


Abstract

Lower order solvability of links

by

Taylor E. Martin

The n-solvable filtration of the link concordance group, defined by Cochran, Orr,

and Teichner in 2003, is a tool for studying smooth knot and link concordance that

yields important results in low-dimensional topology. We focus on the first two stages

of the n-solvable filtration, which are the classes Fm0 , the class of 0-solvable links,

and Fm0.5, the class of 0.5-solvable links. We introduce a new equivalence relation

on links called 0-solve equivalence and establish both an algebraic and a geometric

characterization 0-solve equivalent links. As a result, we completely characterize 0-

solvable links and we give a classification of links up to 0-solve equivalence. We relate

0-solvable links to known results about links bounding gropes and Whitney towers in

the 4-ball. We then establish a sufficient condition for a link to be 0.5-solvable and

show that 0.5-solvable links must have vanishing Sato-Levine invariants.
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Chapter 1

Introduction

1.1 Background

A link is an embedding f :
⊔m
i=1 S

1 → S3 of an ordered, disjoint collection of oriented

circles into the three-sphere. A knot is a link with only one component. Two links

are isotopic if one can be smoothly deformed into the other through embeddings in

S3. Isotopy is a equivalence relation on links in S3; by studying links as objects in

3-space, we actually study the isotopy classes of links. Links are very important in

the larger context of low-diensional topology. For example, the fundamental theorem

of Lickorish and Wallace, introduced in 1960, gives a description of closed, orientable

3-manifolds using a process called surgery on links in S3.

Many open problems in low-dimensional topology center around the study of 4-

manifolds. In the smooth category, even compact simply-connected 4-manifolds are

unclassified. In the 1950’s, Fox and Milnor introduced the notion of concordance

classes of links. Link concordance is a 4-dimensional equivalence relation on links
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in S3; studying link concordance can contribute greatly to the understanding of 4-

manifolds. For example, Freedman and Quinn explain that “surgery is equivalent to

the link slice problems, and a weak form of the embedding problem” [9].

In 1966, Fox and Milnor showed that concordance classes of knots form an abelian

group under an operation called connected sum, called the knot concordance group,

C. Two knots K and K ′ are concordant if K×{0} and K ′×{1} cobound a smoothly

embedded annulus in S3× [0, 1]. The identity element of this group is the equivalence

class of the trivial knot. Any knot in this class is called slice. The knot concordance

group has been well-studied since its introduction, but its structure is complex and

remains largely unknown.

Here, we study the more general (string) link concordance group, Cm, where m is

the number of link components; when m = 1, this is the knot concordance group. As

a tool for investigating the structure of Cm, Cochran, Orr, and Teichner introduced

the n-solvable filtration Fmn , n ∈ 1
2
N of Cm in 2003. The n-solvable filtration is an

infinite sequence of nested subgroups of Cm and can be though of as an algebraic

approximation to a link being slice. Elements of Fmn are ordered, oriented links called

n-solvable links.

While the n-solvable filtration of Cm has been studied since its inception, many of

the existing results discuss quotients of the filtration. For example, Harvey shows that

the quotients Fmn /Fmn+1 contain an infinitely generated subgroup [12]. Cochran and

Harvey showed that the quotients Fmn /Fmn.5 contain an infinitely generated subgroup

[5]. Cochran, Harvey, and Leidy [6] and Cha [2] have made notable contributions in

this area.
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In their seminal work on the n-solvable filtration, Cochran, Orr, and Teichner

classified 0-solvable knots and 0.5-solvable knots. A parallel classification for links,

however, remains unknown. This is the goal of our current work.

1.2 Summary of Results

Let L = K1 ∪ . . . ∪ Km and L′ = K ′1 ∪ . . . ∪ K ′m be ordered, oriented,

m-component links such that the pairwise linking numbers lk(Ki, Kj) and lk(K ′i, K
′
j)

vanish. We call this class of links Fm−0.5. We will establish an equivalence relation on

the set Fm−0.5 called 0-solve equivalence, and we will discuss how 0-solve equivalence

relates to the condition of 0-solvability for links. We will show that 0-solve equivalent

links L and L′ must have three specific algebraic link invariants in common. Two

of these invariants are the Milnor’s invariants µ̄(ijk) and µ̄(iijj). Milnor’s family

of concordance invariants measures “higher-order linking” among link components

algebraically; each of these invariants are denoted by µ̄. The other algebraic invariant

we will consider is the Arf invariant. Defined for knots, the Arf invariant is an

algebraic Z2-valued concordance invariant that is computable by a variety of methods.

We will also study a geometric move on link diagrams called the band-pass move.

band-pass equivalence is a geometric equivalence relation on links, and we will see

that we can use band-pass equivalence to study 0-solve equivalence. We establish a

relationship among these conditions.

Theorem. 5.1. For two ordered, oriented m-component links L = K1 ∪ . . . ∪ Km

and L′ = K ′1 ∪ . . . ∪ K ′m with vanishing pairwise linking numbers, the following
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conditions are equivalent:

1. L and L′ are 0-solve equivalent,

2. L and L′ are band-pass equivalent,

3. Arf(Ki) = Arf(K ′i)

µ̄L(ijk) = µ̄L′(ijk)

µ̄L(iijj) ≡ µ̄L′(iijj) (mod2) for all i, j, k ∈ {1, . . . ,m}.

As a corollary, we characterize the class Fm0 of 0-solvable links both algebraically

and geometrically.

Corollary. 5.2. For an ordered, oriented m-component link L = K1 ∪ . . . ∪ Km,

the following conditions are equivalent:

1. L is 0-solvable,

2. L is band-pass equivalent to the m-component unlink,

3. Arf(Ki) = 0

µ̄L(ijk) = 0

µ̄L(iijj) ≡ 0 (mod2) .

Using the algebraic characterization in Theorem 5.1, we can then classify links

up to 0-solve equivalence by giving an algorithm for choosing representatives of each

0-solve equivalence class of links. The following corollary describes the class of links

up to 0-solve equivalence.
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Corollary. 5.12. For each m,

Fm−0.5

Fm0
∼= Zm

2 ⊕ Z(m
3 ) ⊕ Z(m

2 )
2

We then use the work of Conant, Schneiderman, and Teichner to broaden the scope

of Theorem 5.1 to include applications to the study of gropes and Whitney towers.

Gropes and Whitney towers are geometric objects that are used in the study of 4-

manifolds. Our algebraic characterization of 0-solve equivalence gives a relationship

between 0-solvable links, links bounding gropes, and links supporting Whitney towers.

Corollary. 6.5. For an ordered, oriented, m-component link L, the following are

equivalent.

1. L is 0-solvable.

2. L bounds disjoint, properly embedded gropes of class 2 in B4.

3. L bounds properly immersed disks admitting an order 2 Whitney tower in B4.

Having an understanding of 0-solvable links, we will then turn our attention to

the study of 0.5-solvability for links. We will again study the relationship between

algebraic link invariants and 0.5-solvability as well as the relationship between 0.5-

solvability of links and several geometric moves on link diagrams. We use two ge-

ometric equivalence relations on link diagrams called double-delta equivalence and

double half-clasp pass equivalence; we show a relationship between these moves and

0.5-solvability.

Proposition. 7.2. The double-delta move and the double half-clasp pass move both

preserve 0.5-solvability.
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This tells us that, if a link L is double-delta equivalent or double half-clasp pass

equivalent to the trivial link, then L is 0.5-solvable.

Finally, we give an algebraic condition on a link L that is necessary for L to be

0.5-solvable.

Theorem. 7.4. For an ordered, oriented, m-component, 0.5-solvable link

L = K1 ∪ . . . ∪ Km, the Sato-Levine invariants µ̄L(iijj) vanish.

1.3 Outline of Thesis

In Chapter 2, we introduce the (string) link concordance group, Cm, and the n-solvable

filtration {Fmn } of Cm. We give properties of n-solvable links and discuss the known

classification of low stages of the n-solvable filtration of the knot concordance group

C1.

In Chapter 3, we introduce machinery that we will use to study low stages of the

n-solvable filtration of the link concordance group. We discuss Milnor’s invariants and

focus particularly on the Milnor’s invariants µ̄L(iijj) and µ̄L(ijk). We also introduce

several geometric pass moves on link diagrams that we will employ in later chapters.

In Chapter 4, we define a new notion of 0-solve equivalence for links. We establish

several properties of 0-solve equivalence, including the relationship between 0-solve

equivalence and 0-solvability.

In Chapter 5, we give two sets of necessary and sufficient conditions for two links to

be 0-solve equivalent. This gives both an algebraic and a geometric characterization

of 0-solve equivalent links. We use this characterization to classify links up to 0-solve
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equivalence.

In Chapter 6, we introduce the notion of gropes and Whitney towers, which are

geometric tools for studying links and surfaces in 4-manifols. We demonstrate that

links bounding gropes and Whitney towers are precisely 0-solvable links.

In Chapter 7, we investigate 0.5-solvability of links. We give geometric conditions

on links that are sufficient for 0.5-solvability, and we show that a certain algebraic

condition that is necessary for 0.5-solvability for links.



Chapter 2

Link Concordance and the

n-Solvable Filtration

2.1 Knot and Link Concordance

A knot is a smooth embedding, f : S1 ↪→ S3, of an oriented circle into the three-

sphere. Two such embeddings, f and f ′ are isotopic if there is a smooth homotopy

F : S1 × [0, 1] → S3 such that F × {0} = f and F × {1} = f ′, where F × {t} is a

smooth embedding for all t. That is, two knots are isotopic if one can be smoothly

deformed into the other. With this notion of knot equivalence, we refer to a knot, K,

meaning the isotopy class of an embedding K : S1 ↪→ S3.

Two knots, K and J in S3 are concordant if there exists a smooth embedding,

f : S1 × [0, 1] → S3 × [0, 1], of an annulus into S3 × [0, 1], such that f(S1 × {0}) =

K × {0} and f(S1 × {1}) = J × {1}. Knot concordance is an equivalence relation

on knots, and the collection of concordance classes of knots form a group under the

8
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operation of connected sum. This group is called the knot concordance group, C, and

it is known to be infinitely generated and abelian. The identity element of the knot

concordance group is the class of knots that are concordant to the trivial knot. Such

knots are called slice.

A link is a generalization of a knot in which we allow for more than one knotted

oriented circle. More precisely, an ordered link is an embedding, f :
⊔m
i=1 S

1 → S3, of

m circles into the three-sphere. We say that the link has m components. We similarly

consider isotopy classes of links in 3-space, which we denote L = K1 ∪ . . . ∪ Km,

where the Ki represent the individual components of the link L. It is natural to define

link concordance as a generalization of knot concordance. Two links, L and L′, are

concordant if there exists a smooth embedding, f :
⊔m
i=1 S

1× [0, 1]→ S3× [0, 1], such

that f(
⊔m
i=1 S

1 × {0}) = L× {0} and f(
⊔m
i=1 S

1 × {1}) = L′ × {1}. Links which are

concordant to the unlink are called slice links.

S3 × [0, 1]

L ⊂ S3 × {0}

L′ ⊂ S3 × {1}

Figure 2.1: Link Concordance

In trying to assign a group structure on the concordance classes of oriented links,

we quickly see that the operation of connected sum is not well-defined on links. To

define an analogous group operation on links, we turn to the discussion of string links.
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2.2 String Links and The Link Concordance Group

An m-component (pure) n - string link D, as defined by LeDimet in [15], is a

proper, oriented submanifold of Dn+2 that is homeomorphic to m disjoint copies

of Dn, {Dn
i }mi=1, such that D ∩ ∂Dn+2 = ∂D is the standard trivial (n− 1)-link Un−1.

