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Abstract. In this paper we give a complete enumeration of all the principal congruence link
complements in S3, thereby answering a question of W. Thurston.

1. Introduction

Let d be a square-free positive integer, let Od denote the ring of integers in Q(
√
−d), and let Qd

denote the Bianchi orbifold H3/PSL(2, Od).
As is well-known Qd is a finite volume hyperbolic orbifold with hd cusps, where hd is the class

number of Q(
√
−d) (see [MR03] Chapters 8 and 9 for example). A non-compact finite volume

hyperbolic 3-manifold X is called arithmetic if X and Qd are commensurable, that is to say they
share a common finite sheeted cover (see [MR03] Chapter 8 for more on this).

An important class of arithmetic 3-manifolds consists of the congruence manifolds. Recall that a
subgroup Γ < PSL(2, Od) is called a congruence subgroup if there exists an ideal I ⊂ Od so that Γ
contains the principal congruence group:

Γ(I) = ker{PSL(2, Od)→ PSL(2, Od/I)},
where PSL(2, Od/I) = SL(2, Od/I)/{±Id}. The largest ideal I for which Γ(I) < Γ is called the level
of Γ. A manifold M = H3/Γ is called congruence (resp. principal congruence) if Γ > Γ(I) (resp.
Γ = Γ(I)) for some ideal I.

In an email to the first and third authors in 2009, W. Thurston asked the following question about
principal congruence link complements:

“Although there are infinitely many arithmetic link complements, there are only finitely many that
come from principal congruence subgroups. Some of the examples known seem to be among the
most general (given their volume) for producing lots of exceptional manifolds by Dehn filling, so I’m
curious about the complete list.”

In this paper, we give a complete enumeration of all the principal congruence link complements in
S3, together with their levels. Our main result is the following:

Theorem 1.1. The following list of 48 pairs (d, I) describes all principal congruence subgroups
Γ(I) < PSL(2, Od) such that H3/Γ(I) is a link complement in S3:

(1) d = 1: I = 〈 2 〉, 〈 2± i 〉, 〈 (1± i)3 〉, 〈 3 〉, 〈 3± i 〉, 〈 3± 2i 〉, 〈 4± i 〉.
(2) d = 2: I = 〈 1±

√
−2 〉, 〈 2 〉, 〈 2±

√
−2 〉, 〈 1± 2

√
−2 〉, 〈 3±

√
−2 〉.

(3) d = 3: I = 〈 2 〉, 〈 3 〉, 〈 (5 ±
√
−3)/2 〉, 〈 3 ±

√
−3 〉, 〈 (7 ±

√
−3)/2 〉, 〈 4 ±

√
−3 〉,

〈 (9±
√
−3)/2 〉.

(4) d = 5: I = 〈 3, (1±
√
−5) 〉.

(5) d = 7: I = 〈 (1±
√
−7)/2 〉, 〈 2 〉, 〈 (3±

√
−7)/2 〉, 〈 ±

√
−7 〉, 〈 1±

√
−7 〉, 〈 (−5±

√
−7)/2 〉,

〈 2±
√
−7 〉, 〈 (7±

√
−7)/2 〉, 〈 (1± 3

√
−7)/2 〉.
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(6) d = 11: I = 〈 2, (1±
√
−11)/2 〉, 〈 (3±

√
−11)/2 〉, 〈 (5±

√
−11)/2 〉.

(7) d = 15: I = 〈 2, (1±
√
−15)/2 〉, 〈 3, (3±

√
−15)/2 〉, 〈 4, (1±

√
−15)/2 〉, 〈 5, (5±

√
−15)/2 〉,

〈 6, (−3±
√
−15)/2 〉.

(8) d = 19: I = 〈 (1±
√
−19)/2 〉.

(9) d = 23: I = 〈 2, (1±
√
−23)/2 〉, 〈 3, (1±

√
−23)/2 〉, 〈 4, (−3±

√
−23)/2 〉.

(10) d = 31: I = 〈 2, (1±
√
−31)/2 〉, 〈 4, (1±

√
−31)/2 〉, 〈 5, (3±

√
−31)/2 〉.

(11) d = 47: I = 〈 2, (1±
√
−47)/2 〉, 〈 3, (1±

√
−47)/2 〉, 〈 4, (1±

√
−47)/2 〉.

(12) d = 71: I = 〈 2, (1±
√
−71)/2 〉.

As we describe in §2, using previous work of the authors, the proof of Theorem 1.1 is reduced to
the following theorem:

Theorem 1.2. When d ∈ {2, 7, 11} the following list of pairs (d, I) determine principal congruence
subgroups Γ(I) < PSL(2, Od) such that H3/Γ(I) is a link complement in S3:

(1) d = 2: I = 〈 1± 2
√
−2 〉, 〈 3±

√
−2 〉.

(2) d = 7: I = 〈 ±
√
−7 〉, 〈 (−5±

√
−7)/2 〉, 〈 2±

√
−7 〉, 〈 (7±

√
−7)/2 〉, 〈 (1± 3

√
−7)/2 〉.

(3) d = 11: I = 〈 (5±
√
−11)/2 〉.

Furthermore Γ(〈 1 + 3
√
−2 〉) is not a link group.

