z) = z;
for every x € X and j € I.

Let E; be a subset of X; for some | € I. Put W; = E;, and W; = X; for
every j € I with j # [. Observe that

(1.8.3) pt(E) =W,

jel

as subsets of X.
Let d; be a semimetric on X; for some [ € I, and put

o~

(1.8.4) di(z,y) = di(z1, 1)

for each z,y € X. It is easy to see that c?l defines a semimetric on X. Let
Bx,.a4,(x,7) be the open ball in X; centered at z; € X; with radius r > 0
with respect to dj, as in (1.1.5). Similarly, let B, dAl(x, r) be the open ball in X

centered at x € X with radius r > 0 with respect to ch If x € X and x; = py(x),
then
(185) Bx7a\l(xvr) :pfl(BXL,dl ('Tlar))

for every r > 0.
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Let M; be a nonempty collection of semimetrics on X; for each [ € I. Put
(1.8.6) M\l = {C/l\l cdp € M}

for every [ € I, where (jl is associated to d; as in (1.8.4). Thus M\l is a nonempty
collection of semimetrics on X for each [ € I, so that

(1.8.7) M= M

lel

is a nonempty collection of semimetrics on X too. Remember that M; de-
termines a topology on X; for each [ € I, as in Section 1.5, and similarly M
determines a topology on X. One can check that the topology determined on
X by M is the same as the product topology corresponding to the topologies
determined on the X;’s by the M;’s, [ € I.

Let I be a nonempty set again, and let G; be a group for each j € I. The
Cartesian product
(1.8.8) ¢=]]¢G;

jelI

is also a group, where the group operations are defined coordinatewise. If G; is a
topological group for each j € I, then one can verify that G is a topological group
with respect to the corresponding product topology. Let d; be a semimetric on
G, for some [ € I, and let d; be the corresponding semimetric on G, as in (1.8.4).
If d; is invariant under left or right translations on G;, then c?l has the analogous
property on G.

1.9 Cauchy sequences

Let X be a set, and let d(z,y) be a semimetric on X. A sequence {z;}32, of
elements of X is said to be a Cauchy sequence with respect to d(,-) if for every
€ > 0 there is a positive integer L such that

(1.9.1) d(zj,x;) <€

for every j,0 > L. Note that {x;}52; converges to an element x of X with
respect to the topology determined by d(-,-) if and only if
(1.9.2) lim d(zj,z) =0.
J—00

This implies that {x;}52, is a Cauchy sequence with respect to d(-,-), by a
standard argument. If d(-,-) is a metric on X, and if every Cauchy sequence of
elements of X with respect to d(-,-) converges to an element of X with respect
to d(+,-), then X is said to be complete with respect to d(-, ).

Let M be a nonempty collection of semimetrics on X. A sequence {x;}52, of
elements of X is said to be a Cauchy sequence with respect to M if {z;}52, is a
Cauchy sequence with respect to every d € M. Observe that {z;}32, converges



1.9. CAUCHY SEQUENCES 17

to an element x of X with respect to the topology determined by M if and
only if {x; };‘;1 converges to x with respect to every d € M. This implies that
{z;}32, is a Cauchy sequence with respect to M, as before.

If M has only finitely many elements, then the sum and maximum of the
elements of M are semimetrics on X that determine the same topology on X
as M, as in Section 1.5. In particular, the convergence of a sequence {z; }?’;1 of
elements of X to an element x of X with respect to the topology determined by
M is equivalent to the convergence of {;}32, to = with respect to the sum or
maximum of the elements of M. Similarly, the Cauchy condition for a sequence
{z; };";1 of elements of X with respect to M is equivalent to the corresponding
Cauchy conditions for {x;}52; with respect to the sum and maximum of the
elements of M in this case.

Suppose for the moment that M is nondegenerate on X. Let us say that X is
sequentially complete with respect to M if every Cauchy sequence of elements
of X converges to an element of X with respect to the topology determined
by M. If M has only finitely many elements, then this is equivalent to the
completeness of X with respect to the sum or maximum of the elements of M.

Let d(z,y) be a semimetric on X again, and let ¢ be a positive real number.
Remember that
(1.9.3) di(z,y) = min(d(z,y),t)

is a semimetric on X, which determines the same topology on X as d(z,y). It
is easy to see that a sequence {z; }j‘;l of elements of X is a Cauchy sequence
with respect to (1.9.3) if and only if {z;}52, is a Cauchy sequence with respect
to d(-,-). If d(-,-) is a metric on X, then (1.9.3) is a metric on X too. In this
case, X is complete with respect to (1.9.3) if and only if X is complete with
respect to d(-,-).

Let dy,ds,ds, ... be a sequence of semimetrics on X, and put

(1.9.4) d; (x,y) = min(d,(x,y),1/7)
for every z,y € X and j > 1. We have seen that

_ /

defines a semimetric on X, and that the topology determined on X by (1.9.5) is
the same as the topology determined by the collection of semimetrics d;, j > 1.
Let 7 > 0 be given, and let [1/r] be the largest nonnegative integer less than or
equal to 1/r, as usual. Observe that z,y € X satisfy

(1.9.6) d(z,y) <r

if and only if
(1.9.7) d(z,y) <r

for every j > 1. Of course, (1.9.7) holds automatically when 1/j < r, which is
to say that j > 1/r. In particular, (1.9.7) holds automatically for every j > 1
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when r > 1. Otherwise, if r < 1, and 1 < j < [1/7], then 1/5 < 7, and (1.9.7)
holds if and only if
(1.9.8) dj(z,y) <.

Let {1}, be a sequence of elements of X. If {4 }72, is a Cauchy sequence
with respect to (1.9.5), then {z;}72, is clearly a Cauchy sequence with respect
to d for every j > 1. Equivalently, this means that {z)}32, is a Cauchy
sequence with respect to d; for every j > 1, as before. Conversely, if {z1}72, is
a Cauchy sequence in X with respect to d; for every j > 1, then one can check
that {zx}72, is a Cauchy sequence with respect to (1.9.5), using the remarks
in the preceding paragraph.

If the collection of semimetrics d;, j > 1, is nondegenerate on X, then (1.9.5)
is a metric on X. In this case, it follows that X is complete with respect to
(1.9.5) if and only if X is sequentially complete with respect to the collection of
semimetrics dj;, j > 1.

1.10 Cauchy sequences and Cartesian products

Let I be a nonempty set, let X; be a set for each j € I, and let X = Hjel X;
be the corresponding Cartesian product. If z € X and [ € I, then pi(x) = x
denotes the Ith coordinate of x in X, as before. Let M; be a nonempty collection
of semimetrics on X; for each [ € I, and put

(1.10.1) M, ={d;: d; € M;}

for every | € I, where c/l\l is the semimetric on X associated to a semimetric d;
on X; asin (1.8.4). Thus M = [J;,c; M is a nonempty collection of semimetrics
on X, and we have seen that the topology determined on X by M is the same
as the product topology, using the topology determined on X; by M; for each
jel

Let {z(k)}?22; be a sequence of elements of X, so that p;(x(k)) = (k) is the
Ith coordinate of z(k) in X, for every k > 1 and [ € I. Observe that {z(k)}72
is a Cauchy sequence in X with respect to M if and only if {z;(k)}?2, is a
Cauchy sequence in X; with respect to M; for every | € I. Similarly, {z(k)}32
converges to an element x of X with respect to the topology determined by M if
and only if {;(k)}32, converges to z; with respect to the topology determined
on X; by M, for every [ € I.

Suppose that M; is nondegenerate on X; for every [ € I, which implies that
M is nondegenerate on X. If X; is sequentially complete with respect to M;
for every [ € I, then it follows that X is sequentially complete with respect to
M.

Suppose for the rest of the section that M; consists of a single metric d; on
X; for each [ € I. In particular, this implies that M is nondegenerate on X.
Suppose for the moment that I has only finitely many elements. In this case,
the sum and maximum of the corresponding semimetrics d; on X, [ € I, define
metrics on X, and the topologies determined on X by these metrics are the
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same as the topology determined by M. As in the previous section, the sum
and maximum of d;, [ € I, also determine the same Cauchy sequences in X as
M. Thus the sequential completeness of X with respect to M is equivalent to
the completeness of X with respect to the sum or maximum of d;, [ € I, as
before. If X is complete with respect to d; for each | € I, then it follows that
X is complete with respect to the sum and maximum of d;, [ € I.

Suppose now that I = Z, so that M consists of the sequence of semimetrics
cil, leZ,. Put
(1.10.2) &}(x,y) = min(dy (z, y), 1/1)

for every z,y € X and [ > 1, as in (1.9.4). Similarly, put

(1.10.3) d(x,y) = maxdj(x, )

for every z,y € X, as in (1.9.5). Note that the collection of semimetrics (1.10.2)
is nondegenerate on X, because M is nondegenerate on X, and hence (1.10.3)
is a metric on X. Remember that the topology determined on X by (1.10.3)
is the same as the topology determined by M. A sequence of elements of X is
a Cauchy sequence in X with respect to (1.10.3) if and only if it is a Cauchy
sequence with respect to M, as in the previous section. Thus X is complete
with respect to (1.10.3) if and only if X is sequentially complete with respect to
M, as before. If X; is complete with respect to d; for each [ € I, then it follows
that X is complete with respect to (1.10.3).



Chapter 2

Boundedness and
supremum semimetrics

2.1 Bounded sets and mappings

Let Y be a set, and let dy be a semimetric on Y. A subset E of Y is said to be
bounded with respect to dy if the set of nonnegative real numbers of the form
dy (y,z) with y, z € F has an upper bound in R. If yq is any element of Y, then
this implies that E is contained in a ball in Y centered at yy with some finite
radius with respect to dy. Conversely, if E is contained in a ball in Y of finite
radius with respect to dy, then it is easy to see that E is bounded, using the
triangle inequality. If E is a compact subset of Y with respect to the topology
determined by dy, and if yq is any element of Y, then E is contained in an open
ball in Y centered at yo with respect to dy, so that F is bounded with respect
to dy.

Let X be another set, and let A be a nonempty subset of X. A mapping
f from X into Y is said to be bounded on A if f(A) is a bounded subset of YV
with respect to dy. Let B4(X,Y’) be the space of all mappings from X into Y
that are bounded on A, and let f,g € B4(X,Y) be given. If y, is any element
of Y, then
(2.1.1) dy (f(2), 9(x)) < dy (£(2), y0) + dy (30, 9()

for every x € A, by the triangle inequality. Note that the right side of (2.1.1)
has an upper bound in R, by hypothesis. Put

(2.1.2) 0alf>9) = sup dy (f(2), 9(x)),

which is defined as a nonnegative real number. This is equal to 0 when f = g,
and otherwise (2.1.2) is symmetric in f and g, by the corresponding properties
of dy on Y. If h is another element of B4(X,Y), then

(2.1.3) dy (f(z),h(z)) < dy(f(z),9(z)) +dy(g9(z), h(x))
< 0a(f,g) +0a(g,h)

20
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for every x € A, using the triangle inequality for dy in the first step. This
implies that

by taking the supremum of the left side of (2.1.3) over € A. This shows
that 64 defines a semimetric on B4(X,Y), which is the supremum semimetric
associated to A.

A mapping f from X into Y is said to be bounded if it is bounded on X,
and we let B(X,Y") be the space of all bounded mappings from X into Y. This
corresponds to taking A = X in the preceding paragraph, in which case we may
also drop the subscript A from the left side of (2.1.2). If X # () and dy is a
metric on Y, then 6§ = 0x defines a metric on B(X,Y’), which is the supremum
metric associated to dy. Of course, every mapping from X into Y is bounded
when Y is bounded with respect to dy.

Let X and Y be topological spaces, and let C(X,Y) be the space of all
continuous mappings from X into Y, as usual. Also let A be a nonempty
compact subset of A. If f € C(X,Y), then it is well known that f(A) is a
compact subset of Y. Let dy be a semimetric on Y that is compatible with
the given topology on Y, as in Section 1.1. If F is a compact subset of Y with
respect to the given topology on Y, then it follows that F is compact with
respect to the topology determined on Y by dy, and hence that E is bounded
in Y with respect to dy. If f € C(X,Y), then it follows that f(A) is bounded
in Y with respect to dy, so that f is bounded on A. Thus

(2.1.5) C(X,Y) C Ba(X,Y)

under these conditions.

Let X be a topological space again, and let Y be a set with a semimetric dy,
so that Y may be considered as a topological space with respect to the topology
determined by dy. Consider the space

(2.1.6) Co(X,Y) = C(X,Y)NB(X,Y)

of continuous mappings from X into Y that are also bounded on X with respect
to dy on Y. Note that
(2.1.7) G(X,)Y)=C(X,Y)

when X is compact, and when Y is bounded with respect to dy, as in the
previous paragraphs.

2.2 Uniform continuity
Let X, Y be sets with semimetrics dx, dy, respectively, and let A be a subset
of X. A mapping f from X into Y is said to be uniformly continuous along A

if for every € > 0 there is a § > 0 such that

(2.2.1) dy (f (@), f(w)) <e
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for every x € A and w € X with dx(z,w) < §. If A consists of a single point,
then this is the same as saying that f is continuous at that point. If A has only
finitely many elements, then this condition holds exactly when f is continuous
at every element of A. If A = X, then we simply say that f is uniformly
continuous on X. If f is uniformly continuous along a subset A of X, then the
restriction of f to A is uniformly continuous as a mapping from A into Y, with
respect to the restriction of dx to A. Of course, if f is uniformly continuous
along A C X, then f is continuous at every element of A, as a mapping from
X into Y.

If f: X — Y is continuous at every point in a compact subset A of X,
then f is uniformly continuous along A, by standard arguments. To see this,
let € > 0 be given. If a € A, then there is a §(a) > 0 such that

(2.2.2) dy (f(a), f(w)) < €/2

for every w € X such that dx(a,w) < §(a), because f is continuous at a, by
hypothesis. Let Bx(a) be the open ball in X centered at a € A with radius
0(a)/2 with respect to dx. The collection of these open balls corresponding to
elements a of A forms an open covering of A in X. Because A is compact in X,
by hypothesis, there are finitely many elements aq, ..., a, of A such that

(2.2.3) AC CJ Bx/(a;).
Put
(2.2.4) = 1%ign(5(aj)/2) >0,

and let 2 € A and w € X be given, with dx (z,w) < §. Because x € A, there is
aj=1,...,n such that + € Bx(a;), as in (2.2.3). Thus dx(a;,z) < §(a;)/2,
and hence

dx(aj,w) <dx(aj,z)+dx(z,w) < 6(a;)/2+6
(2.2.5) < 8(aj)/2+ 6(a;)/2 = 8(ay).

This permits us to apply the continuity condition (2.2.2) with a = a; to 2 and
to w. It follows that

(2.2.6) dy (f(), f(w)) <dy (f(z), f(a;)) + dy (f(a;), f(w)) < e/2+¢€/2=¢,

as desired.

Let Z be another set with a semimetric dz. Suppose that a mapping f from
X into Y is uniformly continuous along a subset A of X, and that a mapping
g from Y into Z is uniformly continuous along a subset B of Y. If f(A) C B,
then it is easy to see that the composition g o f is uniformly continuous along
A as a mapping from X into Z.

Let UC(X,Y) be the space of all uniformly continuous mappings from X
into Y, and let
(2.2.7) UCy(X,Y)=UC(X,Y)NB(X,Y)
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be the space of all bounded uniformly continuous mappings from X into Y. If
X is compact, then every continuous mapping from X into Y is bounded and
uniformly continuous.

2.3 Uniform homeomorphisms

Let X, Y be sets with semimetrics dx, dy, respectively, again. Let us say that
a one-to-one mapping f from X onto Y is a uniform homeomorphism if f is
uniformly continuous as a mapping from X onto Y, and the inverse mapping
f~1 is uniformly continuous as a mapping from Y onto X. Thus a uniform
homeomorphism from X onto Y is automatically a homeomorphism from X
onto Y as topological spaces, with respect to the topologies determined by dx
and dy, respectively. If X and Y are compact, and f is a homeomorphism from
X onto Y, then it follows that f is a uniform homeomorphism.

Let us now take X =Y, and let d be a semimetric on X. Let H(X) be
the collection of all homeomorphisms from X onto itself, with respect to the
topology determined on X by d. This is a group with respect to composition of
mappings, and with the identity mapping on X as the identity element of H (X).
Similarly, let UH (X) be the collection of all uniform homeomorphisms from X
onto itself. This is a subgroup of H(X), because the identity mapping on X is
a uniform homeomorphism, and because compositions of uniformly continuous
mappings are uniformly continuous, as mentioned in the previous section.

Let us suppose from now on in this section that X is nonempty and bounded
with respect to d, and let

(2.3.1) 0(f,9) = Sup d(f(zx),g(z))

be the corresponding supremum semimetric for mappings f, g of X into itself, as
before. In particular, this defines a semimetric on H(X). It is easy to see that 0
is invariant under right translations on H(X). More precisely, if f, g, h € H(X),
then

(2.3.2) O(foh,goh) = sup d(f(h(z)), g(h(z)))
= sup d(f(y),9(y)) = 0(f,9),

because h maps X onto itself. In fact, this works for all mappings f, g from X
into itself, and all mappings A from X onto itself.

However, 6 is not normally invariant under left translations on H(X). As
a partial substitute for this, suppose for the moment that A is a uniformly
continuous mapping from X into itself. Let ¢ > 0 be given, and let § be a
positive real number such that

(2.3.3) d(h(z),h(y)) <€
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for every x,y € X with d(x,y) < 6. Note that mappings f, g from X into itself
satisfy

(2.3.4) 0(f,9) <9
exactly when

(2.3.5) d(f(z),g(z)) <0
for every x € X. In this case, we have that

(2.3.6) d(h(f(x)), h(g(x))) < €

for every € X, so that
(2.3.7) O(ho f,hog) <e.

Let us now consider the restriction of the supremum semimetric 6 to U H (X).
The remarks in the preceding paragraph imply that left translations on U H (X)
are uniformly continuous with respect to 6. Using this and the fact that 6 is in-
variant under right translations on U H (X)), we get that UH (X) is a topological
group with respect to the topology determined by 6, as in Section 1.7.

