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Abstract. In this article we discuss a 3-dimensional version of a conjecture of Rademacher con-

cerning genus 0 congruence subgroups PSL(2,Z). We survey known results, as well as including

some new results that make partial progress on the conjecture.
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1. Introduction

Let k be a number field with ring of integersRk. A subgroup Γ < PSL(2,Rk) is called a congruence
subgroup if there exists an ideal I ⊂ Rk so that Γ contains the principal congruence group:

Γ(I) = ker{PSL(2,Rk)→ PSL(2,Rk/I)},

where PSL(2,Rk/I) = SL(2,Rk/I)/{±Id}. The largest ideal I for which Γ(I) < Γ is called the level
of Γ. For convenience, if n ∈ Z ⊂ Rk, we will denote the principal Rk-ideal < n > simply by n.

For a variety of reasons (geometric, number theoretic and topological), congruence subgroups are
perhaps the most studied class of arithmetic subgroups. For example, in the case when Rk = Z,
and Γ < PSL(2,Z), the genus, number of cone points and number of cusps of H2/Γ has been well-
studied. This was perhaps best articulated in a conjecture of Rademacher which posited that there
are only finitely many congruence subgroups Γ < PSL(2,Z) of genus 0 (i.e. when H2/Γ has genus
0). The proof of this was completed by Denin in a sequence of papers [16], [17] and [18]. Different
proofs of this (actually of a slightly stronger version of this result) were also given by Thompson
[40] and Zograf [44]. Indeed, in these two papers it is proved that there are only finitely congruence
subgroups of PSL(2,Z) of any fixed genus.

The complete enumeration of congruence subgroups of genus 0 was completed in [15], where 132
groups are listed. The list of torsion-free congruence subgroups of genus 0 was completed in [36]
(there are 33 and the levels are all of the form 2a3b5c7 with a ≤ 5, b ≤ 3, and c ≤ 2 with 25 being the
largest level). As is easy to see (and we describe this in §4 below) of those 33, only 4 are principal
congruence subgroups (of levels 2, 3, 4 and 5).

Turning to dimension 3, let d be a square-free positive integer, let Od denote the ring of integers
in Q(

√
−d), and let Qd denote the Bianchi orbifold H3/PSL(2,Od). A non-compact finite volume

hyperbolic 3-manifold X is called arithmetic if X and Qd are commensurable, that is to say they
share a common finite sheeted cover (see [30, Chapter 8] for more on this). If N is a closed orientable
3-manifold and L ⊂ N a link, then L is called arithmetic if N \ L is an arithmetic hyperbolic 3-
manifold.

In his list of problems in his Bulletin of the AMS article [42], Thurston states as Question 19:

Find topological and geometric properties of quotient spaces of arithmetic subgroups of PSL(2,C).
These manifolds often seem to have special beauty.
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For example, many of the key examples in the development of the theory of geometric structures on 3-
manifolds (e.g. the figure-eight knot complement, the Whitehead link complement, the complement
of the Borromean rings and the Magic manifold) are arithmetic.

The “beauty” referred to by Thurston is captured particularly well by congruence manifolds
(which includes all of the above examples); i.e. manifolds M = H3/Γ where Γ is congruence.
Similarly, a manifold H3/Γ is called principal congruence if Γ = Γ(I) for some ideal I. As above we
will also refer to a link L ⊂ N as congruence (resp. principal congruence) if the manifold N \ L is
so.

In this paper we will survey what is known about the following question, which as we discuss
below, can be viewed as the most natural generalization of the Rademacher conjecture to dimension
3.

Question 1.1. Are there only finitely many congruence link complements in S3?

As noted above the work of Zograf shows that there are only finitely many congruence surfaces of
any fixed genus. Thus a far reaching generalization of this to dimension 3 is the following question:

Question 1.2. Let N be a fixed closed orientable 3-manifold. Are there only finitely many congru-
ence link complements in N?

We finish the introduction with a brief discussion of the remainder of the paper. In §3 we describe
early progress on Question 1.1 in the context of the ”Cuspidal Cohomology Problem”. This was
given particular impetus in work of Schwermer (with Fritz Grunewald) in [24]. In §4–6 we survey
recent work of the authors ([7], [8] and [9]), which together with the work of Goerner [21] and [22]
(which completed the enumeration in the cases of d = 1, 3) answers a question of Thurston about
the complete list of principal congruence link complements asked in an email to the authors in 2009:

“Although there are infinitely many arithmetic link complements, there are only finitely many that
come from principal congruence subgroups. Some of the examples known seem to be among the
most general (given their volume) for producing lots of exceptional manifolds by Dehn filling, so I’m
curious about the complete list.”

To that end we discuss the proof of the following theorem (the final details of which will appear in
[9]).

Theorem 1.3. There are 48 principal congruence link complements in S3. The values of d and the
levels I are listed in Table 1 in §5.

Note that since links with at least 2 components are not generally determined by their comple-
ments (see [23]), one cannot just say “finitely many principal congruence links”.

Also in §4 we describe what is known about Question 1.2 for principal congruence link comple-
ments as well as Question 1.1 for principal congruence link complements in S3 arising from other
maximal orders. In §7 we discuss some levels where Question 1.1 can be answered positively, and
in §8 we finish with some comments and speculations.
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2. Preliminaries

Let hd denote the class number of Q(
√
−d). Then as is well-known the quotient orbifold Qd =

H3/PSL(2,Od) has hd cusps. Apart from the cases of d = 1, 3, the cusp ends of the Qd all have
the form T 2 × [0,∞) where T 2 is the 2-torus. When d = 1, the cusp end is [S,∞) where S is the
Euclidean 2-orbifold which is a 2-sphere with 4 cone points of cone angle π, and when d = 3, the
cusp end is [B,∞) where B is the Euclidean 2-orbifold which is a 2-sphere with 3 cone points of
cone angle 2π/3.

Let Γ ≤ PSL(2,Od) be a finite index subgroup. Then

• A cusp, [c], of Γ is a Γ-orbit of points in P1(Q(
√
−d))

• A peripheral subgroup of Γ for [c] is a maximal parabolic subgroup, Px < Γ, fixing x ∈ [c].
Note that if y ∈ [c], then Px and Py are conjugate; hence a peripheral subgroup for [c] is
determined up to conjugacy.
• A set of peripheral subgroups for Γ is the choice of one peripheral subgroup for each cusp of

Γ.

We will use the term cusp to mean [c], a choice of point x in [c], as well as the end of H3/Γ
corresponding to [c]. Which one is meant should be clear from the context.

Recall that if p ∈ Z then p is called inert if the Od-ideal < p > remains prime, and p is said to
split if the Od-ideal < p >= P1P2 (and also say that Pi is a split prime for i = 1, 2). If I ⊂ Od is
an ideal then N(I) = |Od/I| denotes the norm of the ideal I.

