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1. Introduction

This paper investigates properties of finite sheeted covering spaces of arith-

metic hyperbolic 3-orbifolds (see §2). The main motivation is a central unresolved

question in the theory of closed hyperbolic 3-manifolds; namely whether a closed

hyperbolic 3-manifold is virtually Haken. Various strengthenings of this have also

been widely studied. Of specific to interest to us is the question of whether the

fundamental group of a given hyperbolic 3-manifold M is large; that is to say,

some finite index subgroup of π1(M) admits a surjective homomorphism onto a

non-abelian free group. This implies that M is virtually Haken, and indeed that

M has infinite virtual first Betti number (see §2.4 for a definition). Of course,

a weaker formulation is to only ask whether the virtual first Betti number of a

closed hyperbolic 3-manifold M is positive. This has been verified in many cases,

see [8] for some recent work on this. However, in general, passage from positive

virtual first Betti number to infinite virtual first Betti number is difficult, as is

passage from infinite virtual first Betti number to large. This paper makes some

progress on the latter in certain settings.

The background for our work is recent work of the first author (see for example

[16] and [18]). This suggests that the questions addressed above for hyperbolic

3-manifolds that are commensurable with an orbifold may be more amenable to

study. One of the aims of this paper is to address these questions for arithmetic

hyperbolic 3-manifolds and in particular, provide further evidence for a positive

solution to the largeness question. It is already known that many arithmetic

hyperbolic 3-manifolds have infinite virtual first Betti number, mainly through

the application of the theory of automorphic forms (see [4], [13], [19], [26] and

[34]). For convenience, we shall refer to these collectively as arithmetic methods.

Some geometric methods are also known using the existence of a totally geodesic

surface, and largeness is known there (see [20] and [24]). However the question

of largeness remains unknown in general for arithmetic hyperbolic 3-manifolds, in

particular even for those for which positive virtual first Betti number is known by

arithmetic methods.

1



Our main results are the following, the first of which explains why arithmetic

manifolds are particularly well-suited to the above questions in the context of

orbifolds.

Theorem 1.1. Let M = H3/Γ be an arithmetic hyperbolic 3-manifold. Then

M is commensurable with an arithmetic hyperbolic 3-orbifold with non-empty

singular locus. More precisely, Γ is commensurable with an arithmetic Kleinian

group Γ0 containing an element of order 2.

In fact, more can be said about elements of order 2 in the commensurability

class of Γ.

Theorem 1.2. Let M = H3/Γ be as above. Then Γ is commensurable with an

arithmetic Kleinian group Γ0 containing a subgroup isomorphic to Z/2Z×Z/2Z.

Theorem 1.1 is easily seen to be false in the setting of non-arithmetic mani-

folds. For example, by Margulis’s result [32], in the non-arithmetic case there is a

unique maximal element in the commensurability class of the group. It is easy to

construct examples whereby this maximal element has no non-trivial elements of

finite order (see for example [35]).

We apply these results, together with results in §3, that are in the spirit of the

[16] and [18] to obtain the following results for arithmetic hyperbolic 3-manifolds.

Theorem 1.3. Let M be an arithmetic hyperbolic 3-manifold for which the

virtual first Betti number is at least 4. Then π1(M) is large.

In [1] Borel shows that arithmetic manifolds (not necessarily hyperbolic) hav-

ing a congruence subgroup with positive first Betti number, have infinite virtual

first Betti number (see §2.4). Thus we have.

Corollary 1.4. Let M be an arithmetic hyperbolic 3-manifold for which arith-

metic methods apply to produce a cover with positive first Betti number. Then

π1(M) is large.

In particular this applies to all known examples of arithmetic hyperbolic 3-

manifolds that have covers with positive first Betti number (we discuss some spe-

cific examples of this in §6).

As further evidence for studying orbifolds, and in particular arithmetic ones,
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we also show:

Theorem 1.5. Let M be an arithmetic hyperbolic 3-manifold commensurable

with an orbifold O = H3/Γ such that either;

(i) Γ contains A4, S4 or A5 or;

(ii) Γ is derived from a quaternion algebra and contains a finite dihedral group.

Then π1(M) is large.

The proof of Theorem 1.3 involves establishing linear growth in mod p ho-

mology for some prime p (see §4). Some of our other main results concern this

phenomena. For example, we prove the following result.

Theorem 1.6. Let O be a 3-orbifold (with possibly empty singular locus) com-

mensurable with a closed orientable hyperbolic 3-orbifold that contains Z/2Z ×
Z/2Z in its fundamental group. Then O has a tower of finite-sheeted covers {Oi}
that has linear growth of mod 2 homology.

This result is also proved in [16], using the Golod-Shafarevich inequality and

the theory of p-adic Lie groups. Our proof uses only properties of hyperbolic 3-

orbifolds, and as such can be considered “elementary”. A consequence of this is

that we can give a new proof of the following result (see §10). This was originally

proved by Lubotzkty in [23], and again the proof used the Golod-Shafarevich

inequality, and the theory of p-adic Lie groups.

Theorem 1.7. No arithmetic Kleinian group has the congruence subgroup prop-

erty.

We also discuss Property (τ) in connection with orbifolds. Property (τ) is

an important group-theoretic concept, introduced by Lubotzky and Zimmer [28].

It has many applications to diverse areas of mathematics, including hyperbolic 3-

manifold theory (see [14] for more details). It is conjectured that if M is a closed

orientable 3-manifold with infinite fundamental group, then π1(M) does not have

Property (τ). As is well-known, having virtually positive first Betti number implies

this, but beyond this, little is known by way establishing a group does not have

(τ). Another of our main results for arithmetic Kleinian groups is.

Theorem 1.8. Suppose that for every compact orientable 3-manifold M with
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infinite fundamental group, π1(M) fails to have Property (τ). Then any arithmetic

Kleinian group is large.
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2. Arithmetic hyperbolic 3-orbifolds

2.1 We begin by recalling some facts about arithmetic Kleinian groups that will

be needed (see [31] for further details).

Arithmetic Kleinian groups are obtained as follows. Let k be a number field

having exactly one complex place, and B a quaternion algebra over k which ram-

ifies at all real places of k. Let ρ : B →M(2,C) be an embedding, O an order of

B, and O1 the elements of norm one in O. Then Pρ(O1) < PSL(2,C) is a finite

co-volume Kleinian group, which is co-compact if and only if B is not isomor-

phic to M(2,Q(
√
−d)), where d is a square free positive integer. An arithmetic

Kleinian group Γ is a subgroup of PSL(2,C) commensurable with a group of the

type Pρ(O1). We call Q = H3/Γ arithmetic if Γ is arithmetic.

Notation: We shall denote Pρ(O1) by Γ1
O and the set of finite places of k that

ramify the quaternion algebra B by Ramf (B).

An arithmetic Kleinian group Γ is called derived from a quaternion algebra

if Γ < Γ1
O. For convenience we state the following result that is deduced from the

characterisation theorem for arithmetic Kleinian groups (see [31] Corollary 8.3.5).

For a finitely generated group G we denote by G(2) the subgroup of G generated

by the squares of elements in G.

Theorem 2.1. Let Γ be a finite co-volume Kleinian group. Then Γ is arithmetic

if and only if the group Γ(2) is derived from a quaternion algebra.

One final fact about arithmetic Kleinian groups that we will make use of is

the following. If Γ is derived from a quaternion algebra B defined over k, then

A0Γ = {
∑

aiγi : ai ∈ k, γi ∈ Γ},
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is a quaternion algebra over k (see [31] Chapter 3) and is isomorphic to B (see

[31] Chapter 8). In what follows we shall just identify the two.

Remark: For convenience, we have blurred the distinction between an element a ∈
PSL(2,C) and a matrix A ∈ SL(2,C) that projects to a under the homomorphism

SL(2,C) → PSL(2,C).

2.2 Here we prove Theorems 1.1 and 1.2 (Theorem 1.1 is implicit in [10]).

We begin with a lemma.

Lemma 2.2. Let Γ be derived from a quaternion algebra B, defined over the

number field k. Let Rk denote the ring of integers of k, a and b a pair of non-

commuting elements of Γ, and let O = Rk[1, a, b, a.b]. Then O is an order of

B.

Proof. To show that O is an order we proceed as follows. First, since a and b do

not commute, it is easy to see that {1, a, b, ab} spans B over k. Thus Rk[1, a, b, ab]

contains a k-basis of B, is finitely generated and contains Rk. Also note that since

Γ is derived from a quaternion algebra the elements a, b, a.b and Rk-combinations

of these words are integral in the algebra. To complete the proof, it suffices to

prove that all products of the basis elements can be expressed as Rk-combinations

of the basis elements. This follows from the Cayley-Hamilton theorem as well as

some other trace identities that we include below.

a+ a−1 = tr(a)1,

a2 = tr(a)a− 1,

a2b = tr(a)ab− b,

aba = −tr(b)1 + tr(ab)a+ b,

b−1a−1 = tr(b)a−1 − ba−1,

ba+ ab = (tr(ab)− tr(a)tr(b))1 + tr(b)a+ tr(a)b.

In particular note that the first identity, with a replaced by ab throughout,

implies that b−1a−1 ∈ O and the last identity then implies that a−1b−1 ∈ O.

Remark. The discriminant of the order O in Lemma 2.2 can be easily computed
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and is the ideal < tr[a, b]− 2 >.

Define the normalizer of O in B by:

N(O) = {x ∈ B∗ | xOx−1 = O}.

The image, Γ(O) of N(O) in PGL(2,C) (which is isomorphic to PSL(2,C)),

is an arithmetic Kleinian group. To see this we argue as follows.

Note first that, for every x ∈ O1, xOx−1 = O because O is a ring. Hence

N(O) contains O1. Furthermore, any element of N(O) normalizes O1 (since

conjugation preserves the norm). Therefore Γ(O) is a subgroup of the normalizer

of Γ1
O in PGL(2,C). Since Γ1

O has finite co-volume, it is well-known that its

normalizer is also discrete and finite co-volume. Hence, Γ(O) is discrete. It also

has finite co-volume, since it contains Γ1
O. We summarize this discussion in the

following.

