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1. Introduction

Let M be a closed, orientable Riemannian manifold of negative curvature. The rational
length spectrum QL(M) of M is the set of all rational multiples of lengths of closed geodesics
of M . The commensurability class of M is the set of all manifolds M ′ for which M and M ′

have a common finite unramified cover. Our main result is:

Theorem 1.1. If M is an arithmetic hyperbolic 3-manifold, then the rational length spec-
trum and the commensurability class of M determine one another.

This sharpens [10], where it was shown that the complex length spectrum of M determines
its commensurability class.

Suppose M ′ is an arithmetic hyperbolic 3-manifold which is not commensurable to M .
Theorem 1.1 implies QL(M) 6= QL(M ′), though by Example 2.1 below it is possible that
one of QL(M ′) or QL(M) contains the other. By the length formulas recalled in §2.1
and §2.2, each element of QL(M) ∪ QL(M ′) is a rational multiple of the logarithm of a
real algebraic number. As noted by Prasad and Rapinchuk in [9], the Gelfond Schneider
Theorem [1] implies that a ratio of such logarithms is transcendental if it is irrational. Thus
if ` ∈ QL(M)−QL(M ′) then `/`′ is transcendental for all non-zero `′ ∈ QL(M ′).

Recently Prasad and Rapinchuk have shown in [9] that if M is an arithmetic hyperbolic
manifold of even dimension, then QL(M) and the commensurability class of M determine
one another. In addition, they have shown that this is not always true for arithmetic hy-
perbolic 5-manifolds. However, they have announced a proof that for all locally symmetric
spaces associated to a specified absolutely simple Lie group, there are only finitely many
commensurability classes of arithmetic lattices giving rise to a given rational length spec-
trum.

It is known (see [4] pp. 415–417) that for closed hyperbolic manifolds, the spectrum of
the Laplace-Beltrami operator action on L2(M), counting multiplicities, determines the set
of lengths of closed geodesics on M (without counting multiplicities). Hence Theorem 1.1
implies:
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Corollary 1.1. The spectrum of the Laplacian of an arithmetic hyperbolic 3-manifold M
determines the commensurability class of M .

This result was claimed but not proved in [10] where the corresponding result was proved
for arithmetic hyperbolic surfaces. There have been many constructions over the years of
manifolds with the same Laplace-Beltrami spectrum which are not isometric; see [7], [12],
[13], [5], [11] and [3]. Apart from [5] the methods of these papers all provide commensurable
manifolds.

We now describe the organization of this paper. Some preliminary results concerning
arithmetic Kleinian groups are recalled in §2. Suppose that Γ ⊂ PSL2(C) is a torsion-free
arithmetic Kleinian group associated to an arithmetic hyperbolic three-manifold M . The
invariant trace field of Γ is the number field kΓ generated over Q by squares of traces of
pre-images of elements of Γ in SL2(C). It is clear that the commensurability class of M
determines QL(M). The first step in proving the converse is to show in Theorem 6.1(a)
that kΓ is determined by QL(M). We then determine the commensurability class of M
from QL(M) following ideas similar to those in [10] (see Theorem 6.1(b)).

The main technical work in the proof of Theorem 1.1 is number theoretic. We give in §3
- §5 a detailed analysis of the Galois theory of number fields k having one complex place
and of the quadratic extensions of k which embed in a fixed quaternion division algebra
over k. One by-product is the following result:

Theorem 1.2. Suppose that k and k′ are number fields having exactly one complex place
and the same Galois closure over Q. Then after replacing k′ by an isomorphic field, either
k = k′, or k and k′ are quadratic non-isomorphic extensions of a common totally real
subfield k+. In the latter case, the zeta functions ζk(s) and ζk′(s) are not equal.

Since number fields with the same zeta function have the same Galois closure over Q,
this implies:

Corollary 1.2. If k is a number field having one exactly one complex place, then k is
determined up to isomorphism by its zeta function.

This Corollary contrasts with the fact that that there are many examples of number fields
which are not determined up to isomorphism by their zeta functions (see [8] and [2]).

