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Preface

These are live-texed lecture notes for a course taught in Cambridge dur-
ing Michaelmas 2013 by Burt Totaro, on a hodgepodge of topics at the
intersection of algebraic topology and algebraic geometry. An unfortunate
side effect of live-texing is that it tends to introduce a lot of errors, which
are solely the fault of the scribe. If you find any, please let me know at
tonyfeng009@gmail.com.
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Chapter 1

Principal Bundles and
Classifying Spaces

1.1 Principal Bundles in Topology

Let G be a topological group. That is, G is a topological space equipped
with continuous maps G × G → G (the group operation), a distinguished
point 1 ∈ G (the identity), and a map G → G (the inverse) satisfying the
standard associativity, identity, and inverse axioms.

Definition 1.1. A principal G-bundle is a topological space E with a
continuous action of G such that

1. If gx = x, then g = 1 (i.e. the action is free), and

2. If π : E → E/G is the quotient map, then every point x ∈ E/G has
an open neighborhood U such that π−1(U) ∼= G× U , and the action
of G on π−1(U) is given by g(h, x) = (gh, x).

So a principal G-bundle looks like a fiber bundle with fibers G, with
locally trivial action of G. However, it is important to note that the fibers
are not naturally groups, but rather torsors for G. That is, we do not have
a distinguished section of the bundle, so the fibers become identified with
G only after choosing some point to be the identity.

Typically, we denote B = E/G, and we call the whole fiber bundle
π : E → B the principal G-bundle. We also write G → E → B for this
fiber bundle.

Example 1.1. Complex vector bundles of rank n over a topological space
are equivalent to principal GL(n,C)-bundles over B. Indeed, given a vector
bundle V → B of rank n, you can construct a principal GL(n,C)-bundle
by fixing the vector space Cn, and defining

E =
⋃
b∈B

{isomorphisms Cn ∼= Vb}.

1
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GL(n,C) acts on E via its action on Cn (notice that this is completely
canonical).

Conversely, given a principal G-bundle E → B and any space F with an
action of G, we can form the space (E ×F )/G. This comes with a natural
projection map to E/G ' B with fiber F , and is therefore an F -bundle
over B. Applying this to the special case G = GL(n,C) and F = Cn, we
obtain a natural Cn-bundle over B from a principal GL(n,C)-bundle over
B. Furthermore, since GL(n,C) fixes 0 ∈ Cn, the resulting fiber bundle has
a distinguished zero section, namely x 7→ (x, 0), which gives it a natural
vector bundle structure.

Remark 1.2. Another perspective on this equivalence is through transition
functions. Both principal GL(n,C)-bundles and rank n vector bundles are
equivalent to the data of transition functions in GL(n,C) forming a co-
cycle, and this identification is the identity on transition functions.

If we have a group G acting freely on a topological space E, then we
would like to be able to say that E → E/G is a principal G-bundle. How-
ever, we have to be more careful about our definition of freeness for the
resulting quotient map to be locally trivial, as the following example shows.

Example 1.2. Let the group R act on R2/Z2 ∼= S1 × S1 by t(x, y) =
(x + t, y + λt) for some irrational λ. Here R acts freely on S1 × S1 as a
set, but this is not a principal bundle because the quotient space has the
trivial topology, and so the map is not locally trivial.

In light of this, we introduce a finer notion of free action that is nicely
behaved in the topological category.

Definition 1.3. A topological group G as freely on a space X if the map

G×X → X ×X
(g, x) 7→ (x, gx)

is a homeomorphism onto its image.

Theorem 1.4 (Serre). For a Lie group G (including discrete groups), if G
acts freely (in the above sense) on a metrizable topological space X, then
X → X/G is a principal G-bundle (i.e. it is locally trivial).

Remark 1.5. • The trivial G-bundle over B is G×B with the obvious
G-action.

• A principal G-bundle f : E → B is trivial if and only if it has a
section, meaning a continuous map s : B → E such that fs = 1B.
Indeed, given a section s, we can define an isomorphism of principal
G-bundles over B from G×B to E by (g, b) 7→ g · s(b).
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• Given any principal G-bundle E → B and a continuous map f : Y →
B, you can define a “pullback” principal G-bundle over Y as the fiber
product in the category of topological spaces:

EY //

��

E

��
Y // B

1.2 Classifying Spaces

In the following discussions, all spaces are paracompact when necessary.

Definition 1.6. Let G be a topological group. If EG is a contractible
space on which G acts freely, then we define the classifying space BG of G
to be the quotient space EG/G.

It is a fact that such a space EG exists, and any two classifying spaces
for G are homotopy equivalent. We won’t prove this rigorously, but we
will try to elucidate it a little bit. In particular, the classifying space is
technically only defined up to homotopy equivalence.

Example 1.3. Let G be a discrete group. A classifying space BG is a con-
nected space whose universal cover is contractible and whose fundamental
group is G. So for instance, S1 = BZ.

In fact, for any “nice” connected space X, the universal cover X̃ → X
is a principal π1(X)-bundle. Whenever the universal covering space is
contractible, X is the classifying space Bπ1(X).

Recall that an Eilenberg-Maclane space K(G, 1) is a connected space
X with π1(X) ∼= G and πi(X) = 0 for i ≥ 2. If G is discrete, then this is a
classifying space of G. Why?

Let X̃ denote the universal cover of X. It is a general fact that πi(X̃)→
π1(X) is an isomorphism for i ≥ 2 (this is clear from the long exact sequence
of homotopy groups, since the higher homotopy groups of the fiber are
trivial). This shows that the classifying space of a discrete group G is a
K(G, 1). Conversely, if X is a K(G, 1), then all the homotopy groups of

X̃ are zero, which implies that it is contractible for nice X (for example, a
CW complex), by Whitehead’s theorem.

So at least for discrete groups, the classifying spaces are familiar objects.

Example 1.4. A closed oriented surface X of genus ≥ 1 is a K(G, 1)
where G = π1(X). In particular, the torus is B(Z2) and the closed surface
of genus 2 is the classifying space for

G = 〈A1, A2, B1, B2; [A1, A2][B1, B2] = 1〉.
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Example 1.5. B(Z/2) = S∞/{±1} = RP∞. Indeed, S∞ (meaning the
increasing union ∪nSn) is contractible. This is perhaps somewhat surpris-
ing, since the Sn are not contractible, but we can contract each Sn within
Sn+1.

Example 1.6. S1 is a nice topological group, so it has a classifying space.
What is BS1? Thinking of S2n−1 ⊂ Cn and S1 ⊂ C∗, we get a free action
of S1 on S2n−1 by scaling each coordinate. Therefore, BS1 = S∞/S1. We
can recognize this space as CP∞.

1.3 The classifying space of GL(n,C)
Let E = Inj(Cn,C∞) (injective linear maps). Here C∞ is the increasing
union

⋃
n≥0Cn. The space E is contractible [why?]. So

BGL(n,C) = E/GL(n,C) = Gr(n,∞)

This is the “Grassmannian” of n-dimensional C-linear subspaces in C∞.
Note that we can also think of it as

⋃
N≥0 Gr(n,N). The cohomology ring

of this space is generated by the Chern classes, so we have deduce that
H∗(BGL(n,C),Z) = Z[c1, . . . , cn] where |ci| = 2i.

If H → G is a homomorphism of topological groups which is a homo-
topy equivalence, then BH → BG is a homotopy equivalence.

Example 1.7. U(n) → GL(n,C) is a homotopy equivalence. (Here U(n)
is the set of linear maps g : Cn → Cn such that ||gx|| = ||x|| for all x ∈ Cn.
Note that g ∈ U(n) ⇐⇒ g · gt = 1.) Why? Given A ∈ GL(n,C), we have
n linearly independent vectors A(e1), . . . , A(en) ∈ Cn. The Gram-Schmidt
process produces (canonically) an orthonormal basis from this given one,
which form the columns of an element of U(n). More generally, a connected
Lie group deformation retracts onto a maximal compact subgroup.

Example 1.8. Let SU(n) = {A ∈ U(n) : detA = 1}. The classifying
space BSU(2) can be viewed as HP∞ (infinite dimensional quaternionic
projective space).

Proof. Note that SU(2) is the group of unit quaternions. (In particular,
SU(2) is diffeomorphic to the 3-sphere.) The group SU(2) acts freely on
S∞ ⊂ H∞, so BSU(2) ' S∞/SU(2) = HP∞.
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Note that

RP∞ = pt. ∪ (1− cell) ∪ (2− cell) ∪ . . .
CP∞ = pt. ∪ (2− cell) ∪ (4− cell) ∪ . . .
HP∞ = pt. ∪ (4− cell) ∪ (8− cell) ∪ . . .

It turns out that H∗(BS1,Z) ∼= Z[u], |u| = 2 and H∗(BSU(2),Z) ∼=
Z[v], |v| = 4. That this is true additively is clear from the cell decom-
positions above; the ring structure is trickier.

Example 1.9. How do you construct BG for any compact Lie group G?
Such a group has a faithful complex representation (by the Peter-Weyl
theorem). That is, we can find an embedding G ↪→ GL(n,C) for some n.
We can further: G embeds as a subgroup of U(n) for some n (start with the
standard inner product on Cn and average it with respect to Haar measure
on G to get a G-invariant inner product on Cn).

Then G acts freely on EU(n) = Inj(Cn,C∞) which is contractible, so

BG = EU(n)/G→ EU(n)/U(n).

In this way, we get a fiber bundle

U(n)/G→ BG→ BU(n).

1.4 Fiber bundles

Theorem 1.7 (cf. Husemöller, Fiber bundles.). Let E → B × [0, 1] be a
principal G-bundle, with B a paracompact space. Let π : B × [0, 1]→ B be
the projection map. Then E ∼= π∗(E|B×0).

Corollary 1.8. If f0, f1 : X → Y are homotopic maps, and E is a principal
G-bundle over Y , then f ∗0E

∼= f ∗1E as principal G-bundles.

Proof. We have a homotopy F : X × [0, 1] → Y . By the theorem, F ∗E
on X × [0, 1] is pulled back from a G-bundle over X. In particular, the
restrictions of this bundle to X × {0} and X × {1} are isomorphic.

Corollary 1.9. If f : X → Y is a homotopy equivalence, then f ∗ is a
bijection from isomorphism classes of G-bundles on Y to those on X.

Proof. By definition, we have a continuous map g : Y → X such that
fg ∼ 1Y and gf ∼ 1X .
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1.4.1 The long exact sequence of a fiber bundle.

Let F → E → B be a fiber bundle. That is, π : E → B is a continuous
map, and B is covered by open sets U such that there is a homeomorphism
π−1U ∼= U × F over U .

π−1U
∼ //

��

U × F

��
U = // U

Then there is a long exact sequence of homotopy groups (once we fix a base
point on the spaces involved):

. . . πiF → πiE → πiB → πi−1F → . . .

One can view the boundary map as the homomorphism associated to a
certain continuous map ΩB → F . Note that πi(ΩX) ∼= πi+1(X), since the
suspension Σ and the loop space Ω are adjoint functors on the category of
pointed spaces.

Example 1.10 (The path fibration). For any connected space X, there is
a fibration of the form

ΩX → PX → X

where PX = {f : [0, 1] → X with f(0) = x0}, i.e. the space of all paths
in X starting at x0. The map sends f 7→ f(1) ∈ X. This is well-behaved
enough that we get a long exact sequence of homotopy groups:

. . . πiΩX → πiPX → πiX → πi−1ΩX → . . .

but the path space PX is contractible, so the long exact sequence tells us
that πiX ∼= πi−1ΩX.

1.5 Universal Property of Classifying Spaces

Theorem 1.10. Let X be a paracompact space that is homotopy equiva-
lent to a CW complex (e.g. any CW complex or manifold). Let G be a
topological group. Then there is a bijection

[X,BG]↔ { isomorphism classes of principal G-bundles over X }.

Remark 1.11. We can extend this the pointed case: fix a base point x0 ∈
X and consider based homotopy classes. Likewise, consider principal G-
bundles over X that are trivialized over x0, that is, with a choice of a point
in the fiber over x0.
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Proof Sketch. A continuous map f : X → BG gives a principal G-bundle
on X by pulling back the universal principal G-bundle on BG, EG→ BG.
We already know that homotopic maps give isomorphic G-bundles.

Conversely, let E → X be a principal G-bundle. Consider the principal
G-bundle (E × EG) → (E × EG)/G (the G-action is diagonal on the
product).

Remark 1.12. This is a free action even if only one of the actions is free.
Indeed, if the map G× E → E × E is an isomorphism, then an inverse to
the map

G× (E × EG)→ (E × EG)× (E × EG) ∼= (E × E)× EG× EG

is obtained by combining this isomorphism with the projection map EG×
EG→ EG to the first coordinate.

There are obvious continuous maps

(E × EG)/G
f

ww

g

((
E/G = X EG/G = BG.

Notice that the map f is a homotopy equivalence, because EG is con-
tractible. Indeed, f is a fiber bundle with fiber EG. One can use the long
exact sequence of homotopy groups to see that the two spaces have the
same homotopy groups, and the result then follows by Whitehead’s theo-
rem. Therefore, we get a homotopy inverse map X → (E×EG)/G→ BG.

Let’s now try to see the surjectivity of this assocation. Given a principal
G-bundle on X, we want to construct a map X → BG that pull backs EG
to our given bundle.

The key point is that the map E × EG → EG is G-equivariant, so if
you pull back the universal G-bundle from BG to (E × EG)/G then you
get the universal G-bundle E × EG → (E × EG)/G. Similarly, since the
map E × EG → E is G-equivariant, the pullback of E × EG to E/G is
just E.

What about injectivity: if two maps f1, f2 : X → BG satisfy f ∗1 (EG) =
f ∗2 (EG), why is f1 ∼ f2? Now we use the cell complex hypothesis and
build up the result cell-by-cell. Since every principal G-bundle over a disc
is trivial, we have two maps e1, e2 : Dn×G→ EG and we know that e1 = e2
on ∂Dn × G (by induction), and we want a homotopy between these two
maps.

Observe that a G-equivariant map Dn × G → EG is the same as a
continuous map Dn → EG. So we can view e1, e2 as two continuous maps
Dn → EG, agreeing on their boundaries, which together give a map Sn →
EG. Since EG is contractible, they must be homotopic.
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Example 1.11. Let G be a discrete group, so that BG = K(G, 1). For a
connected space X, this theorem says that

[X,K(G, 1)] =
{

isomorphism classes of
principal G-bundles over X

}
= Hom(π1(X), G).

To see this last identification, observe that a G-bundle over X is a covering
space with G as its group of deck transformations.

For example, if G = Z, then we get that [X,S1] = Hom(π1X,Z) for
connected X.

Definition 1.13. A space X is a K(G, n) (Eilenberg-Maclane space) if

πiX ∼=

{
G i = nm

0 i 6= n

where G is discrete, and abelian if n ≥ 2.

Theorem 1.14. For any (reasonable) space X and any Eilenberg-Maclane
space K(G, n),

[X,K(G, n)] ∼= Hn(X,G).

This agrees with the previous result because, for X connected,

[X,S1] = [X,K(Z, 1)] = H1(X,Z) = HomZ(H1(X,Z),Z) = Hom(π1X,Z).

Remark 1.15. For n = 1, it’s reasonable to define, for any topological group
G,

H1(X,G) := [X,BG].

One can prove theorems such as the above by “obstruction theory.” We saw
a hint of this above: decomposing X as a cell complex, one slowly builds
up maps cell-by-cell. Any discrepancies that arise on the boundaries can
be analyzed using homotopy theory, which is simplified by the vanishing of
most of the homotopy groups of K(G, n).

Example 1.12. For a space X,

[X,CP∞] = [X,BS1] = {principal S1-bundles over X/ ∼=}.

We can also think of CP∞ as BGL(1,C) = BC×, so that the above is in
natural bijection with the set of principal GL(1,C) bundles over X. But we
explained how principal GL(1,C)-bundles over X correspond to complex
line bundles, so this is the same as isomorphism classes of complex line
bundles on X.
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Also, note that CP∞ is a K(Z, 2) space. (More generally, consider the
fiber bundle for a topological group G:

G→ EG→ BG.

The long exact sequence shows that πiBG ∼= πi−1G. Therefore, if G is
K(G′, n) then BG is a K(G′, n + 1).) We have deduced the following
theorem.

Theorem 1.16. There is a bijection

{isomorphism classes of complex line bundles over X} ∼= H2(X,Z).

The cohomology class associated to a line bundle L is called the “first
Chern class” of that line bundle, and denoted c1(L). One can think of
c1(L) as the “Euler class” of the associated oriented real bundle of rank 2
over X. Therefore, if X is a smooth manifold and s is a section transverse
to the zero section, then c1(L) is the cohomology class of the zero set of a
section s of L (or rather, Poincaré dual to it) in H2(X,Z).

Remark 1.17. You can define the Chern classes of any C-bundle in a similar
way. If E → X is a complex vector bundle of rank n, we have shown that
isomorphism classes of rank n vector bundles are the same as principal
GL(n,C) bundles over X, which is the same as maps [X,BGL(n,C)]. This
furnishes a natural way to attach invariants to these vector bundles, by
pulling back cohomology classes of

H∗(BGL(n,C),Z) ∼= Z[c1, . . . , cn] |ci| = 2i

so any C-vector bundle E of rank n determines cohomology classes c1(E),
c2(E), . . . , cn(E) ∈ H∗(X,Z) by pulling back the ci.
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1.6 Fibrations

First, we say a few additional things about fibrations.

Definition 1.18. A map E → B has the homotopy lifting property with
respect to a space Y if for any maps f : Y × [0, 1]→ B and g : Y → E such
that π ◦ g = f |Y×0, f lifts to a map F : Y × [0, 1]→ E such that π ◦F = f .

Y × [0, 1] F //

f

$$

E

��
B.

Definition 1.19. A (Serre) fibration is a continuous map π : E → B sat-
isfying the homotopy lifting property for Y = [0, 1]n, for any n ≥ 0.

Example 1.13. Any fiber bundle is a fibration.

Example 1.14. For any space X, the path fibration ΩX → PX → X is
a fibration, but not necessarily a fiber bundle.

Some properties of fibrations.

• For B path-connected, all fibers of a fibration π : E → B are ho-
motopy equivalent. This is a relaxation of the condition for fiber
bundles.

• A fibration π : E → B gives a long exact sequence of homotopy groups

. . .→ πiF → πiE → πiB → πi−1F → . . .

where F is the pre-image of any point (the homotopy groups are
well-defined by the previous statement.