We are only concerned with m-component 1-string links. These can be viewed as a

generalization of an m-strand pure braid where we allow the strands to knot. Given

any m-component string link D, we form the closure of D, denoted D̂, by gluing the

standard m-component trivial link to D along its boundary.

D D̂

Figure 2.2: A 3-component string link D and its closure D̂

As a result of Habegger and Lin, we can also form a string link from any link

in S3 by cutting along a carefully chosen ball. The following lemma specifies this

relationship [11].

Lemma 2.1. [Habegger-Lin][11] For any link L ∈ S3, there is a string link D such

that D̂ is isotopic to L.
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We can define a concordance between two m-component string links D and D′.

We say that D and D′ are concordant if there exists a proper smooth submanifold C

of D3 × [0, 1] such that C is homeomorphic to m disjoint copies of D1 × [0, 1], where

C∩(D3×{0}) = D, C∩(D3×{1}) = D′, and C∩(S2× [0, 1]) = U0× [0, 1]. Using this

definition, we see that there is a natural extension of C that gives a link concordance

between the closures D̂ and D̂′.

Figure 2.3: String link concordance

Unlike links, string links have a natural operation known as stacking. The set

of concordance classes of m-component string links under stacking form a group Cm,

called the string link concordance group [15]. Furthermore, there is a group action

on Cm such that, under closure, the orbits correspond to concordance classes of links

[10]. In the case of m = 1, the group C1 corresponds exactly to the knot concordance

group. For the case m > 2, it is well known that Cm is not abelian.
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2.3 The n-Solvable Filtration

The link concordance group Cm is an infinitely generated group. One tool to study the

structure of this group, defined by Cochran, Orr, and Teichner [7], is the n-solvable

filtration, {Fmn }:

{0} ⊂ · · · ⊂ Fmn+1 ⊂ Fmn.5 ⊂ Fmn ⊂ · · · ⊂ Fm1 ⊂ Fm0.5 ⊂ Fm0 ⊂ Cm

Recall that a filtration of a group is a nested sequence of subgroups. The n-

solvable filtration is indexed by the set 1
2
N. For k ∈ 1

2
N, Fmk is the collection of

k-solvable m-component links. It is important to note that the concordance class of

m-component slice links is n-solvable for any n. In this way, the n-solvable filtration

can be thought to “approximate” sliceness for links.

To define the condition of n-solvability, we must first establish several topological

tools. Although we consider links L = K1 ∪ . . . ∪ Km in S3, we have a very

useful method of constructing different closed, oriented 3-manifolds based on L. We

say that the 3-manifold ML is the result of performing 0 framed surgery on the link

L = K1 ∪ . . . ∪ Km in S3, where we define ML by cutting and pasting.

ML = (S3 −N(L)) ∪f [
m⊔
i=1

(S1 × D2)i]

Here, N(L) refers to a tubular neighborhood of the link and f is the map that

sends µi = ({pi} × D2) to the longitudes li of L, an untwisted copy of Ki on the

boundary of S3 −N(L).

For a group G, we define the derived series G(n) of G recursively by G(0) := G
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Figure 2.4: 0-Framed Surgery on a Link

and G(n) := [G(n−1), G(n−1)], where [G,G] refers to the commutator subgroup of G.

We say that G(n) is the nth term of the derived series.

Definition 2.2. We say that an m-component link L = K1 ∪ . . . ∪ Km is n-solvable

for n ∈ N, and we write L ∈ {Fmn }, if the manifold ML obtained from performing

0-framed surgery on L in S3 bounds a compact, smooth 4-manifold W under the

following conditions:

1. H1(ML) ∼= Zm, and the map induced by inclusion, i∗ : H1(ML)→ H1(W ) is an

isomorphism on the first homology.

2. H2(W ) has a basis consisting of compact, connected, embedded, oriented sur-

faces {Li, Di}ri=1 with trivial normal bundles, such that Li intersects Di trans-

versely, exactly once, with positive sign, and otherwise, the surfaces are disjoint.

3. For all i, π1(Li) ⊂ π1(W )(n) and π1(Di) ⊂ π1(W )(n)

The 4-manifold W is called an n-solution for L.

Additionally, we say that L is n.5-solvable if L is n-solvable and π1(Li) ⊂ π1(W )(n+1).

Note that we consider a string link to be n-solvable if its closure is n-solvable.



14

2.4 Properties of n-Solvable Links

We establish properties of n-solvable links that will be useful in the following chapters.

Remark 2.3. By definition, we require that if a link L = K1 ∪ . . . ∪ Km is

n-solvable for any n ∈ 1
2
N, that H1(ML) ∼= Zm. Note that this is true if and only

if the pairwise linking numbers between components of L vanish: lk(Ki, Kj) = 0 for

1 ≤ i < j ≤ m.

Henceforth, we will only consider links with this property, and we will denote

the collection of concordance classes of m-component links with vanishing pairwise

linking numbers as Fm−0.5 ⊂ Cm for convenience.

Proposition 2.4. For any n ∈ 1
2
N, if a link L = K1 ∪ . . . ∪ Km is n-solvable,

any sublink of L is also n-solvable.

Proof. Note that, by induction and up to reordering the link, it suffices to show that

the sublink J = K2 ∪ · · · ∪ Km ⊂ L created by removing the first link component

is n-solvable. Let W be an n-solution for L. We form a new 4-manifold W ′, with

∂W ′ = MJ by attaching a 0-framed 2-handle to ∂W with attaching sphere µ1, the

meridian of the link component K1 ⊂ L. We wish to show that W ′ is an n-solution

for J .

First, we observe that attaching the 2-handle to the element [µ1] ∈ H1(ML) ∼=

H1(W ) kills the generator, and so we see that H1(MJ) ∼= H1(W ′) ∼= Zm−1 induced by

inclusion.

Next, we observe that H2(W ′) ∼= H2(W ) as the order of [µ1] ∈ H1(ML) is infinite.

Therefore, H2(W ′) has the desired generating set.
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Finally, we observe that, for {Li, Di}ri=1 the basis for H2(W ′), we have that

π1(Li) ⊂ π1(W )(n) ⊆ π1(W ′)(n). Similarly, π1(Di) ⊂ π1(W )(n) ⊆ π1(W ′)(n). There-

fore, W ′ is an n-solution for J .

2.5 Known Classification of 0 and 0.5-Solvable Knots

In the case of knots, there is a complete classification of knots that are 0-solvable and

knots that are 0.5-solvable. In this section, we give results from [7] classifying F1
0 and

F1
0.5, the subgroup of 0-solvable knots and the subgroup of 0.5-solvable knots.

The Arf invariant of a knot K is a concordance invariant taking values in Z2.

There are several equivalent ways of defining the Arf invariant.

Definition 2.5. For a knot K ⊂ S3, a Seifert surface Σ ⊂ S3 − K for K, and for

{ai, bi}gi=1 a symplectic basis for Σ, the Arf invariant Arf(K) is the sum

Arf(K) =

g∑
i=1

lk(ai, a
+
i )lk(bi, b

+
i )(mod2).

We may also compute the Arf invariant by considering the Alexander polynomial

of a knot, ∆K(t). It is known that Arf(K) = 0 ⇔ ∆K(−1) ≡ ±1 (mod8) [18].

Alternatively, it is known that the Arf invariant of a knot vanishes if and only if K

is band-pass equivalent to the unknot [14]. We will discuss band-pass equivalence

extensively in the following chapters.

In [7], Cochran, Orr, and Teichner give a classification of 0-solvable knots.
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Theorem 2.6. [Cochran-Orr-Teichner][7] A knot K is 0-solvable if and only if Arf(K) =

0.

As we defined in section 2.1, a slice knot is a knot that is concordant to the trivial

knot. An equivalent definition would be to say that a knot K is slice if K bounds a

smoothly embedded disk ∆ ⊂ B4. It is known that, if K is a slice knot, there exists

a Seifert matrix V for K where V is of the form V =

 A B

C 0

, where A,B, and

C are g × g matrices. The converse of this, however, is not true. There exist knots

which are not slice, but have a Seifert matrix that has the form of a slice knot; these

are called algebraically slice knots.

Definition 2.7. A knot K is called algebraically slice if there exists a Seifert matrix

V for K such that V =

 A B

C 0

.

In [7], Cochran, Orr, and Teichner give a classification of 0.5-solvable knots.

Theorem 2.8. [Cochran-Orr-Teichner][7] A knot K is 0.5-solvable if and only if K

is algebraically slice.



Chapter 3

Milnor’s Invariants and Pass Moves

3.1 Milnor’s µ̄-Invariants

In the 1950’s, Milnor defined a classical family of link invariants called µ̄-invariants

[16], [17]. These algebraic invariants are denoted µ̄L(I), where I = i1i2 . . . ik is a word

of length k and ij ∈ {1, . . . ,m} refers to the jth link component of L. The integer

k is called the length of the Milnor invariant. Milnor’s invariants are not, strictly

speaking, link invariants; they have some indeterminacy resulting from the choice

of meridians of the link. However, Habegger and Lin show that this indeterminacy

corresponds exactly to the choice of ways of representing a link as the closure of a

string link [11]. As such, Milnor’s invariants are string link invariants whenever they

are well defined. Furthermore, Milnor’s invariants are concordance invariants, which

makes them a useful tool in studying the link concordance group [1].

We will use two specific Milnor’s invariants in the following chapter, µ̄L(iijj) and

µ̄L(ijk). There are many ways of defining Milnor’s invariants, but these specific two

17
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invariants can be thought of as higher order cup products. We give their definitions

geometrically.

The Milnor’s invariants µ̄L(iijj) for a link L = K1 ∪ . . . ∪ Km are also known

as Sato-Levine invariants. Every 2-component sublink Ki ∪ Kj gives a Sato-Levine

invariant µ̄L(iijj). We can compute this invariant by considering oriented Seifert

surfaces Σi and Σj for Ki and Kj in the link exterior S3 − N(L). We may choose

these surfaces in such a way that Σi ∩ Σj = γ ∼= S1 [4]. Then, we push the curve γ

off of one of the surfaces Σi in the positive normal direction to obtain a new curve

γ+. We define the Sato-Levine invariant to be lk(γ, γ+). This is a well-defined link

invariant provided that the pairwise linking numbers of L all vanish, and it is equal

to the Milnor’s invariant µ̄L(iijj) [4].

Σi Σj

γ+
γ

Figure 3.1: Computing µ̄L(iijj)

The Milnor’s invariant µ̄L(ijk) for a link L = K1 ∪ . . . ∪ Km also have a

geometric definition [4]. Consider the sublink J = Ki ∪Kj ∪Kk ⊂ L and let Σi,Σj,

and Σk be oriented Seifert surfaces for Ki, Kj, and Kk. The intersection Σi ∩Σj ∩Σk

is a collection of points which are given an orientation induced by the outward normal

on each Seifert surface. The count of these points up to sign gives us µ̄L(ijk) [4].
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Σi Σj

Σk

Figure 3.2: Computing µ̄L(ijk)

3.2 Geometric Moves on Links

In the following chapters, we will employ several types of pass-moves on links. These

are geometric moves performed locally on an oriented link diagram; coupled with

isotopy, these moves each generate an equivalence relation on links.

