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INFINITELY MANY ARITHMETIC HYPERBOLIC RATIONAL

HOMOLOGY 3–SPHERES THAT BOUND GEOMETRICALLY

L. FERRARI, A. KOLPAKOV, AND A. W. REID

Abstract. In this paper we provide the first examples of arithmetic hyper-
bolic 3–manifolds that are rational homology spheres and bound geometrically
either compact or cusped hyperbolic 4–manifolds.

1. Introduction

Bordism properties of closed manifolds have been a classical and important topic
in topology. To mention but one result, Rokhlin showed that all closed orientable
3–manifolds bound a compact 4–manifold.

In [25] the question of bounding geometrically was introduced: namely whether
a connected closed orientable hyperbolic n–manifold M could arise as the totally
geodesic boundary of a compact hyperbolic (n+1)–manifold W . One could weaken
this to merely asking that M bound a finite volume hyperbolic (n + 1)–manifold
with cusps. Another variation of this is to ask if a connected closed orientable
flat n–manifold could arise as the cusp cross–section of a finite volume 1–cusped
hyperbolic (n + 1)–manifold.

In [22] another problem was considered: whether a given connected closed ori-
entable hyperbolic n–manifold M could embed geodesically, that is arise as an em-
bedded totally geodesic codimension 1 submanifold of a hyperbolic (n+1)–manifold
W . Although there are obstructions to bounding in certain dimensions, it is now
known that in every dimension n ≥ 2 there are many examples of closed hyperbolic
n–manifolds which bound geometrically. However, less is known in the case of flat
n–manifolds. We refer the reader to [7,19–21,24–26] for details about constructions
of examples, and for description of possible obstructions.

In particular, in dimension 3, although many examples of closed orientable hy-
perbolic 3–manifolds are known to bound geometrically, all of them up to date have
positive first Betti number. By virtue of Poincaré duality, a 3-manifold with β1 = 0
is a rational homology 3–sphere, i.e. Hq(M, Q) ∼= Hq(S3, Q) for all integers q ≥ 0.

On the other hand, hyperbolic rational homology 3–spheres are abundant: any
hyperbolic (p, q) Dehn filling on a hyperbolic knot complement in S3 will produce an
example with integral first homology being Z/pZ. The smallest closed orientable
hyperbolic 3–manifold, known as the Fomenko–Matveev–Weeks manifold [14], is
also an arithmetic rational homology sphere that can be obtained by {(5, 1), (5, 2)}
Dehn filling of the Whitehead link complement [5].
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Motivated by this, the third author [32] asked whether there are arithmetic
hyperbolic rational homology 3–spheres M which bound geometrically. The main
results of this paper answer this question.

Theorem A. There are infinitely many hyperbolic rational homology 3–spheres Mj

which bound geometrically a compact hyperbolic 4–manifold Wj. Moreover, there
are infinitely many compact hyperbolic 4–manifolds Wj for which Mj = ∂Wj .

Theorem B. There are infinitely many hyperbolic rational homology 3–spheres Xj

which bound geometrically a cusped hyperbolic 4–manifold Yj . Moreover, there are
infinitely many cusped hyperbolic 4–manifolds Yj for which Xj = ∂Yj .

A common property to both families of manifolds Mj and Xj is that they are all
arithmetic of simplest type (see §2.2 for details). That the manifolds are arithmetic
of simplest type allows us to use [22] to embed these manifolds in closed or cusped
arithmetic hyperbolic 4–manifolds. A further common property of the manifolds
Mj and Xj that will be crucial in arranging them to bound (see Lemma 3.1) is that
Mj and Xj all double cover other rational homology 3–spheres. The manifolds
Mj are commensurable with the arithmetic rational homology 3–spheres that were
constructed in [4] and [2], and the manifolds Xj are commensurable with the group
generated by reflections in the right–angled dodecahedron in H3.

The key observation that is needed in the proof that Mj and Xj bound geomet-
rically is Lemma 3.1, which together with Lemma 3.6 essentially “reduces” our task
to group theory. However, the resulting computations rely heavily on Magma [1].

Using more combinatorial and geometric methods via the theory of colourings
(see §7) we can produce some “sporadic” examples of closed hyperbolic 3–manifolds
Xj which are rational homology spheres and which bound geometrically. In contrast
to the former construction, this argument can be made by the “power of pure
thought” and in a “computer–free” way. This was confirmed by computer as part
of a tree-search that found all the possible classes of rational homology 3–spheres
that could be built using colourings of the dodecahedron of lowest rank which bound
geometrically.

We end the Introduction by pointing out that both constructions given in the
paper can only produce rational homology 3–spheres that bound geometrically a
non–orientable hyperbolic 4–manifold. It remains open as to whether one can
arrange the 4–manifold to be orientable (as in the constructions of [25] for example).
This can be traced to Lemma 3.1, which in our setting cannot be applied to produce
an orientable 4–manifold for which the 3–manifold bounds geometrically.

By Lemma 7.10, a rational homology sphere of odd dimension cannot have an
orientation–reversing, fixed point free involution, since then it would double–cover
a closed non–orientable manifold with trivial reduced rational homology. Such a
manifold cannot exist by an Euler characteristic argument: closed manifolds of odd
dimension must have χ = 0, but a manifold with trivial reduced rational homology
has χ = 1. In connection with this, we note that arithmetic rational homology
spheres do not exist in any even dimension ≥ 6 [11].

Note that the Fomenko–Matveev–Weeks manifold cannot bound an orientable
compact hyperbolic 4–manifold as the η–invariant of the former is not an inte-
ger [24]. Integral η–invariant would imply vanishing Chern–Simons invariant [29].
The latter can be computed using SnapPy [8]: for the Fomenko–Matveev–Weeks
manifold we obtain ≈ 0.060043.
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We wish to emphasise that the η–invariant only provides an obstruction to ge-
ometrically bounding an orientable manifold as above. For example, whether the
Fomenko–Matveev–Weeks manifold can bound a non–orientable compact hyper-
bolic 4–manifold is as yet unknown.

Also, the smallest (arithmetic or not) hyperbolic rational homology 3–sphere
that bounds seems to be unknown as of the time of this writing.

2. Arithmetic hyperbolic manifolds

For the reader’s convenience we recall some facts about arithmetic hyperbolic
manifolds. One may find further details in [28].