Corollary 2.3. Let B and O be as above. Then Γ(O) is an arithmetic Kleinian

group commensurable with Γ1
O.

Remark. Corollary 2.3 holds more generally. Namely, if O is any order of a

quaternion algebra B (as in §2.1), then N(O) always gives rise to an arithmetic

Kleinian group Γ(O) (see [31] Chapter 6). We have included the above proof for

completeness, and since it is straightforward in this case.

Theorem 1.1 will follow immediately from the next proposition and Theorem

2.1. This will require some notation.

Let a and b be elements of SL(2,C) without a common fixed point. Then, as

noticed by Jørgenson [11], ab− ba is an element of GL(2,C) which has trace 0 and

whose image in PGL(2,C) is of order two and conjugates a to a−1 and b to b−1.

Denote this involution by τa,b.

Proposition 2.4. Let Γ be derived from a quaternion algebra and a, b ∈ Γ such

that H =< a, b > is a non-elementary subgroup of Γ. Then τa,b is contained in an

arithmetic Kleinian group commensurable with Γ.

Proof. Since Γ is derived from a quaternion algebra, there exists an order D (as

in §2.1) such that Γ < Γ1
D. Let O = RkΓ[1, a, b, a.b] be as in Lemma 2.2. Note

that O ⊂ D. By Corollary 2.3, Γ(O) is an arithmetic Kleinian group that is
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commensurable with Γ1
O. This in turn is commensurable with Γ1

D, and hence Γ.

Finally, the involution τa,b ∈ Γ(O). To see this note that τa,b(ab) = a−1b−1 which

is an element of O by Lemma 2.2.

Proof of Theorem 1.2. The extension of the argument to prove Theorem 1.2 is

made as follows. Γ will continue to be derived from a quaternion algebra B and we

choose a and b loxodromic elements such that their axes, Aa and Ab respectively,

are disjoint.

By construction, the involution τa,b rotates around the geodesic γa,b that is

the common perpendicular between Aa and Ab. We now claim that there is an

involution τα,β that acts by rotating around Aa. To prove the claim, first observe

that since Γ(O) (as in the proof of Theorem 1.1) has finite co-volume, there is a

loxdromic element in Γ(O) that has γa,b as an axis. Since Γ is commensurable

with Γ(O) there is a loxodromic element α ∈ Γ that has γa,b as an axis. Note

that since α and τa,b share an axis, they commute. In addition, there is a loxo-

dromic element β ∈ Γ that has the geodesic aγa,b as an axis. Hence, Aa is the

common perpendicular of the axes γa,b and aγa,b, and as before we can construct

an involution τα,β that acts as claimed (and commutes with a).

Note that τa,b and τα,β are involutions and commute. Hence, the group

V =< τa,b, τα,β > is isomorphic to Z/2Z× Z/2Z. It remains to show that V is a

subgroup of an arithmetic Kleinian group commensurable with Γ. To see this let

L be the order associated to the group < a, α > as in Lemma 2.2. The action of

these involutions on a and α is given by:

τa,baτa,b = a−1, τa,bατa,b = α,

τα,βaτα,β = a, τα,βατα,β = α−1.

It follows from this that V < Γ(L) and Corollary 2.3 completes the proof.

2.3 In this subsection we discuss implications on the Hilbert symbol of the invari-

ant quaternion algebra associated to a Kleinian group of finite co-volume given

the presence of A4, S4 or A5 subgroup and certain dihedral subgroups. In the case

of S4 and A5, since both of these contain A4, we will restrict consideration to this

group.
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Definition. Let G be a finite subgroup of an arithmetic Kleinian group. We shall

call G derived from a quaternion algebra if G is contained in some group Γ1
O as

above.

Theorem 2.5 Suppose that Γ is an arithmetic Kleinian group commensurable

with a Kleinian group containing A4 or a Kleinian group containing a finite dihe-

dral group derived from a quaternion algebra. Let k and B denote the invariant

trace-field and quaternion algebra of Γ. Then if ν ∈ RamfB and ν divides the

rational prime p, then kν contains no quadratic extension of Qp.

Proof. Note first that if Γ is commensurable with a group Γ1 containing A4,

then since A4 = A
(2)
4 it follows that A4 < Γ(2)

1 and so any A4 is derived from a

quaternion algebra. Furthermore, A4 contains a copy of Z/2Z × Z/2Z, which is

the dihedral group of order 4. Thus we can assume that we are in the case that

Γ is a Kleinian group derived from a quaternion algebra and contains a dihedral

group Dn of order 2n.

We can assume that Γ is cocompact, otherwise, B is a matrix algebra and is

unramified at all places of k. Let x, y ∈ Γ generate the dihedral subgroup, with

Dn =< x, y|x2 = y2 = (xy)n = 1 > .

Note that since x and y do not have a common fixed point on the sphere at

infinity, it follows that a Hilbert symbol for B can be computed using the basis

{1, x, y, xy}. From [31] Theorem 3.6.1 we deduce that a Hilbert symbol is given

by

B ∼=
(
−4, 4 cos2 2π/n− 4

k

)
∼=

(
−1, 4 cos2 2π/n− 4

k

)

We need the following information about the term τn = 4 cos2 2π/n − 4 (cf.

[30] Lemma 4.4).

Lemma 2.6. If n is odd, or even and greater than 4, then τn has norm p or is a

unit, depending on whether n is a power of a prime p or not.

In the case n = 4, τn = −4, and so the Hilbert symbol becomes
(
−1,−4

k

)
∼=
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(
−1,−1

k

)
.

Given this, and the lemma, we gain some preliminary control on RamfB.

For, if ν ∈ RamfB then from above we deduce that ν divides 2 or at most

one other rational prime p (see [31] Theorem 2.6.6). Furthermore, the order O =

Rk[1, x, y, xy] (recall Lemma 2.2) can be shown to have discriminant d(O) =< τn >

(see the Remark following Lemma 2.2). Now, the discriminant of a maximal order

of B, which equals the product of finite places ramifying B, divides d(O) =< τn >

(see [31] Theorem 6.3.4). Thus it follows that if p is odd, then ν cannot divide 2.

Given these remarks we can now argue as follows.

Case 1: Assume n is not a prime power, and so τn is a unit. Hence d(O) is the

trivial ideal, and so it follows from the discussion above that O is maximal. Hence

B is unramified at all finite places, and the theorem is proved in this case.

Case 2: Assume n = pt is a prime power, and n 6= 4. From the remarks preceeding

Case 1, it follows that RamfB = ∅ or consists of a unique place dividing p.

In particular if p 6= 2, it cannot contain places dividing 2. Assume by way of

contradiction, that RamfB contains a place ν such that kν contains a quadratic

extension ` of Qp.

Now Q(cos 2π/pt) is a subfield of k, and so B can be described as follows.

B ∼=
(

−1, τpt

Q(cos 2π/pt)

)
⊗Q(cos 2π/pt) k.

Assume first that [k : Q] has even degree. Hence the quaternion algebra B is

ramified at all real places of k (an even number). Hence if RamfB is non-empty

it consists of an even number of finite places. However, recall from above that the

order has discriminant d(O) which is either the trivial ideal or a prime ideal of

norm p. As this discriminant divides that of a maximal order, and the cardinality

of RamfB is even, it follows that the discriminant of a maximal order, and hence

B, is the trivial ideal. Hence we are done in this case.

Now assume that [k : Q] is odd, and so [Q(cos 2π/pt) : Q] is odd. By the

theory of ramification of primes in the maximal real subfield of a cyclotomic field,

there is a unique Q(cos 2π/pt)-prime ω dividing p and this has norm p. Further-
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more, since Q(cos 2π/pt) is assumed to have odd degree, the theory of ramification

in number field extensions [33] implies that Q(cos 2π/pt)ω also will have odd de-

gree, and so must be disjoint from the field `. Hence kν contains a subfield L that

is the compositum of Q(cos 2π/pt) and `. L has degree 2 over Q(cos 2π/pt) and so

applying [31] Theorem 2.6.5, L must split the algebra
(

−1,τpt

Q(cos 2π/pt)ω

)
. However,

then we have from above,

Bν = B ⊗k kν
∼=

(
−1, τpt

Q(cos 2π/pt)ω

)
⊗Q(cos 2π/pt)ω

L⊗L kν
∼= M(2, kν)

which is a contradiction, since ν ramifies.

Case 3: Finally, we must deal with the case n = 4. This is similar to the case

above. In this case, if ν ∈ Ramf (B) then ν is dyadic, and so kν is a finite extension

of Q2. Suppose there is a quadratic extension ` of Q2 that is contained in kν . Now

B is ramified at ν, and so Bν = B⊗kkν is isomorphic to the unique division algebra

over kν . As above, it is easy to see that the following tensor products hold:

Bν = B ⊗k kν =
(
−1,−1
kν

)
∼=

(
−1,−1

Q2

)
⊗Q2 kν .

∼=
(
−1,−1

Q2

)
⊗Q2 `⊗` kν

However, arguing as above, a quadratic extension of the center of a quaternion

algebra over a local field (in particular ` over Q2) splits the unique division algebra

over Q2. Hence,

(
−1,−1

Q2

)
⊗Q2 `

∼= M(2, `).

Bν = B ⊗k kν
∼= M(2, `)⊗` kν

∼= M(2, kν),

Again, this contradicts the assumption that Bν is a division algebra.

2.4 In this subsection we gather together some notions and results pertaining

to congruence covers of arithmetic hyperbolic 3-orbifolds. If Γ is an arithmetic

Kleinian group, there is a distinguished class of subgroups in Γ, known as the

congruence subgroups. These are defined as follows. Notation as in §2.1.