2. Preliminaries

In this section we recall some facts about arithmetic Kleinian groups Γ ⊂ PSL2(C); see [6]
for details.

2.1. Length spectra and eigenvalues

Let Γ be a torsion free discrete finite covolume Kleinian group, so that M = H3/Γ is a
hyperbolic 3-manifold. For γ ∈ Γ , let λ be an eigenvalue of a pre-image of γ in SL2(C)
for which |λ| > 1. Then λ is well-defined up to multiplication by ±1, and we will refer to
λ = λ(γ) as an eigenvalue of γ. The axis of γ in H3 projects to a closed geodesic c(γ) in M
which depends only on the conjugacy class of γ in Γ . This defines a bijection between the
conjugacy classes of hyperbolic elements of Γ and the set of closed geodesics of H3/Γ . The
length of c(γ) is l(γ) = 2 ln |λ| = ln |λλ| where λλ is algebraic over Q.
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2.2. Arithmetic Kleinian groups

Let k be a number field with one complex place, and fix a non-real embedding ρk : k → C.
Let B/k be a quaternion algebra which is ramified at all real places of k, and let ρB : B →
Mat2(C) be an embedding extending the embedding ρk. Let Ok be the integers of k, and
let O be an Ok-order of B. Define O1 to be the multiplicative group of elements of O of
reduced norm 1 to k. Then ρB(O1) is a subgroup of SL(2, C) whose projection ρB(O1) to
PSL(2, C) is discrete and of finite covolume. A Kleinian group Γ is called arithmetic if it
is commensurable with a group of the form ρB(O1) for some k, B, ρB and O of the above
kind. If Γ is a subgroup of some ρB(O1), then Γ is called derived from a quaternion algebra.
It can be shown (see [6, Theorem 8.3.1 and Cor. 8.3.6]) that a Kleinian group Γ of finite
covolume is arithmetic if and only if the group Γ (2) generated by the squares of elements
of Γ is derived from a quaternion algebra, and in this case

k = Q({tr(γ2) : γ ∈ Γ}) = Q({tr(η) : η ∈ ρB(O1)}). (2.1)

The orbifold M = H3/Γ is a manifold if and only if Γ has no elliptic elements, and this
orbifold is compact if and only if B is a division algebra. Our analysis of the commensura-
bility class of M hinges on the following fact (c.f. [6, Thm. 8.4.1]).

Theorem 2.1. The commensurability class of M determines, and is determined by, the
isomorphism class of B as a Q-algebra.

2.3. Invariant trace fields and quaternion division algebras

In this section we will suppose that k and B satisfy the conditions in §2.2 and that B is a
division algebra. We fix an embedding of B into Mat2(C), which fixes an embedding of k
into C. The following facts are proved in [6, Chapter 12].

Theorem 2.2. Suppose that Γ is derived from B and that γ is a hyperbolic element of Γ
with eigenvalue λ = λ(γ).

i. The field k(λ) generated by λ over k is a quadratic extension field of k which embeds
into B. If λ is real, then λ has degree 2 over the field k ∩ R.

ii. Let L be a quadratic extension of k. Then L embeds in B/k if and only if L = k(λ(γ′))
for some hyperbolic γ′ ∈ Γ . This will be true if and only if no place of k which splits in
L is ramified in B.

iii. Let B1 and B2 be quaternion algebras over number fields k1 and k2. A field isomorphism
τ : k1 → k2 extends to an isomorphism B1 → B2 of Q-algebras if and only if τ(R1) = R2

when Ri is the set of places of Bi which ramify over ki.
iv. Let η : k(λ) → C be an embedding. Then η(k) ⊂ R if and only if |η(λ)| = 1, and

{λ, 1/λ, λ, 1/λ} is the set of conjugates of λ off the unit circle.

Lemma 2.1. Let Γ be as in Theorem 2.2. If λ is not real then k = Q(λ + 1/λ) and
[Q(λ) : k] = 2. If λ is real then k+ = Q(λ + 1/λ) is the maximal totally real subfield of k,
[k : k+] = 2 and Q(λ) is a degree 2 extension of k+.