2.1. Arithmetic hyperbolic 3–manifolds. Let M = H3/Γ be a hyperbolic 3–
manifold of finite volume. Then M is called arithmetic if the group Γ is commen-
surable with a group Γ1

O as described below.
Let k be a number field with one complex place, B/k a quaternion algebra

over k, O ⊂ B an order. Let O1 denote the elements of O of norm 1, and let
ρ : B → M(2, C) be an embedding. Then the group Γ1

O = Pρ(O1) ⊂ PSL(2, C) is
a Kleinian group of finite co-volume.

We say that Γ as above is derived from a quaternion algebra if Γ < Γ1
O.

2.2. Arithmetic manifolds of simplest type. For the most part, this paper is
focused on hyperbolic manifolds of dimension 3. However, we will need to discuss
certain 4–dimensional hyperbolic manifolds, namely arithmetic hyperbolic mani-
folds of simplest type, whose definition we recall below.

Let ℓ be a totally real number field of degree d over Q equipped with a fixed
embedding into R which we refer to as the identity embedding. Let Rℓ denote the
ring of integers of ℓ. Let V be an (n+ 1)–dimensional vector space over ℓ equipped
with a non–degenerate quadratic form f defined over ℓ which has signature (n, 1) at
the identity embedding, and signature (n+1, 0) at the remaining d−1 embeddings.

Given this, the quadratic form f is equivalent over R to the standard Lorentzian
form Jn = x2

0 + x2
1 + . . . + x2

n−1 − x2
n, and for any non–identity Galois embedding

σ : ℓ → R, the quadratic form fσ (obtained by applying σ to each entry of f) is
equivalent over R to x2

0 + x2
1 + . . . + x2

n−1 + x2
n. Such a quadratic form is called

admissible.
Let F be the symmetric matrix associated to f, and let O(f) and SO(f) denote

the linear algebraic groups defined over k as O(f) = {X ∈ GL(n + 1, C) | XtFX =
F} and SO(f) = {X ∈ SL(n + 1, C) | XtFX = F}. For a subring L ⊂ C, let the
L–points of O(f), resp. SO(f), be denoted by O(f, L), resp. SO(f, L).

Note that, given an admissible quadratic form f defined over ℓ of signature (n, 1),
there exists T ∈ GL(n + 1, R) such that T−1SO(f, R)T = SO(n, 1). Let Isom+(Hn)
denote the full group of orientation–preserving isometries of Hn. This can be iden-
tified with the group SO+(Jn, R) = SO+(n, 1), which is the subgroup of SO(n, 1)
preserving the upper half–sheet of the hyperboloid {v ∈ V | vT Jnv = −1}.

A subgroup Γ < Isom+(Hn) is called arithmetic of simplest type if Γ is com-
mensurable with the image in Isom+(Hn) of SO(f, Rℓ) under the conjugation map
described above. An arithmetic hyperbolic n–manifold M = Hn/Γ is called arith-
metic of simplest type if Γ is of simplest type.
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The relevance of arithmetic manifolds of simplest type is the following result of
[22] (see [22, Proposition 4.1] and its proof together with [22, Section 7]). For conve-
nience, in the notation established above, we will say that an orientable arithmetic
hyperbolic n–manifold of simplest type M = Hn/Γ is ℓ–located if Γ = TΛT−1 and
Λ < SO(f, ℓ).

Theorem 2.1. Let M = Hn/Γ be arithmetic of simplest type which is ℓ–located.
Then M embeds in a hyperbolic (n + 1)–manifold N . If ℓ = Q and n ≥ 3, then N
is a non–compact hyperbolic (n + 1)–manifold. Moreover, infinitely many distinct
commensurability classes of N can be constructed.

Remark 2.2. For n even, all arithmetic hyperbolic n–manifolds are of simplest type
[36].

Remark 2.3. If n = 3, then the class of arithmetic hyperbolic 3–manifolds of sim-
plest type can be described as precisely those that contain one (and hence infinitely
many) totally geodesic surfaces [28, Chapters 9, 10]. In this case the quaternion
algebra B/k as in §2.1 can be described as B = A ⊗ℓ k where ℓ is a totally real
number field with [k : ℓ] = 2, and A is a quaternion algebra associated to an im-
mersed totally geodesic surface (see [28, Theorem 9.5.4]). The field ℓ is the field of
definition of the admissible quadratic form f in the description of M as a manifold
of simplest type.

Remark 2.4. If M = H3/Γ contains a totally geodesic surface and Γ is derived from
a quaternion algebra, then it follows from [28, Chapter 10.2] that Γ is ℓ–located
(where ℓ is the maximal totally real subfield of the invariant trace-field of Γ), and
hence satisfies the hypothesis of Theorem 2.1.

3. A criterion for bounding

In this section we describe a general construction to arrange for hyperbolic ra-
tional 3–spheres to bound geometrically.

3.1. Geodesic embeddings and geometric boundaries. We begin by describ-
ing a way of promoting geodesic embeddings to bounding geometrically.

Lemma 3.1. Let M be an orientable hyperbolic n-manifold that has a fixed point
free involution ϕ ∈ Isom(M). If M embeds geodesically then it also bounds geomet-
rically.

Proof. Let M embed into an orientable manifold N ′ as a totally geodesic subman-
ifold of codimension 1. Let us denote by N the manifold obtained by cutting N ′

along M and taking a connected component. Then either ∂N = M and we are done,
or ∂N = M )M , and we can quotient out one copy of M in ∂N by self-identifying
it via ϕ. Given that ϕ is a fixed point free involution, the resulting metric space Nϕ

will be a hyperbolic manifold with a single boundary component isometric to M .
Moreover, Nϕ is orientable or not depending on whether ϕ is orientation-reversing
or not. !

Below we provide two illustrative examples: though none of them is of a hyper-
bolic manifold bounding another, they give a picture that is easy to visualise.
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Example 3.2 (The 2-torus). Let N ′ = C/Γ, where Γ = ⟨z → z + 1, z → z + i⟩.
Then N ′ ∼= S1×S1 is a flat torus. Let M ∼= S1 be embedded into N ′ as the image of
the interval J = {i·t | t ∈ [0, 1]} ⊂ i·R. Then M is a totally geodesic non-separating
submanifold of N ′.

By cutting N ′ along M , we get the manifold N ∼= S1× [0, 1], with ∂N = M )M .
Consider then the antipodal map ϕ on M = S1, which is an orientation-preserving
fixed point free involution. The resulting manifold Nϕ is the Möbius strip. This is
a non-orientable flat 2-manifold with only one boundary component M .

Example 3.3 (The twisted I–bundle). A higher–dimensional generalisation of the
previous example is the following. Let ϕ be the free (orientation–preserving) invo-
lution of a genus 3 orientable surface S that quotients it down to a genus 2 surface.
Let N = S × [0, 1]. When we quotient out N × {1} by ϕ, then we obtain Nϕ that
is a twisted I–bundle over S, and thus cannot be orientable.