10



Let O be a maximal order of B, and let I be any proper 2-sided integral ideal

of B contained in O; ie I is a complete Rk-lattice in B such that

O = {x ∈ B | xI ⊂ I} = {x ∈ B | Ix ⊂ I}.

As noted in [31] Chapter 6.1, any proper 2-sided integral ideal of B contained in

O is an ideal of O in the usual non-commutative ring sense. In particular O/I is

a finite ring.

Define

O1(I) = {α ∈ O1 : α− 1 ∈ I}.

The corresponding principal congruence subgroup of Γ1
O is

Γ(O(I)) = Pρ(O1(I)).

If Γ is an arithmetic Kleinian group then a subgroup ∆ < Γ is a congruence

subgroup of Γ if it contains some principal congruence subgroup Γ(O(I)) as above.

Before stating the result about the first Betti number of congruence subgroups

we require, we need some notation.

Notation. If X is a group, space or orbifold, we will denote by b1(X) the rank of

H1(X; Z)⊗Q and set

vb1(X) = sup{b1(X̃) : X̃ is a finite index subgroup or finite cover of X}.

Theorem 2.7. (Borel [1]) Suppose Γ is an arithmetic Kleinian group containing

a subgroup Γ(O(I)) with b1(Γ(O(I)) > 0. Then vb1(Γ) = ∞.

3. The homology of 3-orbifolds

Definition. Let O be a compact orientable 3-orbifold. Let sing(O) be its singular

locus, and let |O| denote its underlying 3-manifold. Let sing0(O) and sing−(O)

denote the components of the singular locus with, respectively, zero and negative

Euler characteristic. For any prime p, let singp(O) denote the union of the arcs

and circles in sing(O) with singularity order that is a multiple of p. Let sing0
p(O)

and sing−p (O) denote those components of singp(O) with zero and negative Euler

characteristic.
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When O is closed, sing(O) is a disjoint union of simple closed curves and

trivalent graphs, and hence sing(O) = sing0(O) ∪ sing−(O). However, it need not

be the case that singp(O) = sing0
p(O) ∪ sing−p (O).

Terminology. If p is a prime, let Fp denote the field of order p. If X is a group,

space or orbifold, let dp(X) be the dimension of H1(X; Fp).

The following lower bound on homology will be a crucial tool that we use

throughout the rest of this paper.

Proposition 3.1. Let O be a compact orientable 3-orbifold, and let p be a prime.

Then dp(O) ≥ b1(singp(O)).

Proof. Let M denote the 3-manifold obtained from O by a removing an open

regular neighbourhood of its singular locus. Let {µ1, . . . , µr} be a collection of

meridian curves, one encircling each arc or circle of the singular locus. Let ni be

the singularity order of the arc or circle that µi encircles. Then

π1(O) = π1(M)/〈〈µn1
1 , . . . , µnr

r 〉〉.

Hence,

H1(O; Fp) = H1(M ; Fp)/〈〈µn1
1 , . . . , µnr

r 〉〉.

Now, when ni is coprime to p, quotienting H1(M ; Fp) by µni
i is the same as

quotienting by µi. And when ni is a multiple of p, then quotienting H1(M ; Fp)

by µni
i has no effect. Thus, if we let M ′ be the 3-manifold obtained from |O|

by removing an open regular neighbourhood of singp(O), then dp(O) = dp(M ′).

Now, it is a well known consequence of Poincaré duality that, for the compact

orientable 3-manifold M ′, dp(M ′) ≥ 1
2dp(∂M ′) ≥ b1(singp(O)), as required.

4. Linear growth of homology

Definition. Let X be a group, space or orbifold and let p be a prime. Then a

collection {Xi} of finite index subgroups or finite-sheeted covers of X with index

or degree [X : Xi] is said to have linear growth of mod p homology if

inf
i
dp(Xi)/[X : Xi] > 0.

In this section we prove Theorem 1.6, which we restate below for convenience.
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Theorem 4.1. Let O be a 3-orbifold (with possibly empty singular locus) com-

mensurable with a closed orientable hyperbolic 3-orbifold that contains Z/2Z ×
Z/2Z in its fundamental group. Then O has a tower of finite-sheeted covers {Oi}
that has linear growth of mod 2 homology.

This is a consequence of the following more general theorem (Theorem 1.1 in

[16]).

Theorem 4.2. Let O be a compact orientable 3-orbifold with non-empty singular

locus and a finite-volume hyperbolic structure. Let p be a prime that divides the

order of an element of π1(O). Then O has a tower of finite-sheeted covers {Oi}
that has linear growth of mod p homology.

However, the proof of Theorem 4.2 required some results about p-adic analytic

groups and it also used the Golod-Shafarevich inequality. In this section, we will

provide a much simpler proof of the weaker Theorem 4.1.

Note first that we can assume that O itself is closed, orientable and hyperbolic

and contains Z/2Z × Z/2Z in its fundamental group. For, we know that O is

commensurable with some such orbifold O′. Let O′′ be a common cover of O and

O′. We may assume that O′′ is a regular cover of O′. Suppose that we could prove

Theorem 4.1 for O′, providing a sequence of covers {Oi} with linear growth of mod

2 homology. Then the covering spaces of O′ corresponding to π1(O′′)∩π1(Oi) also

have linear growth of mod 2 homology, by the following elementary result, which

appears as Lemma 5.3 in [16].

Lemma 4.3. Let {Gi} be a sequence of finite index subgroups of a finitely

generated group G, and let H be a finite index subnormal subgroup of G. If {Gi}
has linear growth of mod p homology for some prime p, then {Gi ∩H} does also.

So, let us suppose that O is closed, orientable and hyperbolic and contains

Z/2Z × Z/2Z in its fundamental group. We will prove Theorem 4.1 by finding a

tower of finite covers Oi such that

inf
i
b1(sing−2 (Oi))/[O : Oi] > 0.

By Proposition 3.1, d2(Oi) is at least b1(sing2(Oi)), which is, of course, at least

b1(sing−2 (Oi)). Thus, {Oi} will indeed have linear growth of mod 2 homology.

The first step is to find a finite cover Õ of O such that sing−2 (Õ) is non-empty.
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Proposition 4.4. Let O be a closed orientable hyperbolic 3-orbifold that contains

Z/2Z×Z/2Z in its fundamental group. Then O is finitely covered by a 3-orbifold

Õ such that every arc and circle of sing(Õ) has order 2, and which contains at

least one singular vertex. In particular, sing−2 (Õ) is non-empty.

Proof. Since O is hyperbolic, Selberg’s lemma implies that it has a finite-sheeted

regular cover that is a manifold M . Let Õ be the cover of O corresponding to the

subgroup π1(M)(Z/2Z×Z/2Z) of π1(O). ThenM regularly covers Õ with covering

group π1(Õ)/π1(M) = (Z/2Z×Z/2Z)/(π1(M)∩ (Z/2Z×Z/2Z)) = Z/2Z×Z/2Z.

Thus, any arc or circle of the singular locus of Õ has order 2. Hence, sing2(Õ) =

sing(Õ). Since O is closed, sing(O) consists of simple closed curves and trivalent

graphs. Now, Õ is hyperbolic and so is obtained as the quotient of H3 by the action

of π1(Õ). The Z/2Z × Z/2Z subgroup of π1(Õ) is realised by a finite subgroup

of Isom(H3), which must have a common fixed point in H3. The image of this

point in Õ is a singular vertex. Hence, some component of sing2(Õ) therefore has

negative Euler characteristic.

The next step is to pass to a finite cover O1 such that b1(sing−2 (O1)) is arbi-

trarily large. Note that, for any finite cover O1 of Õ, sing(O1) = sing2(O1). Thus,

sing2(O1) consists of trivalent graphs and simple closed curves. So,

b1(sing−2 (O1)) ≥ |V (sing2(O1))|/2 + 1,

where V (sing2(O1)) is the vertices of the singular set. Thus, we will establish a

lower bound on b1(sing−2 (O1)) by finding a lower bound on the number of singular

vertices of O1.

Theorem 4.5. Let O be a closed orientable hyperbolic 3-orbifold that contains

Z/2Z× Z/2Z in its fundamental group. Then, for any integer N , O has a finite-

sheeted cover O1 such that each arc and circle of sing(O1) has order 2, and which

contains at least N singular vertices. Hence, b1(sing−2 (O1)) ≥ N/2 + 1.

The following is a key step in the proof of this theorem, and is of independent

interest.

Theorem 4.6. Let O be a compact orientable hyperbolic 3-orbifold (with possi-

bly empty singular locus), and let n be a positive integer. Then for infinitely many

n-tuples of distinct primes (p1, . . . , pn), π1(O) admits a surjective homomorphism

14



φ onto
∏n

i=1 PSL(2, pi). Furthermore, if πi:
∏n

i=1 PSL(2, pi) → PSL(2, pi) is pro-

jection onto the ith factor, then we may ensure that ker(πiφ) is torsion-free, for

each i.

Proof. Let O = H3/Γ. It is shown in [22] that for infinitely many rational primes p

there are (reduction) homomorphisms φp: Γ → PSL(2, p). It is well-known that by

avoiding a finite set of primes we can assume that the kernels are torsion-free (see

Lemma 6.5.6 of [31] for example). Also, by definition of these homomorphisms, for

all non-trivial elements g ∈ Γ, φp(g) 6= 1 for all but a finite number of primes. Let

J be the set of rational primes p given by the above construction. It also follows

from the argument in [22] that, for any finite index subgroup of Γ, the restriction

of φp to that subgroup is a surjection onto PSL(2, p), for all but finitely many

primes p in J .

The homomorphism φ required by the proposition will be

(φp1 × . . .× φpn
): Γ → PSL(2, p1)× . . .× PSL(2, pn)

for suitable primes p1, . . . , pn in J .

We will prove, by induction on n, that infinitely many n-tuples (p1, . . . , pn)

of distinct primes in J can be found so that the homomorphism φ is surjective.

