1 Disclaimer

Use these notes at your own risk. This copy of my transcribed notes is here for your convenience, but neither the instructor nor I will be held responsible for any mistakes contained therein. In particular, this isn’t an “officially sanctioned” transcript of the class notes.

2 The Argument Principle

Proposition 2.1. If \(U \) is an open set and \(f \) is a nonconstant holomorphic mapping on \(U \), then \(f(U) \) is open.

Proof. Take any point \(z_0 \) on \(U \), and let \(w_0 \) be the image of \(z_0 \) via \(f \). Take \(\tilde{f} = f - w_0 \). Choose a circle \(C \) around \(z_0 \) so that no other zero of \(\tilde{f} \) is in the disk bounded by \(C \). Let \(C \) map to \(\gamma \) via \(\tilde{f} \). Consider another point \(z_1 \) in the interior of \(C \). It maps to \(w_1 \) - but then clearly \(\text{ind}(\gamma_1, w_1) = \text{ind}(\gamma_1, w_0) \). Since the index is locally constant, \(w_1 \) must lie in the same connected open region that contains \(w_0 \).

Corollary 2.2. The number of times the value \(w_0 \) is achieved in \(F \) is the index of \(\gamma \) with respect to \(w_0 \).

Corollary 2.3. If \(f \) is holomorphic at \(z_0 \) and \(f'(z_0) \neq 0 \), then \(f \) is locally invertible and \(f^{-1} \) is holomorphic.

3 The Maximum Principle

Theorem 3.1 (Maximum Principle). Let \(U \) be a domain with compact closure. Let \(f : U \to \mathbb{C} \) be holomorphic. Then \(\max_{U} |f| = \max_{\partial U} |f| \). Equivalently, if \(f \) is holomorphic and nonconstant, then \(|f| \) cannot have local maxima.

Proof. A neighborhood of \(z \) is mapped to an open neighborhood of \(w \). But then clearly in that neighborhood contains a point of higher absolute value.

Theorem 3.2 (Rouche’s Theorem). \(f, g : D \to \mathbb{C} \) holomorphic, and \(|g(z)| < |f(z)| \) on \(\partial D \). Then \(f, f + g \) have the same number of zeroes in \(D \).

Proof. Consider the integral \((1/2\pi) \int_C (f'/tg')/(f+tg)dz \) as \(t \) ranges from 0 to 1. It is a continuous function that only takes constant values, and so it must be constant. But then the winding number of the image of \(f \) must be the same as the winding number of the images of \(f + g \), and so the number of zeroes with multiplicites is equal.

This gives a proof of the fundamental theorem of algebra. Consider a complex polynomial degree \(n \). Let \(f \) be the leading term, and \(g \) be the rest of the polynomial. We then apply Rouche’s Theorem to an infinitely large circle.