Remark 1.20. Any continuous map is “equivalent” to a fibration, where
by equivalent we mean that we can replace spaces by homotopy-equivalent
spaces. Explicitly, suppose E → B is a continuous map and let E2 be the
space of pairs (e, α) where e ∈ E and α is a path in B starting at f(e). The
space E2 is evidently homotopy equivalent to E, because you can contract
each path to the constant path at f(e). However, there is a map E2 → B
sending α to α(1), and one can check that this is a fibration.

Definition 1.21. The homotopy fiber of a map f : E → B is a fiber of the
fibration E2 → B. This is well-defined up to homotopy equivalence.

Example 1.15. The homotopy fiber of the inclusion ∗ → X is ΩX, since
the previous construction gives the fibration ΩX → PX → X.
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Example 1.16. For any fibration F → E → B, the homotopy fiber of
E → B is homotopy equivalent to F .

Corollary 1.22. For any topological group G, Ω(BG) is homotopy equiv-
alent to G.

Proof. We have a fiber bundle G→ EG→ BG where EG is contractible,
so the homotopy fiber of ∗ → BG is homotopy equivalent to Ω(BG). On
the other hand, the homotopy fiber of EG → BG is homotopy equivalent
to G by the preceding example.

The rough picture is that there is a remarkable equivalence in homo-
topy theory between two problems. One is to classify connected topologi-
cal spaces up to homotopy equivalence. The other is to classify topological
groups up to “homotopy equivalence as topological groups”. As a technical
matter, it may be more convenient to work with topological monoids M
such that π0(M) is a group. The two problems are related by: given a con-
nected space X, one can form the loop space ΩX, which is a topological
monoid whose π0 is a group (precisely π1X). One can go backwards by
taking the classifying space, so this is an equivalence of categories.

Example 1.17. Ω(CP∞) ' S1 because CP∞ = BS1.



Chapter 2

Spectral Sequences

In this chapter, we will introduce spectral sequences, with an emphasis on
examples and applications. The slogan is that spectral sequences are a
generalization of long exact sequences.

We will focus on the Serre spectral sequence of a fibration. Given a
fibration F → E → B, how are H∗F,H∗E, and H∗B related? We might
hope that H∗E can be recovered from H∗F and H∗B. For instance, if E =
F ×B and B and F are CW-complexes of finite type, and the cohomology
coefficients are a field k, then the Kunneth formula says that

H i(E, k) ∼=
n⊕
j=0

Hj(F, k)⊗k H i−j(B, k).

In general, the relationship between these three cohomology rings is highly
nontrivial. If we were considering homotopy groups instead of (co)homology,
then we would get a long exact sequence. In the cohomology setting, the
best we can hope for is a spectral sequence.

Definition 2.1. A (first-quadrant) spectral sequence is a collection of abelian
groups Ep,q

r for integers r ≥ 2, p ≥ 0, q ≥ 0 and homomorphisms dp,qr : Ep,q
r →

E
p+r,q−(r−1)
r such that:

1. (dr)
2 = 0,

2. Ep,q
r+1 = ker(dr on Ep,q

r )
im(dr to Ep,q

r )
.

E0,2
2

((

E1,2
2

((

E2,2
2 E3,2

2 . . .

E0,1
2

((

E1,1
2

((

E2,1
2 E3,1

2 . . .

E0,0
2 E1,0

2 E2,0
2 E3,0

2 . . .

12
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We think of the spectral sequence as being a collection of “pages”
indexed by r. Each page consists of a two-dimensional array of abelian
groups, and has its own differential dr that goes r to the right and r − 1
down.

The groups on the pages get successively “smaller”, since the group
Ep,q
r+1 is a quotient of a subgroup of Ep,q

r . However, it is possible that they
will eventually stop changing.

Theorem 2.2 (Leray, Serre). For a fibration F → E → B, there is a
spectral sequence such that

• Ep,q
2
∼= Hp(B,Hq(F )),

• for each p, q, there exists r such that Ep,q
r
∼= Ep,q

r+1
∼= . . . =: Ep,q

∞ , and

• there is a filtration of Hj(E,R) with quotient groups being the groups
Ep,j−p
∞ for p = 0, 1, . . . , j.

There is a complication here. If π1B does not act trivially on H∗F , then
the cohomology on the E2 page has to be considered as the cohomology
of B with coefficients in a locally constant sheaf on B. So we will try to
stick to the case where this actually is trivial, especially when π1B is itself
trivial.

Example 2.1. Consider an oriented sphere bundle Sn → E → B. Then
the E2 page of the spectral sequence has zeros everywhere except in row
0 and row n, and the only possibly nonzero differential is dn+1 : H iB →
H i+n+1B. In particular, dn+1(1 ∈ H0B) = χ(E) in Hn+1(B,Z) is called
the Euler class of this sphere bundle.

H0B

dn+1

%%

H1B H2B H3B

0 0 0 0 . . .

...
...

...
...

...

0 0 0 0 . . .

H0B H1B H2B H3B . . . Hn+1B

For any x ∈ H iB, dn+1(x) = xχ(E) ∈ H i+n+1(B) (we will explain this
later). So this one cohomology class determines how the cohomology of E
is related to that of B. This gives a long exact sequence

. . . H i−(n+1) χ(E)−−→ H i(B)→ H iE → H i−nB
χ(E)−−→ H i+1B → . . .
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2.1 Spectral sequence of a filtered complex

One way that spectral sequences come up in nature is when you have a
filtered chain complex. To elaborate, suppose that

. . .→ A−1 → A0 → A1 → . . .

is a (co)-chain complex of abelian groups (meaning that the homomor-
phisms d satisfy d2 = 0). Suppose each Ai has a decreasing filtration,
meaning subgroups F j(Ai) for all integers j such that F j+1(Ai) ⊂ F j(Ai).
Suppose further that the differentials are compatible with the filtration, in
the sense that d(F j(Ai)) ⊂ F j(Ai+1). Consider the associated graded of
the filtration,

grj(Ai) = F j(Ai)/F j+1(Ai)

giving the associated chain complex (by compatibility)

Cj : . . .→ grj(Ai)→ grj(Ai+1)→ . . .

Then there is a spectral sequence from the cohomology of the complexes
Cj, for j ∈ Z, converging to the cohomology of A•.

The Serre spectral sequence can be constructed in this way. Given
a fibration F → E → B with B a CW-complex, we want to know the
cohomology of

C•E : . . .→ CjE → Cj+1E → . . .

You can filter this chain complex by the inverse images of the j-skeletons
of B, for j ∈ Z. This gives a spectral sequence with

Ep,q
1 = Cp(B,HqF ).

So on E2, the groups are Hp(B,HqF ).
How is H∗E related to the E∞ page of the Serre spectral sequence of

a fibration F → E → B? Recall that we said that the terms along the
diagonals p+q = n are the quotients of a filtration on HnE. More precisely,
HpE maps onto E0,p

∞ , and the kernel of that maps onto E1,p−1
∞ , ... the kernel

of the last homomorphism is Ep,0
∞ (so the latter is a subspace).

Here’s a trick to remember which direction does the filtration go. Note
that Ep,0

2 = Hp(B,Z) if F is connected. It only receives maps in the
spectral sequence, so Ep,0

∞ is a quotient of Hp(B,Z). The homomorphism
from this group to HpE is induced from the pullback map HpB → HpE.
Likewise, E0,q

2 = H0(B,HqF ) = HqF . So E0,q
∞ is a subgroup of HqF . The

homomorphism from HqE to this group is the pullback homomorphism
HqE → HqF .

The Serre spectral sequence fits well with the cup product on cohomol-
ogy. Each page Er of the spectral sequence is a graded commutative ring
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(xy = (−1)|x||y|yx where x ∈ Ea,b
r has |x| = a+ b). Moreover,

dr(xy) = dr(x) · y + (−1)|x|xdr(y).

This is the natural sign to expect, if you think of dr has a “symbol of degree
one” (it raises the total degree by one).

On the E2 page, the product is the “obvious” one on H∗B ⊗k H∗F (if
we consider cohomology with coefficients in a field). Moreover, the product
on each page Er determines the product on the page Er+1.

Finally, the ring structure on E∗,∗∞ is the associated graded ring to the
product on H∗E, which makes sense because

F j(H∗E)F `(H∗E) ⊂ F j+`(H∗E).

Example 2.2. Let Sn → E → B be an oriented sphere bundle. Write x
for the element element of E2

0,n that corresponds to 1 in H0B.

x ∈ H0B

dn+1

&&

H1B H2B H3B

0 0 0 0 . . .

...
...

...
...

...

0 0 0 0 . . .

H0B H1B H2B H3B . . . Hn+1B

Clearly dn+1 = 0 on row 0, and every element on row n is equal to xy for
some y in row 0. So dn+1(xy) = dn+1(x)y, where dn+1(x) is the Euler class
of the sphere bundle.

This situation commonly arises from taking the sphere bundle of an
oriented real vector bundle E of rank n + 1. Thus, we have associated a
cohomology class in Hn+1(B,Z) to an oriented real vector bundle of rank
n+ 1; this is called the Euler class of that vector bundle.

Note that the element x2 in the spectral sequence is zero (it lives in a
group which is zero). So 0 = dn+1(x

2) = (1 + (−1)n)dn+1(x)x. If n is odd,
this says nothing. If n is even, then 2dn+1(x)x = 0, so 2dn+1(x) = 0. That
is, the Euler class of an oriented real vector bundle of odd rank is killed by
2. As a result, the Euler class is more useful for real bundles of even rank.

Example 2.3. Suppose that the sphere Sn has the structure of a topolog-
ical group. What can you say about H∗(BSn,Z)? (In fact, it is a famous
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theorem that this only happens when n = 0, 1, or 3.)
We have a fibration Sn → ESn → BSn. Suppose n ≥ 1. Since we know

that

πiS
n =

{
0 i < n,

Z i = n.

it follows that

πiBS
n =

{
0 i < n+ 1

Z i = n+ 1
.

In particular, BSn is simply-connected, so the Serre spectral sequence has
a simple E2 page. We get that H∗(BSn, H∗(Sn,Z)) converges to H∗(pt,Z),
whose only non-zero group is Z in degree 0. That implies that all of the
maps dn+1 must be isomorphisms. But dn+1 is multiplication by the Euler
class. Therefore, H∗BSn is a polynomial ring generated by the Euler class.

This shows that if Sn is a topological group and n ≥ 1, then n must be
odd, since if n were even then we would have |χ| = n + 1 so χ2 = −χ2 by
graded-commutativity.

Example 2.4. What is H∗(ΩSn,Z)? Note that πi(ΩS
1) = πi+1S

1, which
we know, so ΩS1 ' Z as a discrete space.

Now suppose n ≥ 2, so that Sn is simply connected. We have a fibration
ΩSn → PSn → Sn so we get a spectral sequence

E∗∗2 = H∗(Sn, H∗(ΩSn,Z)) =⇒ H∗(pt,Z).

The only non-vanishing differential is dn, and the only cohomology group
that can survive is H0. Therefore, H i(ΩSn,Z) ∼= H i−(n−1)(ΩSn,Z) is an
isomorphism for i ≥ n. Furthermore, H0(ΩSn,Z) ∼= Z and H i(ΩSn,Z) = 0
for 0 < i < n − 1. This shows that H i(ΩSn,Z) is Z in multiples of n − 1
and 0 otherwise.

Let’s find the ring structure. Suppose n = 2m+ 1, and let y be the ele-
ment of Hn−1(ΩSn) with differential dn(y) = x generating H0(ΩSn). Then
dn(yk) = kyk−1dn(y), so dkn(yk) = k!x. This shows that Hk(n−1)(ΩSn) ∼=
Z[y

k

k!
]. Thus we see that the cohomology ring H∗(ΩS2m+1,Z) is the “free

divided-power algebra on one generator.” With Q coefficients, this is sim-
ply a polynomial ring! So H∗(ΩS2m+1,Q) ∼= Q[y], |y| = 2m.

Exercise 2.1. Compute H∗(ΩS2m,Z) as a Z-algebra.
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2.2 The rational cohomology of Eilenberg-

Maclane spaces

There are two viewpoints in homotopy theory. The first is that any space is
built by gluing spheres (definition of a CW-complex), from which the basic
objects are cofibrations X → Y → Y/X. Every space is approximately a
“wedge of spheres,” but with twisting from the gluing maps. The ways an
a-cell can be attached to a b-sphere are described by the homotopy group
πa−1(S

b). So a lot of homotopy theory would be determined if we knew the
homotopy groups of spheres (whereas their homology is simple).

The second is that any space is built from Eilenberg-MacLane spaces,
and the foundational objects are fibrations. In this philosophy, all spaces
are approximately products of Eilenberg-Maclane spaces, but possibly with
twisting from fibrations. The homotopy groups of Eilenberg-MacLane
spaces are simple, while their cohomology is complicated (but known!).

We have ΩK(A, n) ' K(A, n − 1) for an abelian group A and n ≥ 1.
By the path fibration on K(A, n) we see that K(A, n) = BK(A, n − 1).
The path fibration is homotopy equivalent to K(A, n− 1)→ ∗ → K(A, n).

Theorem 2.3. H∗(K(Z, 2m+ 1),Z) = Q〈x2m+1〉 and H∗(K(Z, 2m),Q) ∼=
Q[y2m].

Notation: Q〈xa, xb, . . .〉 denotes the free graded-commutative Q-algebra
with generators in degrees a, b, . . .. For a odd, Q〈xa〉 is just the exterior
algebra Q⊕Qxa.

Remark 2.4. We are already familiar with this theorem in the caseK(Z, 1) '
S1 and K(Z, 2) ' CP∞.

Proof. As in the analysis of H∗BSn if Sn is a topological group, suppose
we know that H∗(K(Z, 2m − 1),Q) ∼= Q〈x2m−1〉. Then consider the fiber
bundle K(Z, 2m− 1)→ ∗ → K(Z, 2m). The E2 page of the corresponding
spectral sequence is zero except in rows 0 and 2m− 1, and the cohomology
of the total space is 0 except in degree 0, so the only nonzero differential
is d2m and it is an isomorphism in each entry.

0 0 0 0 0

Qx

  

. . . Qxy

  

. . . 0

...
...

...
... 0

Q . . . Qy . . . Qy2
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Therefore we conclude as before that H∗(K(Z, 2m),Q) ∼= Q[y2m] (the point
is that the spectral sequence tells us multiplication by y2m is an isomor-
phism). Next, suppose we know that

H∗(K(Z, 2m),Q) ∼= Q[y2m].

We have a fibration

K(Z, 2m)→ ∗ → K(Z, 2m+ 1)

so we have a spectral sequence whose E2 page is nonzero only in rows a
multiple of 2m. Since the cohomology of the total space vanishes except in
degree 0, we see that H∗(K(Z, 2m + 1),Q) = 0 in degrees 1, . . . , 2m and
Qx in degree 2m+ 1, where x = d2m+1(y).

Qy2

%%

0 . . . Qxy2 . . .

...
...

...
...

...

Qy

%%

0 . . . Qxy . . .

...
...

...
...

...

Q 0 . . . Qx . . .

By the compatibility between differentials and products, we have d2m+1(y
r) =

rxyr−1 for all r ≥ 1. Since we are considering rational coefficients, it follows
that d2m+1 is an isomorphism from column 0 to column 2m+ 1, except at
at the 0, 0 entry.

As a result, we can show that the rational cohomology of K(Z, 2m+ 1)
is zero in all degrees greater than 2m + 1. If it had nonzero cohomology
in degree j, where j is the smallest number greater than 2m+ 1 such that
this happens, then no differentials could hit the group Ej,0

2 , contradicting
the fact that Ej,0

∞ must be zero. This completes the inductive proof that
H∗(K(Z, 2m+ 1),Q) ∼= Q〈x2m+1〉.

Corollary 2.5. Let X be any simply connected space with H∗(X,Q) a
free graded commutative Q-algebra. Then X is Q-homotopy equivalent to
a product of Eilenberg-Maclane spaces.

What this means is that there is a map X →
∏
K(An, n) that induces

an isomorphism on Q-cohomology.
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Proof. Suppose that H∗(X,Q) ∼= Q〈xa1 , xa2 , . . .〉. Replacing each xai by a
multiple if necessary, we may assume that each xai comes from H∗(X,Z).
Since [X,K(A, n)] ∼= Hn(X,A), each xai gives a map X → K(Z, ai).
That gives a map from X to the product, such that the generator of
Hai(K(Z, ai),Z) ∼= Z pulls back to xai ∈ H∗(X,Z). By the Künneth
formula, the pullback map is an isomorphism on rational cohomology.

Theorem 2.6 (Serre). The groups πiS
n are finitely generated for all n.

More generally, this holds for any simply-connected CW-complex of finite
type.

Proof. The key ingredient here is the Hurewicz theorem, which says that
if πiX = 0 for 0 ≤ i ≤ n− 1 with n ≥ 2, then the map πi(X)→ Hi(X) is
an isomorphism for 1 ≤ i ≤ n. Technically, the argument should be stated
using of the Leray-Serre spectral sequence for homology rather than coho-
mology. Since we haven’t stated that, we will informally switch between
homology and cohomology.

Let X be a simply connected CW complex of finite type. Then all
homology groups Hi(X,Z) are finitely generated. Suppose that A = πn(X)
is the first nonzero homotopy group. By Hurewicz, A is finitely generated.
Consider the fibration F → X → K(A, n). We know that H i(X,Z) are
finitely generated abelian groups, and we want to show that H i(F,Z) are
also finitely generated abelian groups. Why is this useful? The long exact
sequence for a fibration says that

0→ πn+1X ∼= πnF → 0→ πnX ∼= πn(K(A, n))→ 0.

So the homotopy groups of the fiber are those ofX kicked up one dimension.
If the cohomology of F is finitely generated, then its lowest nontrivial
homotopy group is isomorphic to its lowest nontrivial cohomology group,
which is the second -lowest nontrivial homotopy group for X.

Towards this end, we must first establish that H i(K(A, n),Z) is finitely
generated for A finitely generated. This is a straightforward spectral se-
quence argument, like others we have seen. Granting this, one then looks
at the spectral sequence

H∗(K(A, n), H∗(F,Z)) =⇒ H∗(X,Z).

Could it happen that H iF is not finitely generated? Consider the least i
for which this is the case. It has to end up finitely generated on the E∞
page, but by the minimality assumptions it only has maps to and receives
maps from finitely generated groups, so this is impossible.
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Chapter 3

Rational Homotopy Theory

3.1 Rational Homotopy Equivalences

Definition 3.1. A map f : X → Y of simply connected spaces is a rational
homotopy equivalence if any of the following equivalent conditions hold:

1. f∗ : πi(X)⊗Z Q→ πi(Y )⊗Z Q is an isomorphism for all i.

