
Pඋඈർ. Iඇඍ. Cඈඇ඀. ඈൿ Mൺඍඁ. – 2018
Rio de Janeiro, Vol. 1 (1191–1214)

PROFINITE RIGIDITY
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Abstract
We survey recent work on profinite rigidity of residually finite groups.

1 Introduction

It is an old and natural idea to try to distinguish finitely presented groups via their finite
quotients, and recently, there has been renewed interest, especially in the light of re-
cent progress in 3-manifold topology, in the question of when the set of finite quotients
of a finitely generated residually finite group determines the group up to isomorphism.
In more sophisticated terminology, one wants to develop a complete understanding
of the circumstances in which finitely generated residually finite groups have isomor-
phic profinite completions. Motivated by this, say that a residually finite group Γ is
profinitely rigid, if whenever b∆ Š bΓ, then ∆ Š Γ (see Section 2.2 for definitions and
background on profinite completions).

It is the purpose of this article to survey some recent work and progress on profinite
rigidity, which is, in part, motivated by Remeslennikov’s question (see Question 4.1) on
the profinite rigidity of a free group. The perspective taken is that of a low-dimensional
topologist, and takes advantage of the recent advances in our understanding of hyper-
bolic 3-manifolds and their fundamental groups through the pioneering work of Agol
[2013] and Wise [2009].

Standing assumption: Throughout the paper all discrete groups considered will be
finitely generated and residually finite.
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2 Preliminaries

We begin by providing some background discussion on profinite groups and profinite
completions of discrete groups. We refer the reader to Ribes and Zalesskii [2000] for a
more detailed account of the topics covered here.

2.1 Profinite groups. A directed set is a partially ordered set I such that for every
i; j 2 I there exists k 2 I such that k � i and k � j . An inverse system is a family of
sets fXigfi2I g, where I is a directed set, and a family of maps �ij : Xi ! Xj whenever
i � j , such that:

• �i i = idXi
;

• �ij �j k = �ik , whenever i � j � k.

Denoting this system by (Xi ; �ij ; I ), the inverse limit of the inverse system (Xi ; �ij ; I )

is the set

lim
 �

Xi = f(xi ) 2
Y
i2I

Xi j�ij (xi ) = xj ; whenever i � j g:

If (Xi ; �ij ; I ) is an inverse system of non-empty compact, Hausdorff, totally dis-
connected topological spaces (resp. topological groups) over the directed set I , then
lim
 �

Xi is a non-empty, compact, Hausdorff, totally disconnected topological space (resp.
topological group).

In addition, if (Xi ; �ij ; I ) is an inverse system, a subset J � I is defined to be
cofinal, if for each i 2 I , there exists j 2 J with j � i . If J is cofinal we may form
an inverse system (Xj ; �j ; J ) obtained by omitting those i 2 I n J . The inverse limit
lim
 �

Xj can be identified with the image of lim
 �

Xi under the projection map
Q

i2I Xi

onto
Q

j 2J Xj .

2.2 Profinite completion. Let Γ be a finitely generated group (not necessarily resid-
ually finite for this discussion), and letN denote the collection of all finite index normal
subgroups of Γ. Note that N is non-empty as Γ 2 N, and we can make N into directed
set by declaring that

for M; N 2 N; M � N whenever M contains N:

In this case, there are natural epimorphisms �NM : Γ/N ! Γ/M , and the inverse limit
of the inverse system (Γ/N; �NM ; N) is denoted bΓ and defined to be to the profinite
completion of Γ.
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Note that there is a natural map � : Γ!bΓ defined by

g 7! (gN ) 2 lim
 �

Γ/N;

and it is easy to see that � is injective if and only if Γ is residually finite.
An alternative, perhaps more concrete way of viewing the profinite completion is

as follows. If, for each N 2 N, we equip each Γ/N with the discrete topology, thenQ
fΓ/N : N 2 Ng is a compact space and bΓ can be identified with j (Γ) where j :

Γ!
Q
fΓ/N : N 2 Ng is the map g 7! (gN ).

2.3 Profinite Topology. It will also be convenient to recall the profinite topology
on a discrete group Γ, its subgroups and the correspondence between the subgroup
structure of Γ andbΓ.

The profinite topology on Γ is the topology on Γ in which a base for the open sets
is the set of all cosets of normal subgroups of finite index in Γ.

Now given a tower T of finite index normal subgroups of Γ:

Γ > N1 > N2 > : : : ::::: > Nk > : : :

with \Nk = 1, this can be used to define an inverse system and thereby determines a
completion of bΓT (in which Γ will inject). If the inverse system determined by T is
cofinal (recall Section 2.1) then the natural homomorphismbΓ!bΓT is an isomorphism.
That is to say T determines the full profinite topology of Γ.

The following is important in connecting the discrete and profinite worlds (see Ribes
and Zalesskii [ibid., p. 3.2.2], where here we use Nikolov and Segal [2007] to replace
“open” by “finite index”).

Notation. Given a subset X of a profinite group G, we write X to denote the closure
of X in G.

Proposition 2.1. If Γ is a finitely generated residually finite group, then there is a
one-to-one correspondence between the set X of subgroups of Γ that are open in the
profinite topology on Γ, and the set Y of all finite index subgroups ofbΓ.

Identifying Γ with its image in the completion, this correspondence is given by:

• For H 2 X, H 7! H .

• For Y 2 Y, Y 7! Y \ Γ.

If H; K 2 X and K < H then [H : K] = [H : K]. Moreover, K GH if and only if
K GH , and H/K Š H/K.

Thus Γ andbΓ have the same finite quotients. The key result to formalize the precise
connection between the collection of finite quotients ofΓ and those ofbΓ is the following.
This is basically proved in Dixon, Formanek, Poland, and Ribes [1982] (see also Ribes
and Zalesskii [2000, pp. 88-89]), the mild difference here, is that we employ Nikolov
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and Segal [2007] to replace topological isomorphism with isomorphism. To state this
we introduce the following notation:

C(Γ) = fQ : Q is a finite quotient of Γg

Theorem 2.2. Suppose that Γ1 and Γ2 are finitely generated abstract groups. ThenbΓ1

andbΓ2 are isomorphic if and only if C(Γ1) = C(Γ2).

Given this, we make the following definition—this definition is taken, by analogy
with the theory of quadratic forms over Z, where two integral quadratic forms can be
locally equivalent (i.e. at all places of Q), but not globally equivalent over Z.