Proof. Since Γ is derived from a quaternion algebra, tr(γ) = λ+1/λ ∈ k by (2.1). Suppose
that Q(λ+1/λ) is a proper subfield of k. Since k has one complex place, all proper subfields
of k must be totally real, so λ + 1/λ is totally real. Because γ is hyperbolic, |λ| 6= 1, so
λ+1/λ ∈ R implies λ ∈ R. Hence if λ is not real then k = Q(λ+1/λ), and then [Q(λ) : k] = 2
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by Theorem 2.2(i). For the rest of the proof we suppose that λ ∈ R. Then F = Q(λ + 1/λ)
is a proper subfield of k, so λ+1/λ is totally real. Suppose that [k : F ] 6= 2. Since k has just
two non-real embeddings, the embedding F ⊂ R determined by the non-real embedding
k ⊂ C we have fixed can be extended to an embedding η : k(λ) ↪→ C such that η(k) ⊂ R.
Theorem 2.2(iv) now implies implies 2 < |λ + 1/λ| = |η(λ + 1/λ)| = |η(λ) + η(λ)−1| ≤ 2 so
the contradiction shows [k : F ] = 2. The last sentence of the lemma now follows from this,
Theorem 2.2(i) and the fact that k is not totally real.

We finish this section by showing how Theorem 1.1 can be used to provide proper
inclusion of rational length sets.

Example 2.1. Let B and k be as in §2.2, and let B′ be a quaternion algebra over k which
is not isomorphic to B but which ramifies over every place of k where B ramifies. Let
M1 (resp. M2) be the manifold defined by a Kleinian group Γ1 (resp. Γ2) without elliptic
elements which is derived from B (resp. B′). Then by Theorem 2.1, M1 and M2 are not
commensurable. By Theorem 2.2, if γ is a hyperbolic element of Γ2 then L = k(λ(γ))
embeds into B over k, where λ(γ) is a unit of OL having norm 1 to k. Since OL embeds into
some maximal order O of B, we conclude that there is a hyperbolic element γ′ ∈ ρB(O1)
such that λ(γ) = λ(γ′). A positive integral power of γ′ lies in a conjugate of Γ1, so we
conclude from the length formulas of §2.1 that QL(M2) ⊂ QL(M1). Note that Theorem
1.1 will imply that because M1 and M2 are not commensurable, QL(M1) must properly
contain QL(M2).

3. Number theoretic results

Let k be a number field, which at the outset we do not assume has one complex place.
We will regard k as a subfield of C via a fixed non-real embedding ρk : k → C. Let kcl

be the Galois closure of k over Q in C. Define G = Gal(kcl/Q). Let n = [k : Q], and let
Σ = {σ1, . . . , σn} be the embeddings of k into C. Then σi(k) ⊂ kcl for all i. We fix a left
action of G on Σ by letting σ ∈ G send σi ∈ Σ to σ ◦σi. This fixes an embedding of G into
the symmetric group Sn = Perm(Σ). Let c ∈ G be the restriction of complex conjugation
on C to kcl. Let C be the conjugacy class of c in G.

3.1. Counting archimedean places

Theorem 3.1. Suppose that H is a subgroup of G. Let k′ = (kcl)H , and define n′ = [k′ :
Q] = [G : H]. The numbers r1(k′) and r2(k′) of real and complex places of k′ are given by

r1(k′) =
#(C ∩H)

#C
· n′ and r2(k′) = n′

(
1− #(C ∩H)

#C

)
/2. (3.1)

Proof. There is a bijection between the set G/H of left cosets gH of H in G and the
emdeddings of γ : k′ → C of k′ into C which sends gH to the restriction of g to k′. An
embedding γ is real if and only if it is fixed by complex conjugation. This is equivalent to
cgH = gH, which is the same as g−1cg ∈ H. Let ZG(c) be the centralizer of c in G. The
map G → C which sends g ∈ G to g−1cg is surjective and defines a bijection between the
right cosets ZG(c)\G and C. This gives

#H · r1(k′) = #{g ∈ G : g−1cg ∈ H} = #(C ∩H) ·#ZG(c) =
#(C ∩H) ·#G

#C
.
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The equalities (3.1) now follow from this and [G : H] = n′ = r1(k′) + 2r2(k′).

