1 Disclaimer

Use these notes at your own risk. This copy of my transcribed notes is here for your convenience, but neither the instructor nor I will be held responsible for any mistakes contained therein. In particular, this isn’t an “officially sanctioned” transcript of the class notes.

2 Geometric Meaning of the Derivative

We have $z \xrightarrow{f} w$ with derivative f'. f' rotates by the angle of the argument and expands by the absolute value. Given a curve γ, the length of $f(\gamma)$ is

$$\int |d\gamma(t)|dt = \int |f'(\gamma(t))| \cdot |\gamma(t)|dt = \int |f'(s)|ds$$

Letting s be the length parameter on γ.

Given a region E that f takes to region E', $\text{Area}(E') = \int_E |f'(z)|^2 dxdy$.

Conformality of holomorphic mappings Let f take the curves γ_1, γ_2 to curves $\tilde{\gamma}_1, \tilde{\gamma}_2$ respectively. If $f'(z) \neq 0$, this implies that the angle between two curves γ_1, γ_2 is $\arg(\dot{\gamma}_2/\dot{\gamma}_1)$. The angle between $\tilde{\gamma}_1, \tilde{\gamma}_2$ is then $\arg(\dot{\tilde{\gamma}}_2/\dot{\tilde{\gamma}}_1) = \arg(f'(z)\gamma_2/f'(z)\gamma_1)$, which in turn is equal to the angle between γ_1, γ_2.

Example Consider $f(z) = z^2 = w$, and we consider how it changes the z-plane. This map is clearly 2 to 1, and the upper z-plane should map to the entire w-plane. Consider the horizontal line $z = t + i\alpha$. We then have $u + iv = z^2 = t^2 - \alpha^2 + 2i\alpha t$. We have $u = t^2 - \alpha^2$, $v = 2\alpha t$. Thus it is a parabola symmetric to the u-axis, and they open to the right. Consider now the horizontal line $z = \alpha + it$. We then have $w = \alpha^2 - t^2 + 2i\alpha t$. We have parabolas, again symmetric to the u-axis, opening left.

Now we want to find what happens when we map the w-plane to the z-plane. In this case, it is easier to write equations rather than to parameterize. So we consider $v = c$ constant, the equation of a horizontal line. We have $u + iv(x + iy)^2 = x^2 = y^2 + 2ixy$. We then have $xy = c$, which is the equation of a hyperbola (whose asymptotes are horizontal and vertical lines). Similarly, if u constant, then $x^2 - y^2$ is constant, which is again a hyperbola, with asymptotes the lines $y = \pm x$.

Excercise Visualize $w = (z + 1/z)/2$, the Zhukowski map.

3 Complex Power Series

Theorem 3.1. If a series $\sum a_n z^n$ converges (not necessarily absolutely) for $z = z_0$, then it converges absolutely for $|z| < |z_0|$.
Proof. Clearly \(\sup_n |a_n z^n_0| \leq C \) for some \(C \). But then \(|a_n z^n| = a_n z^n_0 (z/z_0)^n| \leq C|z/z_0|^n \), which is a convergent geometric series. \(\square \)

Theorem 3.2. An absolutely convergent series converges

Proof. A series \(\sum_{n=1}^\infty a_n \) converges iff \(\forall \epsilon > 0, \exists n_0 \) such that \(|a_n + \ldots + a_{n+k}| < \epsilon \) for all \(n > n_0 \), for all \(k \). Clearly however \(|a_n + \ldots + a_{n+k}| \leq |a_n| + \ldots + |a_{n+k}| \). \(\square \)

Theorem 3.3 (Riemann Series Theorem for Complex Numbers). We can rearrange the terms of a conditionally convergent complex series so that it converges to any element of a linear space (either a line or a plane). For instance, if the series only contains real coefficients, we can make it converge to any real number (this is the Riemann Series Theorem for Real numbers).

Next Time Imagine that \(\sum_{n=1}^\infty a_n \) converges to \(S \). If we consider a coefficient with \(|z| < 1 \), certainly the series \(\sum_{n=1}^\infty a_n z^n \) converges. Does the convergent value approach \(S \) as \(z \) approaches 1?