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1 Introduction

Let G be a semi-simple Lie group, and Γ < G a lattice. Following Sarnak (see [25]), a subgroup
∆ of Γ is called thin if ∆ has infinite index in Γ, but is Zariski dense. Since it is straightforward
to exhibit free subgroups of lattices that are Zariski dense, we shall, in addition insist that a thin
group ∆ is finitely generated and does not decompose as a free product.

There has been a good deal of interest recently in thin groups. This has been motivated in
part by work on expanders, and in particular the so-called “affine sieve” of Bourgain, Gamburd and
Sarnak [5]. Other recent work that study thin groups can be found in [13], [14], and [15]. We also
refer the reader to other papers in this volume.

The aim of this article is to summarize work in [20], [21] and [22], as well as discussing some
other results regarding (sometimes conjectural) constructions of thin subgroups in lattices.

We begin by outlining our strategy for generating some thin subgroups. We do this first in broad
terms, and then specialise to some cases that we describe in more detail. In the remainder of this
section, Γ will denote a Fuchsian group (i.e. a discrete subgroup of PSL(2,R)) or a Kleinian group
(i.e. a discrete subgroup of PSL(2,C)) of finite co-volume, and G a semi-simple Lie group not locally
isomorphic to PSL(2,R) or PSL(2,C).

Let
Hom0(Γ,G) = {ρ : Γ→ G : ρ is an irreducible representation}

and X(Γ, G) the quotient of Hom0(Γ,G) under G-conjugation. Then, depending on G, X(Γ, G) is
a real or complex algebraic set.

Basic idea: If X(Γ, G) contains a component of positive dimension then look for specialisations
that result in integral representations.

In broad terms, integrality is necessary for the image to live in a lattice; however this does not suffice
and subsequent work is usually necessary to arrange the image to lie in a lattice of a prescribed
Lie group G. Zariski density is typically fairly simple to arrange. The main issue is exhibiting a
certificate to demonstrate that the image has infinite index; once this is done, the nature of the
constructions here will ensure the free indecomposability of the image.

In general the question of whether the image has infinite index in the lattice touches on decid-
ablity issues. For example, the following question is raised in [7]: Is the finite presentation problem
unsolvable in SL(n,Z) for some n? (where one says that the finite presentation problem is solvable if
there is an algorithm that, given a finite set of matrices of SL(n,Z) generating a finitely presentable
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subgroup Γ of SL(n,Z) outputs a finite presentation for Γ.) However the geometrical constructions
offered below give extra information that one can exploit.

Although this article is for the most part survey, one new result that exploits the strategy outlined
above is the following (we refer to §5 for an explanation of the notation).

Theorem 1.1. Let d be a square-free positive integer and let L = Q(
√
d) be a real quadratic number

field.
Then the lattice SU(J,OL, τ) < SL(3,R) contains a thin subgroup isomorphic to the fundamental

group of some closed orientable surface of genus ≥ 2.

This result, taken together with [20] and the classification of non-uniform lattices in SL(3,R) (see
§5 for more on this) shows that every non-uniform lattice inside SL(3,R) contains a thin hyperbolic
surface group.

All the constructions that we outline here produce thin subgroups in non-uniform lattices, i.e.
those lattices Γ for which G/Γ has finite volume, but is not compact. Finding thin subgroups in
uniform lattices is apparently a good deal harder. One can certainly attempt to follow the strategy
given by the Basic Idea, but the additional conditions for arithmeticity of uniform lattices thus far
seem prohibitive.

Indeed, it is worth remarking that only recently has the existence of thin surface subgroups in all
lattices in PSL(2,C) been completed (by the recent work of Kahn and Markovic [17] in the uniform
case and previously in [10] in the non-uniform case).

2 G = SL(3,R) and Γ a cocompact Fuchsian group

We first consider the case where G = SL(3,R) with Γ a cocompact Fuchsian group so that Σ = H2/Γ
is a closed orientable hyperbolic 2-orbifold. Let |Σ| denote the underlying space, kc the number of
cone points on Σ and bc the number of cone points with cone angle π.