2. f∗ : H∗(X,Q)→ H∗(Y,Q) is an isomorphism for all i.

3. f ∗ : H∗(Y,Q)→ H∗(X,Q) is an isomorphism for all i.

(2) ⇐⇒ (3) is clear from the universal coefficient theorem. (1) ⇐⇒
(2) is proved by a spectral sequence argument, e.g. using induction on
Postnikov towers:

F2 → X → K(πa(X), a).

Remark 3.2. Part of the reason this works so neatly is that Q is a flat
Z-module (flat is equivalent to torsion-free over Z). So, for example, for a
fibration F → E → B we have a long exact sequence

. . .→ πiF ⊗Z Q→ πiE ⊗Q→ πiB ⊗Q→ . . .→

Another example of a flat Z-module is the integers localized at a prime
number p, Z(p). We can define a p-local homotopy equivalence by equivalent
conditions as above.

Example 3.1. A simply-connected space X has π∗(X) ⊗ Q = 0 ⇐⇒
H̃∗(X,Q) = 0.

Note: if there is a Q-homotopy equivalence X → Y , it does not follow
that there is a Q-homotopy equivalence Y → X.

Definition 3.3. A 1-connected space X is rational if the following equiv-
alent conditions hold:

21
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1. π∗X is a Q-vector space.

2. H̃∗(X,Z) is a Q-vector space.

The proof that these are actually equivalent uses the fact that H̃i(K(Q, n),Fp) =
0. By the universal coefficient theorem, Hi(K(Q, n),Z) are Q-vector spaces.
This shows that (1) =⇒ (2) in the simplest case of Eilenberg-Maclane
spaces, and then one uses the usual spectral sequence / fibration arguments.
The other direction is similar.

Example 3.2. • K(Q, n) is a rational space.

• For any n ≥ 1, the rational n-sphere is

SnQ =

(∨
k≥1

Snk

)
∪

(∐
k≥2

Dn+1
k

)

where the attaching map for the kth cell is the map Sn → Snk−1 ∨ Snk
given by fk−1 − kfk, where fk−1 : Sn → Snk−1 and fk : Sn → Snk are
the identity.

Here Hi(S
n
Q,Z) = 0 for i 6= 0, n and

Hn(Sn,Z) = lim−→(Z 2−→ Z 3−→ Z 4−→ . . .) ∼= Q.

Theorem 3.4. Let X be a simply connected CW-complex. Then there is a
1-connected rational CW-complex XQ with a map X → XQ which is a Q-
homotopy equivalence (so πi(XQ) ∼= πiX ⊗ Q) and Hi(XQ,Z) ∼= Hi(X,Q)
for i > 0). Moreover, this map is universal with respect to maps from X
into rational spaces: for any rational space Y and map X → Y , there is a
unique (up to homotopy) map XQ → Y making the diagram commute:

X //

  

XQ

��
Y

Proof. Since X is 1-connected, it is isomorphic to a CW-complex with a
0-cell and no 1-cells. Construct XQ step by step, replacing each attaching
map α : Sn → Xn by a map SnQ → (Xn)Q.

By induction, we have already constructed the rational space (Xn)Q
with a map Xn → (Xn)Q. We know that πn(Xn)⊗Z Q ∼= πn((Xn)Q). Map∨
k≥1 S

n
k → (Xn)Q by mapping the kth sphere via 1

k!
α. By this choice, the

map can be extended over all the n+ 1 cells of SnQ. So we have constructed
a map SnQ → (Xn)Q that extends α. I’ll skip the proof of the universal
propert of XQ.
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3.2 Rational Homotopy Groups of Spheres

Example 3.3. Note that K(Z, n)Q = K(Q, n) (by considering the homo-
topy groups of K(Z, n)). There is a map Sn → K(Z, n) that induces an
isomorphism on Hn(·,Z). The map S2a+1 → K(Z, 2a + 1) is a rational
homotopy equivalence (since it is on Q-homology - we computed this in
previous lectures). Rationalizing, we get a map

(S2a+1)Q → K(Z, 2a+ 1)Q

inducing an isomorphism on homotopy groups, hence a homotopy equiva-
lence. One sees here the power of rationalization: it takes rational homo-
topy equivalences into genuine homotopy equivalences.

Although only S0, S1, S3 are loop spaces, we’ve shown that all odd-
dimensional spheres are “rationally” loop spaces.

Corollary 3.5.

πi(S
2a+1) ∼=


0 i < 2a+ 1

Z i = 2a+ 1

finite abelian group i > 2a+ 1

.

Remark 3.6. A 1-connected space X of finite type has H∗(X,Q) a free
graded-commutative algebra if and only if XQ is homotopy equivalent to a
product of Eilenberg-Maclane spaces.

Consider the homotopy fiber of

F → S2a → K(Z, 2a).

One can compute H∗(F,Q) by the spectral sequence of this fibration (with
rational coefficients).

Q

≈
d4a

""

0 0 . . .

...
...

...
...

?

0

d2a

$$

0 0 . . .

...
...

...
...

Q 0 . . . Q . . . Q
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By the usual observations, H i(F,Q) = 0 for 0 < i < 2a − 1. In
fact, it must also be zero for i = 2a − 1, since we know that the map
S2a → K(Z, 2a) is an isomorphism at i = 2a. The next potentially nonzero
group is at i = 4a − 1, where we see that d4a must be an isomorphism
since the higher cohomology of S2a is trivial. This kills off the rest of the
cohomology of K(Z, 2a), and so F cannot have any higher cohomology. We
see that H∗(F,Q) ∼= H∗(S4a−1,Q) so FQ ' K(Q, 4a− 1).

Theorem 3.7.

πi(S
2a)⊗Q =


Q i = 2a

Q i = 4a− 1

0 otherwise

.

In the course of the proof, we constructed a fibration

K(Q, 4n− 1)→ S2n
Q → K(Q, 2n).

In low dimensions, we can see the two nonzero rational homotopy groups
of an even-dimensional sphere more concretely using the Hopf fibrations:

S1 → S3 → S2,

S3 → S7 → S4,

S7 → S15 → S8

These come from C,H, and the octonions Ca. Indeed, think of S2 =
CP1, S4 = HP1, S8 = CaP1. The map is from the sphere in C2, H2, or
Ca2 to the projective line. The octonions are not associative, which has
the effect that one can define CaP1 and CaP2 but not higher-dimensional
projective spaces over the octonions.

One can get from the fibration K(Q, 4n − 1) → S2n
Q → K(Q, 2n) to a

rationalized version of the Hopf fibrations by looping. Given any fibration
F → E → B, the homotopy fiber of the inclusion F → E is homotopy
equivalent to ΩB, so have have another fibration:

ΩB → F → E.

This can be constructed by hand using the description of the homotopy
fiber we gave earlier. Explicitly, define the space

F2 = {(f, p) : f ∈ F and p is a path in E with p(0) = f}.
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Then F2 ' F , but the map F2 → E given by (f, p) 7→ p(1) is a fibration.
So the homotopy fiber Y of F → E is

Y = {(f, p) : f ∈ F, p : [0, 1]→ E, p(0) = f, p(1) = f0}

for f0 ∈ F fixed. Then there is a natural map Y → ΩB given by projecting
the path p down to B. To check that this is a homotopy equivalence,
we compare the homotopy groups by comparing the LES of the fibration
F → E → B and Y → F → E. We see that Y and ΩB have isomorphic
homotopy groups, hence are homotopy equivalent.

Thus, starting from any continuous map f : X → Y , we can let F be
the homotopy fiber of f , and then we have a whole sequence of homotopy
fiber sequences going off to the left:

· · · → Ω2Y → ΩF → ΩX → ΩY → F → X → Y.

We showed earlier using a spectral sequence that for n ≥ 1, the even-
dimensional sphere S2n is not a topological group. Since the argument
works using rational cohomology, the same argument shows that S2n

Q is not
a loop space. (In particular, S2n

Q is not the product of K(Q, 4n − 1) and
K(Q, 2n), as we can also see directly from its cohomology.)

A different point of view on why S2n
Q is not a loop space uses the White-

head product. For any space X, there is a product

[, ] : πaX × πbX → πa+b−1X.

To define this, think of Sa× Sb as a cell complex with one Sa, one Sb, and
one (a+b)-cell with attaching map Sa+b−1 → Sa∨Sb. When a = b = 1, this
is the familiar cell decomposition of the torus (S1)2. So given any (pointed)
maps Sa → X,Sb → X, one gets a map Sa+b−1 → X by composition

Sa+b−1 → Sa ∨ Sb → X.

This is the Whitehead product.

Example 3.4. • Take a = b = 1, so the Whitehead product is π1X ×
π1X → π1X. To see what this is, one just has to understand the
attaching map for the torus, which is (a, b) 7→ aba−1b−1. So the
Whitehead product gives the commutator on π1X.

• For a = 1 and b > 1, the Whitehead product is

π1X × πbX → πbX.

Explicitly, the group π1X acts on the abelian group πbX by “con-
jugation”. given α : S1 → X and β : Sb → X, and the Whitehead
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product is [α, β] = αβα−1β−1. Thus the Whitehead product is zero
if and only if π1X acts trivially on πbX.

Theorem 3.8. For X simply connected, the Whitehead product makes π∗X
into a graded Lie algebra: it is equipped with a product

[·, ·] : πaX × πbX → πa+b−1X

satisfying:

[x, y] = (−1)|x||y|[y, x],

0 = (−1)ca[[x, y], z] + (−1)ab[[y, z], x] + (−1)bc[[z, x], y]

for x ∈ πaX, y ∈ πbX, z ∈ πcX.

One interpretation of the Whitehead product is that it measures “how
commutative the group operation is on ΩX.” (As usual, we refer to this as
a group operation even though it is more properly considered as a monoid
operation.) Indeed, the Whitehead product can be viewed as a product
πaΩX × πbΩX → πa+bΩX. I claim that the Whitehead product measures
the nontriviality of the commutator map ΩX∧ΩX → ΩX sending (α, β) 7→
αβα−1β−1. Here X ∧ Y denotes the smash product (X × Y )/(X ∨ Y ) of
pointed spaces X and Y . Precisely, given Sa → ΩX and Sb → ΩX, the
Whitehead product corresponds to the map Sa+b ∼= Sa∧Sb → ΩX∧ΩX →
ΩX.

Corollary 3.9. If X = ΩY , then ΩX = Ω2Y is homotopy commutative.

The is basically the same argument as the proof that the group π2Y is
abelian.

So if X is a loop space, the Whitehead product on its homotopy groups
is zero. We can use this to see that S2n

Q is not a loop space. Namely, let X
be a generator of π2aS

2n. Then I claim that [x, x] ∈ π4n−1S2n is nonzero.
Why? The Whitehead product describes the attaching map for the top
dimensional cell in the CW complex

X = S2n × S2n/(x, x0) ∼ (x0, x)

where x0 ∈ S2n is a base point. We want to show that the attaching map
S4n−1 → S2n is not 0 in π∗(S

2n). We use the “Hopf invariant.” The idea
is to measure the nontriviality by the cup product in some cohomology. If
the Q-cohomology ring of X is not just that of S2n ∨ S4n, then [x, x] 6= 0
in π4n−1(S

2n ⊗ Q). This is left as an exercise, using the obvious map
S2n×S2n → X to show that the square of the generator in H2n is not zero.

Finally, we briefly mention the Eckmann-Hilton duality. This is a sur-
prising analogy, starting with the analogy between fibrations and cofi-
brations, not a precise mathematical statement. The idea is clarified by
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Quillen’s notion of a model category, roughly speaking a category in which
one can do homotopy theory, with fibrations, cofibrations, and weak equiva-
lences. The point is that Quillen’s axioms are self-dual, so that the opposite
category to a model category is again a model category, with fibrations and
cofibrations switched.

Homotopy groups Cohomology groups
Fibration Cofibration
Whitehead product Cup product
Graded Lie algebra Graded-commutative algebra
Loop space Suspension
Eilenberg-Maclane space Sphere

3.3 References

• R. Bott and L. Tu, Differential forms in algebraic Topology.

• Y. Félix, J. Oprea, and D. Tanré, Algebraic models in geometry.

• Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory.



Chapter 4

Topology and geometry of Lie
groups

4.1 Some examples

In this chapter, we will study the homotopy type of compact Lie groups.
One general phenomenon that will observe in examples is captured by the
following theorem.

Theorem 4.1 (Hopf). For any compact Lie group G,

H∗(G,Q) ∼= H∗(S2a1−1 × . . .× S2an−1,Q)

i.e. H∗(G,Q) is a free graded-commutative algebra on odd-dimensional
generators.

This follows from the algebraic fact that any finite dimensional graded-
commutative Hopf algebra in characteristic zero is an exterior algebra on
odd-dimensional generators as a ring (forgetting the rest of the Hopf al-
gebra structure). That is, H∗(G) has the usual ring structure from the
cup product, but also a comultiplication coming from the group structure
G×G→ G.

Let’s just check this in some important examples. The idea is to use
the extra structure of a fibration to inductively compute the cohomology
groups. This is a generalization of the idea that you learn in a first course
on algebraic topology to compute the cohomology of projective space or
Grassmannians using their canonical vector bundles.

What is H∗(U(n),Z)? (Recall that the unitary group U(n) is homotopy
equivalent to GL(n,C).) We have a transitive U(n) action on S2n−1, and
the stabilizer is the subgroup of U(n) fixing the orthogonal complement of
a unit vector in Cn, which is U(n−1). Therefore, we have a diffeomorphism
S2n−1 ∼= U(n)/U(n− 1), and we get a fibration:

U(n− 1)→ U(n)→ S2n−1.

28
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It is an easy spectral sequence argument to read off the cohomology groups
of U(n).

Theorem 4.2. H∗(U(n),Z) ∼= Z〈x1, x3, . . . , x2n−1〉.

Proof. Use the spectral sequence for the fibration

U(n− 1)→ U(n)→ S2n−1.

In Z-chomology,

E2 = H∗(S2n−1, H∗(U(n− 1),Z)) =⇒ H∗(U(n),Z).

We induct. There are only two nonzero columns, in degree 0 and 2n− 1.

H2nU(n− 1) 0 . . . H2nU(n− 1)

...
...

...
...

H1U(n− 1) 0 . . . H1U(n− 1)

Z 0 . . . Z

We see from the spectral sequence that H∗U(n) → H∗U(n− 1) is onto in
degrees ≤ 2n− 1. Since the ring H∗(U(n− 1),Z) is generated by elements
of degree at most 2n− 3, the ring homomorphism H∗U(n)→ H∗U(n− 1)
must be surjective in all degrees. So all differentials in the spectral sequence
are zero! Let x1, . . . , x2n−3 be elements of H∗U(n) that restrict to the
generators of H∗U(n− 1), and let x2n−1 ∈ H2n−1(U(n)) be the pullback of
a generator of H2n−1S2n−1. Then

H∗U(n) = Z〈x1, x3, . . . , x2n−1〉.

There is a slightly subtle point: we know that 2x2` = 0, because the coho-
mology ring of U(n) must be graded-commutative, but a priori we don’t
know that x2` = 0. However, it is clear from the spectral sequence that
H∗(U(n),Z) is torsion free, so we do in fact have x2` = 0.

Corollary 4.3. U(n)Q ' S1
Q × . . .× S2n−1

Q . In particular,

πiU(n)⊗Z Q ∼=

{
Q i ∈ {1, 3, 5, . . . , 2n− 1},
0 otherwise

Theorem 4.4. H∗(BU(n),Z) ∼= Z[c1, . . . , cn], |ci| = 2i.
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A polynomial ring typically has many different choices of generators,
but the proof will in fact give an explicit set of generators. These are the
usual Chern classes.

Proof. For any closed subgroup H in a topological group G, there is a
fibration

G/H → BH → BG.

Indeed, thinking of BG as EG/G, we can take EG/H as a model for BH,
in which case the result is obvious. (Remark: looping this fibration gives
some other interesting fibrations, e.g. looping once givesG→ G/H → BH,
and looping again gives H → G→ G/H).

So we have a fibration

S2n−1 → BU(n− 1)→ BU(n).

This is the sphere bundle in the natural complex vector bundle of rank n
over BU(n). Now we proceed by induction, so assume that H∗BU(n −
1) ∼= Z[c1, . . . , cn−1] where |ci| = 2i. The Serre spectral sequence says
that H∗(BU(n), H∗S2n−1) =⇒ H∗BU(n − 1) (note that BU(n − 1) is
simply-connected):

H0BU(n)

((

H1BU(n) . . . H2nBU(n)

...
...

...
...

H0BU(n) H1BU(n) . . . H2nBU(n)

Let cn ∈ H2n(BU(n),Z) be the Euler class of the universal Cn-bundle over
BU(n). That is, if x ∈ E0,2n−1

2
∼= H0BU(n) corresponds to 1, d2n(x) = cn.

So every differential is multiplication by cn.
The spectral sequence shows that H∗BU(n)→ H∗BU(n− 1) is an iso-

morphism in degrees up to 2n−2. Abusing notation, let c1, . . . , cn−1 be the
unique elements of H∗BU(n) that restrict to the generators c1, . . . , cn−1 of
H∗BU(n− 1). Since the ring H∗BU(n− 1) is generated by c1, . . . , cn−1, it
follows that H∗BU(n)→ H∗BU(n− 1) is surjective in all degrees. There-
fore, the differential d2n from row 2n to row 0 must be injective, since the
only contribution to the E∞ page must come from H2nBU(n) . Finally,

H∗(BU(n− 1)) = Z[c1, . . . , cn−1] = H∗BU(n)/(cn).

The fact that multiplication by cn is injective implies that H∗BU(n) =
Z[c1, . . . , cn−1, cn] (any relation would descend to the zero relation inH∗BU(n−
1), hence must be divisible by cn).
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4.2 Lie groups and algebraic groups

We want similar results on H∗(G,Q) and H∗(BG,Q) for any compact Lie
group G. We will do this by bringing in some algebraic geometry.

Theorem 4.5. There is a complexification functor from compact Lie groups
K to complex algebraic groups, G ' KC (on Lie algebras, Lie(G) = Lie(K)⊗R
C). This gives a bijection from isomorphism classes of compact connected
Lie groups to isomorphism classes of complex reductive groups.

Example 4.1. • (S1)C ∼= Gm, the multiplicative group. Here Gm(C) ∼=
C×.

• U(n)C ∼= GL(n,C). Note that LieU(n) = {A ∈ gln : A∗ = −A}.
Any matrix can be written as as a Hermitian plus skew-Hermitian
matrix, which we can write as A = B + iC where both B and C are
skew-Hermitian.

• SU(n)C ∼= SL(n,C).

• O(n)C ∼= O(n,C).