2.4 Uniform convergence

Let X, Y be nonempty sets, and let dy be a semimetric on Y. Also let {f; }J“;l
be a sequence of mappings from X into Y, and let f be another mapping from
X into Y. As usual, {f; 52 is said to converge pointwise to f on X if for every
z € X, {fj(z)}32, converges to f(x) as a sequence of elements of ¥ with respect
to the topology determined on Y by dy. If for every € > 0 there is a positive
integer L such that

(2.4.1) dy (fj(x), f(x)) <€

for every € X and j > L, then {f; 52 is said to converge uniformly to f on
X. Of course, uniform convergence implies pointwise convergence.

Suppose for the moment that {f; 521 1s a sequence of bounded mappings
from X into Y, and that f is a bounded mapping from X into Y. In this case,
{f; }32, converges to f uniformly on X if and only if {f; }?‘;1 converges to f
with respect to the supremum semimetric 6 on the space B(X,Y’) of bounded
mappings from X into Y that corresponds to dy as in Section 2.1.

Let X be a topological space, and let x be an element of X. Also let
{f; }‘;‘;1 be a sequence of mappings from X into Y that converges uniformly to
a mapping f from X into Y. If f; is continuous at x for each j, then it follows
that f is continuous at  too, by a standard argument. If {z; };";1 is a sequence
of elements of X that converges to z, then one can check that

(2.4.2) {f5(z)}5%

converges to f(x) in Y in this situation. This uses the fact that {f(x;)}32;
converges to f(x) in Y, because f is continuous at x.
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Let Cy(X,Y) be the space of bounded continuous mappings from X into Y,
as in Section 2.1. This is a closed set in B(X,Y) with respect to the topology
determined by the supremum semimetric 6. More precisely, if a sequence { f; }]O';l
of elements of Cy(X,Y") converges to an element f of B(X,Y’) with respect to
0, then f is continuous, as in the preceding paragraph.

Suppose now that X is equipped with a semimetric dx, and let A be a subset
of X. Let {f; };";1 be a sequence of mappings from X into Y that converges
uniformly to a mapping f from X into Y again. If f; is uniformly continuous
along A for every j, then one can verify that f is uniformly continuous along
A too. It follows that the space UC,(X,Y) of bounded uniformly continuous
mappings from X into Y is a closed set in B(X,Y") with respect to the topology
determined by the supremum semimetric 6.

Let {f; }J"‘;l be a sequence of homeomorphisms from X onto Y. Suppose
that {f;}32, converges uniformly to a mapping f from X into Y, and that
{ fj_l}}?‘;l converges uniformly to a mapping g from Y into X. Note that f and
g are continuous, as before. Of course, we would like to have that

(2.4.3) 9(f(x)) = x

for every x € X, so that go f is the identity mapping on X. Similarly, we would
like to have that

(2.4.4) fle(y) =y

for every y € Y, so that f o g is the identity mapping on Y.

To get (2.4.3), we would like to use the fact that fj_l(fj (z)) = x for every
z € X and j € Z,, and take the limit as j — oo. The earlier remarks about
(2.4.2) imply that {fj_l(fj (z))}52, converges to g(f(x)) in X for every z € X
under these conditions. If dx is a metric on X, then it follows that (2.4.3) holds
for every x € X, because the limit of a convergent sequence in X is unique.
Similarly, if dy is a metric on Y, then (2.4.4) holds for every y € Y. This means
that g is the inverse of f when dx, dy are metrics on X, Y, respectively, so
that f is a homeomorphism from X onto Y.

2.5 Completeness

Let (X,d) be a metric space, and let Z be a subset of X. Thus Z may be
considered as a metric space too, using the restriction of d(-,-) to Z. Note that
a sequence of elements of Z is a Cauchy sequence in Z if and only if it is a
Cauchy sequence in X. If X is complete with respect to d, then every Cauchy
sequence in Z converges to an element of X. If Z is also a closed set in X with
respect to d, then it follows that Z is complete with respect to the restriction
of dto Z.

Now let X be a nonempty set, and let (Y, dy) be a metric space. Also let
B(X,Y) be the space of bounded mappings from X into Y, as in Section 2.1,
and let 6 be the corresponding supremum metric on B(X,Y). If Y is complete
with respect to dy, then it is well known that B(X,Y") is complete with respect
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to 6. To see this, let {f; };";1 be a Cauchy sequence of bounded mappings from
X into Y with respect to 6. This means that for each € > 0 there is a positive
integer L(e) such that

(2.5.1) 0(fj, fr) <e
for every j,1 > L(e). It follows that

(2.5.2) dy (fj(x), fix)) <e

for every x € X and j,1 > L(e), so that {f;(z)}32, is a Cauchy sequence in Y’
for every » € X. Because Y is complete, {f;(z)}32; converges to an element
f(x) of Y for every x € X, which defines a mapping f from X into Y. Using

(2.5.2), we get that
(2.5.3) dy (F(2), fi(@)) < e

for every x € X and | > L(e), so that {f;};°, converges to f uniformly on X.
In particular, this implies that f is a bounded mapping from X into Y, because
f1 is bounded for each I, by hypothesis. Note that (2.5.3) is the same as saying
that

(2.5.4) 0(f, fi) <e

for every I > L(e). Thus f € B(X,Y), and {f;}2, converges to f with respect
to the supremum metric 6, as desired.

If X is a topological space, then the space Cy(X,Y") of bounded continuous
mappings from X into Y is a closed set in B(X,Y") with respect to the supremum
metric, as in the previous section. This implies that Cy(X,Y) is complete with
respect to the supremum metric when Y is complete with respect to dy. Simi-
larly, if X is equipped with a semimetric, then the space UC,(X,Y") of bounded
uniformly continuous mappings from X into Y is a closed set in B(X,Y) with
respect to the supremum metric, as before. If Y is complete with respect to
dy, then it follows that UC,(X,Y) is complete with respect to the supremum
metric.

Let (X,d) be a nonempty metric space, and suppose that X is bounded
with respect to d. Also let H(X) be the group of homeomorphisms from X
onto itself, as in Section 2.3, and let # be the supremum metric on the space of
mappings from X into itself corresponding to d, as in (2.3.1). Note that

(2.5.5) 0(f g7
defines a metric on H(X) too, as in (1.4.5). Thus
(2.5.6) max(6(f,9), 0(f~',97"))
and

(2.5.7) 0(f,9)+0(f",97")

define metrics on H(X) as well, as in Section 1.5. Of course, (2.5.6) and (2.5.7)
determine the same topologies on H(X), and the same collections of Cauchy
sequences.
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Let {f;}32, be a sequence of elements of H(X) which is a Cauchy sequence
with respect to (2.5.6) or (2.5.7). This is the same as saying that {f;}32, is a
Cauchy sequence with respect to ¢ and (2.5.5), which means that {f;}32, and

{ f;l 52, are Cauchy sequences with respect to 6. Suppose that X is complete

with respect to d. In this case, it follows that {f; 521 converges uniformly to a
continuous mapping f from X into itself, and that { fj_1 521 converges uniformly
to a continuous mapping g from X into itself. Under these conditions, g is the
inverse of f, as in the previous section. In particular, f € H(X), and {f;}52,
converges to f with respect to (2.5.6) and (2.5.7). Thus H(X) is complete with
respect to (2.5.6) and (2.5.7) when X is complete with respect to d.

Let U H (X)) be the subgroup of H(X) consisting of uniform homeomorphisms
from X onto itself, as in Section 2.3 again. It is easy to see that UH(X) is a
closed set in H (X)) with respect to (2.5.6) or (2.5.7), using analogous statements
for uniform continuity and the supremum metric. Hence U H(X) is also complete
with respect to (2.5.6) or (2.5.7) when X is complete with respect to d.

The restriction of (2.5.5) to UH(X) determines the same topology as the
restriction of 6 to UH (X)), because UH (X) is a topological group with respect
to the topology determined by the restriction of § to UH (X), as in Section 2.3.
This implies that the restrictions of (2.5.6) and (2.5.7) to UH (X) determine the
same topology on UH (X) as the restriction of 6 to UH (X).

2.6 Homeomorphisms on [0, 1]

Let H([0,1]) be the group of homeomorphisms from the closed unit interval
[0,1] in the real line R onto itself, as in Section 2.3. This example is mentioned
in (c) on p212 of [14], in connection with completeness issues. Remember that
0, 1 are the only elements x of [0,1] such that [0,1] \ {z} is not connected.
This implies that every homeomorphism from [0, 1] onto itself maps {0, 1} onto
itself. The mapping from f € H([0, 1]) to the restriction of f to {0,1} defines a
group homomorphism from H ([0, 1]) into the group of permutations on {0,1}.
It is easy to see that this homomorphism is surjective. Let H,([0,1]) be the
collection of f € H([0,1]) such that f(0) = 0 and f(1) = 1, which is the
kernel of the homomorphism just mentioned. It is well known that the elements
of Hy([0,1]) are strictly increasing on [0, 1], because of the intermediate value
theorem. In fact, H, ([0, 1]) is the same as the collection of continuous mappings
from [0, 1] onto itself that are strictly increasing. This uses the well-known fact
that a one-to-one continuous mapping from a compact topological space onto a
Hausdorff topological space is a homeomorphism.

Let C([0,1],R) be the space of all real-valued continuous functions on [0, 1],
as in Section 2.1. Of course, the elements of C([0,1],R) are bounded on [0, 1],
because [0, 1] is compact. The supremum metric can be defined on C([0,1],R)
using the standard metric on R, as in Section 2.1 again. Note that C([0,1],R)
is complete with respect to the supremum metric, as in Section 2.5, because R
is complete with respect to the standard metric. However, it is easy to see that
H([0,1]) is not a closed set in C([0,1],R).
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Let C4([0,1]) be the space of f € C([0,1],R) such that f(0) =0, f(1) =
1, and f increases monotonically on [0,1]. Thus f maps [0, 1] into itself, by
monotonicity, and in fact f maps [0, 1] onto itself, by the intermediate value
theorem. Observe that

(2.6.1) H..([0,1]) € C1.([0,1]),

and that C,([0,1]) is a closed set in C([0, 1], R). Let us check that C, ([0, 1]) is
the closure of H, ([0,1]) in C([0,1],R). Let f € C([0,1]) and € > 0 be given,
and put

(2.6.2) fe@) =1+ (flx)+ex)

for every z € [0,1]. Clearly f. is continuous on [0, 1], because f is continu-
ous. One can check that f. is strictly increasing on [0, 1], because f increases
monotonically on [0,1]. By construction, f(0) = 0 and f.(1) = 1, so that
f € C+(]0,1]). This implies that f. maps [0, 1] onto itself, as before. It follows
that fo € Hy([0,1]), because f is strictly increasing on [0, 1]. It is easy to see
that f. converges to f uniformly on [0, 1] as € — 0, so that f is in the closure of
H([0,1])) in C([0,1],R), as desired.

It is well known that C([0, 1], R) is a vector space over the real numbers with
respect to pointwise addition and scalar multiplication of functions. As usual,
a subset E of C([0,1],R) is said to be convez if for every f,g € F and ¢ € [0, 1]
we have that
(2.6.3) tf+(1—1tg

is an element of F. In particular, this implies that F is connected with respect
to the supremum metric. It is easy to see that C4 ([0, 1]) is convex as a subset
of C(]0,1],R). Similarly, H,(]0,1]) is a convex subset of C([0,1],R), because
H, ([0,1]) is the same as the set of f € C([0, 1]) such that f is strictly increasing
on [0, 1]. This uses the fact that the elements of C' ([0, 1]) map [0, 1] onto itself,
as in the previous paragraph. More precisely, if f € C([0,1]), g € H4([0,1]),
and t € [0,1), then (2.6.3) is in H ([0, 1]).

2.7 Isometric mappings

Let X be a set, and let d be a semimetric on X. A mapping f from X into
itself is said to be an isometry with respect to d if

(2.7.1) d(f(x), f(y)) = d(z,y)

for every z,y € X. In particular, this implies that f is uniformly continuous
with respect to d. Note that the composition of two isometries from X into
itself is an isometry too. If d is a metric on X, then (2.7.1) implies that f is
one-to-one on X.

Let TH(X) be the set of one-to-one isometric mappings f from X onto itself.
If f € IH(X), then f~! € TH(X) too, so that f is a uniform homeomorphism
from X onto itself. More precisely, T H(X) is a subgroup of the group UH (X)
of uniform homeomorphisms from X onto itself, defined in Section 2.3.
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Let A be a nonempty subset of X, and let B4(X) = Ba(X, X) be the space
of mappings from X into itself that are bounded on A, as in Section 2.1. Also
let 64 be the corresponding supremum semimetric on B4 (X), as in (2.1.2). If
fg € B4(X) and h is an isometry from X into itself, then

(2.7.2) Oa(ho f,hog) = sggd(h(f(x)),h(g(fv)))
= sw d(f(z),g(x)) = 0a(f,g).

Let us suppose from now on in this section that X is nonempty and bounded
with respect to d, and let 0(f,g) be the corresponding supremum semimetric
for mappings f, ¢ from X into itself, as in (2.3.1). If f, g are mappings from X
into itself and A is an isometry from X into itself, then

(2.7.3) O(ho f,hog)=0(fg),

by (2.7.2) with A = X. In particular, this means that the restriction of 6(f, g)
to the group H(X) of all homeomorphisms from X onto itself is invariant under
left translations by elements of TH(X). Remember that 0(f,g) is invariant
under right translations on H(X), as in (2.3.2), so that the restriction of 6(f, g)
to TH(X) is invariant under both left and right translations. It follows that

(2.7.4) 0(f197") =0(f.9)

for all f,g € TH(X), as in Section 1.4.

Let us also suppose from now on in this section that d is a metric on X,
and that X is complete with respect to d. We would like to check that IH(X)
is complete with respect to the supremum metric # under these conditions.
The space of all mappings from X into itself is complete with respect to the
supremum metric in this situation, as in Section 2.5, and so it suffices to verify
that 1 H(X) is a closed set in this space. Equivalently, if {f;}52, is a sequence of
elements of I H(X) that converges to a mapping f from X into itself uniformly
on X, then we would like to show that f € IH(X) too. It is easy to see that
[ satisfies the isometric property (2.7.1), because the f;’s are isometries that
converge to f pointwise on X. In particular, this implies that f is one-to-one
on X, because d is a metric on X, as before. It remains to show that f maps X
onto itself. Observe first that f(X) is dense in X, because f;(X) = X for each
Jj >1,and {f; };";1 converges to f uniformly on X. We also have that f(X) is
complete as a metric space with respect to the restriction of d to f(X), because
X is complete, and f is an isometry. This implies that f(X) is a closed set
in X, by a standard argument. It follows that f(X) = X, as desired, because
f(X) is both closed and dense in X.

Alternatively, if {f;}52; is a Cauchy sequence in IH(X) with respect to
the supremum metric, then { fj_l jo1is a Cauchy sequence with respect to the
supremum metric too, by (2.7.4). Hence these sequences converge uniformly to
isometric mappings f, g from X into itself, respectively, because of completeness.
We also have that f and g are inverses of each other, as in Section 2.4. In
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particular, this implies that f maps X onto itself, so that f is an element of
ITH(X), as desired. This is analogous to the completeness properties of H(X)
mentioned in Section 2.5.

If X is compact with respect to the topology determined by d, then TH(X) is
compact with respect to the topology determined by the supremum metric. This
can be obtained from the usual Arzela—Ascoli type of arguments. Of course, X
is complete when X is compact, so that JH(X) is complete, as in the preceding
paragraphs. Thus it is enough to show that TH(X) is totally bounded with
respect to the supremum metric. This can be verified using the fact that X is
totally bounded with respect to d, because X is compact, and the equicontinuity
of the elements of IH(X).

2.8 Subadditive functions on [0, c0)
A real-valued function « on R is an additive function if
(2.8.1) alz+y) = alz) + ay)

for every x,y € R. This is the same as saying that « is a group homomorphism
from R into itself, where R is considered as a commutative group with respect
to addition. In this case, «(0) = 0, and

(2.8.2) a(tz) =ta(x)

for every t € Z, and z € R. More precisely, (2.8.2) also holds when ¢t = —1,
and hence when ¢t € Z. Similarly, one can check that (2.8.2) holds when ¢ is a
rational number. If we consider R as a vector space over the field Q of rational
numbers, then a may be considered as a linear mapping from R into itself. If
a € R, then

(2.8.3) aq(x) =ax

defines an additive mapping from R into itself. If « is an additive mapping from
R into itself that is also continuous with respect to the standard topology on
R, then « is of the form (2.8.3), with a = «(1).

Similarly, a real-valued function o on R is said to be subadditive if

(2.8.4) alz +vy) < a(z) + a(y)

for every z,y € R. Note that « is additive on R if and only if & and —a are
subadditive on R. If aq, ..., «a, are finitely many subadditive functions on R,
then it is easy to see that

(2.8.5) a(zr) = max(ai(x),...,an(z))

is subadditive on R as well. If « is any subadditive function on R, then we can
take x = y = 0 in (2.8.4), to get that

(2.8.6) a(0) > 0.
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We also have that
(2.8.7) anz) < noa(z)

for every n € Z; and z € R.

Now let a be a real-valued function on the set [0,00) of nonnegative real
numbers. Let us say that « is additive if (2.8.1) holds for every z,y € [0, 00). If
o is an additive function on R, then the restriction of « to [0, 00) is an additive
function on [0, 00). Suppose that « is an additive function on [0, c0), and put

(2.8.8) a(zr) = —a(—x)

for every € R with x < 0. One can check that this extension of a to R is
additive on R.

A real-valued function « on [0, 00) is said to be subadditive if (2.8.4) holds for
every x,y € [0,00). As before, « is additive on [0, 00) if and only if o and —« are
subadditive on [0,00). If « is a subadditive function on R, then the restriction
of a to [0, 00) is a subadditive function on [0, 00). If a1, ..., a;, are finitely many
subadditive functions on [0, 00), then their maximum (2.8.5) is subadditive on
[0,00) too. If « is any subadditive function on [0, 00), then (2.8.6) holds, and
(2.8.7) holds for every n € Z and x > 0, as before.

Suppose that « is a monotonically increasing subadditive real-valued func-
tion on [0,00) that satisfies «(0) = 0. Note that o > 0 on [0, 00), because of
monotonicity. If d(x,y) is a semimetric on a set X, then one can verify that

(2.8.9) do(z,y) = a(d(z,y))

defines a semimetric on X as well. If d is a metric on X, and a > 0 on (0, 00),
then (2.8.9) is a metric on X.
If ¢ is a positive real number, then it is easy to see that

(2.8.10) oy (r) = min(r, )

defines a subadditive function on [0, 00). Clearly a4(0) = 0, o is monotonically
increasing on [0,00), and «; > 0 on (0,00). If we take o = a, then (2.8.9) is
the same as (1.6.1).

