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ARITHMETICITY, DISCRETENESS AND VOLUME

F. W. GEHRING, C. MACLACHLAN, G. J. MARTIN, AND A. W. REID

Abstract. We give an arithmetic criterion which is sufficient to imply the
discreteness of various two-generator subgroups of PSL(2, c). We then examine
certain two-generator groups which arise as extremals in various geometric
problems in the theory of Kleinian groups, in particular those encountered in
efforts to determine the smallest co-volume, the Margulis constant and the
minimal distance between elliptic axes. We establish the discreteness and
arithmeticity of a number of these extremal groups, the associated minimal
volume arithmetic group in the commensurability class and we study whether
or not the axis of a generator is simple. We then list all “small” discrete groups
generated by elliptics of order 2 and n, n = 3, 4, 5, 6, 7.

1. Introduction

This paper is concerned with the geometry of Kleinian groups and hence the
geometry and topology of hyperbolic 3–manifolds and orbifolds; see [4, 32, 33, 41]
as basic references.

In [18, 21] we initiated a program to describe the analytic space of discrete
two-generator subgroups of PSL(2,C) and developed a disk covering procedure to
identify all two-generator Kleinian groups with elliptic generators. This method
allowed us to identify many groups in [16] through [23] as extremals for various
geometric problems or as finite index subgroups of extremal groups.

A principal obstruction encountered in this program, and hence to solving related
geometric problems, was in establishing the discreteness of candidates identified by
this procedure. In several cases we were able to accomplish this by means of an ad
hoc method; see [18].

A main result of this paper gives a unified method, derived from algebraic number
theory, which deals with many of these situations. As a consequence we find that
many of the extremals are subgroups of arithmetic Kleinian or Fuchsian groups.
These results are derived from a classical result in number theory whose application
to proving groups discrete in PSL(2,C) seems to have been overlooked. When one
considers how difficult it is in general to prove that a subgroup of PSL(2,C) is
discrete, the criteria considered here seems surprisingly straightforward and elegant.
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The disk covering procedure mentioned above is based on complex iteration and
a special semigroup of polynomials. It is ideally suited for the discreteness criteria
which we shall establish here. Hence we first outline this procedure in §2 in order
to motivate the criteria which we then give and discuss at the end of §2; §3, §4 and
§5 contain background material on arithmetic groups and the proofs for the results
given in §2

In §6 we apply these criteria to a family of two-generator groups 〈f, g〉 where
f and g are elliptics of orders n and 2, n = 3, 4, 5, 6, 7. These groups resulted
from the disk covering procedure while studying the possible distances between
non-intersecting elliptic axes in a discrete group .

The groups 〈f, g〉 in §6 are subgroups of arithmetic groups. In §7 and §8 we
first compare the minimal co-volume of the arithmetic groups in which the groups
〈f, g〉 imbed with the distance between the axes of the generators f and g. Using
a computer program developed by K. Jones and the last author it is possible to
determine which of the groups 〈f, g〉 have finite co-volume and hence are themselves
arithmetic.

Motivated by the small volume problem for orbifolds, we derive in §9 and then
apply in §10 arithmetic and geometric criteria to determine which of the groups
〈f, g〉 of §6 have f as a simple elliptic generator.

Finally we take a moment to indicate some of the more important applications
of the results we obtain, in particular, of the existence and properties of the groups
listed in Tables 1 through 12.

1. Minimal volume 3-orbifold. The minimal co–volume Kleinian group is
not torsion free and does not contain any elliptic elements of order n ≥ 6
[23, 24]. Since the two-generator groups in Tables 6–10 are listed in order of
the distance between the axes of the generator f and its nearest conjugate,
these tables show that a low order torsion element either lies in an arithmetic
subgroup or has a large precisely invariant collar. Table 12 can then be used
to show that the minimal co–volume Kleinian group contains no simple 4 or
5–torsion and at most one conjugacy class of simple 3–torsion [25].

2. Structure of the singular set. Tables 6–10 give sharp bounds for the
distance between components of the singular set of a hyperbolic 3–orbifold
and the distance between tetraheral, octahedral and icosahedral points in a
Kleinian group; see also [12]. These results are used to show that the minimal
volume 3–fold has a very simple singular set or that the uniformizing Kleinian
group is G3,3 in Table 6 [19, 24, 25].

3. Automorphism groups of 3–manifolds The above yield bounds for the
order of the automorphism groups of many hyperbolic 3–manifold groups
analogous to the 84(g − 1) Theorem of Hurwitz. For example, if the auto-
morphism group contains an element of order n ≥ 4, then we can give sharp
estimates on the order of the group.

4. Minimal volume 3–manifold. A recent computer search [15] motivated
by the rigidity theorem in [14] has led people to ask if current estimates
for the collar radius of a loxodromic with a short translation length can be
significantly improved. Tables 1 and 2 contain examples which show that this
is not possible without additional topological hypotheses such as in [11].

5. Margulis constant. The Margulis constant is achieved in a two- or three-
generator group. The groups given here realize this constant in the setting of
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two–generator groups with an elliptic generator as well as subgroups of those
realizing the three-generator constant [20].

6. Geodesic length spectrum of 3–folds. Table 1 contains examples which
show that current bounds on the length of intersecting closed geodesics, or
nonsimple geodesics, are within a factor of 2 of being sharp. These, together
with estimates on the Margulis constant, yield good bounds for the thick and
thin decompositions.

2. Disk covering method and discreteness

Let G = 〈f, g〉 be a two-generator subgroup of PSL(2,C). We associate to each
such group three complex numbers called the parameters of G,

par(G) = (γ(f, g), β(f), β(g)) ∈ C3,(2.1)

where

β(f) = tr2(f)− 4, β(g) = tr2(g)− 4, γ(f, g) = tr([f, g])− 2

and [f, g] = fgf−1g−1 is the multiplicative commutator. These three complex num-
bers determine G uniquely up to conjugacy whenever γ(f, g) 6= 0; recall γ(f, g) = 0
implies the existence of a common fixed point. Conversely, every such triple deter-
mines a two-generator subgroup of PSL(2,C).

When γ 6= 0, β, there is a natural projection from C3 to C2, given by

(γ, β, β′) → (γ, β,−4),

which preserves discreteness; see [18]. That is, if (γ, β, β′) are the parameters for a
discrete two-generator group, then so are (γ, β,−4). Hence in these circumstances
one can always replace one of the generators in a discrete two-generator group by
an element of order two without altering the commutator or discreteness. No such
result holds for groups with more than two-generators [7].

We shall study the pairs of parameters (γ(f, g), β(f)) in C2 which can correspond
to discrete groups 〈f, g〉. For the purposes of this discussion we specialize to the
case where f is a primitive elliptic element of order n ≥ 3. Then

β = β(f) = −4 sin2(π/n)

and for each n ≥ 3, we want to describe the set En of values in the complex plane
which may be assumed by the commutator parameter γ(f, g) in the case when 〈f, g〉
is discrete. This set cannot have 0 as a limit point [18].

Next if

h = g ◦ fm1 ◦ g−1 ◦ fm2 ◦ g . . . fmn ◦ gε(2.2)

where ε = (−1)n, then it follows from [18] that

γ(f, h) = p(γ(f, g), β(f))(2.3)

where p is a polynomial in the two variables with integer coefficients. Equation
(2.3) shows that for such words h, the value of γ(f, h) depends only on γ(f, g) and
β(f) and not on β(g). In particular, the family of such polynomials p is closed
under composition in the first variable and so forms a polynomial semigroup P.
Thus we may study the iterates of a specific polynomial and, in this way, generate
a sequence of commutator traces which cannot accumulate at 0.

For example if h = gfg−1fg and γ = γ(f, g), then

p(γ, β) = γ(1 + β − γ)2.



3614 F. W. GEHRING, C. MACLACHLAN, G. J. MARTIN, AND A. W. REID

Hence if f is elliptic of order 6, then β = −1 and p(γ, β) = γ3. In this case if we
set γj = γ(f, gj) where

gj+1 = gjfg
−1
j fgj and g1 = g,

then γj+1 = γ3j → 0 as j → ∞ if 0 < |γ| < 1, a contradiction. Thus γ = 0 or
|γ| ≥ 1 and we obtain an analogue for elliptics of order 6 of the classical inequality
of Shimizu–Leutbecher which yields the same conclusion whenever f is parabolic
[33]. In particular,

E6 ⊂ C \D6

where D6 = {z : 0 < |z| < |}.
For each value of n ≥ 3 we can argue as above using iteration with an appropriate

polynomial in P to obtain an open punctured disk Dn about 0 which does not
contain the parameter γ(f, g). When n ≥ 7, the existence of such a neighborhood
follows from Jørgensen’s inequality. Next if p(γ) = p(γ, β) is the polynomial in P
which corresponds to the element h in (2.2), then the subgroup 〈f, h〉 cannot be
discrete if

p(γ(f, g)) = p(γ(f, g), β(f)) = γ(f, h) ∈ Dn.

Hence p−1(Dn) is an excluded region for γ(f, g) and we conclude that

En ⊂ C \ {
⋃
p−1(Dn) : p ∈ P}.

In this way we can cover regions of the complement of the set En of admissible
values for the commutator parameter of groups with a generator of order n.

The program for describing these regions was begun in [18] and was significantly
extended in [21]. Obtaining various geometric constraints for such groups amounts
to showing that a certain region Ω lies in the complement of En except possibly for
some exceptional values.

The result of this disk covering argument is illustrated below for the case where
n = 3 (see Figure 1). All exceptional values within the region covered by the disks
are illustrated; they are the only possible values for the commutator parameter of
a discrete group which lies in the union of these disks. In this case it turns out
that every value corresponds to a subgroup of an arithmetic group. Many are in
fact two-generator arithmetic groups themselves. That is, they are additionally of
finite co-volume.

The closure of the hyperbolic line joining the two fixed points of a non-parabolic
element f is called the axis of f , denoted by axis(f). The following formula yields
collaring theorems from which volume estimates may be obtained; see [19] and [23].