For each such Γ, there is a natural embedding of Γ ↪→ SL(3,R) given by:

Γ < PSL(2,R) ∼= SO0(2, 1) ↪→ SL(3,R).

Thus the Teichmüller component of X(Γ,SO0(2, 1)) sits naturally in X(Γ,SL(3,R)), and deter-
mines the so-called Hitchin component XHit(Γ,SL(3,R)). It was proven in [16] that all the charac-
ters on this component correspond to discrete and faithful representations of Γ. In fact, Theorem A
of [8] shows that XHit(Γ,SL(3,R)) is homeomorphic to a cell of dimension −8χ(|Σ|) + (6kc − 2bc),
and so unless Γ is a triangle group of type (p, q, r) with one of p, q and r equal 2, then X(Γ,SL(3,R))
will contain a component as in the Basic Idea.

Moreover we also have (cf. the proof of Theorem 2.1 of [20]):

Theorem 2.1. Suppose χρ ∈ XHit(Γ,SL(3,R)) is not the character of the hyperbolic structure.
Then the image ρ(Γ) is Zariski dense in SL(3,R).

One needs to address the issue of specialisations that have images that lie in a lattice in SL(3,R),
but if this can be arranged then the image is necessarily thin, since a faithful representation of a
Fuchsian group must have infinite index in a rank two lattice.

2.1

The most obvious lattice in SL(3,R) is SL(3,Z) and in [20] we analyzed the above discussion in
much more detail for the case of the triangle group of type (3, 3, 4). We proved the following result:
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Theorem 2.2. The family of representations of the triangle group

∆(3, 3, 4) =< a, b | a3 = b3 = (a.b)4 = 1 >

given by

a 7→

 0 0 1
1 0 0
0 1 0


b 7→

 1 2− t+ t2 3 + t2

0 −2 + 2t− t2 −1 + t− t2
0 3− 3t+ t2 (−1 + t)2


are discrete and faithful for every t ∈ R.

It follows that for all integral values of t the image groups are subgroups of SL(3,Z), and using
Theorem 2.1 can be shown to be thin. In fact, this line of representations determines a line of
characters which embeds into XHit(Γ,SL(3,R)), so that for distinct values of t, the images are
non-conjugate.

The proof of this result relies on exploiting the method of [11], which allows for computation
of the representation variety and identifies this component explicitly. This, and some Diophantine
analysis yields the curve of representations defined above.

2.2

By Margulis’s arithmeticity theorem [23], all lattices in SL(3,R) are arithmetic, and in the case of
SL(3,R) the totality of the commensurability classes of non-uniform arithmetic lattices in SL(3,R)
is described by Witte [28] (this is discussed in §5 below). We now discuss the proof of the result
stated in §1. As mentioned, this will provide thin surface subgroups in all non-uniform lattices in
SL(3,R) (again we refer the reader to §5 for notation).

Theorem 2.3. Let d be a square-free positive integer and let L = Q(
√
d) be a real quadratic number

field. Then the lattice SU(J,OL, τ) contains a thin subgroup isomorphic to the fundamental group
of some closed orientable surface of genus ≥ 2.

Proof: The proof is very much in the spirit of [20], applied in this case to the (3, 4, 4) triangle
group.

