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ABSTRACT. In this note we show that there exist cusped hyperbolic 3-mani-
folds that embed geodesically but cannot bound geometrically. Thus, being a
geometric boundary is a non-trivial property for such manifolds. Our result
complements the work by Long and Reid on geometric boundaries of compact
hyperbolic 4-manifolds and by Kolpakov, Reid, and Slavich on embedding
arithmetic hyperbolic manifolds.

1. INTRODUCTION

In what follows, all hyperbolic manifolds are assumed to be connected, orientable,
complete, and of finite volume. We are particularly interested in cusped, i.e., non-
compact, such manifolds.

A hyperbolic n-manifold M bounds geometrically if it is isometric to OW for a
hyperbolic (n 4+ 1)-manifold W with totally geodesic boundary; cf. [I8] and also
[T4L16119,[20,22128,[29] for further progress on this topic. A hyperbolic n-manifold
M is said to embed geodesically if there exists a hyperbolic (n + 1)-manifold N that
contains a totally geodesic hypersurface isometric to M. We remark that many
arithmetic hyperbolic 3-manifolds of simplest type embed geodesically by [15].

A geometrically bounding manifold embeds geodesically, but the converse is not
necessarily true. Indeed, the Euler characteristic (M) of a geometrically bounding
manifold M must be even. This can be seen by taking a hyperbolic (n+1)-manifold
N with totally geodesic boundary N = M and doubling it along M in order to
obtain a hyperbolic manifold DN. By the excision property, we have for the Euler
characteristic that x(DN) =2 x(N) — x(M). If n is odd, we have that x(M) = 0,
while if n is even, then x(DN) = 0, and x(M) is thus even. The fact that an odd-
dimensional cusped hyperbolic manifold has y = 0 follows from Margulis’ lemma
and the first Bieberbach theorem.

Thus, the thrice-punctured sphere cannot bound geometrically. On the other
hand, this manifold is arithmetic and of even dimension, so by [I5] it embeds
geodesically. This same discussion also applies when n = 4, 6, since the respective
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minimal-volume arithmetic manifolds constructed in [727] have Euler characteristic
x = *1. Note that such an argument becomes vacuous if n is odd.

The aim of this note is to provide examples of hyperbolic 3-manifolds that em-
bed geodesically but fail to bound geometrically, thereby explicitly showing that
bounding is much more non-trivial to arrange for n = 3 too.

In particular, we show that several well-known cusped hyperbolic 3-manifolds
cannot bound geometrically. Namely, we prove the following theorems, the first
of which should be contrasted with [29], which shows that the figure-eight knot
complement bounds geometrically.

Theorem 1.1. The figure-eight knot sibling 3-manifold embeds geodesically but
does not bound geometrically.

The figure-eight knot complement and its “sibling” manifold are precisely the
cusped hyperbolic 3-manifolds of smallest volume [3]. Both of them are known to
be arithmetic [21] with invariant trace-field Q(v/—3). Our methods also show:

Theorem 1.2. A single-cusped hyperbolic 3-manifold with invariant trace-field of
odd degree does not bound geometrically.

There are many such examples of single-cusped hyperbolic 3-manifolds, indeed
even arising as knot complements in S®. We record the following corollary of The-
orem [[21 This follows automatically from [I1], which establishes that if K, is
the m-twist knot (see Figure [Tl) the degree of the invariant trace-field is given by
cr(K,,) — 2 where cr(K,,) is the crossing number of K, (here m # —2,—1,0,1).
Note that the figure-eight knot is the 2-twist knot according to Figure [l If we
assume that m > 2, then cr(K,,) — 2 =m.

0

\/\...\

m crossings

FIGURE 1. The twist knot K,, (m > 0) in its alternating (and
thus minimal) projection.

Corollary 1.3. Let K,, be the m-twist knot with m > 1 odd. Then S \ K,,, does
not bound geometrically.