Remark 3.4 (Rokhlin’s theorem). If M is a topological closed 3–manifold that
admits a fixed point free involution ϕ, then the proof of Rokhlin’s theorem can be
reduced to a trivial construction. Namely, taking W = M × [0, 1], so that we can
quotient out, say, M × {1} by ϕ, and get the desired Nϕ with ∂Nϕ = M × {0}.

3.2. Towers of rational homology spheres. The main ideas of the construction
build on the works [2] and [4]. To state the result that we will make use of, we need
to recall some of [4, Section 6].

For an odd prime p, a finite p–group S is powerful if S/Sp is abelian, where Sp

is the subgroup of S generated by all p–th powers of its elements. When p = 2, the
condition is that S/S4 is abelian.

A finitely generated group Γ is called p–powerful if every finite p–group quotient
of Γ is powerful.

Proposition 3.5 ([4]). Let Γ be a finitely generated group which is p–powerful.
If H1(Γ, Z) is finite, then H1(H, Z) is finite for any subgroup H ⊂ Γ of p–power
index.

Let G be a group: its mod p lower central series is defined inductively as γp
1 (G) =

G, with γp
n+1(G) = ⟨(γp

n(G))p, [G, γp
n(G)]⟩ ⊆ γp

n(G) for n ≥ 1. Then G is residually–
p if we have

⋂
n≥1 γ

p
n(G) = {1}.

Lemma 3.6. Let M = H3/Γ be an arithmetic hyperbolic rational homology 3–
sphere of simplest type arising from an admissible quadratic form over a totally real
field ℓ with the following properties:

(1) Γ is ℓ–located;
(2) Γ is p–powerful for some odd prime p;
(3) Γ is residually–p;
(4) M has a double cover M ′ = H3/∆ which is a rational homology 3–sphere,

and ∆ is p–powerful.

Then there exists a tower of rational homology 3–spheres Mj = H3/∆j which are
regular p–power coverings of M ′ that bound geometrically a hyperbolic 4–manifold
Wj. In the case when ℓ = Q, the manifold Wj has cusps.

Proof. By hypotheses, Γ is p–powerful and residually–p, so Proposition 3.5 implies
that there exists an infinite tower of p–power index normal subgroups Γj ▹ Γ for
which all the manifolds H3/Γj are rational homology 3-spheres. Set ∆j = ∆ ∩ Γj .
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Since [Γ : ∆] = 2, it is clear that ∆j ▹ Γj . Indeed,

Γj/∆j = Γj/Γj ∩∆ ∼= ∆Γj/∆ ⊂ ∆Γ/∆ = Γ/∆ ∼= Z/2Z.

Note that ∆ is not a subgroup of Γj for any j since [Γ : ∆] = 2, while [Γ : Γj ] = pk

for an odd prime p and some integer k > 0. Thus [Γj : ∆j ] = 2 for all j. By
construction, Γj ▹ Γ with quotient a finite p–group, hence ∆j ▹ ∆ with quotient
a finite p–group. The residually–p condition implies that

⋂
j≥1 Γj = 1, and so⋂

j≥1 ∆j = 1.

Putting all of this together, since ∆ is p–powerful, and each Mj = H3/∆j is
a p–power regular cover of N , Proposition 3.5 applies to show that each Mj is
a rational homology 3-sphere. In addition, each Mj double covers the rational
homology 3-sphere M ′

j = H3/Γj .
By assumption, Γ and thus Γj and ∆j are all arithmetic of simplest type and

ℓ–located. Hence Theorem 2.1 applies to embed all of the manifolds Mj in an
arithmetic hyperbolic 4–manifold Nj . Note that if ℓ = Q then Nj is necessarily
cusped (see [22] for example). Regardless, Lemma 3.1 applies to the Mj to promote
it from being embedded to bounding geometrically. !
Remark 3.7. As discussed in [4, Remark 6.5], whether a group is p–powerful for a
given odd prime p can be readily checked, and it reduces to checking whether the
maximal finite p–group quotient of nilpotency class 2 is powerful. This can be done
in Magma [1] via the pQuotient routine, and a test routine IsPowerful (see §8 for
examples).

4. Bounding compact hyperbolic 4–manifolds

For the case of bounding a compact manifold, we work with the commensura-
bility class of the group generated by reflections in the faces of the right–angled
dodecahedron D in H3. This in turn is commensurable with the tetrahedral group
T = T4[2, 2, 3; 3, 5, 2] (which is T4 in [28, Chapter 13.1]). Indeed, the dodecahedron
D can be split into 120 copies of its fundamental orthoscheme T ′ with Schläfli sym-
bol [5, 3, 4] (which is T2 in [28, Chapter 13.1]). Two copies of T ′ glued along an
appropriate face produce T : one may also think of reflecting T ′ in one of its faces.
We use T instead of T ′ because it gives rise to a group that is the unit group of a
maximal order, and is more convenient for our computations.

Let Γ denote the subgroup of index 2 in the group generated by reflections in
the faces of T consisting of orientation–preserving isometries. A presentation for Γ
is given by

⟨x, y, z | x2 = y2 = z3 = (yz)3 = (zx)5 = (xy)2 = 1⟩.
The arithmetic information associated to Γ is the following. From [27], Γ = Γ1

O
where O is a maximal order (unique up to B∗–conjugacy) of the quaternion algebra
B/k, where k = Q(θ), with θ4 − θ2 − 1 = 0, is a degree 4 complex extension of Q
with two real places, and B is ramified at both of them. Note that the maximal
totally real subfield of k is ℓ = Q(

√
5) and, since Γ is derived from a quaternion

algebra, it follows from Remarks 2.3 and 2.4 that Γ is ℓ–located.
The ring Rk contains two prime ideals of norm 11. We will use reduction modulo

one of these prime ideals, which will be denoted by P, to get an epimorphism φ :
Γ → PSL(2, F11), the kernel Γ1 of which will provide the initial rational homology
3–sphere M = H3/Γ1 to apply Lemma 3.6. From §8.1, we see that H1(M, Z) ∼=
(Z/2Z)7⊕(Z/22Z)3. The Magma routine in §8.1 establishes that Γ1 is 11–powerful.
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By reducing modulo Pn we get a tower of normal subgroups Γj of 11–power index
in Γ1 with

⋂
j≥1 Γj = {1}. In particular, Γ1 is residually–11.