Lemma 2.4. If f and g are non-parabolic, then the hyperbolic distance δ(f, g)
between the axes of f and g is given by

cosh(2δ(f, g)) =

∣∣∣∣ 4γ(f, g)

β(f)β(g)
+ 1

∣∣∣∣+ ∣∣∣∣ 4γ(f, g)

β(f)β(g)

∣∣∣∣ .(2.5)

The part of En in Ω is contained in the union Xn of the preimages of the
punctures of Dn taken over all the polynomials p in P. Moreover En is a proper
subset of Xn since the preimage of a puncture under one polynomial p in P can
often be mapped into Dn by some other polynomial q in P, and hence will not be a
point in En. At the end of such a covering argument one is left with a few points of
Xn inside the given region Ω which may correspond to discrete groups. One must
then analyze these exceptions and prove that either they are not discrete or, if they
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Figure 1. Possible values for commutator parameter when n = 3

are discrete, use knowledge of these exceptional groups to compute the invariants
being studied.

It is often not easy to decide whether a given point γ in Xn belongs to En, i.e.
whether γ corresponds to discrete group with a generator of order n. However in
our situation there exists a certain polynomial with coefficients in Z[β] for which
γ is a root. Thus it is natural to look for arithmetic conditions which guarantee
discreteness. The fortunate fact is that this works well for the small extremals, the
general philosophy being that “small” implies “highly symmetric” which in turn
implies “arithmetic”.

Under the assumptions of discreteness and finite co-volume on subgroups of
PSL(2,R) and PSL(2,C), the results of [40] and [30] give conditions on the traces of
elements in the subgroup which characterize, among Fuchsian and Kleinian groups,
those which are arithmetic; see §4. Dropping the assumption of finite co-volume
characterizes those which are subgroups of arithmetic Fuchsian or Kleinian groups.
More importantly, the proofs in [40] and [30] make no use of the discreteness as-
sumption; cf. [3]. Thus the arithmetic conditions on the traces can be used to
deduce discreteness.

In this paper refinements of these arithmetic conditions which will guarantee
discreteness are obtained. These are particularly applicable to two-generator groups
such as those corresponding to the points γ in Xn described above.

For example, suppose that G = 〈f, g〉 where f is a primitive elliptic element of
order n ≥ 3 and g is elliptic of order 2. Then

β = β(f) = −4 sin2(π/n)

is an algebraic integer in the field Q(cos(2π/n)), which is totally real with φ(n)/2
places. Let Rn denote the ring of integers in Q(cos(2π/n)) and note that Rn = Z[β].
The Galois conjugates of β, σ(β) = −4 sin2(mπ/n) where (m,n) = 1, lie in the
interval (−4, 0) with σ(β) ≤ β. Recall that G is determined up to conjugacy by β
and γ(f, g). With this we prove the following criteria for discreteness. Recall that,
for a number field K of degree n over Q, the n Galois embeddings σ : K → C give



3616 F. W. GEHRING, C. MACLACHLAN, G. J. MARTIN, AND A. W. REID

rise to valuations on K which fall into equivalence classes—the places—modulo the
action of complex conjugation.

Theorem 2.6. Let G = 〈f, g〉 be a subgroup of PSL(2,C) with f a primitive elliptic
element of order n ≥ 3, g an elliptic of order 2 and γ(f, g) 6= 0, β(f). Then G is a
subgroup of a discrete arithmetic group if

1. Q(γ(f, g), β(f)) has at most one complex place;
2. γ(f, g) is a root of a monic polynomial p(z) ∈ Z[β][z];
3. if γ(f, g) and γ̄(f, g) are not real, then all other roots of p(z) are real and lie

in the interval (β, 0);
4. if γ(f, g) is real, then all other roots of p(z) are real and lie in the interval

(β, 0).

The requirement that the field Q(γ(f, g), β(f)) has at most one complex place
can, for β(f) as in Theorem 2.6, also be described in terms of the polynomial p(z).
If in addition n = 3, 4 or 6, then β ∈ Z and the criteria admit a greatly simplified
description. See Theorem 5.14 below.

3. A criterion for discreteness

In this section we prove a result that guarantees discreteness under certain con-
ditions on the invariant trace field. Our result is related to a classical result in
number theory and does not seem to be well known in the area of Kleinian groups.
Indeed it is a generalization of the prototype result that yields discreteness for
arithmetic subgroups of PSL(2,C). As we point out in [29] this theorem has a
proof in the language of arithmetic groups which makes application more routine
for our purposes; see also the discussion in §4. However we give here an elementary
proof which illuminates the connection with the following well known facts from
number theory.

Recall that if p is a monic irreducible polynomial over Z of degree n with roots
α1, . . . , αn, then

p(z) =

n∏
i=1

(z − αi) = zn − s1z
n−1 + . . .+ (−1)kskz

n−k + · · ·+ (−1)nsn

(3.1)

where si is the ith symmetric polynomial in α1, . . . , αn. As a consequence we
deduce the following easy lemma.

Lemma 3.2. There are only finitely many algebraic integers z of bounded degree
such that z and all Galois conjugates of z are bounded.

Proof. Let z have degree n over Q. If z and its Galois conjugates are bounded,
then the coefficients of the irreducible polynomial p of z are symmetric polynomials
in the roots of p and hence are bounded. Therefore only finitely many integers can
arise as coefficients of such a polynomial.

Next we recall some notation from [35]. Let G be a finitely generated subgroup
of PSL(2,C). The trace field of G is the field generated over Q by the set

tr(G) = {±tr(g) : g ∈ G}.
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Since G is finitely generated, the subgroup G(2) = 〈g2 : g ∈ G〉 is a normal subgroup
of finite index with quotient group a finite abelian 2-group. Following [35] we call

kG = Q(tr(G(2)))

the invariant trace-field of G. For any finite index subgroup G1 of a non-elementary
group G one can show that Q(tr(G(2))) ⊂ Q(tr(G1)); in [38] it is shown that kG is
an invariant of the commensurability class.

Throughout the paper, we will use

c : C → C(3.3)

to denote the complex conjugation map. With this notation we can establish the
following criterion for discreteness.

Theorem 3.4. Let G be a finitely generated subgroup of PSL(2,C) such that

1. G(2) contains elements g1 and g2 which have no common fixed point;
2. tr(G) consists of algebraic integers;
3. for each embedding σ : kG→ C such that σ 6= id or c, the set {σ(tr(f)) : f ∈
G(2)} is bounded.

Then G is discrete.

Proof. Note that since G is finitely generated, so is G(2) and so all traces in G(2)

are obtained from integral polynomials in a finite number of traces. Thus kG is a
finite extension of Q.

It suffices to prove that the finite index subgroup G(2) is discrete. Suppose that
this is not the case and let fn be a sequence of distinct elements converging to the
identity in G(2). If zn = tr(fn) and zn,i = tr([fn, gi]), then

β(fn) = z2
n − 4 → 0 and γ(fn, gi) = zn,i − 2 → 0

for i = 1, 2 as n→∞. Hence we may assume that |zn| < K for some fixed constant
K. Next by condition 3, |σ(zn)| < Kσ for each embedding σ 6= id or c of kG, where
Kσ is a constant which depends only on σ.

Let R = max{K,Kσ} where σ ranges over all embeddings σ 6= id or c of kG.
Then the algebraic integers zn are of bounded degree and they and all their Galois
conjugates are bounded in absolute value by R. By Lemma 3.2, the zn assume only
finitely many values. Thus for large n, β(fn) = 0 and fn is parabolic with a single
fixed point wn.

Next we can apply the above argument to the algebraic integers zn,i to conclude
that γ(fn, gi) = 0 for i = 1, 2 and large n. This then implies that g1 and g2 each
have wn as a common fixed point for large n contradicting condition 1.

4. Arithmetic Kleinian groups

In this section we first recall some terminology about quaternion algebras and
then discuss Theorem 3.4 in the language of these algebras and arithmetic groups.
In particular we give a version of Theorem 3.4 which is readily applicable, especially
in the context of two-generator groups; see §5.

We begin with some facts about quaternion algebras; see [42] for details. Let k
be a number field, let ν be a place of k, i.e. an equivalence class of valuations on
k and denote by kν the completion of k at ν. If B is a quaternion algebra over
k, we say that B is ramified at ν if B ⊗k kν is a division algebra of quaternions.
Otherwise ν is unramified.
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In case ν is a place associated to a real embedding of k, B is ramified if and only
if B ⊗k kν ∼= H, where H is the Hamiltonian division algebra of quaternions.

It is straightforward to check whether a quaternion algebra is ramified at a
real place. Recall, following [42], the Hilbert symbol (a,bk ) corresponding to the

quaternion algebra {1, i, j, ij} defined over the field k with i2 = a, j2 = b and
ij = −ji.
Lemma 4.1. Let B = (a,bk ). Then B is ramified at a real place ν corresponding to
the real embedding σ if and only if σ(a) and σ(b) are negative.

Proof. By definition, B is ramified at ν whenever B⊗kkν ∼= H. This tensor product
is isomorphic to (

σ(a), σ(b)

σ(k)

)
⊗σ(k) R

or simply (σ(a),σ(b)
R ). This, in turn, is isomorphic to H exactly when σ(a) and σ(b)

are negative since one can remove squares without affecting the isomorphism class
of the quaternion algebra; cf. [42].

We now give the definition of an arithmetic Kleinian group. Let k be a number
field with one complex place and A a quaternion algebra over k ramified at all
real places. Next let ρ be an embedding of A into M(2,C), O an order of A and
O1 the elements of norm 1 in O. Then ρ(O1) is a discrete subgroup of SL(2,C)
and its projection to PSL(2,C), Pρ(O1), is an arithmetic Kleinian group. The
commensurability classes of arithmetic Kleinian groups are obtained by considering
all such Pρ(O1).

Arithmetic Fuchsian groups arise in a similar manner. In this case the number
field is totally real and the algebra ramified at all real places except the identity.

In [30] (resp. [40]), it is shown that two arithmetic Kleinian groups (resp. arith-
metic Fuchsian groups) are commensurable up to conjugacy if and only if their
invariant quaternion algebras are isomorphic; see also [5].

To state the characterization theorems in [30] and [40] referred to earlier, we first
define, following Bass [3],

AG = {
∑

aigi : ai ∈ Q(tr(G)), gi ∈ G}
for any finitely generated non-elementary subgroup of SL(2,C). Then AG is a
quaternion algebra over Q(tr(G)). Recall that kG = Q(tr(G(2))) and AG(2) is
then the invariant quaternion algebra since, for a finitely generated non-elementary
subgroup G of PSL(2,C), the pair (AG(2), kG) is an invariant of the commensura-
bility class of G. See [35] and also [43] where such things are implicitly discussed.
Additionally, if tr(G) consists of algebraic integers, then as in [3]

OG = {
∑

aigi | ai ∈ RQ(tr(G)), gi ∈ G}
is an order in AG, where RQ(tr(G)) denotes the ring of integers in Q(tr(G)).