Note that the figure-eight knot’s sibling manifold does not satisfy Theorem [[.2]
since as noted above its invariant trace-field has degree two. In addition, at present
we do not know a single example of a finite volume hyperbolic 3-manifold with odd
degree invariant trace-field that even embeds geodesically.

The proofs of Theorems [[.1] and essentially follow from a simple observation
about the cusps of manifolds that bound geometrically, which applies in all dimen-
sions. In the case of n = 3, this implies that the cusp of a single-cusped hyperbolic
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3-manifold that bounds geometrically must be “rectangular” (cf. Proposition 2.§]).
We refer to Section [2] for the terminology. In the case of n = 4 this gives an-
other proof that the minimal volume hyperbolic 4-manifolds of [27] do not bound
geometrically (see Section 2.4]).

Remark 1.4. Nimershiem [26] proved that the cusp shapes of single-cusped hyper-
bolic 3-manifolds form a dense subset in the moduli space of the 2-torus. Since the
set of rectangular tori is nowhere dense, this lends credence to the claim that “most
single-cusped hyperbolic 3-manifolds do not bound geometrically”. Similar consid-
erations were known to hold in the compact setting. Indeed, in [I8] it is shown
that if a closed hyperbolic 3-manifold bounds geometrically, then it has integral
n-invariant. On the other hand, Meyerhoff [24] showed that a reduction modulo &
of the n-invariant of closed hyperbolic 3-manifolds takes values in a dense subset of
the circle.

As a possible measure of geometric “complexity” of embedding geodesically a
hyperbolic n-manifold M into a hyperbolic (n+ 1)-manifold N or making M bound
a hyperbolic (n + 1)-manifold W geometrically, we introduce the quantities

e-vol(M) = mj\i[n vol(N), O-vol(M) = mmi/n vol(W),

where “vol”, here and below, means hyperbolic volume. It is easy to see that if M
bounds, then e-vol(M) < 2 - d-vol(M).

In [29], Slavich proved that the figure-eight knot complement has 9-vol = %,
i.e., the minimum possible by the Gauf-Bonnet theorem. Concerning e-vol, we
adopt his technique to improve Theorem [[1] as follows:

Theorem 1.5. The figure-eight knot complement and its sibling manifold have

_ 4x?
e-vol = =5

Note that if M bounds geometrically, respectively, embeds geodesically, then
Miyamoto’s work [25] implies that 9-vol(M) >d,, 1 vol(M), respectively, e-vol(M) >
2d;, 41 vol(M), where d,, is the optimal horoball packing density in H"; cf. [13] Ta-
ble 3]. The former inequality holds also if M is disconnected, and the latter follows
by cutting any N in which M embeds along the respective hyper-surface isometric
to M and considering the resulting manifold N,M with boundary M Li(—M). The
equality, in the case of bounding manifolds, can be attained only in dimensions
n =2 and 3.

The paper is organized as follows: in Section 2] we prove Theorems [[.T] and [[.2}
in Section Bl we prove Theorem

2. CUSP SECTIONS OF GEOMETRIC BOUNDARIES

In this section, we provide a simple obstruction for a non-compact manifold to
bound geometrically, formulated in Propositions and 2.8 which we then use in
order to prove Theorems [[.1] and

2.1. Cusps with boundary. In this section, we analyze the ends of a hyperbolic
manifold with totally geodesic boundary. We basically follow [10, 2.10.C].

Definition 2.1. An (n + 1)-dimensional cusp with boundary is a Riemannian
warped product C' = F X ;(0,400), where F' is a compact connected flat n-manifold
with totally geodesic boundary and f(r) =e™".
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This means that F x (0, +00) is endowed with the Riemannian metric e 2" g+dr?,
where g is the flat metric on F.

Definition 2.2. A section of a cusp C as above is a level set F' x {rq} C C.
Note that all sections of C' are homothetic.

