ALL PRINCIPAL CONGRUENCE LINK GROUPS

M. D. BAKER, M. GOERNER, AND A. W. REID

ABSTRACT. In this note we give the complete enumeration of all the principal congruence link
complements in S3, thereby answering a question of W. Thurston.

1. INTRODUCTION

Let d be a square-free positive integer, let Oy denote the ring of integers in Q(v/—d), and hy
denote the class number of Q(y/—d)

Setting Q4 = H3/PSL(2, 0y4) to be the Bianchi orbifold, it is well-known that Qg is a finite volume
hyperbolic orbifold with kg cusps (see [MR03] Chapters 8 and 9 for example). A non-compact finite
volume hyperbolic 3-manifold X is called arithmetic if X and @4 are commensurable, that is to say
they share a common finite sheeted cover (see [MR03] Chapter 8 for more on this).

An important class of arithmetic 3-manifolds consists of the congruence manifolds. Recall that a
subgroup I' < PSL(2,0y) is called a congruence subgroup if there exists an ideal I C Oy so that T
contains the principal congruence group:

I'(I) = ker{PSL(2, O4) — PSL(2,04/I)},

where PSL(2,04/I) = SL(2,04/I)/{£Id}. The largest ideal I for which I'(I) < T is called the level
of I'. A manifold M = H?3/T is called congruence (vesp. principal congruence) if I' > T'(I) (resp.
' =T(1)) for some ideal I.

In an email to the first and third authors in 2009, W. Thurston asked the following question about
principal congruence link complements:

“Although there are infinitely many arithmetic link complements, there are only finitely many that
come from principal congruence subgroups. Some of the examples known seem to be among the
most general (given their volume) for producing lots of exceptional manifolds by Dehn filling, so I'm
curious about the complete list.”

In this note, we give the complete enumeration of all the principal congruence link complements in
S3, together with their levels. Our main result is the following:

Theorem 1.1. The following list of 48 pairs (d,I) describes all principal congruence subgroups
(1) < PSL(2,04) such that H3/T(I) is a link complement in S3:
(D) d=1:T=(2),(24+i), ((1£49)>),(3),(3+i), (3£2i), (4+i).
(2) d=2:T=(1+v=2),(2),(2+£/=-2), (1£2y/-2), (3£/-2).
(3)d=31T=(2)(3), ((G£V=3)/2), (3£vV=3), ((T£V=3)/2), (4+V=3),

(9% vT3)/2)]

(4) d=5:T=(3,(1+/=5)).

(5) d=T: I ={ (1£y/=7)/2), (2), { B£V=T)/2), (£/=T), (1£/=T), ( (5£V=T)/2),
(2£V=T), ((T£V=T)/2), ((1£3/=T)/2).
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(6) d=11: T = ( (1++/—=11)/2), ( 3£ V=11)/2), { (5 +/—11)/2)

(7) d=15: T =(2,(1++/=15)/2), ( 3,(3£v/=15)/2), ( (1£+/=15)/2), ( 5,(5£/—15)/2 ),
(Bxv-15)/2).

(8) d=19: I = ( (14++/—=19)/2).

(9) d=23: T =(2,(1+£+/=23)/2), (3,(1+£/=23)/2), (4,(3+/—23)/2).

(10) d=31: I = (2,(14£+/=31)/2), (4, (1++/=31)/2), ( 5,(3++/—31)/2 ).

(11) d=47: T = ( 2,(1+/=47)/2), (3, (1 £ /—=47)/2 ), { 4,(1 £ /=47)/2 ).

(12) d=71: T = ( 2,(1+/=71)/2).

As we will describe in §2 and 3, using previous work of the authors ([BR14], [BR17], [Goel5]),
the proof of Theorem 1.1 can be reduced to establishing the following theorem:

Theorem 1.2. When d € {2,7,11} the following list of pairs (d,I) determine principal congruence
subgroups T'(I) < PSL(2,04) such that H3/T(I) is a link complement in S3:

(1) d=2:T=(1+2/-2), (3++/-2).
(2) d=T:T=(£V=T), ((5£V=T7)/2), (2£V=T), ((T£V=7)/2), (1 £3V=T7)/2).
(3) d=11: I = { (5++/—11)/2).

Furthermore, in the case when d =2, T({ 1+ 3y/=2)) is not a link group.