Theorem 4.2. Let G be a Kleinian (resp. Fuchsian) group of finite co-volume.
Then G is arithmetic if and only if the following conditions are satisfied:

1. kG is an algebraic number field;
2. tr(G) consists of algebraic integers;
3. for every Q-isomorphism σ : kG → C such that σ 6= id, c, σ(tr(G(2))) is

bounded in C.
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Sketch of Proof. It is a simple matter to show that arithmetic Kleinian and Fuch-
sian groups have these properties. Note that if γ ∈ H1 ∼= S3, then tr(γ) ∈ [−2, 2].

Since G has finite co-volume, it is finitely generated and non-elementary. Only
these two properties are used in the proof, except at the final stage. Condition 1
actually follows from 2 and the fact that G is finitely generated. We thus obtain
a quaternion algebra AG(2) over kG with AG(2) ⊂ M(2,C). Furthermore, each
embedding σ : kG→ C extends to an embedding of AG(2) in M(2,C).

If γ ∈ SL(2,C) has eigenvalues u, u−1 whose absolute values are not one, then
it follows that {tr(γm) : m ∈ Z} is unbounded since

|tr(γm)| ≥ ||u|m − |u|−m|.
Thus in the case at hand condition 3 implies that kG has exactly one complex
place if kG is not real and is totally real if kG is real. Also with γ as above,
tr(γ) ∈ [−2, 2] and condition 3 also implies that AG(2) is ramified at all real places
of kG 6= id. Finally condition 2 shows that OG(2) is an order of AG(2) and, of
course, G(2) ⊂ (OG(2))1, which is a discrete arithmetic Kleinian or Fuchsian group.
Since G has finite co-volume, it will be commensurable with (OG(2))1 and so be
arithmetic.

In practice, direct application of Theorem 4.2 (or Theorem 3.4) is hard, the prob-
lem being to establish the boundedness of the traces at real embeddings. However,
as a corollary of the proof of Theorem 4.2, we obtain the following more useful
method for proving groups discrete.

Theorem 4.3. Let G be a finitely generated non-elementary subgroup of PSL(2,C)
such that

1. kG has exactly one complex place or is totally real;
2. tr(G) consists of algebraic integers;
3. AG(2) is ramified at all places of kG, 6= {id, c}.

Then G is a subgroup of an arithmetic Kleinian or Fuchsian group.

If g1, g2 ∈ G(2) have no common fixed point and g1 is not parabolic, the proof
of Theorem 4.2 shows that AG(2) is spanned by 1, g1, g2, g1g2 over kG; see [27],
[30] and [40]. A basis in standard form can then be obtained yielding the Hilbert
symbol (

β(g1), γ(g1, g2)

kG

)
.

Now if f, g ∈ G are a pair of non-commuting elements with f not parabolic and
f, g not of order 2, then

β(f2) = (β(f) + 4)β(f), γ(f2, g2) = (β(f) + 4)(β(g) + 4)γ(f, g)

so that

AG(2) ∼=
(

(β(f) + 4)β(f), (β(f) + 4)(β(g) + 4)γ(f, g)

kG

)
.(4.4)

See [27]. If we choose, as we may do, f and g to have equal traces, then by removing
squares in the Hilbert symbol we obtain

AG(2) ∼=
(

(β(f) + 4)β(f), γ(f, g)

kG

)
.(4.5)
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Finally note that if kG = Q(tr(G)) we can simplify still further to

AG(2) ∼=
(
β(f), γ(f, g)

kG

)
.(4.6)

With these representations of AG(2), condition 3 of Theorem 4.3 can be readily
checked using Lemma 4.1. Thus in summary we have the following result.

Theorem 4.7. Let G be a non-elementary finitely generated subgroup of PSL(2,C)
with a pair of non-commuting elements f and g, where f is not parabolic and f
and g are both not of order 2. Then G is discrete if

1. Q(tr(G)) is a finite extension of Q;
2. tr(G) consists of algebraic integers;
3. kG has one complex place or is totally real;

4. with AG(2) ∼=
(
a, b

kG

)
described at (4.4), (4.5), (4.6), then σ(a) and σ(b) are

negative for each embedding σ of kG 6= id, c.

5. Two-generator groups

Here we specialize the discreteness theorems in the previous sections to the case
where G is a two-generator group and, in particular, where both generators are
elliptic. In these cases, both the invariant field and the invariant quaternion algebra
will be readily described in terms of the parameters of the group.

As stated above, kG = Q(tr(G(2))) is an invariant of the commensurability class.
In fact, it is shown in [38] that the field kG coincides with the field

Q({tr2(g) : g ∈ G}) = Q({β(g) : g ∈ G}).
Actually, it is not difficult to see that if G is generated by elements g1, g2, . . . , gn
with β(gi) 6= −4 for i = 1, 2, . . . , n, then

kG = Q(tr(Gsq))(5.1)

where Gsq = 〈g2
1 , g

2
2, . . . , g

2
n〉; see [27]. For two-generator groups this has the fol-

lowing consequence.

Lemma 5.2. Let G = 〈f, g〉 be a subgroup of SL(2,C) with β(f) 6= −4 and β(g) 6=
−4. Then

kG = Q(β(f), β(g), β(fg−1)− γ(f, g)).(5.3)

Proof. The trace of any element in a two-generator group 〈φ, ψ〉 group is given by a
polynomial with integer coefficients in tr(φ), tr(ψ), tr(φψ−1). See, for example [28].
Thus Q(tr(Gsq)) is Q(tr(f2), tr(g2), tr(f2g−2)). Then since

tr(f2) = β(f) + 2, tr(g2) = β(g) + 2,

the desired conclusion follows from the identity

tr(f2g−2) = β(fg−1) + 2− γ(f, g).

The following corollary will be of use to us.

Corollary 5.4. Let G = 〈f, g〉 be a group with β(f) 6= −4 and γ(f, g) 6= 0, β(f).
If G1 = 〈f, gfg−1〉, then

kG1 = Q(β(f), γ(f, g)).(5.5)
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Proof. Applying Lemma 5.2 in the case where the generators are f and gfg−1 and
f as above, we see that

kG1 = Q(β(f), β(fgf−1g−1)− γ(f, gfg−1)).(5.6)

An easy calculation shows

β(fgf−1g−1)− γ(f, gfg−1) = γ(f, g)(β(f) + 4).

Next the hypotheses on β(f) and γ(f, g) imply that f and gfg−1 do not commute.
Thus kG1 = Q(γ(f, g), β(f)).

Corollary 5.7. Let G = 〈f, g〉 be a group with β(f) 6= −4, β(g) = −4 and
γ(f, g) 6= 0, β(f). Then

kG = Q(γ(f, g), β(f)).

Proof. Since g has order two, G1 = 〈f, gfg−1〉 has index two in 〈f, g〉. Thus
kG1 = kG being an invariant of the commensurability class and the result follows
from Corollary 5.4.

The hypotheses of Corollary 5.7 imply that the groups G = 〈f, g〉 and G1 =
〈f, gfg−1〉 are simultaneously discrete or nondiscrete. For two-generator groups G
we have also identified kG in terms of the parameters of G. We have therefore
proved the following result.

Corollary 5.8. Let G = 〈f, g〉 be a group with par(G) = (γ, β,−4) where β 6= −4, 0
and γ 6= 0, β. Then kG = Q(γ, β) and

AG(2) =

(
β(β + 4), γ(γ − β)

Q(γ, β)

)
.(5.9)

Proof. Again G1 = 〈f, gfg−1〉 is a subgroup of index two in G with

par(G1) = (γ(γ − β), β, β).

Our hypotheses imply this group is non-elementary and kG1 = kG = Q(γ, β). The
Hilbert symbol follows from (4.5).

From Theorem 4.7, we can now deduce as a corollary the following sufficient
condition for a two-generator group to be a subgroup of an arithmetic Kleinian
group, and hence discrete.

Theorem 5.10. Let G=〈f, g〉 be a subgroup of PSL(2,C) with par(G)=(γ, β,−4)
where β 6= 0 and γ 6= 0, β. Then G is a discrete group if

1. γ and β are algebraic integers;
2. the field kG = Q(γ, β) has exactly one complex place or is totally real;
3. if kG has a complex place, then −4 < σ(β) < 0 and σ(γ(γ − β)) < 0 for all

real embeddings σ;
4. if kG is totally real, then −4 < σ(β) < 0 and σ(γ(γ − β)) < 0 for all real

embeddings σ 6= id.

Indeed G is a subgroup of an arithmetic Fuchsian or Kleinian group with invariant
trace field Q(γ, β) where the Hilbert symbol of the invariant quaternion algebra is(

(β + 4)β, γ(γ − β)

Q(γ, β)

)
.
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Proof. The traces of f, fg satisfy monic quadratic polynomials whose coefficients lie
in Z[γ, β]. Since the traces of elements in G are polynomials with integer coefficients
in tr(f), tr(g), tr(fg), the first hypothesis implies that all traces of elements of G
are algebraic integers. Therefore the elements of G(2) also have algebraic integer
traces. By Corollary 5.8, the Hilbert symbol for AG(2) is as claimed, and so by
the last pair of assumptions we see that AG(2) is ramified at all real places, except
possibly in the case when kG is totally real.

By our previous discussion it follows that OG(2) is an order of AG(2), and there-

fore OG(2)1 yields an arithmetic Kleinian or Fuchsian group via the construction
discussed previously. Thus G(2) is discrete and hence so is G.

In the proof we constructed the arithmetic group OG(2)1 which contains G(2).
To get an arithmetic group containing G consider the group

Norm(OG(2)) = {x ∈ AG(2) : xOG(2)x−1 = OG(2)}.
The image of this group is an arithmetic subgroup of PSL(2,C) (see [5] for example).
As G(2) is normal in G, it follows that G is a subgroup of an arithmetic Kleinian
group.

In the cases where f is primitive elliptic of order n and g is elliptic of order 2,
then β = −4 sin2 π/n is a totally real algebraic integer so γ must satisfy a monic
polynomial in Z[β][z] to be an algebraic integer. For all embeddings σ of Q(γ, β),
−4 < σ(β) ≤ β < 0 and so Theorem 2.6 is an immediate corollary of Theorem 5.10.

We now refine these results to obtain more easily applicable criteria for discrete-
ness. We first recall some basic results concerning field extensions.

