1 Disclaimer

Use these notes at your own risk. This copy of my transcribed notes is here for your convenience, but neither the instructor nor I will be held responsible for any mistakes contained therein. In particular, this isn’t an “officially sanctioned” transcript of the class notes.

2 Index of a Point with respect to a Closed Curve.

We have a point a and a point γ that doesn’t intersect a. The index $n(\gamma, a) = (1/2\pi i) \oint_{\gamma} 1/(z - a) \, dz$. We know that the index is always an integer.

Claim 1. If a_1, a_2 lie in the same connected component of $\mathbb{C} \setminus \gamma$, then $n(\gamma, a_1) = n(\gamma, a_2)$.

Proof. Take a path between a_1, a_2. If the value of the winding number differs, it must differ by at least 1. But then there must be a discontinuous jump in the path, contradicting the continuity of n. \qed

Definition 1. A cycle is a formal finite sum of closed oriented curves $\sum_{i=1}^{r} \gamma_i$.

Definition 2. A cycle γ in a domain Ω is said to be homologous to zero if for any a not lying in Ω we have $n(\gamma, a) = 0$.

Note that $n(\gamma, a) = \sum_{i=1}^{r} n(\gamma_i, a)$.

Claim 2. If a lies in the unbounded region of $\mathbb{C} \setminus \gamma$, then $n(\gamma, a) = 0$. More generally, if γ lies outside of \mathbb{C}, then $n(\gamma, a) = 0$.

Theorem 2.1 (General Form of Cauchy’s Theorem). Let f be holomorphic in Ω, except at finitely many points z_i at which $\lim_{z \to z_i} f(z) = 0$. Let $\gamma \sim 0$. Then $\int_{\gamma} f \, dz = 0$.

Definition 3. A domain $\Omega \subset \mathbb{C}$ is simply connected if its complement in \mathbb{C} is connected.

Equivalently, every closed curve $i\gamma$ in Ω is homologous to 0.

Corollary 2.2. If Ω is simply connected and f is holomorphic in Ω, then $\int_{\gamma} f(z) \, dz = 0$ for any closed curve γ in Ω.

Corollary 2.3. Let $\gamma \sim 0$ in Ω. Then $\int_{\gamma} f(z)/(z - a) \, dz = 2\pi i n(\gamma, a)f(a)$. In particular, if Ω is simply connected then this equation holds for any closed curve γ. 1
3 The Argument Principle

Let Ω be a domain, and let γ be a closed curve in \mathbb{D}. Let f be holomorphic, $f \neq 0$ on γ.

\[
\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} \, dz = n(\Gamma, 0) = \sum_{z_i \text{ zeroes of } f} \text{mult}(z_i)n(\gamma, z_i)
\]

Let z_1, \ldots, z_k be the zeroes of f, each zero taken as many times as the multiplicity suggests. Then $(z - z_1)(z - z_2)\ldots(z - z_k)\phi(z)$, where $\phi(z) \neq 0$ in \mathbb{D}.

\[
\frac{f'(z)}{f(z)} = \frac{1}{z - z_1} + \frac{1}{z - z_2} + \ldots + \frac{1}{z - z_k} + \frac{\phi'(z)}{\phi(z)}.
\]

So

\[
\frac{1}{2\pi i} \oint_{\gamma} \frac{f'(z)}{f(z)} \, dz = \sum n(\gamma, z_i).
\]

In other words, the numbers of times $f(\partial\mathbb{D})$ goes around 0 is the sum of multiplicities of 0’s inside \mathbb{D}.

Exercise Formulate the Theorem in the most general form.