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In 2003, Ozsváth and Szabó defined the concordance invariant ⌧ for knots in ori-

ented 3-manifolds as part of the Heegaard Floer homology package. In 2011, Sarkar

gave a combinatorial definition of ⌧ for knots in S3 and a combinatorial proof that

⌧ gives a lower bound for the slice genus of a knot. Recently, Harvey and O’Donnol

defined a relatively bigraded combinatorial Heegaard Floer homology theory for trans-

verse spatial graphs in S3 which extends knot Floer homology. We define a Z-filtered

chain complex for balanced spatial graphs whose associated graded chain complex

has homology determined by Harvey and O’Donnol’s graph Floer homology. We use

this to show that there is a well-defined ⌧ invariant for balanced spatial graphs gener-

alizing the ⌧ knot concordance invariant. In particular, this defines a ⌧ invariant for

links in S3. Using techniques similar to those of Sarkar, we show that our ⌧ invariant

gives an obstruction to a link being slice.
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CHAPTER 1

Introduction

1. Background

A graph is a one-dimensional CW-complex whose edges (one-cells) may be ori-

ented. A spatial graph is a smooth or piecewise linear embedding f : G ! S3, where

G is an (oriented) graph. One way to think of spatial graphs is as a generalization of

the classical study of knots and links, which are embeddings of one or more ordered

S1 components into S3. Just as for knots and links, we consider spatial graphs up to

ambient isotopy.

The study of knots and links have historically been very important in

low-dimensional topology. In the early 1960s, Lickorish [Lic62] and Wallace [Wal60]

proved that every closed orientable 3-manifold is the result of surgery on a link in

S3. Another way to describe 3-manifolds is by Heegaard splittings, which Heegaard

defined in his Ph.D. thesis in 1898 [Hee98]. A Heegaard splitting is a decomposition

of a 3-manifold into two handlebodies glued together by a homeomorphism of their

Figure 1.1. A knot, a link, and a spatial graph
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boundaries. Such a splitting is described by a Heegaard diagram, which consists of

the closed Heegaard surface (the boundary of the handlebodies) together with sets of

↵- and �-curves describing the gluing homeomorphism. In 2001, Ozsváth and Szabó

defined Heegaard Floer homology — a package of 3-manifold invariants — as the La-

grangian Floer homology of two Lagrangian submanifolds obtained from the ↵- and

�-curves, respectively, in a symplectic manifold obtained as the symmetric product

of a Heegaard surface for the manifold [OS04c].

Knot Floer homology was independently defined in 2002 by Ozsváth and Szabó

[OS04b] and by Rasmussen [Ras03]. Knot Floer homology categorifies the Alexan-

der polynomial and has many other nice properties, including detecting the genus of

a knot and whether a knot is fibered [Ni07]. One invariant to come out of the knot

Floer homology package is the ⌧ invariant, which was defined by Ozsváth and Szabó

in 2004 [OS04a].

One reason the ⌧ invariant is important is its relationship to knot concordance,

which is an active area of study in knot theory. A cobordism between knots K and J

is a smoothly properly embedded surface in S3⇥[0, 1] with two boundary components,

such that K is the boundary component in S3⇥{0} and J is the boundary component

in S3⇥{1}. If the genus of the cobordism is zero, we say thatK and J are concordant.

A knot is slice if it is the boundary of a smoothly properly embedded disk in the four-

ball. The slice genus (sometimes called the four-ball genus) of a knot is the minimum

genus over all properly embedded smooth surfaces in the four-ball whose boundary is

the knot. The ⌧ invariant is a concordance invariant and its absolute value is a lower

bound for slice genus [OS04b].

The original formulation of knot Floer homology involves pseudo-holomorphic

disks in the symmetric product of a Heegaard surface, but in 2006, Manolescu,

Ozsváth, and Sarkar [MOS09] gave a combinatorial definition using grid diagrams.

Then Manolescu, Ozsváth, Szabó, and Thurston proved the invariance of the grid
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diagram formulation without reference to the original analytic definition [MOST07].

In 2011, Sarkar proved the relationship between ⌧ and slice genus combinatorially

[Sar11]. Recently, Harvey and O’Donnol have defined graph Floer homology for a

certain class of spatial graphs in S3 using a grid diagram construction analogous to

that used for knots and links [HO15]. However, while knot Floer homology is fil-

tered by the integers, Harvey and O’Donnol’s graph Floer homology is not; rather it

is relatively graded graded by the first homology group of the spatial graph.

2. Summary of Results

In this thesis, we define a filtered version of graph Floer homology for balanced

transverse spatial graphs whose associated graded object is Harvey and O’Donnol’s

HFG and prove that it is a spatial graph invariant. We prove that the filtered graph

Floer chain complex is, up to filtered quasi-isomorphism, an invariant of balanced

spatial graphs. Thus we have the following theorem.

Theorem 5.1. For grid diagrams g, g0 representing f : G ! S3
, there exist

filtered quasi-isomorphisms �1 : CF�(g) ! CF�(g0) and �2 : CF�(g0) ! CF�(g)

which preserve the symmetrized filtration {F�H
s }.

This allows us to define a ⌧ invariant for balanced spatial graphs and prove that

it is an invariant.

Definition 5.9. For a graph grid diagram g representing a balanced spatial graph

f : G ! S3, define the ⌧ invariant of g to be

⌧(g) = min{m 2 1

2
Z|◆m is non-trivial}

where ◆m : H⇤( bFH
m ) ! H⇤(dCF (g)) is the map induced by inclusion.

Corollary 5.1. If g and g are graph grid diagrams representing a balanced spatial

graph f : G ! S3
, then ⌧(g) = ⌧(g).
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Considering links as spatial graphs with one vertex and one edge in each link

component, we get a result relating the ⌧ invariant to link cobordisms.

Theorem 6.1. If L1 and L2 are l- and m-component links, respectively, and F is

a connected genus g cobordism from L1 to L2, then

1� g � l  ⌧(L1)� ⌧(L2)  g +m� 1.

As a corollary, we see that the ⌧ invariant can be an obstruction to a link being

slice.

Corollary 6.1. If an l-component link L has ⌧(L) > 0 or ⌧(L)  �l, then L is

not slice.

3. Outline of Thesis

Chapter 2 is about homological algebra. We give several definitions and results

about filtered chain complexes that will be necessary in Chapter 4 and Chapter 5.

In Chapter 3, we give an overview of knot concordance, Heegaard Floer homology

of 3-manifolds, and knot Floer homology. We discuss the definition of ⌧ for knots and

some results relating ⌧ to knot concordance. In Chapter 4 we discuss Harvey and

O’Donnol’s graph Floer homology.

In Chapter 5 we give the definitions of filtered graph Floer homology and the ⌧

invariant for balanced spatial graphs. We prove that ⌧ is an invariant of balanced

spatial graphs.

In Chapter 6 we discuss link cobordisms and “movie moves” on grid diagrams.

We prove Theorem 6.1, giving a relationship between the ⌧ invariants of links and

link cobordisms between them. We then prove, as a corollary, that the ⌧ invariant

can be an obstruction to a link being slice.
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CHAPTER 2

Algebraic Background Information

In this chapter, we will give the algebraic background information necessary for

the definitions of knot Floer homology and graph Floer homology. We will also prove

a lemma about filtered chain complexes that will be used in Chapter 5 in the proof

that ⌧ is an invariant of balanced spatial graphs.

Definition 2.1. A chain complex (C, @) is a graded group or module, together

with a map @ : Cn ! Cn�1 satisfying the condition that @ � @ = 0.

· · · Cn+1 Cn Cn�1 · · ·@ @ @ @

Definition 2.2. A filtered chain complex is a chain complex (C, @) together with

a filtration of C

0 ⇢ . . . ⇢ Fi�1 ⇢ Fi ⇢ Fi+1 ⇢ . . . ⇢ C

such that @(Fi) ⇢ Fi and
S
i
Fi = C.

Definition 2.3. A map f between filtered chain complexes (C, @) with filtration

{Fs} and (C 0, @0) with filtration {F 0
s} is a filtered chain map if the following diagram

commutes

· · · Cn+1 Cn Cn�1 · · ·

· · · C 0
n+1 C 0

n C 0
n�1 · · ·

@

f

@

f

@

f

@

f

@0 @0 @0 @0

and if the map respects the filtrations, that is, f(Fs) ✓ F 0
s.
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Definition 2.4. A map � from a chain complex (C, @) to a chain complex (C 0, @0)

is a quasi-isomorphism if it induces an isomorphism on the homology of the chain

complexes.

Definition 2.5. A chain map �1 : C ! C 0 is a chain homotopy equivalence with

chain homotopy inverse �2 : C 0 ! C if there exist maps hC : C ! C, hC0 : C 0 ! C 0

such that

�2 � �1 + IC = @ � hC + hC � @

and

�1 � �2 + IC0 = @0 � hC0 + hC0 � @0.

We will need the following two lemmas in Chapter 5, when we prove Theorem 5.1.

Lemma 2.1. Let (C, @) be a filtered chain complex with filtration {Fs} of C such

that H⇤(C) 6= 0 and

T
s
Fs = 0. If for each homological grading i, the chain group Ci

is finitely generated, then H⇤(Fs/Fs�1) 6= 0 for some s.

Proof. Since H⇤(C) 6= 0 and H⇤(C) = �Hi(C), there exists some i for which

Hi(C) 6= 0. Therefore there is some non-zero x 2 Ci which is homogeneous with

respect to the homological grading i, with @x = 0, and whose homology class is

nonzero. We can then choose the minimal filtration level s so that x 2 Fs.

