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1. Holonomy groups

Let M"™ be a manifold of
dimension n. Let xe M.
ThenT,:M is the tangent
space to M at =z.

Let g be a Riemannian
metric on M.

Let V be the Levi-Civita
connection of g.

Let R(g) be the
Riemann curvature of g.
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Fixxe M. The holonomy
group Hol(g) of g is the
set of iIsometries of 1T, M
given by parallel trans-
port using V about closed
loops v In M based at «x.
It is a subgroup of O(n).
Up to conjugation, it is
Independent of the base-
point x.



Berger’s classification

Let M be simply-connected
and g be irreducible and
nonsymmetric. Then Hol(g)
is one of SO(m), U(m),
SU(m), Sp(m), Sp(m)Sp(1)
form > 2, or G or Spin(7).
We call G> and Spin(7)
the exceptional holonomy
groups. Dim(M) is 7 when
Hol(g) is G> and 8 when
Hol(g) is Spin(7).
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Understanding Berger’s list
The four inner product algebras are

R — real numbers.

C — complex numbers.

H — quaternions.

O — octonions,

or Cayley numbers.

Here C is not ordered,
H is not commutative,
and O is not associative.
Also we have C = R2, H = R4
and O £ R8, with ImO Z R’.



Group AcCts on

SO(m) R™
O(m) R™
SU(m) cm
U(m) cm
Sp(m) H™
Sp(m)Sp(1) H™
G5 ImO = R/
Spin(7) 0 = RS

T hus there are two holonomy
groups for each of R, C, H, O.



2. Calibrations

Let (M, g) be a Riemannian
manifold. An oriented tan-
gent k-plane V. on M is an
oriented vector subspace V of
some tangent space 1,.M to
M with dimV = k. Each has
a volume form voly, defined
using g.

A calibration on M is a closed
k-form ¢ with ¢l|y < voly, for
every oriented tangent k-plane
V on M.



Let NV be an oriented k-fold in
M withdim N = k. Wecall N
calibrated if |7y = VOl N
for all x € N.

If N is compact then vol(IN) >
0] - [N], and if N is compact
and calibrated then vol(N) =
[0]-[N], where [¢] € H*(M, R)
and [N] € H.(M,Z).

T hus calibrated submanifolds
are volume-minimizing in their
homology class, and are
minimal submanifolds.



Calibrations on R"

Let (R™, g) be Euclidean, and
@ be a constant k-form on R"
with ¢y, < voly, for all
oriented k-planes V in R™,
Let F, be the set of oriented
k-planes V in R™ with ¢l =
voly,. Then an oriented k-fold
N in R"is a p-submanifold iff
ITwN € F, for all x € N.

For ¢ to be interesting, F,
must be fairly large, or there
will be few p-submanifolds.
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Calibrations and

special holonomy metrics
Let G C O(n) be the holon-
omy group of a Riemannian
metric. Then G acts on AF(R™)*.
Suppose pg € A5(R™)* is nonzero
and G-invariant. Rescale g
so that ¢qgly < voly, for all ori-
ented k-planes V C R", and
wolyy = voly for some U. Then
U € Fpy, SO by G-invariance
Fpy contains the G-orbit of
U. Usually Fpy Is ‘fairly big’.
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Let (M, g) be have holonomy
(. Then there is constant k-
form ¢ on M corresponding
to the G-invariant k-form oq.
It iIs a calibration on M.

At each x € M the family of
oriented tangent k-planes V
with ¢l = voly, is Fpy, Which
IS ‘fairly big’'. So we expect
many p-submanifolds N in M.
Thus manifolds with special
holonomy often have interest-
INg calibrations.
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Here are some examples:

e complex submanifolds of
Kahler manifolds (with
holonomy U(m)).

e Special Lagrangian m-folds
in Calabi—Yau m-folds (with
holonomy SU(m), and real
dimension 2m).

e associative 3-folds and coas-
sociative 4-folds in 7T-manifolds
with holonomy Go.

e Cayley 4-foldsin 8-manifolds
with holonomy Spin(7).
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3. Compact calibrated
submanifolds
Let (M, J,g) be a Calabi—Yau
m-fold with complex volume
form 2. Then Ref 2 is a cal-
Ibration on M. Its calibrated
submanifolds are called
special Lagrangian m-folds,
or SL m-folds for short.
What can we say about
compact SL m-folds in M7
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Let (M, J,g,2) be a Calabi—
Yau m-fold and N a compact
SL m-fold in M. Let My be
the moduli space of SL defor-
mations of N. We ask:

1. Is M a manifold, and of
what dimension?

2. Does N persist under de-
formations of (J,g,2)7

3. Can we compactify My
by adding a ‘boundary’ of sin-
gular SL m-folds? If so, what
are the singularities like?
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These questions concern the
deformations of SL m-folds,
obstructions to their existence,
and their singularities.
Questions 1 and 2 are fairly
well understood, and we shall
discuss them in this lecture.
Question 3 will be discussed
tomorrow.
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3.1 Deformations of
compact SL m-folds
Robert MclLean proved the
following result.
Theorem. Let (M, J, g, 2) be
a Calabi—yYau m-fold, and N
a compact SL m-fold in M.
Then the moduli space My
of SL deformations of N
Is a smooth manifold of
dimension b1 (N), the first
Betti number of N.
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Here is a sketch of the proof.
Let v — N be the normal bun-
dle of N in M. Then J iden-
tifies v = T'N and ¢ identifies
TN =T*N. Sov=T*N. We
can identify a small tubular
neighbourhood 1" of N in M
with a neighbourhood of the
zero section in v, identifying
w on M with the symplectic
structure on T*N.

Let 7 : T"— N be the obvious
projection.

17



Then graphs of small 1-forms
a on N are identified with sub-
manifolds N’ in T C M close
to N. Which a correspond to
SL m-folds N'?

Well, N’ is special Lagrangian
T w\N/ = Im Q‘N’ = 0.

Now x| n7 0 N' — N is a diffeo-
morphism, so this holds iff
7T*<W‘N/> — W*(Im Q‘N’) = 0.
We regard m«(w|pr) and
m+(Im Q) as functions of a.
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Calculation shows that
mx(w| /) = da and

m+(Im Q| pv) = F(a, Va),
where F' Is nonlinear. Thus,
M is locally the set of small
1-forms o« on N with da=0
and F(a,Va) =0. Now
F(a,Va) ~ d(x«) for small «.
So My is locally approximately
the set of 1-forms o with da=
d(xa) =0. But by Hodge the-
ory this is the de Rham group
HI(N,R), of dimension b1 ().
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3.2 Obstructions to
existence of SL m-folds
Let M be a C-Y m-fold. Then
an m-fold N in M is SL iff
wly =Im Q| = 0. This holds
only if [w\N] = [Im Q‘N] =0
in H*(N,R). So we have:
Lemma. Let M be a Calabi—
Yau m-fold, and N a com-
pact m-fold in M. Then N is
isotopic to an SL m-fold N’
in M only if [w|y] = 0 and
Im2|x] =0 in H*(N,R).
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The Lemma Is a necessary
condition for a C-Y m-fold to
have an SL m-fold in a given
deformation class. Locally, it
IS also sufficient.

Theorem. Let M;:t € (—¢,¢)
be a family of Calabi—Yau m-
folds, and Ng a compact SL
m-fold of My. If [wt‘NO] =
[Im Qt|NO] = 0 In H*(No,R)
for all t, then Ng extends to
a family Ny :t € (—96,0) of SL
m-~folds in M, for O < § < e.
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3.3 Coassociative 4-folds
Let (M, g) have holonomy Gb5.
Then M has a constant 3-
form ¢ and 4-form xop.

They are calibrations, whose
calibrated submanifolds are
called associative 3-folds and
coassociative 4-folds. A 4-
fold N In M is coassociative
iff |y = 0. Also, if N is coas-
sociative then the normal bun-
dle v is isomorphic to /\3_T*N,
the self-dual 2-forms.
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Using this, MclLean proved:
Theorem. Let (M,g) be a
7-manifold with holonomy
G-, and N a compact coasso-
ciative 4-fold in M. Then the
moduli space M of coasso-
ciative deformations of N Is
a smooth manifold of dimen-
sion b3 2 (N).

Roughly, nearby coassociative
4-folds correspond to small
closed forms in /\+T*N which
are H_|_(N, R) by Hodge theory.
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3.4 Associative 3-folds and

Cayley 4-folds
Associative 3-folds in
7-manifolds with holonomy G,
and Cayley 4-folds in 8-manifolds
with holonomy Spin(7), can-
not be defined by the van-
Ishing of closed forms. This
gives their deformation the-
ory a different character. Here
IS how the theories work.
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Let N be a compact asso-
ciative 3-fold or Cayley 4-fold
InN M. Then there are vector
bundles E, FF — N and a first
order elliptic operator

Dy : C°(FE) — C°°(F).

The kernel Ker Dy is the set
of infinitesimal deformations
of N. The cokernel Coker Dy
IS the obstruction space. The
index of DN IS md(DN) p—
dim Ker Dy — dim Coker Dyy.
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In the associative case
ind(Dpy) = 0, and in the
Cayley case ind(Dy) =

r(N) = 5x(N) = 3[NT- [N],
where 7 Is the signature and
x the Euler characteristic.
Generically Coker Dy = 0, and
then My is locally a manifold
with dimension ind(Dpy). If
Coker Dy = 0, then M may
be singular, or have a
different dimension.
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Note that the special
LLagrangian and coassociative
cases are unusual: there are
no obstructions, and the mod-
uli space is always a manifold
of given dimension, without
genericity assumptions.

This is a minor mathematical

miracle.
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