We follow the Basic Idea, and so first note that from the discussion above, XHit(Γ,SL(3,R)) is
again 2-dimensional, and following the analysis in [11] and [20], one gets the following description
of XHit(Γ,SL(3,R)):

a 7→


1 1

a1
η

0
(1− v)

(−1 + u)
1

0
(−1 + u− u2 + v + uv − v2)

(−1 + u)2
(−u+ v)

(−1 + u)



b 7→



(−1 + v)

(−1 + u)
0

b1
η

1− 3u+ (2 + u+ u2)v − 2v2 − (−1 + u)
√
D)

(2(−1 + u)2)
1 −1

−b2
2(−1 + u)3

0
(1− v)

(−1 + u)
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where
D = −7− 4u3 + 4v − 4v2 − 4v3 + 2u(2 + 7v) + u2(−4 + v2),

η = 2(2 + u4 − 4v + 5v2 − 3v3 + v4 − u3(3 + v) + u2(5− v + 2v2)− u(4− 2v + v2 + v3)),

a1 = −(−1 + u)(−1 + u3(−2 + v) + 2v − 2v2 + 2v3 +
√
D + u(v − 4v2 − 2

√
D + u2(1 + 2v +

√
D)),

b1 = (3−8u+11u2−8u3+2u4+(−5+5u−u2+u3)v−(−6+7u−2u2+u3)v2+2(−1+u)v3−(−1+u)2(−1+v)
√
D),

and

b2 = (−3 + 5u− 6u2 + 2u3 + (5 + u2)v − (6− u+ u2)v2 + 2v3 + (−1 + u)(−1 + v)
√
D).

The hyperbolic representation occurs at u = 7, v = 7.
The reader may easily verify that upon setting u = v, the representation above may be conjugated

to the representation:

ρv(a) =


1
4

(
−v +

√
(v − 7)(v + 1)− 1

)
1
4

(
v −

√
(v − 7)(v + 1) + 5

)
0

1
4

(
−v +

√
(v − 7)(v + 1)− 1

)
1
4

(
v −

√
(v − 7)(v + 1) + 1

)
1

− 4

v+
√

(v−7)(v+1)−3

1
4

(
v −

√
(v − 7)(v + 1) + 1

)
0



ρv(b) =

 1 0 1
2

(
−v −

√
(v − 7)(v + 1)− 1

)
0 0 −1
0 1 0


We will require that these matrices have entries in the ring of integers of a real quadratic number

field. Hence, assuming that a square-free positive integer d is given, we require that (v−7)(v+ 1) =
Y 2d for a positive integer Y . Notice that (v− 7)(v+ 1) can be rewritten as (v− 3)2− 16, and so we
need to solve (v − 3)2 − 16 = Y 2d; i.e. the the equation X2 − Y 2d = 16. In particular, given any
square-free positive integer d, choosing a solution (X0, Y0) ∈ N2 of the Pell’s equation X2−Y 2d = 1,
then v = 4X0 + 3 is the desired solution (which is clearly odd).

To conclude the proof we need to establish that these constraints can be arranged so that these
matrices also preserve a Hermitean form of the required type. Further computation shows that the
image of ρv (where we assume that v = 4X0 + 3 is an odd positive integer) preserves the Hermitean
form Hv defined by the matrix:

Jv =

 2(v + 1) − 1
2
(v + 1)

(
v +
√
v2 − 6v − 7 + 1

)
− 1

2
(v + 1)

(
v +
√
v2 − 6v − 7 + 1

)
− 1

2
(v + 1)

(
v −
√
v2 − 6v − 7 + 1

)
2(v + 1) (v + 1)2

− 1
2
(v + 1)

(
v −
√
v2 − 6v − 7 + 1

)
(v + 1)2 2(v + 1)


As it stands the form Jv is not of the type described in §5, however, we can argue as follows

to show that Jv is equivalent to a matrix as in §5. To see this, first note that Hv determines a 6-
dimensional quadratic form over Q (i.e. the form qv defined by Hv(x, x) for x ∈ Q(

√
v2 − 6v − 7)).