Let @s : Fs/Fs�1 ! Fs/Fs�1. Then @s(x + Fs�1) = @x + Fs�1 = 0 + Fs�1. If

x+Fs�1 is not a boundary in the chain complex (Fs/Fs�1, @s), then H⇤(Fs/Fs�1) 6= 0

and we are done.

If x + Fs�1 is a boundary in (Fs/Fs�1, @s), then there is some y 2 Fs with

x + Fs�1 = @s(y + Fs�1) = @y + Fs�1. Set z = x � @y 2 Fs�1. Since x is a cycle,

@z = @(x � @y) = 0. Therefore z 2 Fs�1 is a cycle and since x and z di↵er by a

boundary, [z] = [x] 6= 0 in Hi(C).
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We can repeat this process, choosing the minimal filtration level r  s� 1 so that

z 2 Fr, yielding a cycle z1 2 Fr�1 with [z1] = [z] = [x] 6= 0 in Hi(C). Iterating this

process will produce infinitely many representatives of [x], each in di↵erent filtration

levels. This contradicts our hypothesis that for each homological grading i, the chain

group Ci is finitely generated. ⇤

Lemma 2.2 ([McC01], Theorem 3.2). If F : B ! C is a filtered chain map which

induces an isomorphism on the homology of the associated graded objects of B and

C, then F is a filtered quasi-isomorphism.
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CHAPTER 3

Knot Concordance and Heegaard Floer Homology

A knot is an embedding of S1 into S3. Two knots K0, K1 : S1 ,! S3 are equivalent

if there exists an ambient isotopy between them, that is, if there is a homotopy

H : S3 ⇥ [0, 1] ! S3 such that for all t 2 [0, 1], the map H(·, t) is a homeomorphism,

H(·, 0) is the identity map, and H(K0(·), 1) = K1(·). The set of knots is infinite,

and we use knot invariants to distinguish knots and to attempt to understand the

structure of the set of knots.

The set of knots does not admit a group structure as is. Although there is a

binary operation (connected sum) and an identity element (the unknot), there are no

inverses. This fact can be proved using knot genus.

Figure 3.1. The connected sum of two knots

Figure 3.2. The unknot
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K ✓ S3 ⇥ {0}

J ✓ S3 ⇥ {1}

[0, 1]

Figure 3.3. A concordance between two knots

Given two knots K1 and K2, we form the connected sum K1#K2 by taking a

point Pi on Ki, and removing a small ball Bi centered at Pi from S3, with Ki \ Bi

an unknotted arc in Bi. We then glue the two pairs (S3 � B1, K1 � K1 \ B1) and

(S3�B2, K2�K2\B2) together along their boundaries so as to respect the orientations

of K1 and K2.

A Seifert surface for a knot K is a connected, orientable surface whose boundary is

the knot K. Every knot has a Seifert surface [Sei35]. The genus of a knot K (some-

times called the Seifert genus) is g(K) = min{g(⌃) |⌃ is a Seifert surface for K}.

The unknot is defined as the only knot of genus zero. Since knot genus is additive

under connected sum, and every non-trivial knot has strictly positive genus, we can

see that the connected sum of any two non-trivial knots is also non-trivial, and thus

there are no inverses in the set of knots.

Although the set of knots is a monoid, not a group, in the 1950s Fox and Milnor

introduced the equivalence relation knot concordance. A knot K0 is concordant to a

knot K1 if there is a smoothly properly embedded genus zero surface in S3 ⇥ [0, 1]

whose boundary components are K0 ⇢ S3 ⇥ 0 and K1 ⇢ S3 ⇥ 1.

We denote the set of knots modulo concordance by C, and in 1966 Fox and Milnor

[FM66] proved that this is a group with the operation connected sum. The identity
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element is the class of slice knots, which are concordant to the unknot, and a knot’s

inverse is its reverse mirror image.

A knot K is slice if there exists a smoothly embedded disk D in B4, such that

@D = k ⇢ @B4 = S3. It is easy to see that the set of slice knots is exactly the

class of knots which are concordant to the unknot. The Alexander polynomial of any

slice knot takes the form �K(t) = f(t)f(t�1), where f(t) is a Laurent polynomial.

A ribbon knot is one which is the boundary of an immersed disk in S3 whose self-

intersections consist of pairs of arcs, with one in each pair contained in the interior

of the disk and the other with endpoints on the boundary of the disk. By pushing a

neighborhood of each of these interior arcs into the interior of the four-ball, we can

easily visualize a slice disk for any ribbon knot. The slice-ribbon conjecture, which is

open, posits that every slice knot is a ribbon knot.

The four-ball genus, sometimes called slice genus, is a related invariant. The

four-ball genus of a knot K, denoted g4(K), is the minimum genus of a connected,

orientable surface smoothly properly embedded in B4 whose boundary is K.

Although in this thesis we will focus on the category of smooth knots, links, and

spatial graphs, it is important to note that there also exist concepts of topological

concordance, topologically slice knots, and algebraically slice knots. For topological

concordance or sliceness, we only require that the embedding of the cylinder or disk

be locally flat rather than smooth. Freedman showed that all knots with trivial

Alexander polynomial are topologically slice [Fre82]. A knot is algebraically slice

if it has a Seifert form which is zero on a half-dimensional subspace of the first

homology of the knot complement (this is sometimes referred to as “half lives, half

dies”). Every smoothly slice knot is topologically slice, and every topologically slice

knot is algebraically slice, but the converses are not true.
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↵

�

Figure 3.4. A Heegaard diagram

1. Heegaard Floer homology

Heegaard Floer homology is a 3-manifold invariant defined by Ozsváth and Szabó

[OS04c]. The Heegaard Floer homology dHF of a 3-manifold Y is an abelian group.

It is computed using a Heegaard splitting for Y . Heegaard splittings were introduced

by Heegaard in 1898 [Hee98], and they decompose 3-manifolds into two solid handle-

bodies whose intersection is their common boundary, ⌃g. A genus g Heegaard splitting

is described by a Heegaard diagram, which consists of the closed genus g surface ⌃g

together with two sets ↵ and �, each of which consists of g disjoint simple closed

curves in ⌃ such that ⌃� ↵ and ⌃� � are connected.

To recover a three-manifold from a Heegaard diagram, we thicken the Heegaard

surface and attach g three-dimensional 2-handles to each side of the surface, using

the ↵-curves (on one side of the surface) and �-curves (on the other side) as attaching

curves. This yields an manifold with two S2 boundary components. By capping each

of those boundary components with a 3-ball, we obtain the manifold.

There are infinitely many Heegaard diagrams for any given 3-manifold. However, if

(⌃g,↵1, ...,↵g, �1, ..., �g) and (⌃g0 ,↵0
1, ...,↵

0
g0 , �

0
1, ..., �

0
g0) are two diagrams representing

the same 3-manifold Y , then there is a sequence of isotopies, handle-slides of ↵ or �

curves, and stabilizations or destabilizations that begins with (⌃g,↵1, ...,↵g, �1, ..., �g)

and ends with (⌃g0 ,↵0
1, ...,↵

0
g0 , �

0
1, ..., �

0
g0).
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�1

↵1 ↵1

�1

↵2

�2

↵1

�0
1

↵2

�2

Figure 3.5. On the left, a genus one Heegaard diagram, stabilized

to the center diagram, then a handleslide of �1 over �2 produces the

right-hand diagram

An isotopy of the ↵ or � curves is a perturbation of the curves in ⌃g such that

each set of curves remains disjoint simple closed curves. A handleslide of ↵i over ↵j

replaces ↵i with a curve which is homologous to ↵i + ↵j in H1(⌃g). A stabilization

increases the genus of the Heegaard surface by one and adds a new pair of curves, ↵g+1

and �g+1, whose intersection is a single point, and such that the resulting diagram

satisfies the definition of a Heegaard diagram. A destabilization can be done when

there are an ↵ curve and a � curve which intersect each other in one point, and which

do not interact with any other ↵ and � curves, and it is the reverse of a stabilization.

Heegaard Floer homology is defined using a pointed Heegaard diagram (⌃g,↵, �, z),

where z is a basepoint in ⌃g � ↵ � �. The generators of the chain complex are in-

tersection points of the tori T↵ and T� formed by the ↵ and � curves in the g-fold

symmetric product Symg(⌃g). The di↵erential map counts pseudo-holomorphic disks

properly embedded in (Symg(⌃g),T↵[T�). There are several variations of Heegaard

Floer homology: dHF , gHF , HF�, HF+, and HF1.

2. Knot Floer Homology

Knot Floer homology is a variation of Heegaard Floer homology that was defined

in 2002 by Ozsváth and Szabó [OS04b] and independently by Rasmussen [Ras03].

The knot Floer homology is a bigraded module
L

i,s2Z
\HFKi(K, s) and it is the

categorification of the Alexander polynomial. That is to say, when we take the Euler

characteristic of \HFK, using powers of a variable to to record the s-grading (which
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is called the Alexander grading), we get the Alexander polynomial of the knot:

�K(t) =
X

i,s2Z

9� 1)itsrank(\HFGi(K, s)).

Like Heegaard Floer homology for 3-manifolds, knot Floer homology comes in several

“flavors” - \HFK, ĤFK, HFK�, HFK+, and HFK1. Also like Heegaard Floer

homology, its original formulation was defined using the symmetric product of a

Heegaard surface.

A knot K in a 3-manifold Y can be represented using a Heegaard diagram for

Y with two basepoints, z and w in ⌃g � ↵ � �. To recover the knot, we connect

the two basepoints with two unknotted arcs, one in ⌃g � ↵ and the other in ⌃g � �.

