April 2010 May 2010 June 2010 Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa Su Mo Tu We Th Fr Sa 1 2 3 1 1 2 3 4 5 4 5 6 7 8 9 10 2 3 4 5 6 7 8 6 7 8 9 10 11 12 11 12 13 14 15 16 17 9 10 11 12 13 14 15 13 14 15 16 17 18 19 18 19 20 21 22 23 24 16 17 18 19 20 21 22 20 21 22 23 24 25 26 25 26 27 28 29 30 23 24 25 26 27 28 29 27 28 29 30 30 31 |

2:00 pm Friday, May 14, 2010 Geometry-Analysis: Higher dimensional minimal submanifolds arising from the catenoid and helicoidby Jaigyoung choe (KIAS) in HB227- For each m-dimensional minimal submanifold N of S^n we con- struct an (m+1)-dimensional complete minimal immersion of N x R into R^{n+2} and (m+1)-dimensional minimal immersions of N x R into R^{2n+3}, H^{2n+3} and S^{2n+3}. Also from the Clifford torus N= S^k(1/\sqrt{2}) x S^k(1/\sqrt{2}) we construct a (2k+2)-dimensional complete minimal helicoid in R^{2k+3}.
Submitted by mwolf@rice.edu |