Let « be a monotonically increasing subadditive real-valued function on
[0,00) again. Thus

(2.8.11) 0<a(r+t)—alr) <at)
for every r,t > 0. If we also have that

(2.8.12) t1_1>151+a(t) =0,

then it follows that « is uniformly continuous on [0, 00), with respect to the
restriction of the standard Euclidean metric on R to [0, 00).
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2.9 Uniformly compatible semimetrics

Let X be a set, and let dy, do be semimetrics on X. Let us say that di is
uniformly compatible with dy on X if the identity mapping on X is uniformly
continuous as a mapping from X equipped with dy into X equipped with d;.
This means that for every € > 0 there is a § > 0 such that for every z,y € X
with

(2.9.1) da(z,y) <9,

we have that
(2.9.2) di(z,y) < e

In particular, this implies that d; is compatible with the topology determined
on X by ds, as in Section 1.1.

Let us say that di, dy are uniformly equivalent on X if dy is uniformly
compatible with ds, and dy is uniformly compatible with d;. This is the same
as saying that the identity mapping on X is a uniform homeomorphism as a
mapping from X equipped with d; onto X equipped with ds. In this case, the
topologies determined on X by d; and ds are the same.

Let ds be another semimetric on X. If d; is uniformly compatible with
dy on X, and ds is uniformly compatible with d3 on X, then d; is uniformly
compatible with d3 on X. Similarly, if dy, do are uniformly equivalent on X,
and ds, d3 are uniformly equivalent on X, then dy, d3 are uniformly equivalent
on X.

Let « be a monotonically increasing subadditive real-valued function on
[0,00) such that «(0) = 0. Also let d be a semimetric on X, so that (2.8.9)
defines a semimetric d, on X, as before. If a satisfies (2.8.12) too, then it is
easy to see that d, is uniformly compatible with d on X.

Let dy, d2 be semimetrics on X again, and let a be a monotonically increasing
nonnegative real-valued function on [0, 00) such that a(0) = 0. Let us say that
dy is a-bounded by dy if
(2.9.3) a(di(z,y)) < da(z,y)

for every z,y € X. In this case, if z,y € X satisfy
(2.9.4) dy(z,y) > €

for some € > 0, then we have that

(2.9.5) da(z,y) = ae).

If we take 0 = a(e), then it follows that (2.9.1) implies (2.9.2). Hence d; is
uniformly compatible with ds on X when a > 0 on (0, 00).

Suppose that « is also subadditive on [0, 00), and let d be a semimetric on
X. If d, is as in (2.8.9), then d is automatically a-bounded by d,. Thus d is
uniformly compatible with d, on X when o > 0 on (0, 00).

Let di, do be semimetrics on X such that d; is uniformly compatible with
ds. This means that for each € > 0 there is a 6 > 0 such that for every z,y € X
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that satisfy (2.9.4), we have that

(2.9.6) da(w,y) > 4.
Put
(2.9.7) a(e) = inf{ds(z,y) : z,y € X, di(x,y) > €}

for each ¢ > 0. More precisely, if there are no z,y € X that satisfy (2.9.4),
then (2.9.7) is interpreted as being +o0o. The hypothesis that d; be uniformly
compatible with dy on X is the same as saying that

(2.9.8) ale) >0

for every € > 0. Let us put a(0) = 0, which is the same as (2.9.7) with e = 0
when X # (). It is easy to see that o increases monotonically on [0, 00), because
the set whose infimum is taken on the right side of (2.9.7) gets smaller as e
increases.

In this situation, (2.9.3) holds by construction for every =,y € X. Thus d;
is a-bounded by ds, but where o may take values in the nonnegative extended
real numbers. This can be avoided by taking the minimum of o with any fixed
positive real number.

2.10 Moduli of uniform continuity

Let X, Y be nonempty sets, and let dx, dy be semimetrics on them, respectively.
Also let f be a mapping from X into Y. If r is a positive real number, then we
put

(210.1) B (r) =sup{dy(f(z), f(2')) : x,2" € X, dx(z,2") <r}

and

(2.10.2)  Bf(r) =sup{dy (f(z), f(2")) : x,2" € X, dx(z,2") <r},

where the suprema are defined as nonnegative extended real numbers. We can
also define 8y (r) when r = 0 as in (2.10.2). Note that the sets whose suprema
are being taken are nonempty, because one can take ' = z. These sets get larger
as 7 increases, which implies that (2.10.1) and (2.10.2) increase monotonically
in r. If r > 0, then

(2.10.3) By (r) < By(r),

and in fact

(2.10.4) By (r) =sup{By(t) : 0 <t <r}.
If 0 <r < t, then

(2.10.5) Br(r) < By (1)

It is easy to see that f is bounded as a mapping from X into Y if and only
if (2.10.1), (2.10.2) have finite upper bounds. If dx is a metric on X, then
B7(0) = 0 automatically.



34 CHAPTER 2. BOUNDEDNESS AND SUPREMUM SEMIMETRICS

If f is uniformly continuous as a mapping from X into Y, then (2.10.2) is
finite when 7 is sufficiently small, and

2.10. li =0.

(2.10.6) Jdim Br(r) =0

In particular, this implies that 5;(0) = 0, because (2.10.2) increases monotoni-
cally in r. In the other direction, f is uniformly continuous when

(2.10.7) T1_1>r51+ By (r) =0,

which implicitly includes the condition that (2.10.1) be finite when r is suffi-
ciently small. Of course, the equivalence of (2.10.6) and (2.10.7) follows directly
from (2.10.3) and (2.10.5).

Let 8 be a nonnegative extended real-valued function on [0, o), and suppose
that

(2.10.8) dy (f(2), f(2")) < Bdx(z,2))
for every z, 2’ € X. If (0) = 0 and

(2.10.9) Tl_i>r51+5(r) =0,

then f is uniformly continuous as a mapping from X into Y. As usual, these
conditions implicitly include the requirement that G(r) be finite when r is suf-
ficiently small. Of course,

(2.10.10) dy (f(z), f(z") < Bf(dx(x,2"))

for every z,2" € X automatically, by the definition (2.10.2) of ;.

Now let 3 be any nonnegative extended real-valued function on [0, 00), and
put ~
(2.10.11) B(r)=sup{B(t): 0 <t <r}

for each r > 0, where the supremum on the right is defined as a nonnegative
extended real number. By construction, 5(0) = 5(0),

(2.10.12) B(r) < B(r)

for every r > 0, and E increases monotonically on [0, 00). If 8 increases mono-
tonically on [0, 00), then 5 = §. If 8 satisfies 5(0) = 0 and (2.10.9), then

(2.10.13) T1_1>r51+ﬂ(r) =0,

which implicitly includes the finiteness of B(r) when r is sufficiently small. If
(2.10.8) holds, then

(2.10.14) By(r) < B(r)

for every r > 0.
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2.11 Relating o’s and (’s

Let X, Y be nonempty sets again, with semimetrics dx, dy, respectively. Also
let f be a mapping from X into Y, and let a be a monotonically increasing
nonnegative real-valued function on [0, 00) such that «(0) = 0. Suppose that

(2.11.1) ady (f(x), f(2'))) < dx(z,2")

for every z, 2’ € X. Thus for each ¢ > 0,

(2.11.2) dy (f(z), f(z") > €
implies that
(2.11.3) dx(z,z") > ale).

Equivalently, this means that

(2.11.4) dy (f(z), f(a)) <e
when
(2.11.5) dx (z,2") < a(e).

If @ > 0 on (0,00), then it follows that f is uniformly continuous on X. More
precisely, for each € > 0 with «(e€) > 0, we get that

(2.11.6) B (a(9) < e,

where 3, is as in (2.10.1). This implies that (2.10.7) holds when o > 0 on
(0, 00).
Alternatively, put

(2.11.7) a_(r)=sup{a(t):0<t<r}
for each positive real number 7, which is the same as

(2.11.8) tE)IEl_ a(t),

because « increases monotonically. It is convenient to put a—(0) = 0, and to let

(2.11.7) be defined as a nonnegative extended real number when r = +oo. This

defines a_ as a nonnegative extended real-valued function on the set [0, co] of

nonnegative extended real numbers. Note that a_ increases monotonically on

[0, 0], and that a— < « on [0,00). If & > 0 on (0,00), then a— > 0 on (0, oc].
Let 0 < r < oo be given. If z,2' € X and dx(x,2") <r, then

(2.11.9) a(dy (f(z), f(2))) < dx(z,2") <,
by (2.11.1). Using this, one can check that

(2.11.10) a_(Bp(r)) <,
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where (f(r) is as in (2.10.2). If the supremum on the right side of (2.10.2) is
attained, then
(2.11.11) a(Bs(r)) <.

Of course, if 0 < Bf(r) < oo and « is left-continuous at 8;(r), then (2.11.10)
implies (2.11.11) automatically.

Now let 3 be any nonnegative extended real-valued function on [0, 00), and
let a be a monotonically increasing nonnegative extended real-valued function
on [0, 00]. Suppose that
(2.11.12) a(B(r)) <r

for every r > 0. This implies that for each € > 0 and r > 0 with
(2.11.13) B(r) >,

we have that
(2.11.14) r > a(B(r)) > ale).

Equivalently, for each ¢ > 0 and r > 0 with
(2.11.15) r < afe),

we have that
(2.11.16) B(r) <e.

If & > 0 on (0, 00), then it follows that

(2.11.17) 8(0)=0
and
(2.11.18) Tlir&ﬂ(r) =0.

In particular, this implies that 8(r) < oo when r > 0 is sufficiently small.
If 0 <t < oo, then put

(2.11.19) B (t) = sup{B(r): 0 < r < t},

where the supremum on the right is defined as a nonnegative extended real
number. If € > 0 and a(e) > 0, then we get that

(2.11.20) B (ale) <,

because (2.11.15) implies (2.11.16). Of course, this implies that (2.11.17) and
(2.11.18) hold when o > 0 on (0, 00).

Let 8 be a nonnegative extended real-valued function on [0,00) again. If
0 <t < oo, then put

(2.11.21) ag(t) =inf{u: 0 <u < oo, B(u) > t},

where the infimum is interpreted as being +o0o when S(u) < ¢ for every u. This
defines a nonnegative extended real-valued function on [0, c0], with «(0) = 0.
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Note that « increases monotonically on [0, cc], because the set whose infimum
is being taken gets smaller as ¢ increases. If 0 < r < oo, then

(2.11.22) ag(B(r)) <,

because u = r is an element of the set whose infimum is taken in the right side
of (2.11.21) when t = B(r). If 0 <t < oo and 0 < u < ag(t), then

(2.11.23) Bu) < t,

because u is not an element of the set whose infimum is taken in the right side
of (2.11.21). This implies that

(2.11.24) B (as(t)) <t

when ag(t) > 0, where B~ is as in (2.11.19).

Suppose that 3 satisfies (2.11.17) and (2.11.18), and let € > 0 be given. By
hypothesis, there is a d > 0 such that (2.11.16) holds when 0 < r < 4. It follows
that
(2.11.25) agle) > 6,

by the definition (2.11.21) of ag.

2.12 Compatible supremum semimetrics

Let X, Y be nonempty sets, and let dy, d}- be semimetrics on Y. Suppose that
d’- is uniformly compatible with dy on Y, as in Section 2.9. Thus for each € > 0
there is a § > 0 such that for every y,z € Y with

(2.12.1) dy (y,z) <4,

we have that
(2.12.2) dy (y,2) < e.

Let {f;}72, be a sequence of mappings from X into Y, and let f be a mapping
from X into Y. If {f;}32, converges to f uniformly on X with respect to dy
on Y, then it is easy to see that {f; 521 converges to f uniformly on X with
respect to dy, on Y.

Let Bgy, (X,Y), By (X,Y) be the collections of bounded mappings from X

Y

into Y with respect to dy, di, respectively, as in Section 2.1. Consider the
corresponding supremum semimetrics

(2.12.3) Oay (f,9) = Sggdy(f(ir)vg(m)%
(2.12.4) Oa, (f,9) = Slelgd'y(f(x%g(x))

on By, (X,Y), Ba, (X,Y), respectively. If dy is uniformly compatible with dy
on Y, then (2.12.4) is uniformly compatible with (2.12.3) on

(2.12.5) Bay (X,Y) N By (X,Y).
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Indeed, let € > 0 be given, and let § > 0 be as in the preceding paragraph, so
that (2.12.1) implies (2.12.2). If f, g are elements of (2.12.5) such that

(2.12.6) Oay (f,9) <,
then

(2.12.7) dy (f(x),g(x)) <o
for every x € X. This implies that

(2.12.8) dy (f(x),g(x)) <€
for every z € X, so that

(2.12.9) bu (f.9) <.

It follows in particular that (2.12.4) is compatible with the topology determined
on (2.12.5) by (2.12.3).

Alternatively, let a be a monotonically increasing nonnegative real-valued
function on [0, 00) such that «(0) = 0 and

(2.12.10) a(dy (y,2)) < dy(y, 2)

for every y,z € Y. Let a_(r) be defined for » > 0 as in (2.11.7), and put
a_(0) =0, as before. If f, g are elements of (2.12.5), then

(21211)  a_(0a, (f,9)) < sup a(dy (f(x), 9(x))) < Oay (f.9)-

If dy is uniformly compatible with dy on Y, then we can choose « to be strictly
positive on (0,00), so that a— > 0 on (0, 00) too. In this case, it follows from
(2.12.11) that (2.12.4) is uniformly compatible with (2.12.3) on (2.12.5).

As another version of this, let 8 be a monotonically increasing nonnegative
extended real-valued function on [0, c0) such that

(2.12.12) dy (y,2) < B(dy (y, 2))

for every y,z € Y. If f, g are elements of (2.12.5), then

(2.12.13) Oa;, (f,9) < sup B(dy (f(2), 9(x))) < B(0ay (f; 9))-

zeX

If di is uniformly compatible with dy on Y, then we can choose 3 so that
B(0) = 0 and B(r) — 0 as r — 0+. Using this condition and (2.12.13), we get
that (2.12.4) is uniformly compatible with (2.12.3) on (2.12.5).



Chapter 3

Open subgroups and
semi-ultrametrics

3.1 Semi-ultrametrics
A semimetric d(z,y) on a set X is said to be a semi-ultrametric on X if
(3.1.1) d(z,z) < max(d(z,y),d(y,z)) forevery z,y,z € X.

Note that (3.1.1) automatically implies the ordinary triangle inequality (1.1.3).
Similarly, a metric d(z,y) on X is said to be an ultrametric on X if it satisfies
(3.1.1). This discrete metric on X is an ultrametric, for instance. If d(z,y) is a
semi-ultrametric on X and Y is a subset of X, then the restriction of d(z,y) to
z,y € Y is a semi-ultrametric on Y.

Let d(-,) be a semi-ultrametric on X, and let r be a positive real number.
Observe that
(3.1.2) d(z,y) <r

defines an equivalence relation on X. The corresponding equivalence classes in
X are the same as the open balls in X with radius r with respect to d. The
complement of an open ball in X of radius r can be expressed as a union of
other open balls of radius r, and in particular is an open set in X with respect
to the topology determined by d. This implies that open balls in X are closed
sets in X with respect to the topology determined by d.
Similarly,
(3.1.3) d(z,y) <r

defines an equivalence relation on X for every nonnegative real number r. The
corresponding equivalence classes in X are the same as the closed balls in X
with radius r with respect to d. If 2,y € X satisfy (3.1.3), then it follows that

(3.1.4) B(z,r) = B(y,r),

39
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where these closed balls are as defined in (1.1.6). This implies that closed balls
in X of radius r are open sets in X with respect to the topology determined by
d when r > 0. Note that (3.1.3) defines an equivalence relation on X for every
semimetric d(-,-) on X when r = 0.

Let P be a partition of X, which is to say a collection of pairwise-disjoint
nonempty subsets of X whose union is equal to X. Put

(3.1.5) dp(z,y) =0
when x,y € X are contained in the same element of P, and
(3.1.6) dp(z,y) =1

when z,y € X are contained in different elements of P. One can check that
dp(z,y) defines a semi-ultrametric on X, which we shall call the discrete semi-
ultrametric associated to P. By construction, if 0 < r < 1, then the open balls
in X with radius r with respect to dp are the same as the elements of P. If
0 < r < 1, then the closed balls in X with radius r with respect to dp are the
same as the elements of P too.

Let d(x,y) be any semimetric on X such that for each =,y € X, d(x,y) is
either 0 or 1. It is easy to see that d(z,y) has to be a semi-ultrametric on X in
this case, and we shall call d(z,y) a discrete semi-ultrametric on X. As before,

(3.1.7) d(z,y) =0

defines an equivalence relation on X, so that X is partitioned by the corre-
sponding collection of equivalence classes. Observe that d(-,-) is the same as
the discrete semi-ultrametric on X associated to this partition, as in the pre-
ceding paragraph. Of course, the discrete semi-ultrametric associated to any
partition P of X as in (3.1.5) and (3.1.6) is a discrete semi-ultrametric on X in
this sense.

3.2 Translation-invariant semi-ultrametrics

Let G be a group, and let d(-, ) be a semi-ultrametric on G. If d(-, -) is invariant
under left translations on G, then

(3.2.1) d(e,zy) < max(d(e,x),d(z,xy)) = max(d(e, x),d(e, y))

for every x,y € G. Similarly, if d(,-) is invariant under right translations on G,
then
(322)  dle,ay) < max(d(e,y), d(y, v ) = max(d(c, y), de,))

for every x,y € G. It follows in both cases that open balls in G centered at
the identity element e with respect to d are subgroups of G. This also uses the
fact that open balls in G centered at e with respect to e are symmetric about
e, as in Section 1.4. Similarly, closed balls in G centered at e with respect to d
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are subgroups of G in both situations. If d(-,-) is invariant under both left and
right translations on G, then it is easy to see that open and closed balls in G
centered at e with respect to d are normal subgroups of G.

Let H be a subgroup of G, and put

(3.2.3) dr(z,y) = 0 whenzH=yH
= 1 whenxH #yH,

where x,y € G. This is the discrete semi-ultrametric on G associated to the

partition of G consisting of the left cosets of H in G, as in the previous section.