Checking the characteristic polynomial of Jv shows that Hv has signature (2, 1) and so qv is a 6-
dimensional indefinite quadratic form over Q, and as such is isotropic. Hence Hv is isotropic as a
Hermitean form over Q(

√
v2 − 6v − 7). It follows from the classification of Hermitean forms (see

for example [28] §15J) that Hv is equivalent to a form as described in §5.
Note that by Theorem 2.1, away from the solution u = v = 7, the surface subgroups will be thin.

tu

Example: For concreteness we describe an example in the case when d = 30.
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In this case an appropriate unit is given by 11+2
√

30 which from above implies that we take v = 47.
With this we have

ρ47(a) =

 −12 + 2
√

30 13− 2
√

30 0

−12 + 2
√

30 12− 2
√

30 1

−11 + 2
√

30 12− 2
√

30 0

 ,

ρ47(b) =

 1 0
(
−24− 4

√
30
)

0 0 −1
0 1 0

 ,

and the Hermitean form is determined by the matrix:

J47 =

 1 −
(
12 + 2

√
30
)
−
(
12 + 2

√
30
)

−
(
12− 2

√
30
)

1 24

−
(
12− 2

√
30
)

24 1

 .

3 G = SL(4,R) and Γ a cocompact Kleinian group

The starting point for this section is to consider certain closed hyperbolic 3-manifolds M = H3/Γ
described in [11] as flexible, by which one means that the hyperbolic structure may be deformed
when it is regarded as a strictly convex real projective structure. (See [11] for more details)

The certificate for thinness in this case comes from the application of deep results of Koszul [18]
and Benoist [2] and [3], which taken together imply that all of these deformations are the holonomy
of convex real projective structures and in particular, they are all discrete, faithful representations
of the fundamental group in question. (This part of the construction plays the role of the work of
Choi-Goldman [8] described in [20].) It is also argued in [22] that the resulting image groups are
Zariski dense in SL(4,R).

This part of the argument is quite general and applies to any flexible hyperbolic 3-manifold (even
if these are perhaps quite rare, see [11]), but as in §3 some specialisation is now necessary to ensure
that the deformed group lies inside a lattice. To this end, we fix attention upon one particular closed
hyperbolic 3-manifold, traditionally known as vol3. Again, the lattices in question are described in
§5.

Theorem 3.1. For infinitely many real quadratic number fields L, there exist lattices SU(J,OL, τ)
that contain a thin subgroup isomorphic to a subgroup of finite index in π1(vol3).

We will not discuss anything about the proof here, nor describe the matrices other than to say
that this proof is similar to that described for Theorem 2.3 (although integrality requires some more
delicate computation in this case). We refer the reader to [22] for more details.

However, for convenience we record one example of the representation.

Example: The fundamental group of vol3 has a presentation

〈 a, b | aabbABAbb , aBaBabaaab 〉

where A = a−1 and B = b−1. As in [22] (following [11]) we work with an orbifold Q = vol3/〈u〉
which is four-fold covered by vol3. We denote by ΓQ the orbifold fundamental group of Q. Notice
that a representation of ΓQ is discrete and faithful only if it is discrete and faithful when restricted
to π1(vol3), so that it suffices to work with ΓQ.
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From [11] one sees that ΓQ is generated by two elements of finite order u and c. The group
π1(vol3) is recovered as a = u2.c and b = (a.u.a)−1.u. Then one such representation ρ of ΓQ given
by Theorem 3.1 is:

ρ(u) =


0 −1 −4 + 3

√
3 −1 + 2

√
3

1 0 −2 +
√

3 −1
0 0 1 0
0 0 0 1



ρ(c) =


0 0 −1 +

√
3 0

0 0 0 −1 +
√

3

(1 +
√

3)/2 0 0 0

0 (1 +
√

3)/2 0 0


This does not have integral entries, but there is a surjection from π1(vol3) to the dihedral group
with ten elements where one sends a to a reflection and b to a rotation. A direct calculation shows
that the kernel of this map consists of elements whose entries lie in Z[

√
3]. One can also check that

a non-degenerate τ -Hermitean form for the image of ρ is

J =


2 0 2− 2

√
3 −2

√
3

0 2 6− 4
√

3 2− 2
√

3

2 + 2
√

3 6 + 4
√

3 −4 0

2
√

3 2 + 2
√

3 0 −4

 ,

which in turn can be checked as being equivalent to the diagonal form diag(1, 1, 1,−5).