Theorem 1.2 will be deduced by combining previous work of the authors, as well as further
applications of these techniques, together with Lemma 4.1, which deals with the case (2, (143v/—2)).
In contrast to the other cases, this final case required finding an automatic structure for a certain
group for which we used the program Monoid Automata Factory (MAF) [Will7].

We finish the Introduction with some commentary. The proof of Theorem 1.2 is largely compu-
tational and builds upon (for the most part) the techniques developed in our previous independent
work to deal with earlier cases. In the light of this, we have decided to present the work here es-
sentially in “announcement form”, deferring the technical details (other than Lemma 4.1) including
the Magma routines, SnapPy computations of homology for congruence manifolds and several new
principal congruence link diagrams to a technical report [BGR18] which will be posted on the arXiv.

Moreover, rather than a collaboration, this paper (and the companion technical report) is the
conclusion of overlapping efforts of the first and third authors and independently the second author.
It was suggested to the authors by Ian Agol that since Theorem 1.1 was proved almost simulta-
neously, that a collaborative effort should be undertaken to describe the final solution. The main
goal of this note is to provide a brief overview of previous work and summary of techniques that
lead to Theorem 1.2. Detailed discussion of the computations will appear in [BGR18]. We refer the
reader to [BR18] for further background, history and connections with other questions regarding
the topology of congruence link complements.
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2. PRELIMINARIES AND TECHNIQUES

In this section, we review some earlier work that was used in [BR14], [BR17], and [Goel5] that
produced a finite list of potential pairs (d, I).

Note that if I C Oy is an ideal and I C O, the complex conjugate ideal, then I'(I) is a link group
if and only if T'(I) is a link group — since complex conjugation induces an orientation-reversing
involution of H?3/I'(I). Hence it suffices to consider only one of the ideals I and I as a candidate
level for a link group.

2.1. Reducing to finitely many cases. Suppose that L C S is a link with n components,
and M = S3\ L. Abusing notation and identifying M with the link exterior, set + : OM — M
to be the inclusion map. Now Hy(M;Z) = Z™ and Hy(M;Z)/t.(H1(OM;Z)) is trivial (i.e. link
complements have trivial cuspidal cohomology). Hence the solution to the Cuspidal Cohomology
Problem (completed in [Vog85]), provides the following consequence for principal congruence link
complements:

Theorem 2.1. Suppose that M = H3/T'(I) is homeomorphic to a link complement and M — Qq.
Then M, and hence Qg, has trivial cuspidal cohomology, and so

ded{l1,2,3,5,6,7,11,15,19,23,31,39,47,71}.

First, note that if I'(1) is a link group, it must be a torsion-free subgroup of PSL(2,0,4). We can
disregard the case when I = Oy, since the groups PSL(2, 0 ) all contain elements of orders 2 and
3. It can then be easily checked that there are only 6 pairs (d, I), up to complex conjugation with
d as above, so that I'(I) contains a non-trivial element of finite order.

To pass from finitely many values of d to finitely many possible pairs (d, I) the norm of the ideal
I needs to be bounded. To achieve this, we argue as follows. When the class number is 1, we can
use the 6-Theorem of Agol [Ago00] and Lackenby [Lac00] to control which peripheral curves can
produce S® by Dehn filling. When the class number is > 1, an upper bound for the systole for a
hyperbolic link complement in S® from [AR00] can be used. Since systole length grows with the
norm of the ideal this provides the necessary control. Moreover, when the class number is 1, all
ideals are principal and the argument above bounds the absolute value of a generator of the ideal,
and when the class number is > 1, this bounds the absolute value of some x € I. Summarizing this
discussion we obtain (see [BR14, Section 4.1] and [BR17, Lemma 4.1]):

Theorem 2.2. If (d,I) determines a link complement, then there must be a non-trivial x € I with
lz| < 6 (if hg = 1), respectively, |x|* < 39 (if hg > 1). In particular there are only finitely many
pairs (d,I).

Theorem 2.2 reduces the classification of which principal congruence groups are link groups to
a finite list, indeed there are 302 cases (up to complex conjugation and excluding the 6 cases that
give groups containing elements of finite order).

2.2. Proving a case to not be a link complement. Assume that (d,I) is one of the finitely
many pairs provided by Theorems 2.1 and 2.2 for which we need to decide that M = H3/T'(I) is,
or is not, homeomorphic to a link complement. We first discuss the case of proving that M is not a
link complement. Indeed, we will show something slightly stronger, namely that I" is not generated
by parabolic elements (equivalently its peripheral subgroups).

