ALGEBRA QUALIFYING EXAMINATION

RICE UNIVERSITY, WINTER 2023

Instructions:

- You should complete this exam in a single four block of time. Attempt all six problems.
- The use of books, notes, calculators, or other aids is not permitted.
- Justify your answers in full, carefully state results you use, and include relevant computations where appropriate.
- Write and sign the Honor Code pledge at the end of your exam.
(1) Prove that there is no simple group of order 280 .
(2) Let R be an integral domain, not a field. We say that R is an Euclidean Domain if there exists a function:

$$
N: R \backslash\{0\} \rightarrow \mathbb{N} \cup\{0\}
$$

satisfying the following conditions:
(i) $N(a) \leq N(a b)$ where $a, b \in R$ and $a b \neq 0$;
(ii) for all $a, b \in R$ with $a \neq 0$, there exists $q, r \in R$ with $b=q a+r$, where either $r=0$ or $N(r)<N(a)$.

Complete the problems below.
(a) Prove that a Euclidean Domain is a Principal Ideal Domain.
(b) Suppose that R is a Euclidean Domain. Prove that R contains an element u which is not a unit of R and satisfies the following property:
$\left(^{*}\right)$ For every $x \in R$, either $u \mid x$ or there is a unit $z \in R$ such that $u \mid(x+z)$.
(c) Assuming that $\mathbb{Z}[i]$ is a Euclidean domain under $N(a+b i)=a^{2}+b^{2}$, exhibit such an element $u \in \mathbb{Z}[i]$ as in part (b).
(3) Let G and G^{\prime} be finite abelian groups such that the greatest common divisor of $|G|$ and $\left|G^{\prime}\right|$ is equal to 1 . Simplify the tensor product of \mathbb{Z}-modules: $G \otimes_{\mathbb{Z}} G^{\prime}$.
(4) Consider the following Galois groups.
(i) The Galois group of the splitting field of $x^{4}-1$ over \mathbb{Q}.
(ii) The Galois group of the splitting field of $x^{4}-2$ over \mathbb{Q}.
(iii) The Galois group of the splitting field of $x^{4}-3$ over \mathbb{Q}.
(iv) The Galois group of the splitting field of $x^{4}-4$ over \mathbb{Q}.

Which pairs of the groups above are isomorphic? Provide justification.
(5) Let R be a commutative domain with a subring R^{\prime}, and suppose that R is integral over R^{\prime}.
(a) Show that if I is an ideal of R, then R / I is integral over $R^{\prime} /\left(R^{\prime} \cap I\right)$.
(b) Let S^{\prime} be a multiplicatively closed subset of R^{\prime}. Show that the ring of fractions $S^{\prime-1} R$ is integral over $S^{\prime-1} R^{\prime}$.
(6) Prove the statements below or provide a counterexample. Let R be a commutative ring.
(a) If there exists an ideal I of R such that R / I is Noetherian, then R is Noetherian.
(b) If the polynomial extension $R[x]$ of R is Noetherian, then R is Noetherian.