Remarks.

(i) The manifold vol3 is rather well understood and it is shown in [24] that vol3 has a finite sheeted
cover that fibers over S1 with fiber a closed surface F . The image of this fibre group will have the
same Zariski closure as π1(vol3); i.e. this exhibits a thin surface subgroup H in an SL(4,R)-lattice,
which has the additional property that its normaliser N in SL(4,R) contains an element δ for which
δn /∈ H for all n ∈ Z \ {0}. Motivated by the situation in PSL(2,C) we refer to such a surface group
as geometrically infinite. Summarizing, we have as a corollary of Theorem 3.1:

Corollary 3.2. For infinitely many real quadratic number fields L, there exist non-uniform lattices
SU(J,OL, τ) in SL(4,R) which contain a geometrically infinite, thin surface subgroup.

As in the case of n = 3, for a surface group π1(Σg) (g ≥ 2), there is a component ofXHit(π1(Σg),SL(4,R))
called the Hitchin component. Now Labourie [19] showed that the Mapping Class group of Σg acts
properly discontinuously on this component. Hence for such surface group representations, there
can never be an element δ as above (i.e. they are never geometrically infinite). Hence we are led to
ask:

Question 3.3. Does there exist a (non-uniform) lattice Γ in SL(3,R) that contains a thin geomet-
rically infinite surface subgroup?

(ii) Compared to SL(3,Z), the structure of the non-uniform lattices of Theorem 3.1 are far less
well understood. For example, unlike SL(3,Z), these lattices are not yet known to be boundedly
generated by unipotent elements, nor are they known to be not left-orderable (see [29] for more
on this). For general countable groups, being left-orderable is equivalent to having an orientation-
preserving, faithful action on R. In the context of lattices in SL(n,R), n ≥ 3, this is also equivalent
to having no faithful action on S1. More precisely, if Γ is a lattice in SL(n,R), n ≥ 3, then
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Proposition 2.8 of [29] shows that the following two conjectures are equivalent:

Γ is not left-orderable.

Γ has no faithful action on S1.

We note that the proof of equivalence uses that these statements hold for all lattices, and not just
an individual one.

There has also been a great deal of interest recently in left-orderability (and lack thereof) of
3-manifold groups (see for example [6], [9] and [12] for example). In light of the aforementioned
conjectures, we note the following. We begin with a lemma.

Lemma 3.4. π1(vol3) is not left-orderable.

Proof: Since subgroups of left-orderable groups are left-orderable, the lemma will be deduced from
the following observation.

It is shown in [12], Theorem 1 that if M (n) denotes the n-fold cyclic branched cover of the
figure-eight knot, then π1(M (n)) is not left orderable. In the case when n = 4, it is shown in [24]
that vol3 is double covered by M (4). Hence π1(vol 3) is not left-orderable as required. tu

Now from the discussion above π1(vol3) contains a subgroup of finite index contained in a lattice
SU(J,OL, τ). It is now a standard argument (which we sketch below) that π1(vol3) is a subgroup
of a lattice Γ commensurable with SU(J,OL, τ). Hence Γ is not left-orderable.

To make this observation more interesting, requires ensuring that Γ is torsion-free, which for the
moment seems hard to arrange.

We now sketch the proof that π1(vol3) is contained in a lattice. Throughout this discussion, let ∆
denote the image of vol3 constructed implicitly in Theorem 3.1, Λ = SU(J,OL, τ) and ∆0 a normal
subgroup of ∆ of finite index in ∆ ∩ Λ. Consider

D = O∆0 = {Σ aiγi | ai ∈ OL, γi ∈ ∆0 }

where the sums are finite. It is shown in [1] (see Proposition 2.2 and Corollary 2.3), that D is an
order of a central simple algebra B defined over L and contained in M(4, L). Indeed, since ∆0

is Zariski dense, B = M(4, L). Then D1 is an arithmetic group commensurable with SL(4,OL).
Furthermore, since ∆ normalizes ∆0, ∆ is contained in the the normalizer N of D in SL(4,R). Then
N is the required arithmetic lattice commensurable with SL(4,OL).