For all d with hd = 1, Appendix A conveniently summarizes in diagrammatic form those x ∈ Od

for which Γ(〈 x 〉) is a link group (note that Theorem 1.1 shows that when hd > 1, there is no link
group associated to a pair (d, I) where I is a principal ideal). In addition, each diagram is annotated
with the reasons why the remaining values of x with |x| < 6 do not yield link groups. Appendix B
provides some “new” examples of links whose complements are principal congruence manifolds.

We finish the Introduction with some commentary. Rather than a collaboration, this paper is
the conclusion of overlapping efforts of the first and third authors and independently the second
author. It was suggested to the authors by Ian Agol that since Theorem 1.1 was proved almost
simultaneously, that a single paper should be written describing the solution. As such, we assume
some familiarity with the methods of [BR14] and [BR17] on the one hand, and [Goe11] and [Goe15]
on the other. The main goal of this paper is to describe a combination of the tools used in finishing
off the most stubborn cases that remained from previous work [BR14], [BR17], [Goe11] and [Goe15]
(see Theorem 1.2 and §2). We refer the reader to [BR18] for background, history and connections
with other questions regarding the topology of congruence link complements.

Acknowledgements: The work of the first and third author was developed over multiple visits to
the University of Texas by the first author, and the Université de Rennes 1 by the third author. They
also wish to thank the Université Paul Sabatier, the Max Planck Institut, Bonn, I.C.T.P. Trieste
and The Institute for Advanced Study for their support and hospitality as this work unfolded over
several years. In addition they also wish to thank several people without whose help we would not
have been able to complete this work: M. D. E. Conder, A. Evans, D. Holt, E. O’Brien, A. Page and
M. H. Sengun. The second author wishes to thank R.C. Haraway III, N. Hoffman and M. Trnkova
for helpful discussions about Dirichlet domains and M. Culler and N. Dunfield for explaining how
SnapPy computes homology groups for large triangulations. All of the authors also wish to thank I.
Agol for his suggestion to pool our resources on this paper.

2. The remaining cases

We begin by recapping some of the previous, separate work of the authors that reduce to the
short list of 9 cases of (d, I) shown in Theorem 1.2 which need to be either shown to be a link group
or not. To that end, in the case of hd > 1, the complete list of the 16 pairs (d, I) corresponding
to principal congruence link complements was determined in [BR17]. The possible values of d are
d ∈ {5, 15, 23, 31, 47, 71} with the levels shown in Theorem 1.1.
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Concerning the case when hd = 1, the search for possible levels of principal congruence link
groups is aided by the following from [BR14] and [Goe11]: if I = 〈 x 〉 ⊂ Od and Γ(I) is a link group
then |x| < 6. Using this, in [BR14] we gave 9 new examples of principal congruence link groups,
bringing the total known to 18:

(1) d = 1: I = 〈 2 〉, 〈 2± i 〉, 〈 (1± i)3 〉, 〈 3 〉.
(2) d = 2: I = 〈 1±

√
−2 〉, 〈 2 〉, 〈 2± 2

√
−2 〉.

(3) d = 3: I = 〈 2 〉, 〈 3 〉, 〈 (5±
√
−3)/2 〉, 〈 3±

√
−3 〉.

(4) d = 7: I = 〈 (1±
√
−7)/2 〉, 〈 2 〉, 〈 (3±

√
−7)/2 〉, 〈 1 +±

√
−7 〉.

(5) d = 11: I = 〈 (1±
√
−11)/2 〉, 〈 (3±

√
−11)/2 〉.

(6) d = 19: I = 〈 (1±
√
−19)/2 〉.

Moreover, in the cases d = 1, 3, as well as identifying the cases described above, in [Goe15] the
second author determines the complete list of pairs (d, I) that yield link groups; namely those above,
together with:

(1) d = 1: I = 〈 3± i 〉, 〈 3± 2i 〉, 〈 4± i 〉.
(2) d = 3: I = 〈 (7±

√
−3)/2 〉, 〈 4±

√
−3 〉, 〈 (9±

√
−3)/2 〉.

The upshot of these works is that 40 pairs (d, I) were determined that yield principal congruence
link groups, and using a combination of techniques (including use of Magma [BCP97] and the
comment above on the norm of a generator of the principal ideal), all the remaining cases were
eliminated except for the 8 that correspond to the remaining levels in Theorem 1.2 that will be
shown to be link groups, together with the group Γ(〈 1 + 3

√
−2 〉) which will be shown not to be a

link group.
In Table 1 we provide some additional information associated to the 8 cases to be shown to be

link groups that will be helpful in what follows: in the second, third, and fourth columns of Table 1,
we list x a generator of the ideal being considered, its norm N and the order O of PSL(2, Od)/Γ(I).

Table 1. The 8 cases in which we still need to prove that Γ(〈 x 〉) is a link group.

d x N(〈 x 〉) |PSL(2, Od/〈 x 〉)| Number of cusps

2 1 + 2
√
−2 9 324 36

2 3 +
√
−2 11 660 60

7
√
−7 7 168 24

7 (5 +
√
−7)/2 8 192 24

7 2 +
√
−7 11 660 60

7 (7 +
√
−7)/2 14 1008 72

7 (1 + 3
√
−7)/2 16 1536 96

11 (5 +
√
−11)/2 9 324 36

Note that if I = 〈 x 〉 ⊂ Od is a principal ideal for which Γ(I) is a link group, and I = 〈 x 〉
the complex conjugate ideal, then Γ(I) is also a link group — since complex conjugation induces an
orientation-reversing involution of H3/Γ(I). Hence it suffices to consider only one of the ideals as a
candidate level for a link group.