Observe that (3.2.3) is invariant under left translations on G, and right transla-

tions by elements of H. If 0 < r < 1, then H is the same as the open ball in G

centered at e with radius r with respect to (3.2.3). If 0 < r < 1, then H is the

same as the open ball in G centered at e with radius r with respect to (3.2.3).
Similarly, if z,y € G, then we put

(3.2.4) dr(z,y) = 0 when Hzx=Hy
= 1 when Hx # Hy.

This is the discrete semi-ultrametric on G associated to the partition of G
consisting of right cosets of H in G. By construction, (3.2.4) is invariant under
right translations on G, and left translations by elements of H. As before, H
is the same as the open ball in G centered at e with respect to (3.2.4) when
0<r<1. If0<r<1,then H is the same as the closed ball in G centered at
e with radius r with respect to (3.2.4).

Note that (x H)™' = H '27t' = Hx~! for every z € G. If 2,y € G, then it
follows that

(3.2.5) tH=yH ifandonlyif Hz '=Hy '
This implies that
(3.2.6) dp(z~'y™") = di(z,y)

for every z,y € G.

If H is a normal subgroup of G, then  H = H z for every z € G. This
implies that
(32.7) d(z,y) = dr(z,y)

for every z,y € G. In particular, (3.2.3) and (3.2.4) are invariant under both
left and right translations on G in this case.

3.3 Open subgroups

Let G be a topological group, and suppose that U is a subgroup of G that is
also an open set. This implies that the cosets of U in G are open sets too,
by continuity of translations. It follows that U is a closed set, because the
complement of U is a union of cosets, and hence an open set. In particular, if G
is connected as a topological space, then G is its only open subgroup. Note that
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{e} is an open set in G if and only if G is equipped with the discrete topology,
because of continuity of translations.

Of course, the set Q of rational numbers is a subgroup of R, as a commu-
tative group with respect to addition. We may also consider Q as a topological
group with respect to addition, and the topology induced on Q by the standard
topology on R. One can check that Q is the only open subgroup of itself, even
though Q is not connected as a topological space.

Let G be a topological group again, and let d(-,-) be a semi-ultrametric on
G that is invariant under left or right translations on G. Thus open and closed
balls in G with respect to d centered at the identity element e are subgroups of
G, as in the previous section. If d(-,-) is compatible with the topology on G, as
in Section 1.1, then it follows that open balls in G with respect to d centered
at e are open subgroups of G with respect to the given topology on G. In this
case, closed balls in G with respect to d centered at e with positive radius are
open subgroups of G too. More precisely, closed balls in G with respect to d
with positive radius are open sets with respect to the topology determined by
d, as in Section 3.1, and hence with respect to the given topology on G, because
d is supposed to be compatible with that topology.

Let U be an open subgroup in G again. Using the left and right cosets
of U in G, we get discrete semi-ultrametrics d, and dr on G, as in (3.2.3)
and (3.2.4). Remember that these semi-ultrametrics are invariant under left
and right translations on G, respectively. It is easy to see that dy and dp are
compatible with the given topology on G, because U is an open set. More
precisely, it suffices to verify that d; and dr are compatible with the given
topology on G at e, as in Section 1.4.

Let U be a subgroup of G. If e is an element of the interior of U in G, then
U is an open subgroup of G. This uses the continuity of translations on G.
Similarly, if the interior of U is nonempty, then U is an open subgroup of G.

Now let A be a subset of G that contains e, and suppose that A is symmetric
about e. This can always be arranged by replacing A with ANA~!, as in Section
1.2. Let us define A7 for each j € Z, by putting A' = A and A7+ = AT A
for every j > 1. Equivalently, A’ consists of the elements of G that can be
expressed as the product of exactly j elements of A. Thus

(3.3.1) AT AL = AIH

for every j,1 € Z,. Similarly, A’ consists of the elements of G that can be
expressed as the product of at most j elements of A, because e € A. We also
have that

(3.3.2) (A7)~ = A

for every j € Z, because A~ = A, by hypothesis. It follows that
(3.3.3) 47
j=1

is a subgroup of G.
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If A is an open subset of G, then A7 is an open subset of G for every j € Z,
as in Section 1.2. This implies that (3.3.3) is an open subset of G, and hence
an open subgroup of G. Alternatively, if A has nonempty interior, then (3.3.3)
has nonempty interior, which implies that (3.3.3) is an open set, as before.

3.4 U-Separated sets

Let G be a topological group, and let U be an open subset of G that contains
the identity element e. Let us say that subsets A, B of G are left-invariant
U -separated if

(3.4.1) (AU)NB = 0.

It is easy to see that this holds if and only if
(3.4.2) AN(BU Y =0.

Thus A, B are left-invariant U-separated if and only if B, A are left-invariant

U~ l-separated. If U is symmetric about e, so that U~! = U, then A, B are

left-invariant U-separated if and only if B, A are left-invariant U-separated.
Similarly, A, B are right-invariant U -separated if

(3.4.3) (UANB=0.
This holds if and only if
(3.4.4) (A7'u YHnBt =9,

because (U A)™! = A71U~!. This means that A, B are right-invariant U-
separated if and only if A=, B~! are left-invariant U ~!-separated. We shall
focus on left-invariant U-separated sets in this section, for simplicity.

Using the continuity of the group operations on G, we can find an open
subset U; of G such that e € U; and

(3.4.5) U, Ut Cu,

as in Section 1.2. If A, B are left-invariant U-separated subsets of G, then we
get that
(3.4.6) (AULUTY)Y N B = 0.

This is the same as saying that

(3.4.7) (AU N (BUy) =0.
In particular, this implies that

(3.4.8) ANB =0,

because of (1.2.16).
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Suppose that A is compact, B is a closed set, and
(3.4.9) ANB=1{.

Under these conditions, there is an open subset U of G such that e € U and A,
B are left-invariant U-separated. This is basically the same as (1.3.12).

If A is a compact open subset of G, then there is an open subset U of G
such that e € U and
(3.4.10) AU C A.

This follows from the remarks in the preceding paragraph, and can also be
obtained from (1.3.12).

Let A, U be subsets of G such that e € U, U is an open set, and (3.4.10)
holds. As usual, we can take U to be symmetric about e, by replacing U with
UNU~L Using (3.4.10), we get that

(3.4.11) AUI C A

for every j € Z, where U’ is as in the previous section. If we put
o0

(3.4.12) U= J U,
j=1

then it follows that
(3.4.13) AUy C A.

Of course, A C AU C AUy, because e € U, so that AUy = A.
Note that Uy is an open subgroup of G under these conditions, as in the
previous section. If e € A, then we also have that

(3.4.14) Up C A,
by (3.4.13).

3.5 Collections of subgroups

Let G be a group, and let B be a nonempty collection of subgroups of G. We
would like to consider topologies on G such that the elements of B form a local
sub-base at the identity element e, and with other appropriate properties. If
A € B, then let d4,1, and d4 g be the discrete semi-ultrametrics on G associated
to the left and right cosets of A in G, as in (3.2.3) and (3.2.4), respectively. Thus

(3.5.1) My(B) = {das: A€ B)
and
(3.5.2) Mg(B)={dar:AecB}

are nonempty collections of semi-ultrametrics on G that are invariant under
left and right translations, respectively. Let 71 (B) and 7r(B) be the topologies
determined on G by M (B) and Mpg(B) as in Section 1.5, respectively.
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Equivalently, a subset U of G is an open set with respect to 7 (B) if for

every x € U there are finitely many elements Ay, ..., A, of B such that
n

(3.5.3) (@A) cU.
j=1

Similarly, U is an open set with respect to 7r(B) if for every & € U there are
finitely many elements Ay, ..., A, of B such that

(3.5.4) ﬁ (Ajz) CU.
j=1

One can check directly that these define topologies on G, instead of using M, (B)
and Mpg(B). It is easy to see that the elements of B are open sets with respect
to 71, (B) and 7r(B), because the elements of B are subgroups of G. Of course,
B is a local sub-base for each of these topologies at e, by construction. Note
that 71, (B) is preserved by left translations on G, and that 75 (B) is preserved by
right translations on G. This follows from the fact that the elements of My (B)
and Mg(B) are invariant under left and right translations on G, respectively,
and it can also be obtained from the characterizations of 77,(B) and 7r(B) just
mentioned.

As in Section 1.7, x — ™ is continuous as a mapping from G into itself at
e with respect 77,(B), and with respect to 7r(B). Multiplication on G is also
continuous as a mapping from G X G into G at (e, e), using either 7r,(B) or Tr(B),
and the corresponding product topology. Both statements can be obtained from
the characterizations of 71, (B) and 7g(B) in the previous paragraph, as well as
from earlier remarks about collections of translation-invariant semimetrics. Note
that a subset U of G is an open set with respect to 77 (B) if and only if U~! is
an open set with respect to 7z(B), which is the same as saying that z +— 27! is
a homeomorphism as a mapping from G with 77, (B) onto G with 7r(B). This
can be obtained from the characterizations of 71, (B) and 7r(B) in the previous
paragraph, or using (3.2.6).

The elements of B are automatically closed sets with respect to 77(B) and
Tr(B). This can be obtained from either of the characterizations of 71, (B) and
Tr(B), as usual. Let us say that B is nondegenerate if

1

(3.5.5) () A={e}.

AeB

This implies that My, (B) and M g(B) are nondegenerate as collections of semi-
metrics. In this case, one can verify directly that G is Hausdorff with respect
to 71,(B) and Tr(B), using the characterizations of these topologies in terms of
(3.5.3) and (3.5.4).

If

(3.5.6) TL(B) = mr(B),
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then left and right translations are continuous with respect to this common
topology. This implies that G is a topological group with respect to this topol-
ogy, as in Section 1.7, because of the properties of these topologies mentioned
earlier. Conversely, if G is a topological group with respect to 71 (B) or 7r(B),
then = + 27! is a homeomorphism with respect to that topology. This implies
that (3.5.6) holds, because x — z~! automatically sends 77,(B) onto 7r(B), as
before.

Let us say that B is nice if for every © € G and A € B there are finitely
many elements Ay, ..., A, of B such that

(3.5.7) (4 CxAdat,
j=1

Equivalently, (3.5.7) means that

(3.5.8) (z7'Aj) C Az,
j=1
and that
(3.5.9) ((Ajz) CzA.
j=1

If B is nice, then one can check that (3.5.6) holds. This implies that G is a
topological group with respect to (3.5.6), as before.

Conversely, suppose that G is a topological group with respect to 7, (B)
or 7r(B). In particular, this implies that both left and right translations are
continuous with respect to 7. (B) or 7r(B). If x € G and A € B, then it follows
that o Az~ is an open set with respect to 71, (B) or T7r(B), because A is an open
set with respect to both 71,(B) and 7r(B). This implies that there are finitely
many elements Ay, ..., A, of B such that (3.5.7) holds, because e € x Ax~1.
This shows that B is nice under these conditions.

If every element of B is a normal subgroup of G, then B is automatically
nice. In this case, the discrete semi-ultrametrics da,;, and d4 r mentioned at
the beginning of the section are the same for every A € B, as in (3.2.7). In
particular, this implies that (3.5.1) and (3.5.2) are the same. Remember that
these semi-ultrametrics are invariant under both left and right translations in
this situation, as in Section 3.2.

3.6 More on semi-ultrametrics

Let X be a set. If dy,...,d, are finitely many semimetrics on X, then we have
seen that
(3.6.1) max d;(x,y)

1<j<n
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and
n

(3.6.2) Z d;(z,y)

define semimetrics on X too, as in Section 1.5. If dy, ..., d, are semi-ultrametrics
on X, then one can check that (3.6.1) is a semi-ultrametric on X as well. How-
ever, this does not normally work for the sum (3.6.2).

Similarly, if d(z,y) is a semimetric on X and ¢ is a positive real number,
then we have seen that
(3.6.3) min(d(z,y),t)

defines a semimetric on X, as in Section 1.6. If d(x,y) is a semi-ultrametric on
X, then it is easy to see that (3.6.3) is also a semi-ultrametric on X.

Let dy,ds,ds, ... be an infinite sequence of semimetrics on X. As before,
(3.6.4) dj(x,y) = min(d;(z,y),1/j)
defines a semimetric on X for each positive integer j. We have seen that
!
(3.6.5) max d;(z,y)

defines a semi-metric on X too, as in (1.6.5). If d; is a semi-ultrametric on X
for each j > 1, then (3.6.4) is also a semi-ultrametric on X for every j > 1, as
in the preceding paragraph. In this case, one can check that that (3.6.5) is a
semi-ultrametric on X as well.

Let Y be another set, and let dy be a semimetric on Y. Also let A be a
nonempty subset of X, and remember that

(3.6.6) 0a(f,9) = sup dy (f(z), g(x))

defines a semimetric on the space Ba(X,Y) of mappings from X into Y that
are bounded on A, as in Section 2.1. If dy is a semi-ultrametric on Y, then
(3.6.6) is a semi-ultrametric on B4(X,Y). More precisely, if f,g,h € B4(X,Y),
then

(36.7)  dy(f(x),h(z)) max (dy (f (), 9(x)), dy (9(=), h(x)))

max(04(f,9),04(g,h))

for every x € A in this case. It follows that

(3.6.8) 0a(f,h) < max(04(f,9),0a(g,h)),

as desired.
Let X, Y be sets again, and let dy be a semimetric on Y. If ¢ is a mapping
from X into Y, then it is easy to see that

(3.6.9) dy (¢(z), ¢(2"))

defines a semimetric on X. Similarly, if dy is a semi-ultrametric on Y, then
(3.6.9) is a semi-ultrametric on X. Note that this includes the situation consid-
ered in (1.8.4).

ININA
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3.7 Some countable products

Let X1, X5, X3,... be an infinite sequence of nonempty sets, and let
(3.7.1) X =[x,
j=1

be their Cartesian product. Thus the elements of X may be considered as
sequences ¥ = {z;}72, where z; € X; for each j € Z,. To avoid degeneracies,
one might as well ask that X; have at least two elements for each j € Z,. If
x,y € X and x # y, then let I(z,y) be the largest nonnegative integer such that

(3.7.2) z; =y; when j <lI(z,y).

Equivalently, I(z,y) + 1 is the smallest positive integer j such that z; # y;. In
particular, if 1 # y1, then {(z,y) = 0. If z = y, then we take l(x,y) = +00, so
that (3.7.2) holds for every z,y € X. Note that {(x,y) is symmetric in z, y. We
also have that

(3.7.3) l(z,2) > min(l(z,y),(y, 2))

for every z,y,z € X. Indeed, if j € Z satisfies

(3.7.4) j < min(l(z,y),1(y, 2)),

then x; = y; and y; = z;. This implies that x; = z; for these j, and hence that
(3.7.3) holds.

Let {r;}32, be a strictly decreasing sequence of positive real numbers that
converges to 0, with respect to the standard metric on R. If z,y € X, then put

(3.7.5) d(z,y) = T7yay Whenz#y
= 0 when = = y.
It is convenient to put ro = 0, so that the x = y case may be given by the

same expression as the z # y case. Clearly d(z,y) satisfies the positivity and
symmetry requirements of a metric. If z,y, z € X, then

(376) d(l’7 Z) = Ti(x,z) < max(rl(w,y)7 rl(y,z)) = max(d(:z:, y)a d(ya Z))

This uses (3.7.3) and the hypothesis that the r;’s are decreasing in the second
step. It follows that (3.7.5) defines an ultrametric on X.
If x € X and [ is a nonnegative integer, then

(3.7.7) B(x,r) ={ye X :d(z,y) <m}

is the usual closed ball in X centered at x with radius r; with respect to (3.7.5),
as in (1.1.6). In this situation,

(3.7.8) d(z,y) <mr ifand only if I(z,y) >,
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because the r;’s are supposed to be strictly decreasing in j. Thus

(3.7.9) B(x,m) ={y € X :l(z,y) > I}
Equivalently, .
(3.7.10) B(z,m) ={y € X :x; =y; when j <I}.

All other open and closed balls in X with respect to (3.7.5) can be characterized
using this case.

The topology determined on X by (3.7.5) is the same as the product topology
corresponding to the discrete topology on X; for each j € Z,. In particular,
a sequence z(1),z(2),x(3),... of elements of X converges to an element = of
X with respect to (3.7.5) if and only if for each j € Zy, z;(I) = z; for all
sufficiently large [. Similarly, a sequence x(1), z(2),z(3), ... of elements of X is
a Cauchy sequence with respect to (3.7.5) if and only if for each j € Z,, the
sequence {x;(1)};°, of elements of X is eventually constant. It follows that
Cauchy sequences in X are convergent, so that X is complete as a metric space
with respect to (3.7.5). If X has only finitely many elements for each j, then
X is compact.

3.8 Semi-ultrametrification

Let X be a set, and let d(z,y) be a semimetric on X. If 2,y € X, then put

(3.8.1) dy(z,y) = inf{ max d(w;,w;_1) : Wo,...,w, € X,
1<j<n

wo = X, wn:y}.

More precisely, the infimum is taken over all finite sequences wy,...,w, of
elements of X with wyg =  and w,, = y, where n is any positive integer. In
particular, one can always take n = 1, wy = x, and w; = y, so that this set is
nonempty. One can also allow n = 0 when z = y, with wy = = = y, and the
maximum on the right side of (3.8.1) interpreted as being equal to 0. Observe
that

(3.8.2) 0 <du(z,y) < d(z,y)

for every x,y € X, using the n = 1 case just mentioned to get the second
inequality. Thus
(3.8.3) dy(z,2) =0

for every = € X, which follows from the n = 0 case just mentioned too. We also
have that

(3.8.4) dy(z,y) = du(y,x)

for every x,y € X, because finite sequences of elements of X going from z to y

correspond to finite sequences of elements of X going from y to x, by reversing
the order of the indices.
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If z,y,2 € X, then

(3.8.5) dy(z,z) < max(dy,(x,y), dy(y, 2)).
To see this, let m and n be positive integers, let vy, ..., v, be a finite sequence
of elements of X such that vg = x and v, = y, and let wy,...,w, be a finite

sequence of elements of X such that wy = y and w, = z. As before, we can
allow m = 0 when = =y, and n = 0 when y = 2. If we put

(386) Um+4j = Wj
when j = 1,...,n, then vg,...,v, is a finite sequence of elements of X going
from = to z. Hence
(3.8.7) dy(z,z) < max d(vj,vj_1).
1<j<n

In this situation,

(3.8.8) max d(vj,vj—1) = max ( ax d(vj,vj-1), 1r£la§Xnd(wl’ wl,l)),

by (3.8.6), which holds when j = 0 too. It follows that

(3.8.9) dy(z,z) < max (12’%};1 d(vj,vj_1), 121%}; d(wy, wl_l)).