Definition 2.3. The genus of a finitely generated residually finite group Γ is: G(Γ) =

f∆ : b∆ ŠbΓg.
In addition, if P is a class of groups, then we define GP (Γ) = f∆ 2 G(Γ) : ∆ 2 P g.

For convenience we restate the definition of profinite rigidity.

Definition 2.4. Let Γ be a finitely generated group. Say that Γ is profinitely rigid if
G(Γ) = fΓg.

For convenience we often say that Γ is profinitely flexible if it is not profinitely rigid.
In addition when Γ = �1(M ) where M is a compact 3-manifold we occasionally

abuse notation and refer to M as being profinitely rigid or flexible.

The basic questions we are interested in are the following (and also within classes of
groups P ).

Question 2.5. Which finitely generated (resp. finitely presented) groupsΓ are profinitely
rigid (resp. profinitely flexible)?

Question 2.6. How large can jG(Γ)j be for finitely generated (resp. finitely presented)
groups?

Question 2.7. What group theoretic properties are shared by (resp. are different for)
groups in the same genus?

These questions (and ones where the class of groups is restricted) provide the moti-
vation and focus of this article, with particular attention paid to Question 2.5.

2.4 Inducing the full profinite topology. Let Γ be a finitely generated residually
finite group and H < Γ. The profinite topology on Γ determines some pro-topology
on H and therefore some completion of H . To understand what happens in certain
cases that will be of interest to us, we recall the following. Since we are assuming that
Γ is residually finite, H injects intobΓ and determines a subgroup H �bΓ. Hence there
is a natural epimorphism bH ! H . This need not be injective. For this to be injective
(i.e. the full profinite topology is induced on H ) it is easy to see that the following
needs to hold:
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(*) For every subgroup H1 of finite index in H , there exists a finite index subgroup
Γ1 < Γ such that Γ1 \H < H1.

A important case where the full profinite topology is induced is when the ambient group
Γ is LERF, the definition of which we recall here. Suppose that Γ is a group and H a
subgroup of Γ, then Γ is called H -separable if for every g 2 GXH , there is a subgroup
K of finite index in Γ such that H � K but g … K; equivalently, the intersection of all
finite index subgroups in Γ containing H is precisely H . The group Γ is called LERF
(or subgroup separable) if it is H -separable for every finitely-generated subgroup H ,
or equivalently, if every finitely-generated subgroup is a closed subset in the profinite
topology.

Lemma 2.8. Let Γ be a finitely-generated group, and H a finitely-generated subgroup
of Γ. Suppose that Γ is H1-separable for every finite index subgroup H1 in H . Then
the profinite topology on Γ induces the full profinite topology on H ; that is, the natural
map bH ! H is an isomorphism.

Proof. Since Γ is H1 separable, the intersection of all subgroups of finite index in Γ

containing H1 is H1 itself. From this it easily follows that there exists Γ1 < Γ of finite
index, so that Γ1 \H = H1. The lemma follows from (*) above. tu

Immediately from this we deduce.

Corollary 2.9. Let Γ be a finitely generated group that is LERF. Then if H < Γ is
finitely generated then the profinite topology on Γ induces the full profinite topology on
H ; that is, the natural map bH ! H is an isomorphism.

3 Two simple examples

We provide two elementary examples that already indicate a level of complexity in
trying to understand profinite rigidity and lack thereof. In addition, some consequences
of these results and techniques will be helpful in what follows.

Proposition 3.1. Let Γ be a finitely generated Abelian group, then G(Γ) = fΓg.

Proof. Suppose first that ∆ 2 G(Γ) and ∆ is non-abelian. We may therefore find a
commutator c = [a; b] 2 ∆ that is non-trivial. Since ∆ is residually finite there is a
homomorphism � : ∆! Q, with Q finite and �(c) ¤ 1. However, ∆ 2 G(Γ), so Q

is abelian and therefore �(c) = 1, a contradiction.
Thus ∆ is Abelian, so we can assume that Γ Š Zr ˚ T1 and ∆ Š Zs ˚ T2, where

Ti (i = 1; 2) are finite Abelian groups. It is easy to see that r = s, for if r > s say, we
can choose a large prime p such that p does not divide jT1jjT2j, and construct a finite
quotient (Z/pZ)r that cannot be a quotient of∆.

In addition if T1 is not isomorphic to T2, then some invariant factor appears in T1

say, but not in T2. One can then construct a finite abelian group that is a quotient of T1

(and hence Γ1) but not of Γ2. tu
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Remark 3.2. The proof of Proposition 3.1 also proves the following. Let Γ be a finitely
generated group, and suppose that ∆ 2 G(Γ). Then Γab Š ∆ab. In particular b1(Γ) =

b1(∆).

Somewhat surprisingly, moving only slightly beyond abelian groups (indeed Z) to
groups that are virtually Z, the situation is dramatically different. The following result
is due to Baumslag [1974].

Theorem 3.3. There exists non-isomorphic meta-cyclic groups Γ1 and Γ2 for whichbΓ1 Š bΓ2. Both of these groups are virtually Z and defined as extensions of a fixed
finite cyclic group F by Z.

A more precise form of what Baumslag actually proves in Baumslag [ibid.] is the
following:

Let F be a finite cyclic group with an automorphism of order n, where n is different
from 1, 2, 3, 4 and 6. Then there are at least two non-isomorphic cyclic extensions of
F , say Γ1 and Γ2 withbΓ1 ŠbΓ2.

A beautiful, and useful observation, that is used in the proof that the constructed groups
Γ1 and Γ2 lie in the same genus is the following that goes back to Hirshon Hirshon
[1977]: Suppose that A and B are groups with A � Z Š B � Z, then bA Š bB .

Remark 3.4. Moving frommeta-cyclic to meta-abelian provides evenmore striking ex-
amples of profinite flexibility. Pickel [1974] constructs finitely presented meta-abelian
groups Γ for which G(Γ) is infinite.

4 Profinite rigidity and flexibility in low-dimensions

In connection with Question 2.5 perhaps the most basic case is the following that goes
back to Noskov, Remeslennikov, and Romankov [1979, Question 15] and remains open:

Question 4.1. Let Fn be the free group of rank n � 2. Is Fn profinitely rigid?