By pushing the interiors of one of these arcs into each handlebody in the Heegaard

splitting, we see a bridge decomposition of K with bridge surface ⌃g. Although the

original formulation of knot Floer homology is defined for knots in arbitrary closed

3-manifolds, in 2006, Manolescu, Ozsváth, and Sarkar [MOS09] gave a combinatorial

definition of knot Floer homology for knots in S3. Since the way graph Floer homology

is defined is analogous to the combinatorial definition of knot Floer homology, we well

restrict our attention to knots in S3.

Combinatorial knot Floer homology is defined using grid diagrams, which are

essentially multi-pointed genus one Heegaard diagrams for knots in S3. An index n

grid diagram is an n ⇥ n grid, with its top and bottom edges and its left and right

edges identified. Its horizontal gridlines are known as ↵-circles (and are numbered

from bottom to top in the planar picture of the grid diagram), and its vertical gridlines

are �-circles (which are numbered from left to right). Instead of z and w basepoints, a

grid diagram has n O-markings and n X-markings, arranged so that there are exactly

one X and one O in each row and column of the grid. To recover the knot or link

from a grid diagram, we connect the X to the O in each column and the O to the X

in each row, with the vertical strand as the overpass arc at teach crossing. It is easy
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




Figure 3.6. A grid diagram of the trefoil, and the knot recovered from it

to see that we can create a grid diagram from any knot or link diagram by isotoping

the neighborhood of each crossing so that the overpasses all run vertically, “squaring

up” the strands of the knot or link, and adjusting so that no two vertical or horizontal

segments are at the same level, and then place X’s and O’s, as appropriate, at the

corners. There are infinitely many grid diagrams for any given knot or link, but there

is an analog for grid diagrams of Reidemeister’s theorem for knot and link diagrams:

Theorem 3.1 (Cromwell’s Theorem, [Cro95]). For any two planar grid diagrams

g1 and g2 representing a given knot or link, there exists a finite sequence of cyclic

permutation, commutation, and stabilization or destabilization moves transforming

g1 into g2.

A cyclic permutation move takes the column (or row) at one edge of the grid

diagram and moves it to the opposite edge. This is equivalent to changing where we

cut a toroidal grid diagram to produce a planar grid diagram. A commutation move

interchanges two adjacent columns (or rows) if the 0-spheres formed by projecting the

X- and O-markings in the two columns (rows) onto the grid line between them are

not linked. A stabilization move at an X-marking adds an additional row and column
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
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Figure 3.7. A commutation move



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


























Figure 3.8. A stabilization move

adjacent to that X, removes the X, adds an O in the intersection of the new row and

new column, and adds X’s in the two squares in the intersection of the new column

(row) and the row (column) that previously contained the stabilized X. We can also

stabilize at an O, by reversing the role of X and O-markings in the description of a

stabilization. A destabilization move is the reverse of a stabilization.
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














Figure 3.9. An empty rectangle from one generator (indicated by

solid dots) to another (indicated by empty dots)

We will now give a brief overview of the combinatorial definition of \HFK. The

generating set G of the knot Floer chain complex \CFK is the set of n-tuples of inter-

section points of the ↵- and �-circles in an index n toroidal grid diagram representing

the knot, with one point on each horizontal and each vertical grid line. Notice that

the generating set is in set bijection with the symmetric group on n letters, which

means that although \HFK is combinatorial, in practice it is very di�cult to compute

because of the sheer number of generators. The chain complex is a freely generated

vector space over F2[U1, ..., Un�1], where F2 is the field of two elements and the Ui’s

are formal variables corresponding to O-markings in the grid diagram. One special

O-marking, marked with an asterisk, does not have a corresponding Ui.

The di↵erential map @̂ counts empty rectangles between generators of \CFK. A

rectangle r in the toroidal grid diagram connects a generator x to another generator

y if y agrees with x except in two points, and those two points of x are the lower

left and upper right corners of r. The two points of y that are not also points of x

are the upper left and lower right corners of r. We say that r is empty if it does not
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contain any other points of x or y. The set of empty rectangles connecting x to y

is denoted R�(x,y). See Fig. 3.9 for an example of an empty rectangle connecting

two generators. The di↵erential map @̂ is Ui-equivariant and defined as follows on the

generators of \CFK:

@̂x =
X

y2G

X

r2R�(x,y)
O⇤ /2r

Un1(r)
1 Un2(r)

2 · · ·Un
n�1(r)

n�1 y,

where ni(r) is 1 if Oi 2 r and 0 otherwise.

There are two gradings on \CFK: the Maslov grading, which is the homological

grading, and the Alexander grading. Both are defined using the bilinear function J ,

which for points a, b 2 R2 is defined to be

J (a, b) =

8
>><

>>:

1
2
if b is above and to the right or below and to the left of a

0 otherwise

and for finite sets A and B of points in the plane, J (A,B) =
P

a
i

2A
b
j

2B
J (ai, bj). To

define the Maslov and Alexander gradings on G, we think of a grid diagram as a subset

of the R2 plane and denote the sets of X- and O-markings by X and O, respectively.

The Maslov grading is integer-valued and is defined as

M(x) = J (x�O,x�O) + 1

and extended to \CFK by M(0) = M(1) = 0 and M(Ui) = �2 for all i. The

Alexander grading is also integer-valued. It is defined as

A(x) = J
✓
x� 1

2
(X+O),X�O

◆
� n� 1

2

and extended to the rest of the chain complex by A(0) = A(1) = 0 and A(Ui) = 0 for

all i. The knot Floer homology of a knot is \HFK(K) = H⇤(\CFK(K)).

The Alexander grading of \CFK gives rise to a filtration, { bFm}m2Z. The mth

filtration group is made up of those elements of \CFK whose Alexander grading is
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less than or equal to m. The Alexander filtration is used to define the ⌧ invariant:

⌧(K) = min{m 2 Z|◆m is non-trivial}

where ◆m : H⇤( bFm) ! \HFK(K) is the map induced by inclusion.

The ⌧ invariant is a concordance invariant and it is additive under connected

sums. Using the original formulation of knot Floer homology, Ozsváth and Szabó

proved that |⌧(K)|  g4(K) [OS03]. Sarkar restated this result to say that if there is

a genus g cobordism between knots K1 and K2, then |⌧(K1)� ⌧(K2)|  g, and gave

a combinatorial proof of it [Sar11].
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CHAPTER 4

Graph Floer Homology

In this chapter we give an overview of Harvey and O’Donnol’s graph Floer homol-

ogy, which is defined for transverse spatial graphs. For precise definitions of spatial

graphs and transverse spatial graphs, see [HO15]. A spatial graph is an embedding

f : G ! S3 of a 1-dimensional CW-complex G into S3. An oriented spatial graph

is a spatial graph with an orientation given for each edge. For each vertex v of an

oriented spatial graph, the incoming edges of v are the edges incident to v whose

orientation points toward v, and the outgoing edges of v are the edges incident to v

whose orientation points away from v. A disk graph is one which has a standard disk

D at each vertex, attached to the graph by identifying the center point of D with the

vertex.

Definition 4.1. A transverse spatial graph is an embedding f : G ! S3 of

an oriented disk graph G, such that at each vertex the standard disk is embedded in

a plane that separates the incoming and outgoing edges, as shown in Fig. 4.1.

In contrast to spatial graph ambient isotopy, in which any combination of edges

incident to a vertex can move freely, ambient isotopy of transverse spatial graphs only

allows free movement of incoming edges with other incoming edges or outgoing edges

with other outgoing edges at each vertex. This is because the edges may not pass

through the standard disk at the vertex.

Like the combinatorial definition of knot Floer homology, graph Floer homology

is defined using grid diagrams. The definition of spatial graph grid diagrams is very

similar to the definition of grid diagrams for knots and links.
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Figure 4.1. The standard disk separating incoming and outgoing

edges at a vertex of a transverse spatial graph

Definition 4.2. An index n grid diagram for a transverse spatial graph is an n

by n grid with some O- and X-markings, such that there is exactly one O in each row

and in each column. We make a distinction between standard O-markings, which are

those which are in the interior of a graph edge when we recover the spatial graph from

the graph grid diagram, and special O-markings, which are vertices of the graph when

it is recovered from the graph grid diagram. We mark special O’s with an asterisk

in the graph grid diagram. Standard O-markings have exactly one X in their row

and column, while vertex O’s may have any number of X-markings in their row and

column. If a transverse spatial graph has more than one connected component, we

require that there be at least one special O-marking in each component. A toroidal

graph grid diagram is one in which we think of the grid as being a torus, with the

leftmost and rightmost gridlines identified and the top and bottom gridlines identified.

To recover the spatial graph from a grid diagram, connect the X’s to the O’s

vertically and the O’s to the X’s horizontally. At each crossing, the vertical strand

is the overpass and the horizontal strand is the underpass. At vertex O’s (those with

more than oneX in their row or column) use a straight line to connect the closestX in

the row or column to the vertex O and a curved line to connect the more distant X’s
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 
 

 
 

 
 

  

















 






Figure 4.2. Graph grid diagram (note the starred vertex O)

to the vertex O, observing the same conventions with regard to the crossings created,

so that the line connecting two markings within a column is always the overstrand.

See Fig. 4.2. Just as in the case for knots and links, every transverse spatial graph

can be represented by a graph grid diagram.

Theorem 4.1 ([HO15]). Any two planar grid diagrams for a given transverse

spatial graph are related by a finite sequence of cyclic permutation, commutation’,

and (de-)stabilization’ moves.

A cyclic permutation moves the top (resp. bottom) row of a grid diagram to

the bottom (resp. top) or moves the left (right) column to the far right (left) of the

diagram. See the example in Fig. 4.3. Thinking of the grid as a torus, this equates

to changing which gridline we “cut” the torus along to get the square diagram.