It is easy to obtain (3.8.5) from (3.8.9), using (3.8.1). This shows that (3.8.1)
defines a semi-ultrametric on X.
Let p(x,y) be a semi-ultrametric on X, and suppose that

(3.8.10) p(x,y) < d(z,y)

for every z,y € X. Let z,y € X be given, and let wy, ..., w, be a finite sequence
of elements of X going from x to y. Note that

(3.8.11) p(z,y) < max. p(wj, wj—1),

because p(-,-) is a semi-ultrametric on X. This implies that

(3.8.12) pla,y) < max d(wj,wj-1),

because p(w;, wj—1) < d(wj,w;j_1) for each j = 1,...,n, by hypothesis. It
follows that
(3.8.13) p(z,y) < du(z,y),

by the definition (3.8.1) of d,, (z, y). In particular, if d(x, y) is a semi-ultrametric
on X, then we can apply this to p(z,y) = d(x,y). This implies that

(3.8.14) du(z,y) = d(z,y)

for every z,y € X in this case, using also (3.8.2).
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Of course, d,(z,y) is compatible with the topology determined on X by
d(z,y), as in Section 1.1, because of (3.8.2). Remember that open and closed
balls in X with respect to d, of positive radius are open and closed sets with
respect to the topology determined on X by d,,, as in Section 3.1. This means
that open and closed balls in X with respect to d,, of positive radius are open
and closed sets with respect to the topology determined on X by d, because d,,
is compatible with the topology determined on X by d. If X is connected with
respect to the topology determined by d, then X is the only nonempty subset of
itself that is both open and closed with respect to this topology. In particular,
every open or closed ball in X with respect to d, of positive radius is equal to
X in this case. This implies that

(3.8.15) dy(z,y) =0

for every x,y € X when X is connected with respect to the topology determined
by d. If X = Q and d is the restriction of the standard Euclidean metric on R
to Q, then it is easy to see that (3.8.15) holds, directly from the definitions.

3.9 Connection with uniform continuity
Let X, Y be sets, and let dx, dy be semimetrics on them, respectively. Also let

f be a uniformly continuous mapping from X into Y with respect to dx, dy.
Thus for each € > 0 there is a d(¢) > 0 such that

(3.9.1) dy (f(z), f(a)) <e
for every z, 2’ € X with
(3.9.2) dx(z,x") < 8(e).

Let dx ., dy., be the semi-ultrametrifications of dx, dy on X, Y, respectively,
as in (3.8.1). We would like to check that f is also uniformly continuous with
respect to dx 4, dy,u.

Let € > 0 be given, and suppose that z,z’ € X satisfy

(3.9.3) dx u(z,x") < 6(e).
This means that there is a finite sequence wy, . . . , w,, of elements of X such that
wo =T, w, = ', and
(3.9.4) max dx(w;, wj_1) < d(e),
1<j<n

by the definition of dx . (z,2). It follows that

(3.9.5) max dy (f(w;), f(wj—1)) <e,

1<j<n

because of the uniform continuity condition for f with respect to dx, dy. Note
that

(3.9.6) dyu(f(z), f(z') < max dy(f(w;), f(w;j-1)),

T 1<i<n
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because f(wg),..., f(wy) is a finite sequence of elements of Y going from f(x)
to f(«’). Thus

(3.9.7) dyu(f(2), f(z") <e

as desired.

Suppose now that f is a uniform homeomorphism from X onto Y with
respect to dx, dy, respectively. Thus f is a one-to-one uniformly continuous
mapping from X onto Y with respect to dx, dy, whose inverse mapping f~! is
uniformly continuous as a mapping from Y onto X with respect to dy, dx. The
remarks in the previous paragraphs imply that f is also uniformly continuous
as a mapping from X onto Y with respect to dx 4, dy,,, respectively, and that
f~! is uniformly continuous as a mapping from Y onto X with respect to dy,,
dx . This means that f is a uniform homeomorphism from X onto Y with
respect to dx ,, dy,., respectively.

Let UH4, (X) be the group of uniform homeomorphisms from X onto itself
with respect to dx, as in Section 2.3. Similarly, let UHg, ,(X) be the group of
uniform homeomorphisms from X onto itself with respect to dx ,. The remarks
in the previous paragraph imply that

(3.9.8) UHgy (X) C UHg, ,(X).

The collection ITHy, (X) of one-to-one mappings from X onto itself that are
isometries with respect to dx is a subgroup of UHy, (X), as in Section 2.7. Let
IHg, ,(X) be the collection of one-to-one mappings from X onto itself that are
isometries with respect to dx ., which is a subgroup of UHg, , (X). If a one-to-
one mapping f from X onto itself is an isometry with respect to dx, then it is
easy to see that f is also an isometry with respect to dx ., because of the way
that dx ., is defined. This means that

(3.9.9) [Hyy (X) C IHgy (X).

3.10 Some related conditions

Let o be a motonically increasing real-valued function on [0, 00) with «(0) = 0.
Thus a > 0 on [0, 00), by monotonicity. If d(z,y) is a semi-ultrametric on a set
X, then it is easy to see that

(3.10.1) da(z,y) = a(d(z,y))

is a semi-ultrametric on X too. This is a bit simpler than the analogous state-
ment for semimetrics in Section 2.8, and in particular subadditivity of « is not
needed here. If d(z,y) is an ultrametric on X, and a« > 0 on (0,00), then
(3.10.1) is an ultrametric on X.

If

(3.10.2) t1_1>ron+a(t) =0,
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then (3.10.1) is uniformly compatible with d(z,y) on X, as in Section 2.9. If
a > 0 on (0,00), then we have also seen that d(x,y) is uniformly compatible
with (3.10.1) on X.

Let X, Y be sets, let dx, dy be semimetrics on them, respectively, and let
f be a mapping from X into Y. Suppose that

(3.10.3) a(dy (f(z), f(2)) < dx(z,2')

for every x,2’ € X. Let dx u, dy,, be the semi-ultrametrifications of dx, dy on
X, Y, respectively, as in (3.8.1) again. Observe that

(3.10.4) a(dy.u(y,y') < aldy(y,y"))

for every y,y’ € Y, because of (3.8.2) applied to dy, and the monotonicity of a.
It follows that
(3.10.5) a(dy,u(f(z), f(2)) < dx(z,2")
for every z, 2’ € X, by taking y = f(z), ' = f(2’), and using (3.10.3).
Asin (3.10.1),
(3.10.6) a(dy,u(y,y'))

defines a semi-ultrametric on Y, because dy,, is a semi-ultrametric on Y. This
implies that
(3.10.7) a(dy,u(f(2), f(2")))

is a semi-ultrametric on X, as in (3.6.9). Remember that dx,, is the largest
semi-ultrametric on X that is less than or equal to dx, as in (3.8.13). Thus

(3.10.8) adyu(f(x), f(2'))) < dx.u(z,2")

for every z, 2’ € X, because (3.10.7) is a semi-ultrametric on X that is less than
or equal to dx (x, '), by (3.10.5).
Let r be a positive real number, so that

(3.10.9)  B; (r) =sup{dy (f(z), f(z") : 2,2" € X, dx(x,2") <r}

is defined as a nonnegative extended real number, as in (2.10.1). By construc-
tion, if z, 2’ € X satisfy

(3.10.10) dx(z,z") <r,

then

(3.10.11) dy (f(@), f(2)) < By (r).

Let x,z’ € X be given, and suppose now that

(3.10.12) dxu(z,2") <.

This means that there is a finite sequence wy, . .., w,, of elements of X such that
(3.10.13) max dX(wj,wj,l) <r.

1<j<n
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It follows that
(3.10.14) dy (f(wy), f(wj-1)) < B (r)

for each j =1,...,n, by definition of 5, (r). Of course,

(3.10.15) dy,u(f(2), f(z) < max dy (f(w;), f(wj-1)),

~ 1<j<n

by definition of dy,,, and using f(wy), ..., f(w,) as a finite sequence of elements
of Y going from f(z) to f(z’). This shows that

(3.10.16) dy,u(f(z), f(z") < B (r)

when z,2’ € X satisfy (3.10.12).
Alternatively, let 8 be a nonnegative extended real-valued function on [0, co),
and suppose that

(3.10.17) dy (f(z), f(')) < Bdx (z,2"))

for every z, 2’ € X. If r is a nonnegative real number, then we put

(3.10.18) B(r) =sup{B(t) : 0 <t <r},

which is defined as a nonnegative extended real number, as in (2.10.11). Note
that

(3.10.19) By (r) < B(r)

for every r > 0, and indeed (2.10.14) holds. If z, 2’ € X satisfy (3.10.10), then
(3.10.20) dyu(f(x), f@) < B(r),

by (3.10.16).

If 0 <t < oo, then put
(3.10.21) BH(t) =inf{B(r) : t <r < o0},

which is defined as a nonnegative extended real number. This may be considered
as the limit of B(r) as r — t+, because 3(r) increases monotonically, and with
suitable interpretations for extended real numbers. Let z,z’ € X be given, with

(3.10.22) dxu(z,2') <t

If t < r, then (3.10.12) holds, and hence (3.10.20) holds, as before. It follows
that

(3.10.23) dy(f(z), f(@) < BT (1),
by taking the infimum over r > ¢t. This implies that
(3.10.24) dyu(f(2), f(2')) < BT (dx(w,2"))

for every z, 2’ € X, by taking ¢ = dx(x,2’). If 5(0) =0 and

(3.10.25) Jim 5(t) =0,
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then 3(0) = 0 and
(3.10.26) lim B(r) =0,

as in (2.10.13). In this case,

(3.10.27) BH0) = lim gty =o.
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Chapter 4

Uniform continuity and
total boundedness

4.1 Uniform continuity on topological groups

Let G be a topological group, let Y be a set, and let dy be a semimetric on Y.
Also let f be a mapping from G into Y, and let A be a subset of G. Let us say
that f is left-invariant uniformly continuous along A if for each € > 0 there is
an open set U in G such that U contains the identity element e and

(4.1.1) dy (f(a), flax)) <e

for every a € A and z € U. Similarly, f is right-invariant uniformly continuous
along A if for each € > 0 there is an open set U in G such that e € U and

(4.1.2) dy (f(a), f(za)) <e

for every a € A and x € U. If A is the whole group G, then we simply say that
f is left or right-invariant uniformly continuous on G, as appropriate.
If f is left or right-invariant uniformly continuous along a subset A of G, then
f is continuous at every element of A, with respect to the topology determined
on Y by dy. If A has only finitely many elements, and f is continuous at each
element of A, then f is left and right-invariant uniformly continuous along A.
Put

(4.1.3) fl@)=f(=")

for each x € G. It is easy to see that f is left-invariant uniformly continuous
along a subset A of G if and only if f is right-invariant uniformly continuous
along A:l. Similarly, f is right-invariant uniformly continuous along A if and
only if f is left-invariant uniformly continuous along A~!.

Suppose for the moment that the topology on G is determined by a semi-
metric d. If d is invariant under left translations on G, then f is left-invariant
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uniformly continuous along a subset A of G if and only if f is uniformly con-
tinuous along A with respect to d, as in Section 2.2. Similarly, if d is invariant
under right translations on G, then f is right-invariant uniformly continuous
along A if and only if f is uniformly continuous along A with respect to d.

Let us say that a semimetric dg on G is left-invariant uniformly compatible
with the topology on G if the identity mapping on G is left-invariant uniformly
continuous as a mapping into G with respect to dy. Similarly, dy is right-
invariant uniformly compatible with the topology on G if the identity mapping
on G is right-invariant uniformly continuous as a mapping into G with respect
to do. If dy is left or right-invariant uniformly compatible with the topology
on G, then the identity mapping on G is continuous as a mapping into G with
respect to the topology determined by dj, as before. This means that dy is
compatible with the topology on G, as in Section 1.1.

In the other direction, suppose for the moment that dy is compatible with
the topology on G at e, as in Section 1.1 again. If dy is invariant under left
translations, then it follows that dj is left-invariant uniformly compatible with
the topology on G. This corresponds to (1.4.16). Similarly, if dy is invariant
under right translations, then dj is right-invariant uniformly compatible with
the topology on G, as in (1.4.17).

Let Z be another set with a semimetric dz, and let g be a mapping from
Y into Z that is uniformly continuous along a subset B of Y, as in Section
2.2. Also let f be a mapping from G into Y and let A be a subset of G, as
before, and suppose that f(A) C B. If f is left-invariant uniformly continuous
along A as a mapping into Y, then one can check that g o f is left-invariant
uniformly continuous along A as a mapping into Z. Similarly, if f is right-
invariant uniformly continuous along A as a mapping into Y, then g o f is
right-invariant uniformly continuous along A as a mapping into Z.

Suppose that A is a compact subset of GG, and that f is a mapping from G
into Y that is continuous at each point in A. Under these conditions, it is well
known that f is left-invariant and right-invariant uniformly continuous along A.
Let us briefly sketch the argument in the left-invariant case, which is analogous
to the argument for mappings between semimetric spaces, as in Section 2.2.
The right-invariant case is very similar, and the two cases are equivalent, by
the earlier remarks about (4.1.3). Let ¢ > 0 and a € A be given. Because f is
continuous at a, there is an open subset U(a) of G such that e € U(a) and

(4.1.4) dy (f(a), flax)) <e€/2

for every x € U(a). Using continuity of multiplication on G at e, we can get an
open subset Uj(a) of G such that e € Uj(a) and

(4.1.5) U(a) Uy (a) C Ula).

Note that a € aU;(a) and
(4.1.6) Ui(a) CU(a),

because e € Uy (a). In particular, A is covered by the open sets a Uy (a), a € A.
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If A is compact, then there are finitely many elements ay, ..., a, of A such that
(417) A - U Qa; Ul(aj).
j=1
Put
(4.1.8) U=(]Ui(a),
j=1

so that U is an open set that contains e.
Let a € A and = € U be given, and let us check that (4.1.1) holds. Using
(4.1.7), we get that a € a; Ui(a;) for some j, 1 < j <n. Thus

(4.1.9) a=aj;w
for some w € Uy(a;). Observe that
(4110) wr € Ul(aj) U g Ul(aj) Ul(aj) g U(a]‘),

using the definition (4.1.8) of U in the second step, and the analogue of (4.1.5)
for a; in the third step. It follows that

(4.1.11) dy (f(a;), f(aw)) = dy(f(a;), flajwz)) <e/2,

using (4.1.9) in the first step, and (4.1.10) and the analogue of (4.1.4) for a; in
the second step. Similarly,

(4.1.12) dy (f(a;), f(a)) = dy (f(a;), f(a; w)) < €/2,

because w € Uj(a;) C U(a;), by the analogue of (4.1.6) for a;. Combining
(4.1.11) and (4.1.12), we get that

(4.1.13)  dy(f(a), fax)) < dy(f(a),f(a;))+dy(f(a;), fax))
< €/24+¢€/2 =k,

as desired.

4.2 Total boundedness and semimetrics

Let X be a set, and let d(z,y) be a semimetric on X. A subset E of X is said
to be totally bounded with respect to d if for each € > 0, F is contained in the
union of finitely many open balls of radius € in X. This is interpreted as holding
when E = (), even if X = (). If E C X is totally bounded with respect to d, then
it is easy to see that E is bounded with respect to d, as in Section 2.1. If F is
compact with respect to the topology determined on X by d, then FE is totally
bounded with respect to d.
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If A is a nonempty subset of X, then the diameter of A with respect to d is
the nonnegative extended real number defined by

(4.2.1) diam A = diamgA = sup{d(z,y) : z,y € A}.

This is finite exactly when A is bounded with respect to d. It is convenient to
interpret the diameter of the empty set as being equal to 0. The diameter of
a ball of radius r with respect to d is less than or equal to 27, by the triangle
inequality. If d is a semi-ultrametric on X, then the diameter of a ball of radius
r with respect to d is less than or equal to r. If A is a bounded subset of X and
a € A, then

(4.2.2) A C By(a,diam A).

Of course, if A7 C Ay C X, then
(4.2.3) diam A; < diam As.

If A C X and A is the closure of A in X with respect to the topology determined
on X by d, then one can check that

(4.2.4) diam A = diam A.

It follows from some of the remarks in the preceding paragraph that £ C X
is totally bounded with respect to d if and only if for every r > 0, E is contained
in the union of finitely many subsets of X with diameter less than or equal to 7.
Let Xy be a subset of X, so that the restriction of d(z,y) to z,y € X defines
a semimetric on Xy. If F C Xy, then one can use the characterization of total
boundedness just mentioned to get that E is totally bounded as a subset of
X if and only if E is totally bounded as a subset of X, with respect to the
restriction of d(z,y) to z,y € Xj.

If E C X is totally bounded with respect to d, then every subset of F is
totally bounded with respect to d too. In this case, the closure E of E is totally
bounded as well. If E1, Fs C X are totally bounded, then their union F; U Fs
is totally bounded.

Let Y be another set with a semimetric dy, and let f be a uniformly con-
tinuous mapping from X into Y. If £ C X is totally bounded with respect to
d, then f(F) is totally bounded in Y with respect to dy.

Let dy,...,d, be finitely many semimetrics on X, and remember that
/ —_ .
(4.2.5) d(z,y) = max d (z,y)

defines a semimetric on X, as in Section 1.5. If A C X, then

(4.2.6) diamg A < max (diamg; A).
1<j<n

Suppose that £ C X is totally bounded with respect to d; for each j = 1,...,n,
and let us check that E is totally bounded with respect to d’.
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Let r > 0 be given, and for each j = 1,...,n, let £ be a collection of finitely
many subsets of X such that

(4.2.7) diamg, A; <r

for each A; € &;, and

(4.2.8) Ec | 4.
Aj€E;

Let € be the collection of subsets of X of the form
(4.2.9) A=(4;.
j=1

where A; € &; for each j =1,...,n. If A is of this form, then

(4.2.10) diamy A < max (diamg, A) < max (diamg; A;) <,
1<5< : 1<5< :

Ssn <Jj<n

using (4.2.7) in the third step. We also have that

n

(4.2.11) Egjé(AngAj): U U (Na)=Unx

Are€r An€€, j=1 A€

using (4.2.8) in the first step. Clearly £ has only finitely many elements, because
&; has only finitely many elements for each j, as desired.
4.3 Total boundedness in topological groups

Let G be a topological group, and let E be a subset of G. Let us say that F is
left-invariant totally bounded in G if for every open subset U of G that contains

the identity element e there are finitely many elements aq, ..., a, of G such that
n
(4.3.1) Ec | J( ).
j=1

Similarly, E is right-invariant totally bounded in G if for every open subset U
of G with e € U there are finitely many elements b4, ...,b, of G such that

(4.3.2) EC 0 Ub;).