• Sp(n)C ∼= Sp(2n,C).

Theorem 4.6. For a compact Lie group K, the inclusion K → KC is a
homotopy equivalence.

Proof. G/K is a symmetric space of noncompact type, so it is a sim-
ply connected complete Riemannian manifold with nonpositive curvature.
That shows that G/K is diffeomorphic to Rn, and we have a fiber bundle
K → G→ G/K.

Aside: if G is a real Lie group, then G has a unique maximal compact
subgroup K up to conjugation, and K ↪→ G is a homotopy equivalence. In
fact, the quotient is diffeomorphic to Rn. For example, SL(2,R) ' SO(2) ∼=
S1.

Definition 4.7. Among compact Lie groups, a torus T is a group isomor-
phic to (S1)n for some n ≥ 0. Among complex reductive groups, a torus T
is a group isomorphic to (Gm)n for some n ≥ 0.

For any compact Lie group K, K acts on its flag manifold K/T , where
T is a maximal torus in K. (Any two maximal tori are conjugate.) In
fact, K/T can be viewed as a smooth complex projective variety, by the
following theorem.
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Definition 4.8. A Borel subgroup B in a complex reductive group G is a
maximal connected solvable complex algebraic subgroup of G.

Theorem 4.9. There is an isomorphism

K/T ∼= G/B.

Again, a Borel subgroup is unique up to conjugation.

Example 4.2. A Borel subgroup in GL(n,C) is the subgroup of upper-
triangular matrices.

B =


∗ . . . ∗

0
. . .

...
0 0 ∗


 ⊂ GL(n,C).

If we take K = U(n), then

T =


∗ 0 0

0
. . . 0

0 0 ∗


 ⊂ B.

and KC = GL(n,C). Note that TC ∼= Gn
m. Then

GL(n,C)/B = {0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn = Cn : dimVj = j}.

This is called a flag variety. In particular, we see that

• GL(2)/B ∼= P1
C .

• GL(3)/B is a P1-bundle over P2. Indeed, there is a P2 of planes in
C3, and a P1 of lines in each plane.

Remark 4.10. The theorem gives another proof that K ' KC = G. Indeed,
if we can show that T ' B is a homotopy equivalence, then we can show
that K ' G: comparing the fibrations

T //

��

K //

��

K/T

��
BC // GC // GC/BC

and using the long exact sequence on π∗, it suffices to show that T → B is a
homotopy equivalence. The point is that (as we see in the case of GL(n,C))
a connected solvable linear algebraic group B has a normal subgroup U (the
“unipotent radical”) which is an extension of copies of Ga, and is therefore
contractible. Moreover, B is the semidirect product of the torus TC and U ,
so B/U ∼= TC ∼= (C∗)n ' (S1)n.
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Example 4.3. Let G be a connected real Lie group, K ⊂ G a maximal
compact subgroup. Then G/K is diffeomorphic to RN , and has a natural
Riemannian metric with nonpositive curvature.

• SL(2,R)/SO(2) ∼= the hyperbolic plane.

• SL(2,C)/SU(2) ∼= hyperbolic 3-space.

4.3 The Weyl Group

Definition 4.11. Let K be a compact connected Lie group. Let T be a
maximal torus in K. Then the Weyl group of K is NK(T )/T .

Fact: W is a finite group, and the action of W on Lie(T ) ∼= Rn is
generated by reflections.

Definition 4.12. The rank of K is dimR TR.

Example. For G = SL(2) (or SU(2)), we have rankG = 1 and W = Z/2.

Example. For the rank two semisimple groups, we have:

• G = SL(3,C), W = S3.

• G = Sp(4,C), W = D8 (dihedral group of order 8).

• G = G2, W = D12.

Lemma 4.13. Let G be a compact Lie group with maximal torus T . Then
the image of H∗(BG,Z) in H∗(BT,Z) is contained in H∗(BT,Z)W .

Proof. By the inclusions of groups T ⊂ N(T ) ⊂ G, we have homomor-
phisms H∗BG → H∗BN(T ) → H∗BT . We claim that the image of
H∗BN(T )→ H∗BT is already contained in the W -invariants. The reason
is that W acts trivially on H∗BN(T ). Indeed, the map BT → BN(T ) is
a finite covering with fibers W (recall the fibration G/H → BH → BG),
so the pullback of a cohomology class from the base is necessarily W -
invariant.

Example 4.4. For G = U(n), H∗(BU(n),Z) = Z[c1, . . . , cn] where |ci| =
2i, and

H∗(BT,Z) = Z[t1, . . . , tn], |ti| = 2.

HereW = Sn. We claim that there is a canonical identificationH2(BT,R) ∼=
Lie(T )∗. Indeed, any R-linear map Lie(T ) → R may be recognized as dα,
for some representation α : T → S1. This in turns gives a map BT → BS1,
hence a line bundle on BT , which we associate with its Chern class in
H2(BT,R).
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The upshot is that W acts on H2(BT,R) as a finite group generated
by reflections (dual to its action on Lie(T )). In this case, H∗(BU(n),Z) ∼=
H∗(BT,Z)W ∼= Z[e1, . . . , en], the symmetric polynomials.

To see this in action, we ask: for C-line bundles on a space X, what
is c(L1 ⊕ . . . ⊕ Ln)? Writing ti = c(Li) ∈ H2(X), then the Whitney sum
formula says that

c(L1 ⊕ . . .⊕ Ln) = c(L1)c(L2) . . . c(Ln)

= (1 + t1) + . . . (1 + tn)

=
n∑
j=0

∑
1≤i1≤...≤ij≤n

ti1 . . . tij

so the Chern classes map to the elementary symmetric functions. This is
as expected, since we proved that the image should be in the W -invariants.
We see that in this example, the map in fact goes isomorphically to the
W -invariants. We want to explain how this generalizes to all compact Lie
groups, at least for rational cohomology.

Theorem 4.14 (Bruhat decomposition). Let G be a reductive group over
a field k. Let B ⊂ G be a Borel subgroup (which exists if k is algebraically
closed, for example). Then the orbits of B on the flag manifold G/B are
in 1-1 correspondence with W , via

W = T\N(T )/T → B\G/B

Moreover, the orbits of B on G/B are all cells, meaning they are affine
spaces Aj for some j.

Example 4.5. Take G = SL(2,C). Then G/B ∼= P1 (we can take B to be
the group of upper-triangular matrices), and the B-orbits on G/B are the
point ∞ and the affine line A1.

Corollary 4.15. H∗(G/B,Z) is a free abelian group, concentrated in even
degrees. Also, χ(G/B) = |W |.

The Weyl group W acts on K/T by kT 7→ kwT for any w ∈ N(T ),
inducing a representation on the cohomology groups. Moreover, this rep-
resentation has dimension |W |.
Remark 4.16. However, this does not preserve the complex structure on
K/T . Example: SU(2)/S1 ∼= S2, and W acts on S2 by x 7→ −x, which is
not complex-analytic. (One way to see this is that it reverses orientation;
complex-analytic maps always preserve orientation).

Lemma 4.17. The action of W on H∗(K/T,Q) is by the regular repre-
sentation of the Weyl group.
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Proof. Use the Lefschetz fixed point formula: for w ∈ W ,∑
i

(−1)i tr(w |Hi(K/T ),Q) = #{fixed points of w on K/T}.

The fixed points on the right have to counted with suitable multiplicities.
But in this case, W acts freely on K/T : it is the group of deck transforma-
tions for the covering map K/T → K/N(T ). So the character of W acting
on H∗(K/T,Q) is

χ(w) =

{
0 w 6= 1

χ(K/T ) = |W | w = 1
.

This is the character of the regular representation.

Lemma 4.18. The map H∗(BK,Q)→ H∗(BT,Q) is injective. In partic-
ular, H∗(BG,Q) is concentrated in even degrees.

Proof. The second assertion is deduced from the first by observing that
T ' (S1)n, so BT = (BS1)n = (CP∞)n, whose cohomology we know to be
concentrated in even degrees.

Let G be the complexification of K. Let B ⊂ G be a Borel subgroup.
We will show that H∗(BG,Q)→ H∗(BB,Q) is injective, which implies the
same for H∗(BK,Q)→ H∗(BT,Q) since

K //

��

T

��
B // G

is a homotopy equivalence. We have a fiber bundle

G/B → BB
f−→ BG.

Since f is a fiber bundle whose fibers are closed, oriented real manifolds
(in fact, complex manifolds), there is a pushfoward map or “Gysin” map

f∗ : H
i(BB)→ H i−2NBG,

where N = dimCG/B. Geometrically, if we think of H i classes as being
represented by codimension-i submanifolds, the pushforward just takes the
image of a manifold. This generically reduces the codimension by the
dimension of the fiber. We would be done if we could show that there was
a section BG→ BB.

There is a vector bundle on BB called Tf , the tangent bundle along the
fibers (sometimes called the vertical tangent bundle). This has complex
rank N . Then cN(Tf ) ∈ H2N(BB,Z). We claim that this is “acts like a
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multisection.” For one thing, let’s push it down and see what we get in
H∗(BG). Indeed, f∗(cN(Tf )) ∈ H0(BG,Z) = Z. We can figure out what
this integer is by restricting to any point in BG. The integer is∫

G/B

cN(TG/B) = χ(G/B) = |W |.

The important point is that it is nonzero. Then, for any y ∈ H i(BG,Z),

f∗(f
∗(y) · cN(Tf )︸ ︷︷ ︸
∈Hi+2NBB

) ∈ H iBG.

But f∗(f
∗(y) · cN(Tf )) = y ·f∗(cNTf ) = y|W | by the projection formula. So

if y 6= 0 ∈ H∗(BG,Q) then f ∗(y) 6= 0 ∈ H∗(BB,Q).

Lemma 4.19. If f : X → Y is a Galois covering space (i.e. G acts freely
on X, and Y is the quotient X/G), then

H∗(Y,Q) ∼= H∗(X,Q)G.

Proof. The slogan is that there are enough maps in both directions. It is
obvious that f ∗ maps H∗Y into (H∗X)G, since f ◦ g = f for all g ∈ G.
Since the fibers are oriented, zero-dimensional manifolds, we also have a
pushforward (or “transfer homomorphism”)

f∗ : H
∗(X,Z)→ H∗(Y,Z).

Then the projection formula says that

f∗(f
∗(α)) = f∗(f

∗(α) · 1) = α · f∗(1)

for α ∈ H∗Y . But f∗(1) = |G|, since 1 corresponds to the entire space
X, so its pushforward is the entire space Y with multiplicity |G|. So f ∗ is
injective on Q-cohomology.

Similarly, f ∗(f∗β) =
∑

g∈G g(β). So if β is G-invariant, this is multipli-
cation by |G|. That implies that f ∗ is surjective onto the G-invariants in
Q-cohomology.

Theorem 4.20. Let K be a compact, connected Lie group. Then H∗(BK,Q) ∼=
H∗(BT,Q)W where T is a maximal torus of K.

Proof. There’s a fibration

W → K/T → K/N(T )

so the preceding Lemma implies that

H∗(K/N(T ),Q) ∼= H∗(K/T,Q)W .
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Since W acts on H∗(K/T,Q) as the regular representation, the space of
invariants is just one-dimensional. We deduce that K/N(T ) has the Q-
cohomology of a point. (Example: for K = SU(2), K/T ∼= S2 and
K/N(T ) ∼= RP 2, which, sure enough, has the rational cohomology of a
point.) Consider the fibration

K/N(T )→ BN(T )→ BK

and the associated spectral sequence for Q-cohomology (since K is con-
nected, BK is simply connected, and we can safely apply the Serre spectral
sequence) is zero on the E2 page except in the bottom row (since the fiber
has the Q cohomology of a point).

So we conclude that

H∗(BK,Q) ∼= H∗(BN(T ),Q).

We have another fibration

W → BT → BN(T )

so by the Lemma again,

H∗(BN(T ),Q) ∼= H∗(BT,Q)W .

Remark 4.21. We have computed H∗(BT,Q) to be a polynomial ring on
generators of degree 2. Chevalley showed that for a finite group generated
by reflections on a vector space V over a field of characteristic zero, k[V ]W is
itself a graded polynomial ring with number of generators equal to dimk V .

For all simple compact Lie groups, we know the degrees of the generators
for the rings of invariants of the Weyl group acting on the Lie algebra of
the maximal torus (cf. Bourbaki, Lie groups and Lie algebras, Ch. 4-6).

• SU(n+ 1) : 2, 3, . . . , n+ 1,

• SO(2n+ 1) : 2, 4, 6, . . . , 2n,

• Sp(n) : 2, 4, 6, . . . , 2n,

• SO(2n) : 2, 4, 6, . . . , 2n− 2;n,

• G2 : 2, 6,

• F4 : 2, 6, 8, 12,

• E6 : 2, 5, 6, 7, 8, 12,
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• E7 : 2, 6, 8, 10, 12, 14, 18,

• E8 : 2, 8, 12, 14, 18, 20, 24, 30.

Exercise 4.1. Compute H∗(G/B,Q) for all compact Lie groups G of rank
at most 2. Can you say how W acts on H∗(K/T,Q)?

Question. For every simple compact Lie group, the list (above) of the
fundamental degrees is symmetric. That is, the list is unchanged if you
turn it upside down. Is there any geometric explanation for this?

Finally, we can use our preceding discussion to illuminate Hopf’s the-
orem, stated at the beginning of this chapter. If a compact Lie group K
has fundamental degrees a1, . . . , ar, where r = rank(G), then

H∗(BK,Q) ∼= Q[y2a1 , . . . , y2ar ]

so (BK)Q ' K(Q, 2a1)× . . .×K(Q, 2ar) and

KQ ' K(Q, 2a1 − 1)× . . .×K(Q, 2ar − 1) ' S2a1−1
Q × . . .× S2ar−1

Q .
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Faithfully flat descent

In this chapter, we will explain Grothendieck’s theory of faithfully flat
descent.

5.1 Faithful flatness

Definition 5.1. A homomorphism f : A → B of commutative rings is
faithfully flat if an A-linear map M1 →M2 is injective if and only if M1⊗A
B →M2 ⊗A B is injective.

Remark 5.2. This definition only depends on B as an A-module, but it
seems only to be interesting when B is a ring.

Example 5.1. Z[1
2
] is a flat Z-algebra (localization is exact), but not faith-

fully flat because there are Z-modules that get killed by tensoring with Z[1
2
],

e.g.

Z/2⊗Z Z[
1

2
] = 0.

So a faithfully flat ring homomorphism A → B is one where B contains
“enough information” about A. In the above example, SpecZ[1

2
] is missing

information above the point (2) ∈ SpecZ, so there’s a module supported
at (2) that it does not see.

Lemma 5.3. Let B be a flat A-algebra. The following are equivalent:

1. B is faithfully flat over A,

2. M ⊗A B = 0 =⇒ M = 0 for all A-modules M .

3. The homomorphism M → M ⊗A B given by m 7→ m⊗ 1 is injective
for all A-modules M .

Proof. (1) =⇒ (2). The map M → 0 is injective after tensoring with B,
hence was already injective before tensoring, so M = 0.

39
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(2) =⇒ (1). We already assumed that B was flat, so we must show
that if M1 →M2 is an A-module homomorphism such that

M1 ⊗B →M2 ⊗B

is injective, then the original was injective. (All tensor products are over
A.) Let K = ker(M1 →M2). Then

0→ K →M1 →M2

is exact, so
0→ K ⊗B →M1 ⊗B →M2 ⊗B

is exact. This exhibits K ⊗B as the kernel of M1 ⊗B →M2 ⊗B, so it is
zero. Then K = 0 by (2).

Property (3) is a bit more subtle. It is clear that (3) =⇒ (2). Now
we argue that (1) or (2) implies (3). Here comes the key trick: since B is
faithfully flat, it suffices to show that

M ⊗A B →M ⊗A B ⊗A B
m⊗ b 7→ m⊗ 1⊗ b

is injective. Indeed, this map is even split! The trick is to use the multi-
plication on B: the map back is defined by

m⊗ b⊗ c 7→ m⊗ bc.

The composition is obviously the identity.

Example 5.2. If B is a nonzero algebra over A which is free as an A-
module, then B is faithfully flat over A. For example, if k is a field, then
every module over k is free, so a k-algebra is faithfully flat over k if and
only if it is nonzero.

Lemma 5.4. Let B be a flat A-algebra. Then B is faithfully flat over A if
and only if SpecB → SpecA is surjective.

Example 5.3. Z[1
2
] × Z[1

3
] is a faithfully flat Z-algebra. Indeed, it is flat

over Z because each factor is, and the map

Spec

(
Z[

1

2
]× Z[

1

3
]

)
→ SpecZ[

1

2
]
∐

SpecZ[
1

3
]→ SpecZ

is surjective.

More generally, for an open cover X = U1 ∪ . . .∪Ur of a scheme X, the
morphism U1

∐
. . .
∐
Ur → X is faithfully flat (the inclusion of an open
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set is a typical example of a flat morphism). Indeed, faithfully flat maps
are a kind of generalization of an open cover.

We saw the following consequence of the previous lemma.

Corollary 5.5. Let B be a faithfully flat A-algebra. Then an A-module M
is zero if and only if M ⊗A B is zero.

The moral is that a module “being zero” is local property in the faith-
fully flat “topology.” If we want to check if a sheaf is zero on a scheme,
we can pull it back via a faithfully flat map to check if it is zero - this is
analogous to checking “locally” in our analogy of an open cover.

Lemma 5.6. Let B be faithfully flat over A. An A-module M1 → M2

is injective (resp. surjective, an isomorphism) if and only if M1 ⊗ B →
M2 ⊗A B is injective (resp. surjective, an isomorphism).

Proof. The assertion for injectivity is just by definition. What about sur-
jectivity? If M1 →M2 is onto, then M1 ⊗A B →M2 ⊗A B is onto because
the tensor product is right-exact.

Conversely, suppose that M1 → M2 is given such that M1 ⊗A B →
M2 ⊗A B is surjective. Let C = coker(M1 → M2). By right-exactness of
the tensor product, we have an exact sequence

M1 →M2 → C → 0

Since B is flat over A,

M1 ⊗A B →M2 ⊗A B → C ⊗A B → 0

is exact, so C ⊗AB = coker(M1⊗AB →M2⊗AB) = 0. Therefore, C = 0.
Putting these together, we get the assertion for isomorphism.

Lemma 5.7. Let B be a faithfully flat A-algebra. Then an A-module M
is flat if and only if M ⊗A B is flat as a B-module.

Proof. An easy exercise, similar to the arguments above.

Again, the moral is that injectivity, surjectivity, and flatness are local
properties in the faithfully flat “topology.”