Definition 3.1. A band-pass move on a link L = K1 ∪ . . . ∪ Km is the local move

pictured in figure 3.3. We require that both strands of each band belong to the same

link component. Links L and L′ are band-pass equivalent if L can be transformed

into L′ through a finite sequence of band-pass moves and isotopy.

Ki Kj K ′i K ′j

Figure 3.3: A band-pass move

Definition 3.2. A clasp-pass move on a link L is the local move in figure 3.4. Links
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L and L′ are clasp-pass equivalent if L can be transformed into L′ through a finite

sequence of clasp-pass moves and isotopy.

Figure 3.4: A clasp-pass move

Definition 3.3. A double-delta move on a link L is the local move in figure 3.5. We

require that the strands of each band belong to the same link component, so that a

double-delta move may involve no more than 3 distinct link components. Links L

and L′ are double-delta equivalent if L can be transformed into L′ through a finite

sequence of double-delta moves and isotopy.

Ki Kj

Kk

K ′i K ′j

K ′k

Figure 3.5: A double-delta move

Definition 3.4. A double half-clasp pass move on a link L is the local move in figure

3.6. We require that the strands of each band belong to the same component. Links

L and L′ are double half-clasp pass equivalent if L can be transformed into L′ through

a finite sequence of double half-clasp pass moves and isotopy.
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Figure 3.6: A double half-clasp pass move

Definition 3.5. We will also use a geometric move that is not a pass move. Pictured

in figure 3.7 is a double Borromean rings insertion on a link. Here, we take three

bands, where the strands of each band belong to the same link component, and insert

two copies of the Borromean rings, preserving orientation. This geometric move may

involve one, two, or three distinct link components.

Figure 3.7: A double Borromean rings insertion



Chapter 4

0-Solve Equivalence

4.1 Defining 0-Solve Equivalence

In this chapter, we will define a new equivalence relation on the concordance classes of

links called 0-solve equivalence. We will then prove properties of 0-solve equivalence

that will be helpful in the next chapter. Note that we only consider links L =

K1 ∪ . . . ∪ Km such that the pairwise linking numbers vanish.

In order to define 0-solve equivalence, we first must establish several definitions.

For a 4-manifold W 4, a spin structure on W is a choice of trivialization of the tangent

bundle TW over the 1-skeleton of W that can be extended over the 2-skeleton. A

manifold endowed with a spin structure is called a spin manifold. It is known that

W admits a spin structure if and only if the second Stiefel-Whitney class w2(W ) = 0.

It is a result of Wu’s that, for W a smooth, closed 4-manifold such that H1(W ) has

no 2-torsion, W is spin if and only if the intersection form QW on W is even (see [20]

section 4.3).
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We will define a notion of the closure of a 4-manifold that will be suitable to our

needs.

Definition 4.1. Suppose that W is a 4-manifold such that ∂W = ML

⊔
−ML′ . We

define the closure of W , which we denote Ŵ , to be the closed 4-manifold that is

obtained from W by first attaching a 0-framed 2-handle to each meridinal curve in

both ML and ML′ . This results in a 4-manifold with boundary S3
⊔
−S3, as depicted

in the following figure.

L

0

00

0

. . .

= S3

Figure 4.1: A link with “helper circles”

Now, we can attach a 4-handle to the S3 boundary component and a 4-handle to

the −S3 boundary component, and we have formed the closed 4-manifold which we

will call Ŵ , as pictured in figure 4.2.

We now can give a definition of 0-solve equivalence on links, which we will use

extensively in the following chapter.

Definition 4.2. Two ordered, oriented m-component links L = K1 ∪ . . . ∪ Km

and L′ = K ′1 ∪ . . . ∪ K ′m with vanishing pairwise linking numbers are 0-solve

equivalent if there exists a 4-manifold W with ∂W = ML

⊔
−ML′ such that the

following conditions hold:
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W

Figure 4.2: The closure of a 0-solve equivalence

1. The maps i∗ : H1(ML) → H1(W ) and j∗ : H1(ML′) → H1(W ) induced by

inclusion are isomorphisms such that i∗(µi) = j∗(µ
′
i), where µi denotes the

meridian of the ith link component.

2. H2(W,∂W−), where ∂W− = −ML′ , is generated by oriented, embedded, con-

nected pairs of surfaces {Li, Di}ri=1 with trivial normal bundles such that the

surfaces are disjoint, with the exception that, for each i, Li and Di intersect

transversely at exactly one point, oriented with positive direction.

3. Ŵ is a spin 4-manifold.

The manifold W is called a 0-solve equivalence between L and L′.

Remark 4.3. It is worthwhile to note that, for a 0-solve equivalence W ,

H2(W )

H2(∂W−)
∼= H2(W,∂W−)

Here, because the map induced by inclusion, i∗ : H2(∂W−)→ H2(W ) is injective,

we refer to i∗(H2(∂W−)) by H2(∂W−); we see this result from considering the long
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exact sequence of the pair (W,∂W−). We note that that i∗ : H1(∂W−) → H1(W ) is

an isomorphism and that H3(W,∂W−) ∼= H1(W,∂W+) ∼= Hom(H1(W,∂W+),Z) = 0.

H3(W,∂W−)→ H2(∂W−)
i∗→ H2(W ) � H2(W,∂W−)

0→ H1(∂W−)
∼=−→ H1(W ) −→

Furthermore, this portion of the sequence splits, and so H2(W ) ∼= H2(W,∂W−)⊕

H2(∂W−).

4.2 Properties of 0-Solve Equivalence

Proposition 4.4. 0-solve equivalence in an equivalence relation on links.

Proof. 1. We consider the 4-manifold W = ML × [0, 1]. The first two conditions

of 0-solve equivalence are trivial. We wish to show that the closure Ŵ has

an even intersection form, and is therefore spin. The generators of H2(Ŵ ) are

{Σ̂i, Fi}mi=1, where Σi ⊂ S3−N(L) ⊂ML is a Seifert surface for link component

Ki, Σ̂i is the closed surface Σi ∪`i D2 where `i is the 0-framing on Ki, and Fi is

the core of the ith added 2-handles attached to µi × [0, 1] ⊂ ML × [0, 1]. Each

generator Σ̂i and Fi has self-intersection zero. Thus, the intersection form QŴ

is even, and so Ŵ is spin.

2. Let W be a 0-solve equivalence between L and L′. We flip W upside down to

obtain W ′, where ∂W ′
− = −ML. We wish to show that W ′ is a 0-solve equiv-

alence between L′ and L. The first condition on the inclusion maps inducing

isomorphisms on first homology is given, as W is a 0-solve equivalence.
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We consider the long exact sequence of the pair (W ′, ∂W ′
+), coupled with the

fact that H3(W ′, ∂W ′
+) ∼= H1(W ′, ∂W ′

−) = 0:

→ H3(W ′, ∂W ′
+)→ H2(∂W ′

+)

j∗→ H2(W ′)→ H2(W ′, ∂W ′
+)

0→ H1(∂W ′
+)

∼=→

This sequence splits since H2(W ′, ∂W ′
+) ∼= H2(W ′, ∂W ′

+) ∼= 0, and so H2(W ′) ∼=

H2(W ′, ∂W ′
+)⊕ j∗(H2(∂W ′

+)). We know that H2(W ′, ∂W ′
+) = H2(W,∂W−) =<

Li, Di >
r
i=1
∼= Z2r, and H2(∂W ′

+) = {ai} ∼= Zm. These generators {ai}mi=1 are

capped off Seifert surfaces and may be chosen to have self-intersection 0 and

to be disjoint from the {Li, Di}. We have a similar exact sequence for the pair

(W ′, ∂W ′
−),

0→ H2(∂W ′
−)

i∗→ H2(W ′) � H2(W ′, ∂W ′
−)

0→ H1(∂W ′
−)

∼=→ H1(W ′)

Therefore, Z2(r+g) ∼= H2(W ′) ∼= H2(W ′, ∂W ′
−) ⊕ H2(∂W ′

−). Hence, the rank of

H2(∂W ′
+) is the same as the rank of H2(∂W ′

−), and we may write H2(∂W ′
−) =

{a′i}mi=1.

We choose oriented Seifert surfaces {Σi}mi=1 ⊂ S3 − L for link components

Ki; we similarly choose oriented Seifert surfaces {Σ′i}mi=1 ⊂ S3 − L′ for link

components K ′i. We let Σ̂i and Σ̂′i be closed surfaces in ∂W ′
− and ∂W ′

+ Using

the Thom-Pontryagin construction, we define maps fi : ∂W ′
− → S1 using the

following construction. We take a produce neighborhood Σ̂i× [−1, 1] where the
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+1 corresponds to the positive side of Σ̂i. We define the map fi : Σ̂i× [−1, 1]→

S1 by (x, t) 7→ e2πit, and for y ∈ ∂W ′
−(Σ̂i × [−1, 1]), we define fi(y) = −1.

We similarly define maps F ′i : ∂W ′
+ → S1. Then, we consider the maps f =

f1 × . . .× fm : ∂W ′
+ →

⊔m
i=1 S

1 and f ′ = f ′1 × . . .× f ′m : ∂W ′
− →

⊔m
i=1 S

1.

The maps f and f ′ induce isomorphisms on first homology, and we know that

the inclusion maps i∗ : H1(∂W ′
+) → H1(W ′) and j∗ : H1(∂W ′

−) → H1(W ′) are

both isomorphisms.

π1(∂W ′
+) H1(∂W ′

+)

π1(W ′) H1(W ′) H1(S1 × . . .× S1)

π1(∂W ′
−) H1(∂W ′

−)

-

?

∼= i∗

PPPPPPPPPPPPq

f ′∗

- p p p p p p p p p p p p p p p p p p p p p p p p-α

-

6
∼= j∗

��
��

��
��

��
��1

f∗

We wish to extend to a map α : H1(W ′)→ H1(S1× . . .×S1); this is possible be-

cause f ′∗◦i−1
∗ = f∗◦j−1

∗ , by the Thom-Pontryagin construction and the fact that

i∗(µ
′
i) = j∗(µi). Therefore, we can extend to the map α : H1(W ′) → H1(S1 ×

. . .×S1), and because π1(S1× . . .×S1) ∼= Zm is abelian, we can also extend to

the map ᾱ : π1(W ′)→ π1(S1× . . .×S1). Then, knowing that the CW-complex⊔m
i=1 is an Eilenberg-Maclane space K(Zm, 1), we can extend the maps f, f ′ to a

map f̄ : W ′ → S1× . . .×S1. The preimage f̄−1((0, . . . , 0, 1, 0, . . . , 0)) = M is a

3-submanifold of W ′ such that ∂M = Σ̂′i
⊔

Σ̂i. This tells us that Σ̂′i and Σ̂i are

homologous, and so the generators {ai} and the generators {a′i} are homologous.

Therefore, H2(W ′) ∼= H2(W ′, ∂W ′
+)⊕{a′i}mi−1

∼= H2(W ′, ∂W ′
−)⊕{ai}mi−1, and so
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H2(W ′, ∂W ′
+) ∼= H2(W ′, ∂W ′

−). Furthermore, H2(W,∂W−) = H2(W ′, ∂W ′
+) is

generated by surfaces that intersect pairwise transversely exactly once. There-

fore, we have shown that H2(W ′, ∂W ′
−) also has such generators.

Lastly, we observe that Ŵ = Ŵ ′. As Ŵ is spin, so is Ŵ ′.