There are 1023 subgroups of index 2 in Γ1, and we get Magma to test which
of these index 2 subgroups also have finite abelianisation (there are 363 of them).
We choose one of these as our subgroup ∆ to apply Lemma 3.6. Two examples M1
and M3 are taken from this list and Magma certifies that Lemma 3.6 can be indeed
applied.

Remark 4.1. The smallest volume of one of the rational homology 3-spheres con-
structed above equals 4 · |PSL(2, F11)| ·Vol(T ) which is approximately 189.4731 . . ..

5. Bounding cusped hyperbolic 4-manifolds: building on the examples
of [4] and [2]

We begin by recalling the arithmetic rational homology 3-spheres of [4] and [2].
Thus, let B be the quaternion division algebra over Q(

√
−2) ramified at the prime

ideals P = ⟨1 +
√
−2⟩ and P = ⟨1 −

√
−2⟩ of Z[

√
−2] of norm 3. Let O ⊂ B be a

maximal order (which is unique up to B∗–conjugacy since the type number is 1),
and let Γ1

O denote the image in PSL(2, C) of the elements of norm 1.
In [4], Calegari and Dunfield construct a tower of finite index subgroups Γj in

Γ1
O with the following properties:

(1) Γ1 = Γ1
O and Γj+1 ⊂ Γj ;

(2) Γj+1 ▹ Γj and Γj ▹ Γ1 for all j;
(3) Γj/Γj+1

∼= (Z/3Z)2, resp. ∼= Z/3Z, when j is odd, resp. j is even;
(4)

⋂
j≥1 Γj = 1;

(5) Mj = H3/Γj is a rational homology 3–sphere for j ≥ 2.

Note that in the construction of the manifolds Mj in [4], the fact they were ra-
tional homology 3–spheres was conditional on the Generalised Riemann Hypothesis
and part of the Langlands Program, but this was established unconditionally in [2].

Another important feature of the commensurability class of Γ1
O is that each group

Γ commensurable with Γ1
O contains arithmetic Fuchsian subgroups, and so if Γ is

torsion-free, the manifold H3/Γ contains immersed totally geodesic surfaces (see
[28, Theorem 9.5.4]). In particular, all the manifolds Mj , j ≥ 2, contain immersed
totally geodesic surfaces. Hence, by Remark 2.3 each of the manifolds Mj are of
simplest type, and since the totally real subfield of index 2 is Q, these are simplest
type for admissible quadratic forms defined over Q. In addition, since each of the
groups Γj are derived from a quaternion algebra, Remark 2.4 applies to each of the
groups Γj (so they satisfy the hypothesis of Theorem 2.1), and so the manifolds Mj

embed in a cusped hyperbolic 4–manifold Xj .
We will now build a second tower of arithmetic rational homology 3–spheres Nj

with Nj → Mj a double cover. The discussion above concerning Mj applies equally
well to Nj , and so we can deduce that each of the manifolds Nj , j ≥ 2, embeds
in a cusped hyperbolic 4–manifold. The point about passing to the Nj is that by
construction, they admit a free involution and so Lemma 3.6 will apply to arrange
bounding. Below we provide the necessary details.

In fact our starting point is the group Γ2. We will make use of a presentation of
Γ2 computed from that given for Γ1 in §8.2 (as in [4] and [2]). As above, we will
make use of Magma [1] in what follows, and the Magma routine including all the
calculations is included in §8.2. That Γ2 is 3–powerful is already established in [4]
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and [2], and from the properties of the groups Γj listed above, we see that Γ2 is
residually–3.

Referring to §8.2, we see that H1(Γ2, Z) ∼= Z/6Z⊕Z/6Z⊕Z/36Z, and so Γ2 has
7 subgroups of index 2. We will choose one of these subgroups, namely L4 (from
the Magma routine in §8.2), which we define as ∆2. The construction of our new
tower of rational homology 3–spheres will be completed by applying Lemma 3.6
once we establish that ∆2 is 3–powerful. As before this is certified using Magma
[1] via the pQuotient routine, and the routine IsPowerful. We refer the reader to
§8.2.

Remark 5.1. Using the calculations of [4] it can be shown that the smallest vol-
ume of one of the rational homology 3–spheres constructed above is approximately
144.5531 . . ., which is of the same order of magnitude as the example in Remark
4.1.

6. Examples of 4–manifolds using Theorem 2.1

We briefly describe how to implement Theorem 2.1 to provide infinitely many
commensurability classes of closed and cusped hyperbolic 4–manifolds Yj and Wj

for which Xj and Nj embeds, thereby allowing us to conclude the proof of Theorems
A and B. To do this, we need to construct an admissible quadratic form over a
totally real field.

Closed case. As follows from [3] the group Γ is a subgroup in the group O(f, Rℓ)

of the admissible quadratic form f = x2
1+x2

2 +x2
3− 1+

√
5

2 x2
4 over the field ℓ = Q(

√
5)

with the ring of integers Rℓ = Z[ 1+
√

5
2 ]. Let q = x2

0+f . The separability arguments
from [22] can be adopted so that we produce a tower of manifold coverings N ′

i →
H4/SO(q, Rℓ), for i = 1, 2, . . ., of ever increasing degrees (and thus having different
volumes), such that Mj = H3/Γj embeds in each N ′

i . By applying Lemma 3.1 to
each N ′

i we get an infinite sequence W ′
i with ∂W ′

i = Mj . Thus, in Theorem A, we
can set Wj = W ′

i , for any i = 1, 2, . . ..

Cusped case. The quaternion algebra B/Q(
√
−2) used by [4] can be described

via a Hilbert symbol as

(
−1,3

Q

)
⊗Q Q(

√
−2). Using [27] or [28, Chapter 10.2],

an admissible quadratic form is f = x2
1 + 6x2

2 + 6x2
3 − 2x2

4. Now let q = x2
0 + f

and apply the above argument to get infinitely many rational homology 3–spheres
Xj embedding each into infinitely many manifolds N ′

i , and thus each bounding
infinitely many W ′

i ’s. The only difference being that W ′
i are each cusped. Then we

can set Yj = W ′
i for any i = 1, 2, . . ..