It is easy to see that F is left-invariant totally bounded in G if and only if B! is
right-invariant totally bounded in G. Equivalently, F is right-invariant totally
bounded in G if and only if E~! is left-invariant totally bounded in G.

If F is a compact subset of G, then E is both left and right-invariant totally
bounded in G. More precisely, if U is an open subset of G with e € U, then F
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is covered by the families of left and right translates of U. This implies that F
can be covered by finitely many left and right translates of U, by compactness.

If E is either left or right-invariant totally bounded, then every subset of E
has the same property. If F;, Fy are subsets of G that are both left-invariant
totally bounded in G, or both right-invariant totally bounded, then their union
FE4 U E5 has the same property.

If E is either left or right-invariant totally bounded, then the closure E of E
in G has the same property. To see this, let an open subset U of G with e € U
be given. Remember that there is an open subset V' of G such that e € V and
V C U, as in Section 1.3. By hypothesis, E can be covered by finitely many left
or right translates of V, as appropriate. This implies that E is covered by the
corresponding translates of V', and hence by the corresponding translates of U,
as desired.

Suppose for the moment that the topology on G is determined by a semi-
metric d. If d is invariant under left translations, then E is left-invariant totally
bounded if and only if F is totally bounded with respect to d. Similarly, if d is
invariant under right translations, then FE is right-invariant totally bounded if
and only if F is totally bounded with respect to d.

Let Y be a set with a semimetric dy, and let f be a mapping from G
into Y. If F is left-invariant totally bounded, and f is left-invariant uniformly
continuous, as in Section 4.1, then f(F) it totally bounded in Y with respect to
dy. Similarly, if F is right-invariant totally bounded, and f is right-invariant
uniformly continuous, then f(E) is totally bounded in Y.

Let dy be a semimetric on G. If E is left-invariant totally bounded, and
dy is left-invariant uniformly compatible with the topology on G, as in Section
4.1, then E is totally bounded with respect to dy. This follows from the corre-
sponding statement about left-invariant uniformly continuous mappings in the
preceding paragraph. Similarly, if E is right-invariant totally bounded, and dj is
right-invariant uniformly compatible with the topology on G, then E is totally
bounded with respect to dp.

Let M be a nonempty collection of semimetrics on GG, and suppose that the
topology on G is determined by M, as in Section 1.5. Suppose for the moment
that the elements of M are invariant under left translations. This implies that
each element of M is left-invariant uniformly compatible with the topology on
G, as in Section 4.1. if F is left-invariant totally bounded, then it follows that
FE is totally bounded with respect to every element of M. Conversely, suppose
that E is totally bounded with respect to every element of M. This implies
that E is totally bounded with respect to the maximum of any finite number
of elements of M, as in the previous section. Using this, one can check that F
is right-invariant totally bounded. Similarly, if the elements of M are invariant
under right translations, then FE is right-invariant totally bounded if and only
if E is totally bounded with respect to each element of M.
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4.4 U-Small sets

Let G be a topological group, and let U be an open subset of G that contains
the identity element e. Let us say that a subset A of G is left-invariant U-small
if

(4.4.1) ACalU

for every a € A. Equivalently, this means that
(4.4.2) atACU

for every a € A, which is the same as saying that
(4.4.3) ATtACU.
Similarly, A is right-invariant U-small if

(4.4.4) ACUa

for every a € A. This means that

(4.4.5) Aa ' CU

for every a € A, so that
(4.4.6) AATLCU

Observe that A is left-invariant U-small if and only if A~! is right-invariant
U-small. Thus A is right-invariant U-small if and only if A=! is left-invariant
U-small. Of course,

(4.4.7) (AB'=p7taA™!

for all subsets A, B of G, which implies that A~' A and A A~! are symmetric
about e. It follows that A is left or right-invariant U-small if and only if A is
left or right-invariant U ~!-small, respectively.

If A is left-invariant U-small, then every left translate of A is left-invariant
U-small. Similarly, if A is right-invariant U-small, then every right translate of
A is right-invariant U-small. If A is left or right-invariant U-small, then every
subset of A has the same property.

Let V be an open subset of G such that e € V' and

(4.4.8) ViV Cu,

so that V is left-invariant U-small. If E is a left-invariant totally bounded
subset of G, then F is contained in the union of finitely many left translates
of V. Each of these left translates of V is left-invariant U-small, so that E is
contained in the union of finitely many left-invariant U-small sets. In the other
direction, if F is contained in the union of finitely many left-invariant U-small
sets, then F is contained in the union of finitely many left translates of U. This
uses the fact that every left-invariant U-small set is contained in a left translate
of U. It follows that F is left-invariant totally bounded if and only if for every
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open subset U of G with e € U, F is contained in the union of finitely many
left-invariant U-small sets.

Similarly, F is right-invariant totally bounded if and only if for every open
subset U of G with e € U, E is contained in the union of finitely many right-
invariant U-small sets. This uses the fact that for each such U there is an open
subset W of G such that e € W and

(4.4.9) WWwtCUu,

so that W is right-invariant U-small. If F is right-invariant totally bounded,
then E is contained in the union of finitely many right translates of W, each of
which is right-invariant U-small.

Let H be a subgroup of G, equipped with the topology induced by the one
on G. If U is an open subset of G that contains e, then U N H is a relatively
open set that contains e, and every relatively open subset of H that contains e
is of this form. If A is a subset of H, then A is left-invariant U-small in G if
and only if A is left-invariant (U N H)-small in H. Similarly, A is right-invariant
U-small in G if and only if A is right-invariant (U N H)-small in H. It follows
that a subset E of H is left or right-invariant totally bounded in H if and only
if E is left or right-invariant totally bounded in G, respectively.

Let dy be a semimetric on G that is compatible with the topology on G.
Also let r be a positive real number, so that By, (e,r) is an open subset of G
that contains e. If dy is invariant under left translations, then a subset A of G
is left-invariant By, (e, r) small if and only if

(4.4.10) do(z,y) <r

for every z,y € A. Similarly, if dy is invariant under right translations, then A
is right-invariant By, (e, r)-small if and only if (4.4.10) holds for every z,y € A.

Let Uy, ..., U, be finitely many open subsets of GG, each containing e. Thus
ﬂ?:l Uj is an open set that contains e too. If a subset A of G is left-invariant Uj-

small for each j = 1,...,n, then A is left-invariant (ﬂ?:l Uj)—small. Similarly,

if A is right-invariant Uj-small for each j = 1,...,n, then A is right-invariant
( Nj=1 Uj)—small.

4.5 Uniform continuity and open subgroups

Let G be a topological group, let Y be a set with a semimetric dy, and let f
be a mapping from G into Y. Suppose for the moment that f is left-invariant
uniformly continuous, as in Section 4.1, and that dy is a semi-ultrametric on
Y. Let € > 0 be given, and let U be an open subset of G such that e € U and

(4.5.1) dy (f(a), flaz)) <e

for every a € G and x € U. We may as well ask that U be symmetric about e,
since otherwise we can replace U with UNU™!. Let a € G and z1,...,2, € U
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be given, and observe that

(4.5.2) dy(flazy---zj_1), flaxy--xj_125)) <€
for each j = 1,...,n, by (4.5.1). This implies that
(4.5.3) dy (f(a), flazy---2,)) <

by the ultrametric version of the triangle inequality. Thus, for each positive
integer n, (4.5.1) holds for every a € G and z € U". Here U" =U --- U, with n
U’s on the right side, as in Section 3.3. Put

o0
(4.5.4) v =Jun
n=1

which is an open subgroup of G, as in Section 3.3 again. It follows that (4.5.1)
holds for every a € G and z € Uy.

Let By be the collection of all open subgroups of G. If A is an open subgroup
of G and z is an element of G, then z Az~ is an open subgroup of G as well.
This implies that By is nice, in the sense of Section 3.5. Note that the intersection
of finitely many elements of By is also an element of By. Let 7y be the topology
7.(Bo) = Tr(Bo) on G associated to By as in Section 3.5. Remember that the
elements of By are open sets with respect to 79, and that By forms a local sub-
base for 7y at e, by construction. In this situation, By is a local base for 7y at
e, because By is closed under finite intersections. Of course, the given topology
7 on B is automatically at least as strong as 7y, because the elements of By are
open sets with respect to 7. As before, G is a topological group with respect to
To, because By is nice.

Let f be a mapping from G into Y again, and suppose that dy is a semi-
ultrametric on Y. If f is left-invariant uniformly continuous with respect to 7,
then f is left-invariant uniformly continuous with respect to 7y, by the earlier
argument. Similarly, if f is right-invariant uniformly continuous with respect
to 7, then f is right-invariant uniformly continuous with respect to 7p. This
can be shown in essentially the same way, or by reducing to the previous case
applied to the mapping (4.1.3).

Now let dy be any semimetric on Y, and let dy,, be the corresponding semi-
ultrametrification of dy on Y, as in (3.8.1). Thus dy,, < dy onY, as in (3.8.2).
If a mapping f from G into Y is left or right-invariant uniformly continuous
with respect to 7 on G and dy on Y, then f is left or right-invariant uniformly
continuous with respect to 7 on G and dy,, on Y, as appropriate. This implies
that f is left or right-invariant uniformly continuous with respect to 7 on G
and dy, on Y, as appropriate, by the remarks in the preceding paragraph.

4.6 Invariantization of semimetrics

Let G be a group, and let d be a semimetric on G. Put

(4.6.1) dr(z,y) = supd(ax,ay)
acG
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for each x,y € G, where the supremum on the right is defined as a nonnegative
extended real number. Similarly, put

(4.6.2) dr(z,y) = supd(za,ya)

acG
for every x,y € G, where the supremum on the right is also defined as a nonneg-
ative extended real number. It is easy to see that (4.6.1) and (4.6.2) satisfy the
requirements of a semimetric on G, except that they may take values in [0, c0].
Of course,

(4.6.3) d(z,y) < dp(z,y), dr(z,y)
for every xz,y € G. If
(4.6.4) dlz,y) < A

for some A > 0 and every x,y € G, then
(4.6.5) dr(z,y), dr(z,y) < A

for every x,y € G. By construction, (4.6.1) is invariant under left translations
on G, and (4.6.2) is invariant under right translations on G. If d is a semi-
ultrametric on G, then (4.6.1) and (4.6.2) satisfy the ultrametric version of the
triangle inequality.

Suppose that G is a topological group with respect to a topology 7, and that
d is left-invariant uniformly compatible with 7, as in Section 4.1. This means
that for each € > 0 there is an open subset U(e) of G such that e € U(e) and

(4.6.6) d(z,y) <e

for every x,y € G such that y € xU(e). If x,y € G satisty y € 2 U(e), then
ay € axU(e) for every a € G, so that

(4.6.7) dlaz,ay) <e.

It follows that
(4.6.8) dr(z,y) <e

for every z,y € G such that y € 2 U(e). If (4.6.1) is finite for every z,y € G,
so that (4.6.1) defines a semimetric on G, then this semimetric is left-invariant
uniformly compatible with 7 on G. Conversely, if (4.6.1) is left-invariant uni-
formly compatible with 7 on G, then d is left-invariant uniformly compatible
with 7 on G, because of (4.6.3). There are analogous statements for (4.6.2) and
right-invariant uniform compatibility.

Suppose for the moment that d is a semi-ultrametric on G that is invariant
under left or right translations. If d is compatible with 7 on G, then open balls
in G centered at e with respect to d are open subgroups with respect to 7, as
in Section 3.3. This implies that d is compatible with the topology 7y defined
on (G as in the previous section, using open subgroups of G with respect to 7.

Now let d be any semi-ultrametric on G. If d is left-invariant uniformly
compatible with 7, and (4.6.1) is finite, then (4.6.1) is a semi-ultrametric on
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G that is invariant under left translations and compatible with 7. This im-
plies that (4.6.1) is compatible with 79 on G, as in the preceding paragraph.
More precisely, (4.6.1) is left-invariant uniformly compatible with 79, because
of invariance under left translations. It follows that d is left-invariant uniformly
compatible with 79, because of (4.6.3). Similarly, if d is right-invariant uniformly
compatible with 7, and (4.6.2) is finite, then (4.6.2) is a semi-ultrametric on G
that is invariant under right translations and compatible with 7. This implies
that (4.6.2) is compatible with 79 on G, and hence that d is right-invariant
uniformly compatible with 7y on G, as before.

4.7 Invariance under conjugations
Let G be a group. If U is a subset of G, then put
(4.7.1) CU)={a€G:aUa*=U}={acG:aU=Ua}.

It is easy to see that C'(U) is a subgroup of G. If C(U) = G, then U is said to
be invariant under conjugations on G. Note that

(4.7.2) C(UL) N C(Us) C C(U, N Us)

for all subsets Uy, Uy of G, and in particular that U; N Uy is invariant under
conjugations when U; and Us have this property.

Let G be a topological group, and let U be an open subset of G that contains
the identity element e and is invariant under conjugations. If A is any subset
of G, then A is left-invariant U-small, as in Section 4.4, if and only if A is
right-invariant U-small. Suppose that there is a local base for the topology of G
at e consisting of open sets that are invariant under conjugations. In this case,
the left and right-invariant uniform continuity conditions discussed in Section
4.1 are equivalent. Similarly, the left and right total boundedness conditions
discussed in Section 4.3 are equivalent in this situation.

Let d be a semimetric on G, and put

(4.73) L(d) = {a€eG:d(ax,ay)=d(z,y) for every z,y € G},
(474) R(d) = {a€eG:d(ra,ya)=d(z,y) for every z,y € G}.

One can check that these are subgroups of G. Similarly,
(4.75) C(d)={a € G :dlaxa™t, aya™) =d(z,y) for every z,y € G}

is a subgroup of G. If C(d) = G, then d is said to be invariant under conjuga-
tions on G. Observe that

(4.7.6) L(d)NR(d) C C(d),
(4.7.7) Ld)NnCd < R),
(4.7.8) R(d)NC(d) C L(d)
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Thus

(4.7.9) L(d) = R(d) when C(d) = G,
(4.7.10) L(d) = C(d) when R(d) = G,
(4.7.11) R(d) = C(d) when L(d) = G.

In particular, if d is invariant under both left and right translations, then d is
invariant under conjugations. If d is invariant under conjugations, then open
and closed balls centered at e with respect to d are invariant under conjugations.

Let M be a nonempty collection of semimetrics on G, which determines a
topology on G as in Section 1.5. By construction, the open balls centered at e
with respect to elements of M form a local sub-base for this topology at e. Of
course, one can get a local base for the topology at e by taking finite intersections
of these balls. If the elements of M are invariant under conjugations, then
these balls centered at e are invariant under conjugations, as in the preceding
paragraph. In this case, the finite intersections of these balls are invariant under
conjugations too.

Let G be a topological group again, and suppose that there is a local base
for the topology of G at e consisting of open sets that are invariant under
conjugations. Under these conditions, it is well known that there is a collection
M of semimetrics on G that determines the given topology on G, and for which
each element of M is invariant under both left and right translations. If there
is also a local base for the topology of G at e with only finitely or countably
many elements, then the topology on G is determined by a single semimetric
that is invariant under both left and right translations.

4.8 Equicontinuity of conjugations
Let G be a topological group, and put
(4.8.1) Coly) =azya™!

for every x,y € G, as before. This defines an inner automorphism on G for each
x € GG, which is also a homeomorphism. Let E be a subset of G, and put

(4.8.2) C(E)={C, :x € E}.

Let us say that C(F) is equicontinuous at the identity element e if for every
open subset W of G with e € W there is an open subset V of G such that e € V'
and

(4.8.3) Co(V)=aVa'lCW

for every x € E. If E has only finitely many elements, then this condition can
be obtained from the continuity of C, for each z € E. If W is invariant under
conjugations, then V' = W satisfies (4.8.3) for every z € G. If there is a local
base for the topology of G at e consisting of open sets that are invariant under
conjugations, then it follows that C(G) is equicontinuous at e.
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Conversely, suppose that C(G) is equicontinuous at e, and let us show that
there is a local base for the topology of G at e consisting of open sets that are
invariant under conjugations. Let an open subset W of G with e € W be given,
so that there is an open subset V' of G such that e € V and (4.8.3) holds for
every x € G. Equivalently, (4.8.3) says that

(4.8.4) VCa'Wa

for every € G. Of course,

(4.8.5) ﬂ (z=' W x)

z€G

is automatically invariant under conjugations. This set contains e, because
e € W, and is contained in W, because we can take x = e in the intersection.
We also have that V is contained in (4.8.5), by (4.8.4). Let Wy be the interior
of (4.8.5), so that e € Wy and Wy C W. Tt is easy to see that Wy is invariant
under conjugations, as desired.

Let E be a right-invariant totally bounded subset of G, and let us check that
C(E) is equicontinuous at e. Let an open subset W of G with e € W be given,
and let Uy, Uz, Us be open subsets of G that contain e and satisfy

(4.8.6) U, Uy Us CW.
In particular, this means that
(4.8.7) yUsy ' CW

for every y € Uy NU;5 !, Because E is right-invariant totally bounded, there are
finitely many elements b4, ..., b, of G such that

(4.8.8) U (U NU; 1) by),

as in Section 4.3. Put

(4.8.9)

-

which is an open set that contains e. Let x € E be given, so that = can be
expressed as y b; for some y € U; N U3_1 and 1 < j < n. Observe that

(4.8.10) aVat=yb Vb ly T Cylpy t CW,

as desired.