3. Let W be a 0-solve equivalence between L and L′ and let W ′ be a 0-solve

equivalence between L′ and L′′. Let V = W ∪ML′
W ′. We wish to show that

V is a 0-solve equivalence between L and L′′. The first condition of 0-solve

equivalence follows from the fact that W and W ′ are 0-solve equivalences. We

consider a Mayor-Vietoris sequence for V ,

→ H3(V )→ H2(W ∩ V ′) i∗,−j∗→ H2(W )⊕H2(W ′) � H2(V )
0→ H1(W ∩W ′)→

H1(W )⊕H1(W ′)→ H1(V )→

This tells us that H2(V ) ∼= H2(W )⊕H2(W ′)
<i∗(H2(W∩W ′)),−j∗(H2(W∩W ′))> . Using the splitting of

H2(W ) ∼= H2(W,∂W−)⊕H2(∂W−), we observe that the inclusion < i∗(H2(W ∩

W ′)),−j∗(H2(W∩W ′)) > maps isomorphically onto H2(∂W−) and trivially into

H2(W,∂W−). Therefore, H2(V ) ∼= H2(W,∂W−) ⊕ H2(W ′). Next, we consider

the long exact sequence of the pair (V, ∂V−).

→ H3(V, ∂V−)→ H2(∂V−)→ H2(V ) � H2(V, ∂V−)
0→ H1(∂V−)

∼=→ H1(V )→ .

This tells us that H2(V, ∂V−) ∼= H2(V )
H2(∂V−)

. Coupled with the splitting H2(W ′) ∼=

H2(W ′, ∂W ′
−)⊕H2(∂W ′

−), we have that

H2(V, ∂V−) ∼=
H2(W,∂W−)⊕H2(W ′, ∂W ′

−)⊕H2(∂W ′
−)

H2(∂V−)
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∼= H2(W,∂W−)⊕H2(W ′, ∂W ′
−).

Therefore, H2(V, ∂V−) has the desired generating set. Finally, we must show

that V̂ is a spin manifold. We show that the basis elements of H2(V̂ ) have even

self-intersection.

We know that the closures Ŵ and Ŵ ′ are spin manifolds. The generators

of H2(Ŵ ) are the surfaces {Li, Di} with self-intersection zero, capped Seifert

surfaces for each link component, {Σ̂i}, and capped surfaces {Ŝi}, where Si

is a surface in W realizing the null-homology between µi and µ′i. Similarly,

the generators of H2(Ŵ ′) are the surfaces {L′i, D′i} with self-intersection zero,

capped Seifert surfaces for each link component, {Σ̂′i}, with self-intersection

zero, and capped surfaces {Ŝ ′i}, where S ′i is a surface in W ′ realizing the null-

homology between µ′i and µ′′i . Then, the basis elements for H2(V̂ ) are the

surfaces {Li, Di}, {L′i, D′i}, {Σ̂′i}, and the capped surfaces {T̂i}, where Ti = Si∪µ′i

S ′i. Since the caps have no self-intersection, the self intersection T̂i · T̂i = Si ·

Si + S ′i · S ′i, but because Ŵ and Ŵ ′ are spin, Si · Si and S ′i · S ′i are both even.

Therefore, V̂ has even intersection form and is spin.

Proposition 4.5. If L ∼0 L
′ via a 0-solve equivalence W , and if V is a 0-solution

for L′, then L is 0-solvable, and V ′ = W
⊔
ML′

V is a 0-solution for L.

Proof. The first condition of 0-solvability, that i∗ : H1(ML) → H1(V ′) is an iso-

morphism, follows from the fact that W is a 0-solve equivalence and that V is a

0-solution.
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V

W

V ′

Figure 4.3: A 0-solution for L

We know that H2(V ) is generated by surfaces {Li, Di}ri=1 that intersect pair-

wise once, transversely. We also know that H2(W,∂W−) is generated by surfaces

{L′i, D′i}
g
i=1 that intersect pairwise once transversely. We wish to show the same

about H2(V ′).

We consider the Mayer-Vietoris sequence for V ′.

→ H3(V ′)→ H2(W ∩ V )
i∗,j∗→ H2(W )⊕H2(V )→ H2(V ′)

o→ H1(W ∩ V )→

H1(W )⊕H1(V )→

This gives us thatH2(V ′) ∼= H2(W )⊕H2(V )
<i∗(H2(W∩V )),j∗(H2(W∩V ))>

. However, H2(W ) ∼=H2(W,∂W−)⊕

H2(∂W−), and the inclusion < i∗(H2(W ∩ V )), j∗(H2(W ∩ V )) > maps isomorphi-

cally to the H2(∂W−) and maps trivially into H2(W,∂W−). Therefore, H2(V ′) ∼=

H2(W,∂W−) ⊕H2(V ). This tells us that H2(V ′) has the proper generating set, and

so V ′ is a 0-solution for L.

Proposition 4.6. For L = K1 ∪ . . . ∪ Km and L′ = K ′1 ∪ . . . ∪ K ′m two

m-component 0-solve equivalent links, the corresponding k-component sublinks J =

Ki1 ∪ · · · ∪Kik and J ′ = K ′i1 ∪ · · · ∪K
′
ik

, where ij = i′j ∈ {1, . . . ,m} are also 0-solve
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equivalent.

Proof. Note that, by induction and reordering both links simultaneously, it suffices

to show that the sublinks obtained by removing the first component of L and L′ are

0-solve equivalent. Let J = K2 ∪ · · · ∪Km and J ′ = K ′2 ∪ · · · ∪K ′m.

Let W be the 4-manifold realizing the 0-solve equivalence between L and L′. We

form a cobordism between MJ and MJ ′ by attaching two 0-framed 2-handles to ∂W

with attaching spheres µ1 and µ′1, the meridians of the link components K1 and K ′1.

This yields a new 4-manifold, V , with ∂V = MJ

⊔
−MJ ′ . We wish to show that V is

a 0-solve equivalence between J and J ′.

By definition, i∗ : H1(ML) ↪→ H1(W ) and j∗ : H1(ML′) ↪→ H1(W ) are both iso-

morphisms. Moreover, H1(ML) ∼=< µ1, . . . , µm >∼= Zm andH1(M ′
L) ∼=< µ′1, . . . , µ

′
m >∼=

Zm. Considering the effect on homology of attaching a 2-cell and the fact that

i∗(µ1) = j∗(µ
′
1), we see that the maps induced by inclusion, i∗ : H1(MJ)→ H1(V ) and

j∗ : H1(MJ ′)→ H1(V ) are both isomorphisms, and it still holds that i∗(µk) = j∗(µk)

for k 6= 1.

We now consider how H2(V ) differs from H2(W ). By attaching a 2-handle to W

along the curve µ1, we do not change second homology, as < i∗(µ1) > is infinite in

H1(W ). Then, attaching a 2-handle along the curve µ′1 creates an infinite cyclic direct

summand in H2(V ) generated by B, the oriented surface in V obtained by capping

off the meridians µ1 and µ′1 in W plus a surface in W realizing the null-homology

between µi and µ′i.

Next, we consider how H2(V, ∂V−) ∼= H2(V )
H2(∂V−)

differs from H2(W,∂W−) ∼= H2(W )
H2(∂W−)

.
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B	

Figure 4.4: The surface B ⊂ V

Let Σ′1 be a Seifert surface for L′1 in S3−N(L′) ⊂ML′ , and let S ′1 be a closed oriented

surface in ML′ obtained by capping off Σ′1 with the disk obtained from performing

zero-framed surgery on L′. We notice that S ′1 ⊂ ∂W− but S ′1 is not in ∂V−. From its

construction, we can assume that B is an annulus near µi and µ′i; therefore, we can

assume that B∩ML′ = µ′1, and so B intersects S ′1 transversely at precisely one point.

After possibly changing the orientation on B, we may assume that B · S ′1 = +1.

From Poincare duality, we have an intersection form H2(V, ∂V−)×H2(V, ∂V+)→ Z

where (S ′1, B) 7→ +1. Therefore, the class [S ′1] ∈ H2(V, ∂V−) is nontrivial, where S ′1

can be made disjoint from the generators of H2(W ), and so [S ′1] is a generator of

H2(V, ∂V−).

We have that H2(V, ∂V−) ∼= H2(W,∂W−) ⊕ Z ⊕ Z where the extra homology is

generated by {[B], [S ′1]}. We must show that H2(V, ∂V−) has generators that intersect

as in the definition of 0-solve equivalence.

So far, we have the the intersection matrix for H2(V, ∂V−) looks like:
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S ′1 B L1 D1 . . . Lg Dg



S ′1 0 1 0 0 . . . 0 0

B 1 ? γ1 γ2 . . . γ2g

L1 0 γ1

A
D1 0 γ2

...
...

...

Lg 0

Dg 0 γ2g

Here, A is the intersection matrix for H2(W,∂W−), {γi} are integers representing

the intersection of B with the generators of H2(W,∂W−), and ? is an integer repre-

senting the self-intersection B · B. We first seek to show that, for some choice of B,

we have ? = 0.

Considering the way we constructed V , we observe that any self-intersection of B

must occur in the interior of W . Moreover, B is a surface in Ŵ , the closure of the

0-solve equivalence W . Because Ŵ is even, we know that B · B ≡ 0 (mod2). We

introduce a change of basis to find a generator Bk that has trivial self-intersection.

Suppose that B · B = 2k where k < 0. Then, let S ′+1 be a push-off of the surface

S ′1. Let α1 be an arc in V from B to S ′+1 that does not intersect the other generators

{Li, Di} of H2(V, ∂V−). Let N(α1) be a tubular ε-neighborhood of α1, and define a

new surface B1 = B ∪ ∂N(α1)∪S ′+1 ; then, in homology, [B1] = [B+S ′1] Note that we

can choose the arc so that the orientation on our new surface matches up with the

original orientations on B and S ′1. This new surface B1 also intersects S ′1 exactly once
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transversely, and has self-intersectionB1·B1 = B·B+S ′1·S ′1+2(B·S ′1) = B·B+2. Since

B ·B = 2k, by repeating this process k times, we will have a surface Bk that intersects

S ′1 exactly once and has self intersection zero. Note that, if B ·B = 2k where k > 0, we

would let −S ′1 be the surface S ′1 with opposite orientation. We would then let α1 be an

arc from B to−S ′+1 and we would then define B1 as above. Under these conditions, the

homology class [B1] = [B−S ′1] andB1·B1 = B·B+2(B·−S ′1) = B·B−2. Therefore, we

have that [Bk] = [B± kS ′1], and we use this change of basis for H2(V, ∂V−), replacing

B with Bk.

B1

Figure 4.5: The new generator, B1

Next, we consider the intersection of Bk with the original generators {Li, Di}gi=1

of H2(W,∂W−). Suppose that Bk intersects some generator Λ ∈ {Li, Di} nontrivially.

Since Λ can be chosen to be disjoint from S ′1, we employ the same methods as above.

We take an arc α1 from Λ to ±S ′1 that doesn’t intersect Bk or the other generators

and we consider the surface Λ1 = Λ ∪N(α) ∪ ±S ′+1 . Then, Λ1 ·Bk = Λ ·Bk ± 1.
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By repeating this process enough times, we come up with a set of generators

{S ′1, Bk,Λ1, . . . ,Λ2g} of H2(V, ∂V−) with the intersection matrix

0 1 0 0 . . . 0 0

1 0 0 0 . . . 0 0

0 0 0 1 . . . 0 0

0 0 1 0 . . . 0 0

...
...

...
... . . .

...
...

0 0 0 0 . . . 0 1

0 0 0 0 . . . 1 0



These surfaces generate H2(V, ∂V−) and they have the appropriate algebraic in-

tersections. We can modify these surfaces by tubing to get a set of generators with

the desired geometric intersection.