For n = 1, this is simply [22]. For the inductive step, suppose that infinitely many

n-tuples (p1, . . . , pn) have been found with this property. Let us focus on just one

(p1, . . . , pn). Our aim is to extend this to an (n+1)-tuple (p1, . . . , pn, pn+1) where

again, the homomorphism is surjective. Let K be the kernel of φp1 × . . . × φpn
.

This is a finite index subgroup of Γ. Hence, by the above properties, there is some

pn+1 ∈ J such that φpn+1(K) = PSL(2, pn+1). We claim that φ1 × . . . × φpn+1

is a surjection onto
∏n+1

i=1 PSL(2, pi). Consider an (n + 1)-tuple (A1, . . . , An+1)

in the target. By the inductive hypothesis, there is some element g ∈ Γ such

that (φp1 × . . . × φpn
(g)) = (A1, . . . , An). Then φpn+1(g) is some element X in

PSL(2, pn+1). Since the restriction of φpn+1 to K is surjective, there is some

h ∈ K such that φpn+1(h) = X−1An+1. Then φp1 × . . . × φpn+1 maps gh onto

(A1, . . . , An+1), as required.

Proof of Theorem 4.5. Let O = H3/Γ. By Proposition 4.4, we may assume that

the order of each arc and circle of sing(O) is 2, and that sing(O) contains at least

one vertex. Let φ: Γ →
∏n

i=1 PSL(2, pi) be the homomorphism from Theorem 4.6,
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let H be the image of Z/2Z×Z/2Z under φ, and let (A1, . . . , An) and (B1, . . . , Bn)

be the images under φ of the generators of Z/2Z×Z/2Z. Since ker(πiφ) is torsion-

free, Ai, Bi and AiBi are non-trivial for each i. Let O1 = H3/Γ1 be the covering

space of O corresponding to the subgroup φ−1(H) = Γ1, and let M be the covering

space corresponding to the kernel of φ. Since the kernel of φ is torsion-free, M

is a manifold. Now, M is a regular cover of O1, with covering group Z/2Z ×
Z/2Z. Hence, each arc and circle of sing(O1) has order 2. Since π1(O1) contains

Z/2Z × Z/2Z, O1 contains at least one Z/2Z × Z/2Z vertex v. In fact, we will

show that it contains at least 4n−1 vertices. By elementary covering space theory,

the group of covering transformations of the cover O1 → O equals N(H)/H,

where N(H) is the normaliser of H in
∏n

i=1 PSL(2, pi). We claim that this group

has order at least 4n−1. To prove the claim, note that (I, I, . . . , I, Ai, I, . . . , I)

and (I, I, . . . , I, Bi, I, . . . , I) both commute with (A1, . . . , An) and (B1, . . . , Bn).

In particular, they lie in N(H). The group these elements generate has order

22n. Hence, N(H)/H has order at least 4n−1. No covering transformation can

fix v, because the local group of each singular point of sing(O) does not contain

Z/2Z × Z/2Z as a proper subgroup. Hence the orbit of v under the group of

covering transformations has order at least 4n−1. In particular, O1 contains at

least this many vertices. Since n was an arbitrary positive integer, the theorem is

proved.

Lemma 4.7. Let X be a finite trivalent graph with V vertices. Then X contains

a simple closed curve with at most 2 log2((V + 2)/3) + 2 edges.

Proof. We may assume that X is connected. Give X the path metric where each

edge has length 1. For any vertex v, let R1(v) be the minimal radius of a ball

centred at v that is not a tree. Fix a vertex v where R1(v) has minimal value,

and set R = dR1(v)e. Then the ball of radius R around v contains a simple closed

curve of length at most 2R. We claim that

R ≤ log2((V + 2)/3) + 1.

For any non-negative integer r, let B(r) be the ball of radius r around v. So,

B(R− 1) is a tree. The number of vertices in this tree is equal to 3(2R−1− 1)+1.

This is a lower bound for V . So,

3(2R−1 − 1) + 1 ≤ V
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and therefore

R ≤ log2((V + 2)/3) + 1.

Proof of Theorem 4.1. By Theorem 4.5, O has a finite cover O1 such that such

that each arc and circle of sing(O1) has order 2 and which contains at least 50

vertices. Starting with O1, we will construct a tower of finite covers {Oi}. Let

ni be the number of vertices of Oi. We will ensure that the following inequality

holds for each i:

ni+1 ≥ 2ni − 4(log2((ni + 2)/3) + 1) (∗)

Suppose that H1(|Oi|; Z/2Z) is non-trivial. Then |Oi| has a 2-fold cover |Oi+1|,
with underlying orbifold Oi+1. Clearly, the number of vertices is doubled, and so

(∗) holds. So, suppose that |Oi| is a mod 2 homology 3-sphere. Using Lemma 4.7,

pick a simple closed curve C in sing2(Oi) with length at most 2 log2((ni+2)/3)+2.

This bounds a compact embedded surface S. By a small isotopy, we may assume

that S intersects sing2(Oi) in ∂S and in a finite number of points in the interior of

S. Let Oi+1 be the 2-fold cover of Oi dual to S. Then each vertex in sing2(Oi)−C
has inverse image equal to 2 vertices in Oi+1. Thus, (∗) holds.

We claim that when ni is a sequence satisfying (∗) and where n1 ≥ 50, then

inf
i
ni/2i > 0.

To prove this, we will establish the following inequality, by induction on i:

ni ≥ 2i

(
1 +

24
i

)
.

This holds for n1 by our hypothesis that n1 ≥ 50. To prove the inductive step,

note that
ni+1 ≥ 2ni − 4(log2((ni + 2)/3) + 1)

≥ 2ni − 4 log2 ni

≥ 2i+1

(
1 +

24
i

)
− 4

(
i+ log2

(
1 +

24
i

))
≥ 2i+1

(
1 +

24
i

)
− 4(i+ 5)

≥ 2i+1

(
1 +

24
i+ 1

)
.
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The second inequality holds because ni ≥ 4. The third is true because 2x−4 log2 x

is an increasing function of x when x > 2/ log 2. The final inequality holds because

24
i
− i+ 5

2i−1
≥ 24
i+ 1

⇔ 24
i(i+ 1)

≥ i+ 5
2i−1

,

which certainly holds for all integers i ≥ 1. So,

ni

2i
≥

(
1 +

24
i

)
which has positive infimum. Thus, {Oi} has linear growth of mod 2 homology.

5. Largeness criteria

The main result of this section is a largness criterion for certain hyperbolic

3-orbifolds. The next theorem is the starting point for §6.

Theorem 5.1. Let O be a 3-orbifold (with possibly empty singular locus) com-

mensurable with a closed orientable hyperbolic 3-orbifold that contains Z/2Z ×
Z/2Z in its fundamental group. Suppose that vb1(O) ≥ 4. Then π1(O) is large.

The principal ingredient in the proof of this theorem is the following result

(Theorem 1.2 of [15]).

Theorem 5.2. Let G be a finitely presented group, and suppose that, for each

natural number i, there is a triple Hi ≥ Ji ≥ Ki of finite index normal subgroups

of G such that

(i) Hi/Ji is abelian for all i;

(ii) limi→∞((log[Hi : Ji])/[G : Hi]) = ∞;

(iii) lim supi(d(Ji/Ki)/[G : Ji]) > 0.

Then Ki admits a surjective homomorphism onto a free non-abelian group, for

infinitely many i.

Here, d( ) is the minimal number of generators of a group.

We will need the following corollary.

Corollary 5.3. Let G be a finitely presented group, and let φ:G → Z be a

surjective homomorphism. Let Gi be φ−1(iZ). Suppose that, for some prime p,

{Gi} has linear growth of mod p homology. Then G is large.
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Proof. Set Hi = G, set Ji = Gi and let Ki = [Gi, Gi]G
p
i . Then it is trivial to

check that the conditions of Theorem 5.2 hold.

A key hypothesis in Corollary 5.3 is linear growth of mod p homology. The

following gives a situation where this is guaranteed to hold.

Proposition 5.4. Let O be a compact orientable 3-orbifold, and let C be a

component of sing0
p(O) for some prime p. Let pi: |Oi| → |O| (i ∈ N) be distinct

finite covering spaces of |O| such that the restriction of pi to each component of

p−1
i (C) is a homeomorphism onto C. Let Oi be the corresponding covering spaces

of O. Then {Oi} has linear growth of mod p homology.

Proof. By Proposition 3.1, we have

dp(Oi) ≥ |sing0
p(Oi)| ≥ [Oi : O].

Combining Corollary 5.3 and Proposition 5.4, we have the following.

Theorem 5.5. Let O be a compact orientable 3-orbifold. Suppose that π1(O)

admits a surjective homomorphism φ onto Z, and that some component of sing0
p(O)

has trivial image under φ, for some prime p. Then π1(O) is large.

Proof. Each meridian of the singular locus of O represents a torsion element of

π1(O). Hence its image under φ is trivial. Thus, φ factors through a homo-

morphism ψ:π1(|O|) → Z. Let |Oi| be the covering space of |O| corresponding

to ψ−1(iZ), and let Oi be the corresponding cover of O. Proposition 5.4 gives

that {Oi} has linear growth of mod p homology. Thus, by Corollary 5.3 (with

G = π1(O) and Gi = π1(Oi)), π1(O) is large.

Remark 5.6. Suppose that the singular locus of O contains a circle component

and that b1(O) ≥ 2. Then such a homomorphism φ as in Theorem 5.5 may always

be found.

Proof of Theorem 5.1. By hypothesis, O has a finite cover O′ such that b1(O′) ≥ 4.

