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Abstract. In 1870 Jordan explained how Galois theory can be
applied to problems from enumerative geometry, with the group en-
coding intrinsic structure of the problem. Earlier Hermite showed
the equivalence of Galois groups with geometric monodromy groups,
and in 1979 Harris initiated the modern study of Galois groups of
enumerative problems. He posited that a Galois group should be
‘as large as possible in that it will be the largest group preserving
internal symmetry in the geometric problem.

I will describe this background and discuss some work in a long-
term project to compute, study, and use Galois groups of geometric
problems, including those that arise in applications of algebraic ge-
ometry. A main focus is to understand Galois groups in the Schu-
bert calculus, a well-understood class of geometric problems that
has long served as a laboratory for testing new ideas in enumerative
geometry.

1. Introduction

Cayley and Salmon studied smooth cubic surfaces F = 0 in P3 and
showed that they contain exactly 27 lines. Moreover, these lines appear
in a remarkable configuration. More precisely, suppose F ∈ Q[x] and
let K be the field of definition of the 27 lines (typically [K : Q] = 27).
Denote by K̃ the Galois closure of K/Q. Then Gal(K̃/Q) acts on the
cubic surface F . Since it preserves the surface, it also preserves the 27
lines by permuting them. (Moreover, it preserves the configuration).
And Gal(K̃/Q) ⊆ E6 (here we denote by E6 the Weyl group of the
configuration of the 27 lines). Usually it is exactly E6.

2. Modern View

Let P19 be the space of homogeneous cubics, let G be the Grassman-
nian of lines in P3, and let L = {(F, `) ⊆ P19 × C : F |` = 0}. Let
π : L → P19 be the projection map onto the first component. Then π
is dominant and generically finite, so we can study the field rational
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functions on L modulo rational functions on P19. It has degree 27 and
Galois group E6.

Definition 2.1. A branched cover is a map π : X → B, where dimX =
dimB, π(X) = B, and X is irreducible.

The map π : L → P19 is a branched cover. Given a branched cover
π : X → B, let Σ ⊆ B be the discriminant locus, i.e. the set of points
where the fiber has degree different from deg π. Then the map π : X \
π−1(Σ) → B \ Σ is unramified over C. In other words, generically, we
can view X as a covering space of B in the topological sense.

Then the geometric monodromy group is the group of deck trans-
formations. Earlier Hermite found that the monodromy group is the
same as the Galois group. In 1979 Harris initiated the modern study
of Galois groups.

Definition 2.2. A geometric problem (or branch covering or family
of polynomial equations) is deficient if its monodromy/Galois group is
not the full symmetric group.

In 1980, Harris observed that such Galois groups are “as large as
possible” in that there is some structure in the problem constraining
the group, but otherwise it is as large as possible. In the case of the 27
lines, it is the special configuration, which constrains the Galois group
to be no larger than E6, and in fact, it is E6, so it is as large as possible
given the structure.

In other words, if a Galois group is deficient, there should be some
clear geometric structure explaining the deficiency. In Schubert calcu-
lus and algebraic statistics there were examples where it was observed
that the Galois group was deficient before people knew what the struc-
ture was, so the goal became to figure out the geometric reason for the
deficiency.

We will illustrate this phenomenon with a simple example. Suppose
there is some involution acting which preserves the problems in your
family. Eg. suppose you can parameterize your set by square matrices,
and if you have a solution with a given matrix, then the transpose is
also a solution. Assuming certain irreducibility conditions, the number
of solutions is even, say 2n. Then the Galois group is contained in
(Z/2Z)n o Sn. This is the group of signed permutations, denoted Bn.
Often G = Bn, but sometimes G = Dn, which is the index 2 subgroup
of alternating permutations.
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3. Schubert calculus and results

The classical Schubert calculus is a well-understood class of geomet-
ric problems that has long served as a laboratory for testing new ideas
in enumerative geometry. Generally speaking, it is all problems of de-
termining the linear space of some type that have fixed position with
respect to other general linear spaces.

An example of a classical problem in Schubert calculus is “What are
the lines in P3 that meet 4 fixed lines?”

