ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, FALL 2023

Instructions:

- You should complete this exam in a single **four** block of time. Attempt all **six** problems.
- The use of books, notes, calculators, or other aids is **not** permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam.

Date: August 16, 2023.

- (1) (a) Prove that A_4 (the alternating group on 4 elements) and D_{12} (the dihedral group of order 12) are not isomorphic as groups.
 - (b) Prove that there exists a non-abelian group of order 12 that is not isomorphic to either A_4 nor D_{12} .
- (2) Let $R = \mathbb{Q}[s, x, y, z]$ be a polynomial ring with lexicographic order s > x > y > z. Let $I \subset R$ be the ideal

$$I = \langle x - s^3, y - s^2, z - s \rangle.$$

- (a) Show that $\{s z, x z^3, y z^2\}$ is a Gröbner basis for I.
- (b) Deduce that the kernel of the ring homomorphism

 $\phi \colon \mathbb{Q}[x, y, z] \to \mathbb{Q}[s]$ determined by $\phi(x) = s^3$, $\phi(y) = s^2$, and $\phi(z) = s$ is equal to the ideal $\langle x - z^3, y - z^2 \rangle$.

- (3) Decide which of the following groups are isomorphic to the trivial group. Provide reasoning.
 - (a) $\mathbb{Q} \otimes_{\mathbb{Q}} \mathbb{Q}$. (b) $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$. (c) $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q}$. (d) $\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}$.
 - (e) $\mathbb{Z}/2\mathbb{Z} \otimes_{\mathbb{Z}} 2\mathbb{Z}$.
- (4) Let $t = \sqrt{(1 + \sqrt{5})/2}$.
 - (a) Compute the minimal polynomial p(x) of t.
 - (b) What is the splitting field of p(x)?
 - (c) What is the Galois group of p(x)?
- (5) Let $R \subseteq S$ be an inclusion of integral domains with unit, such that S is integral over R. Prove that R is a field if and only if S is a field.
- (6) Let R be a commutative ring with 1, let I be an ideal of R, and let M be an R-module. Show that if $M_{\mathfrak{m}} = 0$ for all maximal ideals \mathfrak{m} of R containing I, then M = IM.