7. Colourings and rational homology 3–spheres

In this section we provide a more concrete construction of some “sporadic” ra-
tional homology 3–spheres that bound geometrically. These will be built from the
all right dodecahedron in H3, and will be commensurable with the examples in §4.
The details are given in the subsections below.
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7.1. Colourings of right–angled polyhedra. A finite-volume polytope P ⊂ Xn

(for Xn = Sn, En, Hn being spherical, Euclidean and hyperbolic n–dimensional
space, respectively, see [31, Chapters 1–3]) is called right–angled if any two codi-
mension 1 faces (or facets, for short) are either intersecting at a right angle or
disjoint. It is known that compact hyperbolic right-angled polytopes cannot exist
if n > 4 [30]. The only compact right-angled spherical and Euclidean polytopes
are the n–simplex and the n–parallelotope, respectively. A sufficient condition for
an abstract 3–polytope to be realisable as right–angled hyperbolic one is given in
[34, Theorem 2.4]. There is no such classification for right-angled n–polytopes with
n ≥ 4. We refer the reader to [10, 18, 30, 34] for more information on right–angled
polytopes.

One of the important properties of hyperbolic right-angled polytopes is that their
so-called colourings provide a rich class of hyperbolic manifolds. By inspecting the
combinatorics of a colouring, one may obtain important topological and geometric
information about the associated manifold.

Let P ⊂ Xn be a compact, right-angled polytope with the set of facets F . A
colouring of P is a map λ : F → W , where W is a Z/2Z–vector space. The map λ
is called proper if, for every vertex v = F1 ∩ . . . ∩ Fn, the vectors λ(F1), . . . ,λ(Fn)
are linearly independent.

If the polytope P or the vector space W are clear from the context, then we
will omit them and simply refer to λ as a colouring. The rank of λ is the Z/2Z–
dimension of imλ. We will always assume that colourings are surjective, in the
sense that the image of the map λ is a generating set of vectors for W .

A colouring of a right-angled n–polytope P naturally defines a homomorphism,
which we still denote by λ without much ambiguity, from the associated right–
angled Coxeter group Γ(P), that is generated by reflections in all the facets of P,
into W with its natural group structure. Being a Coxeter polytope, P has a natural
orbifold structure as the quotient Xn/Γ(P).

Proposition 7.1 ([9, Proposition 1.7]). If the colouring λ is proper, then kerλ <
Γ(P) is torsion-free, and Mλ = Xn/kerλ is a closed manifold.

Notice that if P ⊂ Xn is a compact right-angled polytope then P is necessarily
simple and its dual K = (∂P)∗ is a simplicial complex.

Let Sym(P) be the group of combinatorial symmetries of P. Two colourings λ
and µ of P are called DJ–equivalent (or, simply, equivalent) if there exist a map
ϕ ∈ Aut(W ) and a symmetry σ ∈ Sym(P) such that µ = ϕ ◦ λ ◦ σ (see [9] for
details).

The group Symλ(P) of coloured symmetries of a polytope P with colouring λ is
defined as Symλ(P) = {σ ∈ Sym(P) | λ ◦ σ is DJ–equivalent to λ}.

We say that a (Z/2Z)k-colouring λ is orientable if the orbifold Mλ is orientable.
We have the following criterion for orientability.

Proposition 7.2 ([20], Lemma 2.4). The orbifold Mλ is orientable if and only if
λ is equivalent to a colouring that assigns to each facet a colour in W ∼= (Z/2Z)k

with an odd number of entries 1.

Given a right-angled polytope P ⊂ Xn with a (Z/2Z)k–colouring λ, let us enu-
merate the facets F of P in some order. Then we can assume that F = {1, 2, . . . , m}.
Let Λ be the defining matrix of λ that consists of the column vectors λ(1), . . . ,λ(m)
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exactly in this order. Hence Λ is a matrix with k rows and m columns. More pre-
cisely, Λ represents the abelianisation of λ, i.e. the former is a map such that
Λ ◦ ab = λ, where ab : Γ → (Z/2Z)m is the abelianisation map that takes ri, the
reflection of the facet i, to ei.

Let Row(Λ) denote the row space of Λ, while for a vector ω ∈ Row(Λ) let Kω be
the simplicial subcomplex of the complex K = KP spanned by the vertices i, also
labelled by the elements of {1, 2, . . . , m}, such that the i–th entry of ω equals 1.

Then the rational cohomology of Mλ can be computed via the following formula,
cf. [6, Theorem 1.1].

(1) Hp(Mλ, Q) ∼=
⊕

ω∈Row(Λ)

H̃p−1(Kω, Q).

Moreover, the cup product structure is given by the maps [6, Main Theorem]:

(2) H̃p−1(Kω1 , Q) ⊗ H̃q−1(Kω2 , Q) 2→ H̃p+q−1(Kω1+ω2 , Q).

7.2. Colouring extensions. Let λ : F → (Z/2Z)k be any colouring. A (surjec-
tive) colouring µ : F → (Z/2Z)k+1 is called an extension of λ if there is a linear
projection p : (Z/2Z)k+1 → (Z/2Z)k such that λ = p ◦ µ.

Proposition 7.3. Let λ : F → (Z/2Z)k be any colouring and µ : F → (Z/2Z)k+1

its extension. Then Mµ double-covers Mλ. Moreover, if λ is proper or orientable,
so is µ.

Proof. Let Γ = Γ(P) be the reflection group associated with P. Let λ : Γ →
(Z/2Z)k and µ : Γ → (Z/2Z)k+1 be the homomorphisms induced by λ and µ,
respectively. By definition, we have that λ = p ◦ µ, and it follows that kerλ =
ker (p ◦ µ) = µ−1(ker p). Moreover, Im p ∼= (Z/2Z)k and |ker p| = [(Z/2Z)k+1 :
Im p] = 2. Thus ker p = {0, v0} for some v0 ∈ (Z/2Z)k+1, v0 ̸= 0.

Since µ is surjective, there exists u0 ∈ µ−1(v0) ̸= ∅. Since µ is a homomorphism,
µ−1(v0) = u0 + kerµ. Then kerλ = kerµ ) (u0 + kerµ), and thus kerµ ▹2 kerλ.
Hence Mµ is a double cover of Mλ.

Finally, assume that {λ(F1), . . . ,λ(Fs)} ⊂ (Z/2Z)k is a set of linearly indepen-
dent colours. By using the fact that λ = p◦µ, we easily obtain that µ(F1), . . . , µ(Fs)
are linearly independent. Hence, if λ is proper then µ is proper too. Also, if Mµ

double-covers Mλ and the latter is orientable, so is Mµ. !
One direct application of Equation (1) to extensions of colourings is the following.

Proposition 7.4. Let λ : Γ → (Z/2Z)k be a colouring and µ its extension. Let
Λ and M be their respective defining matrices. Then, up to equivalence, M is the
matrix obtained from Λ by adding an extra row vector v ∈ (Z/2Z)m = ab(Γ), such
that v /∈ Row(Λ). Moreover, if λ is orientable, so is µ. Finally, for all p ≥ 0,

Hp(Mµ, Q) = Hp(Mλ, Q) ⊕

⎛

⎝
⊕

ω∈Row(Λ)

H̃p−1(Kω+v, Q)

⎞

⎠ .