4 Further constructions.

In the previous sections, we were able to exhibit thin subgroups, using the certificate of faithfulness.
In this section, we describe some other constructions where the representation might not be faithful,
but the image group could be thin coming from structural considerations. Nonetheless, the material
here is a good deal more speculative.

The basis of this construction is the 4-strand braid group, B4. It is a standard property of B4

(see [4]) that there is a surjective homomorphism B4 −→ B3 obtained by setting σ1 = σ3 and that
the kernel K is a finitely generated free group of rank two generated by {σ1σ−1

3 , σ2σ1σ
−1
3 σ−1

2 }.
The connection with matrix representations comes by consideration of the classical reduced

Burau representation [4]. This representation does not have determinants equal to one, but one can
easily arrange this by scaling and one obtains β : B4 −→ SL(3,Z[x, 1/x]) as
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β(σ1) =

 x2 1/x 0
0 1/x 0
0 0 1/x

 β(σ2) =

 1/x 0 0
−x2 x2 1/x

0 0 1/x

 β(σ3) =

 1/x 0 0
0 1/x 0
0 −x2 x2


It is an old result of Squier [26] that the Burau representation can be regarded as Hermitean

for a certain form. In the case of the representation β, it can be checked that the matrices are
Hermitean for the form

J =

 −2 + 1/x3 + x3 1− 1/x3 0
1− x3 −2 + 1/x3 + x3 1− 1/x3

0 1− x3 −2 + 1/x3 + x3


by which we mean that they satisfy g∗Jg = J where g∗ means apply the ring automorphism x→ 1/x
and then transpose.

Now let k be a real quadratic number field with ring of integers Ok, and u ∈ Ok a non-trivial unit
for which σ(u) = 1/u. Setting x = u gives a representation

βu : B4/Z4 −→ SL(3,Ok)

and we will denote the image βu(B4/Z4) by B(u) and the form J specialized at u by J(u).
We prove the following (referring to §5 for arithmetic lattices considered).

Theorem 4.1. (i) B(u) is a subgroup of a non-uniform lattice in SL(3,R).

(ii) B(u) is not virtually free.

(iii) B(u) is Zariski dense in SL(3,R).

Proof: It follows from our choice of u and Squier’s result that B(u) is unitary for the non-degenerate
form J(u). However as it stands, this is not a form defined over Z: the diagonal entries are rational
integers since they are σ-invariant integers of Ok, but the off diagonal entries need not be.

This can be rectified by doing the Gram-Schmidt process which is a GL(3, k) change of basis.
Denoting the integer 1−1/u3 = τ , one checks easily that the matrix given by mapping the standard
basis {e1, e2, e3} to {e1, σ(τ)e2, σ(τ2)e3} gives a similarity of J(u) with a non-degenerate symmetric
Z-matrix, Ψ(u). Identifying B(u) with its conjugate preserving the form Ψ(u), this discussion shows
that B(u) contains a subgroup of finite index contained in the lattice SU(Ψ(u),Ok, τ). Arguing as in
Remark (ii) of §3, we see that B(u) is also contained in a lattice. That the lattices are non-uniform
can be checked by an argument similar to that used in the proof of Theorem 2.3; i.e. checking that
the associated 6-dimensional form over Q is isotropic. This proves part (i).

To prove (ii), we note that in a free group, commuting elements lie in a cyclic subgroup. However,
the matrices βu(σ1) and βu(σ3) commute but < βu(σ1), βu(σ3) >∼= Z× Z. This persists in a finite
index subgroup.