Suppose that K is a finite extension of Q, that γ is algebraic over K and that
p(z) is the minimum polynomial of γ over K with deg(p) = m > 1. Let σ : K → C
be an embedding. Then there are exactly m embeddings τ : K(γ) → C such that
τ |K = σ and these are uniquely determined by τ(γ) = γ′ where γ′ runs through
the roots of σ(p(z)). See for example [13].

Lemma 5.11. If K(γ) has exactly one complex place, then K must be totally real,
i.e. every embedding of K into C must be real.

Proof. If σ : K → C is a complex embedding, so is σ̄ and σ̄ 6= σ. Then by the
above remarks, there exist 2m embeddings of K which are complex.

Theorem 5.12. Let γ and β be algebraic integers such that γ 6∈ Q(β)⊂Q(γ, β)
and let p(z, β) be the minimum polynomial of γ over Q(β). Then Q(γ, β) has one
complex place if and only if

1. β is totally real, i.e. all of the Galois conjugates of β, β=β1, β2, . . . , βn are
real;

2. the polynomial q(z) = p(z, β1)p(z, β2) · · · p(z, βn) has exactly one pair of com-
plex conjugate roots and all other roots real.

Proof. For j = 1, 2, . . . , n let σj denote the embedding of Q(β) into C defined by
σj(β) = βj and suppose that τ is an embedding of Q(γ, β) into C. Then τ is
determined by the images τ(γ), τ(β). Now τ(β) = σj(β) for some j in which case
τ(γ) is a root of σj(p(z, β)) = p(z, βj). Thus conditions 1 and 2 imply that there
are precisely two complex embeddings Q(γ, β) into C.

Conversely if Q(γ, β) has exactly one pair of complex embeddings into C, then
by Lemma 5.11 each embedding of Q(β) into C must be real and so an embedding
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τ of Q(γ, β) into C will be complex precisely when a root of σj(p(z, β)) = p(z, βj)
is complex.

Note that with γ, β as in Theorem 5.12, Q(γ) must have at least one complex
place and so by Lemma 5.11, Q(γ) = Q(γ, β).

Now specialize again to the cases where G = 〈f, g〉 with f a primitive elliptic
element of order n ≥ 3, g elliptic of order 2 and γ 6= 0, β. Thus Q(β) is totally real
and the Galois conjugates βk = −4 sin2(kπ/n) where (k, n) = 1 and 1 ≤ k ≤ n/2
so that βk = β(fk). Note that −4 < βk < β < 0 for k 6= 1. Thus from Theorems
5.10 and 5.12, we obtain the following result.

Theorem 5.13. Let G = 〈f, g〉 be a subgroup of PSL(2,C) with f a primitive
elliptic of order n ≥ 3, g elliptic of order 2 and γ(f, g) 6= 0, β(f). Then G is a
discrete subgroup of an arithmetic group if

1. γ(f, g) is the root of a monic polynomial p(z, β(f)) in z and β(f) with integer
coefficients;

2. the roots of p(z, β(fk)) are real and lie in the interval (β(fk), 0) for all k such
that (k, n) = 1 and 2 ≤ k ≤ n/2;

3. if γ(f, g) and γ̄(f, g) are complex, then all other roots of p(z, β(f)) lie in the
interval (β(f), 0);

4. if γ(f, g) is real, then all other roots of p(z, β(f)) lie in the interval (β(f), 0).

Finally if n = 3, 4 or 6, then β ∈ Z and we have the following result.

Theorem 5.14. Let G = 〈f, g〉 be a subgroup of PSL(2,C) with f a primitive
elliptic of order n = 3, 4 or 6, g an elliptic of order 2 and γ(f, g) 6= 0, β(f). Then
G is a discrete subgroup of an arithmetic group if

1. γ(f, g) is the root of a monic polynomial p(z) with integer coefficients;
2. if γ(f, g) and γ̄(f, g) are complex, then all other roots of p(z) lie in the interval

(β(f), 0);
3. if γ(f, g) is real, then all other roots of p(z) lie in the interval (β(f), 0).

6. Examples

In this section we use the discreteness criteria in §5 to identify a number of
interesting two-generator subgroups of arithmetic groups. Some of these were shown
in [18], [19] and [20] to be extremal for geometric properties such as minimum
axial distance, minimum co-volume and the Margulis constant. A number of these
groups are of finite co-volume themselves and are therefore arithmetic; recall that
our methods identify the invariant trace field and quaternion algebra.

The groups we consider are generated by a pair of elliptic elements f and g where
f is of order n ≥ 3 and g of order 2. We present these in tabular form for the cases
n = 3, 4, 5, 6, 7. By virtue of Theorems 5.13 and 5.14 all of these are subgroups of
arithmetic groups, and hence discrete. We discuss in §7 and §8 their relations with
small volume hyperbolic 3-orbifolds and in §10 we determine the groups in which
the generator f is a simple elliptic.

We begin with a pair of preliminary remarks. Suppose that (γ, β,−4) are the
parameters of a discrete two–generator group G = 〈f, g〉 with f of order n. Then
the Lie product G∗ of G [18] and the conjugations Ḡ and Ḡ∗ of G and G∗ by
reflection in the real axis are discrete two-generator groups with

par(G∗) = (β − γ, β,−4), par(Ḡ) = (γ̄, β,−4), par(Ḡ∗) = (β − γ̄, β,−4).
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See, for example, [18]. Moreover, if G is a subgroup of an arithmetic group, then
the same is true of G∗, Ḡ and Ḡ∗. Hence it is sufficient to consider only those
values of γ for which

−2 sin2(π/n) = β/2 ≤ Re(γ), 0 ≤ Im(γ).

Next if γ 6= 0, β, then by Lemma 2.4 the hyperbolic distance δ = δ(f, g) between
the axes of the generators f and g of G is given by

cosh(2δ) =
|γ − β|+ |γ|

|β| .(6.1)

In particular, δ = 0 if and only if 〈f, g〉 is elementary. Hence in our case, δ is a
measure of how much 〈f, g〉 differs from an elementary group. We see from (6.1)
that the corresponding axial distances for G∗, Ḡ and Ḡ∗ are equal to that for G.

We now give for n = 3, 4, 5, 6, 7 tables of groups Gn,i generated by elliptics of
orders n and 2 together with

1. the approximate values of their commutator parameters γn,i,
2. the minimum polynomial pn,i for γn,i over Q(β),
3. the approximate distance δn,i between the axes of the generators of Gn,i.

When n = 3, 4, 6, pn,i coincides with the minimum polynomial qn,i for γn,i over the
field Q considered in the next section.

These groups were identified by the disk covering procedure described in §2. The
resulting diagrams, showing the only possible values for the parameter γn,i for the
cases where n = 3, 4, 5, 6, are given at the end of this paper in §11. For an account
of the calculations on which these diagrams are based, see [21].

We begin with tables for the groups G3,i and G4,i.

Table 1. Groups G3,i

i γ3,i p3,i δ3,i
1 −1 z + 1 0
2 −.3819 z2 + 3z + 1 0
3 −1.5 + .6066i z4 + 6z3 + 12z2 + 9z + 1 .1970
4 −.2118 + .4013i z4 + 5z3 + 7z2 + 3z + 1 .2108
5 −.5803 + .6062i z3 + 4z2 + 4z + 2 .2337
6 −1.1225 + .7448i z3 + 5z2 + 8z + 5 .2448
7 −.3376 + .5622i z3 + 3z2 + 2z + 1 .2480
8 −.9236 + .8147i z4 + 5z3 + 8z2 + 6z + 1 .2740
9 −1.5 + .8660i z2 + 3z + 3 .2746
10 −.7672 + .7925i z3 + 4z2 + 5z + 3 .2770
11 .0611 + .3882i z4 + 5z3 + 6z2 + 1 .2788
12 .2469 z3 + 4z2 + 3z − 1 .2831
13 −.5284 + .7812i z6 + 8z5 + 24z4 + 35z3 + 28z2 + 12z + 1 .2944
14 −.1153 + .5897i z3 + 3z2 + z + 1 .2970
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Table 2. Groups G4,i

i γ4,i p4,i δ4,i
1 −1 z + 1 0

2 −.5 + .8660i z2 + z + 1 .4157

3 −.1225 + .7448i z3 + 2z2 + z + 1 .4269

4 −1 + i z2 + 2z + 2 .4406

5 −.6588 + 1.1615i z3 + 3z2 + 4z + 3 .5049

6 .2327 + .7925i z3 + z2 + 1 .5225

7 −.2281 + 1.1151i z3 + 2z2 + 2z + 2 .5297

8 .4196 + .6062i z3 + z2 − z + 1 .5297

9 i z2 + 1 .5306

10 .6180 z2 + z − 1 .5306

11 −1 + 1.2720i z4 + 4z3 + 7z2 + 6z + 1 .5306

12 −.4063 + 1.1961i z4 + 3z3 + 4z2 + 4z + 1 .5345

13 .7881 + .4013i z4 + z3 − 2z2 + 1 .6130

Tables 3 and 5 contain the groups for n = 5 and 7. Here pn,i is a polynomial in
z and β to which Theorem 5.13 applies.

Table 3. Groups G5,i

i γ5,i p5,i δ5,i
1 −.3819 z − β − 1 0

2 −.6909 + .7228i z2 − βz + 1 .4568

3 .1180 + .6066i z(z − β − 1)2 − β − 1 .5306

4 −.1909 + .9815i z2 − (β + 1)z + 1 .6097

5 .6180 z − β − 2 .6268

6 .2527 + .8507i z(z − β − 1)2 + 1 .6514

7 −.6909 + 1.2339i z2 − βz + 2 .6717

8 −.3819 + 1.2720i z3 − (2β + 1)z2 + (β2 + β + 2)z − 2β − 1 .6949

9 .1180 + 1.1696i z3 − (2β + 2)z2 + (β2 + 2β + 2)z − β .7195

10 −.0817 + 1.2880i z4 − (2β + 1)z3 + (β2 + β + 2)z2 − 2βz + 1 .7273

11 .6180 + .7861i z3 − (2β + 3)z2 + (β2 + 3β + 2)z + 1 .7323

12 .8776 + .5825i z(z − β)(z − β − 2)2 + 1 .7725

Table 4. Groups G6,i

i γ6,i p6,i δ6,i
1 −.5 + .8660i z2 + z + 1 .6584
2 i z2 + 1 .7642
3 .5 + .8660i z2 − z + 1 .8314
4 −.5 + 1.3228i z2 + z + 2 .8500
5 −.2150 + 1.3071i z3 + z2 + 2z + 1 .8539
6 .3411 + 1.1615i z3 + z + 1 .8786
7 1 z − 1 .8813
8 .8774 + .7448i z3 − z2 + 1 .9106
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Table 5. Groups G7,i

i γ7,i p7,i δ7,i
1 .2469 z − β − 1 .5452
2 −.3765 + .9264i z2 − βz + 1 .8162
3 1.2469 z − β − 2 1.0704

We conclude this section with two examples to illustrate how the above tables are
constructed. The groups we consider, G3,2 and G5,2, are those where the minimum
distances between the axes of elliptics of orders 3 and 2 and orders 5 and 2 are
realized.