In §3 we describe how these 9 cases are handled.

3. Proof of Theorem 1.1

In the subsections below we indicate how the cases in Theorem 1.2 are handled. We do this
by illustrating various examples of how the methods of the first and third author can be used to
handle some cases, and then how the methods of the second author handle some other cases. We
emphasize that both methods identify all remaining cases of link groups, but we only choose to
include a sample of each. The case that is not a link group is handled in §3.3.
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3.1. The methods of [BR14] and [BR17]. We recall the following. Let Γ ≤ PSL(2, Od) be a finite
index subgroup. From Theorem 1.2 we can assume that d 6= 1, 3, then

• A cusp, [c], of Γ is a Γ-orbit of points in P1(Q(
√
−d))

• A peripheral subgroup of Γ for [c] is a maximal parabolic subgroup, Px < Γ, fixing x ∈ [c].
Note that if y ∈ [c], then Px and Py are conjugate; hence a peripheral subgroup for [c] is
determined up to conjugacy.
• A set of peripheral subgroups for Γ is the choice of one peripheral subgroup for each cusp of

Γ.

We will use the term cusp to mean [c], a choice of point x in [c], as well as the end of H3/Γ
corresponding to [c]. Which one is meant should be clear from the context. Note that since d 6= 1, 3,
each peripheral subgroup is isomorphic to Z⊕ Z.

To prove Theorem 1.2, we use the methods of [BR14] and [BR17], and in particular the following
useful property: H3/Γ(I) ∼= S3 \ L if and only if Γ(I) can be trivialized by setting one parabolic
element from each cusp of Γ(I) equal to 1. As in [BR14] and [BR17], Magma [BCP97] can be used
to check this.

We now provide two illustrative examples on how the methods of [BR14] and [BR17] are used to
show that the groups (2, 〈 1 + 2

√
−2 〉) and (7, 〈 (1 + 3

√
−7)/2 〉) are respectively a 36 component

link group and a 96 component link group. The remaining 6 groups are handled similarly. This is
done as per the above property by finding a set of parabolic elements, one for each cusp of Γ(I),
such that trivializing these elements trivializes Γ(I).

One can calculate the cusps of Γ(I) for each of the 8 groups above as in [BR14] and [BR17].

The case (2, 〈 1 + 2
√
−2 〉): Let I = 〈 1 + 2

√
−2 〉 and note that N(I) = 9. From [Swa71] we have

the following presentation for PSL(2, O2):

PSL(2, O2) = 〈 a, t, u | a2 = (ta)3 = (au−1au)2 = 1, [t, u] = 1 〉

where t =

(
1 1
0 1

)
, u =

(
1
√
−2

0 1

)
, and a =

(
0 −1
1 0

)
.

Now Γ(I) has 36 cusps, since PSL(2, O2)/Γ(I) has order 324 and the image of P∞(I) = 〈 t9, t−4u 〉
in PSL(2, O2)/Γ(I) is of order 9.

In the following Magma routine, G = PSL(2, O2), H = P∞(I) = 〈 t9, t−4u 〉, N = 〈〈 H 〉〉 (the
normal closure of H), and Q denotes the quotient of Γ(I) by the normal closure of 36 parabolic
elements (one from each cusp of Γ(I)). Magma calculates that Q = 〈 1 〉; hence Γ(〈 1 + 2

√
−2 〉) is

indeed a 36 component link group.

G<a,t,u>:=Group<a,t,u|a^2,(t*a)^3,(a*u^-1*a*u)^2,(t,u)>;

H:=sub<G|t^-4*u,t^9>;

J:=NormalClosure(G,H);

N:=Rewrite(G,J);

Index(G,N);

324

\\

Q:=quo<N|t^-4*u,

a*(t*u^2)*a,

t*a*(t*u^2)*a*t^-1,

a*t*a*(t^-4*u)*a*t^-1*a,
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t^2*a*(t*u^2)*a*t^-2,

