Math 542: Homework 8

- 1. Use the Riemann-Hurwitz Theorem to show that $\mathbf{H}^2/\Delta(2,3,7)$ is the minimal volume orientable hyperbolic 2-orbifold.
- 2. Complete the proof that the minimal volume arithmetic hyperbolic 3-orbifold Q covering an orbifold of the form $\mathbf{H}^3/\Gamma_{\mathcal{O}}^1$ is the orbifold from class (arising from the quaternion algebra B/k where $k = \mathbf{Q}(\sqrt{3-2\sqrt{5}})$ and B is unramified at all finite places). You need to rule out fields of degree 2, 3 and 4. The small discriminants are: in degree 4, -275, -283, and in degree 3, -23, -31, -44.
- 3. Compute the volume of $\mathbf{H}^3/\mathrm{PSL}(2,\mathrm{O}_2)$.
- 4. Let $k = \mathbf{Q}(\theta)$ where $\theta = \sqrt{(1 \sqrt{5})/2}$.
- (a) Prove that $\{1, \theta, \theta^2, \theta^3\}$ is an integral basis for R_k .
- (b) Prove that the class number of k is 1.

(c) Prove that $[R_{k,+}^* : R_k^{*2}] = 2$ be finding units with the correct sign at the real embeddings as done in class (you can assume that $[R_k^* : R_k^{*2}] = 8$).

(d) Compute the minimal volume of an orbifold in the commensurability class defined by B/k which is unramified at all finite places.

5. Let $k = \mathbf{Q}(\sqrt{-7})$.

(a) Prove that the ideal $2R_k$ splits as a product of two prime ideals of norm 2. Denote these by \mathcal{P}_1 and \mathcal{P}_2 .

(b) Let B/k be the quaternion algebra ramified at \mathcal{P}_1 and \mathcal{P}_2 , and \mathcal{O} a maximal order. Compute the volume of $\mathbf{H}^3/\Gamma^1_{\mathcal{O}}$.

- 6. Let p be an odd prime, and B_p be the quaternion algebra over **Q** ramified at exactly 2 and p. Let \mathcal{O}_p be a maximal order of B_p .
- (a) Compute the volume of $\mathbf{H}^2/\Gamma^1_{\mathcal{O}_p}$.

(b) Given that for p = 3, $\Gamma^{1}_{\mathcal{O}_{3}}$ has signature $(g_{3}; 2, 2, 3, 3; 0)$. Compute g_{3} using the Riemann-Hurwitz Theorem.