In the first example, β = β(f) = −3 and the disk covering procedure shows that
the polynomial

z(z + 3)(z2 + 3z + 3)(z4 + 6z3 + 12z2 + 9z + 1)2(z4 + 6z3 + 12z2 + 9z + 3),

corresponding to the word hfh−1fhfh−1 where h = gfg−1fgf−1g−1, maps

γ3,2 = −3/2 + i

√
(2
√

5− 3)/4 ≈ −1.5 + .606658i

onto 0. Then

p3,2(z) = z4 + 6z3 + 12z2 + 9z + 1

is the minimum polynomial for γ3,2 and it is easy to check that p3,2 has real roots
−.13324, −2.86676 which lie in the interval (−3, 0). Hence we can apply Theorem
5.14 to conclude that G3,2 is a subgroup of an arithmetic group and hence discrete.

In the second case,

β = β(f) = (
√

5− 5)/2, β(f2) = (−
√

5− 5)/2

and from the disk covering argument we find that

p5,2(z, β) = z2 − βz − β

is the minimum polynomial for

γ5,2 = (
√

5− 5)/4 + i

√
(5
√

5− 7)/8 ≈ −.690983 + .722871i

over Q(β). Then γ5,2 and γ̄5,2 are the roots of p5,2(z, β(f)), the roots −.301522
and −3.31651 of p5,2(z, β(f2)) are both real and the desired conclusion follows from
Theorem 5.13.

7. Small volume arithmetic orbifolds

We now discuss the minimal co-volume arithmetic Kleinian groups that the
groups Gn,i embed in. We deal with the case n = 3 in some detail and in §8
merely state the salient information for the others in tabulated form.

We begin with some comments on the more detailed arithmetic structure asso-
ciated to these groups. For this we need some additional results and terminology,
for which we refer the reader to [42].

Let B be a quaternion algebra over a number field k. The isomorphism class
of B is determined by those places of k, both Archimedean and non-Archimedean,
at which B is ramified. The number of ramified places is always even. The non-
Archimedean places correspond to the prime ideals in R, the ring of integers in k.
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If O is an order in B, then its discriminant d(O) is an ideal of R. Furthermore, O
will be a maximal ideal precisely when d(O) is the product of those ideals at which
B is ramified. If M is an order of B such that M ⊂ O, then d(O) | d(M). In the
cases where O is a free R-module with basis {f1, f2, f3, f4}, the discriminant can
be determined from the formula

d(O)2 = 〈Det(trB(fifj))〉
where trB : B → k is the reduced trace.

The following lemma will prove useful in our calculations.

Lemma 7.1. Let G be a finite co-volume Kleinian group such that tr(G) consists
of algebraic integers and let R denote the ring of integers in Q(tr(G)). If 〈f, g〉 is
a non-elementary subgroup of G, then R[1, f, g, fg] is an order of AG.

Proof. Recall that 1, f, g, fg span AG over the trace field. Thus since R[1, f, g, fg]
contains a basis of AG, is finitely generated and contains R, it suffices to prove that
all products of the basis elements can be expressed as R-combinations of the basis
elements. There are several obvious ones and these together with the following
identities prove the lemma.

f2 = tr(f)f − 1,

f2g = tr(f)fg − g,

(fg)2 = tr(fg)fg − 1,

fgf = −tr(g)1 + tr(fg)f + g,

gf + fg = (tr(fg)− tr(f)tr(g))1 + tr(g)f + tr(f)g.

We adopt some notation that will be used in the next two sections. For n = 3,4,5,6,7
let kGn,i and An,i denote the invariant trace field and invariant quaternion algebra
of Gn,i.

We now fix attention on the case of n = 3 and, in what follows, suppress the
subscript 3 for convenience of notation. Next, referring to Table 1 in the cases
i=1, 2 and 12, since the corresponding commutator parameter is real, one checks
easily that these groups are the (2,3,4) spherical triangle group, the (2,3,5) spherical
triangle group and the (2,3,7) Fuchsian triangle group. Also in the case i=13, the
invariant trace field has degree 6 and we will not make any further comment on
this case. Thus we concentrate on the cases when the commutator parameter is not
real and the relevant polynomials have degree 2, 3 and 4.

Let Oi denote the RkGi -submodule of Ai generated over RkGi by the elements

{1, gifig−1
i , f−1

i , gifig
−1
i f−1

i };
note that since fi has order 3, fi and gifig

−1
i lie in G

(2)
i . Lemma 7.1 shows that

Oi is an order of Ai.
By Theorem 5.10, the algebras Ai have the following Hilbert symbols,(−3, (γi + 3)γi

kGi

)
.

It is an easy calculation using the comments above to compute the discriminant of
Oi, namely

d(Oi) = 〈tr([f−1
i , gifig

−1
i ])− 2〉 = 〈γi(γi + 3)〉.

We first deal with the case of the quartics and cubics.

Lemma 7.2. For each i 6= 10, corresponding to a cubic or quartic, Oi is a maximal
order.
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Proof. Using the earlier remarks we need to compute the ramification of these
quaternion algebras and compare them with γi(γi + 3). Since each ramified prime
must divide d(Oi), it is expeditious to calculate d(Oi) in the first instance.

In all the quartic cases, a simple calculation shows that γi(γi+3) is a unit, so that
d(Oi) = RkGi , from which it follows that Ai cannot have any finite ramification
and Oi is maximal.

A variation of this argument works in the cubic cases, i 6= 10. For the norm of
γi(γi + 3) in each of these cases is a rational prime so that d(Oi) is a prime ideal
Ppi . As the cardinality of the set of places ramified in any Ai is even and as each
Ai here is ramified at exactly one real place, Ai must be ramified at at least one
prime ideal. Thus it is ramified at precisely the one ideal Ppi and Oi is maximal.
For later computations, we note that p5 = 2, p6 = 5, p7 = 5, p14 = 2.

For the case i = 10 we argue as follows. The discriminant of kG10 is −31 and
by the fact that there is a unique cubic with one complex place and discriminant
−31, an alternative description of kG10 is kG10 = Q(u) where u3 + u + 1 = 0; cf.
[36]. The ring of integers in this field has a unique prime ideal P3 of norm 3 and
P3 = 〈γ10〉. Now γ10 + 3 also has norm 3 so that γ10(γ10 + 3) = vγ2

10 where v is
a unit. Thus d(O) = P2

3 . As in the above proof A10 must be ramified at at least
one prime and so must be ramified at precisely the one finite place corresponding
to P3. Note that O10 is not a maximal order in this case. 2

We now compute maximal discrete groups in which the groups Gi, with i as
indicated above, are subgroups. To do this we make use of the description of
maximal groups due to Borel [5]. First we consider only cubics and quartics and
we assume that i 6= 10. The case i = 10 will be dealt with separately.

Borel’s classification of maximal groups in the commensurablity class says that
if O is a maximal order of the quaternion algebra B, then the group Pρ(Norm(O))
(recall the proof of Theorem 5.10) is a maximal group of minimal co-volume in
that commensurability class. We denote this maximal group by Γ∅,∅ in the nota-
tion of [5]. Borel actually shows there are infinitely many maximal groups in the
commensurability class of an arithmetic group; see the case of i = 10 below.

As in the proof of Theorem 5.10, since gi normalizes 〈fi, gifig−1
i 〉, we deduce

that Gi < Pρ(Norm(Oi)). By Lemma 7.2, for i 6= 10 Oi is maximal and we obtain
the following result.

Corollary 7.3. For i 6= 10, Gi is a subgroup of the group Pρ(Norm(Oi)) = Γ
(i)
∅,∅.

For the case i = 10, we utilize more of Borel’s construction of maximal groups
referred to above. We briefly recall the relevant points. We recommend the reader
have [5] at hand. In what follows B is a quaternion algebra over the number field
k with one complex place, which is ramified at all real places. Let V denote the set
of all finite places of k, and Ramf (B) denote the finite places which ramify B.

Borel proves that to any pair S and S′ of finite (possibly empty), disjoint subsets
of V \ Ramf (B), one can associate a group ΓS,S′. Moreover it is shown in [5] that
any arithmetic Kleinian group Γ in the commensurability class determined by B
is conjugate to a subgroup of some ΓS,S′ . We will not make use of this explicitly
here.

Let ν ∈ V \ Ramf (B) and denote by Cν the Bruhat-Tits Building of SL(2, kν),
which in these cases is a tree. The vertices of this tree are maximal orders of
M(2, kν), and the SL(2, kν) action on the vertices forms 2 orbits. The groups ΓS,S′
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are described in terms of vertex and edge stabilizers of these trees. Since B is
unramified at ν we get Bν = B ⊗k kν ∼= M(2, kν). Thus for any group in the
commensurability class determined by B we have an induced action on Cν .

In our case, since d(O10) is divisible only by P3, if ν ∈ V \P3, then O10, localized
at ν is maximal; see [42]. Given any element of Norm(O10), the image of this in
A10,ν stabilizes the vertex of Cν associated to O10 localized at ν. It now follows
from this and Borel’s description of maximal groups that Pρ(Norm(O10)) ⊂ Γ10

∅,∅;
see section 4 of [5]. Hence we can conclude that Corollary 7.3 also holds for i = 10.

To compute the minimal co-volumes in the cubic and quartic cases we use the
formula of [5].

Quartic cases. We have seen from the proof of Lemma 7.2 that in the case of i = 3,
4, 8 and 11 the quaternion algebras Ai are unramified at all finite places. It is an
easy calculation to show that the class number of these quartic fields is 1 and further
that the structure of the group of units of these fields implies that the co-volume

of the groups Γ
(i)
∅,∅ is

|dkGi |3/2ζkGi(2)

27π6
,

where dkGi is the discriminant and ζkGi(s) is the Dedekind zeta function of kGi; cf.
[5]. Reasonably good estimates for ζkGi(2) are obtained by considering primes of
small norm in kGi in the first few terms of the Euler product expansion of ζkGi(2).