Remark 5.8. Freeness is not a local property. It’s not even a local property
in the Zariski topology. Indeed, a vector bundle on a scheme X (suppose
it is affine) is locally free, but not necessarily trivial.

Lemma 5.9. Let B be a faithfully flat A-algebra and M an A-module.
Then M is finitely generated as an A-module if and only if M ⊗A B is
finitely generated as a B-module.
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Proof. One direction is trivial: if M is finitely generated over A, then
obviously M ⊗A B is finitely generated over B.

The other direction is a bit subtle in that one can’t automatically take
the generators for M ⊗A B as generators for M over A. Nonetheless, we
will be able to produce a finite generating set. So suppose that u1, . . . , ur
are generators for M ⊗A B. Each ui may be written as a finite sum

ui =
∑
j

mij ⊗ bij

with mij ∈ M , bij ∈ B. So we may also say that M ⊗A B is generated as
a B-module by finitely many decomposable elements mij ⊗ bij. In fact, it
will then be finitely generated by the mij ⊗ 1.

The conclusion is that we may pick a set of generators for M ⊗A B of
the special form {mi ⊗ 1}si=1. Now, we claim that the mi’s generate M as
an A-module. Indeed, consider the A-linear map

A⊕s →M

that takes the generators to the elements m1, . . . ,ms. Then

f ⊗ 1B : A⊕s ⊗A B →M ⊗A B

is onto by construction. By faithful flatness, the original map was onto as
well.

A quasicoherent sheaf on a scheme X is a sheaf of OX-modules that
on affine open sets SpecA is the sheaf associated to an A-module. If A is
Noetherian, then the sheaves corresponding to finitely generated modules
are called coherent sheaves. So the Lemma is saying that coherence can
also be checked locally in the faithfully flat topology.

5.2 Faithfully flat descent

The Amitsur complex is

0→M
f0−→M ⊗A B

f1−→M ⊗A B ⊗A B

where f0 is defined by m 7→ m⊗ 1, and f1 is defined by m⊗ b 7→ m⊗ b⊗
1−m⊗ 1⊗ b. This is evidently a complex.

Lemma 5.10. Let B be a faithfully flat A-algebra, M an A-algebra. Then
the Amitsur complex is exact.

Remark 5.11. There is a way of extending this sequence to a long exact
sequence, which is more properly called the Amitsur complex.
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The point of this result is to relate modules over A and modules over
B, when B is a faithfully flat A-algebra. Most näıvely, one could hope
that M ⊗A B is enough to determine M , but that is not the case. There
are certainly cases where M is not free but M ⊗A B is free. However, the
lemma says that M is determined by M ⊗A B and the homomorphism f1.
We will discuss how to think about this in the next lecture.

Proof. We have seen that M →M⊗AB is injective. Let N = ker(f1 : M⊗
B → M ⊗ B ⊗ B). (All tensor products are over A.) Since B is flat over
A,

N ⊗B = ker(f1 ⊗ 1B : M ⊗B ⊗B →M ⊗B ⊗B ⊗B).

If we can show that this kernel is M⊗B, then we are done. Indeed, M⊗B
is certainly contained in the kernel, so we would be able to conclude that
(N/M)⊗B = 0, hence N/M = 0 since B is faithfully flat over A.

We verify this fact by hand.

f1 ⊗ 1B(m⊗ b⊗ c) = m⊗ b⊗ 1⊗ c−m⊗ 1⊗ b⊗ c.

Suppose that we have an element in the kernel of the map. This is of the
form

∑
imi ⊗ bi ⊗ ci. Then we would have∑
i

mi ⊗ bi ⊗ 1⊗ ci =
∑
i

mi ⊗ 1⊗ bi ⊗ ci ∈M ⊗B ⊗B ⊗B.

Now, consider the map back

M ⊗B ⊗B ⊗B →M ⊗B ⊗B
m⊗ b1 ⊗ b2 ⊗ b3 7→ m⊗ b1 ⊗ b2b3

Therefore, ∑
i

mi ⊗ bi ⊗ ci =
∑
i

mi ⊗ 1⊗ bici

so we have shown that any element in ker(f1 ⊗ 1B) can be rewritten as∑
imi⊗1⊗bici, which means precisely that it is in the image of M⊗AB ⊂

M ⊗A B ⊗A B. Here we view M as a submodule of M ⊗A B by our map
f0, taking m to m⊗ 1.

What does this mean geometrically? A faithfully flat ring homomor-
phism A→ B corresponds to a flat surjection of affine schemes, g : X → S.
So we start with a quasicoherent sheaf E on S (corresponding to M), and
pull it back via g to get a sheaf F := g∗E on X (corresponding to M⊗AB).
Now, B⊗AB corresponds to X×SX, so we have a sequence of morphisms

X ×S X ⇒ X → S.
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The fiber product has two maps to X, say π1 and π2. We have a canonical
isomorphism

θ : π∗1g
∗E = π∗2g

∗E

simply because g ◦π1 = g ◦π2. The Lemma shows that E is determined by
F together with the isomorphism θ. But how, explicitly? Suppose that S
and X are affine. Then E is the quasicoherent sheaf such that

H0(S,E ) = ker(H0(X,F )
θπ∗

1−π∗
2−−−−→ H0(X ×S X, π∗2F )).

The isomorphism θ has an extra property worth pointing out. Formally, θ
is an isomorphism Fx → Fy for any x, y ∈ X with the same image in S.
For any three points x, y, z ∈ X, we must have

θyzθxy = θxz

as isomoprhisms Fx → Fz. This property is called the cocycle condition
on θ. This is just a set theoretic description. In more scheme theoretic
language,

π∗23(θ) ◦ π∗12(θ) = π∗13(θ)

as isomorphisms π∗1F → π∗3F on X ×S X ×S X, where the πij are the
projection maps X ×S X ×S X → X ×S X.

Definition 5.12. A morphism of schemes is faithfully flat if it is flat and
surjective.

Definition 5.13. Given a faithfully flat morphism of schemes X → S, let
F be a quasicoherent sheaf on X. A descent datum on F (with respect
to X → S) is an isomorphism θ : π∗1F → π∗2F on X ×S X satisfying the
cocycle condition.

Definition 5.14. A scheme X is quasicompact if every open cover of X has
a finite subcover. Equivalently, X is a finite union of affine open subsets.

Definition 5.15. A morphism of schemes f : X → Y is quasicompact if
the pre-image of any quasicompact set is quasicompact. Equivalently, the
pre-image of any affine open subset is quasicompact.

We can now state Grothendieck’s theorem on faithfully flat descent.

Theorem 5.16 (Grothendieck). Given X → S a quasicompact faithfully
flat morphism of schemes, pulling back sheaves from S to X gives an equiv-
alence of categories

{quasicoherent sheaves on S} ↔ {quasicoherent sheaves on X
with descent datum }.

Grothendieck’s theorem is proved by a straightforward extension of the
arguments proving the exactness of the Amitsur complex. See Waterhouse’s
book for a very readable exposition.
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Example 5.4. The theorem fails without quasicompactness. For instance,
take S = SpecZ and X =

∐
p prime SpecZ(p). The map X → S is an infinite

disjoint union of open immersions, hence faithfully flat.
Now, consider the Z-modules M1 = Z,M2 = (Z/2)⊕(Z/3)⊕(Z/5)⊕. . ..

Then one can define a map φ : g∗M1 → g∗M2 compatible with the descent
data, but which doesn’t come from a homomorphism of Z-modules M1 →
M2. Indeed, on Z(p) take the map ϕ to be the obvious one Z(p) → Z/p.
However, this can’t come from a map Z → Z/2 ⊕ Z/3 ⊕ . . . because such
a map would have to send 1 7→ (1, 1, 1, . . .), which is not an element of the
direct sum.

Example 5.5. This generalizes the construction of a sheaf by gluing. Let
X =

⋃
Ui. Then

∐
Ui → X is a faithfully flat morphism of schemes. So

a quasicoherent sheaf on X is equivalent to quasicoherent sheaves Ei on
each Ui, together with isomorphisms θij : Ei|Ui∩Uj

∼= Ej|Ui∩Uj
satisfying the

cocycle condition
θik = θjk ◦ θij.

Note that in this case, the fiber product just becomes intersections.

5.3 Descent theory and principal bundles

Let G be a group scheme over a field k. That is, G is a scheme over k with
morphisms G ×k G → G (product), Spec (k) → G (identity), and G → G
(inverse) of k-schemes, which satisfy the associativity, identity and inverse
axioms.

Definition 5.17. An action of G on a separated scheme X of finite type
over k is free if the morphism

G×k X → X ×k X
(g, x) 7→ (x, gx)

is an isomorphism onto a closed subscheme.

Given a free G-action on X, a scheme Y is the quotient scheme Y =
X/G if Y is of finite type over k, and we have a faithfully flat X → Y
which is constant on G-orbits and such that the map G×k X → X ×Y X
is an isomorphism. In this case, we say that X is a principal G-bundle over
Y (“in the faithfully flat topology”).

Example 5.6. Notice that a principal G-bundle need not be locally trivial
in the Zariski topology. Consider G = Z/2, acting on A1 − 0 by x 7→ −x.
This action is free, and (A1−0)/(Z/2) ∼= A1−0. You can check that this is
a principal G-bundle. This is not locally trivial, since A1− 0 is irreducible,
so it doesn’t even have any disconnected open subsets.
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However, principal G-bundles are locally trivial in the faithfully flat
topology. Indeed, consider the pullback via the map X → Y .

Definition 5.18. Let X be a G-scheme over k. A G-equivariant vector
bundle E on X is a vector bundle E on X together with an isomorphism
θ : π∗2E → m∗E on G×k X (that is, θ gives an isomorphism Ex ∼= Egx for
all g ∈ G, x ∈ X) which satisfies the cocycle condition:

θ(gh,x) = θ(g,hx) ◦ θ(h,x) : Ex
θ(h,x)−−−→ Ehx

θ(g,hx)−−−→ Eghx.

Theorem 5.19. Let X → Y be a principal G-bundle. Then the pullback
gives an equivalence of categories from vector bundles on Y to G-equivariant
vector bundles on X.

Proof. This follows immediately from Grothendieck’s theorem on descent,
using that X ×Y X ∼= G×k X.

Corollary 5.20 (Hilbert’s Theorem 90). There is an equivalence of cate-
gories between principal GL(n)-bundles on a space Y and (algebraic) vector
bundles of rank n on Y .

Proof. We basically just translate our earlier topological identification of
this fact into the algebraic setting.

Let’s first see how to construct a vector bundle for a GL(n) bundle.
More generally, given a principal G-bundle X → Y and any representation
α : G→ GL(V ), we get a vector bundle on Y of rank dimV . Namely, start
with the trivial bundle X × V → V and α to get a G action via

α(g) : Vx → Vgx.

By Theorem 5.19, this G-equivariant vector bundle on X is the pullback
of a vector bundle on Y .

Conversely, given a vector bundle V on Y , define

X =
⋃
y∈Y

{isomorphism An ∼= VY }.

Since V is Zariski-locally trivial, X|U = U ×GL(n).

This statement is more nontrivial than it seems. The point is that
principal G-bundles are locally trivial in the flat topology but not in the
Zariski topology, in general. However, this is saying that principal GL(n)-
bundles are locally trivial in the Zariski topology.

Definition 5.21. For a scheme X/k and an affine group scheme G/k,

H1(X,G) := {isomorphism classes of principal G-bundles over X}.
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This is a pointed set, but not in general a group. If G is commutative,
then it can be given the structure of an abelian group.

Corollary 5.22 (Hilbert’s Theorem 90). For any field k, H1(k,GL(n)) =
1.

Proof. This can be identified with the set of isomorphism classes of vector
bundles of rank n over Spec k, which is the set of vector spaces of dimension
n over k up to isomorphism. Obviously, there is only one such isomorphism
class.

Example 5.7. For a field k, H1(k, Sp(2n)k) is the set of isomorphism
classes of dimension 2n over k with a nondegenerate alternating bilinear
form. But any such form is isomorphic to the standard one(

0 1
−1 0

)
.

(Exercise: check this is in general.) So H1(k, Sp(2n)k) ∼= 1.

Example 5.8. For a field k, H1(k,O(n)k) is the set of isomorphism classes
of vector spaces of dimension n over k with a nondegenerate quadratic form,
up to isomorphism. This is not trivial in general. For instance, if k does not
have characteristic 2 then the determinant map det : O(n)→ Z/2 induces

H1(k,O(n))→ H1(k,Z/2) ∼= k∗/(k∗)2,

which is in fact surjective for n ≥ 1. Indeed, H1(k,Z/2) parametrizes
Galois extensions of k of degree 2.

Here’s an explicit description of this map. The group H1(k,O(n))
parametrizes isomorphism classes of quadratic forms of dimension n over
k. Given a symmetric bilinear form on V over k, we can choose a basis
e1, . . . , en for V . Thus we get a symmetric n×n matrix A = 〈ei, ej〉 ∈Mnk.
We can define the discriminant of (V, 〈, 〉) to be detA ∈ k∗/(k∗)2.

This all happened because the group O(n) is disconnected. Can this
happen for connected groups?

Definition 5.23. An affine group scheme G/k is special if for any field
K/k,

H1(K,GK) = 1.

It turns out that G is special if every principal G-bundle is locally trivial
in the Zariski topology.

Example 5.9. GL(n), SL(n) and Sp(2n) are special. An SL(n) bundle can
be considered as a GL(n) bundle plus a volume form, and any volume form
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is equivalent to a standard one, so there is no “flexibility” for SL(n) bundles.
But, for example, disconnected groups are not special, so in particular
nontrivial finite groups and O(n) are not special.

Example 5.10. PGL(2) is not special (even though it is connected). For
example, H1(R, PGL(2)) 6= 1. Since PGL(2) is the automorphism group of
P1, this is saying that there are different varieties over R that are isomorphic
to P1 over C (a smooth conic in RP 2 need not be isomorphic to RP 1.

Here’s a general comment: we often want to classify some kind of “alge-
braic structures” over a field k. In particular, given an object Y over k, we
want to classify the objects over k that becomes isomorphic to Y over k.
These are called k-forms of Y . The set of isomorphism classes of k-forms
of Y can be identified with the set H1(k,G), where G = Aut(Y ), viewed
as an algebraic group over k.

So we can interpret H1(R, PGL(2)) as classifying R-forms of any object
with automorphism group PGL(2). Well, P1

k is such an object. More
generally, Aut(Pnk) = PGL(n + 1)k. Another example: the automorphism
group of the matrix algebra Mn(k) as an associative k-algebra is isomorphic
to PGL(n), with PGL(n) acting by conjugation.

SoH1(k, PGL(2)) = {isomorphism classes of smooth plane conics in P2
k}.

Using the second interpretation, we can also view H1(k, PGL(2)) as the
set of isomorphism classes of quaternion algebras over k.

Now note that {x2+y2+z2 = 0} is a conic not isomorphic to P1
R, since it

has no real points; so H1(R, PGL(2)) has at least two elements. Similarly,
there is a quaternion algebra over R not isomorphic to M2(R), namely
Hamilton’s quaternions. In fact, the set H1(R, PGL(2)) has exactly two
elements.

Let’s flesh out this connection a bit more. Why is H1(k,O(V )) equal to
the set of isomorphism classes of n-dimensional vector spaces over k with a
nondegenerate symmetric form? (A crucial point is that all such things are
isomorphic over k.) Well, if you have another such object W , then we want
to construct a torsor (i.e. principal O(V ) bundle). To do this, associate to
W the principal O(V )-bundle over Spec k that is Isom(V,W ). (If you go
back to the dictionary between vector bundles and principal bundles, you
see that this is what comes out.) Now, this is a scheme over k that has no
k-rational points (if W is not isomorphic to V over k). To see that this is a
principal O(V )-bundle, we can base change to the algebraic closure, since
the necessary properties are local in the faithfully flat topology.

Conversely, given a principal O(V )-bundle E over Spec k, the corre-
sponding vector space W with symmetric form is (E×k V )/O(V ). (Again,
this is what comes out of the dictionary). You can construct this as a
scheme using faithfully flat descent: Grothendieck’s theorem tells us that
an O(V )-equivariant vector bundle on E is the same data as a vector bun-
dle over E/O(V ) = Spec (k). In more detail, this is a vector space over
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k of dimension n, equipped with a symmetric bilinear form (because V
possesses one) that is preserved by O(V ).

5.4 References

• Reference: W. Waterhouse, Introduction to affine group schemes

• Reference: J.-P. Serre, Galois cohomology



Chapter 6

Chow groups and algebraic
cycles

The slogan is that Chow groups are an analogue of ordinary homology in
algebraic geometry.

Recall that for a scheme X, the Picard group Pic(X) is the group of
isomorphism classes of line bundles on X, equivalently H1(X,Gm). On the
other hand, say for a variety X over a field, the divisor class group Cl(X)
is the free abelian group on the set of codimension-one subvarieties of X
modulo divisors of nonzero rational functions.

Theorem 6.1. Let X be a smooth variety over a field k. Then Pic(X) ∼=
Cl(X).

The isomorphism from Pic(X) to Cl(X) is called the first Chern class,
since it does what the first Chern class does in topology: to a line bundle,
it associates the class of the zero set of a (transverse) section, if one exists.

To generalize this, define the Chow group CHiX for any scheme of
finite type X over a field k to be the free abelian group on i-dimensional
subvarieties, modulo the relations: for every (i+ 1)-dimensional subvariety
W ⊂ X and every f ∈ k(W )∗, (f) = 0. This equivalence relation is called
rational equivalence.

For k = C, we have a homomorphism CHiX → HBM
2i (X,Z) whereHBM

is the Borel-Moore homology (“homology with closed support”). This is
equal to H2i(X,Z) if X is compact.

If X is smooth of dimension n over C, Poincaré duality says that

HBM
2i (X,Z) ∼= H2n−2i(X,Z).

Motivated by this, if X is smooth of dimension n over a field k we define

CH i(X) = CHn−iX.

50
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This is a model for the cohomology of X. In particular, for a smooth
complex scheme X, we have a homomorphism CH iX → H2i(X,Z).

Example 6.1. For a variety X of dimension n,

CHn−1(X) = Cl(X).

If X is smooth, CH1(X) ∼= Pic(X). Chow groups are truly algebro-
geometric invariants, not just topological invariants like ordinary cohomol-
ogy. For example, if X is a smooth projective curve of genus g over C, then
we have an exact sequence

0→ J(X)(C)→ CH1X → H2(X,Z) ∼= Z→ 0,

where J(X) is the Jacobian of the curve (an abelian variety of dimension
g).

Example 6.2. For X an elliptic curve over Q, the Jacobian is isomorphic
to X itself, and we have

0→ X(Q)→ CH1X → Z→ 0.

