ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, FALL 2023

Instructions:

- You should complete this exam in a single four block of time. Attempt all six problems.
- The use of books, notes, calculators, or other aids is not permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam.
(1) (a) Prove that A_{4} (the alternating group on 4 elements) and D_{12} (the dihedral group of order 12) are not isomorphic as groups.
(b) Prove that there exists a non-abelian group of order 12 that is not isomorphic to either A_{4} nor D_{12}.
(2) Let $R=\mathbb{Q}[s, x, y, z]$ be a polynomial ring with lexicographic order $s>x>y>z$. Let $I \subset R$ be the ideal

$$
I=\left\langle x-s^{3}, y-s^{2}, z-s\right\rangle .
$$

(a) Show that $\left\{s-z, x-z^{3}, y-z^{2}\right\}$ is a Gröbner basis for I.
(b) Deduce that the kernel of the ring homomorphism

$$
\phi: \mathbb{Q}[x, y, z] \rightarrow \mathbb{Q}[s]
$$

determined by $\phi(x)=s^{3}, \phi(y)=s^{2}$, and $\phi(z)=s$ is equal to the ideal $\left\langle x-z^{3}, y-z^{2}\right\rangle$.
(3) Decide which of the following groups are isomorphic to the trivial group. Provide reasoning.
(a) $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$.
(b) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$.
(c) $\mathbb{Q} / \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}$.
(d) $\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}$.
(e) $\mathbb{Z} / 2 \mathbb{Z} \otimes_{\mathbb{Z}} 2 \mathbb{Z}$.
(4) Let $t=\sqrt{(1+\sqrt{5}) / 2}$.
(a) Compute the minimal polynomial $p(x)$ of t.
(b) What is the splitting field of $p(x)$?
(c) What is the Galois group of $p(x)$?
(5) Let $R \subseteq S$ be an inclusion of integral domains with unit, such that S is integral over R. Prove that R is a field if and only if S is a field.
(6) Let R be a commutative ring with 1 , let I be an ideal of R, and let M be an R-module. Show that if $M_{\mathfrak{m}}=0$ for all maximal ideals \mathfrak{m} of R containing I, then $M=I M$.