To describe how this is achieved, fix a collection of PSL(2, O4)-inequivalent cusps ¢; for i =
1,..., hg, let P; be the peripheral subgroup of PSL(2, Oy) fixing the cusp ¢;, set P;(I) = P,NT(I) to
be the peripheral subgroup of I'(I) fixing ¢;, and let N4(I) denote the normal closure in PSL(2, Oy4) of
{Pi(I),..., Py, (I)}. Note that Ng(I) < I'(I) since I'(I) is a normal subgroup of PSL(2,04). Both
M and H3/Ny(I) are covering spaces of the Bianchi orbifold Qg with the covering groups given
by PSL(2,04/I), and PSL(2,04)/Ny(I) respectively. Now I'(I) will be generated by parabolic
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elements if and only if |PSL(2,04)/Na(I)] = |PSL(2,04/I)|. Since |PSL(2,0,4/I)| can easily be
computed from a factorization of I (see [BR17, Section 2.1]), this reduces the problem to determining
[PSL(2, 04)/Na(D)|.

For many small values of d, finite presentations of the group PSL(2, O4) together with the matrices
corresponding to the generators were computed by Swan [Swa71]. More recently, for the remaining
values of d, Page [Pagl5] computed such presentations (see [BR17]). If we add the words representing
the generators of each P;(I) as relations to the finite presentation of PSL(2,04), we have a finite
presentation for PSL(2,0,4)/N4(I). From this finite presentation, we can use various techniques
from computer algebra to compute (a lower bound for) the size of PSL(2,04)/Na(I).

Often, however, it is sufficient (but not always easier) to compute or estimate the homology of
M itself to prove that it is not a link complement. In fact, this suffices for all but the three cases
(1,4 + 3v=1), (2,1 + 3y/=2), and (3,(11 + +/=3)/2) where Hy(M;Z)/1.(H1(OM;Z)) is trivial.
More recently, the second author wrote a computer program to compute and triangulate a Dirichlet
domain for a Bianchi orbifold @4 and construct covers of Q4 to generate a triangulation of the
principal congruence manifold M, respectively, the congruence manifold associated to the upper unit-
triangular matrices in PSL(2, O4/I). Using this program and the fact that Hy (M;Z)/v.(H1(0OM;Z))
cannot vanish for a cover M — N of degree less than |Hy(N;Z)/t«(H1(ON;Z))|, it is feasible to
compute integral homology for enough congruence manifolds to rule out all but the aforementioned
three cases. Further discussion of this program, as well as the output of these computations is
contained in [BGR18].

2.3. Proving a case to be a link complement. By Perelman’s resolution of the Geometrization
Conjecture, to prove that M = H?/T'(I) is homeomorphic to a link complement in S3, it is sufficient
to find Dehn fillings of the manifold M trivializing the fundamental group. Thus the task is to
find a collection of slopes (essential simple closed curves), one from each cusp, so that killing these
words trivializes the fundamental group. The first and third author did this by finding an explicit
description of cusp subgroup P;(I) for j = 1,..., hq. The second author used the computer program
mentioned above to generate a triangulation of M and then used SnapPy to find the slopes (using
techniques similar to those already described in [Goel5, Section 7.3.2]) for which SnapPy [CDGW17]
could then prove that the fundamental group of the Dehn-filled manifold along those slopes is trivial.
Further details are to be found in [BGRI1S].

3. THE REMAINING CASES

We now review how our previous work using the methods of §2 reduces the classification of
principal congruence link groups to the cases in Theorem 1.2.

In the case of hg > 1, the complete list of the 16 pairs (d, I') corresponding to principal congruence
link complements was determined in [BR17]. The possible values of d are d € {5,15,23,31,47,71}
with the levels shown in Theorem 1.1.

Concerning the case when hg = 1 (i.e. d € {1,2,3,7,11,19}), certain examples already existed
in the literature (see [BR14]), and using the 6-Theorem as described in §2 to restrict the possible
levels, we subsequently gave 9 new examples of principal congruence link groups in [BR14]. This
brought the total known when hy =1 to be 18:

() d=1:T=(2), (24 ), ( (1£i)3), (3).
(2)d=2:T=(14+V/=-2),(2),(24+2/=-2).