The groupFn arises in many guises in low-dimensional topology and affords several
natural ways to generalize. In the light of this, natural generalizations of Question 4.1
are the following (which remain open):

Question 4.2. Let Σg be a closed orientable surface of genus g � 2. Is �1(Σg)

profinitely rigid?

As wewill discuss in more detail below, profinite rigidity in the setting of 3-manifold
groups is different, however, one generalization that we will focus on below is the fol-
lowing question:

Question 4.3. Let M be a complete orientable hyperbolic 3-manifold of finite volume.
Is �1(M ) profinitely rigid?
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In this section we describe some recent progress on Questions 4.1, 4.2 and 4.3, as
well as other directions that generalize Question 4.1. However, we begin by recalling
some necessary background from the geometry and topology of 3-manifolds.

4.1 Some 3-manifold topology. For the purposes of this subsection, M will always
be a compact connected orientable 3-manifold whose boundary is either empty, or
consists of a disjoint union of incompressible tori. The Geometrization Conjecture of
Thurston was established by Perelman (see Morgan and Tian [2014] for a detailed ac-
count) and we state what is needed here in a convenient form. We refer the reader
to Bonahon [2002] or Thurston [1997] for background on geometric structures on 3-
manifolds.

Recall that M is irreducible if every embedded 2-sphere in M bounds a 3-ball, and
if M is prime (i.e. does not decompose as a non-trivial connect sum), then M is irre-
ducible or is covered byS2�S1, in which caseM admits a geometric structure modeled
on S2 �R.

Theorem 4.4. Let M be an irreducible 3-manifold.

1. If �1(M ) is finite, then M is covered by S3.

2. If �1(M ) is infinite, then M is either:

(i) hyperbolic and so arises as H3/Γ where Γ < PSL(2; C) is a discrete torsion-
free subgroup of finite co-volume, or;

(ii) a Seifert fibered space and has a geometry modeled on E3, H2 �R, NIL orfSL2, or;

(iii) a SOLV manifold, or;

(iv) a manifold that admits a collection of essential tori that decomposes M into
pieces that are Seifert fibered spaces with incompressible torus boundary, or have
interior admitting a finite volume hyperbolic structure. In this case, we will say
that M has a non-trivial JSJ decomposition.

An important well-known consequence of geometrization for us is the following
corollary.

Corollary 4.5. Let M be compact 3-manifold, then �1(M ) is residually finite.

A manifold M that admits a geometric structure modeled on E3, S2 � R, H2 � R,
NIL or SOLV all virtually fiber. That is to say, given M admitting such a structure
then there is a finite cover Mf ! M with Mf constructed as the mapping torus of a
surface homeomorphism f : Σg ! Σg , where g = 0 in the case ofS2�R, g = 1 in the
case of E3, NIL or SOLV and g > 1when the geometry is H2�R. If M is a compact
Seifert fibered space with incompressible torus boundary, then M also virtually fibers.
On the other hand, it is known (see Gabai [1986]) that closed manifolds admitting a
geometric structure modeled on fSL2 do not virtually fiber.
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Regarding virtual fibering of hyperbolic manifolds, a major breakthrough came with
Agol’s work in Agol [2008], which, taken together with work of Agol [2013] and Wise
[2009] (see also Groves and Manning [2017]) leads to the following.

Theorem 4.6 (Virtual fibering). Let M be a finite volume hyperbolic 3-manifold. Then
M has a finite cover that fibers over the circle.

For manifolds with a non-trivial JSJ decomposition, it was known previously that
there were graph manifolds (i.e. all pieces in the decomposition are Seifert fibered
spaces) that do not virtually fiber Neumann [1997], whilst more recently it was shown
in Przytycki and Wise [2018] that mixed 3-manifolds (i.e. those in Theorem 4.4 2(iv)
that have a decomposition containing a hyperbolic piece) are all virtually fibered.

4.2 Profinite completions of 3-manifold groups after Agol andWise. The remark-
able work of Agol [2013] and Wise [2009] has had significant implications on our un-
derstanding of the profinite completion of the fundamental groups of finite volume hy-
perbolic 3-manifolds. We refer the reader to the excellent book Aschenbrenner, Friedl,
and Wilton [2015] for a detailed discussion of the many consequences of Agol [2013]
and Wise [2009] for 3-manifold groups. One such concerns LERF (recall Section 2.4).
The following result summarizes work of Scott [1978] for Seifert fibered spaces, Agol
[2013] and Wise [2009] in the hyperbolic setting, and Sun [2016] who showed that
non-geometric irreducible 3-manifolds had non-LERF fundamental group

Theorem 4.7. Let M be an irreducible 3-manifold (as in Section 4.1). Then �1(M ) is
LERF if and only if M is geometric (i.e covered by Theorem 4.4 1, 2(i), (ii), (iii)).

Lemma 2.8 together with Theorem 4.7 yields the following consequence.

Corollary 4.8. Let M be a finite volume hyperbolic 3-manifold and H < �1(M ) a
finitely generated subgroup. Then the full profinite topology on H is induced by the
profinite topology of �1(M ). In particular the closure of H in 2�1(M ) is isomorphic tobH .

We now turn to goodness in the sense of Serre [1997]. Let G be a profinite group,
M a discrete G-module (i.e. an abelian group M equipped with the discrete topology
on which G acts continuously) and let C n(G; M ) be the set of all continous maps
Gn ! M . One defines the coboundary operator d : C n(G; M ) ! C n+1(G; M )

in the usual way thereby defining a complex C �(G; M ) whose cohomology groups
H q(G;M ) are called the continuous cohomology groups of G with coefficients in M .

Now let Γ be a finitely generated group. Following Serre [ibid.], we say that a group
Γ is good if for all q � 0 and for every finite Γ-module M , the homomorphism of
cohomology groups

H q(bΓ;M )! H q(Γ;M )

induced by the natural map Γ ! bΓ is an isomorphism between the cohomology of Γ
and the continuous cohomology ofbΓ.
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Example 4.9. Finitely generated free groups are good.

In general goodness is hard to establish, however, one can establish goodness for a
groupΓ that is LERF (indeed aweaker version of separability is all that is needed) and in
addition has a ”well-controlled splitting of the group” as a graph of groups Grunewald,
Jaikin-Zapirain, and Zalesskii [2008]; for example that coming from the virtual special
technology Wise [2009]. In addition, a useful criterion for goodness is provided by the
next lemma due to Serre [1997, Chapter 1, Section 2.6].