Finally, we note that V̂ , the closure of V , and Ŵ , the closure of W are the same

manifold by construction. Since Ŵ is spin, then V̂ is spin, and so V is a 0-solve

equivalence between J and J ′.



Chapter 5

Classification of Links up to

0-Solve Equivalence

5.1 Statement of Classification Theorem

In this chapter, we give a classification of links up to 0-solve equivalence. From this,

we give necessary and sufficient conditions for a link to be 0-solvable. These results

are consequences of the following theorem, which relates the condition of 0-solve

equivalence to band-pass equivalence and to the Arf and Milnor’s invariants.

Theorem 5.1. For two ordered, oriented m-component links L = K1 ∪ . . . ∪ Km

and L′ = K ′1 ∪ . . . ∪ K ′m, the following conditions are equivalent:

1. L and L′ are 0-solve equivalent,

2. L and L′ are band-pass equivalent,

3. Arf(Ki) = Arf(K ′i)

36
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µ̄L(ijk) = µ̄L′(ijk)

µ̄L(iijj) ≡ µ̄L′(iijj) (mod2).

As an immediate corollary to this theorem, if L′ is the m-component unlink, we

have the following result.

Corollary 5.2. For an ordered, oriented m-component link L = K1 ∪ . . . ∪ Km,

the following conditions are equivalent:

1. L is 0-solvable,

2. L is band-pass equivalent to the m-component unlink,

3. Arf(Ki) = 0

µ̄L(ijk) = 0

µ̄L(iijj) ≡ 0 (mod2) .

We will prove Theorem 5.1 in the following sections by first showing (2) ⇒ (1),

then showing that (1)⇒ (3), and finally, that (3)⇒ (2).

5.2 Proof of Theorem 5.1, Step 1

In this section, we will prove the first step of Theorem 5.1 by showing the following

lemma.

Lemma 5.3. If two ordered, oriented m-component links L = K1 ∪ . . . ∪ Km and

L′ = K ′1 ∪ . . . ∪ K ′m are band-pass equivalent, then L and L′ are 0-solve equivalent.
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Proof. Because band-pass equivalence and 0-solve equivalence are both equivalence

relations and thus transitive, we may assume that L and L′ differ by a single band-

pass move. Recall that we require the strands of each band to belong to the same

link component.

L L′

Figure 5.1: L and L′ differ by a band-pass move.

We first consider the 4-manifold ML × [0, 1]. Then, we attach two 0-framed 2-

handles to ML×{1} in the boundary of ML× [0, 1] along the attaching curves γi and

γj pictured below.

ML × {1}

00

KiKj

γi γj
0 0

Figure 5.2: Attaching curves in ML × [0, 1]

In the 3-manifold ML × [0, 1], we slide both strands of link component Ki over

the 2-handle attached to γj and we slide both strands of link component Kj over the

2-handle attached to γi. Note that, in figure 5.3, the strands and attaching curves
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pictured each have a zero surgery coefficient; we perform the handle-slides in the

closed manifold ML.

Figure 5.3: Performing a Band-Pass via Handleslides

The resulting 3-manifold, after sliding all four strands, is ML′ . Therefore, we

consider the 4-manifold W = ML × [0, 1] ∪ {two 2-handles}, and we see that W is a

cobordism between ML and −ML′ . We wish to show that W is a 0-solve equivalence.

W=

ML

−ML′

Figure 5.4: A cobordism between ML and −ML′

As the attaching curves γi and γj are null-homologous, attaching the 2-handles has

no effect on H1. Thus, we see that i∗ : H1(ML′)→ H1(W ) and j∗ : H1(ML)→ H1(W )
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are isomorphisms.

Comparing the second homology of W to that of ML× [0, 1], we see that H2(W ) ∼=

H2(ML × [0, 1])⊕ Z⊕ Z ∼= H2(ML)⊕ Z⊕ Z with the added homology generated by

Λ̂1 and Λ̂2, where Λ̂i is the surface Λi pictured below capped off with a 2-cell from

the attached 2-handles.

Λ1 Λ2

Figure 5.5: New Generators for H2(W )

By pushing the interior of Λ1 very slightly into int(ML × [0, 1]) ⊂ W , we can

assure that Λ̂1 ∩ Λ̂2 = {p}, where p is a point which lies on one attaching curve.

We choose orientations on Λ̂1 and Λ̂2 to ensure that Λ̂1 · Λ̂2 = +1. We can also

assure that Λ̂1 and Λ̂2 are disjoint from the generators of H2(ML× [0, 1]). Therefore,

H2(W,∂W−) ∼= H2(W )
H2(∂W−)

is generated by {Λ̂1, Λ̂2}, which satisfies the second condition

of being a 0-solve equivalence.

Finally, we must show that the closure Ŵ is a spin manifold. We will show that the

intersection form QŴ is even. The generators of H2(Ŵ ) are

{Σ̂1, . . . , Σ̂m, F1, . . . , Fm, Λ̂1, Λ̂2}, where Σ̂i is an oriented Seifert surface for Ki, closed

off with a disk in ML×{0}, Fi is the annulus µi× [0, 1] closed off with a disk from the

process of closing W , and Λ̂i are the surfaces mentioned above. We can assure that
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the Λ̂i are disjoint from the Fi, and so the intersection matrix for QŴ =
⊕  0 1

1 0


These conditions show that W is a 0-solve equivalence between L and L′.

5.3 Proof of Theorem 5.1, Step 2

In this section, we will prove the second step of Theorem 5.1 using the following three

lemmas.

Lemma 5.4. Suppose that L = K1 ∪ . . . ∪ Km and L′ = K ′1 ∪ . . . ∪ K ′m are two

ordered, oriented, m-component, 0-solve equivalent links. Then, Arf(Ki) = Arf(K ′i).

Proof. By Proposition 4.6, K1 and K ′i are 0-solve equivalent knots. By Proposition

4.5, either both Ki and K ′i are 0-solvable knots, or neither Ki nor K ′i are 0-solvable

knots. If both Ki and Ki are 0-solvable knots, we know that Arf(Ki) = Arf(K ′i) = 0.

If neither Ki nor K ′i are 0-solvable knots, we know that Arf(Ki) = Arf(K ′i) = 1.

Either way, we must have that Arf(Ki) = Arf(K ′i).

Lemma 5.5. Suppose that L = K1 ∪ . . . ∪ Km and L′ = K ′1 ∪ . . . ∪ K ′m are two

ordered, oriented, m-component, 0-solve equivalent links. Then, µ̄L(ijk) = µ̄L′(ijk).

Proof. Consider the sublinks J = Ki ∪Kj ∪Kk and J ′ = K ′i ∪K ′j ∪K ′k of L and L′,

respectively. By Proposition 4.6, J and J ′ are 0-solve equivalent links; we wish to

show that µ̄J(123) = µ̄J ′(123).
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Let W be a 4-manifold realizing the 0-solve equivalence between J and J ′ From

the 0-solve equivalence, we are given that i∗ : H1(MJ)→ H1(W ) and j∗ : H1(−MJ ′ →

H1(W ) are isomorphisms.

We choose oriented Seifert surfaces Σ1,Σ2,Σ3 for components K1, K2, K3 in S3−J

such that the pairwise intersections Σi ∩ Σj
∼= S1. Similarly, we choose oriented

Seifert surfaces Σ′1,Σ
′
2,Σ

′
3 for link components K ′1, K

′
2, K

′
3 in S3 − M−J ′ with the

same conditions.

In MJ and MJ ′ , each Seifert surface Σi and Σ′i is capped off with a disk. Consid-

ering each disk with our chosen Seifert surface, we have established closed surfaces

Σ̂1, Σ̂2, Σ̂3 ⊂ MJ and Σ̂′1, Σ̂
′
2, Σ̂

′
3 ⊂ MJ ′ . Within each 3-manifold, the surfaces inter-

sect pairwise in a circle. The intersections Σ̂1∩ Σ̂2∩ Σ̂3 ⊂MJ and Σ̂′1∩ Σ̂′2∩ Σ̂′3 ⊂MJ ′

are each a collection of triple points.

Using the Thom-Pontryagin construction, we define maps f1 : MJ → S1, f2 :

MJ → S1, and f3 : MJ → S1 using the following construction. We take a product

neighborbood Σ̂i × [−1, 1], where the +1 corresponds to the positive side of Σ̂i. We

define the map fi : Σ̂i× [−1, 1]→ S1 by (x, t) 7→ e2πit, and for y ∈Mj−(Σ̂i× [−1, 1]),

we define fi(y) = −1. We similarly define maps f ′1 : −MJ ′ → S1, f ′2 : −MJ ′ → S1,

and f ′3 : −MJ ′ → S1. Then, we consider the maps f = f1×f2×f3 : MJ → S1×S1×S1

and f ′ = f ′1×f ′2×f ′3 : MJ ′ → S1×S1×S1. The maps π1, π2, and π3 are the standard

projection maps, so that fi = πi ◦ f and f ′i = πi ◦ f ′.

The pre-image f−1((1, 1, 1)) = Σ̂1∩Σ̂2∩Σ̂3 is a collection of isolated points {pi}ki=1

in MJ ; the pre-image f ′−1((1, 1, 1)) = Σ̂1
′
∩ Σ̂2

′
∩ Σ̂3

′
is a collection of isolated points

{p′i}k
′
i=1 in MJ ′ . We also have a framing on the surfaces Σ̂i and Σ̂′i given by the normal
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× ×f πi1 1 1 1

Σ̂1 Σ̂2

Σ̂3

Σ̂′1 Σ̂′2

Σ̂′3

Figure 5.6: The Thom-Pontryagin Construction on MJ and −MJ ′

direction to the tangent plane TxΣ̂i at each point x ∈ Σ̂i. Then, for each point

pi ∈ f−1((1, 1, 1)) and for each point p′i ∈ f ′−1((1, 1, 1)), we assign a sign of +1 if the

orientation of pi (respectively, p′i) induced by the framings on the surfaces agrees with

the orientation on MJ (respectively, −MJ ′), and a sign of −1 otherwise. Then, the

Milnor’s invariant µ̄J(123) = Σk
i=1(−1)εi , where εi = ±1 is the sign of the point pi.

The Milnor’s invariant µ̄J ′(123) = Σk
i=1(−1)ε

′
i , where ε′i = ±1 is the sign of the point

p′i. We wish to show that these two quantities are equal.

The maps f : MJ → S1×S1×S1 and f ′ : −MJ ′ → S1×S1×S1 induce maps on first

homology, f∗ : H1(MJ)→ H1(S1 × S1 × S1) and f ′∗ : H1(−MJ ′)→ H1(S1 × S1 × S1)

that are isomorphisms. As W is a 0-solve equivalence, the inclusion maps i∗ and j∗

are also isomorphisms.
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π1(MJ) H1(MJ)

π1(W ) H1(W ) H1(S1 × S1 × S1)

π1(−MJ ′) H1(−MJ ′)

-

?

