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Γ a finitely generated group:

C(Γ) = {[A] : Γ surjects onto A, |A| <∞}.

Basic Question: To what extent does C(Γ) determine Γ?

Without some assumptions it is easy to construct examples where

C(Γ) does not determine Γ; e.g.

S a finitely generated infinite simple group and Γ any finitely

generated group then C(Γ) = C(Γ ∗ S).
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Standing assumptions from here on:

Γ is a discrete group, is finitely generated and residually finite.

i.e. for all nontrivial γ ∈ Γ, there is a finite group A and a

homomorphism φ : Γ→ A so that φ(γ) 6= 1.

Examples:

1. Γ < GL(n,C) (a f.g. subgroup) (Malcev, Selberg)

2. Γ = π1(M), M a compact 3-manifold (Perelman, Thurston,

Hempel).
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Definition: The genus of Γ is the set:

G(Γ) = {Λ : C(Λ) = C(Γ)}

Genus—meant to suggest ”locally the same but globally .....?”.

If P is a class of groups then

GP(Γ) = {Λ ∈ P : C(Λ) = C(Γ)}
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Examples :

1. Γ a finitely generated abelian group, G(Γ) = {Γ}
2. (G. Baumslag) There exist Γ (virtually Z) with |G(Γ)| > 1.

What Baumslag actually proves is the following:

Let F be a finite cyclic group with an automorphism of order n, where

n is different from 1, 2, 3, 4 and 6.

Then there are at least two non-isomorphic cyclic extensions of F, Γ1

and Γ2 with C(Γ1) = C(Γ2).

A beautiful, and useful observation, that is used in the proof that the

constructed groups Γ1 and Γ2 lie in the same genus is the following

(going back to Hirshon):

Suppose that A and B are groups with A× Z ∼= B× Z, then

C(A) = C(B).
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3. As is already evident from Baumslag’s examples, the case of

nilpotent groups already shows some degree of subtlety.

However, the nilpotent case is well understood due to work of Pickel

(student of Baumslag in the 1970’s).

For a finitely generated nilpotent group Γ, G(Γ) consists of a finite

number of isomorphism classes of nilpotent groups.

There are examples where the genus can be made arbitrarily large.

4. Using the Congruence Subgroup Property and some number

theory, examples of lattices Γ in certain semisimple Lie groups can be

constructed with |G(Γ)| > 1 (and always finite).

5. There are examples of word hyperbolic (hence finitely presented)

groups Γ with |G(Γ)| infinite (Bridson).
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6. Restricting the class of groups can be helpful.

By a Fuchsian group we mean a finitely generated discrete subgroup

of PSL(2,R).

Let L denote the class of lattices in connected Lie groups.

Theorem 1 (Bridson-Conder-R)

Let F be a Fuchsian group, then GL(F) = {F}.

Hard case: Distinguishing between Fuchsian groups.
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Organizing finite quotients The Profinite Completion

Let Γ be a finitely generated group (not necessarily residually finite

for this discussion), and let N denote the collection of all finite index

normal subgroups of Γ.

Note that N is non-empty as Γ ∈ N , and we can make N into

directed set by declaring that

For M,N ∈ N ,M ≤ N whenever M contains N.

In this case, there are natural epimorphisms φNM : Γ/N → Γ/M.

The inverse limit of the inverse system (Γ/N, φNM,N ) is denoted Γ̂

and defined to be to the profinite completion of Γ.
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There is a natural map ι : Γ→ Γ̂ defined by

g 7→ (gN) ∈ lim←−Γ/N

ι is 1-1 if and only if Γ is residually finite.

Definition: Say Γ is profinitely rigid if whenever Λ̂ ∼= Γ̂ then Λ ∼= Γ.

if and only if G(Γ) = {Γ}.
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Main Focus: Profinite rigidity and low-dimensional topology

Perhaps the most basic example is the following that goes back to

Remeslennikov and remains open:

Question 1

Let Fn be the free group of rank n ≥ 2. Is Fn profinitely rigid?

The group Fn arises in many guises in low-dimensional topology and

affords several natural ways to generalize.
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The following are natural generalizations of Question 1 (which

remain open):

Question 2

Let Σg be a closed orientable surface of genus g ≥ 2. Is π1(Σg)

profinitely rigid?

As we will discuss, profinite rigidity in the setting of 3-manifold

groups is different, however, one generalization that we will focus on

is:

Question 3

Let M be a complete orientable hyperbolic 3-manifold of finite

volume. Is π1(M) profinitely rigid?
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Caution: There are 3-manifold groups that are not profinitely rigid.

Examples:(Funar)

Torus bundles with SOLV geometry arise as the mapping torus of a

self-homeomorphism f : T2 → T2 which can be identified with an

element of
(

a b
c d

)
∈ SL(2,Z) with |a + d| > 2.

Funar shows that for any m ≥ 2 there exist m torus bundles admitting

SOLV geometry whose fundamental groups have isomorphic profinite

completions although they are pairwise non-isomorphic.
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Examples:(Hempel)

Let f : S→ S be a periodic, orientation-preserving homeomorphism

of a closed orientable surface S of genus at least 2, and let k be

relatively prime to the order of f .

Let Mf (resp. Mf k ) denote the mapping torus of f (resp. f k), and let

Γf = π1(Mf ) (resp. Γf k = π1(Mf k)).