Two adjacent columns (or rows) may be exchanged using a commutation’ move

if there are vertical (horizontal) line segments LS1 and LS2 on the torus such that

LS1 [ LS2 contain all the X’s and O’s in the two adjacent columns (rows), the

projection of LS1 [ LS2 to a single vertical circle �i (horizontal circle ↵i) is �i (↵i),

and the projection of their endpoints, @(LS1)[@(LS2), to a single �i (↵i) is precisely

two points. See the example in Fig. 4.4.
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X O
X O

X O
O X

X O
O X

X XO*

XO
X O

X O
O X

XO
O X

OX X *

Figure 4.3. A cyclic permutation move

 
 

 


 
 

 





 
 




 
 

 





Figure 4.4. A commutation’ move: notice the dotted helper arcs

LS1, LS2 in the left-hand grid

A row (column) stabilization’ at an X-marking is performed by adding one new

row and one new column to the grid next to that X. The X is then moved to the new

row (column), remaining in the same column (row), with the O and any other X-

markings in which were in the same row (column) as the X being stabilized remaining

in the old row (column). A new X-marking is placed in the intersection of the new

column (row) and the row (column) previously occupied by the X-marking, and a
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 
 

 


 
 

  
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


 

 



 






Figure 4.5. A row stabilization’

new O is placed in the intersection of the new row and column. See the example in

Fig. 5.8. A destabilization’ is the opposite of a stabilization’.

Harvey and O’Donnol’s graph Floer homology is defined for transverse spatial

graphs without sinks or sources. A sink is a vertex with no outgoing edges and a

source is a vertex with no incoming edges. In other words, graph Floer homology is

defined for spatial graphs whose underlying graph has at least one incoming edge and

at least one outgoing edge at every vertex. This corresponds to a requirement that

a graph grid diagram representing the spatial graph has at least one X-marking in

every row and column.

For a spatial graph f : G ! S3 represented by an n ⇥ n graph grid diagram

g, the graph Floer chain complex (C�(g), @�) is freely generated as a module over

F2[U1, ..., Un], where the Ui’s are formal variables corresponding to the O-markings

O1, ..., On in the graph grid diagram. The generating set of C�(g) is

S = {x = (x1, ..., xn)|xi = ↵i \ ��(i) for some � 2 Sn}

where Sn is the symmetric group on n letters.
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The map @� : C�(g) ! C�(g) counts empty rectangles in the toroidal graph

grid diagram g. An embedded rectangle r in g connects a generator x to another

generator y if xi = yi for all but two i, if j < k are the two indices for which x and

y are not equal, and if the corners of r are, clockwise from the bottom left, xj, yk, xk,

and yj. We say that r is empty if the interior of r does not contain any points of

x or y. The set of empty rectangles from x to y is denoted R�(x,y). The map

@� : C�(g) ! C�(g) is defined as follows on the generating set S and then extened

to all of C�(g) as an F2[U1, ..., Un]-module homomorphism:

@�(x) =
X

y2S

X

r2R�(x,y)
int(r)\X=?

UO1(r)
1 · · ·UO

n

(r)
n y

where Oi(r) is zero if Oi is not in r and one if Oi is in r. Note that although this

definition is very similar to the definition of b@ given in Chapter 3, it di↵ers in that

@� counts rectangles that contain any of the O-markings in g but does not count any

rectangles that contain X-markings. This is because knot Floer homology is filtered

by Z ⇠= H1(S3 � K), but since H1(S3 � f(G)) does not have a natural filtration,

Harvey and O’Donnol’s graph Floer homology is graded rather than filtered.

Proposition 4.1 ([HO15] Proposition 4.9). For @� : C�(g) ! C�(g) as defined

above, @� � @� = 0.

There are two gradings on (C�(g), @�). The first is the Maslov grading, which

is the homological grading. Its definition is exactly the same as the definition of

the Maslov grading in knot Floer homology (see Chapter 3), but we will restate it

here. Viewing X and O as sets of points in the grid with half-integer coordinates, the

Maslov grading of x 2 S is

M(x) = J (x�O,x�O) + 1.
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w(e)

e

Figure 4.6. The weight of an edge

Before we can define the Alexander grading we need to define weights of the edges

of G. We define a weight function w : E(G) ! H1(S3� f(G)), where E(G) is the set

of edges of G, by mapping each edge e 2 E(G) to the homology class of the meridian

of e, oriented according to the right-hand rule, as shown in Fig. 4.6.

ForX-markings andO-markings associated to the interior of an edge e, the weights

are w(X) = w(e) or w(O) = w(e). For O-markings associated to a graph vertex v,

the weight is w(O) =
P

e2In(v) w(e) =
P

e2Out(v) w(e), where In(v) and Out(v) are,

respectively, the sets of incoming and outgoing edges of v.

We can now define the Alexander grading on the generating set S:

A(x) =
X

p2X

J (x, p)w(p)�
X

p2O

J (x, p)w(p).

This grading is not well-defined on toroidal graph grid diagrams, but Harvey and

O’Donnol show that the relative grading Arel(x,y) = A(x)�A(y) is well-defined on

toroidal graph grid diagrams ([HO15] Corollary 4.12).

The graph Floer chain complex (C�(g), @�) is bigraded, with an absolute Z-

valued grading (the Maslov grading) and a relative H1(S3 � f(G))-valued grading

(the Alexander grading). The graph Floer homology is HFG�(f) = H⇤(C�(g), @�)

for any graph grid diagram g representing f , and it ia also absolutely Z-graded and

relatively H1(S3 � f(G))-graded.
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CHAPTER 5

Filtered Graph Floer Homology and the ⌧ Invariant

1. Spatial Graphs and the Chain Complex

In this section, we will define our filtered graph Floer homology chain complex.

It is defined for balanced spatial graphs.

Definition 5.1. A transverse spatial graph is balanced if there is an equal

number of incoming and outgoing edges at each vertex.

For an index n grid diagram g representing a spatial graph f : G ! S3, we choose

an ordering for the O-markings of g and denote them O1, . . . , On. Then the chain

complex CF�(g) is freely generated over F[U1, . . . , Un], where F = Z/2Z and each Ui

is a formal variable corresponding to Oi. It is generated by the set S of unordered

n-tuples of intersection points in g with one point on each horizontal and vertical

gridline. The generating set S is in bijection with Sn, the set of permutations of n

Figure 5.1. A balanced spatial graph
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X O
X O

X O
O X

X O
O X

O X X*

Figure 5.2. A generator of CF�(g)

elements, so S = {x = (x1, . . . , xn)|xi 2 ↵i \ ��(i) for some � 2 Sn}. See Fig. 5.2 for

an example of a generator.

Definition 5.2. A rectangle r in the grid diagram connects a generator x to

another generator y if its lower left and upper right corners are points in x, its upper

left and lower right corners are points in y, and all other points in x and y coincide.

Such a rectangle is empty if its interior does not contain any points of x and y. An

empty rectangle may contain X- and O-markings. The set of empty rectangles from

x to y is denoted R�(x,y).

The boundary map @� is defined as follows on the generators and extended linearly

to CF�(g):

@�x =
X

y2S

y
X

r2R�(x,y)

UO1(r)
1 · · ·UO

n

(r)
n

where Oi(r) = 1 if Oi is contained in r and 0 otherwise.

If g is a graph grid diagram representing a balanced spatial graph, the chain

complex CF�(g) is bigraded over Z. The gradings are defined using the following

bilinear map J .
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X O
X O

X O
O X

X O
O X

O X X*

Figure 5.3. An empty rectangle connecting the black generator to

the white generator

For a point a = (a1, a2) and a finite set B of points in the plane, define J (a,B)

to be half of the number of points in B which lie either above and to the right of a or

below and to the left of a. That is, J (a,B) = 1
2
(#{(b1, b2) 2 B | either (a1 < b1, a2 <

b2) or (a1 > b1, a2 > b2)}). By extending J bilinearly to formal sums and di↵erences

of sets of points in the plane, we can make the following definition, which is the same

as the Maslov grading defined in [MOST07] and [HO15].

Definition 5.3. The Maslov grading, also known as the homological grading, is

defined as follows on the generators of the chain complex:

M(x) = J (x�O,x�O) + 1

where O and X are the sets whose points are the O- and X-markings, respectively.

The Maslov grading is extended to the rest of the chain complex by

M(Ui) = �2 for all i

M(0) = M(1) = 0.

For example, the Maslov grading of the element U2U2
3x is M(U2U2

3x) = M(x)�6.
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Definition 5.4. The Z-valued Alexander grading can only be defined for grids

which represent balanced spatial graphs (for grids representing spatial graphs that

are not balanced, an H1(S3 \ f(G))-valued Alexander grading can be defined, as in

[HO15]).

A(x) = J (x,X�
X

O
i

2O

miOi)

where mi is the weight of Oi: the number of incoming (or equivalently, since we

are restricting to balanced graphs, outgoing) edges at O1. The Alexander grading is

extended to the rest of the chain complex by

A(Ui) = �mi for all i

A(0) = A(1) = 0.

We can also view the Alexander grading as a relative grading, namely A(x)�A(y),

where x,y are elements of the chain complex, computed using rectangles. Any two

generators in S are connected by a sequence of rectangles. This follows from the

fact that S is in bijection with the symmetric group on n letters, Sn. If �1, �2 2 Sn,

there exists a finite sequence of transpositions that will turn �1 into �2. If x1,x2

are the generators in S corresponding to �1 and �2, respectively, then that sequence

of transpositions corresponds to a sequence of rectangles connecting x1 to x2. The

following lemma is very similar to Lemma 4.11 in [HO15].