Lemma 4.10. The group Γ is good if there is a short exact sequence

1! N ! Γ! H ! 1;

such that H and N are good, N is finitely-generated, and the cohomology group
H q(N; M ) is finite for every q and every finite Γ-module M .

Coupled with Theorem 4.6 (the virtual fibering theorem) and commensurability in-
variance of goodness Grunewald, Jaikin-Zapirain, and Zalesskii [2008], this proves that
the fundamental groups of all finite volume hyperbolic 3-manifolds are good. Indeed,
more is true using Agol [2013] and Wise [2009] (as noticed by Cavendish [2012], see
also Reid [2015]):

Theorem 4.11. Let M be a compact 3-manifold, then �1(M ) is good.

Several notable consequences of this are recorded below.

Corollary 4.12. LetM be a closed irreducible orientable 3-manifold, andN a compact
3-manifold with 2�1(M ) Š2�1(N ). Then:

1. 2�1(M ) is torsion-free.

2. N is closed, orientable and can have no summand that has finite fundamental
group.

Proof. Let Γ = �1(M ) and ∆ = �1(N ). Since cd(Γ) = 3, H 3(Γ; Fp) ¤ 0 for every
prime p, and H q(Γ; M ) = 0 for every Γ-module M and every q > 3. By goodness,
these transfer to the profinite setting in the context of finite modules. It follows from
standard results about the cohomology of finite groups, that goodness forces 2�1(M ) to
be torsion-free. Hence ∆ is also torsion-free, and so N cannot have a summand that
has finite fundamental group.

In addition, N must be closed, since H 3(Γ; F2) ¤ 0 implies H 3(bΓ; F2) ¤ 0, and
if N is not closed we have, H 3(∆; F2) = H 3(b∆; F2) = 0. Orientability follows in a
similar fashion using H 3(Γ; Fp) ¤ 0 for p ¤ 2. tu

Remark 4.13. In Lubotzky [1993], it is shown that there are torsion-free subgroups
Γ < SL(n; Z) (n � 3) of finite index, for which bΓ contains torsion of all possible
orders. It follows that SL(n; Z) is not good for n � 3).
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4.3 Profinite flexibility of 3-manifold groups. Wenowdescribe some recent progress
on identifying 3-manifold groups by their profinite completions restricted to the class
of 3-manifold groups. To that end let

M = f�1(M ) : M is a compact 3-manifoldg:

We note that unlike in the previous subsection M need not be prime, can be non-
orientable, may have boundary other than tori and this boundary may be compressible.
By capping off 2-sphere boundary components with 3-balls, we can exclude S2 bound-
ary components (andRP 2 boundary components). Also note that included inM are the
fundamental groups of non-compact finite volume hyperbolic 3-manifolds where such
a manifold is viewed as the interior of a compact 3-manifold with boundary consisting
of tori or Klein bottles.

Example 4.14 (Profinitely flexible Seifert fibered spaces). We record a construction of
Hempel [2014] that provides examples of closed Seifert fibered spaces M1 and M2 that
are not homeomorphic but 2�1(M1) Š 2�1(M2). This builds on the idea of Baumslag
mentioned in Section 3.

Let f : S ! S be a periodic, orientation-preserving homeomorphism of a closed
orientable surface S of genus at least 2, and let k be relatively prime to the order of f .
Let Mf (resp. Mf k ) denote the mapping torus of f (resp. f k), and let Γf = �1(Mf )

(resp. Γf k = �1(Mf k )).
Hempel shows that bΓf Š

bΓf k by proving that Γf � Z Š Γf k � Z (c.f. the
example of Baumslag in Section 3). The proof is elementary group theory, but Hempel
also notes that, interestingly, the isomorphism Γf �Z Š Γf k �Z follows fromKwasik
and Rosicki [2004] where it is shown that (in the notation above)Mf �S1 ŠMf k�S1.

Of course some additional work is needed to prove that the groups are not isomorphic,
but in fact typically this is the case as Hempel describes in Hempel [2014]. Note that
these examples admit a geometric structure modeled on H2 �R.

More recently it was shown by Wilkes [2017] that the construction of Hempel is the
only occasion in which profinite rigidity fails in the closed case (there are also results
in the bounded case). More precisely:

Theorem 4.15 (Wilkes). Let M be a closed Seifert fibered space with infinite funda-
mental group. Then GM(�1(M )) = f�1(M )g unless M is as in Example 4.14 and the
failure is precisely given by the construction in Example 4.14. In this case, GM(�1(M ))

is finite.

The proof of this relies on some beautiful work of Wilton and Zalesskii [2017a] that
remarkably detects geometric structure from finite quotients. We discuss this in more
detail below in Section 4.4. but first give some other examples of profinite flexibility
in the setting of closed 3-manifolds.

Example 4.16 (Profinitely flexible torus bundles). Profinite flexibility for the funda-
mental groups of torus bundles admitting a SOLV geometry was studied in detail in
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Funar [2013]. These torus bundles arise as the mapping torus of a self-homeomorphism

f : T 2 ! T 2 which can be identified with an element of
�

a b

c d

�
2 SL(2; Z) with

ja + d j > 2. In Funar [ibid.] it is shown that for any m � 2 there exist m torus bun-
dles admitting SOLV geometry whose fundamental groups have isomorphic profinite
completions but are pairwise non-isomorphic.

A particular pair of examples of such torus bundles are give by the mapping tori of
the following homeomorphisms:

f1 =

�
188 275

121 177

�
and f1 =

�
188 11

3025 177

�
:

The methods of proof are very different from that used in Example 4.14. In particular
it does not use the ideas in Baumslag’s examples in Section 3, using instead, number
theoretic techniques arising in understanding ”local conjugacy” of matrices in SL(2; Z).
Briefly, the fundamental groups of torus bundles Mf and Mg have isomorphic profi-
nite completions if and only if the cyclic subgroups < f >; < g >� SL(2; Z) are
locally conjugate, namely their images modulo m are conjugate in GL(2; Z/mZ), for
any positive integer m (see Funar [ibid.]).

Interestingly, as described in Funar [ibid.] the issue of profinite flexibility in this
case is related to problems arising from understanding quantum TQFT invariants of the
torus bundles.