1. The polynomial z4+6z3+12z2+9z+1 has discriminant −275, and this is the
smallest discriminant of a field with one complex place; cf. [26]. As shown
in [9] for example this is the invariant quaternion algebra of the smallest
volume orientable arithmetic hyperbolic 3-orbifold. This minimal volume is
approximately 0.03905 . . . .

2. The polynomial z4 + 5z3 + 7z2 + 3z+ 1 has discriminant −283 and hence the
discriminant of kG4 coincides with this. There is a unique quartic field of
this discriminant; cf. [26]. The minimal co-volume in the commensurability
class determined by A4 is approximately 0.0408, the second smallest volume
known. This orbifold is commensurable with (5, 1)-Dehn surgery on the figure
eight knot complement [8].

3. The other two quartics have discriminants −491 and −563, respectively. By
comparing with [26], these are the discriminants of the invariant trace-fields.
The smallest co-volume in the commensurability classes are approximately
0.1028 . . . and 0.1274 . . . , respectively.

Cubic cases. The corresponding volume formula in this case is

|dkGi |3/2ζkGi(2)(NP − 1)

26π4
,

using the same terminology as above. The additional term NP denotes the norm
of the prime ideal P ramifying the algebra in each case.

1. The polynomial z3 + 5z2 + 8z + 5 has discriminant −23 which is necessarily
the discriminant of the invariant trace-field. The minimal co-volume of a
group in this commensurability class is approximately 0.07859. This orbifold
is commensurable with the Weeks’ manifold of volume 0.942707 . . .

There is a unique field of discriminant −23. Hence a non-real root of the
polynomial z3 + 3z2 + 2z + 1 also generates kG6. In fact, up to conjugation,
G7 is a subgroup of the same maximal group as contains G6.
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2. The polynomial z3 + 4z2 + 5z + 3 has discriminant −31 which also must
coincide with the discriminant of kG10. Following the proof of Lemma 7.2,
we observed that A10 is ramified at the place ν3 corresponding to P3. From
our comments above G10 is a subgroup of the minimal co-volume group which
in this case is approximately 0.06596.

(In unpublished calculations we have shown that this orbifold is commen-
surable with (8, 1)-Dehn surgery on the figure-eight knot complement, and
contains the orbifold group of (3, 0),(3, 0)-Dehn surgery on the Whitehead
link as a subgroup of index 8. See also [27].)

3. The polynomial z3 + 4z2 + 4z + 2 has discriminant −44, which coincides
with the discriminant of kG5. The smallest co-volume of a group in the
commensurability class is approximately 0.066194.

4. The polynomial z3+3z2+z+1 has discriminant −76 which is the discriminant
of kG14. The smallest co-volume in this commensurability class is 0.1642.

This leaves the case of i = 9 for which the relevant polynomial is quadratic. A
root of this polynomial generates the field Q(

√−3). Moreover notice that directly
from the polynomial we can read off that z2 + 3z = −3. Hence the algebra is( −3,−3

Q(
√−3)

)
.

By [42], this is isomorphic to M(2,Q(
√−3)). Indeed in this case, the trace-field of

G9 is Q(
√−3) and therefore one easily deduces from [35] for example that G9 is

conjugate to a subgroup of PSL(2, O3) and hence of the minimal co-volume group
PGL(2, O3). This group has co-volume 0.08457 . . . and is the smallest volume of
an orientable cusped hyperbolic 3-orbifold [34].

8. Axial distance and small volumes

In this section, we summarize calculations similar to those carried out in §7 for
the cases where n = 4, 5, 6, 7, omitting those where the degree of the minimum poly-
nomial exceeds four. There are some additional complications which we comment
on below, but we make no attempt at detailing all the calculations.

In each case, the Hilbert symbol of the invariant quaternion algebra is easily
computed in terms of the parameter γn,i as(−4 sin2(2π/n), γn,i(γn,i + 4 sin2(π/n))

kGn,i

)
.(8.1)

As in the case n = 3, we construct from the two-generator group 〈f, g〉 with
fn = g2 = 1 a suitable order which enables us to determine the finite ramification
of the quaternion algebra and a small co-volume group, containing the normalizer
of the order, in which the group Gn,i lies.

Now for n = 3, 4, 5, 6, 7 we give tables for the groups Gn,i of §6 with

1. the minimum polynomial qn,i over Q for the commutator parameter γn,i of
Gn,i,

2. the discriminant dGn,i of the trace-field kGn,i,
3. the finite places Ramf where the invariant quaternion algebra ramifies,
4. the approximate distance δn,i between the axes of the generators of Gn,i,
5. the approximate smallest co-volume Vn,i of an arithmetic Kleinian group in

which we know Gn,i can be embedded.
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Table 6. Co-volume of group containing G3,i

i q3,i dkG3,i
Ramf δ3,i V3,i

1 z + 1 −− −− 0 S4

2 z2 + 3z + 1 −− −− 0 A5

3 z4 + 6z3 + 12z2 + 9z + 1 −275 ∅ .1970 .0390

4 z4 + 5z3 + 7z2 + 3z + 1 −283 ∅ .2108 .0408

5 z3 + 4z2 + 4z + 2 −44 P2 .2337 .0661

6 z3 + 5z2 + 8z + 5 −23 P5 .2448 .0785

7 z3 + 3z2 + 2z + 1 −23 P5 .2480 .0785

8 z4 + 5z3 + 8z2 + 6z + 1 −563 ∅ .2740 .1274

9 z2 + 3z + 3 −3 ∅ .2746 .0845

10 z3 + 4z2 + 5z + 3 −31 P3 .2770 .0659

11 z4 + 5z3 + 6z2 + 1 −491 ∅ .2788 .1028

12 z3 + 4z2 + 3z − 1 −− −− .2831 Fuch.

13 z6 + 8z5 + 24z4 + 35z3 + 28z2 + 12z + 1 ? ? .2944 ?

14 z3 + 3z2 + z + 1 −76 P2 .2970 .1654

Table 7. Co-volume of group containing G4,i

i q4,i dkG4,i
Ramf δ4,i V4,i

1 z + 1 −− −− 0 S4

2 z2 + z + 1 −3 {P4,P3} .4157 .1268

3 z3 + 2z2 + z + 1 −23 P8 .4269 .1374

4 z2 + 2z + 2 −4 ∅ .4406 .2289

5 z3 + 3z2 + 4z + 3 −31 P3 .5049 .2968

6 z3 + z2 + 1 −31 P3 .5225 .2968

7 z3 + 2z2 + 2z + 2 −44 P2 .5297 .0661

8 z3 + z2 − z + 1 −44 P2 .5297 .0661

9 z2 + 1 −4 ∅ .5306 .1526

10 z2 + z − 1 −− −− .5306 Fuch.

11 z4 + 4z3 + 7z2 + 6z + 1 −400 ∅ .5306 .0717

12 z4 + 3z3 + 4z2 + 4z + 1 −331 ∅ .5345 .4475

13 z4 + z3 − 2z2 + 1 −283 ∅ .6130 .3475

Table 8. Co-volume of group containing G5,i

i q5,i dkG5,i
Ramf δ5,i V5,i

1 z2 + 3z + 1 −− −− 0 A5

2 z4 + 5z3 + 7z2 + 5z + 1 −475 ∅ .4568 .0933

3 z4 + 4z3 + 2z2 + z + 1 −275 ∅ .5306 .0390

4 z4 + 3z3 + 3z2 + 3z + 1 −275 ∅ .6097 .0390

5 z2 + z − 1 −− −− .6268 Fuch.

6 z6 + 6z5 + 11z4 + 8z3 + 7z2 + 7z + 1 ? ? .6514 ?

7 z4 + 5z3 + 9z2 + 10z + 4 −775 {P4,P ′4} .6717 .461

8 z4 + 6z3 + 12z2 + 14z + 11 −400 ∅ .6949 .0717

9 z4 + 4z3 + 4z2 + 5z + 5 −475 ∅ .7195 .0933

10 z6 + 6z5 + 12z4 + 16z3 + 17z2 + 8z + 1 ? ? .7273 ?

11 z4 + 2z3 − 2z2 + 2z + 1 −400 ∅ .7323 .0717

12 z6 + 5z5 + 3z4 − 8z3 + z2 + 8z + 1 ? ? .7725 ?
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Table 9. Co-volume of group containing G6,i

i q6,i dkG6,i Ramf δ6,i V6,i

1 z2 + z + 1 −3 ∅ .6584 .0845

2 z2 + 1 −4 {P9,P2} .7642 .3053

3 z2 − z + 1 −3 ∅ .8314 .1691

4 z2 + z + 2 −7 {P2,P ′2} .8500 .5555

5 z3 + z2 + 2z + 1 −23 P27 .8539 .5106

6 z3 + z + 1 −31 P3 .8786 .3298

7 z − 1 −− −− .8813 Fuch .

8 z3 − z2 + 1 −23 P27 .9106 .5106

Table 10. Co-volume of group containing G7,i

i q7,i dkG7,i Ramf δ7,i V7,i

1 z3 + 4z2 + 3z − 1 −− −− .5452 Fuch.

2 z6 + 7z5 + 17z4 + 21z3 + 17z2 + 7z + 1 ? ? .8162 ?

3 z3 + z2 − 2z − 1 −− −− 1.0704 Fuch.

Notes.

1. In these tables, we have adopted the notation of labeling a prime ideal of
norm pn by Ppn . In the cases considered, this uniquely determines the ideal
except for the indicated cases where P2,P ′

2 or P4,P ′
4 both appear.

2. We have not dealt with the cases where [Q(γ) : Q] > 4.

Remarks.

1. As remarked in §7, any subgroup of an arithmetic Kleinian group is contained
in a group ΓS,S′ [5]. In all cases when n = 3, applying this to G3,i we have
S = φ. That is not the situation in many cases when n = 4, 5, 6, but in
most cases S consists of a single prime ideal. The volume of ΓS,S′ is readily
calculated from the formulas given in [5].

2. A detailed knowledge of subgroups commensurable with tetrahedral groups
enable some groups to be identified immediately by their commutator pa-
rameter and so the minimum volume of a group in which they lie is quickly
determined. (See comments after the remarks on the tables.) The arithmetic
nature of tetrahedral groups is discussed in [31] and [37] from which much of
the algebraic data of Table 8 is taken.