Let O′′ be the hyperbolic orbifold, commensurable with O, containing Z/2Z×Z/2Z
in its fundamental group. Now, O′ and O′′ are commensurable, and hence they

have a common cover O′′′, say. Since O′′′ is hyperbolic, it has a manifold cover

M . We may assume that M regularly covers O′′. Now, b1 does not decrease

under finite covers, and so b1(M) ≥ 4. Since M → O′′ is a regular cover, it
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has a group of covering transformations π1(O′′)/π1(M). This group acts on the

manifold M with quotient O′′. Now, π1(O′′) contains Z/2Z × Z/2Z, and hence

some singular point of O′′ has local group that contains Z/2Z×Z/2Z. The group

of covering transformations must contain the local group of this vertex. Hence,

π1(O′′)/π1(M) contains Z/2Z×Z/2Z. Let h1 and h2 be the commuting covering

transformations of M corresponding to the generators of Z/2Z×Z/2Z. These are

involutions. Let h3 be the composition of h1 and h2, which also is an involution.

For i = 1, 2 and 3, let Oi be the quotient M/hi. Since hi has non-empty fixed

point set, sing(Oi) is a non-empty collection of simple closed curves with order 2.

We claim that, for at least one i ∈ {1, 2, 3}, b1(Oi) ≥ 2. Now, each hi induces

an automorphism hi∗ of H1(M ; R). Note that hi∗ is diagonalisable because its

minimum polynomial divides x2 − 1 and so splits as a product of distinct linear

factors. Thus, H1(M ; R) decomposes as a direct sum of eigenspaces of hi∗. It

is clear that b1(Oi) is equal to the dimension of the +1 eigenspace of hi∗ (see

Proposition III.10.4 in [2] for example). Suppose that this is at most 1 for i = 1

and 2. Then the dimension of the −1 eigenspace is at least 3 for i = 1 and 2.

Hence, the intersection of these eigenspaces has dimension at least 2. This lies in

the +1 eigenspace for h3∗, and so b1(O3) ≥ 2, proving the claim. So, by Theorem

5.5 and Remark 5.6, π1(Oi) is large and hence so is π1(O).

6. Largeness for arithmetic hyperbolic 3-orbifolds

An easy consequence of Theorem 1.2 and Theorem 5.1 is the following.

Theorem 6.1. Let M be an arithmetic 3-manifold. Suppose that vb1(M) ≥ 4.

Then π1(M) is large.

Proof. When M is closed this is immediate from Theorem 1.2 and Theorem

5.1. When M has non-empty boundary, the result follows from [5], which shows

that any non-compact finite-volume hyperbolic 3-manifold has large fundamental

group.

The hypothesis vb1(M) ≥ 4 is known to hold in various circumstances as we

now discuss.

The first situation is:
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Corollary 6.2. Let Γ be an arithmetic Kleinian group, with the property that

some congruence subgroup has positive b1. Then Γ is large.

Proof. By Borel’s theorem (Theorem 2.7) if a congruence subgroup has positive

first betti number then we have vb1(Γ) = ∞. Hence we can deduce largeness from

Theorem 6.1.

As a particular case of this we have

Corollary 6.3. Let Γ be an arithmetic Kleinian group, with the property that

vb1(Γ) > 0 by arithmetic methods. Then Γ is large.

We discuss some particular examples of this situation at the end of this sec-

tion.

Our next result allows us to weaken the Z/2Z×Z/2Z and vb1 ≥ 4 assumption.

Theorem 6.4. Let Γ be an arithmetic Kleinian group commensurable with a

Kleinian group containing A4, S4 or A5 or a finite dihedral group that is derived

from a quaternion algebra. Then Γ is large.

To prove this theorem we need to recall the following result of Clozel [4] stated

in a way that is convenient for us.

Theorem 6.5. Let Γ be an arithmetic Kleinian group, with invariant trace-

field and quaternion algebra k and B respectively. Assume that for every place

ν ∈ Ramf (B), kν contains no quadratic extension of Qp where p is a rational prime

and ν|p. Then Γ is commensurable with a congruence subgroup with positive first

Betti number.

Proof of Theorem 6.4. We can assume that Γ is cocompact, otherwise the result

follows from [5]. By Theorem 2.5 the invariant trace-field and quaternion algebra

of Γ satisfies the conditions of Theorem 6.5. Hence we can apply Corollary 6.2 to

complete the proof.

Examples of Corollary 6.3:

1. It is known that any arithmetic Kleinian group arising from a quaternion

algebra B/k (as in §2.1) with [k : k ∩ R] = 2 have congruence covers with

vb1 > 0 (see [13], [19] or [26]). Hence these are large.
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2. In [34] it is shown that if k has one complex place and [k : Q] ≤ 4 then any

arithmetic Kleinian group arising from an algebra B/k satisfies the hypothesis

of Corollary 6.3 and hence is large.

3. As a particular case of 2 above, let MW denote the Weeks manifold, the

smallest arithmetic hyperbolic 3-manifold. From [3], MW has invariant trace

field of degree 3. Hence π1(MW ) is large.

4. Let Σ denote an arithmetic integral homology. The invariant trace-field of Σ

(denoted k) has even degree over Q, and the invariant quaternion algebra of Σ

is unramified at all finite places (see for example [31] Theorem 6.4.3). Hence

Clozel’s theorem (Theorem 6.5) applies to prove vb1(Σ) > 0, and Corollary

6.2 applies to prove largeness.

As an example of an arithmetic integral homology 3-sphere one can take the

3-fold cyclic branched cover of the (−2, 3, 7)-pretzel knot. The invariant trace

field is Q(θ) where θ has minimal polynomial x6−x5−x4 +2x3−2x2−x+1.

This generates a field of signature (4, 1) and discriminant −104483. All of

this can be checked using Snap (see [6] for a discussion of this program).

We close this section with an example of a commensurability class of arithmetic

3-orbifolds for which no method currently known applies to provide a cover with

positive first Betti number.

Let p(x) = x5 − x3 − 2x2 + 1. Then p has three real roots and one pair of

complex conjugate roots. Let t be a complex root and let k = Q(t). Now k has

one complex place and its Galois group is S5. There is a unique prime P of norm

112 in k. It follows that kP is a quadratic extension of Q11. Take B ramified at

the real embeddings and the prime P. Then it is unknown whether any arithmetic

Kleinian group arising from B has a cover with positive first Betti number.

Briefly, if Γ is any group in the commensurability class, then since k has odd

degree, there are no non-elementary Fuchsian subgroups (see [31] Chapter 9). The

result of Clozel (see Theorem 6.5) does not apply by the condition on P, and none

of the papers [13], [19] or [34] apply since [k : Q] = 5 and the Galois group is A5.
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7. Largeness and Property (τ)

We begin by recalling the definition of Property (τ).

Definition. Let X be a finite graph, and let V (X) denote its vertex set. For any

subset A of V (X), let ∂A denote those edges with one endpoint in A and one not

in A. Define the Cheeger constant of X to be

h(X) = min
{
|∂A|
|A|

: A ⊂ V (X) and 0 < |A| ≤ |V (X)|/2
}
.

Let G be a group with a finite generating set S. For any subgroup Gi of G, let

X(G/Gi;S) be the Schreier coset graph of G/Gi with respect to S. Then G is

said to have Property (τ) with respect to a collection of finite index subgroups

{Gi} if infi h(X(G/Gi;S)) > 0. This turns out not to depend on the choice of

finite generating set S. Also, G is said to have Property (τ) if it has Property (τ)

with respect to the collection of all subgroups of finite index in G.

Lubotzky and Sarnak have made the following conjecture.

Conjecture 7.1. (Lubotzky-Sarnak) The fundamental group of any closed hy-

perbolic 3-manifold does not have Property (τ).

A slight variant is the following.

Conjecture 7.2. For any closed orientable 3-manifold M with infinite fundamen-

tal group, π1(M) does not have Property (τ).

It is a fairly routine argument that if we assume the solution to the Geometri-

sation Conjecture, then Conjectures 7.1 and 7.2 are equivalent. We sketch this

argument in an appendix.

Now it is well-known that having vb1 > 0 implies the Lubotzky-Sarnak con-

jecture. For if M is a hyperbolic 3-manifold, and we assume that M is finitely

covered by a 3-manifold M̃ with b1(M̃) > 0, then π1(M̃) admits a surjective ho-

momorphism φ onto Z. Let Gi be φ−1(iZ). Then it is not hard to prove that

π1(M) does not have Property (τ) with respect to {Gi}.

The main result in this section is as follows.

Theorem 7.3. Conjecture 7.2 implies that any lattice in PSL(2,C) that contains

Z/2Z× Z/2Z is large.
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Theorem 7.3 has the following surprising conclusion for arithmetic Kleinian

groups.

Corollary 7.4. Conjecture 7.2 implies that any arithmetic Kleinian group is

large.

There are two parts to the proof of Theorem 7.3:

1. Let O be the orbifold quotient of H3 by the given lattice in PSL(2,C). Prove

that O has a finite cover Õ where |Õ| has infinite fundamental group, and

where sing−2 (Õ) is non-empty (Theorem 8.1).

2. Prove a result (Theorem 9.1) analogous to Corollary 5.3, which states that

π1(Õ) is large, provided sing−2 (Õ) is non-empty and π1(|Õ|) does not have

Property (τ).

8. An underlying manifold with infinite fundamental group

The main theorem in this section is the following.

Theorem 8.1. Let O be a closed orientable hyperbolic 3-orbifold that contains

Z/2Z × Z/2Z in its fundamental group. Then O has a finite cover Õ such that

sing−2 (Õ) is non-empty, and where |Õ| admits an infinite tower of finite covers

{|Oi| → |Õ|}. In particular, π1(|Õ|) is infinite.

The first step is to prove the following extension of Lemma 4.7.

Proposition 8.2. Let X be a finite trivalent graph. Then X contains a con-

nected subgraph Y such that b1(Y ) = 2 and the number of edges of Y is at most

6 log2(b1(X)− 1) + 12.