Example 4.17 (Profinitely flexible 3-manifolds with non-trivial JSJ decomposition).
The fundamental groups of the manifolds occurring in Theorem 4.4 2(iv) were inves-
tigated in Wilkes [2016]. We will not go into this in any detail here, other than to say
that it is shown in Wilkes [ibid.] that there are non-homeomorphic closed graph mani-
folds whose fundamental groups have isomorphic profinite completions, and that graph
manifolds can be distinguished from mixed 3-manifolds by the profinite completion of
their fundamental groups. In addition it is shown that if M is a graph manifold that is
profinitely flexible, then jGM(�1(M ))j <1.

4.4 Profinite completions of 3-manifold groups and geometric structures. We
now turn to the work of Wilton and Zalesskii [2017a,b] that describes a beautiful con-
nection between the existence of a particular geometric structure on a 3-manifold and
the profinite completion of its fundamental group. We begin with a mild strengthening
of Wilton and Zalesskii [2017a, Theorem 8.4]

Theorem 4.18 (Wilton-Zalesskii). Let M be a closed orientable 3-manifold with infi-
nite fundamental group admitting one of Thurston’s eight geometries and let N 2 M
with �1(N ) 2 GM(�1(M )). ThenN is closed and admits the same geometric structure.

Proof. This is proved in Wilton and Zalesskii [ibid., Theorem 8.4] with N assumed
to be closed, orientable and irreducible. However, the version stated in Theorem 4.18
quickly reduces to this. Briefly, by Theorem 4.11 �1(M ) is good, so immediately we
have N is closed and orientable by Corollary 4.12.
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Furthermore, 2�1(M ) is torsion-free by Corollary 4.12 and so if N is not prime, the
summands must all have torsion-free fundamental group. However, in this case we
can use the fact that the first L2-betti number b

(2)
1 is a profinite invariant by Bridson,

Conder, and Reid [2016], and this, together with the work of Lott and Lück [1995]
shows that aspherical geometric 3-manifolds have b

(2)
1 = 0, whilst manifolds that are

not prime and have torsion-free fundamental group have b
(2)
1 ¤ 0. Note that their

theorem is stated only for orientable manifolds but this is not a serious problem because,
by Lück approximation Lück [1994], if X is a non-orientable compact 3-manifold with
infinite fundamental group and Y ! X is its orientable double cover, then b

(2)
1 (Y ) =

2 b
(2)
1 (X). We can now use Wilton and Zalesskii [2017a] to complete the proof. tu

Given Theorem 4.18, Theorem 4.15, is reduced to the consideration of Seifert fiber
spaces. However, the proof still entails some significant work using Bridson, Conder,
and Reid [2016] as well as the delicate issue of recovering the euler number of the
Seifert fibration from the profinite completion.

In the context of hyperbolic manifolds, a corollary of Theorem 4.18 that is worth
recording is.

Corollary 4.19. Let M be a closed orientable hyperbolic 3-manifold and N 2M with
�1(N ) 2 GM(�1(M )), then N is closed orientable and hyperbolic.

More recently Wilton and Zalesskii [2017b] have established a cusped version of
this result, namely.

Theorem4.20. LetM be a finite volume non-compact orientable hyperbolic 3-manifold
and N 2 M with �1(N ) 2 GM(�1(M )), then N is a finite volume non-compact ori-
entable hyperbolic 3-manifold.

The proofs of Theorems 4.18 and 4.20 also use the work of Agol andWise, as well as
crucially using ”nice” actions of profinite groups on profinite trees which are transferred
from the discrete setting using LERF and other parts of the virtual special technology
of Wise [2009] (see Wilton and Zalesskii [2017a] and Wilton and Zalesskii [2017b] for
details).

Actually what is really at the heart of Corollary 4.19 is a profinite analogue of the
Hyperbolization Theorem, which asserts that M is hyperbolic if and only if �1(M )

does not contain a copy of Z ˚ Z. The main part of the proof of Corollary 4.19 is
to show that if M is a closed hyperbolic 3-manifold, then 2�1(M ) does not contain a
subgroup isomorphic to bZ˚bZ.

Remark 4.21. One might wonder about the extent to which the full profinite com-
pletion of the fundamental group of a hyperbolic 3-manifold is actually needed to dis-
tinguish the fundamental group. With that in mind, it is easy to give infinitely many
examples of links L � S3 (so-called homology boundary links) with hyperbolic com-
plement for which �1(S

3 n L) all have the same pro-p completion (namely the free
pro-p group of rank 2) for all primes p, see Bridson and Reid [2015a, Section 8.4] for
an explicit example.
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4.5 Profinite rigidity amongst 3-manifold groups. We now turn to the issue of
profinite rigidity. Given the discussion in Section 4.3 about the failure of profinite
rigidity (even amongst 3-manifold groups) for Seifert fibered spaces, torus bundles ad-
mitting SOLV geometry, and manifolds admitting a non-trivial JSJ decomposition,
the case that needs to be understood is that of finite volume hyperbolic 3-manifolds.
We focus on this case in the remainder of this section. We first deal with the case of
GM(�1(M )), where M is a finite volume hyperbolic 3-manifold. In the light of The-
orem 4.6, a natural class of hyperbolic 3-manifolds to attempt to establish rigidity for
are hyperbolic 3-manifolds that fiber over the circle, since, as we now explain, this can
be used to help organize an approach to profinite rigidity of the fundamental groups of
hyperbolic 3-manifolds.

Proposition 4.22. Suppose that for any orientable finite volume hyperbolic 3-manifold
M that fibers over the circle we have GM(�1(M )) = f�1(M )g. Then if N is a finite
volume hyperbolic 3-manifold and Y a compact 3-manifold with �1(Y ) 2 GM(�1(N )),
then Y is commensurable to N .

Proof. Note that from Corollary 4.19 and Theorem 4.20, Y is a finite volume hyper-
bolic 3-manifold. By Theorem 4.6, we can pass to finite covers Nf and Yf of N and
Y respectively, that are both fibered, and with 2�1(Nf ) Š 2�1(Yf ). By the ”rigidity
hypothesis” of Proposition 4.22, it follows that �1(Nf ) Š �1(Yf ), and so N and Y

share a common finite sheeted cover Nf Š Yf . tu

Thus, it is natural to focus on the case of surface bundles. The following rigidity
result is proved in Bridson, Reid, andWilton [2017] (see also Bridson and Reid [2015b]
and Boileau and Friedl [2015] for the the case of the figure-eight knot complement).
This is the first family of hyperbolic 3-manifolds that fiber over the circle for which the
rigidity required in Proposition 4.22 has been carried to completion. An approach to
handle other fibered hyperbolic 3-manifolds is described in Bridson, Reid, and Wilton
[2017].