a*t^2*a*(t*u^2)*a*t^-2*a,

t^-2*a*(t*u^2)*a*t^2,

a*t^-2*a*(t^-4*u)*a*t^2*a,

t^3*a*(t*u^2)*a*t^-3,

a*t^3*a*(t^-4*u)*a*t^-3*a,

t^-3*a*(t^-4*u)*a*t^3,

a*t^-3*a*(t*u^2)*a*t^3*a,

t^4*a*(t*u^2)*a*t^-4,

a*t^4*a*(t^-4*u)*a*t^-4*a,

t^-4*a*(t*u^2)*a*t^4,

a*t^-4*a*(t*u^2)*a*t^4*a,

t*a*t^-2*a*(t^-4*u)*a*t^2*a*t^-1,

a*t*a*t^-2*a*(t^-4*u)*a*t^2*a*t^-1*a,

t^-2*a*t^-2*a*(t*u^2)*a*t^2*a*t^2,

a*t^-2*a*t^-2*a*(t*u^2)*a*t^2*a*t^2*a,

t^2*a*t^-2*a*(t^-4*u)*a*t^2*a*t^-2,

a*t^2*a*t^-2*a*(t^-4*u)*a*t^2*a*t^-2*a,

t^-3*a*t^-2*a*(t*u^2)*a*t^2*a*t^3,

a*t^-3*a*t^-2*a*(t^-4*u)*a*t^2*a*t^3*a,

t^3*a*t^-2*a*(t*u^2)*a*t^2*a*t^-3,

a*t^3*a*t^-2*a*(t*u^2)*a*t^2*a*t^-3*a,

t^4*a*t^-2*a*(t^-4*u)*a*t^2*a*t^-4,

a*t^4*a*t^-2*a*(t*u^2)*a*t^2*a*t^-4*a,

t*a*t^4*a*t^-1*(t*u^2)*t*a*t^-4*a*t^-1,

a*t*a*t^4*a*t^-1*(t^-4*u)*t*a*t^-4*a*t^-1*a,

t^-1*a*t^-4*a*t*(t*u^2)*t^-1*a*t^4*a*t,

a*t^-1*a*t^-4*a*t*(t^-4*u)*t^-1*a*t^4*a*t*a,

t*a*t^-4*a*t^-1*(t^-4*u)*t*a*t^4*a*t^-1,

a*t*a*t^-4*a*t^-1*(t*u^2)*t*a*t^4*a*t^-1*a,

t^2*a*t^-4*a*t^-1*(t^-4*u)*t*a*t^4*a*t^-2,

a*t^2*a*t^-4*a*t^-1*(t^5*u)*t*a*t^4*a*t^-2*a>;
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Q:=ReduceGenerators(Q);

Order(Q);

1

\\

The case (7, 〈 (1 + 3
√
−7)/2 〉): Let I = 〈 (1 + 3

√
−7)/2 〉 and note that N(I) = 16. From [Swa71]

we have the following presentation for PSL(2, O7):

PSL(2, O7) = 〈 a, t, u | a2 = (ta)3 = (atu−1au)2 = 1, [t, u] = 1 〉

where t =

(
1 1
0 1

)
, u =

(
1 (1 +

√
−7)/2

0 1

)
, and a =

(
0 −1
1 0

)
.

Now Γ(I) has 96 cusps, since PSL(2, O7)/Γ(I) has order 1536 and the image of P∞(I) = 〈 t16, t5u 〉
in PSL(2, O7)/Γ(I) is of order 16.

In the following Magma routine, G = PSL(2, O7), H = P∞(I) = 〈 t16, t5u 〉, N = 〈〈 H 〉〉 (the
normal closure of H), and Q denotes the quotient of Γ(I) by the normal closure of 96 parabolic
elements (one from each cusp of Γ(I)). Magma calculates that Q = 〈 1 〉; hence Γ(〈 (1+3

√
−7)/2 〉)

is indeed a 96 component link group.

G<a,t,u>:=Group<a,t,u|a^2,(t*a)^3,(a*t*u^-1*a*u)^2,(t,u)>;

H:=sub<G|t^5*u,t^16>;

J:=NormalClosure(G,H);

Index(G,J);

1536

\\

N:=Rewrite(G,J:Simplify:=false);

h:=t*a;

Q:=quo<N| t^-7*u^5,

h*(t^-1*u^3)*h^-1,

h^-1*(t^-1*u^3)*h,

t^-1*a*(t^-6*u^2)*a*t,

h*t^-1*a*(t^-1*u^3)*a*t*h^-1,

h^-1*t^-1*a*(t^-1*u^3)*a*t*h,

t^-2*a*(t^-1*u^3)*a*t^2,

h*t^-2*a*(t^-1*u^3)*a*t^2*h^-1,

h^-1*t^-2*a*(t^-1*u^3)*a*t^2*h,

t^3*a*(t^-1*u^3)*a*t^-3,

h*t^3*a*(t^-1*u^3)*a*t^-3*h^-1,

h^-1*t^3*a*(t^-1*u^3)*a*t^-3*h,

t^-3*a*(t^-1*u^3)*a*t^3,
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h*t^-3*a*(t^-1*u^3)*a*t^3*h^-1,

h^-1*t^-3*a*(t^-1*u^3)*a*t^3*h,

t^4*a*(t^-1*u^3)*a*t^-4,

h*t^4*a*(t^-6*u^2)*a*t^-4*h^-1,

h^-1*t^4*a*(t^-1*u^3)*a*t^-4*h,

t^-4*a*(t^-1*u^3)*a*t^4,

h*t^-4*a*(t^-1*u^3)*a*t^4*h^-1,

h^-1*t^-4*a*(t^-1*u^3)*a*t^4*h,

t^5*a*(t^-1*u^3)*a*t^-5,

h*t^5*a*(t^-1*u^3)*a*t^-5*h^-1,

h^-1*t^5*a*(t^-1*u^3)*a*t^-5*h,

t^-5*a*(t^-1*u^3)*a*t^5,

h*t^-5*a*(t^-1*u^3)*a*t^5*h^-1,

h^-1*t^-5*a*(t^-1*u^3)*a*t^5*h,

t^6*a*(t^-1*u^3)*a*t^-6,

h*t^6*a*(t^-1*u^3)*a*t^-6*h^-1,

h^-1*t^6*a*(t^-1*u^3)*a*t^-6*h,

t^-6*a*(t^-1*u^3)*a*t^6,

h*t^-6*a*(t^-1*u^3)*a*t^6*h^-1,

h^-1*t^-6*a*(t^-1*u^3)*a*t^6*h,

t^7*a*(t^-1*u^3)*a*t^-7,

h*t^7*a*(t^-1*u^3)*a*t^-7*h^-1,

h^-1*t^7*a*(t^-1*u^3)*a*t^-7*h,

t^-7*a*(t^-1*u^3)*a*t^7,

h*t^-7*a*(t^-1*u^3)*a*t^7*h^-1,

h^-1*t^-7*a*(t^-1*u^3)*a*t^7*h,

t^8*a*(t^-1*u^3)*a*t^-8,

h*t^8*a*(t^-1*u^3)*a*t^-8*h^-1,

h^-1*t^8*a*(t^-1*u^3)*a*t^-8*h,
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t^-1*a*t^2*a*(t^-1*u^3)*a*t^-2*a*t,