3. The Cuspidal Cohomology Problem

Let Γ be a non-cocompact Kleinian (resp. Fuchsian) group acting on H3 (resp. H2) with finite
co-volume, and set X = Hn/Γ with n = 2, 3. Let U(Γ) denote the subgroup of Γ generated by
parabolic elements of Γ. Note that U(Γ) is visibly a normal subgroup of Γ, and we may define:

V (X) = V (Γ) = (Γ/U(Γ))ab ⊗Z Q.
Then the subspace of H1(X,Q) which defines the (degree 1) cuspidal cohomology of X (or Γ) can
be identified with V (Γ).

Setting r(Γ) = dimQ(V (Γ)), we see that in the case when Γ is a torsion-free Fuchsian group
r(Γ) = 0 if and only if the underlying space of X is a punctured S2, which in turn is equivalent to
Γ being generated by parabolic elements.

When Γ is Kleinian and X ∼= S3 \L, then r(Γ) = 0 and Γ is generated by parabolic elements. Of
course, in dimension 3, other closed manifolds provide examples of link complements H3/Γ ∼= Σ \L
satisfying r(Γ) = 0, e.g. when Σ is an integral homology 3-sphere. It is also not the case that being
generated by parabolic elements forces the link complement to be contained in S3 (see [22]).

In the setting of the Bianchi groups, PSL(2,Od), The Cuspidal Cohomology Problem posed in
the 1980’s asked which Bianchi groups have r(PSL(2,Od)) = 0. Building on work of many people
(see for example [24], [25], [35]), the solution of the Cuspidal Cohomology Problem was provided by
Vogtmann [43] who determined the list of all values of d (see Theorem 3.1 below) with r(Qd) = 0.
In particular, this provided the list of those d for which Qd can have a cover homeomorphic to an
arithmetic link complement in S3. Moreover in [5] it was shown that for every such d there does
exist an arithmetic link complement. We summarize this discussion in the following result:

Theorem 3.1. Qd is covered by an arithmetic link complement in S3 if and only if

d ∈ {1, 2, 3, 5, 6, 7, 11, 15, 19, 23, 31, 39, 47, 71}.

4. Finiteness of principal congruence link complements

In this section we discuss the proof of finiteness of principal congruence link complements; the
case of dimension 2 is well-known, and a proof in dimension 3 is given in [7] (see also [8]).
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4.1. The case of PSL(2,Z).

Proposition 4.1. The only principal congruence subgroups of PSL(2,Z) of genus 0 have level
n = 2, 3, 4, 5.

Proof. An easy argument shows that Γ(n) is torsion-free for all n ≥ 2. The proof is completed using
the following straightforward observations:

(1) Γ(n) has genus zero if and only if Γ(n) is generated by parabolic elements.

(2) Let T (n) denote the cyclic subgroup of Γ(n) fixing the cusp at ∞; i.e. T (n) is the cyclic group

generated by

(
1 n
0 1

)
. Hence the normal closure N(n) of T (n) in PSL(2,Z) is a subgroup of Γ(n).

It is easy to see that Γ(n) is generated by parabolic elements if and only N(n) = Γ(n).

(3) Now note that PSL(2,Z)/N(n) is isomorphic to the (2, 3, n) triangle group, and this is finite if
and only if n is as in the statement of Proposition 4.1. tu

4.2. The Bianchi groups. Although we will also use the idea of proof of Proposition 4.1, the case
of dimension 3 requires additional technology, and handled somewhat differently; since, amongst
other reasons, there are cases where the class number is greater than 1. Following [7] and [8], we
will appeal to systole bounds. Recall that if M is a finite volume orientable hyperbolic 3-manifold,
the systole of M is the length of the shortest closed geodesic in M , and will be denoted by sys(M).
The following is proved in [8, Lemma 4.1] (using [1] and the improvement in [33]). The solution to
the Cuspidal Cohomology Problem yields only finitely many d to consider, and so the finiteness of
the number of principal congruence link complements easily follows from Lemma 4.2. We include
the proof since we will refer to it later.

Lemma 4.2. Suppose that I ⊂ Od is an ideal such that H3/Γ(I) is homeomorphic to a link com-
plement in S3. Then N(I) < 39.

Proof. If γ ∈ Γ(I) is a hyperbolic element, its complex length is `(γ) = `0(γ) + iθ(γ), where `0(γ) is
the translation length of γ and θ(γ) is the angle incurred in translating along the axis of γ by distance
`0(γ). Now, as is well-known cosh(`(γ)/2) = ±tr (γ)/2, and so we get the following inequality for
`0(γ): |tr (γ)|/2 ≤ cosh(`0(γ)/2). With the systole bound given in [33] of 7.171646 . . ., the argument
of [1] used in [7] can be reworked and gives:

|tr (γ)/2| ≤ cosh(7.1717/2) ≤ 18.1 and so |tr (γ)| < 37.

From [7, Lemma 2.5] (see also [8, Lemma 4.1]) we have tr (γ)± 2 ∈ I2, and so the bound on |tr (γ)|
given above implies that N(I) < 39. tu

Remark 4.3. The proof of Lemma 4.2 actually shows more: if Γ(I) is a link group, then there
exists x ∈ I such that |x|2 < 39. This is relevant in the case when hd > 1, since there are ideals I
of norm less than 39 for which no such element exists and hence Γ(I) is not a link group.

Finally in this section we discuss the case of principal congruence link complements in arbitrary
closed orientable 3-manifolds. The first remark is that in the case when N is a closed orientable
3-manifold that does not support a metric of negative curvature, then the systole bound from [1]
(or the improvement in [33]) and the argument of Lemma 4.2 also proves finiteness for principal
congruence link complements N \ L.

To discuss the hyperbolic case, let X = N \ L; then the dimension of V (X) can be shown to be
bounded above by dim(H2(N ;Q)), whilst on the other hand, it is known that (see [24]) as d → ∞
the dimension of V (Qd) goes to infinity.

Thus we deduce the following corollary of this discussion.
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Corollary 4.4. Suppose that N is a fixed closed orientable 3-manifold. If N \ L = H3/Γ(I), then
the there are at most finitely many d such that I ⊂ Od.

Thus as in the case of S3, it remains to control the levels in these finitely many d. This was done
by Lakeland and Leininger [28] using a more refined analysis of systole bounds.

Theorem 4.5. Let N be a closed orientable 3-manifold. Then there are only finitely many principal
congruence link complements in N .

4.3. Other maximal orders. The Bianchi groups can be thought of as arising from the maximal
order M(2, Od) ⊂ M(2,Q(

√
−d)). In the case when hd is even, there are maximal orders O ⊂

M(2,Q(
√
−d)) that are not GL(2,Q(

√
−d))-conjugate to M(2, Od) and whose group of elements

of norm one thereby define arithmetic Kleinian groups Γ1
O commensurable with PSL(2,Od), with

the same co-volume as PSL(2,Od), but not conjugate to PSL(2,Od) (see below and [30] for further
details). A version of the cuspidal cohomology problem was solved for these groups, and the following
additional values of d (beyond those listed in Theorem 3.1) provide groups Γ1

O with r(Γ1
O) = 0:

namely d ∈ {10, 14, 35, 55, 95, 119}. In addition, for d ∈ {5, 6, 15, 39} (which do arise in Theorem
3.1) groups Γ1

O with O 6= M(2, Od) were also shown to have r(Γ1
O) = 0 (see [13]).