∼= i∗

PPPPPPPPPPPPPq

f∗

- p p p p p p p p p p p p p p p p p p p p p p p p p p-α

-

6
∼= j∗

��
��

��
��

��
��1

f ′∗

We wish to extend to a map α : H1(W ) → H1(S1 × S1 × S1); this is possible

because f∗ ◦ i−1
∗ = f ′∗ ◦ j−1

∗ , by the Thom-Pontryagin construction and the fact that

i∗(µi) = j∗(µi). Therefore, we can extend to the map α : H1(W )→ H1(S1×S1×S1),

and because π1(S1 × S1 × S1) ∼= Z3 is abelian, we can also extend to the map

ᾱ : π1(W ) → π1(S1 × S1 × S1). Then, knowing that the CW-complex S1 × S1 × S1

is an Eilenberg-Maclane space K(Z3, 1), we can extend the maps f, f ′ to a map

f̄ : W → S1 × S1 × S1.

f̄−1((1, 1, 1))

Figure 5.7: Framed Cobordism between f−1((1, 1, 1)) and f ′−1((1, 1, 1))

The 1-manifold f̄−1((1, 1, 1)) in W is a framed cobordism between f−1((1, 1, 1))

and f ′−1((1, 1, 1)). This tells us that µ̄J(123) = Σk
i=1(−1)εi and µ̄J ′(123) = Σk

i=1(−1)ε
′
i

must be equal.
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Lemma 5.6. Suppose that L = K1 ∪ . . . ∪ Km and L′ = K ′1 ∪ . . . ∪ K ′m are two

ordered, oriented, m-component, 0-solve equivalent links. Then, µ̄L(iijj) ≡ µ̄L′(iijj)

(mod2).

Proof. Consider the sublinks J = Ki∪Kj and J ′ = K ′i∪K ′j of L and L′, respectively.

By Proposition 4.6, J and J ′ are 0-solve equivalent links; we wish to show that

µ̄J(1122) ≡ µ̄J ′(1122) mod 2.

Let W be a 4-manifold realizing the 0-solve equivalence between J and J ′. We

know that i∗ : H1(MJ)
∼=→ H1(W ) ∼= Z2 and j∗ : H1(MJ ′)

∼=→ H1(W ) ∼= Z2 are both

isomorphisms. We can choose oriented Seifert surfaces Σ1,Σ2 for J1 and J2 in S3− J

such that Σ1 ∩Σ2 = A ∼= S1 [4]. Similarly, we choose oriented Seifert surfaces Σ′1,Σ
′
2

for J ′1 and J ′2 in S3 − J ′ such that Σ′1 ∩ Σ′2 = A′ ∼= S1.

In performing zero-surgery on the links J and J ′, we cap off the longitude of each

link component with a disk. Considering each disk with our chosen Seifert surface,

we have established closed surfaces Σ̂1, Σ̂2 ⊂ MJ and Σ̂′1, Σ̂
′
2 ⊂ MJ ′ . By capping off

the Seifert surfaces, we have not changed their intersections.

Using the Thom-Pontryagin construction, we define maps f1 : MJ → S1 and

f2 : MJ → S1. We take a product neighborhood Σ̂i × [−1, 1], where +1 corresponds

to the positive side of Σ̂i. We define fi : Σ̂i × [−1, 1] → S1 by (x, t) 7→ e2πit, and for

y ∈MJ − (Σ̂i× [−1, 1]), we define fi(y) = −1. We similarly define maps f ′1 : −MJ ′ →

S1 and f ′2 : MJ ′ → S1. We then consider the maps f = f1 × f2 : MJ → S1 × S1 and

f ′ = f ′1 × f ′2 : MJ ′ → S1 × S1. The maps π1, π2 : S1 × S1 → S1 are the standard

projection maps, such that πi ◦ f = fi.
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×f

f ′

πi
1 1 1

Σ̂1 Σ̂2

Σ̂′1 Σ̂′2

A

A′

Figure 5.8: The Thom-Pontryagin Construction on MJ and −MJ ′

The maps f : MJ → S1 × S1 and f ′ : −MJ ′ → S1 × S1 induce maps on first

homology, f∗ : H1(MJ) → H1(S1 × S1) and f ′∗ : H1(−MJ ′) → H1(S1 × S1) that are

isomorphisms. As W is a 0-solve equivalence, the inclusion maps i∗ and j∗ are also

isomorphisms.

H1(MJ)

H1(W ) H1(S1 × S1)

H1(−MJ ′)

?

∼= i∗

HHH
HHHj

f∗

p p p p p p p p p p-α
6∼= j∗

��
��

��*

f ′∗

We wish to extend to a map α : H1(W ) → H1(S1 × S1); this is possible because

f∗ ◦ i−1
∗ = f ′∗ ◦ j−1

∗ , by the Thom-Pontryagin construction and the fact that i∗(µi) =

j∗(µi). Therefore, we can extend to the map α : H1(W )→ H1(S1×S1), and because

π1(S1×S1) ∼= Z2 is abelian, we can also extend to the map ᾱ : π1(W )→ π1(S1×S1).

Then, knowing that the CW-complex S1×S1 is an Eilenberg-Maclane space K(Z2, 1),

we can extend the maps f, f ′ to a map f̄ : W → S1 × S1.
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The pre-image f̄−1((1, 1)) is a surface in W with boundary A
⊔
−A′ in ∂W . In

S1×S1, we consider Dp, an ε- neighborhood of the point p = (1, 1). Let q = (e2πiε, 1)

be a point on the boundary of Dp. Then, f̄−1(q) is a surface in W with boundary

B
⊔
−B′, where B is just the curve A pushed off in the positive direction of Σ̂1 and B′

is the curve A′ pushed off in the positive direction of Σ̂′1. Furthermore, these surfaces

f̄−1(p) and f̄−1(q) are disjoint in W , and if we consider a path γ(t) = (e2πiεt; 1), t ∈

[0, 1], the pre-image f̄−1(γ(t)) is a 3-submanifold of W that is cobounded by the

surfaces f̄−1(p) and f̄−1(q).

f

f̄
Dp

q

Figure 5.9: Surface pre-images under the map f̄

The Sato-Levine invariants of J and J ′, as defined in chapter 3, are the quantities

µ̄J(1122) = lk(A,B) and µ̄J ′(1122) = lk(A′, B′). Therefore, we wish to show that

lk(A,B) ≡ lk(A′, B′) (mod2).

To show this, we construct the closure Ŵ from W by first attaching 0-framed

2-handles to the meridians µ1 and µ2 of link J and to meridians µ′1 and µ′2 of link J ′

and then attaching a 4-handle B4 to the S3 boundary component and a 0-handle B4

to the −S3 boundary component.



48

The curves A and B, when thought of in the boundary of the 4-manifold W ∪µ1

(D2 × D2) ∪µ2 (D2 × D2), each bound surfaces in the 4-handle B4. We call these

surfaces S and T . Similarly, the curves A′ and B′, when thought of in the boundary

of the 4-manifold W ∪µ′1 (D2×D2)∪µ′2 (D2×D2), each bound surfaces in the 0-handle

B4. We call these surfaces S ′ and T ′. Noting that µ̄J(1122) = lk(A,B) = S · T and

µ̄J ′(1122) = lk(A′, B′) = S ′ ·T ′, we observe that we wish to show that S ·T+S ′ ·T ′ ≡ 0

(mod2). We may also form closed surfaces in Ŵ by letting Ŝ = S ∪A f̄−1(p) ∪A′ S ′

and T̂ = T ∪B f̄−1(q) ∪B′ T ′. Because f̄−1(p) ∩ f̄−1(q) = ø, the problem reduces to

showing that Ŝ · T̂ ≡ 0 (mod2).

Ŝ

T̂

Figure 5.10: Surfaces Ŝ and T̂ in Ŵ

We observe that the surface S ∪A f−1(γ(t)) ∪B T ⊂ B4 is a closed surface, and
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therefore is the boundary of a 3-chain. Similarly, the surface S ′∪A′ f ′−1(γ(t))∪B′ T ′ ⊂

B4 is a closed surface, and therefore is the boundary of a 3-chain. Piecing together

these 3-chains, we see that Ŝ and T̂ cobound a 3-chain, and so the homology classes

[Ŝ] ∈ H2(Ŵ ) = [T̂ ] ∈ H2(Ŵ ) are equal. Finally, we recall that, as Ŵ is the closure

of a 0-solve equivalence W , we require that Ŵ be spin, or equivalently, that the

intersection form QŴ be even. Thus, we have that Ŝ ·T̂ = QŴ ([Ŝ], [T̂ ]) = QŴ ([Ŝ], [Ŝ])

is even. This tells us that µ̄J(1122) ∼= µ̄J ′(1122) (mod2).

5.4 Proof of Theorem 5.1, Step 3

In this section, we conclude the proof of Theorem 5.1 by showing the following lemma.

Lemma 5.7. If L = K1 ∪ . . . ∪ Km and L′ = K ′1 ∪ . . . ∪ K ′m are two ordered,

oriented, m-component links such that

1. Arf(Ki) = Arf(K ′i),

2. µ̄L(ijk) = µ̄L′(ijk),

3. µ̄L(iijj) ≡ µ̄L′(iijj)(mod2),

then L and L′ are band-pass equivalent.

Proof. We will use Taniyama and Yasuhara’s result and proof of the following theorem

[21].

Theorem 5.8. [Taniyama-Yasuhara] [21] Let L = K1 ∪ . . . ∪ Km and L′ =

K ′1 ∪ . . . ∪ K ′m be ordered, oriented, m-component links. The following conditions

are equivalent:
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1. L and L′ are clasp-pass equivalent links,

2. a2(Ki) = a2(K ′i)

a3(Ki ∪Kj) ≡ a3(K ′i ∪K ′j) (mod2)

and µ̄L(ijk) = µ̄L′(ijk),

3. a2(Ki) = a2(K ′i)

Arf(Ki ∪Kj) = Arf(K ′i ∪K ′j)

and µ̄L(ijk) = µ̄L′(ijk).

Here, aj indicates the jth coefficient of the Conway polynomial, as defined in [22].

Recall that a clasp-pass move is defined by the skein relation in the following figure.

In particular, we note that a clasp-pass move is also a band-pass move, though the

converse is not true.

−→

Figure 5.11: Clasp-pass move

Taniyama and Yasuhara prove the direction (2) ⇒ (1). In the following propo-

sition, we show that the three assumptions in Lemma 5.7, Arf(Ki) = Arf(K ′i),

µ̄L(ijk) = µ̄L′(ijk), and µ̄L(iijj) ≡ µ̄L′(iijj)(mod2), are very similar to Taniyama

and Yasuhara’s assumptions that a2(Ki) = a2(K ′i), a3(Ki ∪ Kj) ≡ a3(K ′i ∪ K ′j)

(mod2), and µ̄L(ijk) = µ̄L′(ijk).
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Proposition 5.9. Let L = K1 ∪ . . . ∪ Km and L′ = K ′1 ∪ . . . ∪ K ′m be ordered,

oriented, m-component links. The following conditions are equivalent:

1. a2(Ki) ≡ a2(K ′i) (mod2)

a3(Ki ∪Kj) ≡ a3(K ′i ∪K ′j) (mod2)

µ̄L(ijk) = µ̄L′(ijk),

2. Arf(Ki) = Arf(K ′i),

µ̄L(ijk) = µ̄L′(ijk),

µ̄L(iijj) ≡ µ̄L′(iijj)(mod2).

Proof. Again, here aj refers to the jth coefficient of the Conway polynomial of a link,

∆L(z) = a0 + a1z + a2z
2 + a3z

3 + . . . , as defined in [22]. Thus, aj refers to the

coefficient of the term zj in the Conway polynomial.

In [14], Kauffman shows that knotsKi andK ′i are band-pass equivalent⇔ a2(Ki) ≡

a2(K ′i)(mod2)⇔ Arf(Ki) = Arf(K ′i).