Proof. We may assume thatX is connected. Consider the path metric onX, where

each edge has length 1. For any vertex v and non-negative integer n ≤ b1(X), let

Rn(v) be the minimal radius of a ball centred at v that contains a subgraph Y

with b1(Y ) ≥ n. Note that b1(X) ≥ 2 and so R2(v) is well-defined. Fix a vertex

v where R2(v) has minimal value, and set R = dR2(v)e. We claim that

R ≤ log2(b1(X)− 1) + 2.
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There are three cases to consider: when R1(v) ≤ R2(v) − 1, when R1(v) =

R2(v)− 1/2 and when R1(v) = R2(v). Let us concentrate on the first case.

For any non-negative integer r, let B(r) be the ball of radius r around v. Since

R1(v) < R2(v), b1(B(R1(v))) = 1. Thus, B(R1(v)) contains a unique simple closed

curve C consisting of at most 2R1(v) edges. Since we are assuming R−1 ≥ R1(v),

B(R − 1) is obtained from C by attaching trees. The distance between any two

vertices of B(R− 1) is at most 2R− 2. By definition of R, there exist two vertices

in B(R − 1) joined by a path p1 of length at most 2 in X − B(R − 1), where p1

is either an arc or simple closed curve. Let p2 be the shortest path in B(R − 1)

from one of these vertices to C. If the endpoints of p1 are distinct, let p3 be the

shortest path in B(R− 1) from the other vertex to C ∪ p2; otherwise let p3 be the

empty set. Set Y = p1 ∪ p2 ∪ p3 ∪ C. Then it is clear that Y is connected and

b1(Y ) = 2. By construction, Y consists of at most 6R edges.

Now, C runs through at most two of the three edges adjacent to v. Thus, if

one were to remove v and its adjacent edges from B(R−1), one component would

consist of a based binary tree. The number of vertices in this tree, together with

v, is equal to 2R−1. This is a lower bound for the number V of vertices in X. But,

since X is connected and trivalent, b1(X) = 1
2V + 1. So,

2R−1 ≤ V = 2b1(X)− 2

and therefore

R ≤ log2(b1(X)− 1) + 2.

This proves the claim when R1(v) ≤ R2(v)− 1. In the remaining cases, the proof

is similar but simpler, and so is omitted.

We have already seen that Y contains at most 6R edges, and so the proposition

is proved.

Lemma 8.3. Let O be a closed orientable 3-orbifold with non-empty singular

locus. Then π1(O) has a finite presentation 〈X|R〉 with

|R| − |X| ≤ 2b1(sing(O))− 2.
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Proof. Let M be the manifold obtained from O by removing an open regular

neighbourhood of its singular locus. Then π1(M) has a presentation 〈X|R′〉 with

|R′| − |X| = 1
2χ(∂M) − 1 = χ(sing−(O)) − 1. We obtain π1(O) from π1(M) by

adding relations that are powers of the meridians of the singular locus. For each

circle component of the singular locus, there is one such meridian. For each graph

component Y , the number of meridians is equal to −3χ(Y ). Hence, π1(O) has a

presentation 〈X|R〉 with

|R| − |X| = −2χ(sing−(O)) + |sing0(O)| − 1

= 2b1(sing−(O))− 2|sing−(O)|+ 2b1(sing0(O))− |sing0(O)| − 1

≤ 2b1(sing(O))− 2.

The final step in the proof of Theorem 8.1 is the following proposition.

Proposition 8.4. Let O be a closed orientable 3-orbifold such that every arc and

circle of the singular locus has singularity order 2. Let Y be a connected subgraph

of sing(O) that has b1(Y ) = 2 and at most 6 log2(b1(sing(O))− 1) + 12 edges. Let

G be the fundamental group of O, and let K be the subgroup normally generated

by the meridians that encircle Y . Let Õ be the covering space of O corresponding

to the subgroup KG2. Suppose that d2(O) ≥ 81. Then |Õ| has an infinite tower

of finite covers |Oi| → |Õ|. In particular, π1(|Õ|) is infinite.

Proof. Let M1 be the meridians of Y , one for each edge of sing(O) that lies

in Y . Let M2 be those meridians of sing(O) that lie in G2 but that are not

meridians of Y . Consider the group Γ = π1(O)/〈〈M1,M2〉〉. This is equal to the

fundamental group of an orbifold O′ with the same underlying manifold as O, and

with singular set that is a subgraph of sing(O). Lemma 8.3 states that π1(O′)

has a finite presentation 〈X|R〉 where the number of relations minus the number

of generators is at most 2b1(sing(O′))− 2, which is at most 2b1(sing(O))− 2. By

Proposition 3.1, this is at most 2d2(O) − 2. Now, adding the relations in M2 to

π1(O) does not affect d2, because they lie in G2. Hence,

d2(O) ≥ d2(Γ) ≥ d2(O)− |M1| ≥ d2(O)− 6 log2(d2(O)− 1)− 12.
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Therefore,

d2(Γ)2/4− |R|+ |X| − d2(Γ)

≥ d2(Γ)2/4− 2d2(O) + 2− d2(Γ)

≥ (d2(O)− 6 log2(d2(O)− 1)− 12)2/4− 3d2(O) + 2

> 0.

The last inequality is a consequence of the assumption that d2(O) ≥ 81; it is easy

to check that the given function of d2(O) is positive in this range. Hence, by

the Golod-Shafarevich theorem, Γ has an infinite nested sequence of finite index

subgroups and hence is infinite. The same is therefore true for Γ2, because it has

finite index in Γ.

Let Õ be the covering space of O corresponding to KG2. We claim that

π1(|Õ|) ∼= Γ2. This will prove that π1(|Õ|) has an infinite nested sequence of finite

index subgroups. Now, π1(|Õ|) is obtained from π1(Õ) = KG2 by quotienting each

meridian of the singular locus. But the meridians in O that lift to meridians of

singular components of Õ are precisely those lying in 〈〈M1,M2〉〉. Hence, π1(|Õ|) ∼=
KG2/〈〈M1,M2〉〉 ∼= Γ2.

Proof of Theorem 8.1. By Theorem 4.5, O is finitely covered by an orbifold O′

such that each arc and circle of sing(O′) has order 2 and where b1(sing−2 (O′)) ≥
81. By Proposition 3.1, d2(O′) ≥ 81. Proposition 8.2 states that sing−2 (O′)

contains a connected subgraph Y such that b1(Y ) = 2 and which has at most

6 log2(b1(sing−2 (O′))−1)+12 edges, which is at most 6 log2(b1(sing2(O′))−1)+12.

Let Õ be the covering space of O′ corresponding to KG2, where G = π1(O′) and K

is the subgroup normally generated by the meridians of Y . Since π1(Õ) contains

K, the inverse image of each edge of Y in Õ is a disjoint union of copies of that

edge. In particular, sing−2 (Õ) is non-empty. By Proposition 8.4, |Õ| has an infinite

tower of finite covers. In particular, |Õ| has infinite fundamental group.

9. The Lubotzky-Sarnak conjecture and the largeness of orbifolds

In this section, we prove the following result. Together with Theorem 8.1,

this will complete the proof of Theorem 7.3.
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Theorem 9.1. Let Õ be a compact orientable 3-orbifold such that sing−2 (Õ)

is non-empty. Let {|Oi| → |Õ|} be a sequence of finite-sheeted covering spaces.

Suppose that π1(|Õ|) does not have Property (τ) with respect to π1(|Oi|). Then

π1(Õ) is large.

Proof. By passing to further finite-sheeted covers if necessary, we may assume

that each π1(|Oi|) is a finite index normal subgroup of π1(|Õ|).

We are assuming that sing−2 (Õ) is non-empty. Suppose that sing−2 (Õ) contains

a vertex with valence 1. (This may happen, for example, if this is a vertex of

sing(Õ) with local group A5.) If so, remove this vertex and the adjacent edge,

forming a graph Γ. Now repeat this procedure if Γ has a valence 1 vertex, and

continue until every vertex of Γ has valence at least two. Remove the components

of Γ which are circles. If a vertex has valence 2, amalgamate its two adjacent

edges into a single edge. Repeat until every vertex of Γ has valence at least 3.

Note that Γ still has negative Euler characteristic. In particular, it is non-empty.

Let Γi be the inverse image of Γ in Oi.

Pick a 1-vertex triangulation of |Õ|. For convenience, we may arrange that

the vertex of this triangulation is a vertex of Γ. Place a path metric on |Õ| so

that each edge of the triangulation has length 1 and each 3-simplex is a regular

Euclidean tetrahedron.

The edges of this triangulation, when oriented, form a set S of generators for

π1(|Õ|). We are assuming that π1(|Õ|) does not have Property (τ) with respect

to {π1(|Oi|)}. Hence, the Cheeger constants of the corresponding Schreier coset

diagrams tend to zero. But each such graph Xi is just the 1-skeleton of |Oi|.
Let Ai be a non-empty set of vertices in Xi such that |∂Ai|/|Ai| = h(Xi) and

|Ai| ≤ |V (Xi)|/2. We will use ∂Ai to construct a surface Si that separates Oi into

two pieces Bi and Ci. Place a 0-cell of Si at the midpoint of each edge of ∂Ai. If

a 2-simplex of the triangulation of |Oi| intersects ∂Ai, it does so in precisely two

points. Insert into this 2-simplex a geodesic joining these two points, forming a

1-cell of Si. Then, the boundary of each 3-simplex intersects these arcs in either

the empty set, or a normal curve of length three or four. In each 3-simplex of |Õ|
pick a representative disc spanning the 7 different curves of length 3 and 4. Use

lifts of these discs to |Oi| to construct the 2-cells of Si. This therefore defines the
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surface Si. It divides Oi into two 3-orbifolds Bi and Ci, say, which contain the

vertices Ai and Ac
i respectively.