4.9 Local compactness and total boundedness

A topological space X is said to be locally compact if for every = € X there is
an open set U C X and a compact set K C X such that x € U and U C K. If
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X is Hausdorff, then it is well known that compact subsets of X are closed sets.
In this case, if U C K C X and K is compact, then it follows that the closure
U of U in X is contained in K. This implies that U is compact, because closed
sets contained in compact sets are compact as well. Thus local compactness of
a Hausdorff topological space X is often formulated equivalently as saying that
for every 2 € X there is an open set U C X such that 2 € U and U is compact.
Now let X be a set with a semimetric d(-,-). Let us say that X is locally to-
tally bounded if for every x € X there is an r > 0 such that the open ball B(x, r)
in X centered at z with radius r with respect to d(-,-) is totally bounded with
respect to d(-,-). If X is locally compact with respect to the topology deter-
mined by d(-, -), then X is locally totally bounded with respect to d(-, -), because
compact subsets of X are totally bounded, and subsets of totally bounded sets
are totally bounded.
Let G be a topological group. In order to check that G is locally compact,
it suffices to find an open set U C G and a compact set K C G such that e € U
and U C K, by continuity of translations. If {e} is a closed set in G, so that G
is Hausdorff as a topological space, then this is the same as saying that there is
an open set U C G such that e € U and the closure U of U in G is compact.
Let us say that G is locally totally bounded as a topological group if there is
an open set U C G such that e € U and U is either left or right-invariant totally
bounded in G, as a topological group. Of course, if U is left or right-invariant
totally bounded in G, then U~! is right or left-invariant totally bounded in G,
respectively. This implies that U N U~! is both left and right-invariant totally
bounded in G. Thus G is locally totally bounded as a topological group if and
only if there is an open set U C G such that e € U and U is both left and
right totally bounded in G. In this situation, we get that for each z € G, 2z U is
left-invariant totally bounded in G, U x is right-invariant totally bounded in G,
and hence (zU) N (U z) is both left and right-invariant totally bounded in G.
If G is locally compact, then G is locally totally bounded as a topological
group, because compact subsets of G are left and right-invariant totally bounded
in G. If the topology on G is determined by a semimetric d(-,-) that is invariant
under left or right translations, then G is locally totally bounded as a topological
group if and only if G is locally totally boounded with respect to d(-,-). More
precisely, this holds if and only if there is a positive real number r such that
the open ball in G centered at e with radius r with respect to d(-,-) is totally
bounded with respect to d(-,-). This condition automatically implies that every
open ball in G with radius r with respect to d(-,-) is totally bounded with
respect to d(-,-), using invariance of d(-,-) under left or right translations, as
appropriate.

4.10 Cauchy sequences and topological groups
Let X be a set, and let dx be a semimetric on X. If {z;}52, is a Cauchy

sequence in X with respect to dx, then the set of x;’s, j € Z,, is totally
bounded with respect to dx. More precisely, for each » > 0, all but finitely
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many terms in the sequence are contained in a ball of radius r.

Let Y be another set with a semimetric dy, and let f be a uniformly con-
tinuous mapping from X into Y. If a sequence {x;}52, of elements of X is a
Cauchy sequence with respect to dx, then it is easy to see that {f(z;)}72, is a
Cauchy sequence in Y with respect to dy.

Let G be a topological group, and let {z;}32; be a sequence of elements of
G. Let us say that {z;}32, satisfies the left-invariant Cauchy condition if for
every open set U C G with e € U there is a positive integer L such that

(4.10.1) z;'meU

for every j,1 > L. Equivalently, (4.10.1) means that
(4.10.2) z€x; U

for every j,1 > L. Similarly, {x; };";1 satisfies the right-invariant Cauchy condi-
tion if for every open set U C G with e € U there is an L € Z such that

-1
(4.10.3) rx; €U
for every j,I > L. This is the same as saying that
(4.10.4) z; € Uz

for every j,1 > L, as before. If G is commutative, then the left and right-invarant
Cauchy conditions are the same. One can check that {z;}32, satisfies the left-

invariant Cauchy condition if and only if {x;l 72, satisfies the right-invariant
Cauchy condition.

Suppose that {z;}32, satisfies the left-invariant Cauchy condition. This
implies that the set of x;’s, j € Z, is left-invariant totally bounded in G. If d
is a left-invariant semimetric on G that is compatible with the topology on G at
e, then {z;}52, is a Cauchy sequence with respect to d. If M is a collection of
left-invariant semimetrics on G that determines the same topology on G, then
{z;}32, satisfies the left-invariant Cauchy condition in G as a topological group
if and only if {z;}32, is a Cauchy sequence with respect to M. Let Y be a set
with a semimetric dy, and let f be a mapping from G into Y that is left-invariant
uniformly continuous. If {z; };”;1 satisfies the left-invariant Cauchy condition,
then {f(x;)}32, is a Cauchy sequence in Y with respect to dy. Similarly, let H
be another topological group, and let ¢ be a continuous homomorphism from
G into H. If {;}32, satisfies the left-invariant Cauchy condition in G, then
{p(x;)}52, satisfies the left-invariant Cauchy condition in H. Of course, there

j
are analogous statements for the right-invariant Cauchy condition.



Chapter 5

Equicontinuity and
isometrization

5.1 Pointwise equicontinuity

Let X be a nonempty topological space, and let ¥ be a set with a semimetric
dy. Also let £ be a collection of mappings from X into Y, and let  be an
element of X. As usual, £ is said to be equicontinuous at x if for every ¢ > 0
there is an open set U C X such that x € U and

(5.1.1) dy (f(z), f(w)) <e

for every f € £ and w € U. This condition implies that each f € £ is continuous
at z, with respect to the topology determined on Y by dy . If £ has only finitely
many elements, each of which is continuous at z, then £ is equicontinuous at z.

Suppose for the moment that each element of £ is bounded on X with respect
to dy on Y, as in Section 2.1. Let 6(f, g) be the supremum semimetric on the
space B(X,Y) of bounded mappings from X into Y corresponding to dy, as
before. Suppose that £ is totally bounded as a subset of B(X,Y") with respect
to 0, as in Section 4.2. This means that for each r > 0, £ is contained in the
union of finitely many sets with diameter less than or equal to r with respect
to 6, as before. If each element of £ is continuous at z, then it follows that £ is
equicontinuous at x, by a standard argument.

Now let £ be any collection of mappings from X into Y that is equicontinuous
at every x € X. Let € > 0 be given, so that for each x € X there is an
open set U(x,¢e) C X such that € U(z,¢€) and (5.1.1) holds for every f € £
and w € U(x,€). Suppose that X is compact, so that there are finitely many
elements z1,...,z, of X such that

(5.1.2) xc |JU(je).
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If f,g € £, then

(5.1.3) dy (F(w) g(w)) < 2+ max dy(f(z;).g(a;)
for every w € X. More precisely, if w € X, then w € U(zj,€) for some j,
1 <j <n, by (5.1.2). In this case, we have that

dy (f(w),g(w)) < dy(f(w), f(z;)) + dy (f(x;), 9(x;)) + dy (9(x;), g(w))
(5.1.4) < 2e+dy(f(zy),9(z;)),

using (5.1.1) for f and ¢ in the second step, with # = z;. This implies (5.1.3),
as desired. Note that the elements of £ are bounded as mappings from X to Y
in this situation. Using (5.1.4), we get that

(5.1.5) 0(f,9) <2e+ Jax dy (f(x;), 9(x5)),

by taking the supremum of the left side of (5.1.3) over w € X.
Put

(5.1.6) Ex)={f(z): fe&}

for each x € X, which is a subset of Y. Suppose now that £(z) is totally
bounded with respect to dy on Y for each € X, as in Section 4.2 again. In
particular, this holds automatically when Y is totally bounded with respect to
dy . This implies that for each j = 1,...,n, £(z;) can be expressed as the union
of finitely many subsets with diameter less than or equal to e. Equivalently, this
means that for each j = 1,...,n, & can be expressed as the union of finitely
many subsets, where

(5.1.7) dy (f(z;), 9(z;)) < €

for each f, g in the same subset. Using this, one can express £ as the union of
finitely many subsets, where

(5.1.8) max dy (f(2;),9(z;)) < €

for each f, g in the same subset. Combining this with (5.1.5), we get that
(5.1.9) 0(f,9) <3¢

when f, g are in the same one of these finitely many subsets of £. This means
that & is totally bounded as a subset of B(X,Y") with respect to 6, as in the
usual Arzela—Ascoli type of arguments.

5.2 Uniform equicontinuity

Let X, Y be nonempty sets with semimetrics dx, dy, respectively, let A be a
subset of X, and let £ be a collection of mappings from X into Y. Let us say
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that £ is uniformly equicontinuous along A if for every € > 0 there isa § > 0
such that

(5.2.1) dy (f(@), f(w)) < e

for every f € £, © € A, and w € X with dx(z,w) < §. This implies that
each element of £ is uniformly continuous along A as a mapping from X into
Y, as in Section 2.2. If £ has only finitely many elements, each of which is
uniformly continuous as a mapping from X into Y along A, then £ is uniformly
equicontinuous along A.

If A = X, then we may simply say that £ is uniformly equicontinuous on X.
If £ is uniformly equicontinuous along a subset A of X, then the restrictions of
the elements of £ to A are uniformly equicontinuous on A, with respect to the
restriction of dx to A.

If A consists of a single point, then uniform equicontinuity along A is the
same as equicontinuity at that point, as in the previous section. If £ is uniformly
equicontinuous along any subset A of X, then £ is equicontinuous at each point
in A. If A has only finitely many elements, and £ is equicontinuous at each
point in A, then £ is uniformly equicontinuous along A.

Suppose for the moment that each element of £ is bounded on X with
respect to dy. Let 0(f,g) be the supremum semimetric on the space B(X,Y)
of bounded mappings from X into Y corresponding to dy again, as in Section
2.1. Suppose that £ is totally bounded with respect to 6, as in Section 4.2. If
each element of £ is uniformly continuous along a subset A of X as a mapping
from X into Y, then one can check that £ is uniformly equicontinuous along
A. This is analogous to the argument for pointwise equicontinuity mentioned
in the previous section.

Let £ be any uniformly equicontinuous collection of mappings from X into
Y. Let € > 0 be given, so that there is a ¢ > 0 such that (5.2.1) holds for every
fe&and x,w € X with dx (x,w) < §. Suppose now that X is totally bounded

with respect to dx, so that there are finitely many elements z1,...,z, of X
such that .
(5.2.2) X ¢ |J Bx(x;,0).

j=1

Here Bx (x,r) denotes the open ball in X centered at a point € X with radius
r > 0 with respect to dx. Under these conditions, we have that

(5.2.3) dy (f(w),g(w)) < 2e+ max dy(f(2;),9(z;))

for every f,g € £ and w € X. Indeed, if w € X, then dx(z;,w) < ¢ for some
j=1,...,n, by (5.2.2). This implies that (5.1.4) holds in this situation, now
using (5.2.1) for f and g in the second step, with = z;. It follows that (5.2.3)
holds for every f,g € £ and w € X, as desired. Note that the elements of £
are bounded as mappings from X to Y in this case. As before, we can take the
supremum of the left side of (5.2.3) over w € X to get that

(5.2.4) 0(f,9) < 2¢+ max dy(f(z;),9(z;))
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for every f,g € E.

Let £(x) C Y be as in (5.1.6) for each z € X again. Suppose that £(z) is
totally bounded in Y with respect to dy for every z € X, as in Section 4.2,
in addition to the hypotheses in the preceding paragraph. In particular, this
means that £(x;) is totally bounded in Y for each j = 1,...,n. Using this
and (5.2.4), we get that £ can be expressed as a union of finitely many subsets,
each of which has diameter less than or equal to 3 ¢ with respect to 6, as in the
previous section. This implies that £ is totally bounded as a subset of B(X,Y)
with respect to 6, as before.

Now let £ be any collection of mappings from X into Y, and suppose that £
is equicontinuous at each point in a subset A of X, with respect to the topology
determined on X by dx. This means that for each ¢ > 0 and z € X there is
a ¢ > 0 such that (5.2.1) holds for every f € £ and w € X with dx(z,w) < 0.
If A is compact with respect to the topology determined by dx, then it follows
that & is uniformly equicontinuous along A, by a standard argument. This is
very similar to the argument used to show that if a mapping f from X into Y
is continuous at each point in A, then f is uniformly continuous along A, as in
Section 2.2.

5.3 Some reformulations
Let X, Y be sets with semimetrics dx, dy, respectively, and let £ be a col-

lection of mappings from X into Y. Also let @ be a monotonically increasing
nonnegative real-valued function on [0, c0) such that «(0) = 0, and suppose that

(5.3.1) a(dy (f(z), f(2"))) < dx(2,2")
for every z, 2’ € X. If

(5.3.2) dy (f(2), f(2)) = €

for some € > 0, f € £, and z, 2’ € X, then we have that
(5.3.3) dx(z,2') > ale),

by (5.3.1). Equivalently, if

(5.3.4) dx(z,2') < ale)

for some € > 0 and z,2’ € X, then

(5.3.5) dy (f(z), f(z")) <€

for every f € £. If @ > 0 on (0, 00), then it follows that £ is uniformly equicon-
tinuous on X.
Put

(5.3.6) ag(e) = inf{dx (z,2') : z,2’' € X, dy (f(z), f(z')) > € for some f € £}

for each € > 0. This is interpreted as being +o0co when there are no z,2’ € X
such that (5.3.2) holds for some f € £. Let us put ag(0) = 0, which is the same
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as (5.3.6) when X and £ are nonempty. Observe that « increases monotonically
on [0,00), because the set whose infimum is taken on the right side of (5.3.6)
gets smaller as € increases. By construction,

(5:3.7) ag(dy (f(2), f(2))) < dx(z,2')

forevery z, 2’ € X and f € £. Tt is easy to see that £ is uniformly equicontinuous
on X if and only if
(5.3.8) ag(e) >0

for every € > 0. Of course, one can replace ag(e) with its minimum with any
fixed positive real number to get a function that is finite on [0, 00).
Suppose that X, Y, and £ are nonempty, and put

(5.3.9) Bz (r) =sup{dy (f(z), f(z")): f €& x,2' € X, dx(z,2") <r}
for every positive real number r, and
(5.3.10) Be(r) = sup{dy (f(x), f(z"): f €&, z,2' € X, dx(x,2") <r}

for every nonnegative real number r. These suprema are defined as nonnega-
tive extended real numbers, and the sets whose suprema are being taken are
nonempty, because one can take x = x’. These sets get larger as r increases, so
that (5.3.9) and (5.3.10) increase monotonically in r. If 0 < r <t < oo, then

(5.3.11) Be(r) < Bg (t) < Be(t).

Note that 8¢(0) = 0 automatically when dx is a metric on X. If £ is uniformly
equicontinuous on X, then

(5.3.12) Be(r) < oo when r > 0 is sufficiently small
and
r—0+

In the other direction, if

(5.3.14) B¢ (r) < 0o when 7 > 0 is sufficiently small
and
(5.3.15) Tl_l)r(r)1+ Bg (r) =0,

then £ is uniformly equicontinuous on X. Of course, the equivalence of (5.3.12),
(5.3.13) and (5.3.14), (5.3.15) follows directly from (5.3.11).

Let 8 be a nonnegative extended real-valued function on [0, o), and suppose
that

(5.3.16) dy (f(z), f(2)) < Bdx(z,2"))
for every f € £ and z, 2’ € X. If

(5.3.17) B(r) < oo when r > 0 is sufficiently small
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and

(5.3.18) B(0) = Tlir(rﬁﬁ(r) =0,

then £ is uniformly equicontinuous on X. Put

(5.3.19) B(r) =sup{B(t): 0 <t <r},

for each nonnegative real number 7, where the supremum is defined as a non-
negative extended real number. Note that § increases monotonically on [0, co),
by construction, and that

(5.3.20) Be(r) < B(r)
for every r > 0, because of (5.3.16). If (5.3.17) and (5.3.18) hold, then

(5.3.21) B(r) < oo when r > 0 is sufficiently small
and _ N
(5.3.22) B(0) = 7'1_1>r10r1_~_ﬁ(r) =0.

This implies that (5.3.12) and (5.3.13) hold, because of (5.3.20). Of course,
(5.3.16) holds automatically when 8 = fS¢, in which case (5.3.17) and (5.3.18)
correspond to (5.3.12) and (5.3.13).

5.4 Connection with semi-ultrametrification

Let X, Y be sets with semimetrics dx, dy, respectively, and let £ be a collection
of mappings from X into Y again. Suppose that £ is equicontinuous with respect
to dx, dy, so that for each € > 0 there is a 6(€, €) > 0 such that

(5.4.1) dy (f(z), f(2)) <e

for every f € £ and z,2’ € X with dx(x,2’) < §(€,€). Let dx ., dy,, be the
semi-ultrametrifications of dx, dy on X, Y, respectively, as in Section 3.8. If
f € &, then it follows that

(5.4.2) dy.u(f(z), f(2") <€

for every x, 2’ € X with dx ,(z,2’) < 6(&,€), as in Section 3.9. Thus & is also
uniformly equicontinuous with respect to dx ., dy,, on X, Y, respectively.

Alternatively, let o be a monotonically increasing nonnegative real-valued
function on [0, 00) such that «(0) = 0 and

(5.4.3) afdy (f(2), f(2))) < dx(z,2')

for every f € £ and x, 2’ € X. This implies that

(5.4.4) afdyu(f(x), f(2')) < dxu(x,2")
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for every f € £ and z,2’ € X, as in Section 3.10. If £ is uniformly equicontinu-
ous with respect to dx, dy on X, Y respectively, then we can choose « so that
a > 0 on (0,00), as in the previous section. In this case, (5.4.4) implies that £
is uniformly equicontinuous with respect to dx 4, dy,, on X, Y, respectively, as
before.

Let 7 be a positive real number, and let 8¢ (r) be as in (5.3.9). If f € £ and
z,x’ € X satisfy dx . (z,2") <r, then

(5.4.5) dy,u(f(2), f(z") < Bg (1),
as in Section 3.10. Put
(5.4.6) Bg ,(r) = sup{dy..(f(z), f(2")): f €&, z,2" € X, dx u(z,2") <r},

where the supremum is defined as a nonnegative extended real number. This is
the analogue of 3¢ (r) using dx ., dy,, instead of dx, dy, and we have that

(5.4.7) Beu(r) < Bg (r),

by (5.4.5). If £ is uniformly equicontinuous with respect to dx, dy on X, Y,
respectively, then (5.3.14) and (5.3.15) hold, as in the previous section. This
implies that

(5.4.8) Be (1) < 0o when 7 > 0 is sufficiently small
and
(5.4.9) T£%1+ Bewu(r) =0,

by (5.4.7). It follows that £ is uniformly equicontinuous with respect to dx .,
dy on X, Y, respectively, as before.