3. Table 7, n=4. The order we have considered is (suppressing subscripts)

RkG[1, f2, (gf)2, f2(gf)2]

which has discriminant 〈2γ(γ + 2)〉. Only in the cases i = 2, 3 is this order
maximal. In these cases, the group G4,i is contained in a Γφ,φ as is also the
case for i = 7, 8 following an argument similar to that used in the case of
G3,10 in §7. In the cases i = 4, 5, 6, 12, 13, S consists of a single prime, while
in the case i = 9, S may consist of two primes. The groups G4,1 and G4,11

are subgroups of groups commensurable with tetrahedral groups.
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4. Table 8, n = 5. Referring to Table 3, note that the polynomials p5,i admit
z + 1 as a factor in the cases i = 3, 8, 9, 10, 11, 12. Using this, the field
discriminants of Table 8 are readily determined.

The order here is chosen to be

RkG[1, gfg−1, f−1, [g, f ]]

which has discriminant 〈γ(γ − β)〉 where β = (−5 +
√

5)/2. From this, as
before, we determine the finite ramification of the algebra, which here, is only
non-empty in the case i = 7. All other groups arise in considering cocompact
tetrahedral groups.

5. Table 9, n = 6. Now we consider the order

RkG[1, f2, gf−2g−1, f2gf−2g−1]

which has discriminant 〈9γ(γ + 1)〉. For i = 2, 5, 8, the order is maximal so
that S = φ, while when i = 3, 4, 6, S consists of at most one prime ideal. The
group G6,1 is commensurable with a tetrahedral group. See also [17].

We now comment on the relationship between some of these groups and tetra-
hedral groups. Recall by a tetrahedral group we mean the orientation-preserving
subgroup of index 2 in the group generated by reflections in the faces of tetrahedron
in H3, where some vertices may be ideal. Justifications for the comments below can
be deduced for example from [37] where, as here, the notation for the tetrahedra is
that of [6].

The groups PGL(2,Z[i]) and PGL(2, O3) are tetrahedral, the tetrahedrons being
T [3, 2, 2; 4, 2, 4] and T [3, 2, 2; 6, 2, 3]. In the tables these arise in the cases of G4,9

and PGL(2, O3) occurs in the cases G3,9 and G6,1. Other non-cocompact groups
which arise although not tetrahedral, contain a tetrahedral group of index 2. The
case G4,4 yields a group containing the tetrahedral group T [4, 2, 2; 4, 2, 4] of index
2, and the case G6,3 yields a group containing the tetrahedral group T [2, 2, 3; 2, 6, 3]
of index 2.

In the case of order 5 the algebras defined over the quartic fields listed in Table
8 except i = 7 yield groups commensurable with cocompact tetrahedral groups. In
the case where the discriminant is −400 the tetrahedral group is T [2, 2, 4; 2, 3, 5]
(which also arises in the case G4,11), the discriminants −275 and −475 yield groups
commensurable with the tetrahedral groups T [2, 2, 3; 2, 5, 3] and T [2, 2, 5; 2, 3, 5] re-
spectively. The case T [2, 2, 3; 2, 5, 3] also arises in the case G3,3.

Finally the order 6 case G6,4 yields a group commensurable with the tetrahedral
group T [2, 3, 4; 2, 3, 4].

Recently K. N. Jones and the fourth author have developed a computer program
to study explicitly how the geometry and topology of certain arithmetic Kleinian
groups varies as the number theoretic data is varied. Among other things it con-
structs a fundamental polyhedron for the action of certain unit groups of orders
and their normalizers in H3, it determines the co-volume and it computes a pre-
sentation. We present in Table 11 the results produced by that program for the
two-generator groups discussed in this paper. Since all but G4,11, G5,7, G6,4 and
the Fuchsian examples turn out to have finite co-volume, we conclude that, with
these exceptions, all these groups are themselves arithmetic.

Theorem 8.2. The following two-generator Kleinian groups Gn,i generated by el-
liptics of order n and 2 are arithmetic.
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1. G3,i, i = 3, . . . , 14, i 6= 12, 13,
2. G4,i, i = 2, . . . , 13, i 6= 10, 11,
3. G5,i, i = 2, . . . , 11, i 6= 5, 6, 7, 10,
4. G6,i, i = 1, . . . , 8, i 6= 4.

We conclude this section with some philosophical remarks. Several of the alge-
bras and small volume groups arise in the considerations of [10]. This work identifies
the smallest volume of an orientable arithmetic hyperbolic 3-manifold, namely that
of the Weeks manifold. The content of this article together with [9] and the works
[16]–[23] seem to indicate a convergence of arithmetic and geometric ideas. In par-
ticular the smallest volume orientable arithmetic orbifold arises as the quotient of
hyperbolic 3-space H3 by a Z2-extension of the tetrahedral group T [2, 3, 3; 2, 5, 3]
(cf. [9]) and it would seem that this article and [16]–[21] are “converging on” the
arithmetic orbifold just described as the overall smallest one, as is conjectured.

Table 11. Co-volumes of Gn,i

i G3,i G4,i G5,i G6,i

1 S4 S4 A5 .2537
2 A4 .2537 .0933 .6106
3 .0390 .1374 .0390 .5074
4 .0408 .4579 .4686 ∞
5 .1323 .5936 Fuch. 1.0212
6 .1571 .5936 ? 1.3193
7 .1571 .7943 ∞ Fuch.
8 .1274 .2647 .8612 1.0212
9 .3383 .9159 1.1199 −−
10 .2638 Fuch. ? −−
11 .2056 ∞ .8612 −−
12 Fuch. .8951 ? −−
13 ? .3475 −− −−
14 .3308 −− −− −−

9. Criteria for simple axes

Suppose that f is an elliptic element of order n in a Kleinian group G. Then f
is simple if axis(f) is precisely invariant, that is, if for each h ∈ G

h(axis(f)) = axis(hfh−1)

either coincides with or is disjoint from axis(f). If f is not simple, then one of the
following is true [4] and [33].

1. The axes of f and hfh−1 intersect in H3 and G contains a subgroup isomor-
phic to the regular solid group A4, S4 or A5.

2. The axes of f and hfh−1 have one endpoint in common and G contains a
subgroup isomorphic to the (3,3,3), (2,4,4) or (2,3,6) euclidean triangle group.

We show here that if G is a Kleinian group of finite co-volume, then each of these
conditions forces the invariant quaternion algebra of G to satisfy certain criteria.
Hence if the algebra fails to satisfy these criteria, then every elliptic in G of order
n ≥ 3 must be simple.
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Case where axes of f and hfh−1 intersect in H3. Let H denote Hamilton’s quater-

nions so that H =

(−1,−1

R

)
and let σ denote the embedding σ : H1 → SL(2,C)

given by

σ(a0 + a1i+ a2j + a3ij) =

(
a0 + a1i a2 + a3i
−a2 + a3i a0 − a1i

)
,

where H1 is the group of elements of norm 1. If n denotes the norm on H, then
there is an epimorphism

Φ : H1 → SO(3,R)

where SO(3,R) is represented as the orthogonal group of the quadratic subspace
V of H spanned by {i, j, ij}, that is, the pure quaternions, equipped with the
restriction of the norm form, so that n(x1i + x2j + x3ij) = x2

1 + x2
2 + x2

3. The
mapping Φ is defined by Φ(α) = φα, where

φα(β) = αβα−1, α ∈ H1, β ∈ V.
The kernel of Φ is {±1}. The binary tetrahedral group is a central extension of an
element of order 2 by the tetrahedral group and can be faithfully represented in H.
This is also true for the binary octahedral group and the binary icosahedral group
as will now be shown.

If the tetrahedron has its vertices at

i+ j + ij, i− j − ij, −i+ j − ij, −i− j + ij,

then φα1 is a rotation of order 2 about the axis through the edge mid-point i if
α1 = i, while φα2 is a rotation of order 3 about the axis through the vertex i+j+ ij
when α2 = (1 + i + j + ij)/2. The binary tetrahedral group Γ1 is thus generated
by α0 = −1, α1, α2 in H1.

If the cube has its vertices at

±i± j ± ij,

then φα3 is a rotation of order 4 about the axis through the mid-point i of a face

when α3 = (1 + i)/
√

2. Thus the binary octahedral group Γ2 is generated by
α0, α2, α3.

If the regular icosahedron has its vertices at

±i± j ± ij, ±τi± τ−1j, ±τj ± τ−1ij, ±τij ± τ−1i,

then φα4 is a rotation of order 5 about the axis through the mid-point of the face
with vertices

i+ i+ ij, i+ j − ij, τi + τ−1j, τj + τ−1ij, τj − τ−1ij,

where α4 = (τ + τ−1i+ j)/2 and τ = (
√

5+ 1)/2. The binary icosahedral group Γ3

is then generated by α0, α2, α4.
The groups Pσ(Γ1) ∼= A4, Pσ(Γ2) ∼= S4, Pσ(Γ3) ∼= A5, where P is the projection

P : SL(2,C) → PSL(2,C), are said to be in standard form in PSL(2,C). If G
is a discrete group which contains a finite subgroup F isomorphic to one of these
regular solid groups, then G can be conjugated so that F is in standard form. Note
that if G contains any of these finite groups, it will contain a subgroup isomorphic
to A4.
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Lemma 9.1. Let G be a Kleinian group of finite co-volume with invariant quater-
nion algebra A and number field k. If G contains a subgroup isomorphic to A4,
then

A ∼=
(−1,−1

k

)
.(9.2)

In particular, the only finite primes at which A can be ramified are the dyadic
primes.

Proof. Suppose that G contains a subgroup isomorphic to A4. Since A4 has no

subgroup of index 2 and A5 is simple, we have An = A
(2)
n for n = 4 or 5. So if

An ⊂ G, then An ⊂ G(2). Thus by conjugation, we can assume that σ(Γ1) ⊂ G
where PG = G(2). Now

A = {
∑

aigi : ai ∈ k, gi ∈ G}.

Let A0 =

(−1,−1

Q

)
. Then

A0
∼= {
∑

aigi : ai ∈ Q , gi ∈ σ(Γ1)}
since 1, i, j, ij ∈ Γ1. Now the quaternion algebra

{
∑

aigi : ai ∈ k gi ∈ σ(Γ1)}
lies in A, is isomorphic to A0 ⊗Q k and is 4-dimensional. Thus

A ∼=
(−1,−1

k

)
.