Now, we may arrange that the singular set of Õ is transverse to the represen-

tative normal discs in |Õ|. Thus, sing(Oi) is transverse to Si. By construction,

there is a uniform upper bound (independent of i) for the number of intersection

points between sing(Oi) and Si in any 3-simplex of |Oi|. We claim, that, viewing

Si as a 2-orbifold, there is a uniform constant K1 (independent of i) with the

following property:

d2(Si) ≤ K1|∂Ai|. (1)

This is because d2(Si) is at most the sum of the number of 1-cells of Si and its

number of singular points. We have already seen that the number of singular

points of Si is bounded above by a constant times the number of 2-cells of |Si|.
This is bounded above by the number of 1-cells of |Si|. Thus, it suffices to find

a linear bound on this quantity in terms of |∂Ai|. It is at most the number of

0-cells of |Si| times half the maximal valence of any 1-simplex of |Õ|. But there is

precisely one 0-cell of |Si| in each edge of ∂Ai. This proves the claim.

We claim that there is a positive constant K2, independent of i, such that

b1(Γi ∩Bi) ≥ |V (Xi)|/8−K2|∂Ai|. (2)

Note that Γi ∩Bi is a graph in which each vertex has valence 3 or 1. The vertices

with valence 1 arise at the intersection points between Γi and Si. Hence, the

number of such vertices is bounded above a constant times |∂Ai|. Now, the Euler

characteristic of Γi ∩Bi is equal to the sum, over all its vertices v, of 1− val(v)/2,

where val(v) is the valence of v. We arranged that the vertex of the triangulation

of |Õ| was a vertex of Γ. Hence, the number of vertices of Γi ∩Bi is at least |Ai|.
This is at least |V (Xi)|/4 by Lemma 2.1 of [14]. So, for some constant K2,

b1(Γi ∩Bi) ≥ −χ(Γi ∩Bi) ≥ |Ai|/2−K2|∂Ai| ≥ |V (Xi)|/8−K2|∂Ai|.

The same inequality holds for b1(Γi ∩ Ci).

By Proposition 3.1, d2(Bi) ≥ b1(sing2(Bi)) ≥ b1(Γi ∩ Bi). Combining this

with inequalities (1) and (2), we see that when h(Xi) is small enough,

d2(Bi) ≥ d2(Si) + 2,
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with the corresponding inequality holding also for d2(Ci). The constant 2 here

could have been replaced by any real number. Hence, the map H1(Bi; F2) →
H1(Si; F2) induced by inclusion has kernel with dimension at least 2. Consider

the covering space O′ of Oi corresponding to this kernel. This has degree at least

4. The inverse image of Ci is at least four copies of Ci. Now, in Ci, there is

a properly embedded compact surface representing a non-trivial element in the

kernel of H1(Ci; F2) → H1(Si; F2). We may pick this surface so that it is non-

separating in Ci, and so that it is disjoint from Si. Its inverse image in O′ is a

non-separating surface F . Let N be the number of components of F . Then N ≥ 4.

We claim there is a surjective homomorphism φ from π1(O′) onto ∗NZ/2Z,

the free product of N copies of Z/2Z. The copies of Z/2Z are indexed by the

components F1, . . . , FN of F . Let xi be the non-trivial element in the ith copy of

Z/2Z. Pick a basepoint for O′ away from F . For each element g of π1(O′), pick

a representative loop `. Make ` tranvserse to F via a small homotopy (keeping

the endpoints of ` fixed). As one goes round the loop `, let Fi1 , . . . , Fir
be the

components of F that one meets. Define φ(g) to be xi1 . . . xir
. It is trivial to

check that this is invariant under a homotopy of ` relative to its endpoints. (For

example, it is a consequence of the fact that φ is the homomorphism induced by

a collapsing map from O′ onto the wedge of N copies of RP 2.) Hence, this gives

a well-defined function φ:π1(O′) → ∗NZ/2Z. It is clearly a homomorphism, since

concatenation of loops leads to concatenation of words. It is also surjective. This

is because F is non-separating, and so, for any component Fi of F , there is a

loop `, based at the basepoint, which intersects Fi once and is disjoint from the

remaining components of F . Hence, φ([`]) = xi.

Because N ≥ 4, ∗NZ/2Z contains a free non-abelian group as a finite index

subgroup. The inverse image of this group in π1(O′) also has finite index. It

surjects this free non-abelian group. Hence, π1(O′) is large, as therefore is π1(O).

Remark. If, in Theorem 9.1, we make the extra hypotheses that the covers |Oi| →
|Õ| are nested, and that successive covers |Oi+1| → |Oi| are regular and have degree

a power of 2, then this theorem would be a consequence of the following result

(Theorem 1.1 of [17]), together with Lemma 9.3 below.
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Theorem 9.2. Let G be a finitely presented group, let p be a prime and suppose

that G ≥ G1 . G2 . . . . is a nested sequence of finite index subgroups, such that

Gi+1 is normal in Gi and has index a power of p, for each i. Suppose that {Gi}
has linear growth of mod p homology. Then, at least one of the following must

hold:

(i) G is large; or

(ii) G has Property (τ) with respect to {Gi}.

Lemma 9.3. Let Õ be a compact orientable 3-orbifold, such that sing−2 (Õ) is

non-empty. Let |Oi| be finite covering spaces of the manifold |Õ| and let Oi be

the corresponding covering spaces of O. Then {Oi} has linear growth of mod 2

homology.

Proof. The inverse image of sing−2 (Õ) under the map Oi → Õ is sing−2 (Oi). Hence,

χ(sing−2 (Oi)) = χ(sing−2 (Õ))[Oi : Õ]. Now, b1(sing2(Oi)) ≥ |χ(sing−2 (Oi))|. Thus,

Proposition 3.1 implies that {Oi} has linear growth of mod 2 homology.

We conclude this section by proving the following result; this can be deduced

from Corollary 7.4, but we give a proof below that is simpler and more direct.

Theorem 9.4. If vb1(M) > 0 for all closed orientable 3-manifolds M with infinite

fundamental group, then π1(N) is large for any arithmetic 3-manifold N .

Theorem 9.4 is proved using 8.1 above together with the following.

Theorem 9.5. Let O be a closed orientable hyperbolic 3-orbifold containing

Z/2Z × Z/2Z in its fundamental group. Suppose that vb1(|O|) > 0. Then π1(O)

is large.

Proof. By Proposition 4.4, O is finitely covered by an orbifold O′ such that

sing−2 (O′) is non-empty. We are assuming that vb1(|O|) > 0. So, there is a finite

cover |O′′| → |O| such that b1(|O′′|) > 0. Consider the covering space O′′′ of O

corresponding to π1(O′) ∩ π1(O′′). We claim that O′′′ → O′ descends to a cover

|O′′′| → |O′| between underlying manifolds. To prove this, it suffices to show that

each torsion element g in π1(O′) lies in π1(O′′′). But g maps to a torsion element

of π1(O) and this must lie in π1(O′′) because |O′′| → |O| is a cover. Thus, g

lies in π1(O′′) ∩ π1(O′) = π1(O′′′), as required. Because |O′′′| → |O′| is a cover,
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sing−2 (O′′′) is non-empty. Since b1(O′′) is positive, so too is b1(O′′′).

Let G = π1(O′′′), and let φ:π1(O′′′) → Z be a surjective homomorphism. Let

Gi be φ−1(iZ), and let Oi be the corresponding covering space of O′′′. By Lemma

9.3, {π1(Oi)} has linear growth of mod 2 homology. So, by Corollary 5.3, π1(O′′′)

is large and therefore so is π1(O).

10. The congruence subgroup property

In this section we show how Theorem 4.1 (proved by only the methods of

3-manifold topology and Kleinian groups) can be used to give a new proof of

Lubotzky’s result [23].

Theorem 10.1. No arithmetic Kleinian group has the congruence subgroup

property.

Recall that the congruence subgroup property is said to hold for Γ if any

finite index subgroup of Γ is a congruence subgroup. Lubotzky’s original proof

relied heavily on the Golod-Shafarevich inequality and the theory of p-adic analytic

groups. The aim of this section to provide a more elementary proof. Following in

the spirit of [25], the idea is to compare the number of subgroups of Γ of a given

index with the number of congruence subgroups with that index. Therefore, for

a natural number n, define sn(Γ) and cn(Γ) to be the number of subgroups of Γ

(respectively, congruence subgroups of Γ) with index at most n.

Theorem 10.1 is an immediate consequence of the following two theorems,

since they imply that sn(Γ) > cn(Γ) for infinitely many n.

Theorem 10.2. Let Γ be a lattice in PSL(2,C) that is commensurable with a

group containing Z/2Z× Z/2Z. Then, there is a constant k > 1 such that

sn(Γ) ≥ kn

for infinitely many n.

Theorem 10.3. Let Γ be an arithmetic Kleinian group. Then, there is a positive

constant b such that

cn(Γ) ≤ nb log n/ log log n,

for all n.
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Proof of Theorem 10.2. Let O be the orbifold H3/Γ. Suppose first that O is

closed. According to Theorem 4.1, O has a nested sequence of finite covers {Oi}
that have linear growth of mod 2 homology. The same conclusion holds when

O is non-compact, because of [4] which guarantees that π1(O) has a finite index

subgroup that has a free non-abelian quotient. Let λ be

inf
i
d2(Oi)/[O : Oi],

which is therefore positive. Each homomorphism π1(Oi) → Z/2Z gives a subgroup

of π1(Oi) with index 1 or 2, and these subgroups are all distinct. Therefore, the

number subgroups of π1(O) with index at most 2[O : Oi] is at least 2λ[O:Oi].

Setting k = 2λ/2 proves Theorem 10.2.

A proof of Theorem 10.3 for arbitrary arithmetic groups was proved by

Lubotzky in [25], and is also given in Section 6.1 of [27]. However, given our

aim of producing a more elementary proof of Lubotzky’s result in [25], we wish

to avoid some of the technology that is used in [25] and [27]. We use these as

our guidelines but will not reproduce all of the amendments necessary, merely

commenting on salient points.

Before commencing the proof we make some comments that help simplify

some of the discussion below.