Let 8 be a nonnegative extended real-valued function on [0, o), and suppose
that (5.3.16) holds for every f € £ and z,2' € X. Also let 3(r) be defined for
r >0 as in (5.3.19), and put

(5.4.10) BE(t) =inf{B(r) : t <r < o0}

for every nonnegative real number ¢, where the infimum is defined as a nonneg-
ative extended real number. If f € £, then

(5.4.11) dy.(f(2), f(2)) < B* (dx(z,2"))

for every x,2’ € X, as in Section 3.10 again. If 8 satisfies (5.3.17) and (5.3.18),
then § satisfies (5.3.21) and (5.3.22), as before. In this case,

(5.4.12) BH(t) < oo when t > 0 is sufficiently small,
and _ _

) = Tim B —
(5.4.13) BT(0) = t1_1>%1+5 (t)=0.

If £ is uniformly equicontinuous with respect to dx, dy on X, Y, respectively,
then one can find g satisfying (5.3.16), (5.3.17), and (5.3.18), as in the previous
section. We have also seen that (5.4.11), (5.4.12), and (5.4.13) imply that & is
uniformly equicontinuous with respect to dx ., dy,, on X, Y, respectively.
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5.5 Equicontinuity on topological groups

Let G be a topological group, and let Y be a set with a semimetric dy. Also
let £ be a collection of mappings from X into Y, and let A be a subset of G.
Let us say that &£ is left-invariant uniformly equicontinuous along A if for every
€ > 0 there is an open subset U of G that contains the identity element e and
has the property that

(5.5.1) dy (f(a), flaz)) <e€

for every f € £, a € A, and x € U. Similarly, £ is right-invariant uniformly
equicontinuous along A if for every € > 0 there is an open subset U of G with
e €U and

(5.5.2) dy (f(a), f(za)) <e€

for every f € £, a € A, and x € U. We may simply say that &£ is left or
right-invariant equicontinuous on G, as appropriate, when A is the whole group
G.

If A has only one element, then left and right-invariant uniform equiconti-
nuity along A are both the same as equicontinuity at that point, as in Section
5.1. If £ is left or right-invariant uniformly equicontinuous along any subset A
of G, then £ is equicontinuous at each point in A. If A has only finitely many
elements, and £ is equicontinuous at each point in A, then £ is both left and
right-invariant uniformly equicontinuous along A.

If € is left or right-invariant uniformly equicontinuous along a subset A of
G, then each element of &£ if left or right-invariant uniformly continuous along
A, as appropriate, as in Section 4.1. If £ has only finitely many elements, each
of which is left-invariant uniformly continuous along A, then £ is left-invariant
uniformly equicontinuous along A, and similarly for the right-invariant case.

Put

(5.5.3) fl@) = f(z™")
for every f € £ and = € G, and
(5.5.4) E={f:fe€&}

One can check that & is left-invariant uniformly equicontinuous along a subset
A of G if and only if £ is right-invariant uniformly equicontinuous along A_1~.
Similarly, £ is right-invariant uniformly equicontinuous along A if and only if £
is left-invariant uniformly equicontinuous along A~1.

Suppose for the moment that the topology on G is determined by a semimet-
ric d, and let A be a subset of G again. If d is invariant under left translations
on G, then £ is left-invariant uniformly equicontinuous along A if and only if £
is uniformly equicontinuous along A with respect to d, as in Section 5.2. Sim-
ilarly, if d is invariant under right translations on G, then £ is right-invariant
uniformly equicontinuous along A if and only if £ is uniformly equicontinuous
along A with respect to d.

If A is a compact subset of G, and £ is equicontinuous at each point in A,
then & is both left and right-invariant uniformly equicontinuous along A. This
is very similar to the case of a single mapping, as in Section 4.1.
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Suppose for the moment that there is a local base for the topology of G at e
consisting of open sets that are invariant under conjugation, as in Section 4.7.
In this situation, left and right-invariant uniform equicontinuity conditions are
equivalent.

Suppose for the moment again that every element of £ is bounded on G
with respect to dy, and let (f,g) be the supremum semimetric on the space
B(G,Y) of bounded mappings from G into Y corresponding to dy, as in Section
2.1. Suppose also that £ is totally bounded with respect to 6, as in Section 4.2.
If every element of £ is left-invariant uniformly continuous along a subset A of
G, then one can verify that £ is left-invariant uniformly equicontinuous along
A. This is analogous to arguments mentioned in Sections 5.1 and 5.2. Similarly,
if every element of £ is right-invariant uniformly continuous along A, then £ is
right-invariant uniformly continuous along A in this case.

Suppose now that G is left-invariant totally bounded, as in Section 4.3. This
is equivalent to right-invariant total boundedness, because G is automatically
symmetric about e. It follows that there is a local base for the topology of G
at e that is invariant under conjugations, as in Sections 4.7 and 4.8. Suppose
that & is left-invariant uniformly equicontinuous on G, and let € > 0 be given.
Thus there is an open subset U of G such that e € U and (5.5.1) holds for every
fe& aec G, and x € U. Left-invariant total boundedness implies that there
are finitely many elements aq,...,a, of G such that
(5.5.5) G=|J(a; U).

1

n

J

Let us check that
(5.5.6) dy (f(w), 9(w)) < 2¢+ max dy(f(a),g(a;))

for every f,g € £ and w € G. If w € G, then w € a; U for some j, 1 < j < n,
and hence

dy (f(w),g9(w)) < dy(f(w), f(a;)) + dy(f(a;),9(a;)) + dy (g(a;), g(w))
(5.5.7) < 2e+dy(f(az),g(ay))

for every f,g € €. This uses (5.5.1) for f and g in the second step, with a = a;.
This implies (5.5.6). Note that the elements of £ are bounded as mappings from
G into Y under these conditions. It follows that

(5.5.8) 0(f,9) < 2e+ max dy(f(a;), g(a;))

i<n

for every f,g € £, by taking the supremum of the left side of (5.5.6) over w. If
(5.5.9) E(a)=A{f(a): f €&}

is totally bounded in Y with respect to dy for each a € G, then one can use
(5.5.8) to get that £ is totally bounded in B(G,Y) with respect to 6, as in
Sections 5.1 and 5.2.
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Suppose that & is left-invariant uniformly equicontinuous on G again, and
that dy is a semi-ultrametric on Y. Let € > 0 be given, so that there is an
open subset U of G such that e € U and (5.5.1) holds for every f € £, a € G,
and x € U. As usual, we may as well that U be symmetric about e too. It
follows that for each positive integer n, (5.5.1) holds for every f € &, a € G,
and x € U™, as in Section 4.5. If

(5.5.10) Uo=JUum

then Uy is an open subgroup of G, and (5.5.1) holds for every f € £, a € G,
and z € Uy, as before.

Let By be the collection of open subgroups of G, and let 79 be the topology
on G associated to By as in Section 4.5. Remember that the given topology
7 on (G is at least as strong as 9. If dy is a semi-ultrametric on Y, and & is
left-invariant uniformly equicontinuous on G with respect to 7, then & is left-
invariant uniformly equicontinuous on G with respect to 7, by the remarks in
the preceding paragraph. Similarly, if dy is a semi-ultrametric on Y, and &£
is right-invariant uniformly equicontinuous on G with respect to 7, then &£ is
right-invariant uniformly equicontinuous on G with respect to 7.

Let dy be any semimetric on Y, and let dy,,, be the semi-ultrametrification
of dy on Y, as in Section 3.8. Thus dy, < dy on Y, as before. If £ is left or
right-invariant uniformly equicontinuous with respect to 7 on G and dy on Y,
then & is left or right-invariant uniformly equicontinuous with respect to 7 on
G and dy, on Y, as appropriate. This implies that &£ is left or right-invariant
uniformly equicontinuous with respect to 7y on G' and dy,,, as appropriate, by
the previous remarks.

5.6 Equicontinuity and pointwise convergence

Let X be a nonempty set, and let Y be a topological space. The space M (X,Y)
of all mappings from X into Y is the same as the Cartesian product of a family
of copies of Y indexed by X. The topology of pointwise convergence on M(X,Y)
corresponds in this way to the product topology on the product of copies of Y’
indexed by X, using the given topology on Y. If z1,...,x, are finitely many
elements of X, and Vi,...,V,, are open subsets of Y, then

(5.6.1) U={feMX)Y): f(z;) €V foreach j=1,...,n}

is an open subset of M (X,Y") with respect to the topology of pointwise conver-
gence. The collection of open sets U of this form is a base for the topology of
pointwise convergence on M (X,Y).

Let dy be a semimetric on Y, and let us suppose from now on in this section
that Y is equipped with the topology determined by dy. If z € X, then

(5.6.2) Ay (f,9) = dy (f(2),9(x))
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defines a semimetric on M (X,Y’). In this situation, the topology of pointwise
convergence on M(X,Y) is the same as the topology determined on M (X,Y)
by the collection of semimetrics

(5.6.3) {doy 'z € X},

as in Section 1.5. Note that (5.6.3) is nondegenerate on M (X,Y’) when dy is a
metric on Y. If dy is a semi-ultrametric on Y, then (5.6.2) is a semi-ultrametric
on M(X,Y) for every x € X.

Suppose now that X is equipped with a topology, and let £ be a collection
of mappings from X into Y. Suppose also that £ is equicontinuous at a point
x € X, as in Section 5.1. This is equivalent to saying that for each € > 0 there
is an open set U(e) C X such that z € U(e) and

(5.6.4) dy (f(z), f(w)) <€

for every f € £ and w € U(e). Let € be the closure of £ in M(X,Y), with respect
to the topology of pointwise convergence. Observe that (5.6.4) also holds for
every f € £ and w € U(€), because f can be approximated by elements of £ on
x, w. Thus & is equicontinuous at x too. In particular, this implies that every
f € € is continuous at .

Suppose that £ is equicontinuous at every z € X, so that £ is equicontin-
uous at every x € X as well. Thus £ is contained in the space C(X,Y) of
continuous mappings from X into Y. The topology induced on C(X,Y) by
the topology of pointwise convergence on M (X,Y) may be described as the
topology of pointwise convergence on C(X,Y). If x € X, then the restriction
of (5.6.2) to f,g € C(X,Y) defines a semimetric on C(X,Y), as in Section 1.1.
The topology determined on C(X,Y) by the collection of the restrictions of
these semimetrics to C(X,Y) is the same as the topology induced on C'(X,Y)
by the corresponding topology on M(X,Y), as in Section 1.5. This is another
description of the topology of pointwise convergence on C(X,Y). Note that
£ is the same as the closure of £ in C(X,Y) with respect to the topology of
pointwise convergence in this case.

Similarly, let us refer to the topology induced on &£ by the topology of point-
wise convergence on M (X,Y) or C(X,Y) as the topology of pointwise con-
vergence on £. If 2 € X, then the restriction of (5.6.2) to f,g € & defines a
semimetric on £, as before. The topology determined on £ by the collection of
the restrictions of these semimetrics to &£ is the same as the topology induced
on & by the corresponding topology on M(X,Y) or C(X,Y), as in Section 1.5
again. This is another description of the topology of pointwise convergence on
E.

Let A be a nonempty subset of X, so that

(5.6.5) {dsy :x € A}

is a nonempty collection of semimetrics on M(X,Y"). This collection determines
a topology on M (X,Y), as in Section 1.5. Let us refer to this as the topology of
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pointwise convergence along A on M (X,Y). The topologies induced on C(X,Y)
and & by this topology on M (X,Y) may be described as the topologies of point-
wise convergence along A on these spaces. These are the same as the topologies
determined by the corresponding collections of restrictions of d,y, z € X, to
these spaces, as before. Of course, the topology of pointwise convergence on
M(X,Y) is automatically at least as strong as the topology of pointwise con-
vergence along A, and similarly for the corresponding topologies on C(X,Y)
and £ If A is dense in X and dy is a metric on Y, then the collection of
restrictions of d,y, € A, to C'(X,Y) is nondegenerate on C'(X,Y).

Suppose that A is dense in X, and let z € X and € > 0 be given. As before,
there is an open set U(e) C X such that « € U(e) and (5.6.4) holds for every
f €& and we Ule). It follows that

do,y (f,9) dy (f(z), g(x))
(5.6.6) < dy (f(2), f(w) + dy (f(w), g(w)) + dy (g(w), g(x))
S 26+dw,Y(fvg)

for every f,g € £ and w € Ul(e). In particular, we can take w € ANU (), because
A is dense in X. This implies that the topology of pointwise convergence on &
is the same as the topology of pointwise convergence along A on &.

Let B(X,Y) be the space of bounded mappings from X into Y with respect
to dy onY, as in Section 2.1, and let 6 be the supremum semimetric on B(X,Y)
corresponding to dy on Y. Thus

(5.6.7) oy (f,9) = dy (f(2),9(x)) <O(f,9)

for every f,g € B(X,Y) and = € X. Let us refer to the topology induced on
B(X,Y) by the topology of pointwise convergence on M (X,Y") as the topology of
pointwise convergence on B(X,Y’). This is the same as the topology determined
on B(X,Y) by the collection of restrictions of the semimetrics d, y, € X, to
B(X,Y), as usual. The topology determined on B(X,Y) by the supremum
semimetric # is automatically at least as strong as the topology of pointwise
convergence, because of (5.6.7).

Suppose for the moment that X is compact, so that continuous mappings
from X into Y are automatically bounded with respect to dy on Y. Under these
conditions, one can check that the topology determined on £ by the restriction
of 0(f,g) to f,g € € is the same as the topology of pointwise convergence on &.
This uses some of the remarks in Section 5.1.

Let dx be a semimetric on X, and suppose that X is equipped with the
topology determined by dx. Also let A be a subset of X, and suppose now that
£ is uniformly equicontinuous along A with respect to dx on X, as in Section
5.2. This is equivalent to saying that for each € > 0 there is a d(e) > 0 such
that (5.6.4) holds for every f € £, € A, and w € X with dx(z,w) < d(e).
As before, the same condition holds for every element of the closure € of £ in
M(X,Y), with respect to the topology of pointwise convergence. Thus & is
uniformly equicontinuous along A as well.
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Suppose that £ is uniformly equicontinuous on X with respect to dx, which
corresponds to taking A = X in the preceding paragraph. Thus £ is uniformly
equicontinuous on X too, and in particular every element of £ is uniformly
continuous on X. Suppose that X is also totally bounded with respect to X, as
in Section 4.2. If f € £, then it follows that f(X) is totally bounded in Y, and
hence that f(X) is bounded in Y. One can check that the topology determined
on & by the restriction of the supremum semimetric 6(f,g) to f,g € & is the
same as the topology of pointwise convergence on & in this situation, using some
of the remarks in Section 5.2.

Let G be a topological group, and let £ be a collection of mappings from
G into Y. Also let A be a subset of GG, and suppose that £ is left-invariant
uniformly equicontinuous along A, as in the previous section. This is equivalent
to saying that for each € > 0 there is an open subset U(e) of G that contains
the identity element e and has the property that

(5.6.8) dy (f(a), flax)) <€

for every f € £, a € A, and x € U(e). Let £ be the closure of £ in the
space of all mappings from G into Y, with respect to the topology of pointwise
convergence, as before. It is easy to see that (5.6.8) holds for every f € &,
a € A, and z € U, by approximating f by elements of £ on a, az. Hence
€ is left-invariant uniformly equicontinuous along A too. Of course, there are
analogous statements for right-invariant uniform equicontinuity along A.
Suppose that & is left-invariant uniformly equicontinuous on G, so that &
is left-invariant uniformly equicontinuous on G as well. Suppose also that G is
left-invariant totally bounded, as in Section 4.3. In this case, every f € & is
bounded on G, because f is left-invariant uniformly continuous on G. Let 6 be
the supremum semimetric on the space of all bounded mappings from G into
Y corresponding to dy. One can verify that the topology determined on £ by
the restriction of 6(f,g) to f,g € & is the same as the topology of pointwise
convergence on &, using some of the remarks in the previous section.

5.7 Continuity of compositions

Let W, X be nonempty sets, and let Y be a nonempty topological space. Thus
the topologies of pointwise convergence can be defined on the spaces M(W,Y),
M(X,Y) of all mappings from W, X into Y, respectively, as in the previous
section. If b is a mapping from W into X, and f is a mapping from X into Y,
then the composition fob of b and f defines a mapping from W into Y, so that

(5.7.1) Ry(f)=fob

defines a mapping from M (X,Y) into M(W,Y). It is easy to see that Ry is
continuous with respect to the topologies of pointwise convergence on M (W, Y),
M(X,)Y).

Let Z be another topological space, so that the topology of pointwise con-
vergence can also be defined on the space M (X, Z) of all mappings from X into
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Z. If a is a mapping from Y into Z, and f is a mapping from X into Y, then
the composition a o f of a and f defines a mapping from X into Z, so that

(5.7.2) Lo(f)=ao f

defines a mapping from M(X,Y) into M (X, Z). If a is a continuous mapping
from Y into Z, then one can check that L, is continuous with respect to the
topologies of pointwise convergence on M(X,Y), M (X, Z).

Let dy be a semimetric on Y, and suppose for the moment that Y is equipped
with the topology determined by dy. If x € X, then

defines a semimetric on M (X,Y), as in (5.6.2). Similarly, if w € W, then
(574) dw,W,Y(h'v k) = dy(h(’ll)), k(w))

defines a semimetric on M (W,Y). The topologies of pointwise convergence
on M(X,Y) and M(X,Y) are the same as the topologies determined by the
collections of semimetrics d; x,y, z € X, on M(X,Y) and dy,wy, w € W, on
M(W,Y), respectively, as before. If b is a mapping from W into X and f, g are
mappings from X into Y, then

(5.7.5) dw wy (Ry(f), Ry(9)) = duwwy(fob,gob)
dy (f(b(w)), g(b(w))) = dp(w),x,v (f,9)

for every w € W.
Let dz be a semimetric on Z, and suppose that Z is equipped with the
topology determined by dz. If z € X and y € Y, then

defines a semimetric on M (X, Z), and
(5.7.7) dy,y.z(h, k) = dz(h(y), k(y))

defines a semimetric on M(Y, Z). As usual, the topologies of pointwise conver-
gence on M(X,Z) and M (Y, Z) are the same as the topologies determined by
the collections of semimetrics dy x z, © € X, on M(X,Z), and dy vz, y €Y,
on M(Y, Z), respectively.

If f is a mapping from X into Y, and ¢ is a mapping from Y into Z, then
their composition g o f defines a mapping from X into Z. Thus

(5.7.8) (f,g)—>gof

defines a mapping from M