Definition 2.3. The shape of a cusp C is the similarity class of a section.
The following fact is well known:

Proposition 2.4 ([I0, 2.10.D]). Let W be a complete, finite-volume hyperbolic
(n + 1)-manifold with (possibly empty) totally geodesic boundary. There is a com-
pact subset of W whose complement is isometric to a disjoint union of cusps with
(possibly empty) boundary.

Given W as above, we call boundary cusps the cusps of W with non-empty
boundary. Each cusp of the hyperbolic n-manifold OW is a boundary component
of a boundary cusp of W.

2.2. Cusps of bounding manifolds. We now furnish an obstruction for a hyper-
bolic manifold to bound geometrically.

Proposition 2.5. If a cusped hyperbolic n-manifold M bounds geometrically, then
the cusps of M that do not admit a fized-point-free orientation-reversing isometric
involution are isometric in pairs.

In particular, the number of such cusps has to be even, possibly zero. The proof
will follow easily from a simple lemma about flat manifolds with totally geodesic
boundary:

Lemma 2.6. Let F' be a compact connected orientable flat n-manifold with non-
empty totally geodesic boundary such that F is not isometric to a product with an
interval. Then, OF is connected and has a fized-point-free orientation-reversing
isometric involution.

Proof. The Riemannian universal cover of any constant-curvature manifold with
totally geodesic boundary embeds isometrically into the model space as the inter-
section of some half-spaces with pairwise disjoint boundaries. In the flat case, the
number of such half-spaces can only be 0, 1, or 2. The first case is excluded because
OF # (b, while the second one is excluded because F is compact.

Thus, the universal cover F of F is isometric to a strip R"~! x I ¢ R", where
I = [—a,al], and F is isometric to a quotient of this strip by a discrete group of
Euclidean isometries acting on it. Every isometry of the strip F must preserve the
I-fibration and the O-section R"~! x {0}. This implies that there is an I-bundle
m: F — B whose 0-section By C I is a totally geodesic hypersurface. Note that
7r| op is a Riemannian double covering.

By hypothesis the bundle 7 is non-trivial, so By is a one-sided hypersurface
inside F', and B is non-orientable. Thus, 77’ o 1s the orientation double cover of B,
and OF has a fixed-point-free orientation-reversing involution. ]

Remark 2.7. 1t follows from the proof of Lemma that if n = 3 and OF is
connected, then F' is diffeomorphic to K x I, which is the orientable manifold arising
as a twisted /-bundle over the Klein bottle.
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We are ready to prove Proposition

Proof of Proposition [Z3 Let M = OW for a hyperbolic (n + 1)-manifold W with
totally geodesic boundary, and let C’ C M be a cusp of M with section F’. Then,
F’ C OF is a boundary component of a section F of a boundary cusp C of W. If
I has no fixed-point-free orientation-reversing involution, by Lemma we have
F >~ F' x I, and F’ is isometric to a section of another cusp of M. (]

2.3. Rectangular tori. In this section, we give a more precise characterization of
cusp shapes of geometrically bounding manifolds in the case n = 3 and then prove
Theorems [L.T] and

A cusp of a hyperbolic 3-manifold has section a flat 2-torus. Recall that a flat
torus T' = R?/T" has a fixed-point-free orientation-reversing isometric involution if
and only if a conjugate of the lattice I' is generated by two vectors that span a
rectangle or a thombus. We call such flat tori respectively rectangular or rhombic.

In the usual fundamental domain

D ={|z| > 1, |Re(z)| < 1/2, Im(z) >0} c C

for the moduli space of tori (cf. for instance [8, §12.2] and [23] §4.2]), the rectan-
gular and rhombic ones correspond to the curves D N {Re(z) = 0} and DN {|z| =
1 or |Re(z)| = 1/2}, respectively. Thus, we call a cusp of a hyperbolic 3-manifold
rectangular or rhombic depending on the shape of its section.