Proof. Up to isomorphism, we may assume the projection p : (Z/2Z)k+1 → (Z/2Z)k

is just the canonical projection onto the first k coordinates. Then, since p ◦M = Λ,
it is clear that M is the matrix Λ with another row v ∈ (Z/2Z)m added. Moreover,
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µ is surjective if and only if M is surjective, and the latter holds if and only if
v /∈ Row(Λ). The colouring extensions can be seen in red in the diagram below:

Γ (Z/2Z)k+1

(Z/2Z)m (Z/2Z)k

µ

ab

λ

p

Λ

M

Clearly, Row(M) = Row(Λ) )
(
v + Row(Λ)

)
. We conclude by applying Equa-

tion (1). !
Conversely, there is a criterion to tell whether a given colouring µ is an extension

of some other colouring λ.

Proposition 7.5. Let µ : Γ(P) → W be a proper colouring, and let Wp =
µ
(
StabΓ(p)

)
for any vertex p of P . Then µ is an extension of some proper colouring

if and only if
⋃

p Wp ! W .

Proof. Assume that there is a projection p : W ∼= (Z/2Z)k → (Z/2Z)k−1 such that
p◦µ is a proper colouring. Then, for any codimension s face f = F1∩. . .∩Fs of P we
have (p◦µ)(F1)+ . . .+(p◦µ)(Fs) ̸= 0. This means that µ(F1)+ . . .+µ(Fs) /∈ ker p.
As in the proof of Proposition 7.3, we have that ker p = {0, v0} for some v0 ∈ W
and, in particular, µ(F1)+ . . .+µ(Fs) ̸= v0 for any face f = F1∩ . . .∩Fs. It follows
that v0 /∈ Wf for any such face f and, in particular, for any vertex q ∈ P.

Conversely, assume there is a vector v0 ∈ W \
⋃

q Wq. Then µ(F1) + . . . +

µ(Fs) ̸= v0 for any codimension s face f = F1 ∩ . . . ∩ Fs of P. Let W ∼= (Z/2Z)k

and p : (Z/2Z)k → (Z/2Z)k−1 be the projection along v0. Since µ is proper, we
also have that µ(F1) + . . . + µ(Fs) ̸= 0 for any face f = F1 ∩ . . . ∩ Fs, that is,
µ(F1) + . . . + µ(Fs) /∈ {0, v0} = ker p. Let us then set λ = p ◦ µ. This is a proper
colouring since λ(F1) + . . . + λ(Fs) /∈ p(ker p) = {0} for all faces f = F1 ∩ . . . ∩ Fs.
By definition, µ is an extension of λ. !
Example 7.6 (The Hantzsche–Wendt colouring). Let λ be the colouring of the
3–cube defined in [12, p. 8] such that Mλ is the Hantzsche–Wendt manifold [17].
In particular, rankλ = 4. However, we have that

⋃
p Wq = W , and it follows from

Proposition 7.5 that λ is not an extension of any colouring.

7.3. Rational homology 3–spheres. We say that a CW–complex is a rational
homology point if all its reduced Q–homology groups are trivial.

Let ϵ = (1, . . . , 1) ∈ (Z/2Z)m. By Proposition 7.2, we have that ϵ ∈ rowΛ
for every orientable λ, since it’s given by the sum of rows of Λ. By applying
Equation (1), we have the following.

Lemma 7.7. An orientable Mλ is a rational homology sphere if and only if for all
ω ∈ Row(Λ) \ {0, ε}, Kω is a rational homology point.

Proof. The only non-trivial cohomology groups of Mλ are Hn(Mλ, Q)∼=H0(Mλ, Q)
∼= H̃−1(K0, Q) ∼= Q and H0(Mλ, Q) ∼= Hn(Mλ, Q) ∼= H̃n−1(Kε, Q) ∼= Q. There-
fore, every other simplicial subcomplex Kω must have trivial reduced homology
groups. !
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By applying Equation (2), we get a useful consequence.

Lemma 7.8. Let Mλ be an orientable n–manifold and ω ∈ Row(Λ) \ {0, ϵ}. Then
Kω is a rational homology point if and only if Kϵ−ω is so.

Proof. Assume that Kω is not a rational homology point. Then H̃∗(Kω, Q) is non–
trivial. Let 0 ̸= α ∈ H̃i(Kω, Q) for some i ∈ {0, . . . , n − 2}. By Equation (1),
α ∈ Hi+1(Mλ, Q). By [16, Corollary 3.39], there exists β ∈ Hn−i−1(Mλ, Q)
such that α ⌣ β is the generator of Hn(Mλ, Q). Then, by Equation (1), α ⌣
β is the generator of H̃n−1(Kϵ, Q), since Kϵ is homotopically Sn−1. Finally, by
Equations (1)–(2), we obtain that 0 ̸= β ∈ H̃n−i−2(Kϵ−ω, Q), since otherwise the
product α ⌣ β would not belong to H̃n−1(Kϵ, Q). !

Thus, we can improve Lemma 7.7 algorithmically by checking only the connec-
tivity of some graphs.

Corollary 7.9. An orientable 3–manifold Mλ is a rational homology sphere if and
only if for all ω ∈ Row(Λ) \ {0, ε} the 1–skeleton of Kω is connected.

Proof. If one proper subcomplex Kω has a non-trivial cycle then, by Lemma 7.8, the
complementary complex Kε−ω will be disconnected. It suffices therefore to check
if all proper, non-empty subcomplexes Kω are connected. Clearly the connectivity
of Kω depends only on the connectivity of its 1–skeleton. !

In the case of double covers, the transfer homomorphisms [16, Section 3.G] can
be easily used in order to obtain the following statement:

Lemma 7.10. Let Y be a closed manifold that is a double cover of another manifold
X. If Y is a rational homology sphere, then X is either a rational homology sphere
or a rational homology point.

Thus, if we want to obtain a colouring µ producing a 3–dimensional rational
homology sphere, such that µ is an extension of a proper colouring λ, then we
need that the starting colouring λ also produce a rational homology sphere. In this
regard, we can use the following algorithm.

Lemma 7.11. Let λ be a proper colouring such that the 3–manifold Mλ is a
rational homology sphere. Let µ be any extension of λ, obtained by adding to Λ
a row vector v /∈ rowΛ. Then Mµ is a rational homology sphere if and only if
for every pair {ω, ϵ− ω} ⊂ Row(Λ), we have that Kω+v is connected and has only
trivial homology 1–cycles.