Lemma 5.1. If x,y are generators of the chain complex and r is a rectangle (not

necessarily empty) connecting x to y, then the relative Alexander grading of x and y

is

A(x)� A(y) = |X \ r|�
X

O
i

2O\r

mi
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A B C

ED r

F G H

yixi

yj xi

Figure 5.4. The regions of the grid referred to in Lemma 5.1

Proof. By the Definition 5.4,

A(x)� A(y) = J
 
x,X�

X

O
i

2O

miOi

!
� J

 
y,X�

X

O
i

2O

miOi

!

= J (x,X)� J (y,X)�
 
X

O
i

2O

mi (J (x, Oi)� J (y, Oi))

!

=
1

2
(|X \ (C [D [ r [ F [G) |+ |X \ (B [ C [ r [ E [ F ) |)

� 1

2
(|X \ (B [ C [D [ F ) |+ |X \ (C [ E [ F [G) |)

�

0

@
X

O
i

2O\(C[D[r[F[G)

mi

2

1

A�

0

@
X

O
i

2O\(B[C[r[E[F )

mi

2

1

A

+

0

@
X

O
i

2O\(B[C[D[F )

mi

2

1

A+

0

@
X

O
i

2O\(C[E[F[G)

mi

2

1

A

= |X \ r|�
X

O
i

2O\r

mi

Where A,B,C,D,E, F,G,H and r are the regions of the grid indicated in Fig. 5.4.

⇤
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Definition 5.5. The Alexander filtration of (CF�(g), @�) is {F�
m}m2Z, where

F�
m is generated by those elements of CF�(g) whose Alexander grading is less than

or equal to m.

Proposition 5.1. (CF�(g), @�) is a filtered chain complex. That is, @��@� = 0,

the boundary map decreases by one the Maslov grading of elements which are homoge-

neous with respect to the Maslov grading, and the boundary map preserves the relative

Alexander filtration.

Proof. That @� � @� = 0 follows directly from the proof of Proposition 2.10

of [MOST07], since graph grid diagrams di↵er from link grid diagrams only in the

X-markings, and the definition of @� does not involve X-markings.

The proof that @� decreases Maslov grading by one is also the same as in [MOST07].

By their Lemma 2.5, if r is an empty rectangle from x to y, then M(x) � M(y) =

1� 2|O\ r|. Therefore the term in @�x corresponding to y will have Maslov grading

M(Un1(r)
1 · · ·Un

n

(r)
n y) = M(y)�

nX

i=1

2ni(r)

= M(x)� 1.

To show that @� preserves the relative Alexander filtration, note that if a rectangle

r connects x to y, then A(y) = A(x)� |X \ r|+
P

O
i

2O\r mi. Therefore the term in

@�x corresponding to y will have Alexander grading

A(Un1(r)
1 · · ·Un

n

(r)
n y) = A(y)�

X

O
i

2O\r

mi

= A(x)� |X \ r|+
X

O
i

2O\r

mi �
X

O
i

2O\r

mi

= A(x)� |X \ r|

 A(x).

⇤
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Definition 5.6. Suppose the O-markings in g are numbered so that O1, . . . , Ok

are edge O’s and Ok+1, . . . , On are vertex O’s. Let U be the minimal subcomplex of

CF�(g) containing Uk+1CF�(g) [ · · · [ UnCF�(g). Then (dCF (g), b@) is the filtered

chain complex obtained from (CF�(g), @�) by setting dCF (g) = CF�(g)/U and let-

ting b@ be the map on the quotient induced by @�. We consider dCF (g) as a vector

space over F2.

We denote by \HFG(g) the homology of the associated graded object of dCF (g).

It is finitely generated as a vector space over F2, since all of the Ui’s act trivially on

it ([HO15]).

2. Alexander filtration and the ⌧ invariant

For a knot K, the Alexander filtration of the knot Floer homology chain complex

for K is an absolute grading preserved under the maps associated to the commu-

tation and (de)stabilization grid moves. For balanced spatial graphs, as discussed

elsewhere in this chapter, only the relative Alexander filtration of the graph Floer

homology chain complex is preserved under the maps associated to the commutation’

and (de)stabilization’ grid moves. Therefore, we need to fix an absolute Alexander

grading and filtration of the graph Floer homology chain complex in order to be able

to define a ⌧ invariant for balanced spatial graphs.

To be able to fix an absolute Alexander grading, we need to know that the ho-

mology of the associated graded complex �s
bFs/ bFs�1 is non-trivial. To show this, we

appeal to Lemma 2.1. Note that the grid chain complex (dCF (g), b@) satisfies the con-

dition in Lemma 2.1 that for each Maslov grading level i, the chain group dCF (g)i is

finitely generated. This is because all elements of dCF (g) are of the form Ua1
1 · · ·Ua

k

k x

for some generator x and with aj � 0 for all j, so

M(Ua1
1 · · ·Ua

k

k x) = M(x)� 2

 
kX

j=1

aj

!
.
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Since there are finitely many generators, since M(x) is finite, and since there are only

finitely many ways to write a given number i as the sum of finitely many positive

integers, the condition is satisfied.

Definition 5.7. For a grid diagram g representing a balanced spatial graph

f : G ! S3, define the symmetrized Alexander filtration { bFH
m}m2 1

2Z
to be the

absolute Alexander filtration obtained by fixing the relative Alexander grading so

that smax(g) = �smin(g), where smax(g) = max{s|H⇤( bFs(g)/ bFs�1(g)) 6= 0} and

smin(g) = min{s|H⇤( bFs(g)/ bFs�1(g)) 6= 0}.

Now that we have symmetrized the Alexander filtration ofdCF (g), we can lift that

filtration to a symmetrized filtration of CF�(g).

Definition 5.8. Define the symmetrized Alexander filtration of CF�(g) to be

{F�H
m }m2 1

2Z
, obtained by fixing the relative Alexander grading of CF�(g) so that each

generator x 2 S(g) is in the same filtration level of {F�H
m }m2 1

2Z
as it is in { bFH

m}m2 1
2Z
.

Remark 5.1. This is not necessarily the only way to symmetrize the Alexander

filtration. If we knew that the bigraded Euler characteristic of \HFG(g) (which is

an Alexander polynomial, see [HO15]) were non-zero, then we could fix an absolute

Alexander grading so that the maximal and minimal terms with non-zero coe�cients

in the Alexander polynomial were centered around zero. It would be interesting to

answer the question of whether these two ways of fixing the Alexander grading are

equivalent.

Definition 5.9. For a graph grid diagram g representing a balanced spatial graph

f : G ! S3, define the ⌧ invariant of g to be

⌧(g) = min{m 2 1

2
Z|◆m is non-trivial}

where ◆m : H⇤( bFH
m ) ! H⇤(dCF (g)) is the map induced by inclusion.
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Theorem 5.1. For grid diagrams g, g0 representing f : G ! S3
, there exist

filtered quasi-isomorphisms �1 : CF�(g) ! CF�(g0) and �2 : CF�(g0) ! CF�(g)

which preserve the symmetrized filtration {F�H
s }.

Proof. For graph grid diagrams g and g0 both representing a balanced spatial

graph f : G ! S3, we know by Theorem 4.1 [HO15] that there is a finite sequence

of cyclic permutation, commutation’, stabilization’, and destabilization’ moves which

turns g into g0. Thus, once we show that each of these grid moves is associated to a

quasi-isomorphism of filtered chain complexes. We can then take the composition of

the maps associated to each of the grid moves in the sequence, resulting in a filtered

quasi-isomorphism from CF�(g) to CF�(g0). The proof that each of the grid moves is

associated to a quasi-isomorphism of filtered chain complexes consists of three steps:

(1) We need to show that if g and g are graph grid diagrams which are related

by a cyclic permutation, commutation’, stabilization’, or destabilization’ grid

move, there exists a chain map � : CF�(g) ! CF�(g) and an integerm such

that for all s, we have �(F�
s (g)) ⇢ F�

s+m(g), and such that � induces an iso-

morphism H⇤(F�
s (g)/F�

s�1(g)) ! H⇤(F�
s+m(g)/F�

s+m�1(g)). Note that here,

we are working with the original Alexander filtration rather than the sym-

metrized version. This will be proved in Section 3, Section 4, and Section 5

of this chapter.

(2) We need to show that each of the maps from Step (1) induces a quasi-

isomorphism on the symmetrized Alexander filtration. That is, we need to

show that �⇤ : H⇤(F�H
s (g)/F�H

s�1(g)) ! H⇤(F�H
s (g)/F�H

s�1(g)) is an isomor-

phism. Since we know from Step (1) that � induces an isomorphism on the

homology of the associated graded objects, it is su�cient to show that the

span smax � smin is the same for both bFs(g) and bFs(g). We will show that

smax(g) = smax(g) +m and smin(g) = smin(g) +m.
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Assume for the sake of contradiction that smax(g) > smax(g) +m. Then

there exists some y 2 bFs
max

(g)(g) such that [y] 2 H⇤( bFs
max

(g)(g)/ bFs
max

(g)�1(g))

is non-trivial. Then, since

�⇤ : H⇤( bFs
max

(g)�m(g)/ bFs
max

(g)�m�1(g)) ! H⇤( bFs
max

(g)(g)/ bFs
max

(g)�1(g))

is an isomorphism, there exists some non-trivial [x] = ��1
⇤ ([y]) in

H⇤( bFs
max

(g)�m(g)/ bFs
max

(g)�m�1(g)). This contradicts our assumption that

smax(g) > smax(g) +m, so we have that smax(g)  smax(g) +m. Similar ar-

guments show that smax(g) � smax(g) +m, and that smin(g) = smin(g) +m.