Turning to link groups, it is known that link groups do appear as subgroups of finite index in
some of these additional groups Γ1

O; namely in the cases of d ∈ {5, 6, 10, 15, 35, 39, 55} ([6],[37],[38]).
One can also make sense of the notion of congruence subgroups of the groups Γ1

O, however nothing
is known about the existence of (principal) congruence link complements or more generally Question
1.1 in this setting. However, we can establish finiteness of principal congruence link complements
in this broader sense. Before stating the result carefully we recall the construction of these other
types of maximal orders. To that end, let J ⊂ Od be an ideal and define Od(J) by:

Od(J) = {

a b

c d

 : a, d ∈ Od, c ∈ J, b ∈ J−1},

where J−1 = {x ∈ Q(
√
−d) : xy ∈ Od,∀y in J} is the inverse ideal.

It follows from [30, Chapter 6.7] that the type number of maximal orders of M(2,Q(
√
−d) (which

is the number of distinct GL(2,Q(
√
−d))-conjugacy classes of maximal orders) is one when hd is

odd and and when hd is even it is equal to td = |Hd/H
(2)
d | where Hd is the class group and H

(2)
d

the group generated by squares of elements in Hd. In particular, in the case when hd is even,
we may find a finite collection of ideals J1, . . . , Jtd so that every maximal order of M(2,Q(

√
−d))

is GL(2,Q(
√
−d))-conjugate to one of Od(Ji). By convention we take J1 = Od and identify the

maximal order Od(J1) = M2(Od).
Following the notation above, the maximal orders Od(Ji) give rise to arithmetic Kleinian groups

Γ1
Od(Ji) commensurable with PSL(2,Od). Note that from the previous discussion and [30, Theorem

9.2.2] every arithmetic link group is conjugate into some group Γ1
Od(Ji)

For an ideal I ⊂ Od with I 6= Ji for i = 1, . . . , td, we can construct the principal congruence
subgroup Γi(I) by reducing modulo I (we refer the reader to [30, Chapter 6.6] for more details about
this). Call Γ < Γ1

Od(Ji) congruence if Γ > Γi(I) for some i = 1, . . . , td and I ⊂ Od.

Theorem 4.6. There are only finitely many principal congruence link complements arising as
H3/Γi(I).

Proof. The proof follows the idea in the proof of Lemma 4.2. From above, there is a finite list
of possible values of d, and moreover, we need only consider those d for which hd is even—which
reduces to d ∈ {5, 6, 10, 14, 15, 35, 39, 55, 95, 119}. Since the type number is finite, it follows, as
before, that it remains to bound the norm of the ideal I. Following the proof of [7, Lemma 2.5] if
γ ∈ Γi(I) is a hyperbolic element then it has the form
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γ =

±1 + a b

c ±1 + d


where a, d ∈ I, c ∈ I.J and b ∈ I.J−1. Following the argument in the proof of [7, Lemma 2.5] we
deduce that ±(a+d) = −ad+bc, but this time we have bc ∈ IJ ·IJ−1 ⊂ I2. Regardless, we can still
deduce that tr γ ≡ ±2 mod I2. Given this we can complete the proof as in Lemma 4.2 to deduce
that N(I) < 39. tu

5. Techniques to determine the list

Table 1 below gives the complete list of 48 pairs (d, I) describing all principal congruence sub-
groups Γ(I) < PSL(2,Od) such that H3/Γ(I) is a link complement in S3. Note that if Γ(I) deter-
mines a principal congruence link group, so does Γ(I).

(1) d = 1: I ∈ {2, < 2± i >,< (1± i)3 >, 3, < 3± i >,< 3± 2i >,< 4± i >}.
(2) d = 2: I ∈ {2, < 1±

√
−2 >,< 1± 2

√
−2 >,< 2±

√
−2 >,< 3±

√
−2 >,< 1± 3

√
−2 >}.

(3) d = 3: I ∈ {2, 3, < (5±
√
−3)/2 >,< 3±

√
−3 >,< (7±

√
−3)/2 >,< 4±

√
−3 >,

< (9±
√
−3)/2 >}.

(4) d = 5: I =< 3, (1±
√
−5) >.

(5) d = 7: I ∈ {< (1±
√
−7)/2 >, 2, < (3±

√
−7)/2 >,<

√
−7 >,< 1±

√
−7 >,

< (−5±
√
−7)/2 >,< 2±

√
−7 >,< (1± 3

√
−7)/2 >}.

(6) d = 11: I ∈ {< (1±
√
−11)/2 >,< (3±

√
−11)/2 >,< (5±

√
−11)/2 >}.

(7) d = 15: I ∈ {< 2, (1±
√
−15)/2 >,< 3, (3±

√
−15)/2 >,< 4, (1±

√
−15)/2 >,

< 5, (5±
√
−15)/2 >,< 6, (−3±

√
−15)/2 >}.

(8) d = 19: I =< (1±
√
−19)/2 >.

(9) d = 23: I ∈ {< 2, (1±
√
−23)/2 >,< 3, (1±

√
−23)/2 >,< 4, (−3±

√
−23)/2 >}.

(10) d = 31: I ∈ {< 2, (1±
√
−31)/2 >,< 4, (1±

√
−31)/2 >,< 5, (3±

√
−31)/2 >}.

(11) d = 47: I ∈ {< 2, (1±
√
−47)/2 >,< 3, (1±

√
−47)/2 >,< 4, (1±

√
−47)/2 >}.

(12) d = 71: I =< 2, (1±
√
−71)/2 >.

Table 1

Comparing with Theorem 3.1, the reader will note that the cases of d = 6 and d = 39 do not
occur in Table 1. Indeed, there are no principal congruence link complements for these values of d,
although as we show in [8], there are congruence link complements.

To determine the list of those d and levels I, there are two main issues. First, proving that those
on the list are link complements in S3, and secondly, eliminating those that are not on this list. We
refer the reader to [7], [8] and [9] for further details. Sample computations are given in §6.

We also note that these principal congruence link complements in S3 also give rise to many more
examples of principal congruence link complements in other closed non-hyperbolic 3-manifolds. For
example, the case of (7, (1 ±

√
−7)/2) gives a principal congruence link complement known as the

Magic manifold. This manifold has many ”exceptional” (i.e. non-hyperbolic) Dehn surgeries, which
thereby gives closed 3-manifolds N containing a link L with N \ L ∼= H3/Γ(< (1 ±

√
−7)/2 >);

for example infinitely many small Seifert fibered spaces, and infinitely many torus bundles over the
circle admitting SOL geometry (see [31]).

5.1. Establishing H3/Γ(I) is a link complement. To establish the principal congruence link
groups in Table 1, we typically invoke the following strategy, which closely mimics that used in the
case of PSL(2,Z). Note that only in a small number of cases do we have explicit links, indeed some
of these explicit links in S3 were in the literature (e.g. in [2], [4], [26] and [41]) and were shown to
give principal congruence link complements directly (see [7] and [8] for further details).
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(1) If H3/Γ(I) ∼= S3 \ L, then Γ(I) is generated by parabolic elements.
(2) H3/Γ(I) ∼= S3 \ L if and only if Γ(I) can be trivialized by setting one parabolic from each

cusp of Γ(I) equal to 1.