With these definitions in hand, we can now improve Proposition

Proposition 2.8. If a cusped hyperbolic 3-manifold M bounds geometrically, then
the non-rectangular cusps of M are isometric in pairs.

Proof. Suppose again M = OW, and let C = F' xf (0, +00) be a boundary cusp of
W with connected boundary. By Remark 27, F is diffeomorphic to K XI, and OF
is a flat torus. We now show that JF is rectangular. To that end, we have

F = (R® x [~a,a]) /T,

where we can assume that the group I' < Isom(R? x [—a, a]) < Isom(R?) is generated
by a parallel translation T, along (2b,0,0), a translation T, along (0,¢,0), and a
roto-translation R, : (z,y,2) — (z+b, —y, —z) (cf. for instance [31, Theorem 3.5.5,
item 2]). In particular, we have

OF = (R* x {a}) /(T%,T,),
and the lattice (T, T, ) is generated by two vectors spanning a rectangle. ]

We can now prove Theorems [Tl and

Proof of Theorem [T Let H3/T be the figure-eight’s sibling manifold. Up to con-
jugation, I' is an index 12 subgroup in PSLy(Os); cf. [2I, §13.7.1(vi)]. Thus T’
can be embedded in SO(q,Z) for a quadratic form of signature (3,1); cf. [4 §3]
and [6L12]. The argument given in [I5, §9.1] now applies to show that the sibling
manifold embeds geodesically.

However, from [30], one sees that the modulus of the cusp is w = 71%\/7_‘3 and
hence is not rectangular. Thus, by Proposition 2.8 the figure-eight knot’s sibling
manifold does not bound geometrically. ([l
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Remark 2.9. The cusp shape of the figure-eight knot sibling can also be computed
using SnapPy [B]. By settingM = Manifold(’m003’), where *m003° is the entry for
the figure-eight knot’s sibling manifold in the Callahan-Hildebrand-Weeks census
[2], and issuing the command M.cusp_info(0) .modulus, one sees that the cusp
section of the sibling manifold is not rectangular (a numerical estimate suffices).

Proof of Theorem [IL2l Let T be the cusp section of a single-cusped hyperbolic 3-
manifold M = H3/T" whose invariant trace-field has odd degree. We shall show
that the odd-degree assumption precludes T' from being rectangular. Thus, assume
to the contrary that T is rectangular. Let K be the trace-field of I', and let k be
its invariant trace-field, i.e., the trace-field of the group I'® = (g2 | g € T).

By [21, Theorem 4.2.3] we may assume that, up to conjugation, I' C PSLy(K),
and moreover w1 (T) = (a,b), with

(11 s (1 s
“=\o 1) "“{o 1)

while there exists an element « € I' such that

(1)

The complex number s above is the modulus parameter for the torus 7.

Since a2, b?, 2% € T it follows that tr(a?2?) € k, hence t € k. Furthermore,
tr(b?z?) = 2+4st € k. Thus the cusp parameter s of M belongs to k, which implies
that s has odd degree over Q. Hence F' = Q(s) C k is a sub-field of k£ having odd
degree. By Proposition [Z8] T is a rectangular torus, and thus its modulus belongs
to the imaginary axis iR. However, if s = ir, for some r € R, then F' is preserved
by complex conjugation, implying that the real sub-field F N R has degree 2 in F,
contradicting the fact that the degree of F' is odd. This completes the proof. [

2.4. Minimal-volume hyperbolic 4-manifolds. The Ratcliffe-Tschantz census
[27] contains most of the known cusped hyperbolic 4-manifolds of minimal vol-
ume. All of these manifolds are arithmetic. In particular, by [I5] they all embed
geodesically.

By [27), Table 2], each of the 22 Ratcliffe-Tschantz orientable 4-manifolds has an
odd number of cusps with section diffeomorphic to the so-called Hantzsche- Wendt
manifold (denoted by F in [27] and by Gs in [31]). This flat 3-manifold has no
fixed-point-free orientation-reversing self-homeomorphism (cf. [31, Theorem 3.5.9]
and also [32]). Thus, by Proposition 23] none of the manifolds from [27, Table 2]
bound geometrically/!