Finally, using the proof of (ii), we deduce that the Zariski closure of B(u) is a non-compact Lie
subgroup of SL(3,R) of R-rank two. Hence it must be SL(3,R). tu

We ask:

Question 4.2. Are the groups B(u) thin?

Potential certificates come from the following observation:
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Lemma 4.3. In the notation established above

β(B4)/β(K) ∼= B3

Proof: As remarked above, B4/K ∼= B3. Hence, the required statement follows from the first
isomorphism theorem and the fact that ker(β) < K, see [4]. tu

In particular, this bypasses the long-standing open problem as to whether the Burau representation
of B4 is faithful, since, independently of whether β is faithful, if there is any algebraic specialisation
for which the map β(B4) → B(u) is faithful, the image group B(u) has an infinite quotient and
therefore cannot be a rank 2 lattice. It seems rather likely that such specialisations exist, but
identifying one seems formidably difficult.

4.1 The figure eight knot group

In some real sense the simplest finite volume hyperbolic 3-manifold group is the fundamental group
of the figure eight knot complement. This is a hyperbolic 1-punctured torus bundle so that one can
present the fundamental group as

π1(M) =< x, y, z|zxz−1 = xy, zyz−1 = yxy >

It’s an intriguing question whether this group admits a discrete, faithful representation in SL(3,R)
and this is a special case of a question due to Labourie.

Question 4.4. Does there exist a finite volume hyperbolic 3-manifold M for which π1(M) admits
a discrete, faithful representation in SL(3,R)?

Unlike the cases considered in §3 and 4, there is apparently no obvious “natural geometric”
representation of a hyperbolic 3-manifold group into SL(3,R) to attempt to deform. Nevertheless,
one can attempt to look for representations as we now describe.

Given the presentation above, the following two propositions can be checked directly by matrix
multiplication

Proposition 4.5. Define a map ρk : Γ −→ SL(3,Z[k]) by

ρk(x) = Xk =

 1 −2 3
0 k −1− 2k
0 1 −2



ρk(y) = Yk =

 −2− k −1 1
−2− k −2 3
−1 −1 2


ρk(z) = Zk =

 0 0 1
1 0 −k
0 1 −1− k


Then ρk is a homomorphism.

Proposition 4.6. Define a map βT : Γ −→ SL(3,Z[T]) by

βT (x) = XT =

 −1 + T 3 −T T 2

0 −1 2T
−T 0 1
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βT (y) = YT =

 −1 0 0
−T 2 1 −T
T 0 −1


βT (z) = ZT =

 0 0 1
1 0 T 2

0 1 0


Then βT is a homomorphism.

Note that, in either case an integral specialisation gives:

Corollary 4.7. For integral k or T , ρk(Γ), βT (Γ) ≤ SL(3,Z).

Now it is shown in [21] that the representations ρk and βT are each irreducible except possibly
for four exceptional values of their parameter, and in particular, ρk is irreducible for all k ∈ Z, and
βT is irreducible for all non-zero T ∈ Z. Moreover, it is also shown in [21] that for k ∈ Z (resp.
nonzero T ∈ Z), the image groups ρk(Γ) (resp. βT (Γ)) are Zariski dense subgroups of SL(3,Z) (and
similarly for the images of the fiber group F ). The issue is in deciding whether the image is thin.
One of the main results of [21] is the following.

Theorem 4.8. Fix a non-zero integer value of T .
Then the group βT (F ) (and therefore βT (Γ)) has finite index in SL(3,Z).

Furthermore,
⋂
T>0 βT (F ) = 1.

From the perspective of thin subgroups, this is undeniably disappointing, however, it is important
to note that simply being able to decide that the images of the βT -representations are finite index
in SL(3,Z) is rather remarkable. For that reason we comment briefly on the proof. Throughout the
following discussion, the parameter T is as described in Theorem 4.8.

The natural first question is whether the representations βT are faithful. Remarkably, one finds
the following relation holds for all parameter values T (where X = βT (x) and Y = βT (y)).