h*t^-1*a*t^2*a*(t^-1*u^3)*a*t^-2*a*t*h^-1,

h^-1*t^-1*a*t^2*a*(t^-1*u^3)*a*t^-2*a*t*h,

t^-2*a*t^2*a*(t^-1*u^3)*a*t^-2*a*t^2,

h*t^-2*a*t^2*a*(t^-1*u^3)*a*t^-2*a*t^2*h^-1,

h^-1*t^-2*a*t^2*a*(t^-1*u^3)*a*t^-2*a*t^2*h,

t^3*a*t^-2*a*(t^-1*u^3)*a*t^2*a*t^-3,

h*t^3*a*t^-2*a*(t^-1*u^3)*a*t^2*a*t^-3*h^-1,

h^-1*t^3*a*t^-2*a*(t^-1*u^3)*a*t^2*a*t^-3*h,

t^-3*a*t^2*a*(t^-1*u^3)*a*t^-2*a*t^3,

h*t^-3*a*t^2*a*(t^-1*u^3)*a*t^-2*a*t^3*h^-1,

h^-1*t^-3*a*t^2*a*(t^-1*u^3)*a*t^-2*a*t^3*h,

t^-1*a*t^-3*a*(t^-1*u^3)*a*t^3*a*t,

h*t^-1*a*t^-3*a*(t^-1*u^3)*a*t^3*a*t*h^-1,

h^-1*t^-1*a*t^-3*a*(t^-1*u^3)*a*t^3*a*t*h,

t^-1*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t,

h*t^-1*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t*h^-1,

h^-1*t^-1*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t*h,

t^-2*a*t^-3*a*(t^-1*u^3)*a*t^3*a*t^2,

h*t^-2*a*t^-3*a*(t^-1*u^3)*a*t^3*a*t^2*h^-1,

h^-1*t^-2*a*t^-3*a*(t^-1*u^3)*a*t^3*a*t^2*h,

t^2*a*t^-3*a*(t^-1*u^3)*a*t^3*a*t^-2,

h*t^2*a*t^-3*a*(t^-1*u^3)*a*t^3*a*t^-2*h^-1,

h^-1*t^2*a*t^-3*a*(t^-1*u^3)*a*t^3*a*t^-2*h,

t^-2*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t^2,

h*t^-2*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t^2*h^-1,

h^-1*t^-2*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t^2*h,

t^3*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t^-3,

h*t^3*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t^-3*h^-1,

h^-1*t^3*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t^-3*h,
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t^3*a*t^-3*a*(t^-1*u^3)*a*t^3*a*t^-3,

h*t^3*a*t^-3*a*(t^-1*u^3)*a*t^3*a*t^-3*h^-1,

h^-1*t^3*a*t^-3*a*(t^-1*u^3)*a*t^3*a*t^-3*h,

t^-3*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t^3,

h*t^-3*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t^3*h^-1,

h^-1*t^-3*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t^3*h,

t^-4*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t^4,

h*t^-4*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t^4*h^-1,

h^-1*t^-4*a*t^3*a*(t^-1*u^3)*a*t^-3*a*t^4*h,

t^-1*a*t^4*a*(t^-1*u^3)*a*t^-4*a*t,

h*t^-1*a*t^4*a*(t^-1*u^3)*a*t^-4*a*t*h^-1,

h^-1*t^-1*a*t^4*a*(t^-1*u^3)*a*t^-4*a*t*h,

t^-2*a*t^-4*a*(t^-1*u^3)*a*t^4*a*t^2,

h*t^-2*a*t^-4*a*(t^-1*u^3)*a*t^4*a*t^2*h^-1,

h^-1*t^-2*a*t^-4*a*(t^-1*u^3)*a*t^4*a*t^2*h,

t^-1*a*t^5*a*(t^-7*u^5)*a*t^-5*a*t,

h*t^-1*a*t^5*a*(t^-1*u^3)*a*t^-5*a*t*h^-1,

h^-1*t^-1*a*t^5*a*(t^-1*u^3)*a*t^-5*a*t*h,

t^-2*a*t^5*a*(t^-1*u^3)*a*t^-5*a*t^2,

h*t^-2*a*t^5*a*(t^-7*u^5)*a*t^-5*a*t^2*h^-1,

h^-1*t^-2*a*t^5*a*(t^-1*u^3)*a*t^-5*a*t^2*h,

t^2*a*t^-3*a*t^2*a*(t^-1*u^3)*a*t^-2*a*t^3*a*t^-2,

h*t^2*a*t^-3*a*t^2*a*(t^-1*u^3)*a*t^-2*a*t^3*a*t^-2*h^-1,

h^-1*t^2*a*t^-3*a*t^2*a*(t^-7*u^5)*a*t^-2*a*t^3*a*t^-2*h>;

Q:=ReduceGenerators(Q);

Order(Q);

1

\\

We remark that due to the complexity of this case (96 cusps) we needed to deactivate the simplify
subroutine of the rewrite routine in order to get Magma to calculate without timing out.