Therefore we have shown that smax(g)� smin(g) = smax(g)� smin(g).

(3) We need to know that the existence of a quasi-isomorphism on the asso-

ciated graded object of a filtered chain complex implies the existence of a

filtered quasi-isomorphism on the filtered chain complex. This is exactly

what Lemma 2.2 [McC01] says.

⇤

Lemma 5.2. Suppose that there exist filtered quasi-isomorphisms F : dCF (g) !

dCF (g) and F 0 : dCF (g) ! dCF (g). Then ⌧(g) = ⌧(g).

Proof. Suppose that ⌧(g) = a. Then we have the following commutative dia-

gram:

H⇤( bFa(g)) H⇤(dCF (g))

H⇤( bFa(g)) H⇤(dCF (g))

i⇤

Fa

⇤ F⇤

j⇤

Thus there is some x 2 H⇤( bFa(g)) which maps via F⇤ � i⇤ to a non-zero element

of H⇤(dCF (g)) to which j⇤ sends F a
⇤ (x). Therefore j⇤ : H⇤(Fa(dCF (g))) ! H⇤(dCF (g))

is non-trivial, so ⌧(g)  a.
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The same argument using F 0 : dCF (g) ! dCF (g) says that ⌧(g)  ⌧(g), so putting

the two inequalities together gives the result that ⌧(g) = ⌧(g). ⇤

With the previous lemma, we have shown the following corollary to Theorem 5.1.

Corollary 5.1. If g and g are graph grid diagrams representing a balanced spatial

graph f : G ! S3
, then ⌧(g) = ⌧(g).

Now we have a well-defined ⌧ invariant for balanced spatial graphs.

Definition 5.10. For a balanced spatial graph f : G ! S3, and g is any graph

grid diagram representing f , then

⌧(f) = ⌧(g).

3. Cyclic Permutation

Suppose that g and g are graph grid diagrams which di↵er by a cyclic permutation

move. Since the chain complex (CF�(g), @�
g ) and CF�(g), @�

g ) are defined from

toroidal grid diagrams, the chain map associated to the cyclic permutation grid move

is the identity map, so it is a quasi-isomorphism. However, we still need to show that

the map preserves the Alexander filtration.

From Lemma 5.1 and Corollary 4.12 in [HO15], we know that the relative Alexan-

der grading is well-defined on the toroidal grid diagram. Define new gradings A0
g(·)

and A0
g(·) by shifting the Alexander gradings on CF�(g) and CF�(g), respectively,

so that in each one, xO, the generator whose points are at the lower left corner of each

of the grid squares containing and O-marking, has grading zero. Now the identity

map preserves this shifted grading. If k and k were the shifts from Ag(·) to A0
g(·) and

from Ag(·) to A0
g(·), respectively, then we see that the identity map sends elements

of CF�(g) with Alexander grading s to elements of CF�(g) with Alexander grading
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X
O
X
X
O

X
· · · �n�1

� �
�1 �2

Figure 5.5. A grid showing both g and g. The grid diagram with �

but not � is g, and the diagram with � but not � is g.

s + k � k. Therefore H⇤(F�
s (g)/F�

s�1(g)) ! H⇤(F�
s+k�k

(g)/F�
s+k�k�1

(g)), the map

induced by the identity, is an isomorphism.

4. Commutation’

Let g and g be graph grid diagrams which di↵er by a commutation’ move. We

can depict both grids in a single diagram, as shown in Fig. 5.5. In this example g is

the graph grid diagram obtained from Fig. 5.5 by deleting the line labeled �, and g

is the graph grid diagram obtained from it by deleting �. The proof of commutation’

invariance closely follows that in [HO15].

Recall that the di↵erential map @� : CF�(g) ! CF�(g) counts empty rectangles

connecting generators in g. In this section, we will consider maps that count empty

pentagons and hexagons in the combined grid showing both g and g. An embedded

pentagon p in the combined grid diagram connects x 2 S(g) to y 2 S(g) if x and y

agree in all but two points, and if the boundary of p is made up of arcs of five grid

lines, whose intersection points are, in counterclockwise order, a, x2, y2, x1, y1, where

a 2 � \ �, y1 = y \ �, and x1 = x \ �. See Fig. 5.6 for an example. Such a pentagon

p is empty if its interior does not contain any points of x or y. The set of empty

pentagons connecting x to y is denoted Pent���(x,y).
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







Figure 5.6. A pentagon connecting the black generator to the white

generator, counted in �0
�� .

Definition 5.11. For x 2 S(g), let

�0
��(x) =

X

y2S(g)

0

@
X

p2Pent�
��

UO1(p)
1 . . . UO

n

(p)
n · y

1

A

and note that �0
��(x) 2 CF�(g).

Lemma 5.3. The map �0
�� is a chain map which preserves Maslov grading and

respects the Alexander filtration, which is to say that �0
��(F�

k (g)) ⇢ F�
k+m(g) for

some m 2 Z, where {F�
k (g)} is the unsymmetrized Alexander filtration of CF�(g).

Moreover, it induces an isomorphism on the homology of the associated graded object,

so

(�0
��)⇤ : H⇤(F�

k (g)/F
�
k�1(g)) ! H⇤(F�

k+m(g)/F
�
k+m�1(g))

is an isomorphism for all k.

Proof. This proof has three parts:

(1) �0
�� preserves Maslov grading. This follows immediately from Lemma 5.2 in

[HO15] because the di↵erence between their ��� map between associated

graded chain complexes and our filtered map �0
�� between filtered chain

complexes is that in the filtered setting pentagons may contain X-markings,

but Maslov grading does not involve the X-markings on the grid in any way.
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(2) The map �0
�� preserves the Alexander filtration in the sense given in the

statement of the lemma and induces an isomorphism on the homology of

the associated graded object. In the proof of Lemma 5.2 in [HO15], Har-

vey and O’Donnol show that their maph ��� shifts the Alexander grading

by some fixed element �(g, g) 2 H1(S3 \ f(G)). By collapsing their Alexan-

der grading using the obvious map from H1(S3 \ f(G)) to Z, we obtain

from their ��� the induced map of our �0
�� on the associated graded objects

L
m F�

m(g)/F�
m�1(g) !

L
m F�

m+d(g)/F
�
m+d�1(g), where d 2 Z corresponds

to �(g, g) 2 H1(S3 \ f(G)). Therefore we know that �0
�� induces an isomor-

phism on the homology of the associated graded object.

It remains to show that �0
��(F�

m(g)) ⇢ F�
m+d(g). Notice that �0

�� can be

decomposed into a sum of ��� plus terms corresponding to empty pentagons

that contain X-markings. We need to show that each term corresponding to

an empty pentagon containing at least one X-marking has Alexander grading

less than or equal to m+d in CF�(g). This is true because for any generator

x 2 S(g) with Alexander grading m, �0
��(x) is a sum of terms corresponding

to pentagons that do not contain X-markings and terms corresponding to

pentagons that do not contain X-markings. As shown above, the terms

corresponding to pentagons not containing X-markings are in Alexander

gradingm+d, but the presence ofX-markings in the other pentagons reduces

the Alexander grading of those terms, so a term in �0
��(x) corresponding to

a pentagon containing k X-markings is in Alexander grading m+ d� k.

(3) The map is a chain map, that is @� � �0
�� + �0

�� � @� = 0. This follows

immediately from the proof of Lemma 3.1 in [MOST07].

⇤



40

Figure 5.7. A hexagon counted in H���.

The proof that �0
�� is a chain homotopy equivalence is the same as the proof in

Section 3.1 of [MOST07]. An embedded hexagon h in the combined grid showing

both g and g connects x 2 S(g) to y 2 S(g) if x and y agree in all but two points

(without loss of generality, say the points where they do not agree are x1, x2 and

y1, y2), and if the boundary of h is made up of arcs of grid lines whose intersection

points are, in counterclockwise order, x1, y1, a1, a2, x2, and y2, where {a1, a2} = � \ �,

and if the interior angles of h are all less than straight angles. See Fig. 5.7 for an

example. A hexagon is empty if its interior does not contain any points of x or y.

The set of empty hexagons connecting x to y is denoted Hex�
���(x,y). The chain

homotopy operator H��� : CF�(g) ! CF�(g) is defined as follows:

H���(x) =
X

y2S(g)

0

@
X

h2Hex�
���

(x,y)

UO1(h)
1 . . . UO

n

(h)
n · y

1

A .

Lemma 5.4 ([MOST07] Proposition 3.2). The map �0
�� is a chain homotopy

equivalence. That is,

IC(g) + �0
�� � �0

�� + @� �H��� +H��� � @� = 0

and

IC(g) + �0
�� � �0

�� + @� �H��� +H��� � @� = 0.
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Figure 5.8. A row stabilization’

5. Stabilization’

Let g and g0 be two graph grid diagrams such that a stabilization’ move on g results

in g0. Our proof that the (de)stabilization’ move induces filtered quasi-isomorphisms

in both directions between CF�(g) and CF�(g0) is modeled on Sarkar’s proof in

[Sar11].

Definition 5.12. A row (column) stabilization’ at an X-marking is performed

by adding one new row and one new column to the grid next to that X. The X is

then moved to the new row (column), remaining in the same column (row), with the

O and any other X-markings in which were in the same row (column) as the X being

stabilized remaining in the old row (column). A new X-marking is placed in the

intersection of the new column (row) and the row (column) previously occupied by

the X-marking, and a new O is placed in the intersection of the new row and column.

