ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, FALL 2022

Instructions:

- You should complete this exam in a single four hour block of time. Attempt all six problems.
- The use of books, notes, calculators, or other aids is not permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam: "On my honor, I have neither given nor received any unauthorized aid on this (assignment, exam, paper, etc.)."

For questions, email:

Tony before 2 pm and after 3:15pm - av15@rice.edu
Brandon between 2pm and 3pm - bwlevin@rice.edu

When you've completed the exam, scan and email it to Chris at cjl12@rice.edu and drop off the hard copy in his office.

[^0](1) Let $p<q$ be distinct prime numbers. Prove that any group of order $p q$ is solvable.
(2) Let $I=\left\langle x^{2}+x y^{2}, x^{2}-y^{3}, y^{3}-y^{2}\right\rangle$ be an ideal in the polynomial ring $\mathbb{Q}[x, y]$. Fix the lexicographic ordering $x>y$ in this ring.
(a) Define what is meant by a reduced Gröbner basis for I.
(b) Show that $\left\{x^{2}-y^{2}, y^{3}-y^{2}, x y^{2}+y^{2}\right\}$ is a reduced Gröbner basis for I.
(3) Let p be a prime number. Consider the following matrices in $G:=\mathrm{GL}_{3}\left(\mathbb{F}_{p}\right)$
\[

A:=\left($$
\begin{array}{lll}
0 & 0 & 3 \\
1 & 0 & 3 \\
0 & 1 & 4
\end{array}
$$\right) \quad and \quad B:=\left($$
\begin{array}{ccc}
4 & 0 & 0 \\
0 & 0 & 3 \\
0 & 1 & 0
\end{array}
$$\right)
\]

(a) Suppose that $p=5$. Are A and B conjugate in G ? Justify.
(b) Suppose that $p=7$. Are A and B conjugate in G ? Justify.
(4) Let $\alpha=2 \sin (2 \pi / 5)$, and let $K=\mathbb{Q}(\alpha)$.
(a) Show that the minimal polynomial of α over \mathbb{Q} is $f(x):=x^{4}-5 x^{2}+5$.
(b) Show that $\sqrt{5} \in K$.
(c) Is the extension $\mathbb{Q}(\alpha) / \mathbb{Q}$ Galois? Justify. [Hint: $\sqrt{(5-\sqrt{5})(5+\sqrt{5})}=2 \sqrt{5}$.]
(5) Let R be a commutative ring with unit, and let N be a finitely generated R-module. Let $\mathcal{M}=\left(M_{i}, \mu_{i j}\right)$ be a directed system of R-modules.
(a) Explain how to construct a natural map

$$
\underset{\longrightarrow}{\lim } \operatorname{Hom}_{R}\left(N, M_{i}\right) \rightarrow \operatorname{Hom}_{R}\left(N, \underset{\longrightarrow}{\lim } M_{i}\right) .
$$

(b) Prove that the map is an isomorphism if N is free. [Hint: start with the case $N=R$.]
(6) Let $A \subseteq B$ be an extension of commutative rings with unit. Suppose that B is integral over A. Prove that B is a field if and only if A is a field.

[^0]: Date: August 16, 2022.