3. EMBEDDING THE FIGURE-EIGHT’S SIBLING

Although Theorem [Tl shows that the figure-eight knot sibling embeds in a
hyperbolic 4-manifold, it gives little control on the topology of the latter. The
purpose of this section is to prove Theorem using an approach due to Slavich
[29], which will afford additional control. We start with some necessary definitions.

Definition 3.1. A 4-dimensional triangulation T is a pair ({A;}2%,, {g; ?il),
where k is a positive integer, the A;’s are copies of the standard 4-dimensional
simplex, and the g;’s are simplicial pairings between all the 10k facets of the A;’s.

1One can also arrive at this conclusion by the Euler characteristic argument mentioned in
Section [
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Definition 3.2. A triangulation 7T is orientable if it is possible to choose an ori-
entation for each A; so that all the g;’s are orientation-reversing (cf. also [17, Def-
inition 4.2]).

Definition 3.3. A 4-dimensional triangulation 7T is 6-valent if all cycles of 2-faces
in 7 have length exactly 6.

With each cycle ¢ of 2-faces in T there is a naturally associated return map r,
from a 2-simplex to itself. In order to obtain it, one has to follow the simplicial
pairings from one 4-simplex to the next one until the cycle closes up.

Our proof will make essential use of the fact stated below.

Proposition 3.4 (Proposition 3.9 in [29]). Let M be a hyperbolic 3-manifold ob-
tained by glueing the sides of some copies of the regular ideal hyperbolic tetrahedron
via isometries. If this glueing can be realized as the link of a verter in a 6-valent
orientable 4-dimensional triangulation T with trivial return maps, then M embeds
geodesically. Moreover,
472 2k

e-vol(M) < 3 3

where 2k is the number of 4-simplices in T .

Sketch of proof. By replacing each 4-simplex of 7" with an ideal hyperbolic rectified
5-cell, one gets a hyperbolic 4-manifold W with totally geodesic boundary oW
tessellated by regular ideal tetrahedra. The link of each vertex of T gives the
tessellation into tetrahedra of a boundary component of W. The manifold M
embeds geodesically in the double of W. Finally, the volume of the ideal rectified
4-simplex is % 7). O

We are ready to prove Theorem

Proof of Theorem [LH. We will adopt the usual ideal triangulations of the figure-
eight knot complement and its sibling manifold by regular ideal hyperbolic tetra-
hedra. Each of them consists of two such tetrahedra, A and B, with the following
glueing maps between their 2-faces.

For the figure-eight knot complement, depicted in Figure (i), we set:

)

B s

1
(1) 17
]-,
2

b

W LN N
1117

)

while for the figure-eight sibling manifold, depicted in Figure 2l(ii), we set:
A B
(1,2,3) < (41,2)
(2) (L2,4) < (3,41
(1,3,4) « (1,3,2)
(2,3,4) « (2,4,3).

Let Y be the cone over the 3-dimensional triangulation in Figure 2l(i), and let
X, Z be two copies of the cone over the triangulation in Figure 2(ii).
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1 1
2 \4 2/ 4
A \ B
(i) 3 3
1 1

VAN

(i) 3 3

FIGURE 2. Ideal triangulations: (i) figure-eight knot complement;
(ii) figure-eight sibling manifold.

This means that each of X, Y, and Z consists of two 4-simplices A’ and B’
whose facets are identified as follows:

A B’
(1,2,3,5) « (3,2,1,5)
(3) Y: (1,2,4,5) <« (1,4,2,5)
(1?3,47 5) H (3,47 27 5)
(2’ 374? 5) <_> (471?37 5)
and
A’ B’
(1’2737 5) H (4’1727 5)
(4) X, 7 (1,2,4,5) « (3,4,1,5)
1,3,4,5) < (1,3,2,5)
(2,3,4,5) « (2,4,3,5).