Corollary 3.1. One has r2(k′) = 1 if and only if

#C −#(C ∩H) =
2#C
n′

. (3.2)

3.2. Fields with one complex place and the same Galois closure

In this section we will make the following hypothesis.

Hypothesis 3.1 The fields k and k′ = (kcl)H have exactly one complex place, and the
same Galois closure kcl over Q. After replacing k by k′, if necessary, we can suppose
n′ = [k′ : Q] = [G : H] ≥ n = [k : Q].

We may order the set Σ = {σ1, . . . , σn} of complex embeddings of k in such a way that
σ1 is not real, σ2 = σ1 = c ◦ σ1 is the complex conjugate of σ1, and σ3, . . . , σn are real. Let
G(1) be the stabilizer of σ1 under the action of G = Gal(kcl/Q) on Σ. We may identify k

with (kcl)G(1) ⊂ C via σ1 : k → C.

Definition 3.1. Identifying the element σi of Σ with the integer i fixes an identification of
Sn = Perm(Σ) with the permutations of {1, . . . , n}. This identifies the complex conjugation
c ∈ G with the transposition (1, 2). The conjugacy class C is thus a set of transpositions in
Sn. For all subgroups Γ of G, define the conjugation graph C(Γ ) of Γ to be the union over
all transpositions (i, j) ∈ C ∩ Γ of the undirected graph which has vertices i and j and an
edge between these vertices.

Proposition 3.1. For all subgroups Γ of G, the conjugation graph C(Γ ) is a finite (possibly
empty) disjoint union of complete graphs. If Γ acts transitively on {1, . . . , n} there are two
possibilities:

i. C(Γ ) is empty, or
ii. There is a divisor `(Γ ) > 1 of n such that C(Γ ) is the disjoint union of n/`(Γ ) complete

graphs, each of which have `(Γ ) vertices.

Proof. For the first statement, it is enough to show that if T is a (non-empty) connected
component of C(Γ ), then T must be a complete graph. Let {t1, . . . , tm} be the vertices in T .
Then m ≥ 2 by the construction of C(Γ ). Since T is connected, we can order the ti so that
for all i ≥ 2, there is an integer j(i) such that 1 ≤ j(i) < i and (ti, tj(i)) is a transposition in
C ∩Γ . Then the transpositions {(ti, tj(i))}m

i=1 generate Perm(t1, . . . , tm), so T is a complete
graph. The fact that (i) or (ii) of the Proposition hold if Γ acts transitively on {1, . . . , n}
is clear from the fact that Γ then acts transitively on the connected components of C(Γ ).

Corollary 3.2. Since Γ = G acts transitively on {1, . . . , n}, and C(G) contains c = (1, 2),
we can define ` ≥ 2 to be the divisor `(G) of n. The number of elements of C is (n/`)`(`− 1)/2
= n(` − 1)/2. The normal subgroup N generated by the set C of all complex conjugations
in G is isomorphic to the direct product over the connected components of C(G) of the
symmetric groups on the vertices in each component. Thus N ∼= (S`)n/`.

Proposition 3.2. Let H be a subgroup of G as in Hypothesis 3.1, and let ` = `(G) be as
in Corollary 3.2. Then n = n′ and there are the following possibilities for the conjugation
graph C(H):
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i. If ` > 2, then C(H) is the disjoint union of (n/`) − 1 complete graphs on ` vertices
together with a complete graph on `−1 vertices. There is a unique integer j in the range
1 ≤ j ≤ n such that j is not a vertex of C(H), and the edges of C(H) are exactly the
edges of C(G) which do not have j as a vertex.

ii. If ` = 2, then C(H) is the union of (n/`) − 1 complete graphs on ` = 2 vertices. There
are exactly two distinct integers j in the range 1 ≤ j ≤ n which are not vertices of C(H).