See the example in Fig. 5.8. A destabilization’ is the opposite of a stabilization’.
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Sarkar [Sar11] distinguishes between two types of (de)stabilizations: those at

ordinary O-markings, which he refers to as S3-grid move (4), and those at special O-

markings, which he refers to as S3-grid move (5) (Special O-markings in the spatial

graph case are the vertex O’s). The first type can correspond to a (de)stabilization

(Link-grid move (3)), which preserves isotopy class, or a birth in the cobordism (Link-

grid move (4)), while the second type corresponds to a death in the cobordism (Link-

grid move (7)).

Therefore, although both types of stabilization will be needed to prove the link

cobordism result in Theorem 6.1, for the purposes of proving the invariance of HFG�

and the ⌧ invariant, we will only need the first type.

Sarkar defines two stabilization maps, s11, s22, and two destabilization maps,

d11, d22. The 11 maps correspond to the stabilization in which the new O-marking

is placed in the row above the X being stabilized, and the 22 maps correspond to

the stabilization in which the new O-marking is placed in the row below the X being

stabilized. Because we can use the commutation’ move, we only need the graph grid

diagram analogs of the 11 maps. The case for which [Sar11] uses the s22, d22 maps

can instead be addressed in the spatial graph case using a commutation’ move, then

d11 or s11, then another commutation’ move.

The maps d11 : CF�(g0) ! CF�(g) and s11 : CF�(g) ! CF�(g0) are defined as

follows on the generators of the chain complexes:

d11(U
m
0 x) = Um

j

X

y

y
X

D2S1(x,y[?,?)

UO1(D)
1 · · ·UO

n

(D)
n

s11(x) =
X

y

y
X

D2S3(x[?,y,?)

UO1(D)
1 · · ·UO

n

(D)
n

Here, O0 is the the O-marking in g0 but not in g, Oj is the O-marking in the row

immediately below O0, and S3(x[?,y, ?) is the set of snail-like domains illustrated in
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Figure 5 of [Sar11], which are the same as rotating counterclockwise by 90�the Type

R domains described in [MOST07], and ? is the intersection point of the ↵ and �

curves immediately below and to the left of the new O-marking (see Fig. 5.9).

The map d11 is exactly the map FR defined in [MOST07] and used in [HO15],

considered as a map from C to B, where C is the chain complex associated to the

stabilized grid diagram and B is the chain complex associated to the unstabilized

grid diagram. Therefore by Lemma 3.5 in [MOST07], the map d11 is a chain map

which preserves the Maslov grading. In Lemma 5.8 in [HO15], Harvey and O’Donnol

prove that d11 induces an isomorphism F�
m(g

0)/F�
m�1(g

0) ! F�
m+a(g)/F�

m+a�1(g) for

all m 2 Z. When mapped to the integers, the grading shift is a = �Ag0(?) � 1.

The proof that d11 preserves the Alexander filtration up to a shift by a is similar

to the proof in [HO15] that it induces an isomorphism on the associated graded

object, except that in the filtered case, we allow the domains to contain X-markings,

which lowers the Alexander grading of the terms associated to the domains containing

X-markings.

Lemma 5.5. The composition d11�s11 is the identity map on the associated graded

chain complex for the unstabilized grid diagram.

Proof. In the associated graded chain complexes, the only regions counted in s11

and d11 are rectangles with the starred grid intersection point as their lower left and

upper left corners, respectively. All higher complexity snail-like regions counted in

these maps contain the X being stabilized and thus are not counted in the associated

graded version. Furthermore, in the associated graded chain complexes the regions

counted may not contain any X-markings other than the one in the newly added

column.

If D is a rectangle connecting x [ ? to y which is counted in s11(x), then we

consider d11(y). If D0 is a domain counted in d11(y), then the boundary of @D0\�1 is



44




Figure 5.9. the rectangles D and D0

y� ?. Therefore the upper boundary of D0 is ↵1, so the term in d11(y) corresponding

to D0 is x. See Fig. 5.9.

No Ui’s survive in d11 � s11(x) since the composite map counts domains D [ D0,

which as just discussed are the union of entire columns in the grid diagram. Since

every column contains at least one X-marking, the only D[D0 that may be counted

is the single column containing the new O-marking. Since the new O-marking is not

counted, d11 � s11(x) = x and so the composition d11 � s11 is the identity map. ⇤

Lemma 5.6. The map s11 is a quasi-isomorphism between the associated graded

chain complexes for the unstabilized and stabilized grid diagrams.

Proof. We know from the previous lemma that d11 � s11 is the identity map on

the associated graded chain complex for the unstabilized grid diagram. The identity

map is a quasi-isomorphism, and by Proposition 5.13 in [HO15], d11 = FR is a quasi-

isomorphism. Then since s11 is the one-sided inverse of a quasi-isomorphism, it is also

a quasi-isomorphism. ⇤

Lemma 5.7. The map s11 is a filtered chain map which preserves Maslov grading

and respects the Alexander filtration up to a finite shift, so that s11(F�
m(g)) ⇢ F�

m�a(g
0)

and it induces an isomorphism F�
m(g)/F�

m�1(g) ! F�
m�a(g

0)/F�
m�a�1(g

0) for all m 2 Z

and a = �Ag0(?)� 1.
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Proof. By definition, s11 is a module homomorphism. We need to show that

it preserves the Maslov grading, it respects the Alexander filtration, and that it is a

chain map.

The proof that s11 is a chain map is the same as the proof of Lemma 3.5 in

[MOST07] except that the snail-like domains are rotated 90�counterclockwise.

To show that the Maslov grading is preserved, suppose that there is some snail-

like domain D which connects x [ ? to z in the stabilized grid g0 which is counted

in s11(x). We begin by using the definition of the Maslov grading to compare the

grading of x[? in the stabilized grid g0 to the grading of x in the unstabilized grid g.

M(x [ ?) = J (x+ ?�Og0 ,x+ ?�Og0) + 1

= J (x,x) + J (?, ?) + J (Og0 ,Og0) + 2J (x, ?)

�2J (x,Og0)� 2J (?,Og0) + 1

Noting that Og0 , the set of O-markings in g0, is the same as Og [ Ok+1, where Og is

the set of O-markings in g and Ok+1 is the new O-marking, we can see that

M(x [ ?) = J (x,x) + J (?, ?) + J (Og,Og) + J (Ok+1, Ok+1) + 2J (Og, Ok+1)

+ 2J (x, ?)� 2J (x,Og)� 2J (x, Ok+1)� 2J (?,Og)

� 2J (?, Ok+1) + 1.

We can use the following observations to simplify the expression:

J (?, ?) = J (Ok+1, Ok+1) = 0

J (x, ?) = J (x, Ok+1)

J (Og, Ok+1) = J (?,Og)

M(x) = J (x,x) + J (Og,Og)� 2J (x,Og) + 1

J (?, Ok+1) =
1

2
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Therefore M(x [ ?) = M(x)� 1.

Since D connects x [ ? to z, the term corresponding to D in s11(x) is

UO1(D)
1 · · ·UO

n

(D)
n z. Therefore we need to compare M(x) and M(UO1(D)

1 · · ·UO
n

(D)
n z).

By the definition of Maslov grading, M(UO1(D)
1 · · ·UO

n

(D)
n z) = M(z)� 2

Pn
i=1 Oi(D),

where the summation does not include i = 0, which corresponds to the new O-

marking. Using Lemma 2.5 in [MOST07], we know that M(x [ ?) = M(z) + 1 +

2m� 2
Pn

i=0 Oi(D), with i = 0 included in the sum and where m is the multiplicity

of ? in D. Since the multiplicity of ? in the interior of D is O0(D)� 1, we can put all

of this together to see that

M(x) = M(UO1(D)
1 · · ·UO

n

(D)
n z) + 2� 2O0(D),

so s11 preserves the Maslov grading.

For the Alexander filtration, we need to show that s11(F�
m(g)) ⇢ F�

m�a(g
0). Sup-

pose that D is a snail-like domain counted in s11(x). Then considered in the stabilized

grid g0, D is a domain connecting x[? to some generator z. By Lemma 4.9 in [HO15],

Ag0(x [ ?)� Ag0(z) = nX(D)�
nX

i=0

mi ·Oi(D),

where nX is the number of X-markings contained in D, counted with multiplicity.

The term of s11(x) corresponding to the domain D is UO1(D)
1 · · ·UO

n

(D)
n z, which has

Alexander grading Ag0(z)�
Pn

i=1 Oi(D). The shift in the Alexander grading from the

s11 map is

Ag0(UO1(D)
1 · · ·UO

n

(D)
n z) = Ag0(z)�

nX

i=1

miOi(D)� Ag(x)

= �nX(D) +O0(D) + Ag0(x [ ?)� Ag(x)

= �nX(D) +O0(D) + Ag0(x) + Ag0(?)� Ag(x)

= �nX(D) + 1 + Ag0(?).



47

Notice that for domains that do not contain any X-markings, which are exactly the

domains considered in the associated graded object, the shift in Alexander grading is

1 + Ag0(?), which is the negative of the shift for the d11 map. For domains that do

contain X-markings, the Alexander grading in the terms of s11(x) (for x in Alexander

grading m) corresponding to those domains have Alexander grading less than m +

Ag0(?) + 1, since the presence of X-markings in the domain reduces their Alexander

grading. Therefore s11(F�
m(g)) ⇢ F�

m�a(g
0), for a = �Ag0(?)�1, and since d11�s11 = id

induces an isomorphism on F�
m(g)/F�

m�1(g) ! F�
m(g)/F�

m�1(g) for all m 2 Z, we

know that s11 induces an isomorphism F�
m(g)/F�

m�1(g) ! F�
m�a(g

0)/F�
m�a+1(g

0) for

all m 2 Z.