Some further commentary: If H3/Γ(I) ∼= S3\L, then for each component Li of L, there is a meridian
curve xi so that Dehn filling S3 \L along the totality of these curves gives S3. Thus, trivializing the
corresponding parabolic elements [xi] in Γ(I) gives the trivial group. Conversely, given Perelman’s
resolution of the Geometrization Conjecture, if Γ(I) can be trivialized by setting one parabolic from
each cusp of Γ(I) equal to 1, then H3/Γ(I) is homeomorphic to a link complement in S3.

To check whether Γ(I) is generated by parabolic elements we can proceed as follows.

Let Γ(I) < PSL(2,Od), and let Pi be the peripheral subgroup of PSL(2,Od) fixing the cusp ci ∈
Q(
√
−d)∪{∞} for i = 1, . . . , hd. Set Pi(I) = Pi ∩Γ(I) be the peripheral subgroup of Γ(I) fixing ci.

Let Nd(I) denote the normal closure in PSL(2,Od) of {P1(I), . . . , Phd(I)}. Note that Nd(I) < Γ(I)
since Γ(I) is a normal subgroup of PSL(2,Od). It is clear that Γ(I) is generated by parabolic elements
if and only if Nd(I) = Γ(I). Now we can try to use Magma [14] to test whether Γ(I) = Nd(I).
However, this does not always succeed in allowing us to decide on way or the other, and additional
methods are required (we refer the reader to [7] and [8] for further details).

To execute the second part of the strategy described above, we need to find parabolic elements
in Γ(I), one for each cusp, so that trivializing these elements trivializes the group. From above, we
obtain a partial set S = {P1(I), . . . , Phd(I)} of peripheral subgroups for Γ(I). To obtain a full set
of peripheral subgroups for Γ(I) we need to add certain conjugates of the Pi(I) to the partial set S.

Next, given this full set of peripheral subgroups for Γ(I), we choose one parabolic from each of
these peripheral subgroups and use Magma to check that trivializing these elements trivializes Γ(I).
This choice of parabolic elements involves trial and error. It is worth emphasizing that finding these
peripheral subgroups and expressing them in terms of generators for a presentation of PSL(2,Od)
was a highly non-trivial exercise.

5.2. Eliminating H3/Γ(I) as a link complement. We begin by discussing the case when I =<
n > and n ∈ Z. To that end we recall the following result from [3] that places severe restrictions on
the list of possible d’s.

Theorem 5.1. If hd > 1, and Γ(n) < PSL(2,Od), then H3/Γ(n) is not homeomorphic to a link
complement in S3.

This result, together with the discussion in [7, Section 4.1] allows one to deduce:

Corollary 5.2. Suppose that Γ(n) < PSL(2,Od) and H3/Γ(n) is homeomorphic to a link comple-
ment in S3. Then d ∈ {1, 2, 3, 7, 11, 19} and n ∈ {2, 3, 4, 5}.

Since we are reduced to the case when hd = 1 some pairs (d, n) can be eliminated quite quickly
using Magma. If P denotes the peripheral subgroup of Γ(n) fixing ∞, we show the normal closure
< P > 6= Γ(n). Table 2 below shows the cases for which this works. In this table, N is a normal
subgroup of PSL(2,Od) that contains the group < P >. Note the orders in the final two columns
are different, so we can conclude that < P > 6= Γ(n) in each case.
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d n Order of PSL(2,Od)/N Order of PSL(2,Od/I)
2 3 2304 288
3 4 3840 1920
7 3 1080 360
11 2 120 60
11 4 7680 1920

Table 2

To handle the remaining integral levels a combination of methods are used, we summarize these in
the following combination of results from [7].

Proposition 5.3. Assume that d ∈ {2, 7, 11, 19}, then Γ(p) < PSL(2,Od) is not a link group in the
following two cases:

• p is an inert prime in Od.
• p ≥ 5 splits in Od.

Using this we can eliminate the following cases.

Corollary 5.4. For (d, n) ∈ {(2, 5), (7, 3), (7, 5), (11, 2), (11, 5), (19, 2), (19, 3), (19, 5)}, the groups
Γ(n) are not link groups.

Finally, using cuspidal cohomology calculations (see [7, Section 4]), one can show.

Proposition 5.5. For those pairs (d, n) listed below, the principal congruence subgroups Γ(n) satisfy
r(Γ(n)) 6= 0.

{(1, 4), (1, 5), (2, 4), (3, 5), (7, 4), (11, 3), (19, 4)}.

Other levels: In [8], a strengthening of Theorem 5.1 proved useful, namely:

Theorem 5.6. If hd > 1, then Γ(n) < PSL(2,Od) satisfies r(Γ(n)) 6= 0 in the following cases
(using the notation introduced earlier to indicate d and the level):

(23, 3), (23, 5), (31, 2), (47, 2), (47, 3), (71, 2), (71, 3).

Putting this together, in [8] it is shown that:

Corollary 5.7. Let d ∈ {23, 31, 47, 71}, I ⊂ Od an ideal and p = 2, 3, 5. Suppose that (d, p) is
as in Theorem 5.6 and I is divisble by < p >. Then Γ(I) has non-trivial cuspidal cohomology. In
particular H3/Γ(I) is not homeomorphic to a link complement in S3.

Most of the eliminations relied on Magma computations once again and we refer the reader to §6
for some sample calculations. However, one particular case (2, < 1 + 3

√
−2 >) proved particularly

stubborn, and we required additional help in the form of programs that can compute automatic
structures on groups to eliminate this case (see [9] for details).

The strategy more generally is this (which is an extension of some of the ideas used for dealing
with some of the integral levels). Using presentations for the the Bianchi groups, as well as matrix
representatives for the peripheral subgroups Pi of PSL(2,Od) (as above), we identify the peripheral
subgroups Pi(I) for i = 1, . . . , hd, and consider the quotient group Bd(I) = PSL(2,Od)/Nd(I).

If Γ(I) is a link group then Bd(I) is a finite group with order equal to |PSL(2,Od/I)|. Hence if
Bd(I) is infinite or has order greater than |PSL(2,Od/I)|, then Γ(I) cannot be a link group. We can
input Bd(I) in the Magma routines as:

Bd(I) =< PSL(2,Od)|P1(I) = . . . = Phd
(I) = 1 >

that is by adding the peripheral subgroups Pi(I) to the relations of PSL(2,Od). We distinguish two
cases:
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Case 1: Bd(I) is a finite group but has order larger than |PSL(Od/I)|.
Case 2: Bd(I) has a finite index subgroup with ”large” abelianization, i.e. of very large order
compared to the size of PSL(2,Od/I) or infinite.