The group X(Q) is called the Mordell-Weil group of X. This example
already shows that Chow groups are hard to compute, but very interesting.

If X is a smooth scheme over a field k, then CH∗X is a commutative
graded ring. The product corresponds to intersection of subvarieties. This
is reminiscent of the intersection product for compact, orientable manifolds
(coming from the cup product plus Poincaré duality).

6.1 Homotopy invariance for Chow groups

Homotopy invariance for Chow groups is the theorem that for a scheme
X and any vector bundle E → X, there is an isomorphism f ∗ : CH∗X →
CH∗E. Think about the simple case E = X ×A1. The homomorphism f ∗

is just the inverse image.
Why is f ∗ surjective? Let Z ⊂ X×A1 be a subvariety, which we assume

is not contained in the zero section X × {0}. Let α = Z ∩ (X × 0) as a
cycle. The basic idea is to consider the family of subvarieties obtained by
stretching Z by a factor of 1

t
in the A1 direction. For t = 1, this is the cycle

Z, while the “limit” of these cycles at t = 0 is f ∗α. More precisely, if the
A1 coordinate is s then the equations of Z may be written as

f0x+ sf1(x) + . . . = 0, etc.
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Replacing these by

f0(x) + stf1(x) + . . . = 0, etc

gives a variety with the s-coordinates scaled by 1
t
, so anything not on α is

pushed off to infinity in the limit. We can view this family of cycles as a
rational equivalence from Z to f ∗(α), thus proving the surjectivity of f ∗.
Injectivity of f ∗ can also be proved by a geometric argument.

To define the product on CH∗X, following Fulton and MacPherson,
consider cycles α and β on X. Then we get a cycle α⊗ β on X ×k X, and
we want to define αβ = (α⊗ β) ∩∆X - this is intuitively the intersection.

To do this formally, observe that associated to α⊗ β we get a “normal
cone” of α⊗β near the diagonal X ⊂ X×kX, which is an explicit algebraic
cycle on the normal bundle NX/X×kX (viewed as a scheme). By homotopy
invariance of Chow groups, this cycle determines an element of CH∗X
(though not an explicit cycle on X, in general). This is the product αβ in
CH∗X.

Finally, for any morphism f : X → Y of smooth k-schemes, we have a
homomorphism

f ∗ : CH∗Y → CH∗X

which is a graded ring homomorphism. If f : X → Y is a proper morphism
of schemes, we also have a pushforward homomorphism

f∗ : CH∗X → CH∗Y.

6.2 The basic exact sequence

The basic exact sequence for Chow groups says that if X is a scheme of
finite type over a field k and Z ⊂ X is a closed subscheme, then there is
an exact sequence

CHiZ → CHiX → CHi(X − Z)→ 0.

The maps are all instances of functoriality between Chow groups: the first
map is the pushforward associated to the proper map Z → X. The second
comes from the general fact that if f : X → Y is a flat morphism of schemes,
then there is a pullback homomorphism f ∗ : CHiY → CHi+dim(X)−dim(Y )X.

For k = C, this sequence maps to the exact sequence

→ HBM
2i (Z,Z)→ HBM

2i X → HBM
2i (X − Z)→ HBM

2i−1(Z)→ . . . .

Note a big difference between the exact sequences for Chow groups and
Borel-Moore homology: the homomorphism CHiX → CHi(X − Z) is al-
ways surjective. This is because for any subvariety of X −Z, its closure in
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X is again an algebraic variety, which represents a class in the Chow group.
Nothing similar is true in topology. For example, HBM

1 (R2 − 0,Z) ∼= Z is
generated by the ray from 0 to ∞ on the x-axis, and the closure of this in
R2 is not a cycle (it has nontrivial boundary, namely the origin in R2).

Example 6.3. If U ⊂ An is a nonempty open subscheme, then

CHiU =

{
Z i = n

0 i 6= n
.

This follows from the basic exact sequence plus the computation of CHiAn,
which you can do by homotopy invariance. This is completely different from
what happens in topology: an open subset of Euclidean space (or even a
Zariski open subset of Cn) can have a lot of homology.

Example 6.4. If X → Y is a principal Gm-bundle, then X is the total
space of a line bundle L minus the 0-section. Suppose that Y and X are
smooth. Then

CH∗X ∼= CH∗Y/(c1L).

To see this, use the exact sequence plus homotopy invariance.

Compare this with H∗(X,Z) and H∗(Y, Z) for k = C, where we have
the long exact sequence for a circle bundle,

. . .→ H i−2Y
c1(L)−−−→ H iY → H iX → H i−1Y → . . .

6.3 Classifying spaces in algebraic geometry

Let G be an affine group scheme of finite type over a field k. Then G has
a faithful representation

G→ GL(V )

for some finite dimensional k-vector space V . Why? There’s one natural
nontrivial action of G, which is on its own ring of functions (the regular
representation). This is clearly faithful, and then one argues that there are
enough finite dimensional subrepresentations in it.

To replicate what we did for classifying spaces in topology, we need to
find varieties that are “nearly contractible” with a free action of G. (It is
impossible to find contractible ones.) A good attempt is to go for V − S,
where V is a representation over k and S ⊂ V is a Zariski closed subset. If
we are lucky, the quotient (V − S)/G is a scheme. (If G is finite, then this
is automatic: the quotient of a quasiprojective variety by a finite group is a
quasiprojective variety.) Now, if S has high codimension in V , then V − S
is “nearly contractible” (at least in topology, its small homotopy groups
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will vanish). Recall that in topology, removing a set of codimension i + 2
from a manifold does not affect πi.

Definition 6.2. We define CH iBG = CH i(V − S)/G, for any pair (V, S)
as above such that codim(S ⊂ V ) > i.

If you have a sequence of such varieties

(V1 → S1)/G→ (V2 − S2)/G→ . . .

of codimension increasing to infinity, we can intuitively think “BG =
lim−→(Vi − Si)/G.”

Theorem 6.3. CH iBG is independent of the choice of (V, S).

Proof. Let (V, S) and (W,T ) be two pairs as above, i.e. (V, S) and (W,T )
are k-representations of G, S and T are closed subsets, and G acts freely
on V − S and W − T and codim(V ) and codim(W ) are greater than i.

We compare both to the direct sum representation. We have a vector
bundle

(V ⊕W − S ×W )/G

uu
(V − S)/G

with fiber W . (It is not immediately clear that these things actually exist
as schemes. This is answered by the theory of faithfully flat descent: the
space (V ⊕W − S ×W )/G can be realized as the total space of a vector
bundle we construct on (V − S)/G.) Now, homotopy invariance of Chow
groups implies that

CH∗(V − S)/G ∼= CH∗((V ⊕W )− (S ×W ))/G

and likewise for the bundle ((V ⊕W )−(V ×T ))/G→ (W −T )/G, a vector
bundle with fiber V .

Next, if X is a scheme and Z is a closed subset of codimension > i, then
CH iX → CH i(X − Z) is an isomorphism (use the basic exact sequence).
Using this, we get the result by comparing both CH∗(V ⊕W −S ×W )/G
and CH∗(W × V − T × V )/G) to CH∗((V − S)× (W − T )/G).

Example 6.5. What is the ring CH∗BGm? Let Gm act on An by scalar
multiplication. This action is free outside of the origin, and the orbits are
the linear through the origin. Then (An − 0)/Gm

∼= Pn−1. So

CH∗BGm = lim←−CH
∗Pn−1k = Z[u]

where |u| = 1. (We are taking the inverse limit in the category of graded
rings, so we can view this ring as Z[u] rather than the power series ring
Z[[u]].)
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Example 6.6. One way to produce suitable representations of G is to
take the direct sum of many copies of a faithful representation of G. Let’s
apply this to compute CH∗BGL(n). Let V be the standard n-dimensional
representation of GL(V ) = GL(n). Let W = V

⊕
N = Hom(CN , V ) for any

integer N > n. Then GL(V ) acts freely on the open subset of surjective
linear maps Surj(CN , V ). The quotient Surj(CN , V )/GL(V ) ∼= Gr(N −
n,N). The codimension of the complement goes to infinity, so

CH∗BGL(n) = lim←−CH
∗Gr(N − n,N).

Again, the Chow ring of Grassmanians is the same as the cohomology ring,
because Gr(N − n,N) has an algebraic cell decomposition, so its Chow
groups are the free abelian group on the set of cells, as is the ordinary
cohomology ring. The conclusion is that

CH∗BGL(n) ∼= Z[c1, . . . , cn] |ci| = i.

Remark 6.4. For a smooth scheme X/C, we have a graded ring homomor-
phism (the “cycle map”)

CH iX

≈
��

// H2i(X,Z)

≈
��

CHn−iX // HBM
2n−2i(X,Z)

where dimCX = n. So if G is an affine algebraic group over C, we have a
ring homomorphism

CH∗BG→ H∗(BG,Z).

Explicitly, this is the homomorphism CH i(V −S)/G→ H2i((V −S)/G,Z)
for any pair (V, S) as above such that codimS > i.

Example 6.7. What is CH1B(Z/2)? Let Z/2 act freely on C2 by ±1.
The action is free on C2 − (0, 0) and C2/(Z/2) is isomorphic to {(a, b, c) ∈
A3 : b2 = ac} by sending (x, y) 7→ (x2, xy, y2). This is a singular cone in
A3, and removing the origin removes the cone point. When calculating the
first Chow group, we may as well throw the cone point back in since it
has dimension 0 (see the basic exact sequence if you are uncomfortable).
Now, CH1 of this is Z/2, generated by a line through the origin on the
cone. Why is twice this line rationally equivalent to 0? A plane tangent
to Y along the line intersects it in a double line. The plane is rationally
equivalent to zero, since it is the zero set of a regular function (namely,
a linear function on affine 3-space). Restricting to the cone, we get that
twice the line is rationally equivalent to 0.

This is the typical example of how a Weil divisor can fail to correspond
to a Cartier divisor. The line cannot be locally defined by one equation.
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6.4 Examples and Computations

Example 6.8. IfQ8 is the quaternion group of order 8, what is CH1(BQ8)?
Now, Q8 has a faithful 2-dimensional complex representation, by thinking
of Q8 as a subgroup of the unit quaternions S3. So

CH1BQ8 = CH1(A2
C/Q8).

What is A2
C/Q8? In this case, one can describe it explicitly as Spec (C[x, y]Q8),

and an explicit model is

A2
C/Q8

∼= {(x, y, z) ∈ A3
C : z2 = xy(x+ y)}.

This is called the D4 singularity. There are only three lines through the
origin on this surface, given by z = 0 and one of x = 0, y = 0, or x+y = 0.
(The real picture of the D4 singularity looks like three cones meeting at a
point.) Then

CH1BQ8 = CH1Y ∼= (Z/2)2

generated by the three lines through the origin, with the relation that their
sum is 0. How can we see these relations geometrically? A plane tangent
to the cone alone one of the lines intersects the surface in twice the line,
explaining the two-torsion. Furthermore, all three lines lie in the plane
z = 0, and the intersection of that plane with the surface is precisely the
sum of the three lines.

Remark 6.5. For any affine group scheme G, CH1(BG) = Hom(G,Gm).
This explains the calculation that CH1(BQ8) ∼= (Z/2)2.

Definition 6.6 (Edidin-Graham). Let G be an affine group scheme over
a field k, acting on a smooth scheme X over k. Then we can define the
equivariant Chow groups as

CH i
GX = CH i(X × EG/G)

using the approximations to EG and BG that we mentioned, as

CH i(X × (V − S)/G),

where G acts freely on V − S and codimS ⊂ V ) > i.

Example 6.9. What is CH∗B(Z/p)? (Say the base field is C.) Let W be
a faithful 1-dimensional representation of Z/p and let V = W

⊕
n. Then G

acts freely on V − 0, so our approximations to B(Z/p) are (An− 0)/(Z/p).
Here we have Z/p ⊂ Gm ⊂ GL(V ). We could just mod out by the whole
multiplicative group, so we have a kind of “fiber bundle”

Gm
∼= Gm/(Z/p)→ (An − 0)/(Z/p)→ (An − 0)/Gm

∼= Pn−1C .
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This is the principal Gm-bundle that corresponds to the line bundle O(p) on
Pn−1 (that is, p times the generator of Pic(Pn−1) ∼= Z). So CH∗B(Z/p) ∼=
CH∗BGm/(pc1), where CH∗BGm

∼= Z[c1].
On the other hand, this description of BZ/p ∼= K(Z/p, 1) as an S1-

bundle over CP∞ implies that H∗(BZ/p,Z) = Z[c1]/(pc1). To see this, one
can use the Gysin exact sequence for a sphere bundle that was discussed
earlier. So this is another example where

CH∗(BZ/p) ∼= H∗(BZ/p,Z) = Z[c1]/(pc1).

Example 6.10. What is CH∗B(Z/p)r? Since B(G × H) = BG × BH
(use a product of the approximating spaces for BG and BH), the an-
swer is Z[u1, . . . , ur]/(pu1, . . . , pur) where |ui| = 1. Here, CH∗B(Z/p)r →
H∗(B(Z/p)r,Z) is not an isomorphism for r ≥ 2.

Compare: H∗(B(Z/p)r,Fp) ∼= Fp〈x1, . . . , xr, y1, . . . , yr〉 where |xi| = 1
and |yj| = 2, so this is the tensor product of a polynomial ring and an
exterior algebra. On the other hand, the Chow ring modulo p is just the
polynomial ring on the generators y1, . . . , yr.

Remark 6.7. It’s not known if CH∗BG is a finitely generated Z-algebra.
This is not even known for G finite, but we have some more traction in
this case. The map f : EG → BG is a finite map, and f∗f

∗α = |G|α, so
|G|α = 0 for α ∈ CH∗BG of positive degree, since CH>0(EG) = 0.

Theorem 6.8. Let G be an affine group scheme over k, with a faithful
representation V of dimension n over k. Then

CH∗(GL(n)/G) ∼= CH∗BG/(c1V, . . . , cnV ).

Why is this useful? If you know the Chow ring of BG, then theorem
determines the Chow ring of GL(n)/G, which may be of interest. But in-
formation also goes in the other direction. The theorem reduces some ques-
tions about the Chow ring of BG to questions about one finite-dimensional
variety, GL(n)/G. For example:

Corollary 6.9. CH∗BG is generated as a module over Z[c1V, . . . , cnV ] by
elements of degree ≤ n2 − dimG.

Proof. Indeed, the Chow groups of CH∗(GL(n)/G) are zero in degree big-
ger than n2 − dimG = dim GL(n)/G.

Corollary 6.10. CH∗BG is generated as a ring by elements of degree
≤ max(n, n2 − dim(G)).

Example. What is CH∗BO(n)C? Use the obvious faithful representa-
tion O(n) ⊂ GL(n) and the previous theorem. Now, GL(n) acts on the
symmetric forms S2(An) ∼= An(n+1)/2, thought of as the vector space of
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all symmetric bilinear forms on An. The stabilizer of a certain form is
O(n), and in fact all nondegenerate symmetric bilinear forms are GL(n)-
equivalent. So GL(n)/O(n) can be realized as an open subset of An(n+1)/2.
By the basic exact sequence,

CH∗GL(n)/O(n) =

{
Z ∗ = 0

0 ∗ > 0
.

So CH∗BO(n) = Z[c1, . . . , cn]/(relations).
The representation V of O(n) is self-dual, and in general cj(V

∗) =
(−1)jcj(V ). So the relations include 2c2k+1 = 0. In fact, there are no more
relations. One way to see this is that the map

Z[c1, . . . , cn]/(2c2k+1 = 0) ↪→ H∗(BO(n),Z)

is injective, but the map also factors through CH∗BO(n), so there can be
no more relations.

Proof of Theorem. We have a “fibration”

GL(n)/G→ BG→ BGL(n)

and also (by looping the previous fibration)

GL(n)→ GL(n)/G→ BG.

So GL(n)/G is “A1-homotopy equivalent” to the total space of a principal
GL(n)-bundle on BG. Then the theorem follows from this fact: for a
smooth k-variety X and a principal GL(n)-bundle E → X, let V be the
corresponding vector bundle on X. Then

CH∗E ∼= CH∗X/(c1V, . . . , cnV ).

We have seen this for n = 1. That implies an analogous statement for
principal (Gm)r- bundles. Now reduce the case of GL(n) to the case of a
maximal torus, by considering the flag bundle: if E → X is a principal
GL(n)-bundle, you can consider the associated GL(n)/B bundle E/B →
X. CH∗(E/B) is a free module over CH∗X on known generators, and

CH∗(E/B) ∼= CH∗(E/T )

essentially because B is homotopy equivalent to T . Finally, we relate this
to CH∗E.
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Chapter 7

Derived categories

7.1 Localization

Derived categories start with a basic idea from homotopy theory: take a
category (e.g. topological spaces), and invert a certain set of arrows (e.g.
weak homotopy equivalences). (Recall that f : X → Y is a weak homotopy
equivalence if f∗ : π0(X) ∼= π0(Y ) and f∗ : πi(X, x0) ∼= πi(Y, f(x0)) for any
x0 ∈ X.) Some “inconvenient” features of topological spaces arise from the
fact that there are weak homotopy equivalences which are not homotopy
equivalences.

Example 7.1. Any continuous map from a sphere to the Cantor set must
be constant, since the latter is totally disconnected. So the map from a
discrete space on the same underlying set is a weak homotopy equivalence,
but not a homotopy equivalence.

Theorem 7.1. Inverting weak homotopy equivalences in the category of
topological spaces gives a category equivalent to the homotopy category of
CW-complexes.

Now let C any category and S any set of arrows in C. Then one can
always construct a new category C[S−1], called the localization of C with
respect to S, equipped with a functor F : C → C[S−1] having the property
that all arrows in S become isomorphisms in C[S−1], such that F is universal
with respect to this property.

C F //

G ""

C[S−1]
∃!
��
D

How do you construct this category? To define C[S−1], take the objects to
be the objects of C. A morphism in C[S−1] between A and B is given by a

60
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diagram
A→ A2 ← A3 → · · ·B

where the backwards arrows must lie in S. So one can write a morphism
in C[S−1] as a “word”

fr . . . g
−1
2 f2g

−1
1 f1

where fi are morphisms in C and gi are morphisms in S. (We allow any
sequence of morphisms f and g−1, as long as their domains and codomains
fit together as pictured above.) Two words give the same morphism in
C[S−1] if and only if you can get from one to the other by a sequence of
the moves: f1f2 = f1 ◦ f2 and gg−1 = g−1g = 1.

One issue with this is that if C is a “large category” (a category whose
objects do not form a set), then C[S−1] might not be locally small (meaning
that the morphisms from one object to another do not form a set) since
we have introduced so many new morphisms. Generally, we want to be
working with locally small categories.

