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1. Holonomy groups

Let Mn be a manifold of
dimension n. Let x∈M .
Then TxM is the tangent
space to M at x.
Let g be a Riemannian
metric on M .
Let ∇ be the Levi-Civita
connection of g.
Let R(g) be the
Riemann curvature of g.
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Fix x∈M .The holonomy
group Hol(g) of g is the
set of isometries of TxM
given by parallel trans-
port using ∇ about closed
loops γ in M based at x.
It is a subgroup of O(n).
Up to conjugation, it is
independent of the base-
point x.

3



Berger’s classification

Let M be simply-connected
and g be irreducible and
nonsymmetric.Then Hol(g)
is one of SO(m), U(m),
SU(m), Sp(m), Sp(m)Sp(1)
for m � 2, or G2 or Spin(7).
We call G2 and Spin(7)
the exceptional holonomy
groups. Dim(M) is 7 when
Hol(g) is G2 and 8 when
Hol(g) is Spin(7).
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Understanding Berger’s list

The four inner product algebras are

R — real numbers.

C — complex numbers.

H — quaternions.

O — octonions,

or Cayley numbers.

Here C is not ordered,

H is not commutative,

and O is not associative.

Also we have C
∼= R2, H

∼= R4

and O
∼= R8, with Im O

∼= R7.
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Group Acts on

SO(m) Rm

O(m) Rm

SU(m) Cm

U(m) Cm

Sp(m) Hm

Sp(m)Sp(1) Hm

G2 Im O
∼= R7

Spin(7) O
∼= R8

Thus there are two holonomy

groups for each of R, C, H, O.
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2. Calibrations
Let (M, g) be a Riemannian
manifold. An oriented tan-
gent k-plane V on M is an
oriented vector subspace V of
some tangent space TxM to
M with dimV = k. Each has
a volume form volV defined
using g.
A calibration on M is a closed
k-form ϕ with ϕ|V � volV for
every oriented tangent k-plane
V on M.
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Let N be an oriented k-fold in
M with dimN = k. We call N

calibrated if ϕ|TxN = volTxN

for all x ∈ N .
If N is compact then vol(N) �
[ϕ] · [N ], and if N is compact
and calibrated then vol(N) =
[ϕ]·[N ], where [ϕ] ∈ Hk(M, R)
and [N ] ∈ Hk(M, Z).
Thus calibrated submanifolds
are volume-minimizing in their
homology class, and are
minimal submanifolds.
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Calibrations on Rn

Let (Rn, g) be Euclidean, and
ϕ be a constant k-form on Rn

with ϕ|V � volV for all
oriented k-planes V in Rn.
Let Fϕ be the set of oriented
k-planes V in Rn with ϕ|V =
volV . Then an oriented k-fold
N in Rn is a ϕ-submanifold iff
TxN ∈ Fϕ for all x ∈ N .
For ϕ to be interesting, Fϕ

must be fairly large, or there
will be few ϕ-submanifolds.
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Calibrations and
special holonomy metrics
Let G ⊂ O(n) be the holon-
omy group of a Riemannian
metric. Then G acts on Λk(Rn)∗.
Suppose ϕ0 ∈ Λk(Rn)∗ is nonzero
and G-invariant. Rescale ϕ0
so that ϕ0|V � volV for all ori-
ented k-planes V ⊂ Rn, and
ϕ0|U = volU for some U. Then
U ∈ Fϕ0, so by G-invariance
Fϕ0 contains the G-orbit of
U. Usually Fϕ0 is ‘fairly big’.
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Let (M, g) be have holonomy
G. Then there is constant k-
form ϕ on M corresponding
to the G-invariant k-form ϕ0.
It is a calibration on M.
At each x ∈ M the family of
oriented tangent k-planes V

with ϕ|V = volV is Fϕ0, which
is ‘fairly big’. So we expect
many ϕ-submanifolds N in M.
Thus manifolds with special
holonomy often have interest-
ing calibrations.
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Here are some examples:
• complex submanifolds of
Kähler manifolds (with
holonomy U(m)).
• Special Lagrangian m-folds
in Calabi–Yau m-folds (with
holonomy SU(m), and real
dimension 2m).
• associative 3-folds and coas-
sociative 4-folds in 7-manifolds
with holonomy G2.
• Cayley 4-folds in 8-manifolds
with holonomy Spin(7).
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3. Compact calibrated
submanifolds

Let (M, J, g) be a Calabi–Yau
m-fold with complex volume
form Ω. Then ReΩ is a cal-
ibration on M. Its calibrated
submanifolds are called
special Lagrangian m-folds,
or SL m-folds for short.
What can we say about
compact SL m-folds in M?
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Let (M, J, g,Ω) be a Calabi–
Yau m-fold and N a compact
SL m-fold in M. Let MN be
the moduli space of SL defor-
mations of N . We ask:
1. Is MN a manifold, and of
what dimension?
2. Does N persist under de-
formations of (J, g,Ω)?
3. Can we compactify MN

by adding a ‘boundary’ of sin-
gular SL m-folds? If so, what
are the singularities like?
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These questions concern the
deformations of SL m-folds,
obstructions to their existence,
and their singularities.
Questions 1 and 2 are fairly
well understood, and we shall
discuss them in this lecture.
Question 3 will be discussed
tomorrow.
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3.1 Deformations of
compact SL m-folds