In particular, in either case we can deduce that Γ(I) cannot be a link group. Also note that if Bd(I)
is infinite or of order larger than |PSL(2,Od/J)| for an ideal J ⊂ I, then so is Bd(J), and hence
Γ(J) is also not a link group.

6. Sample calculations

6.1. Establishing principal congruence link complements. We include two examples which
are representative of the methods used, one from [7] and one from [8].

Case of d = 1, I = 3: We will sketch some of the ideas from [7] to show that the principal congruence
subgroup Γ(3) < PSL(2,O1) is a twenty component link group. To that end, from [39], PSL(2,O1)
has the following presentation:

PSL(2,O1) =< a, `, t,u | `2 = (t`)2 = (u`)2 = (a`)2 = a2 = (ta)3 = (ua`)3 = 1, [t,u] = 1 >,

where a =

0 −1

1 0

, t =

1 1

0 1

, u =

1 i

0 1

 and ` =

i 0

0 −i

 (with the obvious abuse

of notation between SL and PSL). The peripheral subgroup P < Γ(3) fixing ∞ in this case is
< t3, u3 >. A Magma routine from [7] is included below and shows < P >= Γ(3).

We include some additional preamble before the Magma computation. It can be checked that Γ(3)
is a normal subgroup of PSL(2,O1) of index 360 and the peripheral subgroup P∞ < PSL(2,O1)
fixing ∞ maps to a group of order 18. Hence H3/Γ(3) has 20 cusps.

In this case (as with others in [7] and [8]) it is helpful to work with an intermediate subgroup
Γ(3) < Γ < PSL(2,O1), where Γ is defined to be the group < Γ(3), δ >= Γ(3).δ where δ = atu−1.
As shown by Magma, [Γ : Γ(3)] = 5, and so we may deduce that the cover H3/Γ(3) → H3/Γ is
a regular 5-fold cyclic cover with H3/Γ having four cusps, and each cusp of H3/Γ(3) projecting
one-to-one to a cusp of H3/Γ.

As was alluded to above, to determine appropriate parabolic elements is a somewhat tedious but
straightforward computation. Briefly, in the case at hand, the four parabolic fixed points ∞, ±1
and 1− i (the set of which we denote by S) can be shown all to be mutually inequivalent under the
action of Γ. In addition, the following parabolic elements in Γ fix the points in S:

S′ = {t3u3, tat3u−3at−1, t−1au3at, u−1tau3at−1u}.
These can be easily shown to be primitive parabolic elements in Γ.

Magma now shows that the normal closure of S′ in Γ is Γ(3). Since the parabolic elements listed
above represent inequivalent cusps of H3/Γ, if we now perform Dehn filling on H3/Γ along the curves
corresponding to these parabolic elements, the normal closure computation shows that we obtain a
group of order 5. Since these are primitive parabolic elements, this group is the fundamental group
of a closed 3-manifold, namely some lens space L (by Geometrization). Hence we deduce that H3/Γ
is a 4 component link in L with fundamental group of order 5. From above we can compatibly fill
the cusps of H3/Γ(3)→ H3/Γ resulting in a 5-fold cover N → L, and so N ∼= S3 as required.

Magma routine for Γ(3)

G<a,l,t,u>:=Group<a,l,t,u|l^2,a^2,(t*l)^2,(u*l)^2,(a*l)^2,(t*a)^3,(u*a*l)^3,

(t,u)>;

h:=sub<G|t^3,u^3>;
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n:=NormalClosure(G,h);

print Index(G,n);

\\360

print AbelianQuotientInvariants(n);

\\[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]

d:=sub<G|n,a*t*u^-1>;

print Index(G,d);

\\72

print AbelianQuotientInvariants(d);

\\[ 5, 0, 0, 0, 0 ]

d1:=sub<d|t^3*u^3,t*a*t^3*u^-3*a*t^-1,t^-1*a*u^3*a*t,u^-1*t*a*u^3*a*t^-1*u>;

d2:=NormalClosure(d,d1);

print Index(d,d2);

\\5

d2 eq n;

\\true

Case of d = 15, I =< 2, ω15 >: Set ω15 = 1+
√
−15
2 , and I =< 2, ω15 >, an ideal of norm 2. From

[39], a presentation for PSL(2,O15) is given by:

PSL(2,O15) =< a, t,u, c | a2 = (ta)3 = ucuatu−1c−1u−1a−1t−1 = 1, [t,u] = [a, c] = 1 >,

where a =

0 −1

1 0

, t =

1 1

0 1

, u =

1 ω15

0 1

 and c =

 4 1− 2ω15

2ω15 − 1 4

. Since h15 = 2,

the quotient orbifold Q15 has two cusps, and equivalence classes can be taken to be ∞ and 1−
√
−5

2

with cusp stabilizers P1 =< t, u >, and P2 =< tb, tu−1ct−1 >. Since N(I) = 2, [PSL(2,O15) :
Γ(I)] = 6 and it is easy to see that H3/Γ(I) has 6 cusps. Now it can be shown that (in the

notation above) P1(I) =< t2, u > and P2(I) =< uca, (c−1au−1c−1u−1ta)2 >. Since

1 −1

1 0

 = ta,

conjugating P1(I) and P2(I) by the elements {Id, ta, (ta)2} gives a set of 6 peripheral subgroups for
Γ(I). Now, we choose one element from each of these 6 peripheral subgroups:

{t2, (ta)u(ta)−1, (ta)2u(ta)−2, uca, (ta)uca(ta)−1(ta)2(c−1au−1c−1u−1ta)2(ta)−2}

In the Magma routine, Q denotes the quotient of Γ(I) by the normal closure of these 6 parabolic
elements, and Magma calculates that Q =< 1 > which shows that Γ(I) is trivialized by setting
these 6 elements equal to 1. Thus Γ(< 2, ω15 >) is indeed a 6 component link group.

G<a,c,t,u>:=Group<a,c,t,u|a^2,(t*a)^3,u*c*u*a*t*u^-1*c^-1*u^-1*a*t^-1, (t,u),(a,c)>;

H:=sub<G|t^2,u,(c^-1*a*u^-1*c^-1*u^-1*t*a)^2,u*c*a>;

N:=NormalClosure(G,H);

print Index(G,N);

6

\\

Q:=quo<N|t^2,(t*a)*u*(t*a)^-1,(t*a)^2*u*(t*a)^-2,

u*c*a,(t*a)*u*c*a*(t*a)^-1,(t*a)^2*(c^-1*a*u^-1*c^-1*u^-1*t*a)^2*(t*a)^-2>;

print Order(Q);

1

\\



CONGRUENCE LINK COMPLEMENTS—A 3-DIMENSIONAL RADEMACHER CONJECTURE 11

6.2. Eliminating principal congruence link complements. We now give some sample calcu-
lations which illustrates the discussion in §5.1.

From [7], Magma rules out the following values of d and levels. Here P denotes the subgroup fixing
∞ in Γ(I) for the ideal I in question.

(i) |PSL(2,O1/ < 5 + i >)| = 6552, and < P > is contained in a normal subgroup of index 46800.

(ii) |PSL(2,O2/ < 4 +
√
−2 >)| = 1944, and < P > is contained in a normal subgroup of index

2654208.