Theorem 4.23. Let M be a once-punctured torus bundle over the circle (hyperbolic or
otherwise). Then GM(�1(M )) = f�1(M )g.

Some ideas in the proof: We only discuss the hyperbolic case, and refer the reader
to Bridson, Reid, and Wilton [ibid.] for the remaining (simpler) cases. In this case
b1(M ) = 1. From Theorem 4.20 we can assume that if N is a compact 3-manifold
with �1(N ) 2 GM(�1(M )), then N is a cusped hyperbolic 3-manifold with b1(N ) = 1

(recall Remark 3.2). The proof can be broken down into two main steps as follows:

Step 1: Prove that N is fibered with fiber a once-punctured torus.

Step 2: Since M is a once-punctured torus bundle, given Step 1, a simple analysis gives
finitely many possibilities for N . Distinguish these finitely many.

We will make no further comment on Step 2 and refer the reader to Bridson, Reid, and
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Wilton [ibid.]. The proof of Step 1 follows Bridson and Reid [2015b] and we briefly
comment on this (a different proof of this is given in Boileau and Friedl [2015]). The
main difficulty is in establishing that N is fibered. Once this is done, the fact that the
fiber is a once-punctured torus follows routinely.

Note that in Bridson and Reid [2015b] the cases that N is hyperbolic or not hy-
perbolic were treated separately (since Theorem 4.20 was unavailable at the time of
writing). As noted above, using Theorem 4.20 we can now reduce to the case that N

is hyperbolic. Regardless of this development, we still need to follow the argument of
Bridson and Reid [ibid.] to complete the proof. The key point is that if N is not fibered,
then using B. Freedman and M. H. Freedman [1998] we can build a surface subgroup
H < K = kerf�1(N) ! Zg (this homomorphism is unique since b1(N ) = 1). By
Corollaries 4.8 and 2.9 we deduce that bH Š H < K < 2�1(N ). Now by uniqueness
of the homomorphism �1(M )! Z, which has kernel a free group F of rank 2, we getbH < K Š bF . However, using cohomological dimension in the context of profinite
groups (see Serre [1997]) we get a contradiction: the cohomological dimension of bH
is 2 and it is 1 for bF . tu

Since Bridson, Reid, and Wilton [2017] was written, the fact that fibering is a profi-
nite invariant has been established by Jaikin-Zapirain [n.d.] without the restriction on
b1(M ). The proof of this uses very different methods to those outlined above.

Theorem 4.24 (Jaikin-Zapirain). Let M be a compact irreducible 3-manifold and let
Γ = �1(M ).

1. If bΓ is isomorphic to the profinite completion of free-by-cyclic group, then M

has non-empty boundary consisting of a disjoint union of incompressible tori
and Klein bottles, and fibers over the circle with fiber a compact surface with
non-empty boundary.

2. IfbΓ is isomorphic to the profinite completion of the fundamental group of a closed
3-manifold that fibers over the circle, then M is a surface bundle over the circle
with fiber a closed surface.

One can distill from the cohomological dimension argument used at the end of the
proof of Theorem 4.23 the following useful proposition.

Proposition 4.25. Let Γ be a finitely generated residually finite group that contains a
subgroup H Š �1(Σg) for some g � 1 and for which H Š bH in bΓ. Then Γ … G(Fn)

for any n � 2.

Remark 4.26. It is worth remarking that bF n contains a subgroup isomorphic to some
�1(Σg) which is dense in bF n (see Breuillard, Gelander, Souto, and Storm [2006]).

4.6 Aprofinitely rigidKleinian group. At present it still remains open as towhether
there is any finite volume hyperbolic 3-manifold M = H3/Γ with G(Γ) = fΓg. How-
ever in recent work Bridson, McReynolds, Reid, and Spitler [n.d.] if we allow Γ to be a
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Kleinian group (i.e. a discrete subgroup of PSL(2; C)) containing torsion then this can
be done. As far as we can tell, this seems to be first example (indeed we give two) of
a group ”similar to a free group” that can be proved to be profinitely rigid, and can be
viewed as providing the first real evidence towards answering Question 4.3 (and 4.1)
in the affirmative. Namely we prove the following theorem in Bridson, McReynolds,
Reid, and Spitler [ibid.] (where !2 + ! + 1 = 0).

Theorem 4.27. The Kleinian groups PGL(2; Z[!]) and PSL(2; Z[!]) are profinitely
rigid.

The case of PGL(2; Z[!]) follows from that of PSL(2; Z[!]), and we so we limit our-
selves to briefly indicating the strategy of the proof of Theorem 4.27 for PSL(2; Z[!]).

There are three key steps in the proof which we summarize below.

Theorem 4.28 (Representation Rigidity). Let � : Γ ! PSL(2; C) denote the identity
homomorphism, and c = � the complex conjugate representation. Then if � : Γ !

PSL(2; C) is a representation with infinite image, � = � or c.

Using Theorem 4.28 we are able to get some control on PSL(2; C) representations
of a finitely generated residually finite group with profinite completion isomorphic tobΓ, and to that end we prove:
Theorem 4.29. Let∆ be a finitely generated residually finite group with b∆ ŠbΓ. Then
∆ admits an epimorphism to a group L < Γ which is Zariski dense in PSL(2; C).

Finally, we make use of Theorem 4.29, in tandemwith an understanding of the topol-
ogy and deformations of orbifolds H3/G for subgroups G < Γ. Briefly, in the notation
of Theorem 4.29, the case of L having infinite index can be ruled out using Teichmüller
theory to construct explicit finite quotients of L and hence∆ that cannot be finite quo-
tients ofΓ. To rule out the finite index case wemake use of information about low-index
subgroups of Γ, together with the construction of L, and 3-manifold topology to show
that L contains the fundamental group of a once-punctured torus bundle over the circle
of index 12. We can then invoke Bridson, Reid, and Wilton [2017] to yield the desired
conclusion that∆ Š Γ. tu

5 Virtually free groups, Fuchsian groups and Limit groups

We now turn from the world of 3-manifold groups to other classes of groups closely
related to free groups; virtually free groups (i.e. contains a free subgroup of finite index),
Fuchsian groups which are discrete subgroups of PSL(2; R) and limit groups which we
define below. All three classes of these groups contain the class of free groups amongst
them. As already noted even groups that are virtually Z can fail to be profinitely rigid.
In Grunewald and Zalesskii [2011] this is extended to give examples of virtually non-
abelian free groups in the same genus, as well as providing cases where they show that
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certain virtually free groups are the only groups in the genus when restricted to virtually
free groups.