In [3], Cochran writes the general Conway polynomial of a link L as ∆L(z) =

zm−1(b0 + b2z
2 + · · · + b2nz

2n) where m is the number of components of L. The

condition on links L and L′ that a3(Ki ∪ Kj) ≡ a3(K ′i ∪ K ′j) (mod2) says that, for

every 2-component sublink J = Ki ∪Kj of L and J ′ = K ′i ∪K ′j of L′, the coefficient

on the cubic term of ∆J(z) is equivalent (mod2) to the cubic term of ∆J ′(z). Using

Cochran’s notation for a 2-component link, ∆J(z) = z(b0 + b2z
2 + · · · + b2nz

2n).

Therefore, the cubic term of the Conway polynomial has coefficient b2, so a3(J) =

b2(J) and a3(J ′) = b2(J ′). Then Corollary 4.2 in [3] gives that, for a 2-component

link J , the coefficient b0(J) = −µ̄J(12), and if b0(J) = 0, then b2(J) = µ̄J(1122).
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Since we are assuming that all pairwise linking numbers of L and L′ vanish, we

have that µ̄J(1122) = b2(J) = a3(J) and µ̄J ′(1122) = b2(J ′) = a3(J ′). Thus, the

condition that a3(Ki ∪Kj) ≡ a3(K ′i ∪K ′j) (mod2) is equivalent to the condition that

µ̄L(iijj) ≡ µ̄L′(iijj)(mod2).

To complete the proof of Lemma 5.7, we adapt Taniyama and Yasuhara’s proof

to show the following proposition.

Proposition 5.10. For two ordered, oriented, m-component links L = K1 ∪ . . . ∪ Km

and L′ = K ′1 ∪ . . . ∪ K ′m, if

1. a2(Ki) ≡ a2(K ′i) mod 2,

2. a3(Ki ∪Kj) ≡ a3(K ′i ∪K ′j) mod 2, and

3. µ̄L(ijk) = µ̄L′(ijk),

then L and L′ are band-pass equivalent.

Proof. Given that all pairwise linking numbers of L and L′ vanish, Taniyama and

Yasuhara show that L and L′ are both delta-equivalent to the m-component unlink

Um, and therefore, that L and L′ can both be obtained from Um by inserting a

sequence of Borromean rings, as pictured in the following skein relation.

We note that the feet of the Borromean rings insertion can attach to any part

of the link. In this way, a Borromean rings insertion may involve one, two, or three

different link components.

Definition 5.11. [Taniyama-Yasuhara]
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Figure 5.12: A Borromean Rings Insertion

A Borromean chord C is a neighborhood of a 3-ball containing a Borromean

insertion and a neighborhood of its attaching bands.

We say that a chord C is of type (i) if each of the bands in the Borromean ring

insertion attach to the ith link component. C is of type (ij) if the bands attach to the

ith and jth components, and C is of type (ijk) if the bands attach to the ith, jth, and

kth link components.

In [21] Lemma 2.5, Taniyama and Yasuhara show that any ordered, oriented,

m-component link L is clasp-pass equivalent to an ordered, oriented, m-component

link J , where J is formed from Um by Borromean ring insertion, where J is of the

following form.



54

1. Each Borromean chord of J of type (ijk) is contained in a 3-ball as illustrated

in (a) or (b), and for each set of components i, j, k, not both (a) and (b) occur.

(a) (b)

Figure 5.13: Borromean chords of type (ijk).

2. Each Borromean chord of J of type (ij) is contained in a 3-ball as illustrated in

(c).

(c)

Kj

Ki

Figure 5.14: Borromean chords of type (ij)

Furthermore, Taniyama and Yasuhara show in Lemma 2.5 that any two Bor-

romean chords of type (ij) cancel each other [21]. Therefore, for each i < j ≤ m,

we may have at most one Borromean chord of type (ij) as in (c).

3. Each Borromean chord of J of type (i) is contained in a 3-ball as illustrated in
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(e) or (f), and for each component, not both (e) and (f) occur.

(e) (f)

Figure 5.15: Borromean chords of type (i)

Therefore, let link L be clasp-pass equivalent to a link J of the above form, and let

link L′ be clasp-pass equivalent to a link J ′ of the above form. Using our assumptions

on link L and L′, we claim that J and J ′ are band-pass equivalent.

By calculation, µ̄L(ijk) is the signed number of Borromean chords of type (ijk),

with sign +1 for chords as in figure (a) and sign −1 for chords as in figure (b). Given

that µ̄L(ijk) = µ̄L′(ijk), we know that link J and link J ′ have identical Borromean

chords of type (ijk).

Cited by Taniyama and Yasuhara [21] and due to a result of Hoste [13], for a

link L = K1 ∪ . . . ∪ Km, a3(Ki ∪ Kj) ≡ 0(mod2) if and only if there are an

even number of Borromean chords of type (ij). Therefore, as we are assuming that

a3(Ki ∪Kj) ≡ a3(K ′i ∪K ′j) (mod2), we know that for every choice of i and j, both J

and J ′ have either one or zero Borromean chords of type (ij).

Links L and J are clasp-pass equivalent, and links L′ and J ′ are clasp-pass equiv-

alent. The coefficient a2 is preserved under clasp-pass equivalence [21]. In figure 5.15,

the closure of (e) is a trefoil knot, and the closure of (f) is the figure eight knot. The
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invariants a2(trefoil) = 1 and a2(figure eight) = −1. As the coefficient a2 is additive

under the connected sum of knots, the number of Borromean chords of type (i) in

link J is given by |a2(Ki)|, and the number of Borromean chords of type (i) in link

J ′ is given by |a2(K ′i)|.

Since a2(trefoil) ≡ a2(figure eight) (mod2), (e) and (f) are band-pass equivalent

[14]. Therefore, we may assume that all Borromean chords of both J and J ′ of

type (i) are as illustrated in figure 5.15 (e). By enforcing the condition that a2(Ki) ≡

a2(K ′i) mod 2, we are assuming that links J and J ′ have the same parity of Borromean

chords of type (i), all as in figure 5.15 (e). In Lemma 2.5, Taniyama and Yasuhara

show that any two such Borromean chords will cancel (see in particular, [21] Figure

15). Therefore, for each i, we may assume that J and J ′ both have either one or zero

Borromean chords of type (i).

Therefore, we see that links J and J ′ are band-pass equivalent. We have that

L ∼Clasp-Pass J ∼Band-Pass J
′ ∼Clasp-Pass L

′. Recalling that a clasp-pass move is also a

band-pass move, we conclude that L and L′ are band-pass equivalent.

5.5 Classifying Links up to 0-Solve Equivalence

As a direct result of Theorem 5.1, the 0-solve equivalence class of a link L = K1 ∪ . . . ∪Km

is characterized by the three algebraic invariants, Arf(Ki), µ̄L(ijk), and µ̄L(iijj).
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Corollary 5.12. For each m,

Fm−0.5

Fm0
∼= Zm

2 ⊕ Z(m
3 ) ⊕ Z(m

2 )
2

Proof. Given a link L = K1 ∪ . . . ∪ Km, each component Ki has an Arf invariant,

Arf(Ki) ∈ Z2. Every 3-component sublink J = Ki ∪ Kj ∪ Kk ⊂ L has a Milnor’s

invariant µ̄J(123) ∈ Z, and every 2-component sublink J = Ki ∪ Kj ⊂ L has a

Sato-Levine invariant µ̄J(1122)(mod2) ∈ Z2.

We can use this corollary to choose representatives for each 0-solve equivalence

class of m-component links. We note that the trefoil knot has Arf invariant 1. The

Whitehead link has µ̄L(1122) = 1. The Borromean rings have µ̄L(123) = ±1. These

links are pictured in the following figure.

Arf(K) = 1 µ̄L(1122) = 1 µ̄L(123) = ±1

Figure 5.16: Trefoil, Whitehead Link, and Borromean Rings

For each element (a1, . . . , am, b1, . . . , b(m
3 ), c1, . . . , c(m

2 )) ∈ Zm
2 ⊕ Z(m

3 ) ⊕ Z(m
2 )

2 , we

choose a link representative J = J1∪· · ·∪Jm in the following way. The ith component

of the representative will be either the unknot or the trefoil knot, according to if ai is 0

or 1. We order the triples of components (Ji, Jj, Jk) lexicographically. For the ith triple

(Ji, Jj, Jk), link components, we insert |ci| Borromean rings with sign corresponding

to the sign of ci. We also order the pairs of components (Ji, Jj) lexicographically.
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For the ith pair (Ji, Jj), components Ji and Jj form an unlink or a Whitehead link

according to if ci is 0 or 1.

For example, when m = 2, we have an eight element group, C2/F2
0
∼= Z2

2 ⊕ Z2,

which are represented by the eight two-component links in the following figure.

(0,0,0)

(1,0,0)

(0,1,0)

(1,1,0)

T

T T

T

(0,0,1) (1,1,1)

(1,0,1) (0,1,1)

T

T

T

T

Figure 5.17: 2-component links up to 0-solve equivalence

The following figure shows the 3-component link representing (0, 0, 0, 1, 1, 1, 1) ∈

Z3
2 ⊕ Z⊕ Z3

2.

Figure 5.18: Example: A 3-component 0-solve equivalence class



Chapter 6

Gropes and Whitney Towers

Theorem 5.1 has a direct application to the study of gropes and Whitney towers.

Gropes and Whitney towers are geometric objects that play an important role in the

study of 4-manifolds. In this chapter, we introduce the notion of gropes and Whitney

towers and give results due to Conant, Schneiderman, and Teichner that will expand

the statement of Theorem 5.1.

6.1 Introducing Gropes and Whitney Towers

A grope is an oriented 2-complex created from joining oriented surfaces together in

a prescribed way. Gropes have a natural complexity known as a class. We give a

definition from [19].

Definition 6.1. A grope is a pair (2-complex, S1) with a class ∈ N. A class 1 grope

is defined to be the pair (S1, S1). A class 2 grope (S, ∂S) is a compact oriented

connected surface S with a single boundary component. For n > 2, a class n grope

59
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is defined recursively. Let {αi, βi}gi=1 be a symplectic basis for a class 2-grope S. For

any ai, bi ∈ N such that a1 + b1 = n and ai + bi ≥ n, a class n grope is formed by

attaching a class ai grope to αi and a class bi grope to βi.

Figure 6.1: A grope of class 4

We will consider gropes in B4 with the boundary of the grope embedded in the

S3 = ∂B4. Therefore, the boundary of a grope will be a knot. We may then consider

m disjointly embedded gropes, which together will bound an m-component link.

One reason that 4-manifolds are not well understood is that the Whitney move

to eliminate intersections of immersed surfaces fails in four dimensions. To perform

a Whitney move, we find a Whitney disk W(I,J) that pairs intersection points of two

surface sheets I and J in a 4-manifold. We then change one surface, using W(I,J)

as a guide. This is pictured in figure 6.2. In 4-dimensions, we can eliminate the

intersection between sheets I and J , but we do so at the cost of possibly creating a

new canceling pair of intersections, here between surface sheets I and K. We may

then look for another Whitney disk, W(I,K) to eliminate the new intersection. For

more detailed definitions and background on this subject, see [9].
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W(I,J)

I

J

K

−→

Figure 6.2: A Whitney disk and Whitney move

We give the following definition from [19]. An example of a Whitney tower is

given in figure 6.3.

Definition 6.2. • A surface of order 0 in a 4-manifold X is a properly immersed

surface. A Whitney tower of order 0 in X is a collection of order 0 surfaces.

• The order of a transverse intersection point between a surface of order n and a

surface of order m is n+m.