(iii) |PSL(2,O2/ < 2 + 3
√
−2 >)| = 3960, and < P > is contained in a normal subgroup of index

36432.

(iv) |PSL(2,O7/ < 3 +
√
−7 >)| = 1152, and < P > is contained in a normal subgroup of index

4608.

We next consider the example from [8] with d = 6 (so the class number is 2) and I =< 11, 4+
√
−6 >.

The norm of I is 11 and so PSL(2,O6/I) has order 660. The Magma routine included below shows
that the quotient group of PSL(2,O6) obtained by quotienting by the normal closure of the parabolic
subgroups P1(I) and P2(I) (as described above) provides a group denoted B < a, t, u, b, c > in the
Magma routine that has order which is too large since it has a finite index subgroup with an
abelian quotient group of very large order. The relevant information needed is a presentation for
PSL(2,O6) (from [39]) given below, and the generators for the groups P1(I) =< t11, t4u > and
P2(I) =< (tb)11, (tb)4(cu)−1 >.

PSL(2,O6) =< a, t,u,b, c | a2 = b2 = (ta)3 = (atb)3 = (atubu−1)3 =

t−1ctubu−1c−1b−1 = 1, [t, u] = [a, c] = 1 >,

where a =

0 −1

1 0

, t =

1 1

0 1

, u =

1
√
−6

0 1

, b =

−1
√
−6 2−

√
−6

2 1 +
√
−6

, and c = 5 −2
√
−6

2
√
−6 5

.

Magma routine for I =< 11, 4 + ω6 >:

B<a,t,u,b,c>:=Group<a,t,u,b,c|a^2,b^2,(t*a)^3,(a*t*b)^3, (a*t*u*b*u^-1)^3,

t^-1*c*t*u*b*u^-1*c^-1*b^-1, (t,u),(a,c),

t^11,t^4*u,(t*b)^11,(t*b)^4*(c*u)^-1>;

L:=LowIndexNormalSubgroups(B,660);

print #L;

2

\\

print Index(B,L[2]‘Group);

660

\\

print AbelianQuotientInvariants(L[2]‘Group);

[ 4, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120 ]

\\
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7. Congruence link complements

We now discuss what is known in the direction of Question 1.1. In the subsections below we
prove the following theorem for which it will be convenient to recall the following.

Definition 7.1. Let I ⊂ Od be an ideal and let Γ0(I) = {

a b

c d

 ∈ PSL(2,Od)|c ≡ 0 mod I}.

and let Γ1(I) = {

a b

c d

 ∈ PSL(2,Od)|c ≡ 0 mod I, a,d ≡ 1 mod I}

Theorem 7.2. There are only finitely many link groups Γ < PSL(2,Od) such that Γ(I) < Γ in the
following cases:

(1) Γ = Γ1(I).
(2) I = P is a prime ideal.
(3) I = Pn1

1 . . .Pnkk ⊂ Od, where hd = 1 and the ideals Pi are split primes of norm pi, such that
pi 6= pj for i 6= j.

Before commencing with the proof, we note that whenever N(I) ≥ 5 the group Γ1(I) is torsion-
free. Moreover, in [8] examples of link groups arising as Γ1(I) are given when d = 6, 39.

7.1. Proof of Part 1. We begin with some definitions (recall the proof of Lemma 4.2).

Definition 7.3. A group Γ has a small (resp. large) systole if its systole is at most (resp. greater
than) 7.171646 . . .

The proof of Lemma 4.2 shows that if Γ is a link group it has a small systole. Part (1) of Theorem
7.2 will follow immediately from our next lemma (since there are only finitely many d we need only
bound the norm of the ideal I).

Lemma 7.4. Assume that Γ is generated by parabolic elements and has a small systole, then Γ =
Γ1(I) for only finitely many ideals I ⊂ Od.

Proof. Suppose that A ∈ Γ is a hyperbolic element whose translation length achieves the systole
bound. Since Γ = Γ1(I) then tr (A)± 2 ∈ I. But then this, coupled with the argument in the proof
of Lemma 4.2, now shows that N(I) ≤ 392. tu

7.2. Proof of Part 2. Since there are only finitely many d, there are only finitely many ramified
primes, and so we can assume that either P is a split prime or P =< p > and p is inert. We can also
assume that P does not divide 2. In the case of a split prime, PSL(2,Od/P) ∼= PSL(2,Fp) and in the
inert prime case PSL(2,Od/P) ∼= PSL(2,Fp2), where Fp (resp. Fp2) is the field of p elements (resp.
p2 elements). Since Γ is generated by parabolic elements, its image in PSL(2,Od/P) is generated by
parabolic elements, and it follows from the classification of subgroups of PSL(2,Fp) and PSL(2,Fp2)
that this image group is conjugate into the image of Γ1(P) or it generates an isomorphic copy of
PSL(2,Fp) < PSL(2,Fp2) (see [19]), which only occurs in the case when p is inert. Now in the
former case, we deduce that Γ1(P) has a small systole, and so we are done by Part (1). In the latter
case we can argue as follows.

The orders of PSL(2,Fp) and PSL(2,Fp2) are p(p2 − 1)/2 and p2(p4 − 1)/2 respectively. Hence
the index [PSL(2,Od) : Γ] = p(p2 + 1). Now Γ is a link group and so in particular is torsion-free.
Note that since −1 is not a square modulo 3, it follows that 3 does not divide p2 + 1 for any prime
p. Since PSL(2,Od) has elements of order 3, then unless p = 3 we deduce that 3 does not divide
the index [PSL(2,Od) : Γ] which is impossible if Γ is torsion-free. But there are only finitely many
possible primes P that can divide 3 and this proves finiteness. tu
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7.3. Proof of Part 3.

Definition 7.5. An ideal I will be referred to as large if N(I) ≥ 392. Otherwise it is called small.

A variation of the proof Lemma 7.4 proves Lemma 7.6 (below) on noting that if I is an ideal and
A ∈ Γ0(I) is a parabolic element, then A ∈ Γ1(I). The reason for this is that the image of A in

PSL(2,Od/I) has the form ±

a b

0 d

, with ad = 1 and tr (A) = a + d ≡ ±2 mod I. This forces

A ∈ Γ1(I).

Lemma 7.6. Suppose that P ⊂ Od is a split prime, and assume that Γ is generated by parabolic
elements and has a small systole. Then Γ cannot be a subgroup of Γ0(Pn) if Pn is large.

The proof of Theorem 7.2(3) will be completed using the following propositions whose proofs are
included below. Henceforth, we assume that Γ has a small systole and is generated by parabolic
elements; as noted earlier, both of these properties hold for link groups.

Proposition 7.7. If Γ(Pn1
1 . . .Pnkk ) < Γ, then all the primes Pi can be assumed to be small.

Given this we can assume that the ideals Pi are small.

Proposition 7.8. Suppose that Γ(Pn1
1 . . .Pnkk ) < Γ, and that m1 ≥ 2 is the smallest integer for

which Pm1
1 is large. Then n1 can be chosen to be less than 8m1.

