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NOTES TAKEN BY MASAHIRO NAKAHARA

Abstract. The goal of this talk is to create a correspondence between the representation
theory of algebraic groups and the topology of Lie groups. The idea is to study the Hodge
theory of the classifying stack of a reductive group over a field of characteristic p, the case of
characteristic 0 being well known. The approach yields new calculations in representation
theory, motivated by topology.

Let X be a smooth variety over a field k. Let Ω1 be the cotangent bundle. Then Ωi =
∧i(Ω1) is a vector bundle ( =⇒ coherent sheaf). We have

CHi X → H2i
dR(X/k) = H2i(X, 0→ Ω0

X → Ω1
X → · · · )

where Ω0
X = OX , and

CHiX → H i(X,Ωi).

If k = C and X is smooth proper over C, then Hodge theory says

Hj
sing(X,C) ' Hj

H(X/C) = ⊕lH
l(X,Ωj−l).

Example 1. For a field k,

H0
H(A1/k) = O(A1

k) = k[x],

which is ∞-dimensional as a k-vector space. So Hodge cohomology is not A1 homotopy
invariant.

Example 2.

H0
dR(A1/k) = ker(d : O(A1)→ Ω1(A1))

=

{
k if char k = 0,

k[xp] if char k = p > 0.

So HdR is not A1-homotopy invariant in characteristic p.

Question 3. What should H∗G,Hodge(X/k) be for a variety X with an action of an algebraic
group G?

We take a detour to look at classifying spaces in topology. Let G be a topological group.

Definition 4. The classifying space of G is BG := EG/G where EG is any free contractible
G-space.

The homotopy type of BG is well defined. Hence we get invariants of G such as H∗(BG,Z)
(If G is a discrete group then BG = K(G, 1)). Likewise, we define equivariant cohomology
for a G-space X:

H∗G(X) := H∗((X × EG)/G).
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Example 5.
(1) BZ/2 = RP∞.
(2) BS1 = CP∞.
(3) BU(n) = Gr(Cn ⊂ C∞) =⇒ H∗(BU(n),Z) = Z[c1, c2, . . . , cn] where ci are Chern

classes which are invariants of C-vector bundles.

Remark 6. Every compact Lie group G has a complexification GC that is a C-reductive
group and BG→ BGC is a homotopy equivalence, e.g.,

(BGm)C ' BS1,

BGL(n,C) ' BU(n).

A reasonable definition for Hodge cohomology of BG (G an algebraic group over a number
field k) was suggested by Simpson and Teleman. The idea was to use the stack BG. For a
scheme X/k a morphism X → BG is a principal G-bundle over X:

Definition 7 (in topology). If G is a topological group and X a topological space, then
a principal G-bundle E over X is a topological space with free G-action together with a
homeomorphism E/G

∼→ X.

A quasi-coherent sheaf on the stack BG is a representatiion of G (as a group scheme over
k). Let [X/G] be the quotient stack for action of G on a scheme X. Quasi-coherent sheaves
on [X/G] are G-equivariant quasi-coherent sheaves on X.

Definition 8. The big étale site of a stack Y is the category of schemes X over Y with
morphisms

X1

��

f
// X2

��

Y

It is a covering if f is étale and surjective.

Definition 9. The sheaf Ωj/k on the big étale site of a stack Y is the sheaf
X

��

// Y

��

Spec k

 7−→ Ωj(X/k)

This is not a quasi-coherent sheaf on this site because for a morphism X1 → X2 over Y ,
the natural map f ∗Ωj

X2
→ Ωj

X1
is not an isomorphism of sheaves in general. So we define

Hodge cohomology of a stack Y as H i(Y,Ωj), the cohomology of the big sheaf Ωj.

Remark 10.
(1) If Y is an algebraic space, then this is equivalent to the usual cohomology of Y (using

the small étale site)
(2) If Y is a scheme, then H i

Zar(X,Ωj) ' H i
et(X,Ωj).
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General fact: Any algebraic stack Y has a smooth surjective morphism U → Y with U a
scheme (e.g. G a smooth algebraic group, X → [X/G]). Let E be a big sheaf then H∗(Y,E)
is computed by the Čech simplicial space associated to U → Y :

U
77

U ×Y Uoo
oo

44
44

U ×Y U ×Y U
oo
oo
oo · · ·

Example 11. Let Y = BG and U = Spec k. The Čech simplicial scheme BG is

Spec k 99 G
oo
oo

;;
;;

G2oo
oo
oo · · ·

So we get a spectral sequence

Eij = Hj(U i+1
Y , E) =⇒ H i+j(Y,E).

Corollary 12. Let G be a smooth affine group scheme over k. Then H∗(BG,Ω`) is the
cohomology of the complex of k-vector spaces

0→ Ω`
k(Spec k)→ Ω`(G)→ Ω`(G2)→ · · ·

Theorem 13 (Bott). If G is reductive, char k = 0, then

H i(BG,Ωj) =

{
0 if i 6= j,

Sj(g∗)G if i = j.

where g is the Lie algebra of G.

So H∗H(BG/k) ' O(g)G. This is not surprising: Chern-Weil theory says for G reductive
over C, we have H∗(BGC,C) ' O(g)G.

Theorem 14 (Totaro). If G is a smooth affine group over a field k, then

H i(BG,Ωi) ' H i−j(G,Sj(g∗)).

Here, for a G-module M , H i(G,M) := ExtiG(k,M).

This implies Bott’s theorem: If G is reductive and char k = 0, then a G-module is a
semisimple category. So H>0(G,M) = 0.

Example 15. Let V be the standard representation of GL(n) in characteristic 2. Then

0→ V (1) → S2V → ∧2V → 0

is not split as representation of GL(n).

Puzzle: How is

H∗dR(BG/Fp)

G reductive /Fp

related to

←→
H∗(BGC,Fp)?

G reductive /C

A guiding result from p-adic Hodge theory:

Theorem 16 (Bhatt, Morrow, Schultz). If X is a smooth projective scheme over Zp then

dimFp H
i
dR(X/Fp) ≥ dimFp H

i
et(XQp

,Fp).
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Although BG is not proper, it often acts as if it were proper.
Calculation: G reductive over k. To study BG, we use the fibration

G/B → BB → BG.

We have CH∗(G/B) ' H∗H(G/B) and H∗H(BB) = H∗((CP∞)n) = k[x1, . . . , xn] where n =
rkG.

Example 17. Let G = SO(n) over a field k of characteristic 2. Then

H∗H(BSO(n)/F2) = F2[w2, w3, . . . , wn], wi ∈ H i

w2a ∈ Ha(BSO(n),Ωa)

w2a+1 ∈ Ha+1(BSO(n),Ωa).

Example 18. One has

dimF2 H
32
dR(BSpin(11)/F2) > dimF2 H

32
et (BSpin(11)C,Fp).