Hempel shows that Γ̂f ∼= Γ̂f k by proving that Γf × Z ∼= Γf k × Z (c.f.

the example of Baumslags).
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Steps towards profinite rigidity

Geometrization from profinite completion: Seeing geometry from

finite quotients

Theorem 2 (Wilton-Zalesskii)

LetM denote the class of fundamental groups of compact

3-manifolds.

Let M be a closed orientable 3-manifold with infinite fundamental

group admitting one of Thurston’s eight geometries and let

π1(N) ∈M with π1(N) ∈ GM(π1(M)). Then N is closed and admits

the same geometric structure.

Important in this work and many other recent developments on

profinite rigidity in 3-manifold groups is the work of Agol and Wise.
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As an example of this:

Theorem 3 (Bridson-R-Wilton)

Let M be a 1-punctured torus bundle over the circle. Then

GM(π1(M)) = {π1(M)}.

Some comments on the proof:

1. If π1(N) ∈M with π1(N) ∈ G(π1(M)), then N is fibered. (uses

Agol and Wise).

2. We have

1→ F → π1(M)→ Z→ 1 and 1→ G→ π1(N)→ Z→ 1,

where F is a free group of rank 2 and G is some free group (from the

fibering in 1).

(main case is when M is hyperbolic and so in this case b1(M) = 1).
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Passing to profinite completions:

1→ F̂ → π̂1(M)→ Ẑ→ 1 and 1→ Ĝ→ π̂1(N)→ Ẑ→ 1.

Left exact comes from the fact that the full profinite topology is

induced on F and G.

We know b1(M) = b1(N) = 1 and π̂1(M) ∼= π̂1(N).

Hence there is a unique homomorphism to Ẑ and so F̂ ∼= Ĝ.

Hence F ∼= G.

Now reduces to analyzing fundamental groups of 1-punctured torus

bundles.

This uses properties of SL(2,Z) viewed as the Mapping Class group

of the 1-punctured torus.
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Profinite rigidity and hyperbolic geometry

Progress on Question 3 and a step in the right direction on Question 1.

Theorem 4 (Bridson-McReynolds-R-Spitler)

1. There are profinitely rigid (arithmetic) Kleinian groups.

These include PGL(2,Z[ω]), PSL(2,Z[ω]) (where

ω2 + ω + 1 = 0), π1(MW) where MW is the Weeks manifold.

2. There are profinitely rigid (arithmetic) triangle groups.

These include ∆(3, 3, 4), ∆(2, 3, 8) and 14 more.

Remark: We cannot yet handle ∆(2, 3, 7).
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Some ideas in the proof of Theorem 4

For simplicity let Γ = PSL(2,Z[ω]).

There are three key steps in the proof.

Theorem 5 (Representation Rigidity)

Let ι : Γ→ PSL(2,C) denote the identity homomorphism, and c = ι

the complex conjugate representation. Then if ρ : Γ→ PSL(2,C) is a

representation with infinite image, ρ = ι or c.

This is the only Bianchi group PSL(2,Od) with this kind of

”representation rigidity”.

Using Theorem 5 we are able to get some control on PSL(2,C)

representations of a finitely generated residually finite group with

profinite completion isomorphic to Γ̂.
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Theorem 6

Let ∆ be a finitely generated residually finite group with ∆̂ ∼= Γ̂. Then

∆ admits an epimorphism to a group L < Γ which is Zariski dense in

(P)SL(2,C).

Theorem 6 is proved by patching together local representations and

holds in a fairly general setting.

The key point now is in the context of Kleinian groups, we can make

use of Theorem 6, in tandem with an understanding of the topology

and deformations of orbifolds H3/G for subgroups G < Γ.
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Briefly, in the notation of Theorem 6, L has infinite index or finite

index.

1. L has infinite index:

Use Teichmüller theory to construct explicit finite quotients of L

and hence ∆ that cannot be finite quotients of Γ.

2. L has finite index:

We make use of an understanding of low-index subgroups of Γ,

together with the construction of L, and 3-manifold topology to

show:

L contains the fundamental group of a once-punctured torus

bundle over the circle of index 12.
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We can then make use of Theorem 3 (profinite rigidity of 1-punctured

torus bundles amongst 3-manifold groups) to show L = Γ.
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Final Remarks

1. Theorem 6 holds in more generality given some degree of

”representation rigidity”.

e.g. for SL(3,Z).

Run the above argument gives an epimorphism from ∆ (fake

SL(3,Z)) into SL(3,Z).

What do f.g. infinite index subgroups of SL(3,Z) look like?
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2. Why cant we handle the (2, 3, 7) triangle group?

The argument gives either:

∆ admits an epimorphism onto a subgroup of (2, 3, 7), or

∆ admits an epimorphism onto a subgroup of PSL(2,Rk) where Rk is

the ring of integers in k = Q(cosπ/7).

As before (like SL(3,Z) we know nothing about the structure of f.g.

infinite index subgroups of PSL(2,Rk).
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3. Let M = H3/Γ be a finite volume hyperbolic 3-manifold. Suppose

N = H3/Λ with Γ̂ ∼= Λ̂.

Can we show Vol(M) = Vol(N)?

There does appear to some conjectural evidence to support a positive

answer.

It is conjectured that if {Nm} is a cofinal sequence of subgroups of

finite index in Γ, then:

log |Tor(H1(Nm,Z))|
[Γ : Nm]

→ 1
6π

Vol(M) as n→∞.

Tor(H1(Nm,Z)) is visible in the profinite completions N̂m