Proof. Since n′ ≥ n in Hypothesis 3.1, corollaries 3.1 and 3.2 show

#C −#(C ∩H) =
2#C
n′

= (`− 1)
n

n′
≤ (`− 1). (3.3)

Because ` ≥ 2, we conclude that #C−#(C∩H) > 0. Hence by Proposition 3.1, C(H) 6= C(G)
is a union of complete subgraphs of C(G) which contains no isolated points. By (3.3) there
are at most `−1 edges of C(G) not in C(H), where C(G) is a disjoint union of n/` complete
graphs on ` vertices. If some component T of C(G) contains two components T1 and T2 of
C(H), we can order the Ti so that #V1 ≤ `/2 and #(V − V1) ≥ #V2 ≥ 2 when V (resp. Vi)
is the set of vertices of T (resp. Ti) . This leads to at least 2 · `/2 = ` edges of C(G) not in
C(H), contradicting (3.3). Hence the intersection of C(H) with each connected component
of C(G) is a complete graph, so there must be a vertex j of C(G) which is not a vertex of
C(H). There are ` − 1 edges of C(G) having this j as a vertex, and none of these are in
C(H). Hence by (3.3), these are exactly the edges of C(G) not in C(H), and this leads to
(i) and (ii).

Corollary 3.3. Suppose that ` > 2 in Proposition 3.2, and let j be the integer specified in
part (i) of this Proposition. Then H equals the subgroup G(j) of G which stabilizes j, and
k′ is a conjugate field to k. In particular, k and k′ are isomorphic as fields. Finally, if k+

is the maximal totally real subfield of k, then [k : k+] > 2.

Proof. The action of H on C(G) sends C(H) to itself, so this action must fix the unique
vertex j not in C(H). Hence H ⊂ G(j), so H = G(j) because n′ = [G : H] = n = [G : G(j)].
Since G acts transitively on {1, . . . , n}, G(j) = H is conjugate to G(1), so k and k′ are
isomorphic. If [k : k+] = 2, then N ∩G(1) must have index two in N when N is the normal
subgroup of G generated by all complex conjugations in G. We see from Corollary 3.2 that N
contains the symmetric group on the set of ` vertices which form the connected component
of C(G) which contains the vertex 1 fixed by G(1). Thus [N : N∩G(1)] ≥ [S` : S`−1] = ` > 2
so [k : k+] > 2.

For the rest of this section we suppose ` = 2 in Proposition 3.2. We label the real
embeddings {σ3, . . . , σn} of k into R in such a way that the conjugacy class C of complex
conjugations in G is the set of n/2 commuting transpositions {(1, 2), (3, 4), (5, 6), . . . , (n−
1, n)}. The group N =

∏
c′∈C Z/2 ∼= (Z/2)n/2 generated by the elements of C is normal in

G, and G = G/N acts on N via the permutation action of G on C. Let π : G → G = G/N
be the natural quotient homomorphism.

Proposition 3.3. When ` = 2, there is a unique homomorphism s : G → G which is a
section to π such that s(g) permutes the set {1, 3, . . . , n− 1} of odd integers in {1, . . . , n}.
This makes G the semi-direct product of N and G. The conjugation action of G on C is
faithful and transitive.

Proof. Since G permutes the elements of C = {(1, 2), . . . , (n−1, n)}, there is for each g ∈ G
a unique n ∈ N such that ng permutes the elements of {1, 3, . . . , n − 1}. The set map



Geodesics and commensurability classes of arithmetic hyperbolic 3-manifolds 7

s : G → G defined by s(Ng) = ng is the unique section of π for which s(Ng) permutes
{1, 3, . . . , n− 1} for all g. The uniqueness of s implies s is a homomorphism. The action of
s(G) on {1, 3, . . . , n− 1} is faithful, and the action of G on {1, 2, . . . , n} is transitive, so it
follows that the action of G on C is faithful and transitive.