In fact the role of P1 is not important here, and the same argument proves.

Corollary 7.9. Suppose that Γ(Pn1
1 . . .Pnkk ) < Γ, and that mi ≥ 2 is the smallest integer for which

Pmii is large. Then each ni can be chosen to be less than 8mi.

The proof of Theorem 7.2 is now complete, since there are only finitely many values of d, only
finitely many split prime ideals of norm less than 392 and, for each of these ideals, the exponent is
bounded using Corollary 7.9. tu

Proof of Proposition 7.7: The proof of Proposition 7.7 will follow immediately from the claim below.
For given this claim, if there is a prime that is not small, then after possibly relabelling this prime
by P1, we can lower the level of the principal congruence subgroup contained in Γ. We can now
repeat this process, but since Γ is assumed congruence, this must stop at some Γ(I) where I is an
ideal that can only be a product of powers of small primes. tu

Claim: Suppose that Γ(Pn1
1 . . .Pnkk ) < Γ and that P1 is large. Then Γ(Pn2

2 . . .Pnkk ) < Γ.

The proof of the claim will require some additional lemmas.

Lemma 7.10. i) Any matrix M ∈ PSL(2,Od) is equivalent to a matrix M ′ ∈ PSL(2,Z) modulo
Γ(Pn1

1 . . .Pnkk ). Furthermore, if M ∈ Γ(Pm1
1 . . .Pmkk ), where 0 ≤ mi ≤ ni then M ′ ∈ Γ(pm1

1 . . . pmkk ) <
PSL(2,Z).

ii) If M is a parabolic matrix, then M ′ can be chosen to be parabolic as well.

Proof. Since Od/Pm1
1 . . .Pmkk

∼= Z/(pn1
1 . . . pnkk )Z, we have that PSL(2,Od/Pm1

1 . . .Pmk

k ) ∼=
PSL(2,Z/(pn1

1 . . . pnk

k )Z) and (i) follows easily.
Since hd = 1, all parabolic elements of PSL(2,Od) are conjugate into the peripheral subgroup

fixing ∞. Hence M = A

1 b

0 1

A−1 for some b ∈ Od. This in turn is equivalent modulo

Γ(Pn1
1 . . .Pnkk ) to A′

1 n

0 1

 (A′)−1 where A′ ∈ PSL(2,Z) and n ∈ Z. This proves (ii). tu
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Lemma 7.11. Let Γ =< Γ(I),M1,M2 >< PSL(2,Od) where M1,M2 are parabolic matrices such

that M1 ≡

1 1

0 1

 mod Pn1
1 and M1 ≡

1 0

0 1

 mod Pn2
2 . . .Pnk

k , while M2 ≡

1 0

1 1

 mod Pn1
1

and M2 ≡

1 0

0 1

 mod Pn2
2 . . .Pnk

k . Then Γ(Pn2
2 . . .Pnkk ) < Γ.

Proof. Consider the map

PSL(2,Od)→ P(SL(2,Od/I)) ∼= P
(
SL(2,Od/Pn1

1 )× SL(2,Od/Pn2
2 . . .Pnk

k )
)

Now note that Γ(Pn2
2 . . .Pnkk ) maps to P

(
SL(2,Od/Pn1

1 ) × Id
)

and that the matrices

1 1

0 1

,1 0

1 1

 generate SL(2,Od/Pn1
1 ). tu

Before commencing with the proof of the claim it will be convenient to introduce the following
definition.

Definition 7.12. A parabolic M has P-level n if n ≥ 0 is the largest integer for which M ∈ Γ(Pn).

Proof of Claim: Since Γ is generated by parabolics, it can be expressed as

Γ =< Γ(I),M1, . . . ,Ml >

where the Mi are parabolic matrices. We can assume that the Mi are in PSL(2,Z) by Lemma
7.10. Renumbering if necessary, let M1 be of smallest P1-level among the Mi. Replacing Γ by a

PSL(2,Z)-conjugate, we can further assume that M1 fixes ∞, and hence M1 =

1 b

0 1

 for some

b ∈ Od. Now (b, p1) = 1 else all the Mi would have P1-level ≥ 1 and hence Γ < Γ0(P1), which
contradicts Lemma 7.6.

Note that Γ must contain a second parabolic matrix, M2 =

1 + a b

c 1− a

, not in Γ0(P1);

hence (c, p1) = 1. Replacing M1,M2 by suitable powers, we can further assume that M1 ≡ M2 ≡1 0

0 1

mod pn2
2 . . . pnk

k and that M1 ≡

1 1

0 1

 , M2 ≡

1 + a −a2

1 1− a

mod pn1
1 .

Since the product M1
−aM2M1

a ≡

1 0

1 1

mod pn1
1 , we have that a subgroup of Γ satisfies the

hypotheses of Lemma 7.11; thus Γ(Pn2
2 . . .Pnkk ) < Γ. tu

Remark 7.13. The above proof shows that if Γ(Pn1
1 ) < Γ, then Γ = PSL(2,Od), which is not

possible for Γ a (torsion-free) link group.

Proof of Proposition 7.8: The following lemmas will be used in the proof of Proposition 7.8.

Lemma 7.14. Let M1 =

1 pr

0 1

, M2 =

 1 0

pr 1

, and M3 =

1 + pr −pr

pr 1− pr

. Then

i) Γ(Pr) =< Γ(P2r),M1,M2,M3 >.
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ii) Γ(Pr) =< Γ(Ps),M1,M2,M3 > for s > r > 1.

Proof. By Lemma 7.10 any matrix of Γ(Pr) is equivalent modulo Γ(P2r) to a matrix in PSL(2,Z) of

the form

1 + apr bpr

cpr 1 + dpr

 which is congruent modulo p2r to the product M b+a
1 M c−a

2 Ma
3 . This

proves i). Part ii) is an easy consequence of i). tu

Lemma 7.15. Let A =

1 pα

0 1

, B =

1 + pβ −p2β−γ

pγ 1− pβ

, such that 0 ≤ α < r, 4r ≤ γ ≤ 5r,

and 4r ≤ β. Then Γ =< Γ(P8r), A,B > is of P-level ≤ 7r.

Proof. In what follows we will work modulo P8r. Since A,B are in PSL(2,Z), this is the same as
modulo p8r.

By Lemma 7.14, it suffices to show that Γ contains the matrices C =

1 p7r

0 1

, D =

 1 0

p7r 1

,

and E =

1 + p7r −p7r

p7r 1− p7r

. Note that F = CD−1E ≡

1 + p7r 0

0 1− p7r

.

Now C ∈ Γ since C is a power ofA. Also F ∈ Γ sinceABA−1B−1 ≡

1 + pα+γ −2pα+β − p2α+γ

0 1− pα+γ


and multiplying this matrix on the left by a power of A yields G =

1 + pα+γ 0

0 1− pα+γ

, with

4r ≤ α+ γ < 6r. Thus it remains to show that D ∈ Γ.