Robert McLean proved the
following result.
Theorem. Let (M, J, g,Ω) be
a Calabi–Yau m-fold, and N

a compact SL m-fold in M.
Then the moduli space MN

of SL deformations of N

is a smooth manifold of
dimension b1(N), the first
Betti number of N .
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Here is a sketch of the proof.
Let ν → N be the normal bun-
dle of N in M. Then J iden-
tifies ν ∼= TN and g identifies
TN ∼= T ∗N . So ν ∼= T ∗N . We
can identify a small tubular
neighbourhood T of N in M

with a neighbourhood of the
zero section in ν, identifying
ω on M with the symplectic
structure on T ∗N .
Let π : T → N be the obvious
projection.
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Then graphs of small 1-forms
α on N are identified with sub-
manifolds N ′ in T ⊂ M close
to N . Which α correspond to
SL m-folds N ′?
Well, N ′ is special Lagrangian
iff ω|N ′ ≡ ImΩ|N ′ ≡ 0.
Now π|N ′ : N ′ → N is a diffeo-
morphism, so this holds iff
π∗

(
ω|N ′

)
= π∗

(
ImΩ|N ′

)
= 0.

We regard π∗
(
ω|N ′

)
and

π∗
(
ImΩ|N ′

)
as functions of α.
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Calculation shows that
π∗

(
ω|N ′

)
= dα and

π∗
(
ImΩ|N ′

)
= F (α,∇α),

where F is nonlinear. Thus,
MN is locally the set of small
1-forms α on N with dα ≡ 0
and F (α,∇α) ≡ 0. Now
F (α,∇α) ≈ d(∗α) for small α.
So MN is locally approximately
the set of 1-forms α with dα=
d(∗α)=0. But by Hodge the-
ory this is the de Rham group
H1(N, R), of dimension b1(N).
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3.2 Obstructions to
existence of SL m-folds

Let M be a C-Y m-fold. Then
an m-fold N in M is SL iff
ω|N ≡ ImΩ|N = 0. This holds
only if [ω|N] = [ImΩ|N] = 0
in H∗(N, R). So we have:
Lemma. Let M be a Calabi–
Yau m-fold, and N a com-
pact m-fold in M. Then N is
isotopic to an SL m-fold N ′
in M only if [ω|N] = 0 and
[ImΩ|N] = 0 in H∗(N, R).
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The Lemma is a necessary
condition for a C-Y m-fold to
have an SL m-fold in a given
deformation class. Locally, it
is also sufficient.
Theorem. Let Mt : t ∈ (−ε, ε)
be a family of Calabi–Yau m-
folds, and N0 a compact SL
m-fold of M0. If [ωt|N0

] =
[ImΩt|N0

] = 0 in H∗(N0, R)
for all t, then N0 extends to
a family Nt : t ∈ (−δ, δ) of SL
m-folds in Mt, for 0 < δ � ε.
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3.3 Coassociative 4-folds
Let (M, g) have holonomy G2.
Then M has a constant 3-
form ϕ and 4-form ∗ϕ.
They are calibrations, whose
calibrated submanifolds are
called associative 3-folds and
coassociative 4-folds. A 4-
fold N in M is coassociative
iff ϕ|N ≡ 0. Also, if N is coas-
sociative then the normal bun-
dle ν is isomorphic to Λ2

+T ∗N ,
the self-dual 2-forms.
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Using this, McLean proved:
Theorem. Let (M, g) be a
7-manifold with holonomy
G2, and N a compact coasso-
ciative 4-fold in M. Then the
moduli space MN of coasso-
ciative deformations of N is
a smooth manifold of dimen-
sion b2+(N).
Roughly, nearby coassociative
4-folds correspond to small
closed forms in Λ2

+T ∗N , which

are H2
+(N, R) by Hodge theory.
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3.4 Associative 3-folds and
Cayley 4-folds

Associative 3-folds in
7-manifolds with holonomy G2,
and Cayley 4-folds in 8-manifolds
with holonomy Spin(7), can-
not be defined by the van-
ishing of closed forms. This
gives their deformation the-
ory a different character. Here
is how the theories work.
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Let N be a compact asso-
ciative 3-fold or Cayley 4-fold
in M. Then there are vector
bundles E, F → N and a first
order elliptic operator
DN : C∞(E) → C∞(F ).
The kernel Ker DN is the set
of infinitesimal deformations
of N . The cokernel Coker DN

is the obstruction space. The
index of DN is ind(DN) =
dimKer DN − dimCoker DN.
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In the associative case
ind(DN) = 0, and in the
Cayley case ind(DN) =
τ(N) − 1

2χ(N) − 1
2[N ] · [N ],

where τ is the signature and
χ the Euler characteristic.
Generically Coker DN = 0, and
then MN is locally a manifold
with dimension ind(DN). If
Coker DN �= 0, then MN may
be singular, or have a
different dimension.
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Note that the special
Lagrangian and coassociative
cases are unusual: there are
no obstructions, and the mod-
uli space is always a manifold
of given dimension, without
genericity assumptions.
This is a minor mathematical
miracle.
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