Proof. By Proposition 7.4, we have that Mµ is a rational homology sphere if and
only if Kω+v is homologically trivial for every ω ∈ Row(Λ). By Lemma 7.8, Kω+v

is homologically trivial if and only if Kϵ−(ω+v) is so. Since ϵ− (ω+ v) = (ϵ−ω)+ v
and ϵ ∈ Row(Λ), we have that also ϵ − ω ∈ Row(Λ). Therefore, it is enough to
check whether Kω+v is homologically trivial for each pair {ω, ϵ − ω} ⊂ Row(Λ).
Since K is homeomorphic to S2 and Kω+v is a proper subcomplex of K, then Kω+v

is homologically trivial if and only if it is connected and has only trivial homology
1–cycles. !
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7.4. A rational homology sphere from colouring that bounds geometri-
cally.

Proposition 7.12. Let λ : Γ(P) → W be a proper colouring of the hyperbolic,
compact, right–angled 3–polytope P with arithmetic reflection group Γ = Γ(P). If⋃

q Wq ! W , then Mλ bounds geometrically. Equivalently, any extension of a proper
colouring of P bounds geometrically.

Proof. By [33], and Γ is of simplest type, and by [35, Theorem 5] we have that Γ is
also k–located. Then Mλ = H3/Γλ is an arithmetic manifold with k–located Γλ,
for any proper colouring of P. Thus, Mλ embeds geodesically by Theorem 2.1.

If
⋃

q Wq ! W then, by Proposition 7.5, λ is an extension of some colouring µ
and, by Proposition 7.3, we have that Mλ double-covers Mµ. Then Mλ has a
fixed point free involution and therefore bounds geometrically by Lemma 3.1. !
Theorem 7.13. There is a colouring µ of the right-angled dodecahedron such that
Mµ is an arithmetic hyperbolic rational homology 3–sphere that bounds geometri-
cally.

Proof. Let D be the right-angled dodecahedron and take the only orientable small
cover λ of D given in [15, p. 6]. Thus

Λ =

⎛

⎝
1 0 0 0 0 1 1 1 1 1 0 0
0 1 0 0 1 1 0 1 1 0 0 1
0 0 1 1 0 1 0 1 1 0 1 0

⎞

⎠ ,

where the labelling of the faces of D is given in Figure 1. By Equation (1), Mλ is
a rational homology sphere. If we find an extension µ of λ such that Mµ is also
a rational homology sphere, then we are done by Proposition 7.12, since Γ(D) is
arithmetic by [34, Lemma 3.8].

By Lemma 7.11, it is enough to find a row vector v ∈ (Z/2Z)12 \ Row(Λ) such
that the complexes Kω+v are connected and have only trivial homology 1–cycles
for ω ∈ {0, eT

1 Λ, (e1 + e3)TΛ, eT
3 Λ}.

Recall that Row(Λ) = {xTΛ | x ∈ (Z/2Z)3} and ϵ = (1, 1, 1)TΛ. Let ω = xTΛ
for some x ∈ (Z/2Z)3. Then for a face F of D we have that F ∗ ∈ Kω if and only
if x · λ(F ) = 1. In particular, this means that the subcomplexes Kij = K(ei+ej)T Λ

for {i, j} ⊂ {1, 2, 3} are exactly the subcomplexes of K with vertices coloured by
ei and ej , while the subcomplexes Ki4 = K(ei)T Λ are the subcomplexes of K with
vertices coloured by ei and e1 + e2 + e3.

Due to the constraint that Kv be a rational homology point, the choice of vertices
(Fi)∗ in K such that µ(Fi)4 = 1 (or, equivalently, the choice of vi ̸= 0) should define
one such subcomplex. By choosing Kv as the simplex {3, 7, 9} around which the
three complexes K13, K14, K34 are “wrapped”, we have precisely that all four
subcomplexes Kv+ω are rational homology points as shown in Figure 1.

Explicitly, the colouring µ with defining matrix

M =

⎛

⎜⎜⎝

1 0 0 0 0 1 1 1 1 1 0 0
0 1 0 0 1 1 0 1 1 0 0 1
0 0 1 1 0 1 0 1 1 0 1 0
0 0 1 0 0 0 1 0 1 0 0 0

⎞

⎟⎟⎠

is an extension of Λ by Proposition 7.4, and Mµ is a rational homology sphere by
Equation (1). Hence, by Proposition 7.12, Mµ bounds geometrically. Finally, since
Γ(D) is arithmetic, it follows that Mµ is also arithmetic. !
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Figure 1. The dodecahedron used in the proof of Theorem 7.13
with its face labelling. The red, green, blue and yellow subcom-
plexes are K13, K14, K34 and Kv, respectively.

Remark 7.14. A computer search among all possible extensions of the colouring Λ
from Theorem 7.13 returned that there are, up to DJ–equivalence [12, Definition
2.4], 7 extensions which are rational homology 3–spheres. However, the number of
equivalence classes up to isometry might be smaller, given that the exact equivalence
between isometry classes and colouring classes of compact hyperbolic 3–polytopes
holds only for small covers [34, Theorem 3.13].

Table 1. All possible extensions κ of λ (up to DJ–equivalence)
that produce rational homology spheres, as described in Re-
mark 7.14: Highlighted in blue is the penultimate entry that cor-
responds to µ

Colouring vector H1(Mκ, Z) Symκ(D)
(1, 2, 4, 12, 10, 15, 9, 15, 7, 1, 4, 2) (Z/2Z)4 × (Z/4Z)6 trivial
(1, 2, 4, 12, 2, 15, 1, 7, 7, 9, 4, 2) (Z/2Z)8 × (Z/4Z)4 Z/3Z
(1, 2, 4, 4, 10, 15, 1, 7, 7, 9, 4, 2) (Z/2Z)8 × (Z/4Z)4 trivial

(1, 2, 4, 12, 10, 15, 1, 15, 7, 9, 4, 2) (Z/2Z)4 × (Z/4Z)6 Z/2Z
(1, 2, 4, 12, 10, 15, 1, 7, 15, 9, 4, 2) (Z/2Z)4 × (Z/4Z)6 trivial
(1, 2, 4, 4, 10, 7, 9, 15, 15, 9, 4, 2) (Z/2Z)8 × (Z/4Z)4 Z/3Z
(1, 2, 4, 12, 10, 7, 1, 15, 7, 9, 12, 2) (Z/2Z)4 × (Z/4Z)6 (Z/2Z)2

In Table 1, we provide a representative of each colouring class, together with its
first integral homology group and coloured symmetry group (cf. [23, Section 2.3]
for more information on coloured symmetries). The volume of each Mλ in Table 1
is 16 · VolD ≈ 68.89936 . . ..
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Each colouring is represented by a colouring vector v = (ci)11i=0 ∈ Z12 that
assigns the colour ci to the facet Fi of the right-angled dodecahedron in Figure 1.
The colour ci is given in the binary notation: if ci = (x, y, z, t) ∈ (Z/2Z)4, then we
use the map ci 2→ x + 2y + 4z + 8t. The colouring µ in the proof of Theorem 7.13
is equivalent to the penultimate entry (highlighted in blue) of Table 1. For further
details, we refer the reader to the auxiliary SageMath code available on GitHub
[13].