Consider the matrix B. If 6r ≤ β ≤ 8r then Bp
8r−β ≡

 1 0

pγ+8r−β 1

, where γ + 8r − β ≤ 7r;

hence D ∈ Γ. Now suppose that 4r ≤ β < 6r. Since 4r ≤ α+ γ < 6r, replacing B and G by powers
we can assume that the diagonals of B and G are the same, and that β < 6r while γ < 7r. Thus

G−1B ≡

 1 −p2β−γ + p3β−γ

pγ 1

, so that

 1 0

pγ 1

 ≡
1 pγ

0 1

G−1B ∈ Γ, which implies D ∈ Γ.

tu

Lemma 7.16. Let m ≥ 2 be the smallest integer for which P is large. If Γ(P8m) < Γ, then
Γ(P7m) < Γ as well.

Proof. Since Γ is generated by parabolic elements, it can be written as Γ =< Γ(P8m),M1, . . . ,Ml >,
with the Mi parabolic. By Lemma 7.15, it suffices to show that Γ contains the matrices A =1 pα

0 1

, B =

1 + pβ −p2β−γ

pγ 1− pβ

, such that 0 ≤ α < m, 4m ≤ γ ≤ 5m, and 4m ≤ β.

As in the proof of the Claim, we can assume that the Mi are in PSL(2,Z) and that M1 =1 bpα

0 1

 is of smallest P-level among the Mi. Thus 0 ≤ α < m. Since (b, p) = 1, we can assume

(taking a power of M1 and calculating mod p8m)) that Γ contains A =

1 pα

0 1

.
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Now Γ must contain a second parabolic element, M2 =

1 + apβ bp2β−γ

cpγ 1− apβ

 with (a, p) =

(b, p) = (c, p) = 1 that is not in Γ0(Pm). Thus 0 ≤ α ≤ γ < m. Suppose first that M2 fixes the

cusp at 0, so that M2 =

 1 0

cpγ 1

. Thus Γ contains the matrix D =

 1 0

pδ 1

 with 4m ≤ δ ≤ 5m.

Since D(ADA−1D−1) ≡ B =

1 + pα+δ −p2α+δ

pδ 1− pα+δ

, it follows that Γ(P7m) < Γ by Lemma 7.15.

Finally, consider the case M2 =

1 + apβ bp2β−γ

cpγ 1− apβ

 fixing a cusp other than 0 or∞. Replacing

M2 by a power, we can assume that M2 =

1 + pβ p2β−γ

pγ 1− pβ

 such that 4m ≤ γ ≤ 5m and 4m ≤ β.

Thus, again by Lemma 7.15, Γ(P7m) < Γ as required. tu

Lemma 7.17. Let m ≥ 2 be the smallest integer for which P is large. If Γ(Pn) < Γ and n ≥ 8m,
then Γ(Pn−m) < Γ as well.

Proof. Let s = (n − 8m)/2 (resp. (n − 8m + 1)/2) if n − 8m is even (resp. odd). As in the proof

of Lemma 7.16, one shows that Γ contains the matrices A =

1 pα

0 1

, B =

1 + pβ −p2β−γ

pγ 1− pβ

,

such that 0 ≤ α < m, 4m+ s ≤ γ ≤ 5m+ s, and 4m+ s ≤ β. A slight modification of the proof of
Lemma 7.15 gives Γ(Pn−m) < Γ. tu

We can now complete the proof of Proposition 7.8. With the notation of Proposition 7.8, if Γ(Pn) <
Γ and n ≥ 8m then Lemma 7.17 implies Γ(Pn−m) < Γ . Repeating this argument until the exponent
of P is less than 8m proves the proposition in this case.

Now suppose that Γ(Pn1
1 . . .Pnkk ) < Γ, for k > 1. Following the proof of Lemma 7.16, Γ contains

the matrices M1 =

1 bpα1

0 1

 and M2 =

1 + apβ1 dp2β−γ1

cpγ1 1− apβ1

. Furthermore, by taking powers, we

can assume that M1 ≡ M2 ≡

1 0

0 1

 mod pn2
2 . . . pnkk . The proof of Lemma 7.16 then shows that

Γ contains matrices A,B such that A ≡
(

1 pα

0 1

)
mod pn1

1 and A ≡

1 0

0 1

 mod pn2
2 . . . pnkk while

B ≡

1 + pβ −p2β−γ

pγ 1− pβ

 mod pn1
1 and B ≡

1 0

0 1

 mod pn2
2 . . . pnkk . Also, 0 ≤ α < m, 4m+ s ≤

γ ≤ 5m + s, and 4m + s ≤ β. Thus it follows that Γ(Pn1−m1
1 Pn2

2 . . .Pnkk ) < Γ. Repeating the
argument until the exponent of P1 is less than 8m1 completes the proof of Proposition 7.8. tu

8. Final comments and speculations

We finish with some discussion about possible approaches to Question 1.1.
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8.1. Spectral gap. An important property of congruence manifolds is that they admit a spectral
gap; i.e. there exists a number C > 0 (conjectured to be 1 in dimension 3) so that if M = H3/Γ
(or H2/Γ) is any congruence manifold, then the first non-zero eigenvalue of the Laplacian on M ,
denoted λ1(M), satisfies λ1(M) > C.

The argument of [44] to prove the finiteness result in dimension 2 for congruence surfaces of genus
0 discussed in §1 is to play off the spectral gap for congruence manifolds in dimension 2, together
with a result proved in [44] that says that for a sequence of genus 0 manifolds with increasing
numbers of punctures we must have λ1 → 0.

Thus a natural question is whether there exists a “Zograf type result” in dimension 3. The
answer to this in general is no since Lackenby and Souto (unpublished) have shown that there exists
a sequence of hyperbolic link complements in S3 (say Mn) with Vol(Mn) → ∞ and a constant
C1 > 0 such that λ1(Mn) > C1.

On the other hand there are classes of links known for which sequences as above do not arise (see
[20] and [27]). In particular, the result below follows from [27].

Theorem 8.1 (Lackenby). There are only finitely many alternating links in S3 whose complements
are congruence link complements.

8.2. Torsion. If L ⊂ S3 is a link of n components, then H1(S3 \ L) ∼= Zn, so that an ”easy” way
to exclude a congruence subgroup Γ < PSL(2,Od) from being a link group is to prove the existence
of torsion in H1(Γ,Z). Indeed, this was used in [7] to rule out certain levels as allowable for a
principal congruence link complement (using computer computations of M. H. Sengun). A recent
emerging theme, both in low-dimensional topology and in automorphic forms, is that ”sequences
of congruence subgroups should develop torsion in H1”. More precisely, in the light of the results,
numerics and conjectures in [11], [12], [29], and [34], a reasonable conjecture might be the following
(see also [10, Conjecture 6.1]):

Conjecture 8.2. Let {Γn} be a sequence of congruence subgroups of PSL(2,Od) with Vol(H3/Γn)→
∞. Then:

log |Tor(H1(Γn,Z))|
[PSL(2,Od) : Γn]

→ 1

6π
Vol(Qd) as n→∞.

A positive answer to Conjecture 8.2 would of course establish the finiteness stated in Questions 1.1
and 1.2.
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