5.1 Some restricted genus results. Regarding Fuchsian groups, the following is
proved in Bridson, Conder, and Reid [2016].

Theorem 5.1. Let L denote the collection of lattices in connected Lie groups and let Γ
be a finitely generated Fuchsian group. Then GL(Γ) = fΓg.

Using the profinite invariance of b
(2)
1 Bridson, Conder, and Reid [ibid.], it turns

out that the hard case of Theorem 5.1 is ruling out non-isomorphic Fuchsian having
isomorphic profinite completions. The main part of the proof of this step is to rule out
”fake torsion” in the profinite completion, and uses the technology of profinite group
actions on profinite trees (see Bridson, Conder, and Reid [ibid.] for details).

By a limit group we mean a finitely-generated group Γ that is fully residually free;
i.e. a finitely generated group in which every finite subset can be mapped injectively
into a free group by a group homomorphism. In connection with Question 4.1, Wilton
[2017] recently proved the following:

Theorem 5.2. Let Γ be a limit group that is not a free group, and let F be a free group.
ThenbΓ is not isomorphic to bF .

The key point in the proof of Theorem 5.2 (and indeed the main point of Wilton
[ibid.]) is to construct a surface subgroup in a non-free limit group. One can then follow
an argument in Bridson, Conder, and Reid [2016] that usesWilton [2008] (which proves
LERF for limit groups) and Proposition 4.25 to complete the proof.

5.2 Profinite genus of free groups and one-ended hyperbolic groups. We close
this section with a discussion of possible groups in the genus for free groups. As noted
above, Theorem 5.2 uses the existence of surface subgroups to show that non-free limit
groups do not lie in the same genus as a free group. The next result from Bridson,
Conder, and Reid [2016] takes up this theme, and connects to two well-known open
problems about word hyperbolic groups, namely:

(A) Does every 1-ended word-hyperbolic group contain a surface subgroup?

(B) Is every word-hyperbolic group residually finite?

The first question, due toGromov, wasmotivated by the case of hyperbolic 3-manifolds,
and in this special case the question was settled by Kahn and Markovic [2012]. Indeed,
given Kahn and Markovic [ibid.], a natural strengthening of (A) above is to ask:

(A0) Does every 1-ended word-hyperbolic group contain a quasi-convex surface sub-
group?

Theorem 5.3. Suppose that every 1-ended word-hyperbolic group is residually finite
and contains a quasi-convex surface subgroup. Then there exists no 1-ended word-
hyperbolic group Γ and free group F such thatbΓ Š bF .



PROFINITE RIGIDITY 1207

Proof. Assume the contrary, and let Γ be a counter-example, with bΓ Š bF for some
free group F . Let H be a quasi-convex surface subgroup of Γ. Note that the finite-
index subgroups of H are also quasi-convex in Γ. Under the assumption that all 1-
ended hyperbolic groups are residually finite, it is proved in Agol, Groves, andManning
[2009] that H and all its subgroups of finite index must be separable in Γ. Hence by
Lemma 2.8, the natural map bH ! H < bΓ Š bF is an isomorphism, and can use
Proposition 4.25 to complete the proof. tu

Corollary 5.4. Suppose that there exists a 1-ended word hyperbolic group Γ withbΓ ŠbF for some free group F . Then either there exists a word-hyperbolic group that is
not residually finite, or there exists a word-hyperbolic group that does not contain a
quasi-convex surface subgroup.

6 Profinite rigidity and flexibility in other settings

Although our attention has been on groups arising from low-dimensional geometry and
topology we think it worthwhile to include a (far from complete) survey of profinite
rigidity and flexibility for other classes of finitely generated or finitely presented groups.

6.1 Nilpotent and polycyclic groups. As is already evident from Baumslag’s exam-
ples of meta-cyclic groups in Section 3, the case of nilpotent groups already shows some
degree of subtlety. The case of nilpotent groups more generally is well understood due
to work of Pickel [1971]. We will not discuss this in any detail, other than to say that,
in Pickel [ibid.] it is shown that for a finitely generated nilpotent group Γ, G(Γ) consists
of a finite number of isomorphism classes of nilpotent groups, and moreover, examples
where the genus can be made arbitrarily large are known (see for example Segal [1983]
Chapter 11). Examples of profinitely rigid nilpotent groups of class 2 are constructed
in Grunewald and Scharlau [1979].

Similar results are also known for polycyclic groups and we refer the reader to
Grunewald and Segal [1978] and Segal [1983]. Note that in the case of nilpotent groups
it is straightforward to prove that any finitely generated residually finite group in the
same genus as a nilpotent group is nilpotent. The same holds for polycyclic groups (see
Sabbagh and Wilson [1991]), but this is a good deal harder.

These results should be compared with the examples of the meta-abelian groups
(which are solvable) of Pickel given in Remark 3.4 where the genus is infinite.

6.2 Lattices in semi-simple Lie groups. Let Γ be a lattice in a semi-simple Lie
group, for example, in what follows we shall take Γ = SL(n;Rk) where Rk denotes
the ring of integers in a number field k. A natural, obvious class of finite quotients of
Γ, are those of the form SL(n;Rk/I) where I � Rk is an ideal. Let Γ(I ) denote the
kernel of the reduction homomorphism Γ ! SL(n;Rk/I). By Strong Approximation
for SLn (see Platonov and Rapinchuk [1994] Chapter 7.4 for example) these reduction
homomorphisms are surjective for all I . A congruence subgroup of Γ is any subgroup
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∆ < Γ such that Γ(I ) < ∆ for some I . A group Γ is said to have the Congruence Sub-
group Property (abbreviated to CSP) if every subgroup of finite index is a congruence
subgroup.