It is known that any three mutually skew lines determine a unique
quadric (a hyperboloid of one sheet) on which they lie. Hyperboloids
are double ruled, and there is one ruling in which these three lines lie,
and there is another ruling which are lines that meet these. The lines
in the second ruling meet all three of them. If I have a 4th line, this
is a quadric, so it will meet the hyperboloid in 2 points, and if there’s
going to be a line that meets all 4 of them, it had better go through
these points because the lines that meet the other three are on the
hyperboloid. Furthermore, for every point on the hyperboloid there is
a unique line in the second ruling that goes through that point, and
that line meets the other three lines. And here there are 2 lines that
meet all 4.

There are two ways to see that the Galois group is S4: one is that
it has to be a transitive permutation group on 2 elements, the other is
by rotating the fourth line so that the two intersection points switch
like a transposition in S4.

This is boring from the point of view of deficiency. The Schubert
calculus of enumerative geometry of this sort is more than just 4 lines
in 3-space. There are a few things about it. We know every single
Schubert problem. We know what they are, we know how many so-
lutions it has, we know equations to them, we know everything about
them. It’s completely known, it’s like if we classified all insects, we sort
of know all of them. But because of this, it provides a laboratory for
studying interesting phenomena. You can explore things in Schubert
calculus, much in the same way in which people view toric varieties
as a laboratory for studying phenomena in algebraic geometry. Simi-
larly, I think Schubert calculus gives a way to do that for enumerative
geometry questions.

The first example of a deficient Galois group of a Schubert problem
was something that Vakil observed and Derksen generalized. Actually,
at the same time, my research group found that we had found some
deficient Schubert problems as well.
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Vakil and Derksen have found infinite families of deficient Schu-
bert problems. In fact, there are some in every Grassmannian group
Gr(k, n) of k-planes in n-space, where k, n− k ≥ 4.

When these examples of Vakil and Derksen came up, this laid to rest
the idea we had from Harris’s paper that this is just a low-dimensional,
sporadic phenomenon.

What we found is that every deficient group is either an Sn act-
ing on certain ordered set partitions of {1, 2, ..., n}, or iterated wreath
products of these. For example, the symmetry group of a square
can be thought of as a wreath product of the two diagonals, and it’s
(S2 × S2) o S2.

In all known examples we have found in Schubert calculus, either
the Galois group is the full symmetric group or imprimitive.

Definition 3.1. A groupG ⊆ Sk is primitive if it preserves no partition
of {1, 2, ..., k}. Otherwise, it is called imprimitive.

Definition 3.2. A group G is n-transitive if it sends every ordered
n-tuple to any other ordered n-tuple.

For example, Sn is n-transitive, and An is (n−2)-transitive, but there
are very few highly transitive groups. Furthermore, a 2-transitive group
is primitive and so one which is imprimitive is therefore not 2-transitive.

Vakil gives a combinatorial/geometric method that can show that a
Galois group contains the alternating group. It’s a recursive method.
This is based upon the idea of special position in enumerative geom-
etry. A classical way you would solve a problem in enumerative ge-
ometry is you would take your conditions and you would put them in
some special position. Then you claim that they’re actually general,
but because of their special position your problem breaks up into two
smaller subproblems, and then you can apply recursion.

Using this, we’ve found that all Schubert problems in the Grassman-
nian Gr(2, n) are at least alternating, meaning that using this method,
one can show that they contain the alternating group. We believe that
they contain the full symmetric group, but that’s the strength of our
method (joint with Brooks, Martin del Campo). Another example is
Schubert problems on Gr(3, n) are all 2-transitive.

In between transitive and 2-transitive is primitive, and the number
of k for which there exists a primitive permutation group (once you
throw away some obvious examples) is not dense in the integers, so
primitive permutation groups are very rare.

In the special Schubert problems {Hk ∩Fn−k−a ≥ 1, for n, k, a ∈ Z},
the Galois groups are all 2-transitive (joint with White). Here the linear
space of some type is Hk and other general linear space is Fn−k−a.
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In the simple Schubert problems, all except two conditions are codi-
mension 1, meaning dim(Hk ∩ Fn−k) ≥ 1, these are all at least alter-
nating (joint with White and Williams)

Because of these results and examples, we know that the first inter-
esting examples happen in the Grassmannian of 4-planes in 8-space,
and so we studied Gr(4,8) (resp. Gr(4,9)) and we found 3,501 (resp.
36,767) Schubert problems that cannot be reduced to ones on a smaller
Grassmannian. Most are at least alternating, except for 14 (resp. 148).
(Note: the percentage is about the same in both). If we examine these,
these fall into 3 (resp. 13) families.