3.2. The methods of [Goe11] and [Goe15]. In [Goe11] and [Goe15], the second author used the
geometry of regular tessellations arising from fundamental polyhedra associated to the actions of
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PGL(2, O1) and PGL(2, O3) to completely enumerate the principal congruence links when d = 1, 3.
Using (less symmetric) fundamental domains of the Bianchi orbifolds Qd, a similar approach is
taken to construct a triangulation of the principal congruence manifold M given a (d, I). We will
construct triangulations for all cases (d, I) in Theorem 1.2, or more generally, all cases where hd = 1
and I = 〈 x 〉 where |x| < 6. For most of these cases (in particular, for all in Table 1), we can use
SnapPy [CDGW17] to determine whether the principal congruence manifold M for (d, I) is a link
complement: either we can find one peripheral curve per cusp such that Dehn-filling M along these
curves trivializes the fundamental group or we can verify that H1(M,Z)/H1(∂M,Z) is non-trivial
(summarized in Appendix A). Of the three remaining cases, (1, 4 + 3

√
−1) and (3, (11 +

√
−3)/2)

were already covered in [Goe15] and (2, 1 + 3
√
−2) is accounted for in §3.3.

The programs we wrote to construct M require SageMath [Sag17] and are available at [Goe17]:
generatePrincipalCongruenceManifold.py generates a Regina [BBP17] triangulation of M using
a fundamental domain for Qd which can be produced with generateBianchiOrbifold.py. For
each principal congruence link complement M in Theorem 1.1, we have stored the peripheral curves
trivializing the fundamental group as meridians on a SnapPy triangulation of M in the directory
LinkComplementCertificates.

We briefly describe how these programs work. Further details can be found in the source code as
comments.

3.2.1. Fundamental domains for Bianchi groups. For the construction of principal congruence man-
ifolds, we need the combinatorics of a fundamental polyhedron P for the Bianchi group PSL(2, Od)
together with the following information for each face f of P :

• another face f ′ of P called the mate face
• the mating matrix gf ∈ PSL(2, Od) such that gff

′ = f
• for each (finite or ideal) vertex v of f the corresponding vertex v′ of f ′ with gfv

′ = v.

For simplicity, we triangulate P by taking the barycentric subdivision. We index the vertices of
the resulting simplices such that vertex i of a simplex corresponds to the center of an i-cell of P .
This results in a triangulation where the gluing permutations are always the identity. We can then
store the extra information by assigning to each simplex its “mate” simplex and the mating matrix
gf ∈ PSL(2, Od) that takes face 3 of the simplex to face 3 of its mate.

3.2.2. Constructing principal congruence manifolds. Let I be an ideal in Od. The goal is to con-
struct a triangulation of the principal congruence manifold H3/Γ(I) using copies of the triangulated
fundamental polyhedron P of Qd and its associated information as described in §3.2.1. We label
each copy by Pm where m ∈ PSL(2, Od/I). We use the following algorithm:

(1) Start with a “base” copy PId.
(2) While there is a copy Pm with an unglued face f :

(a) Compute m′ = mgf ∈ PSL(2, Od/I).
(b) If there is no copy Pm′ yet, create one.
(c) Glue face f of Pm to the mate face f ′ of Pm′ such that the vertices are matching as

described in the information about the fundamental polyhedron.

SnapPy can remove the finite vertices of the resulting triangulation to obtain an ideal triangulation.
When labeling the polyhedron in a computer implementation, we need a method giving a canon-

ical matrix with coefficients in Od to represent an element m ∈ PSL(2, Od/I). For this, we need a
procedure to reduce a representative in Od of an element in Od/I to a canonical representative.

Given a 2-vector v, the reduced form of v with respect to the vectors v1 and v2 is the element
in v + Zv1 + Zv2 in the parallelogram spanned by v1 and v2. In other words, v is reduced with

respect to v1 and v2 if v

(
v1

v2

)−1

has coordinates in [0, 1). Let us associate the vector (a, b) to an
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element a+ b
√
−d ∈ Od. Let v1 and v2 be two vectors that span I as a lattice. We can then reduce

a representative in Od by reducing the associated vector (a, b) by v1 and v2.
It is left to find such v1 and v2 given generators x1, . . . , xk ∈ Od of the ideal. As a lattice, I

is spanned by the vectors associated to x1, x1ωd, . . . , xk, xkωd where ωd = (1 +
√
−d)/2 (if d ≡ 3

mod 4) or
√
−d (otherwise). We need a procedure that takes such a set of vectors and returns two

vectors spanning the same lattice as the input vectors. By iterating, it suffices to have a method
that produces two vectors spanning the same lattice as three given vectors. This can be done by
repeatedly reducing one vector by the other two vectors until one of them is zero.