8. Magma computations

8.1. Magma calculations for §4. Referring to the Magma [1] code below, g
denotes the group Γ, and K = K1 denotes the group Γ1.

> g<x,y,z>\colonequals Group<x,y,z|x^2,y^2,z^3,(y*z)^3,(z*x)^5,(x*y)^2>;
> P\colonequals PSL(2,11);
> H \colonequals Homomorphisms(g, P: Limit \colonequals 2);
> print H;
[
Homomorphism of GrpFP: g into GrpPerm: P, Degree 12, Order 2^2 * 3 * 5 * 11
induced by

x |--> (1, 9)(2, 12)(3, 6)(4, 7)(5, 11)(8, 10)
y |--> (1, 5)(2, 7)(3, 10)(4, 12)(6, 8)(9, 11)
z |--> (1, 8, 2)(3, 4, 7)(5, 12, 11)(6, 9, 10),

Homomorphism of GrpFP: g into GrpPerm: P, Degree 12, Order 2^2 * 3 * 5 * 11
induced by

x |--> (1, 12)(2, 10)(3, 7)(4, 5)(6, 9)(8, 11)
y |--> (1, 5)(2, 7)(3, 10)(4, 12)(6, 8)(9, 11)
z |--> (1, 8, 2)(3, 4, 7)(5, 12, 11)(6, 9, 10)

]
> imgs\colonequals [P!(1, 9)(2, 12)(3, 6)(4, 7)(5, 11)(8, 10),
P!(1, 5)(2, 7)(3, 10)(4, 12)(6, 8)(9, 11),
P!(1, 8,2)(3, 4, 7)(5, 12, 11)(6, 9, 10)];
> e \colonequals hom< g->P | imgs >;
e(g) eq P;
true
> K\colonequals Kernel(e);
> print AbelianQuotientInvariants(K);
[ 2, 2, 2, 2, 2, 2, 2, 22, 22, 22 ]
> K1\colonequals Rewrite(g,K);
> IsPowerful \colonequals function (G)
function> return DerivedGroup(G) subset Agemo (G, 1);
function> end function;
> H,A,B\colonequals pQuotient(K1,11,2:Print\colonequals 1);

Lower exponent-11 central series for K1

Group: K1 to lower exponent-11 central class 1 has order 11^3

Group: K1 to lower exponent-11 central class 2 has order 11^6
> IsPowerful(H);
true
> l\colonequals LowIndexSubgroups(K1,<2,2>);
> print #l;
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1023
> M\colonequals [x: x in l | not (0 in AbelianQuotientInvariants (x))];
> print #M;
363
> print AbelianQuotientInvariants(M[1]);
[ 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 44, 132, 132 ]
> M1\colonequals Rewrite(K1,M[1]);
> HH,AA,BB\colonequals pQuotient(M1,11,2:Print\colonequals 1);

Lower exponent-11 central series for M1

Group: M1 to lower exponent-11 central class 1 has order 11^3

Group: M1 to lower exponent-11 central class 2 has order 11^6
> IsPowerful(HH);
true
> M3\colonequals Rewrite(K1,M[3]);
> HH,AA,BB\colonequals pQuotient(M3,11,2:Print\colonequals 1);

Lower exponent-11 central series for M3

Group: M3 to lower exponent-11 central class 1 has order 11^3

Group: M3 to lower exponent-11 central class 2 has order 11^6
> IsPowerful(HH);
true

8.2. Magma calculations for §5. Referring to the routine below, g is the group
Γ1, and K = K1 is the group Γ2.

g<a,b,c,d>\colonequals Group<a,b,c,d|d^3,a*c*d*c*b^2*c*a*d^-1*c^-1,
a*c*b^2*d^-1*c^-1*a^-1*b^-1*d*b^-1,a*d^-1*a^-1*c^-1*b^-1*d*b*c,(b^2*d^-1)^3,
b*d^-1*b*c*a^-1*c*d*a^-1>;
> print AbelianQuotientInvariants(g);
[ 2, 6, 12 ]
H,A,B\colonequals pQuotient(g,3,1:Print\colonequals 1);

Lower exponent-3 central series for g

Group: g to lower exponent-3 central class 1 has order 3^2
> K\colonequals Kernel(A);
> print AbelianQuotientInvariants(K);
[ 6, 6, 36 ]
> K1\colonequals Rewrite(g,K);
> l\colonequals LowIndexSubgroups(K1,<2,2>);
> print AbelianQuotientInvariants(l[1]);
[ 3, 3, 3, 3, 6, 6, 6, 6, 18 ]
> print AbelianQuotientInvariants(l[2]);
[ 3, 3, 3, 3, 18, 18, 18, 0 ]
> print AbelianQuotientInvariants(l[3]);
[ 3, 3, 3, 3, 36, 36, 0 ]
> print AbelianQuotientInvariants(l[4]);
[ 10, 30, 60, 180 ]
> print AbelianQuotientInvariants(l[5]);
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[ 3, 3, 3, 3, 18, 18, 18, 0 ]
> print AbelianQuotientInvariants(l[6]);
[ 3, 3, 3, 3, 9, 9, 18, 0, 0 ]
> print AbelianQuotientInvariants(l[7]);
[ 10, 30, 60, 180 ]
> L4\colonequals Rewrite(K1,l[4]);
> H,A,B\colonequals pQuotient(L4,3,2:Print\colonequals 1);

Lower exponent-3 central series for L4

Group: L4 to lower exponent-3 central class 1 has order 3^3

Group: L4 to lower exponent-3 central class 2 has order 3^6
> IsPowerful \colonequals function (G)
function> return DerivedGroup(G) subset Agemo (G, 1);
function> end function;
> IsPowerful(H);
true
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