Let A be an abelian category, and let C(A) be the category of chain
complexes of objects in A

. . . An
dn−→ An+1 dn+1−−−→ An+1 → . . .

In homological algebra, we encounter chain complexes when trying to con-
struct homology. Usually, the homology is important but the chain complex
itself is somewhat artificial (it might depend on the choice of triangulation,
for example, while the homology does not). However, the chain complexes
can contain more information than the homology, and the point of derived
categories is to extract more information from a chain complex.

Definition 7.2. A quasi-isomorphism of chain complexes f : A• → B• is
a map of chain complexes

. . . // An

��

// An+1

��

// . . .

. . . // Bn // An+1 // . . .

such that the induced homomorphism on homology

f∗ : H
i(A)→ H i(B)

is an isomorphism for all i.

Definition 7.3. The derived category D(A) of an abelian category A is
the localization of C(A) with respect to the quasi-isomorphisms.

Thus an object of D(A) is a chain complex, but it is not so clear what
the morphisms are. One easy first observation is that we have well-defined
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functors H i : D(A) → A for all integers i, which are just the homology
groups of the chain complex.

7.2 Homological algebra

How do you do actual computations in D(A)? You use projective or injec-
tive resolutions! For example, suppose that A has enough projectives, that
is, any object is the image of some projective. (The category of modules
over a ring has this property.) Then for any object M in A, we can consider
a projective resolution

. . .→ P1 → P0 →M → 0

It’s actually more useful to drop the M and consider the chain complex

. . .→ P1 → P0 → 0

Now, this complex has nontrivial homology only at H0, where it is M , so
we have a quasi-isomorphism

. . . // P1

��

// P0

��

// 0

. . . // 0 //M // 0

So the upshot is that any object M of A is isomorphic in D(A) to any
projective resolution of M . More generally, if A has enough projectives,
then for any bounded-above complex M in C(A) (i.e. a complex such
that Ci = 0 for i � 0), there is a bounded-above complex P of projective
modules with a quasi-isomorphism to M . (Note that we are considering
cochain complexes, so Mi := M−i.)

. . . // P2
//

��

P1

��

// P0

��

// 0

. . . //M2
//M1

//M0
// 0

Dually, if A has enough injectives, then any bounded below complex has a
quasi-isomorphism to a complex of injectives.

Definition 7.4. The näıve homotopy category K(A) is the category whose
objects are chain complexes over A and morphisms are homotopy classes
of chain maps.

Recall that a homotopy h• between two chain maps f : M• → N• con-
sists of morphisms hi : M i → N i−1 for all integers i such that dh + hd =
f − g.
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The functor C(A) → D(A) factors through the näıve homotopy cate-
gory K(A). The point of constructing this category is that it is easier to
work with for computations.

Lemma 7.5. If P is a bounded above complex of projectives in A, then
P is homotopically projective, meaning that for any quasi-isomorphism
M → N in C(A),

HomK(A)(P,M)→ HomK(A)(P,N)

is bijective.

Proof. This is the standard diagram chase in homological algebra. To con-
struct an inverse, one uses the lifting property for projective modules. De-
tails are left as an exercise.

From the definition of the derived category, it is straightforward to check
the following statement. (The point is that by the preceding lemma, any
formal inverse for a quasi-isomorphism introduced in D(A) can actually be
inverted in K(A).)

Lemma 7.6. If P is a homotopically projective object in C(A), then

HomK(A)(P,M)→ HomD(A)(P,M)

is bijective for any M ∈ C(A).

So to compute HomD(A)(X, Y ) if X is bounded above and A has enough
projectives, take a projective resolution P for X. Then

HomD(A)(X, Y ) = HomD(A)(P, Y ) = HomK(A)(P, Y ).

This is much more concrete than the general description of morphisms
in D(A). In particular, one crude thing that we can say is that these
morphisms form just a set, if the original category was locally small.

Example 7.2. Given an object M of A, we can think of it as a complex
concentrated in degree 0.

· · · → 0→M → 0→ · · ·

For an integer n, let M [n] be M shifted left by n, that is, M [n]i = Mn+i.
So for an object M of A, M [n] is a complex concentrated in degree −n.

Corollary 7.7. For objects M and N of A,

HomD(A)(M,N [j]) = ExtjA(M,N).
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Proof. Actually, one should really define Ext to be the derived functors of
Hom, but let’s compare this with the usual definition.

The usual definition of ExtjA(M,N) is that one takes a projective res-
olution of M , applies Hom(−, N), and then takes the Hj of this complex.
This is exactly the same as taking Hom to N [j] in K(A).

In particular, since a projective resolution lives “to the left” of M , the
Ext groups vanish for j < 0. The intuition is that morphisms in D(A) only
go to the left.

0 // 0 // 0 //M // 0

0 // N // 0 // 0 // 0

Remark 7.8. Here is a simple example showing that having a quasi-isomorphism
of chain complexesM → N does not imply that there is a quasi-isomorphism
N →M . Let A be an abelian category with enough projectives. Let M be
an object of A, and let P → M be a projective resolution. Then we get a
quasi-isomorphism

. . . // P1

��

// P0

��

// 0

. . . // 0 //M // 0

When is there a quasi-isomorphism M → P? It turns out that this happens
if and only if M is projective. Indeed, suppose we have a chain map M →
P that induces an isomorphism on cohomology. That gives a morphism
M → P0 that splits the surjection from P0. So M is a summand of P0,
and hence is projective. (For example, you could let A be the category of
abelian groups and M = Z/2, which is not projective.)

Categories of interest (e.g. the category of sheaves of abelian groups on
a topological space) often do not have enough projectives. But these cate-
gories do have enough injectives. We therefore explain how to compute in
an abelian category using injective resolutions. One could say that results
on injective resolutions follow from the corresponding results on projective
resolutions by reversing the arrows (since the axioms for an abelian cate-
gory are self-dual). For clarity, I will write out in detail how this works.

Definition 7.9. An object M of a category A is injective if for every
injection N1 → N2 in A, every homomorphism N1 → M extends to a
homomorphism N2 →M .

We say that a category A has enough injectives if every object A is
a subobject of an injective object. If A has enough injectives, then every
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bounded-below complex M in C(A) has an injective resolution, i.e. a quasi-
isomorphism

0

��

//M0

��

//M1

��

// . . .

0 // I0 // I1 // . . .

For any complexM and bounded-below complexN , ifN → I is an injective
resolution then

HomD(A)(M,N) ∼= HomK(A)(M, I ′).

Why? Of course, HomD(A)(M,N) = HomD(A)(M, I). Now, a morphism in
the derived category from M to I is by definition given by a diagram

M →M1 → . . .←Mr−1 →Mr ← I

where the backwards arrows are quasi-isomorphisms. Given that, we want
to produce a chain map M → I, up to chain homotopy. Since I is homo-
topically injective, for any quasi-isomorphism M → N the induced map

HomK(A)(N, I)→ HomK(A)(M, I)

is bijective. That allows us to “reverse the backwards arrows,” up to chain
homotopy.

Parallel to the discussion for projectives, we can see that

HomD(A)(M,N [j]) ∼= ExtjA(M,N)

by replacing N with an injective resolution.

7.3 Triangulated categories

Definition 7.10. For a complex M in C(A) and n ∈ Z, M [n] is the
complex M [n]i = Mn+i, with the differential on M [n] equal to (−1)n times
the differential on M .

Definition 7.11. Let f : M → N be a chain map. The cone of f is the
complex M [1]⊕N as graded objects of A, with differential

dcone(f) =

(
−dM 0
f dN

)
.

We then have a short exact sequence of complexes:

0→ N → cone(f)→M [1]→ 0
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which induces a long exact sequence of cohomology groups

. . .→ H iM → H iN → H i(cone(f))→ H i+1M → . . .

The topological analogue: given a map f : X → Y of pointed topological
spaces, the homotopy cofiber of f is constructed as follows: make f a
cofibration by changing Y to something homotopy equivalent, and then
the cofiber is Y/X. So you get a cofibration

X → Y → Y/X

giving a long exact sequence on (co)homology. You could continue this
process: the cofiber of Y → Y/X is ΣX, so this continues to

X → Y → Y/X → ΣX → ΣY → Σ(Y/X)→ Σ2X → · · · .

Definition 7.12. A distinguished triangle in D(A) is a sequence of maps
in D(A)

X → Y → Z → X[1]

which is isomorphic in D(A) to the triangle

M → N → cone(f)→M [1]

for some chain map f : M → N .

In the derived category D(A), distinguished triangles are the analogue
of both fiber sequences and cofiber sequences.

Example 7.3. Any short exact sequence in A

0→ X → Y → Z → 0

gives a distinguished triangle in D(A)

X → Y → Z → X[1].

Indeed, the cone of f : X → Y is the complex

0→ X
f−→ Y → 0

which has a natural quasi-isomorphism to Z:

X
f // Y //

��

0

0 // Z // 0
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The morphism Z → X[1] in D(A) is the element of Ext1A(Z,X) correspond-
ing to this exact sequence.

Lemma 7.13. A distinguished triangle in D(A) gives a long exact sequence

. . .→ H iX → H iY → H iZ → H i+1X → . . .

Lemma 7.14. Every morphism f : X → Y in D(A) fits into a distin-
guished triangle X → Y → Z → X[1]. The object Z is well-defined up to
isomorphism, but not up to unique isomorphism. It is called a cone of f.

So any morphism X → Y in D(A) gives a sequence of distinguished
triangles

X → Y → Z → X[1]→ Y [1]→ Z[1]→ . . .

Notice that we can also define the fiber of f : X → Y to be Z[−1]. So we
get a sequence of distinguished triangles in both directions:

. . .→ X[−1]→ Y [−1]→ Z[−1]→ X → Y → Z → . . .

Thus, in D(A), fiber sequences and cofiber sequences are the same. Such a
category is called a triangulated category. So here ΩΣX ∼= X and ΣΩX ∼=
X, interpreting ΣX = X[1] and ΩX = X[−1].

Another example of a triangulated category is the stable homotopy cat-
egory. For example, a finite spectrum is a symbol ΣaX where a ∈ Z and
X is a finite CW-complex with a base point. In other words, we pretend
that every space is a suspension. We then define

Homstable(Σ
aX,ΣbY ) = lim−→

c≥0
[Σa+cX,Σb+cY ].

Definition 7.15. Let M be a complex in C(A). Let τ≤0M be the following
complex, which has cohomology groups

H i(τ≤0M) =

{
H i(M) i ≤ 0

0 i > 0
.

. . . //M−2 //

��

M−1 //

��

ker d0 //

��

0 //

��

. . .

. . . //M−2 //M−1 //M0 //M1 // . . .

We see from this construction that there is a natural map τ≤0M →M .
Likewise, we can define a complex τ≥0M whose cohomology is that of

M restricted to degrees ≥ 0, and we have a natural map M → τ≥0M .

Corollary 7.16. If M ∈ D(A) has H iM = 0 for i 6= 0, then M is isomor-
phic in D(A) to the object H0(M)[0].
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Think of D(A) as an analogue of the homotopy category in topology,
and H∗ as an analogue of homotopy groups. Then this corollary is analo-
gous to the statement that an Eilenberg-Maclane space K(G, n) is deter-
mined up to isomorphism in the homotopy category by the group G.

Proof. Think of M as a complex. The map

τ≤0M →M

is a quasi-isomorphism. So M is isomorphic in D(A) to the complex N =
τ≤0M . Also, the map N → τ≥0N = W is a quasi-isomorphism. So we have
that W is a complex in degree 0 only, and

H0(W ) ∼= H0(M),

so W is the complex H0[M ][0].

Lemma 7.17. An object X in D(A) with Hj(X) = 0 for j 6= 0, r (where
r > 0) is determined up to isomorphism by H0X,HrX, and an element of
Extr+1

A (HrX,H0X).

Proof. Using the truncation functors, we have a morphism in D(A),

f : τ≤0X → X.

Here τ≤0X ∼= (H0X)[0] in D(A), by the previous lemma. Let Y be a cone
of f . By the long exact sequence of cohomology for a distinguished triangle,
Y is isomorphic to (HrX)[−r] in D(A). We have a distinguished triangle:

τ≤0X → X
f−→ Y

g−→ (τ≤0X)[1].

So we have realizedX as the fiber of g, where g is an element of Extr+1
A (HrX,H0X).

Conversely, given any objects H0X and HrX in A and an element g ∈
Extr+1

A (HrX,H0X), we can produce an object X in D(A) by taking the
fiber of the corresponding map (HrX)[−r]→ (H0X)[1].

7.4 Sheaf cohomology

Let X be a topological space, and let A be the abelian category of sheaves
of abelian groups on X. One way to define H∗(X,E ) for a sheaf E is to
take the right derived functors of the global sections, i.e. choose an injective
resolutions E → I• and then set

H∗(X,E ) = H∗(0→ H0(X, I0)→ H0(X, I1)→ . . .)

Let f : X → Y be a continuous map. For a sheaf E on X, the direct image
sheaf f∗E is the sheaf (f∗E)(U) = E(f−1(U)) for open subsets U of Y .
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More generally, we can define the higher direct image functor

Rf∗ : D
∗(X)→ D∗(Y )

(where D∗(X) is the category of bounded-below complexes of sheaves on
X) by: given a bounded below complex E on X, let E → I be a quasi-
isomorphism to a complex of injective sheaves on X, and set

Rf∗(E) = (0→ f∗I
0 → f∗I

1 → . . .)

The cohomology sheaves of Rf∗E are H i(Rf∗E) = Rif∗E, the sheaf asso-
ciated to the presheaf U 7→ H i(f−1(U), E).

Example 7.4. If f : X → Y is a fibration, then the sheaves Rif∗(ZX) are
locally constant with fiber H i(F,Z), corresponding to the action of π1Y on
H i(F,Z).

Example 7.5. Consider maps X
f−→ Y

g−→ Z. Then R(g ◦ f)∗ ∼= Rg∗ ◦Rf∗.
Consider the case X → Y → ∗. Then the isomorphism says that

H i(X,E ) ∼= H i(Y,Rf∗E ).

This “encodes” the whole Leray spectral sequence

Eij
2 = H i(Y,Rjf∗E ) =⇒ H i+j(X,E ).

7.5 References

• S. Gelfand and Y. Manin, Methods of homological algebra

• C. Weibel, An introduction to homological algebra

• M. Kashiwara and P. Schapira, Categories and sheaves



Chapter 8

Stacks

8.1 First thoughts

Stacks come up when trying to describe quotient spaces by group actions.
If G acts freely on X, then there is no problem taking the quotient as a
topological space (and we get a principal G-bundle). What if it is not free?
We want an “interesting” geometric object X/G, but this can produce “sin-
gularities.” For instance, if X is a manifold, then the naive quotient space
X/G is typically not a manifold. If one works with the näıve topological
space X/G, there are problems; for instance, vector bundles on X/G are
not equivalent to G-equivariant vector bundles on X.

If X is a scheme and G a group, then we want to produce a stack [X/G]
such that sheaves on [X/G] are the same as G-equivariant sheaves on X.

Example 8.1. For a group G acting on a point, the stack [point/G] is
called the classifying stack BG. We want sheaves on BG to be equivalent
to representations of G. Topologically, taking the quotient of a point by
G is just a point, so the stack must remember additional data. A first
(not very accurate) approximation is to think of the stack [X/G] as the
quotient space together with the information of the stabilizer groups of G
at ccrresponding points of X. So the stack BG is a point together with the
information of the group G.

This is related to an issue that comes up in studying moduli spaces.
Informally, these are objects that parametrize algebro-geometric objects.
More precisely, they represent functors of interest.

Example 8.2. Consider the functor ϕg : Schemes → Sets sending X to
the set of isomorphism classes of smooth projective morphisms f : Y → X
where the fibers of f are curves of genus g.

If you had a “moduli space of curves of genus g,” Mg, together with
a universal family of genus g curves over Mg, then the functor would be

70
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represented by Mg, i.e.

HomSch(X,Mg) = ϕg(X).

This is not true as stated: there is no “fine moduli space of curves of genus
g” (which is a scheme). The problem is that some curves have nontrivial
automorphisms.

Example 8.3. If G = Z/2 acts on a curve D of genus g, then we can
produce a nontrivial family of curves over X where all the fibers are iso-
morphic to D. Indeed, let E → X be any principal Z/2-bundle of schemes.
Then consider the family of curves over X, (E × D)/(Z/2). It has fibers
all isomorphic to D, but it is typically not a trivial bundle. However, the
corresponding morphism to Mg would have to be constant (since all the
fibers are isomorphic). This illustrates why the presence of automorphisms
is problematic for moduli spaces.

Recall that a groupoid is a category in which all morphisms are isomor-
phisms. Roughly, a stack will give a contravariant functor Schemes →
Groupoids generalizing the way a scheme X gives a contravariant functor
Schemes→ Sets by Y 7→ Hom(Y,X).

Example 8.4. The stack BG for a group scheme G/k is the functor tak-
ing a scheme X to the groupoid of principal G-bundles over X. This is
not literally a contravariant functor from schemes to groupoids, because
the composition of pullbacks is not the pullback of the composition (they
are naturally isomorphic). We will therefore emphasize a slightly different
framework, that of fibered categories.

8.2 Fibered categories

Let C be a category. A category F over C is a category F with a functor
ρF to C. Write ξ 7→ U to mean that ξ is an object of F , and it maps to X
under ρF . (Think of C as the category of schemes, and F as the category
of principal G-bundles over schemes.)

Definition 8.1. Let F be a category over C. An arrow ϕ : ξ → η in F is
cartesian if for any arrow ζ → η in F and any arrow Z → U that makes
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the the diagram in C commute,

ζ

''�� ∃! ��
Z

''��

ξ
ϕ //

��

η

��
U // V

there is a unique arrow ζ → ξ in F which maps to Z → U in C and which
makes the triangle in F commute.

Example 8.5. Let C be the category of schemes and F the category of
vector bundles on schemes. Morphisms in F are maps of vector bundles
over a morphism of schemes. Equivalently, for vector bundles ξ over U and
η over V , we can view a morphism ξ → η in F as a morphism f : U → V of
schemes together with a homomorphism ξ → f ∗(η) of vector bundles over
U .

ξ //

��

η

��
U // V.

An arrow ξ → η in F is cartesian if and only if the corresponding homo-
morphism ξ → f ∗η of vector bundles on U is an isomorphism. In other
words, ξ is the pullback of η by the morphism U → V associated to ξ → η.