(3) d=3:T=(2),(3),((6+xv=3)/2),(3£V-3).
(4)d:7112<(1i\/7)/2>’<2>7<(3i\/j7)/2>’<1+i\/j7>'
(5) d=11: T = ( (1£+/—11)/2), { (3£ /—11)/2).

(6) d=19: T =( (1++/—19)/2).
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Moreover, in the cases d = 1,3, as well as identifying the cases described above, in [Goel5] the
second author determined the complete list of pairs (d, I) that yield link groups; namely those above,
together with:

(1) d=1:1T=(3+4),(3+£2i),(4+i).
(2) d=3: 1= (T£v=3)/2), {4+ V=3 ), ((9:£V=3)/2).

The upshot of these combined works is that 40 pairs (d, I) were determined that yield principal
congruence link groups, and using a combination of the techniques described in §2, all remaining
cases were eliminated except for the 8 pairs (d, I) stated in Theorem 1.2, and (2, (1 + 3v/=2)).

In Table 1 we provide some additional information associated to the 8 cases to be shown to be
link groups: in the second, third, and fourth columns of Table 1, we list x a generator of the ideal
being considered, its norm and the order of PSL(2,0q4)/T'(I).

TABLE 1. The 8 cases in which we still need to prove that I'({ « }) is a link group.

d x N({z)) | |PSL(2,04/( x ))| | Number of cusps
2 1+2V-2 9 324 36
2 3+v-2 11 660 60
7 V=T 7 168 24
71 B5+vV=7)/2 8 192 24
7 247 11 660 60
7 (T+V=7)/2 14 1008 72
71 (1+3/=7)/2 16 1536 96
11 ] (54++/—11)/2 9 324 36

Details of the computations establishing that these do indeed give link groups are provided in
[BGR18].

4. THE FINAL CASE

As mentioned in the Introduction, the final case required a technique different from the other
cases to prove the finitely presented group G = PSL(2,0,4)/N4(I) to be large enough. For the other
cases, this could be shown in Magma [BCP97] or GAP [GAP18] either by computing |G| itself or
the Abelianization of G or a suitable subgroup of G. The necessary methods for this are based on
Todd-Coxeter coset enumeration, Reidemeister-Schreier rewriting, and Smith form.

However, the final case was solved using the Monoid Automata Factory (MAF) which is a suc-
cessor of the GAP package kbmag. We are very grateful to Alun Williams who helped us implement
this.

Lemma 4.1. The principal congruence manifold H?/T((2,1 + 3y/=2)) is not homeomorphic to a
link complement in S°.

Proof. From [Swa71], we have the following presentation for
PSL(2,0,) = {(a,t,ula® = (ta)® = (au" au)? = tut " *u~" = 1)

(00 ) ()

Following §2.2, we obtain t%u~! and #'° as the two parabolic elements that we take to normally
generate No((1 + 3v/—2)), giving us the following presentation
PSL(2,0
G= _PSL2.00) _ _ (a,t,ula® = (ta)® = (au™tau)? = tut'u™t = tSu~! =11 =1).

C No((143v=2))

where
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We give this presentation of G to MAF [Will7] in form of a file myGroup:

_RWS := rec(

isRWS := true,

generatorOrder := [_gl,_g2,_g3,_g4,_gb5],

inverses := [_gl,_g3,_g2,_g5,_g4],

ordering "shortlex",

equations := [
[_g2*_glx_g2, gl*x_g3*_gl],
[_gl*_gbx_gilx_gl, gb*x_glx_gix_gi],
[Lg2*_gd,_gix_g2],
[Lg2~4,_gi*_g3°2],
[_g2°10,_g3"9] 1);

and then call (which takes about 2 hours of time on a MacBook pro with a 2.6Ghz Intel Core i5):

$ automata -no-kb myGroup # find automatic structure
$ gpaxioms myGroup # verify automatic structure for correct group
[...]

Checking relation _g2*_gd=_gd*_g2

Checking relation _g2~4=_gd*_g3~2

Checking relation _g2710=_g379

Axiom check succeeded.

$ fsacount myGroup.wa # count words accepted by word aceptor
The accepted language is infinite

Since automata always finds a word acceptor automaton that accepts exactly one word for any group
element, this proves G to be infinite. From the discussion in §2.2, we deduce that T'({1 4+ 31/—2)) is
not a link group. O
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