3.2.3. Dirichlet domains. We use a Dirichlet domain for the Bianchi group PSL(2, Od) as a funda-
mental domain. Recall that given a base point p0 in hyperbolic space and a sample of matrices
m ∈ PSL(2, Od), we obtain a candidate polyhedron P by intersecting the half spaces associated
to the matrices. Here, we associate to a matrix m the half space containing p0 that is limited by
the plane bisecting p0 and the image of p0 under the action of m. Once we have the candidate
polyhedron P , we can try to obtain the information described in §3.2.1: gf is the matrix that the
plane containing a face f of P was associated to, the mate face f ′ of f is identified by having matrix
gf ′ = gf

−1 and we can try to find the corresponding v′ of f ′ for each vertex v of f . If we succeed,
we have verified that P is a fundamental domain for a (possibly trivial) cover of the Bianchi orbifold
Qd.

If we do this in the Klein model, the equations for the associated planes turn out to have rational
coefficients (up to a constant scaling). Our primary focus here is on the observations yielding to
rational coefficients and we refer the reader to [Pag15] and [Ril83] as well as the SnapPy source code
for further details about the construction of Dirichlet domains. In particular, we do not discuss how
to verify that our samples of matrices was large enough so that the gf generate PSL(2, Od) and that
P covers Qd trivially (we can check this using volume since the volume of the Bianchi orbifolds is
well-known).

It is convient to let p0 be the origin 0 in the Klein or Poincaré ball model. Unfortunately, there are
matrices in PSL(2, Od) that fix the origin. But we can pick a suitable matrix l ∈ PSL(2,Q(

√
−d))

and let m′ = l−1ml instead of m ∈ PSL(2, Od) act on H3 or B3.

3.2.4. Poincaré extension for the Poincaré ball. Let H denote Hamilton’s quaternions and H3 =
{z + tj : z ∈ C, t > 0} ⊂ H and B3 = {x + yj + zk : x2 + y2 + z2 < 1} be the upper half space,
respectively, Poincaré ball model of hyperbolic 3-space. There is an action of suitable 2×2 matrices
with quaternions as coefficients on H ∪ {∞} given by

T :

(
a b
c d

)
7→
(
w 7→ (aw + b) · (cw + d)−1

)
.

If m ∈ PSL(2,C), then T (m)|H3 is an isometry of H3. Furthermore, letting

mH3→B3 =

(
1 1
j −j

)
and mB3→H3 =

(
1 −j
1 j

)
,

T (mH3→B3) and T (mB3→H3) convert between H3 and B3. Thus, T (mH3→B3 ·m ·mB3→H3)|B3 is the

isometry of the Poincaré ball model B3 corresponding to m.

3.2.5. Hyperbolic midpoint and conversion to Klein model. It is convenient to work in the Klein
model since hyperbolic half spaces become Euclidean half spaces (intersected with the unit ball).

When converting between the Klein and the Poincaré ball model, we do so such that the origin
and the boundary of the unit ball are fixed.

Lemma 3.1. Let p be the point in the Poincaré ball model with coordinates (xp, yp, zp). The result
of taking the hyperbolic midpoint between p and the origin and then converting that midpoint to the
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rPoincaré = rmid,Klein

Figure 1. Taking the midpoint in the Poincaré model and converting it to the
Klein model gives the same Euclidean point.

Klein model also has coordinates (xp, yp, zp), see Figure 1. Thus, the plane bisecting p and the origin
has equation xpx+ ypy + zpz = x2

p + y2
p + z2

p in the Klein model.

Proof. Let rKlein and rPoincaré be the Euclidean distance of the origin to a point in the Klein model,
respectively, the corresponding point in the Poincaré ball model. We have

rPoincaré =
rKlein

1 +
√

1− r2
Klein

.

Note that this is the same relationship we have between the Euclidean distance rPoincaré of a point in
Poincaré ball model and rmid,Poincaré of the hyperbolic midpoint between that point and the origin:

rmid,Poincaré =
rPoincaré

1 +
√

1− rPoincaré
.

Thus, we have rmid,Klein = rPoincaré. tu

3.2.6. Rational plane equation.

Lemma 3.2. Let m ∈ PSL(2,Q(
√
−d)). Let (xp, yp, zp) be the coordinates of the image of the origin

0 in the Poincaré ball model B3 under the action of m. Then, xp, yp ∈ Q and zp ∈
√
dQ. Thus, in

the Klein model, the equation for the plane associated to m has rational coefficients when replacing
z by

√
dz′ in Lemma 3.1.

Proof. Let

m =

(
a b
c d

)
.

The image of the origin in B3 is given by (xp, yp, zp) = T (mH3→B3 ·m ·mB3→H3)(0). Note that the
origin in B3 corresponds to j in H3 and a standard calculation gives:

(1) T (m)(z + tj) =
(
(az + b)(cz + d) + act2 + tj

)
/|c(z + tj) + d|2,

so

T (m)(j) = (bd+ ac+ j)/|cj + d|2 ∈ Q + i
√
dQ + jQ.

Applying the conversion T (mH3→B3) now gives the result. tu

Unfortunately, we do need to deal with a further quadratic extension of Q(
√
d) when verifying

the correspondences between the vertices v and v′ of a face f and its mate face f ′.

3.3. The final case. To eliminate the group Γ(〈 1 + 3
√
−2 〉) we show that it is not generated by

its parabolic elements. This will be the case if the following group (B2(〈 1+3
√
−2 〉) in the notation

of [BR14] and [BR17])

G ∼= 〈 a, t, u | a2 = (ta)3 = (au−1au)2 = 1, [t, u] = 1, tu3, t19 〉

is of order greater than |PSL(2, O2)/Γ(〈 1 + 3
√
−2 〉)|. Indeed, we will show that G is infinite.
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In previous work such computations could be handled by Magma [BCP97]. However, in this case,
more sophisticated computer programs were needed, in particular the program Monoid Automata
Factory (MAF) which is a successor of the GAP package kbmag, and we could not have implemented
this without the assistance of Alun Williams, who we wish to sincerely thank for his help.