You can define a scheme X to be a functor R 7→ X(R), from commuta-
tive rings to sets, satisfying some conditions. Equivalently, one could define
the category of affine schemes to be CommRingop, and view a scheme as
a contravariant functor from affine schemes to sets.

Our construction of stacks will be analogous to the second approach.
Roughly speaking, stacks will be contravariant functors from schemes to
groupoids.

Lemma 8.2. Let F be a category over a category C. For any morphism
U → V in C and any object η of F over V , a cartesian arrow ξ → η over
U → V is unique up to unique isomorphism, if it exists.

ξ //

��

η

��
U // V
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Proof. Suppose that we have two different arrows ξ1 → η and ξ2 → η over
U → V . Regard ξ1, ξ2 over the triangle

ξ1

''�� ∃! ��
U

''
=

��

ξ2
ϕ //

��

η

��
U // V

we get a unique map ξ1 → ξ2. Similar, we get a unique morphism ξ2 → ξ1.
By the usual argument, uniqueness implies that both compositions must
be the identity.

Definition 8.3. Given a morphism U → V and an object η in F , ζ is a
pullback of η over U → V if ζ → η is a cartesian arrow over U → V .

Definition 8.4. A fibered category F over a category C is a category F
over C such that for any morphism U → V in C and any object η over V ,
a pullback of η over U exists.

Example 8.6. Our prototypical example is C = category of schemes, F =
category of vector bundles over schemes. More generally, we could replace
schemes by topological spaces.

Example 8.7. Another example is C = category of schemes/topological
spaces, G a given k-group scheme/topological group, and F the category
of principal G-bundles over schemes/topological spaces.

Now let’s try to relate fibered categories F over C to the rough idea of
a contravariant functor from C to the category of categories.

Definition 8.5. Let F be a fibered category over C. For an object U of
C, we define the fiber of F over U , denoted F (U), to be the subcategory
of F consisting of objects over U , with morphisms being morphisms of F
over 1U .

Definition 8.6. A cleavage of a fibered category F over C is a class K of
cartesian morphisms in F such that for each morphism U → V in C and
each object η in F (V ), there is a unique morphism in K with target η lying
over U → V .

The point is basically to pick a cartesian morphisms from each equiv-
alence class.The axiom of choice says that we can choose a cleavage for
any fibered category. Given a cleavage of F , a morphism U → V in C
determines a functor

f ∗ : F (V )→ F (U).
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Indeed, send η to the (unique) element of the cleavage that is the pullback
of η over U → V . For a composition, we have

(g ◦ f)∗ ∼= f ∗ ◦ g∗.

Summary: roughly, a fibered category F over C gives a contravariant func-
tor U 7→ F (U).

Definition 8.7. A category fibered in groupoids (CFG) is a fibered category
F over a category C such that for any object U of C, F (U) is a groupoid.

Example 8.8. Let C be the category of schemes/topological spaces, F
the category of principal G-bundles over k-schemes, is a CFG. Indeed, the
category of principal G-bundles over a base is a groupoid.

Example 8.9. Let C be the category of schemes, F the category of vector
bundles over schemes, with morphism being any linear map ξ → f ∗(η).
This category is not fibered in groupoids, but if we define F2 instead to
be the category of vector bundles whose morphisms are isomorphisms ξ →
f ∗(η), then this is a CFG.

Example 8.10. A special case of a fibered category is a category fibered
in sets over C. A category fibered in sets over C is equivalent to a con-
travariant functor C → Set. Given such a functor α, define an object of F
to be a pair (U, x) where U is an object of C and x ∈ α(U). A morphism
(U, x)→ (V, y) is a morphism U → V such that x = α(f)(y) ∈ α(U).

8.3 Grothendieck Topologies

When trying to define cohomology theories in algebraic geometry, one is
confronted with the problem that the Zariski topology is just too coarse.
(For instance, non-empty open subsets are dense in any irreducible scheme.)
When trying to construct the `-adic cohomology, Grothendieck realized
that we don’t really need to use the classical apparatus of open sets, and
that it better to work with the notion of open covering.

Definition 8.8. Let C be a category. A Grothendieck topology on C is a
collection of sets of morphisms {Ui → U} called coverings, such that

1. for any isomorphism U → V , {U → V } is a covering of V .

2. If {Ui → U} is a covering of U and V → U is a morphism in C,
then the fiber products V ×U Ui exist in C and {V ×U Ui → V } is a
covering of V .

3. If {Ui → U} is a covering, and for each i we have a covering {Vij →
Ui}, then {Vij → U} is a covering.
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Example 8.11. Let X be a topological space, C be the category of open
subsets of X (morphisms are inclusions). Define a covering {Ui → U} to be
a collection of open sets whose union is U . This is a Grothendieck topology,
and the traditional notion of covering.

Example 8.12. The fpqc (flat) topology on the category of schemes over
S: a collection of arrows {Ui → U} is a covering if the morphism

∐
Ui → S

is faithfully flat, and every affine subset of U is the image of some quasi-
compact open subset. For example, any Zariski open covering is an fpqc
covering.

Definition 8.9. A site is a category C with a Grothendieck topology.
For a site C, a sheaf F is a contravariant functor C → Set such that

1. (Identity axiom) For every covering {Ui → U} and two sections a, b ∈
F (U) which agree in F (Ui) for all i, then a = b.

2. (Sheaf axiom) For any covering {Ui → U} and any ai ∈ F (Ui) agree-
ing in F (Ui×UUj) for all i, j, there is a section a ∈ F (U) that restricts
to all ai.

Theorem 8.10 (Grothendieck). Let S be a scheme. A representable func-
tor on Sch/S is a sheaf in the flat topology.

Proof. To unravel the statement, given a scheme Y → S we consider the
contravariant functor X 7→ HomS(X, Y ). This is a functor from schemes
over S to sets, and the claim is that this is a sheaf in the flat topology.

For simplicity, we just consider a flat covering which consists of a single
morphism. The theorem says that for any surjective flat quasicompact
morphism X ′ → X over S, and any morphism X ′ → Y over S such that
the two compositions X ′ ×X X ′ → X ′ → Y are equal, there is a map from
X → Y inducing X ′ → Y .

X ′ ×X X ′

���� $$
X ′ //

��

Y

X

99

We may reduce to the case where Y is affine. This is a map to affine space
with some conditions, so it reduces to the case where Y = An, in which
case mapping to Y is just a bunch of maps to A1. So we may reduce to the
case Y = A1.

That is, we’re given a regular function f ∈ O(X ′) such that the two
pullbacks to X ′ ×X X ′ are equal, and we want to deduce that f is pulled
back from X.
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Let’s think about what this means algebraically. Reducing to the case
where B is affine, we have a faithfully flat A-algebra B, and we want to
know that if f ∈ B satisfies 1⊗ f = f ⊗ 1 in B ⊗A B, then f comes from
A. This is a special case of the exactness of the Amitsur complex

0→ A→ B → B ⊗A B

which we saw when doing descent theory.

If F is a fibered category over a category C with a Grothendieck topol-
ogy, the functor U → F (U) is (roughly) a presheaf of categories on C.
When studying stacks, we will want to stipulate that it be a sheaf. Recall
that we are thinking of this as a generalization of the “functor of points”
definition for schemes.

Definition 8.11. A stack F over a site C is a fibered category over C such
that for each covering {Ui → U} in C, the functor F (U)→ F ({Ui → U})
is an equivalence of categories.

Here F ({Ui → U}) is the category of objects Ai ∈ F (Ui) for every i,
together with descent data: that is, for every pair i, j, we are given an
isomorphism

ϕij : p∗2Aj → p∗1Ai ∈ F (Ui ×U Uj)

satisfying the cocycle condition:

p∗13ϕik = p∗12ϕij ◦ p∗23ϕjk

as isomorphisms p∗3Ak → p∗1Ai.
Thus, informally, a stack is a sheaf of categories on the site C.

Example 8.13. Let S be a scheme. The fibered category QCoh/S of
quasicoherent sheaves on the category of S-schemes is a stack on Sch/S, in
the fpqc topology. This is essentially Grothendieck’s theorem on descent
for quasicoherent sheaves.

Example 8.14. For a group scheme G over a field k, the stack BG over
Sch/k (for the fpqc topology) is the fibered category of principal G-bundles
over k-schemes.

8.4 Algebraic spaces

An algebraic space is a generalization of a scheme - it is a stack where
points have no automorphisms (so it is intermediate between schemes and
stacks). We’ll define an algebraic space over a scheme S to be a certain
type of contravariant sheaf of sets on Sch/S. For an algebraic space X and



Stacks 77

a scheme Y over S, we think of the set X(Y ) as the set of morphisms from
Y to X.

8.4.1 The fppf topology

Definition 8.12. Let X be a scheme. An fppf covering is a set of mor-
phisms of schemes, fi : Ui → X such that each fi is flat and locally of finite
presentation, and

⋃
i f(Ui) = X.

So this demands slightly more than fpqc. (A morphism of finite pre-
sentation is automatically quasicompact.)

In particular, we can view any scheme Y/S as a sheaf on the category
of schemes over S (for the fppf topology).

We can define an algebraic space to be the “quotient of a scheme by an
étale equivalence relation.” That is, an algebraic space Y can be defined by
a scheme U/S (an “atlas” for Y ) together with an étale equivalence relation
R on U . (Once these properties are defined, we will have a morphism
U → Y which is étale and surjective. If R = U ×Y U , then Y is the
quotient of U by the equivalence relation R.) A special case of taking the
quotient by an étale equivalence relation is taking the quotient by a free
action of a finite group.

Formally, an equivalence relation R on a scheme U/S is a scheme with
a monomorphism

R→ U ×S U

such that for any scheme T , the image of

R(T )→ U(T )× U(T )

is an equivalence relation on the set U(T ). We could also say: R is a
groupoid over U , and we have morphisms

R×U R→ R

satisfying associativity, etc.

Definition 8.13. An equivalence relation R on U is étale if both projec-
tions R→ U are étale.

The quotient sheaf U/R is the sheaf on Sch/S which is the sheafification
of the obvious presheaf U(T )/R(T ) (the set of equivalence classes for the
equivalence relation R(T ) on U(T )). An algebraic space is a sheaf of sets
on (Sch/S)fppf defined in this way.

To explain this “sheafification,” a morphism from a scheme T to the
algebraic space U/R is given by an fppf covering {Ti → T} and morphisms
fi : Ti → U such that for all i, j, fi|Ti×TTj and fj|Ti×TTj differ by a morphism
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Ti ×T Tj → R, i.e. there is a map to R whose projections give the fi, fj.
(It would be enough to consider étale coverings of T here.)

Most geometric notions for schemes generalize naturally to algebraic
spaces (smooth, proper, ...). For instance, every algebraic space Y has an
étale surjective morphism from a scheme U . We can extend the definition
of all “local properties” of schemes to algebraic spaces, by saying that Y
has a given property if and only if U does.

Example 8.15. We give some examples of algebraic spaces that are not
schemes. Let Y be the quotient of A1 modulo the étale equivalence relation
x ∼ −x if x 6= 0.

This algebraic space comes with a morphism Y → A1, sending x 7→ x2,
which is an isomorphism over A1 − {0}, bijective, and both Y and A1 are
smooth over k. But f is not étale at 0 (so f is not an isomorphism). Indeed,
at 0 it looks like the map x 7→ x2.

Remark 8.14. For a scheme X and a finite group G acting freely on X,
X/G is an algebraic space. Indeed, the two morphisms G ×k X → X,
(g, x) 7→ x and (g, x) 7→ gx, form an etale equivalence relation on X. If
X is quasiprojective, then X/G is a quasiprojective scheme. For X not
quasiprojective, X/G need not be a scheme, as Hironaka showed.

Example 8.16. (This is also due to Hironaka. See Hartshorne, Alge-
braic Geometry, Appendix B, or the Stacks Project’s chapter on Exam-
ples.) There is a smooth proper algebraic space X of dimension 3 over C
containing a curve isomorphic to P1 in X such that every divisor D ⊂ X
has intersection number D · P1 = 0. (Hironaka gives an explicit construc-
tion to show this, but it happens in many examples. For example, when
you resolve a cubic 3-fold with a nodal singularity by replacing the singular
point with a P1, you get an algebraic space with this property.) I claim
that X cannot be a scheme. If it were, a point p ∈ P1 would have an
affine open neighborhood U . On U , we could choose a regular function f
vanishing at p but not on all of P1. If D is one irreducible component of
{f = 0} through p, take its closure in X. Then D is a surface in X with
D · P1 > 0.

8.5 Stacks

We’ve mentioned groupids before, but let’s now recall the definition more
formally. A groupoid consists of

• two sets: U (the set of objects) and R (the set of arrows),

• maps s, t : R ⇒ U (associating to an arrow the “source” and “tar-
get”) and a morphism R ×U R → R which gives the composition of
morphisms
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• an identity: U → R

• an inverse: R→ R (reversing source and target)

• associativity, identity, and inverse axioms.

Let S be a scheme. A smooth groupoid over S is a scheme U → S and

a scheme R→ S with morphisms R
(s,t)−−→ U ×S U , id : U → R, inv : R→ R

satisfying the same identities, such that the source and target maps R ⇒ U
are both smooth morphisms.

This generalizes the notion of an étale equivalence relation in two ways.
An étale map is a smooth map of relative dimension zero, so we are allowing
positive relative dimension (previously we were taking what looked like a
covering space quotient; now we allow bigger quotients). Furthermore, in
defining an étale equivalence relation, we required the map R → U ×S U
to be a monomorphism, and we make no such requirement here.

Example 8.17. Let G be a smooth group scheme over a field k, acting
on a scheme X/k. Then G × X ⇒ X with the two maps (g, x) 7→ x and
(g, x) 7→ gx is a smooth groupoid.

Definition 8.15. Let R ⇒ U be a smooth groupoid over a base scheme
S. The quotient stack [U/R] is the fibered category in groupoids over
Sch/Sfppf which is the “stackification” of the fibered category

T 7→ (U(T ), R(T ) ⇒ U(T )).

Remark 8.16. We have actually only specified the fibers in the fibered
category.

So what is “stackification?” It’s basically sheafification. The point is
that to give a map to [U/R] from T , we should really only have to specify
compatible maps from to U from a cover of T . That is, for a scheme
T a morphism T → [U/R] is given by an fppf covering {Ti → T} and
morphisms ai : Ti → U together with morphisms ϕij : Ti ×T Tj → R such
that

ϕij(ai|Ti×TTj) = aj|Ti×TTj

and the cocycle condition holds:

ϕjk · ϕij = ϕik : Ti ×T ×Tj ×T Tk → R.

where · is the product on R. (We are abusing notation and identifying
these maps with their pullbacks to the triple product.)

Definition 8.17. An algebraic stack over a scheme S is a stack fibered
in groupoids over (Sch/S)fppf that is equivalent to [U/R] for some scheme
U → S and some smooth groupoid R ⇒ U .
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Example 8.18. For a smooth k-group scheme G acting on a k-scheme X,
we have a quotient stack [X/G], the quotient of X by the smooth groupoid
G × X ⇒ X. For X = Spec k, [Spec k/G] is called BG, the classifying
stack of G.

For a schemeX over S, a morphismX → BG is equivalent to a principal
G-bundle over X. Indeed, to specify such a morphism we have to give a
flat covering {Ui → X}, plus morphisms ai from Ui to a point (this part is
trivial), plus morphisms from the fiber products Ui×XUj → G which satisfy
the cocycle condition. This is the standard way to describe a principal G-
bundle in terms of transition functions.

More generally, for any scheme Y over S, a morphism

Y → [X/G]

is equivalent to a principal G-bundle E over Y and a G-equivariant mor-
phism E → X.

Any property of schemes which is “local in the smooth topology” im-
mediately generalizes from schemes to stacks. By definition of an algebraic
stack, for every algebraic stack X/S, there is a scheme U/S and a smooth
surjective morphism U → X. We then define X to be smooth over k, etc.
if U has that property.

Example 8.19. Most moduli spaces in algebraic geometry can be viewed
as algebraic stacks. For example, the moduli space of smooth, projective
curves of genus g ≥ 2 is more properly considered as a stack, since some
curves have nontrivial automorphisms. The stack Mg is smooth (over any
base field). The associated “coarse moduli space” has quotient singularities.

For any curve X of genus g ≥ 2, the tangent space to the stack [Mg]
at the point corresponding to X is H1(X,TX). In fact, deformation the-
ory identifies H1(X,TX) with isomorphism classes of smooth projective
morphisms X → Spec k[t]/(t2) with the fiber over {t = 0} having a given
isomorphism to X (these are “first-order deformations of X”).

Note that H1(X,TX) = 3g − 3 for every curve X of genus g ≥ 2 (e.g.
by Riemann-Roch), which tells us that dimMg = 3g − 3.

Example 8.20. The moduli stack of elliptic curves over C is the quotient
stack H/SL(2,Z). The corresponding coarse moduli space is just A1

C. This
isomorphism is called the j-invariant.

What is the difference between the stack and the coarse moduli space?
The extra information comes in describing the automorphisms. Most ellip-
tic curves have automorphism group Z/2 (inverse in the group law), but
one (up to isomorphism over C) has automorphism group Z/4 and one has
automorphism group Z/6. These correspond to the the fact that the group
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{±1} in SL(2,Z) acts trivially on the whole upper half plane, whereas a
subgroup of order 4 or 6 in SL(2,Z) has one fixed point.

The fact that the moduli stack of elliptic curves is a quotient H/ SL(2,Z)
means that this moduli stack has a Kähler metric with curvature −1. This
has some interesting geometric consequences: for instance, this implies
that any family of elliptic curves over P1, or A1, has all fibers isomorphic.
Indeed, such a family would give a morphism A1 → [H/ SL(2,Z)]. The
universal cover of this latter space is H, and since A1 is simply-connected,
this lifts to a map A1 → H. Since H is isomorphic to the unit disc as a
complex manifold, Liouville’s theorem implies that any such analytic map
is constant.

On the other hand, the fact that the coarse moduli space of elliptic
curves is isomorphic to the affine line (where the natural Kähler metric
has curvature 0 rather than −1) also has geometric consequences. This
is related to the fact that there are infinitely many elliptic curves over Q.
Indeed, the affine line has infinitely many rational points, and one can check
that there is an elliptic curve over Q with any given j-invariant.

By contrast, for big enough positive integers n, the coarse moduli space
of elliptic curves with a point of order n has genus at least 2. Faltings
showed that every curve of genus at least 2 over Q has only finitely many
rational points. (The special case here was proved earlier by Mazur.) So
for all sufficiently large n, there are only finitely many elliptic curves over
Q with a point of order n, up to isomorphism over Q.

Conclusion: we should try to understand the geometric properties of
moduli stacks, but also of the associated coarse moduli spaces.
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