• A Whitney disk that pairs intersection points of order n is said to be a Whitney

disk of order (n+ 1).

• For n ≥ 0, a Whitney tower of order (n + 1) is a Whitney tower W of order n

together with Whitney disks pairing all order n intersection points of W . The

interiors of these top order disks are allowed to intersect each other as well as

allowed to intersect lower order surfaces.

We will consider Whitney towers in the 4-manifold B4. The sheets in our surfaces

will all be disks, and we may then consider the boundaries of these disks in ∂B4 = S3
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Figure 6.3: A Whitney tower

to be links in S3.

6.2 Applications to Theorem 5.1

Schneiderman relates curves bounding gropes to curves supporting Whitney towers

in the following theorem [19].

Theorem 6.3. [Schneiderman][19]

For any collection of embedded closed curves γi in the boundary of B4, the following

are equivalent:

1. {γi} bound disjoint properly embedded class n gropes gi in B4.

2. {γi} bound properly immersed 2-disks Di admitting an order (n − 1) Whitney

tower W in B4.

The following theorem, due to Conant, Schneiderman, and Teichner, relates Whit-

ney towers to the algebraic link invariants used in Theorem 5.1 [8].

Theorem 6.4. [Conant-Schneiderman-Teichner][8]
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A link L bounds a Whitney towerW of order n if and only if its Milnor invariants,

Sato-Levine invariants, and Arf invariants vanish up to order n.

We may then combine these results with Theorem 5.1 to obtain the following

result.

Corollary 6.5. For an ordered, oriented, m-component link L, the following are

equivalent.

1. L is 0-solvable.

2. L bounds disjoint, properly embedded gropes of class 2 in B4.

3. L bounds properly immersed disks admitting an order 2 Whitney tower in B4.



Chapter 7

Properties of 0.5-Solvable Links

7.1 Geometric Moves Preserving 0.5-Solvability

In this section, we identify several geometric moves on links that preserve the condi-

tion of 0.5-solvability. First, we show the equivalence of three geometric link moves.

Proposition 7.1. The double-delta move and the double half-clasp pass move are

both equivalent to a double Borromean rings insertion.

Proof. A double Borromean rings insertion is a geometric link move as pictured in

figure 7.1. We require that the strands of all bands belong to the same link component.

One double-delta move will undo a double Borromean rings insertion, which we

show in figure 7.2.

One double half-clasp pass move will also undo a double Borromean rings insertion,

which we show in figure 7.3.

64
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↔

Figure 7.1: A double Borromean rings insertion

∆∆↔ =

Figure 7.2: The double-delta move is equivalent to a double Borromean rings insertion

=
DHCP↔ =

Figure 7.3: The double half-clasp pass move is equivelent to a double Borromean

rings insertion

Therefore, the double-delta move, the double half-clasp pass move, and a double

Borromean rings insertion are all equivalent moves.

Proposition 7.2. The double half-clasp pass move (and thus, the double-delta move)

preserves 0.5-solvability.

Proof. Suppose that links L = K1 ∪ . . . ∪ Km and L′ = K ′1 ∪ . . . ∪ K ′m differ by
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a double half-clasp pass move. Suppose furthermore that L is 0.5-solvable and that

W is a 0.5-solution for L. We attach two 0-framed 2-handles D2×D2 to W along the

attaching curves pictured in Figure 7.4 in ∂W = ML.

ML

0

0

0

0

0

Figure 7.4: Attaching 2-handles to W .

We then perform the double half-clasp pass move by sliding strands of L over the

attached handles. Note, that in figure 7.5, each of the strands and attaching curves

pictured have an associated zero surgery coefficient; we perform the handle-slides in

the closed 3-manifold ML.

The resulting 4-manifold, W ′ = W ∪ {2-handles} has ∂W ′ = ML′ , and we wish

to show that W ′ is a 0.5-solution for L′. First, we note that the attaching spheres

of the 2-handles are null homologous in ML, so attaching the 2-handles does not

change first homology. As W is a 0.5-solution for L, the map induced by inclusion,

i∗ : H1(ML) → H1(W ), is an isomorphism, and so the map j∗ : H1(ML′) → H1(W ′)

is also an isomorphism.

From attaching the 2-handles, H2(W ′) ∼= H2(W )⊕Z⊕Z, where the extra homology

is generated by surfaces Λ̂1 and Λ̂2, where Λi are as pictured in Figure 7.6, and Λ̂i is

Λi closed off with a disk from the attached handles.
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Figure 7.5: Performing a double half-clasp pass move via handleslides

Λ1

Λ2

Figure 7.6: New generators for H2(W ′)

By pushing int(Λ2) slightly into W , we see that Λ̂1∩Λ̂2 = ∂Λ2∩Λ1 is a single point,

and we choose orientations on Λ̂i such that Λ̂1 · Λ̂2 = +1. This tells us that H2(W ′)

has the generating set required for W ′ to be a 0.5-solution for L′. Finally, we note

that the generators for π1(Λ̂1) are null homologous in H1(W ′), so π1(Λ̂1) ⊂ π1(W ′)(1).

Therefore, W ′ is a 0.5-solution for ML′ .

This gives us the following corollary.

Corollary 7.3. If an ordered, oriented, m-component link L = K1 ∪ . . . ∪ Km is
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double-delta equivalent to the m-component unlink, then L is 0.5-solvable.

7.2 Sato-Levine Invariants of 0.5-Solvable Links

From Theorem 5.1, we know that 0-solvable links have even Sato-Levine invariants.

In this section, we show that 0.5-solvable links must have vanishing Sato-Levine

invariants.

Theorem 7.4. For an ordered, oriented, m-component, 0.5-solvable link

L = K1 ∪ . . . ∪ Km, the Sato-Levine invariants µ̄L(iijj) = 0.

Proof. Let J = Ki ∪Kj be a 2-component sublink of L. Then, J is 0.5-solvable. Let

W be a 0.5-solution for J and let Ŵ be the closure of W obtained from attaching

0-framed 2-handles along the meridians µ1 and µ2 in MJ = ∂W and then attaching a

4-handle B4. We choose oriented Seifert surfaces Σ1 and Σ2 for K1 and K2 such that

Σ1 ∩ Σ2 = γ ∼= S1, and we let Σ̂i be the closure of Σi in MJ .

Using the Thom-Pontryagin construction, we define a map f : ∂W → S1 × S1.

Let Σ̂i × [−1, 1] be a product neighborhood of Σ̂i where the +1 corresponds to the

positive side of Σ̂i. We define maps f1 : MJ → S1 by f1(Σ̂1 × {t}) = e2πit, and for

y ∈MJ − (Σ̂1 × [−1, 1]), fi(y) = −1. We similarly define the map f2 : MJ → S1, and

we let f = f1 × f2 : MJ → S1 × S1. The maps π1 and π2 are the standard projection

maps, so that fi = πi ◦ f .

The map f : MJ → S1 × S1 induces an isomorphism on first homology, f∗ :
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H1(MJ) → H1(S1 × S1). As W is a 0.5-solution, the inclusion map i∗ is also an

isomorphism.

π1(MJ) H1(MJ)

π1(W ) H1(W ) H1(S1 × S1)

-

?

∼= i∗

PPPPPPPPPPq

f∗

- p p p p p p p p p p p p p p p p p p p p p p p p-α

We can then extend to a map α : H1(W ) → H1(S1 × S1), and because π1(S1 ×

S1) ∼= Z2 is abelian, we can also extend to the map ᾱ : π1(W ) → π1(S1 × S1).

Knowing that the CW-complex S1 × S1 is an Eilenberg-Maclane space K(Z2, 1), we

can extend the map f to a map f̄ : W → S1 × S1. The pre-image f̄−1
i (1) = Mi is a

3-submanifold of W such that ∂Mi = Σ̂i. Moreover, M1 ∩M2 = f̄−1((1, 1)) = F is a

surface F ⊂ W such that ∂F = γ. Furthermore, the curve γ bounds a disk S in the

attached 4-handle B4 ⊂ Ŵ , so we let F̂ = F ∪γ S be a closed surface in Ŵ .

Σ̂1 Σ̂2

M1 M2

F̂

f

f̄

×

Figure 7.7: The Thom-Pontryagin construction on W

In S1 × S1, we consider Dp, an ε-neighborhood of the point p = (1, 1). Let

q = (e2πiε, 1) be a point on the boundary of Dp. Then, f̄−1(q) is a surface F+ in
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W with boundary γ+, a push-off of the curve γ in MJ . F and F+are disjoint, as

they map to distinct points in S1 × S1. Furthermore, if we consider a path α(t) =

(e2πiεt, 1), t ∈ [0, 1], the pre-image f̄−1(α(t)) is a 3-submanifold of W that is cobound

by F and F+. We may also consider the surface F̂+ ⊂ Ŵ , a closure of F+ given by

attaching a surface T in the 4-handle to F+ along the curve γ+. Then, µ̄J(1122) =

lk(γ, γ+) = S · T = F̂ · F̂+, as surfaces F̂ and F̂+ can only intersect in their caps in

B4. We will use the following proposition to complete the proof.

Proposition 7.5. For α a simple closed curve in W , the homology class [α] ∈ H1(W )

is given by the pair (m1,m2) ∈ Z⊕ Z where mi = α ·Mi.

Proof. H1(W ) =< i∗(µ1), i∗(µ2) > is generated by the inclusion of the meridians of

the link components of J . Thus, the homology class [α] can be written as [α] =

m1[µ1] + m2[µ2] = (m1,m2). Recalling the Thom-Pontryagin construction, Σ̂i =

f−1
i (1) and Mi = f̄−1

i (1). We then see that the intersection µi ·Mj = δij. Therefore,

α ·Mi = mi. This says that the class [α] ∈ H1(W ) is given by the pair (m1,m2) such

that mi = α ·Mi.

Now, we consider the surfaces {Li, Di}ri=1 that generate H2(W ), where π1(Li) ⊆

π1(W )(1) = [π1(W ), π1(W )]. Choose the surfaces Li to be transverse to M1 and

M2. We may assume that {Li} ⊂ int(W ). For each i, consider the intersection

Li ∩ F = Li ∩M1 ∩M2. The intersection Li ∩M1 = bi, where bi is some circle(s)

on surface Li. Because π1(Li) ⊆ π1(W )(1), it must be true that [bi] = 0 ∈ H1(W ).

By the proposition, we then must have that bi · M2 = 0 for each i. This tells us

that Li · F̂ = 0 for each i. We note that, as F and F+ cobound a 3-manifold in W ,
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Li · F̂+ = 0 as well.

We then can write the surfaces F̂ and F̂+ in terms of the generators {Li, Di} of

H2(Ŵ ). Let F̂ =
∑r

i=1 (aiLi + biDi) and let F̂+ =
∑r

i=1 (a+
i Li + b+

i Di). For each i,

0 = Li · F̂ = Li ·
∑r

i=1 (aiLi + biDi) = bi and 0 = Li · F̂+ = Li ·
∑r

i=1 (a+
i Li + b+

i Di) =

b+
i . Thus, all of the bi’s = 0 and all of the b+

i ’s = 0. Finally, we can conclude that

µ̄J(1122) = F̂ · F̂+ = (
∑r

i=1 aiLi) · (
∑r

i=1 a
+
i Li). Recalling that Li · Lj = 0, this tells

us that µ̄J(1122) = 0. Therefore, if link L = K1 ∪ . . . ∪ Km is 0.5-solvable, its

Sato-Levine invariants µ̄L(iijj) all vanish.
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