Observe that each of X, Y, and Z has two remaining facets A and B with vertices
{1,2, 3,4} unidentified. We shall build a 4-dimensional triangulation 7 by pairing
these free facets of X, Y, and Z as depicted in Figure Bl The map oxy will be
used in order to identify facet A of X to B of Y, and analogous notation oy z and
ozx is adopted for the remaining maps. We set:

oxy . (1,2,3,4) — ( ,1,4,2)
(5) oyz:(1,2,3,4) = (3,4,2,1)
ozx ¢ (1,2,3,4) — (2,4,1,3).

Now we check that the resulting 4-dimensional triangulation 7 satisfies the con-
ditions of Proposition B4l First of all, T is orientable because ([B]), (@) are cones
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B X A
GZ)/ YXY
A B
Z Oy Y
B> A

F1GURE 3. Identifying the free facets of X, Y, and Z.

over orientable triangulations, and the pairing maps in (B are identified with odd
permutations in the symmetric group &4. Second, the condition on the cycles of
2-faces should be satisfied.

By using the glueing equations @), @), and (@), together with the diagram in
Figure [3 we can compute the cycles of 2-faces with no vertex labelled 5:

Xa:(1,2,3) =Yg :(3,1,4) > Ya:(4,3,2) = Zg : (1,2,4)
5 Z4:(2,3,1) = Xp:(4,1,2) = Xa:(1,2,3),

Xa:(1,2,4) = Yp:(3,1,2) > Ya:(1,3,2) = Zp : (3,2,4)
5 Z4:(4,2,3) = Xp:(3,4,1) = Xa:(1,2,4),

Xa:(13.4) = Vp:(3,4,2) = Ya:(1,3,4) = Zp: (3,2,1)
—Za:(3,4,1) = Xp:(1,3,2) = X4:(1,3,4),

Xa:(2.3.4) = Vi (1,4,2) = Ya:(1,2,4) = Zp : (3,4,1)
—Za:(1,2,4) - Xp:(2,4,3) = X4 :(2,3,4).

All such cycles have length 6 and trivial return maps. The same conclusion holds
for the cycles of 2-faces containing vertex 5, since they correspond to the glueing
of edges of simplices A and B in the manifold triangulations from Figure

By using Regina [I] we can conclude that T has 4 vertices ] Two of their
links are isomorphic to the sibling manifold triangulation, one to the figure-eight
triangulation, and the remaining fourth link is isomorphic to the triangulation of
the manifold O = otet24.00260 from the census of tetrahedral manifolds [9]. Thus,
as described in the proof of Proposition B.4] we have

OW=KULULUO,

where K is the figure-eight knot complement, and L is its sibling manifold.

The figure-eight knot complement K is the orientation double-cover of the non-
orientable Gieseking manifold, while O is the orientation double-cover of the non-
orientable manifold ntet12.00019 from [J] (as one can verify by SnapPy). Thus,
we can quotient the O and K boundary components of W in order to obtain a
hyperbolic manifold W’ with two boundary components, each isometric to L. By
identifying the g boundary components of W’ we obtain a hyperbolic 4-manifold

4am

N of volume =5-, in which the sibling manifold L embeds geodesically.

2 A word of caution to the reader: Regina does not recognize 7 as a valid triangulation, since it

does not allow reverse identifications of edges. However, T does not have to satisfy this condition.
The links of vertices are valid triangulations for Regina, as it should be.
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Similarly, Slavich produced a hyperbolic 4-manifold W” with totally geodesic
boundary
OW'2KUKUKUO
4r?

with vol(W") = 5=, where O’ is another tetrahedral 3-manifold with an orientation-

reversing fixed-point-free involution [29, Remark 4.4]. To conclude the proof for the
figure-eight knot complement, we glue together two K-components of 9W" via an
isometry and quotient the remaining boundary components as before. O
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