⇤

Using Lemma 2.2 [McC01] and the results above that d11 and s11 are filtered

chain maps which are quasi-isomorphisms on the associated graded objects, we see

that they are quasi-isomorphisms on the filtered chain complexes on which they are

defined.
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CHAPTER 6

Link Cobordisms

In this chapter we state the definition of link cobordism and prove an inequality

for links analogous to the one proven for knots by Sarkar in [Sar11]. This gives an

obstruction to sliceness for some links.

Definition 6.1. A cobordism from a link L0 to another line L1 is a surface F

properly embedded in S3⇥[0, 1], such that F \S3⇥{0} = L0 and F \S3⇥{1} = �L1.

If such a surface exists, we say that L0 is cobordant to L1.

If two l-component links L0 and L1 are connected by a cobordism consisting of l

disjoint annuli, we say that they are concordant, and a link which is concordant to

the unlink is slice.

Following [Sar11], a cobordism between two links can be represented by a series of

link grid moves. These moves are commutations and stabilizations (which correspond

to isotopy of links) and births, deaths, X-saddles, and O-saddles.

A grid diagram g is obtained from another grid diagram g via a birth if adding

an additional row and column to g and placing both an O- and an X-marking in

the grid square that is the intersection of the new row and column results in g. See

Fig. 6.1 for an example. This move is link-grid move (4) in [Sar11].

A grid diagram g is obtained from another grid diagram g via a death if there are

a row and a column in g, each containing exactly one X-marking, whose intersection

contains that X- and an O-marking. Then g is the result of deleting those markings

and deformation retracting the row and column to an ↵ and a � circle. For an

example, see Fig. 6.1. This is very similar to link-grid move (7) in [Sar11], with the
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O XX
X
X
O
O
O

X
X

O

O XX
X
X

O

O
O

X

Figure 6.1. A birth in the grid on the left produces the grid on the

right; a death in the right-hand grid produces the left-hand grid

di↵erence being that Sarkar required the O-marking in the dying component to be a

special O, and here it is a regular O-marking.

There are two grid moves corresponding to saddles in the cobordism. The first, an

X-saddle, which is link-grid move (5) in [Sar11], is used when the saddle merges two

components of the graph or when it splits one component into two. If a grid diagram

g contains a two-by-two square whose upper left and lower right grid squares contain

X-markings and whose upper right and lower left grid squares are unoccupied, then

doing this saddle move results in a grid diagram g. The new grid diagram g is exactly

the same as g except that in the two-by-two square, the X-markings are placed in the

upper right and lower left grid squares, with the upper left and lower right squares

unoccupied, as shown in Fig. 6.2.

The second type of saddle grid move, an O-saddle, is used only when the saddle

in the cobordism splits one component of the graph into two components. This move

is link-grid move (6) from [Sar11]. It is exactly the same as the first saddle move
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X
X

XO
O

O

O
O
X

X

X
X

XO
O

O

O
O
X

X

Figure 6.2. A saddle move of the first type on the left-hand grid

produces the grid on the right

X
X

XO
O

O

O
O

X

X

*

X
X

XO
O

O

O
O

X

X

*

*

Figure 6.3. A saddle move of the second type on the left-hand grid

produces the grid on the right

except that the two-by-two square which di↵ers in g and g contains a special O-

marking in the upper left corner and a regular O in the lower right corner in g, and

special O-markings in the uper right and lower left corners in g. An example is shown

in Fig. 6.3.

For the proof of the inequality, we will use the combinatorial definition of Alexan-

der grading from [Sar11], which we will denote as A0.
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Definition 6.2. For a generator x in a grid diagram g, the Alexander grading of

x is

A0(x) = J (x,X�O)� 1

2
J (X,X) +

1

2
J (O,O)� n� 1

2
,

where n is the grid size of g. For an l-component link, this definition di↵ers slightly

from the usual combinatorial definition of Alexander grading A(x) from [MOST07],

which can be obtained from A0(x) by adding l�1
2
.

Definition 6.3. For a tight grid diagram g representing an l-component link L

in S3, define

⌧ 0(L) = min{m 2 1

2
Z|◆m is non-trivial}

where bF 0
m is the Alexander filtration induced by the Alexander grading A0(·) and

◆m : H⇤( bF 0
m) ! H⇤(dCF (g)) is the map induced by inclusion.

Lemma 6.1. The Alexander grading A(·) from [MOST07] is equal to the Alexan-

der grading I define in my basic definitions document, and for an l-component link

the ⌧H defined in my basic definitions document is equal to ⌧ 0 + l�1
2
.

1. Link Cobordisms and the ⌧ Invariant

Theorem 6.1. If L1 and L2 are l- and m-component links, respectively, and F is

a connected genus g cobordism from L1 to L2, then

1� g � l  ⌧(L1)� ⌧(L2)  g +m� 1.

Proof. The proof will follow the same basic outline of the proof of the main

theorem in [Sar11]. Consider the cobordism F as a “movie.” Then there are some

number of births, deaths, and saddles in the movie, and the genus g = 1
2
(s� b� d) +

1� l+m
2
, where b, d, and s are the number of births, deaths, and saddles, respectively.

We can alter the cobordism slightly so that each of the movie moves happens at a

distinct time and so that all of the births take place before any of the saddles, all of
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the saddles take place before any of the deaths, and the last m + d � l saddles split

one link component into two.

Note that m + d � l is always greater than or equal to 0. If m > l, then this is

obviously true. If l > m, then we must have d � l�m since both g1 and g2 are tight

link grid diagrams and deaths are the only move that reduce the number of special

O-markings in the grid. Therefore d � l �m > 0, so m+ d� l � 0.

As Sarkar shows in [Sar11], the modified cobordism can be represented by a

sequence of link grid diagrams, such that the first grid, g1 is a tight diagram for

L1, the last grid, g2 is a tight diagram for L2, and each diagram in the sequence is

obtained from the one before it by a commutation, stabilization, destabilization, birth,

X-saddle, O-saddle, or death grid move, or by renumbering the ordinary O-markings.

As shown in [Sar11], the chain maps associated to renumbering the ordinary O-

markings, commutations, stabilizations, and de-stabilizations are quasi-isomorphisms

which preserve both the Maslov and A0 Alexander gradings. The chain maps as-

sociated to births is a quasi-isomorphism which preserves the Maslov grading and

shift the Alexander grading A0 by �1
2
. The chain maps associated to X-saddles are

the identity maps, and they shift the Alexander grading A0 by +1
2
. The chain maps

associated to O-saddles induce injective maps on homology and shift the Alexander

grading A0 by �1
2
. The chain maps associated to deaths induce surjective maps on

homology and shift the Alexander grading A0 by +1
2
.

Now we will track the overall shift in the Alexander grading A0 over the sequence

of moves in the (modified) cobordism. Since there are b births, the shift from the

births is �1
2
b. Next we need to figure out how many of the saddles are represented by

X-saddle grid moves and how many by O-saddles. Any saddle can be represented by

either an X-saddle or an O-saddle grid move, but O-saddles and deaths are the only

moves that change the number of special O-markings in the diagrams. Therefore we

can choose which saddles will be represented by X-saddles and which by O-saddles
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so that we will have the correct number of special O-markings at each stage of the

cobordism. Since the beginning and ending grid diagrams g1 and g2 are tight, we

know that g2 has m special O-markings and g1 has l special O-markings. Since the

death move removes a special O-marking, we need to have m+ d special O-markings

after all of the saddles have been performed but before the deaths. Therefore we

should have m + d � l O-saddles in the cobordism, and these are the last saddles.

The fact that we chose that the last m + d � l saddles should be splits ensures that

there will not be more than one special O-marking on any one component, so the

ending grid diagram g2 will be tight. The rest of the saddles, which is to say the first

s�m� d+ l saddles in the cobordism, are X-saddles.

Now we can see that the Alexander grading shift from the X-saddles is +1
2
(s �

m � d + l) and the shift from the O-saddles is �1
2
(m + d � l). Since there are d

deaths, the shift from the deaths is +1
2
. Adding up the grading shifts from all of the

cobordism moves, the total shift is 1
2
(s� b� d) + l �m.

Following [Sar11], we know that ⌧ 0(L1) is less than or equal to ⌧ 0(L2) plus the

Alexander grading shift of the cobordism from L1 to L2. Therefore

⌧ 0(L2)  ⌧ 0(L1) +
1

2
(s� b� d) + l �m,

and after some algebraic manipulation, we see that

⌧ 0(L2) +
m� 1

2
� ⌧ 0(L1)�

l � 1

2

✓
s� b� d

2
+ 1 +

m� l

2

◆
+ l � 1.

Now we observe that since the genus of F is g = s�b�d
2

+ 1 + m�l
2

and ⌧ 0(L1) +
l�1
2

=

⌧(L1), we have

⌧(L2)� ⌧(l1)  g + l � 1.

To prove the other inequality, we reverse the direction of F and consider it as a

cobordism from L2 to L1. Following the same proof as for the first inequality, we see
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that

⌧(L1)� ⌧(L2)  g +m� 1.

⇤

2. Application to link sliceness

If an l-component link L is slice, then there is a concordance between L and

the l-component unlink. We can modify this concordance by connect-summing the

annuli together and capping o↵ all but one of the unlink’s components to produce a

connected genus zero cobordism from L to the unknot U . Applying Theorem 6.1 to

this cobordism, we see that

1� l  ⌧(L)� ⌧(U)  0.

Since ⌧(U) = 0 we have the following corollary:

Corollary 6.1. If an l-component link L has ⌧(L) > 0 or ⌧(L)  �l, then L is

not slice.
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