Finally it follows from this form of the Hilbert symbol, that A splits over all
P-adic fields kP , with P non-dyadic, that is, primes not dividing 2.

Lemma 9.3. Let G be as in Lemma 9.1. If G contains a subgroup isomorphic to
A5 and if [k : Q] = 4, then A has no finite ramification.

Proof. A can at worst have dyadic finite ramification. Note that, since G must
contain an element of order 5, Q(

√
5) ⊂ k. There is a unique prime P in Q(

√
5)

such that P | 2. So if P ramifies or is inert in k | Q(
√

5), then there will only be
one dyadic prime in k at which A cannot be ramified for parity reasons. Suppose
then that P splits as P1P2 so that kP1

∼= kP2
∼= Q(

√
5)P . But, again for parity

reasons, the quaternion algebra (−1,−1

Q(
√

5)

)
splits in the field Q(

√
5)P . Hence (−1,−1

k

)
splits in kP1 and kP2 and A has no finite ramification.

Lemma 9.1 has the following partial converse.

Lemma 9.4. Suppose that k has exactly one complex place. If

A ∼=
(−1,−1

k

)
,
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then there is an arithmetic Kleinian group in the commensurability class defined
by A which contains S4. Furthermore if Q(

√
5) ⊂ k, then there is a group in the

commensurability class containing A5.

Proof. To exhibit a group containing S4 we proceed as follows. Let Rk denote the
ring of integers of k and let

O = Rk[1, i, j, (1 + i + j + ij)/2].

It is easily checked that O is an order in A. Note that Γ1 ⊂ O1. Furthermore the
element 1 + i ∈ O normalizes O1. Thus if ρ is a representation of A into M(2,C),
then

Pρ(O1) ⊂ 〈Pρ(O1), Pρ(1 + i)〉 = G

as a subgroup of index 2. But Pρ(1 + i) also normalizes Pρ(Γ1) and

〈Pρ(Γ1), Pρ(1 + i)〉 ∼= S4

from the description above. Thus S4 ⊂ G.
Next, in the case where Q(

√
5) ⊂ k, if we let

O = Rk[1, i, 1/2(τ + τ−1i+ j), 1/2(−τ−1 + τi + ij)],

then O is an order in A. Note that the sum of the last two elements above is
τ−1 + 1/2(1 + i+ j + ij) so that Γ3 ⊂ O1. Hence A5 ⊂ Pρ(O1) as required.

Case where axes of f and hfh−1 have one common endpoint. This case is handled
by the following result.

Lemma 9.5. Let G be a subgroup of an arithmetic Kleinian group with invariant
quaternion algebra A over k. If G contains a subgroup isomorphic to the (3, 3, 3),
(2, 4, 4) or (2, 3, 6) euclidean triangle group, then

A ∼= M(2,Q(
√−1)) or A ∼= M(2,Q(

√−3)).(9.6)

Proof. Since G contains a parabolic, a well known criterion for non-cocompact
arithmetic groups implies that A ∼= M(2,Q(

√−d)) for some square-free integer d.
Then it follows easily from [35] or [39] that Q(

√−1) or Q(
√−3) is contained in kG

and we obtain (9.6).

Lemmas 9.1, 9.3 and 9.5 yield necessary conditions for the existence of a non-
simple elliptic. We conclude this section with a sufficient condition for the existence
of a non-simple elliptic.

Lemma 9.7. Suppose that f and h are Möbius transformations and that f is el-
liptic of order n ≥ 3. If

γ(f, h) ∈ (β(f), 0)

or if

γ(f, h) = β(f) and β(h) 6= −4,

then the axes of f and hfh−1 intersect in a single point.

Proof. Let β = β(f) and γ = γ(f, h). Then

γ(f, hfh−1) = γ(γ − β)(9.8)

and by Lemma 2.4,
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2 cosh(δ(f, hfh−1))2 = cosh(2δ(f, hfh−1)) + 1

=

∣∣∣∣ 4γ(f, hfh−1)

β(f)β(hfh−1)
+ 1

∣∣∣∣+ ∣∣∣∣ 4γ(f, hfh−1)

β(f)β(hfh−1)

∣∣∣∣+ 1

=

∣∣∣∣4γ(γ − β) + β2

β2

∣∣∣∣+ ∣∣∣∣4γ(γ − β)

β2

∣∣∣∣
= 2

( |γ − β|+ |γ|
|β|

)2

from which we obtain

cosh(δ(f, hfh−1)) =
|γ − β|+ |γ|

|β| .(9.9)

If γ ∈ (β, 0), then f and hfh−1 have disjoint fixed points by (9.8), δ(f, hfh−1) =
0 by (9.9) and hence axis(f) and axis(hfh−1) intersect in a single point in H3. If
γ = β and if β(h) 6= −4, then (9.8) and the fact that h is not of order 2 imply that
f and hfh−1 have a single fixed point in common.

10. Simple axes in extremal groups

Finally, motivated by the search for lower bounds for the volume of hyperbolic
3-orbifolds, we apply the criteria of §9 to determine if the generator f in each group
Gn,i is simple and hence how to compute its volume contribution. If f is simple, we
study its precisely invariant collar. OtherwiseGn,i has a spherical triangle subgroup
with fixed point the center of a precisely invariant ball or a parabolic subgroup in
which case the volume is at least .0845.

Case n = 3. From Table 6 in §8 and Lemma 9.1 we can deduce that for i = 6, 7, 10
the groups G3,i do not have subgroups isomorphic to A4, S4 or A5. In addition,
G3,12 is Fuchsian. Hence f is simple in these four cases. For the other cases we
apply Lemma 9.7 with β(f) = −3 to show that f is not simple by exhibiting a
suitable element h in Gn,i.

1. G3,1: γ(f, g) = −1 and 〈f, g〉 is isomorphic to S4.
2. G3,2: γ(f, g) = −.3819 . . . and 〈f, g〉 is isomorphic to A5.
3. G3,3: If h = gfg, then γ(f, h) = −2.618 . . . .
4. G3,4: If h = gfgfgfg, then γ(f, h) = −1.
5. G3,5: If h = gfgfg, then γ(f, h) = −2.
6. G3,8: If h = gfgfgf−1gf−1g, then γ(f, h) = −2.
7. G3,9: If h = gfg, then γ(f, h) = −3 and β(h) = −3.
8. G3,11: If h = gfgfgfgfg, then γ(f, h) = −1.
9. G3,13: If h = kfk−1fk where k = gfgfg. then γ(f, h) = −1.

10. G3,14: If h = gfgfgfg, then γ(f, h) = −2.

Case n = 4. The methods here are the same as for n = 3. In particular, the cases
where i = 2, 5, 6 are dealt with by Lemma 9.1 as above while G4,10 is Fuchsian.
Hence f is simple in these four cases. Otherwise Lemma 9.7 with β(f) = −2 shows
that f is not simple when i 6= 7, 11.

1. G4,1: γ(f, g) = −1 and 〈f, g〉 is isomorphic to S4.
2. G4,3: If h = gfgfg, then γ(f, h) = −1.
3. G4,4: If h = gfg, then γ(f, h) = −2 and β(h) = −2.
4. G4,8: If h = gfgfgfg, then γ(f, h) = −1.
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5. G4,9: If h = gfgfg, then γ(f, h) = −2 and β(h) = 2i.
6. G4,12: If h = gfgfgf−1gf−1g, then γ(f, h) = −1.
7. G4,13: If h = gfgfgfgfg, then γ(f, h) = −1.

Case n = 5. In this case, the only group which can be dealt with directly by the
methods of §9 is G5,7. In this example, although there is only dyadic ramification,
the algebra is not isomorphic to (−1,−1

k5,7

)
as is shown by Lemma 9.3.

Finally since G5,5 is Fuchsian we conclude that f is simple when i = 4, 5, 7. We
can then apply Lemma 9.7 with β(f) = −1.3819 . . . to show that f is not simple
when i 6= 8, 9, 11.

1. G5,1: γ(f, g) = −.38196 . . . and 〈f, g〉 is isomorphic to A5.
2. G5,2: If h = gfg, then γ(f, h) = −1.
3. G5,3: If h = gfgfg, then γ(f, h) = −.38196 . . . .
4. G5,6: If h = gfgfg, then γ(f, h) = −1.
5. G5,10: If h = gfgfgf−1gf−1g, then γ(f, h) = −.38196 . . . .
6. G5,12: If h = gfgfgfg, then γ(f, h) = −1.

Case n = 6. When n = 6, Lemma 9.5 implies that the only cases for which f
cannot be simple are G6,1 and G6,3. The calculations for these using Lemma 9.7
with β(f) = −1 are given below.

1. G6,1: If h = gfg, then γ(f, h) = −1 and β(h) = −1.
2. G6,3: If h = gfgfg, then γ(f, h) = −1 and β(h) = .5 + i2.598 . . . .

The six groups G4,7, G4,11, G5,4, G5,8, G5,9 and G5,11 have not been treated in
the above calculations. The program of Jones and Reid mentioned in §8 shows that
f is simple in all of these groups.

We summarize these results in Table 12.

Table 12. f simple elliptic

i G3,i G4,i G5,i G6,i

1 S4 S4 A5 No
2 A4 Yes No Yes
3 No No No No
4 No No Yes Yes
5 No Yes Fuch. Yes
6 Yes Yes No Yes
7 Yes Yes Yes Fuch.
8 No No Yes Yes
9 No No Yes −−
10 Yes Fuch. No −−
11 No Yes Yes −−
12 Fuch. No No −−
13 No No −− −−
14 No −− −− −−
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11. Commutator parameter diagrams

We conclude this paper with four diagrams which result from the disk covering
argument described in §2 for the cases where n = 3, 4, 5, 6. They represent the only
possible values for the commutator parameter γ = γ(f, g) of a discrete group 〈f, g〉
for which

1. f is an elliptic of order n,
2. γ lies in the union of the indicated disks.

The values in these diagrams which correspond to subgroups of arithmetic groups
are listed in Tables 1, 2, 3 and 4 in §6. As noted earlier in §2, all of the values in
the n = 3 diagram have this property.

Figure 2. Only possible values for commutator parameter when
n = 3

Figure 3. Only possible values for commutator parameter when
n = 4
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Figure 4. Only possible values for commutator parameter when
n = 5

Figure 5. Only possible values for commutator parameter when
n = 6
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