X−1Y X−1Y X−1X−1Y Y Y XY Y XY −1X = XY −1XY Y XY Y Y X−1X−1Y X−1Y X−1

Now it is not difficult to check that the groups βT (Γ) contain unipotent elements—for example
βT (y2) is a unipotent. That βT (Γ) has finite index in SL(3,Z) relies on the following result of
Venkataramana (see Theorem 3.7 of [27]):

Theorem 4.9. Suppose that n ≥ 3 and x ∈ SL(n,Z) is a unipotent matrix such that x − 1 has
matrix rank 1. Suppose that y ∈ SL(n,Z) is another unipotent such that x and y generate a free
abelian group N of rank 2. Then any Zariski dense subgroup of SL(n,Z) containing N virtually, is
of finite index in SL(n,Z).

Given this result, in [21] we proceed to exhibit unipotent matrices b1 and b2 in βT (F ) such that
b1 − 1 has rank 1 and < b1, b2 >∼= Z⊕ Z. In terms of X and Y the matrices are:

b1 = X−1.Y.Y.Y.X.Y.Y.X.Y −1.X

b2 = X.Y −1.X.Y.Y.X.Y.Y.Y.X−1

It is shown in [21] that there is a conjugation of b1 and b2 so that they have the form:
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P−1b1P =

 1 0 −T 2(−1 + 2T )(−5 + 3T 3)
0 1 −T (−1 + 2T )(−2 + 3T 3)
0 0 1


P−1b2P =

 1 0 −3T 2(−1 + 2T )
0 1 −T (−1 + 2T )(−2 + 3T 3)
0 0 1


It follows from Venkataramana’s result that βT (Γ) has finite index.

By contrast, the representations ρk remain largely mysterious. Apart from a few small values of k,
namely {0, 2, 3, 4, 5} (where we can follow the idea described for the βT representations described
above), at present the following remains open.

Question 4.10. For k an integer and k 6= 0, 2, 3, 4, 5 is ρk(Γ) < SL(3,Z) a thin subgroup?

Note that experimentation suggests that ρ1(Γ) is virtually free (and so will be an infinite index
subgroup of SL(3,Z)).

5 Non-uniform lattices in SL(n,R)

For convenience we recall a construction of non-uniform arithmetic lattices in SL(n,R) for n ≥ 3.
We refer the reader to [28] Propositions 6.42 and 6.55 for more details.

Let L be a real quadratic number field with ring of integers OL and non-trivial Galois automor-
phism τ . For a matrix A ∈ SL(n,L), denote by A∗ the matrix obtained by taking the transpose of
the matrix obtained from A by applying τ (the non-trivial Galois automorphism) to all its entries.

Theorem 5.1. Let L, OL and τ be as above, and let b1, . . . , bn be nonzero elements of Z. Setting
J = diag(b1, . . . ,bn), then the group

SU(J,OL, τ) = {A ∈ SL(n,OL) | A∗JA = J}

is a non-uniform lattice in SL(n,R).

Note that Proposition 6.42 of [28] deals with the case of a form that is not diagonal. Following
the lines of Witte’s argument, one can prove the following.

Let J be any matrix of the form J =

 0 0 a
0 b 0
a 0 0

 where a, b ∈ Z, ab 6= 0.

As above let,

SU(J,Ok, τ) = {A ∈ SL(3,Ok) | A∗JA = J}.

Theorem 5.2. SU(J,Ok, τ) is a (non-uniform) lattice in SL(3,R).

We also note that Proposition 6.46 of [28] shows that up to conjugacy the lattices constructed
in Theorem 5.1 together with SL(3,Z) represent the totality of commensurability classes of non-
uniform lattices in SL(3,R). Indeed, as is discussed in §6 of [28], it suffices to take a = b = 1 in
the matrix J above to describe the totality of commensurability classes of non-uniform lattices in
SL(3,R) (up to conjugacy).
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