First, following [25] and [27] we will work with the groups SL(2) rather than

PSL(2). Now let K be an arbitrary number field with ring of integers RK . Then

SL(2, RK) contains the family of congruence subgroups obtained in the usual way

as:

Γ(J) = ker(SL(2, RK) → SL(2, RK/J)),

where J ⊂ RK is an ideal.

Connecting with the discussion in §2.4, J.M(2, RK) is a proper 2-sided integral

ideal of M(2, RK) contained in M(2, RK), and the elements α ∈ SL(2, RK) such

that α− 1 ∈ J.M(2, RK) correspond precisely to the group Γ(J). Also, given any

other maximal order L ∈ M(2,K) (not GL(2,K)-conjugate to M(2, RK)), then

L1 can be conjugated to be a subgroup of a group SL(2, RH) for some number

field H (the Hilbert Class field of K will work, see the proof of [31] Lemma 5.2.4).

Via this, the congruence subgroups Γ(L(I)) of §2.4 can be described in SL(2, RH)
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using the more traditional definition given above (see also the discussion in [31]

Chapter 6.6)

For congruence subgroups of arithmetic Kleinian groups, using an embedding

of B into SL(2,K) whereK is a splitting field of B, we can use the above discussion

to describe these congruence subgroups as subgroups of congruence subgroups of

SL(2, RK) for certain number fields K.

Proof of Theorem 10.3.

Following the above discussion, it suffices to prove our result in the following

context.

Proposition 10.4. Let K be a number field with ring of integers RK and degree

d. Then, there is a positive constant b such that

cn(SL(2, RK)) ≤ nb log n/ log log n,

for all n.

The key result is the following “level versus index” result.

Proposition 10.5. There is some constant c with the following property. For

each congruence subgroup H of SL(2, RK), H ≥ Γ(J), for some ideal J ⊂ RK

with N(J) ≤ c[SL(2, RK) : H].

We defer comment on the proof of this theorem and complete the proof of

Theorem 10.3. A consequence of Proposition 10.5 is that cn(SL(2, RK)) is at

most the sum,
∑
sn(SL(2, RK/J)), where the sum is over all ideals J ⊂ RK with

N(J) ≤ cn. This in turn is less than the sum
cn∑

m=1

sn(SL(2, RK/mRK)).

Thus, the question now reduces to a count of subgroups in the finite groups

SL(2, RK/mRK). We now discuss this, following [25] and [27].

Define the rank of a finite group G to be

rank(G) = sup{d(H) : H ≤ G}.

An easy argument (see [27] Lemma 1.2.2) shows the total number of subgroups of

a finite group G is ≤ |G|rank(G).
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The groups SL(2, RK/mRK) decompose as
∏

SL(2, RK/P
aj

j ), where mRK =

Pa1
1 . . .Pat

t is a factorization into distinct prime (ideal) powers of the principal

ideal mRK . From this, the orders of these groups can be computed [36]. Also

note that there are at most d (which recall is the degree of K) primes in K lying

above a given rational prime p. Given this, an estimate of the order that suffices

is m3d.

To compute the rank we argue as follows. If P is a K-prime dividing the

rational prime p then RK/P is a finite extension of Fp the field of p elements

of degree at most d. Notice that if RP denotes the P-adic integers in KP with

uniformizer πP then

SL(2, RK/Pa) ∼= SL(2, RP/πaRP)

and the latter are all homomorphic images of SL(2, RP). From [7], standard

aspects of uniform pro-p groups imply that these have rank (as pro-p groups) at

most 3d (the field KP has degree at most d over Qp). Hence we deduce:

1. Let P be a K-prime. Then rank(SL(2, RK/Pa)) ≤ 3d.

To pass to the rank of SL(2, RK/mRK), the argument is as in [25] and [27]

with the extra care that we are working with a number field.

Thus if m = pb1
1 . . . pbl

l then as in [25], a simple application of the Prime

Number Theorem gives l ≤ logm/ log logm. As noted above, each prime pi splits

into at most d K-primes, and so arguing as in [25] we deduce using 1:

2. rank(SL(2, RK/mRK)) ≤ 3d2 logm/ log logm.

Hence using 2 and the estimate above, it follows that the total number of

subgroups of SL(2, RK/mRK) is at most mC log m/ log log m where C depends on

K. The count of congruence subgroups now finishes off as in [25].

We now discuss a proof of Proposition 10.6 in our context. Again, as in

[25] and [27] the key assertion concerns essential subgroups of SL(2, RK/J). The

definition here is amended from that in [25] and [27] to work in the number field

K.

Following [25] and [27] we say H < SL(2, RK/J) is called essential if H does
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not contain:

M(I) = ker(SL(2, RK/J) → SL(2, RK/I))

for any I|J (as ideals) with I 6= J .

Claim. There exists a constant C ′ > 0 (depending on K) such that for every ideal

J , every essential subgroup H of SL(2, RK/J) satisfies

[SL(2, RK/J) : H] ≥ C ′N(J).

Proof of Claim. We follow the argument in [25] and [27] adapted to our setting.

If J is a prime ideal of RK then RK/J is a field of order q = pt for some t ≤ d.

It is a classical result dating back to Galois (see [36] Chapter 6) that the minimal

index of a proper subgroup of SL(2, RK/J) is at least q + 1 apart from a finite

number of values of q.

If J = Pa is the power of a prime ideal P, then the argument in [25] applies

in exactly the same way. The arguments in [25] appeal to Strong Approximation,

but the argument for SL(2) can be handled directly (for example by the methods

of [22]). Similarly, if J = P1 . . .Pt is a product of primes whose norms are powers

of distinct rational primes, then the argument of [27] applies.

Now consider the case of J = pRK where p is a rational prime that splits

completely in K. In this case pRK = P1 . . .Pd. Let M = SL(2, RK/P1) × . . . ×
SL(2, RK/Pd) and assume that H is an essential subgroup of M . If πi denotes

projection on the i-th factor, then we claim πi(H) is an essential subgroup of

SL(2, RK/Pi); ie πi(H) is a proper subgroup of SL(2, RK/Pi).

Suppose not, and assume i = 1 for convenience. Let M1 = SL(2, RK/P1) and

M ′ = SL(2, RK/P2)× . . .× SL(2, RK/Pd), so M = M1 ×M ′. Then π1(H) = M1

implies by properties of the direct product that H ∩M1 is normal in M1. For

all but a finite number of finite fields F, SL(2,F) is a central extension of a finite

simple group, and so H ∩M1 = M1 or is central. Both of these can be ruled out

as in [27], using the essentialness of H. Hence we deduce in this case that

[M : H] >
∏

[SL(2,Pi) : πi(H)] > pd,

which proves the claim in this case.
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Now consider J = Pe1
1 . . .Pet

t with some ei > 1. Let J ′ = P1 . . .Pt, so that

N(J ′) < N(J). Let H be an essential subgroup of SL(2, RK/J), and H ′ denote

the projection of H to SL(2, RK/J
′). As in [27] H ′ is an essential subgroup of

SL(2, RK/J
′) and so the index (by above) is at least N(J ′). Following [27] it

suffices to prove that H ∩M(J ′) has index at least N(J)/N(J ′) in M(J ′) (which

is a product of p-groups for various primes p) and this is completed as in the last

few paragraphs of [27] pp 116–117.

References

1. A. Borel, Cohomologie de sous-groupes discrets et représentations de
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Appendix. The equivalence of conjectures 7.1 and 7.2

The aim of this section is to establish the relationship between the following

conjectures.

Conjecture 7.1. (Lubotzky-Sarnak) The fundamental group of any closed hy-

perbolic 3-manifold does not have Property (τ).

Conjecture 7.2. For any closed orientable 3-manifold M with infinite fundamen-

tal group, π1(M) does not have Property (τ).

Our aim is to prove the following.

Theorem A.1. If the geometrisation conjecture is true, then Conjectures 7.1 and

7.2 are equivalent.

Proof. Conjecture 7.2 clearly implies Conjecture 7.1 since every closed hyperbolic

3-manifold has infinite fundamental group. The aim is to prove the converse.

Therefore, letM be a closed orientable 3-manifold with infinite fundamental group.

Our aim is to show that either vb1(M) > 0 or M is hyperbolic. Conjecture 7.1

then implies that π1(M) does not have Property (τ). Assuming the geometrisation

conjecture, M admits a decomposition into geometric pieces.

Suppose first that M is a connected sum M1]M2, say. By geometrisation,

π1(Mi) is residually finite and non-trivial (see [9]). In particular, it admits a

surjective homomorphism φi onto a non-trivial finite group Fi. Since π1(M) is

isomorphic to π1(M1) ∗ π1(M2), we therefore obtain a surjective homomorphism

from π1(M) onto F1 ∗F2. But, F1 ∗F2 has a free group as a finite index subgroup.

In particular, vb1(F1 ∗ F2) > 0. Hence, vb1(M) > 0.

So, we may assume that M is prime. Suppose that it contains an essential

torus. Then it is known in this case that either M is finitely covered by a torus

bundle over the circle or π1(M) is large. In particular, vb1(M) > 0 (see [12], [29]

and [21]).

Consider now the case where M is prime and atoroidal. By geometrisation, it

is therefore either a Seifert fibre space or hyperbolic. In the latter case, the proof

is complete. In the former case, the proof divides according to whether the base

orbifold has positive, zero or negative Euler characteristic. When it is positive,
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the manifold is covered either by S3 or S2 × S1. The former case is impossible,

since π1(M) is infinite. In the latter case, vb1(M) = 1 > 0. When the base

orbifold has zero Euler characteristic, M is finitely covered by a torus-bundle over

the circle. In particular, vb1(M) > 0. When the base orbifold O has negative

Euler characteristic, it is hyperbolic. Hence, in this case, π1(O) is large. But the

Seifert fibration induces a surjective homomorphism from π1(M) onto π1(O), and

so π1(M) is also large.
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