Thus, if Γ has CSP, then C(Γ) is known precisely, and in effect, to determine C(Γ)
is reduced to number theory. Expanding on this, since Rk is a Dedekind domain, any
ideal I factorizes into powers of prime ideals. If I =

Q
P ai

i , then it is known that
SL(n;Rk/I) =

Q
SL(n;Rk/P ai

i ). Thus the finite groups that arise as quotients of
SL(n;Rk) are determined by those of the form SL(n;Rk/P ai

i ). Hence we are reduced
to understanding how a rational prime p behaves in the extension k/Q. This idea, cou-
pled with the work of Serre [1970] which has shed considerable light on when Γ has
CSP allows construction of non-isomorphic lattices in the same genus. We refer the
reader to Aka [2012b], Aka [2012a] and Reid [2015] for further details.

6.3 Grothendieck’s Problem. A particular case of when discrete groups groups
have isomorphic profinite completions is the following (which goes back toGrothendieck
[1970]).

LetΓ be a residually finite group and letu : P ,! Γ be the inclusion of a subgroupP .
Then (Γ; P ) is called a Grothendieck Pair if the induced homomorphismbu : bP ! bΓ
is an isomorphism but u is not.

We say that Γ is Grothendieck Rigid if no proper finitely generated subgroup u :

P ! Γ gives a Grothendieck Pair.
Grothendieck [ibid.] asked about the existence of Grothendieck Pairs of finitely pre-

sented groups and the first such pairs were constructed by Bridson and Grunewald
[2004]. The analogous problem for finitely generated groups had been settled earlier
by Platonov and Tavgen [1990] (see also Bass and Lubotzky [2000]). Using different
methods, Pyber [2004] gave a construction of continuously many finitely generated
groups Γ˛ with subgroups H˛ for which (Γ˛; H˛) are Grothendieck Pairs.

The constructions of Platonov and Tavgen [1990] andBridson andGrunewald [2004]
rely on versions of the following result (see also Bridson [2010]). We remind the reader
that the fibre product P < Γ � Γ associated to an epimorphism of groups p : Γ! Q

is the subgroup P = f(x; y) j p(x) = p(y)g.

Proposition 6.1. Let 1! N ! Γ! Q! 1 be a short exact sequence of groups with
Γ finitely generated and let P be the associated fibre product. Suppose that Q ¤ 1 is
finitely presented, has no proper subgroups of finite index, and H2(Q; Z) = 0. Then

1. (Γ � Γ; P ) is a Grothendieck Pair;

2. if N is finitely generated then (Γ; N ) is a Grothendieck Pair.

More recently in Bridson [2016], examples of Grothendieck Pairs were constructed
so as to provide the first examples of finitely-presented residually finite groups Γ that
contain an infinite sequence of non-isomorphic finitely presented subgroups Pn so that
(Γ; Pn) are Grothendieck Pairs. In particular, this provides examples of finitely pre-
sented groups Γ for which G(Γ) is infinite. These examples are non-solvable in contrast
to those of Pickel in Remark 3.4
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Note that if a H is a subgroup of a group Γ and Γ is H -separable then it is easy to
see that (Γ; H ) cannot be a Grothendieck Pair (since H is not dense in the profinite
topology). This was noticed in Platonov and Tavgen [1990] to observe that free groups
and Fuchsian groups were Grothendieck Rigid. For 3-manifolds Grothendieck Rigidity
was shown in Long and Reid [2011] for the fundamental groups of closed geometric 3-
manifolds and finite volume hyperbolic 3-manifolds without appealing to LERF in the
hyperbolic case. In Cavendish [2012] and Reid [2015] this was extended to the funda-
mental groups of all closed irreducible 3-manifolds (as a consequence of Theorem 4.11).
This program has been completed by Boileau and Friedl [2017] who proved:

Theorem 6.2. The fundamental group of any compact, connected, irreducible, ori-
entable 3-manifold with empty or toroidal boundary is Grothendieck Rigid.

7 Final remarks and further questions

As should be clear from this article, the questions posed in Section 4 remain stubbornly
open, and even questions about the nature of GM(�1(M )) for M a finite volume hy-
perbolic 3-manifold seem hard to resolve. Never the less, these open problems can be
used as platforms for other, perhaps more approachable problems. We discuss a few,
other problems for other classes of groups can be found in Reid [2015].

Question 7.1. LetΓ denote the fundamental group of the figure-eight knot complement.
It is well-known that Γ has index 12 in the group PSL(2; Z[!]) of Theorem 4.27. Is Γ
is profinitely rigid?

As noted in Section 4.5, it was shown in Bridson and Reid [2015b] and Boileau and
Friedl [2015] that GM(Γ) = fΓg.

Question 7.2. Let MW denote the Weeks manifold. This is the smallest volume hyper-
bolic 3-manifoldGabai, Meyerhoff, andMilley [2009]. Is GM(�1(MW ) = f�1(MW )g?

Indeed, one might wonder whether the techniques of Bridson, McReynolds, Reid,
and Spitler [n.d.] (as described in Theorem 4.27) can be brought to bear in this example
since �1(MW ) exhibits a certain amount of representation rigidity.

Question 7.3. In Section 4.5 it was pointed out that recently Jaikin-Zapirain [n.d.]
showed that being fibered is a profinite invariant. Given this, a natural question is:

Is the Thurston norm ball a profinite invariant? That is to say, if M is a closed hy-
perbolic 3-manifold and N a closed hyperbolic 3-manifold with �1(N ) 2 GM(�1(M ))

are the Thurston norm balls isomorphic?
Some progress on this is given in Boileau and Friedl [2015] under an additional con-

dition on the isomorphsim between profinite completions. However, it seems unlikely
that this condition will hold in general.

Question 7.4. Is the volume a profinite invariant? That is to say, ifM is a finite volume
hyperbolic 3-manifold and N a finite volume hyperbolic 3-manifold with �1(N ) 2

GM(�1(M )) does vol(M ) = vol(N )?
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It follows fromwell-known properties of the set of volumes of hyperbolic 3-manifolds
Thurston [1979] that if Question 7.4 has a positive answer then jGM(�1(M ))j is finite.

There does appear to be some conjectural evidence to support a positive answer. Briefly,
it is conjectured (roughly) that if fΓng is a cofinal sequence of subgroups of finite index
in �1(M ) (as above), then:

log jTor(H1(�n; Z))j

[�1(M ) : Γn]
!

1

6�
vol(M ) as n!1:

Note that Tor(H1(�n; Z)) is visible in the profinite completions bΓn and so if the
above conjecture is true, this would allow one to deduce �1(N ) 2 GM(�1(M )) implies
vol(M ) = vol(N ).
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