Lemma 3.3. G is infinite. Thus, the principal congruence manifold M = H3/Γ(〈 1 + 3
√
−2 〉) is

not a link complement.

Proof. From §3.1 we have the following presentation for

PSL(2, O2) = 〈a, t, u|a2 = (ta)3 = (au−1au)2 = tut−1u−1 = 1〉
with the matrices for a, t and u also give in §3.1. As in previous considerations, if M were a
link complement, then π1(M) would be generated by parabolic elements which are all PSL(2, O2)-
conjugates of products of tu3 and t19. Thus, the covering group associated to M → Q2 would be
given by the above G.

However, as we now briefly describe, using MAF [Wil17], G can be proved to be infinite. For
this, we write the following presentation of G into a file myGroup:

_RWS := rec(

isRWS := true,

generatorOrder := [_g1,_g2,_g3,_g4,_g5],

inverses := [_g1,_g3,_g2,_g5,_g4],

ordering := "shortlex",

equations := [

[_g2*_g1*_g2,_g1*_g3*_g1],

[_g1*_g5*_g1*_g4,_g5*_g1*_g4*_g1],

[_g2*_g4,_g4*_g2],

[_g2^4,_g4*_g3^2],

[_g2^10,_g3^9]

]

);

and then call (which takes about 2 hours of time on a MacBook pro with a 2.6Ghz Intel Core i5)

$ automata -no-kb myGroup

$ gpaxioms myGroup

[...]

Checking relation _g1*_g5*_g1*_g4=_g5*_g1*_g4*_g1

Checking relation _g2*_g4=_g4*_g2

Checking relation _g2^4=_g4*_g3^2

Checking relation _g2^10=_g3^9

Axiom check succeeded.

$ fsacount myGroup.wa

The accepted language is infinite

The first command finds an automatic structure and the second command verifies that the auto-
matic structure found is indeed for the group G. automata always find as word acceptor automa-
ton that accepts only one word for any group element. Thus, G is infinite since the automaton
myGroup.wa accepts infinitely many words. tu
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Appendix A. Diagrams for class number 1

Figures 2, 3, 4, 5, 6 and 7 show all cases (d, I) with hd = 1 and I = 〈 x 〉 where |x| < 6. We
only show one value among all x yielding the same ideal 〈 x 〉 up to complex conjugation. For each
case, we list the number of cusps of the principal congruence manifold M and whether it is a link
complement. In case it is not, we either list H1(M,Z)/H1(∂M,Z) (computed using Lemma 9.6 in
[Goe15]) or reference a proof that M is not a link complement. We also give a reference to a figure
of a link if it is known in a particular case.
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Figure 6. d = 11.



ALL PRINCIPAL CONGRUENCE LINK GROUPS 19

12
◦

Link

180
×

Z187

24

×

Z8
2

180
×

Z44⊕
Z22
2 ⊕ Z20

4 ⊕
Z22
3 ⊕ Z18

5 ⊕
Z9
25

60

×

Z11
7

15
×

Z4 ⊕ Z2

264
×

Z22⊕
Z8 ⊕ Z22

32 ⊕
Z3⊕Z67

5 ⊕Z9
23

144

×

Z36⊕
Z2⊕Z8

4⊕Z6
17

40
×

Z38 ⊕ Z3

360
×

Z32⊕
Z128
2 ⊕ Z64

4 ⊕
Z8
8 ⊕ Z56

5 ⊕
Z44
7 ⊕ Z21

11 ⊕
Z30
17 ⊕ Z18

2351

300

×

Z148⊕
Z84
2 ⊕ Z28

5

120
×

Z109⊕
Z12
2 ⊕ Z11

4

576

×

Z48⊕
Z75
5 ⊕ Z32

25 ⊕
Z57
7 ⊕ Z20

49 ⊕
Z48
11 ⊕ Z54

17 ⊕
Z28
19 ⊕ Z30

29 ⊕
Z24
31 ⊕ Z32

61 ⊕
Z24
191 ⊕

Z36
337 ⊕ Z24

1777

576

×

Z206⊕
Z140
2 ⊕ Z58

4 ⊕
Z54
8 ⊕ Z2

16 ⊕
Z4
32 ⊕ Z13

5 ⊕
Z30
11 ⊕ Z32

13 ⊕
Z32
23 ⊕ Z12

241 ⊕
Z32
277 ⊕ Z24

367

288

×

Z379⊕
Z12
2 ⊕ Z40

3

×

orbifold

0

0 1 2 3 4 5 6

0

√
19

√
19
2

Figure 7. d = 19.
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Appendix B. New link diagrams

Figures 8, 9, 10, 11 and 12 show previously unpublished principal congruence links. A dot in these
figures indicates the line perpendicular to the paper plane connecting to ∞ ∈ S3. Link diagrams
for all known principal congruence links are available at [Goe17] in Links.

Figure 8. 3+
√
−7

2 . Figure 9. 2 +
√
−1.
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Figure 10. 3 + 0
√
−3 [Goe11] . Figure 11. 2 + 2

√
−1.
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Figure 12. 3 +
√
−3 [Goe11] .
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