Proposition 3.4. Suppose that ` = 2, and that H is not conjugate to G(1) in G. After
replacing H by a conjugate by an element of G, which does not change the isomorphism
class of k′ = (kcl)H , we can assume that the two vertices which do not appear in C(H) are
1 and 2. Let G(1) be the subgroup of G which fixes the transposition c = (1, 2) in C, and let
G̃(1) = π−1(G(1)).

a. The group G̃(1) is the direct sum of G(1) and the cyclic group 〈c〉 of order 2.
b. One has s(G(1)) ⊂ G(1), and the group G(1) is the semi-direct product N0.s(G(1)).
c. Let ξ : G̃(1) → G̃(1)/G(1) = Z/2 be the surjection resulting from (a). There is a unique

character χ : G̃(1) → Z/2 of order two inflated from a character of G(1) for which H

the kernel of the character ξ + χ : G̃(1) → Z/2 defined by (ξ + χ)(g) = ξ(g) + χ(g).
d. Conversely, if χ is the inflation to G̃(1) of any order two character of G(1), and we

define H to be the kernel of the sum character ξ +χ : G̃(1) → Z/2, then k′ = (kcl)H has
exactly one complex place and Galois closure kcl over Q, and k′ is not isomorphic to k.

Proof. Any element g ∈ G̃(1) fixes c = (1, 2), so g permutes {1, 2} and commutes with
c. This leads to part (a). Since s(G(1)) sends odd integers to odd integers and permutes
{1, 2} it must lie in G(1). We have H ∩N = N0 = G(1) ∩N from Proposition 3.2(ii). The
sequence

1−→G(1) ∩N−→G(1) π−→G(1)−→1

is exact since s(G(1)) ⊂ G(1), and this leads to part (b). Since the action of H on C
must fix the unique element c = (1, 2) of C which is not in H, we have π(H) ⊂ G(1), so
H ⊂ π−1(G(1)) = G̃(1). Since [G : H] = [G : G(1)] and [G̃(1) : G(1)] = 2, H must be an
index two subgroup of

G̃(1) = 〈c〉 ×G(1) = 〈c〉 × (N0.s(G(1))).

Since H ∩ N = G(1) ∩ N = N0 has index 2 in N , and c 6∈ H, this leads to part (c).
Finally, suppose we construct H and k′ as in part (d). Then n′ = [G : H] = [k′ : Q] equals
n = [G : G(1)] = [k : Q]. We have C ∩ H = {(3, 4), . . . , (n − 1, n)} by the definition of H

as the kernel of ξ + χ. So k′ = (kcl)H has exactly one complex place by Theorem 3.1. If
k′ were isomorphic to k, so that H is conjugate to G(1), then H = G(j) with j ∈ {1, 2}
in view of C ∩ H. Let σ be an element of s(G(1)) ⊂ G(1) such that χ(σ) 6= 0 in Z/2.
Then ξ(σ) = 0 6= ξ(c) and σ fixes both 1 and 2 since it acts both on {1, 3, . . . , n − 1}
and {1, 2}. Hence ξ + χ is non-trivial on σ ∈ G(1) and trivial on cσ 6∈ G(2). This shows
H = Ker(ξ + χ) is not G(1) or G(2) so k′ and k are not isomorphic. To show (k′)cl = kcl
it will suffice to show that H contains no non-trivial normal subgroup J of G. The group
π(H) = π(G(1)) = G(1) contains no non-trivial normal subgroup of π(G) = G since by
Proposition 3.3, G is a transitive subgroup of Perm(C), and G(1) is the subgroup of G which
stabilizes c ∈ Perm(C). It follows that π(J) must be trivial, so J ⊂ N = Ker(π). However,
H ∩N = G(1) ∩N = N0, so J would be a non-trivial normal subgroup of G contained in
G(1). There is no such subgroup because G acts faithfully and transitively on {1, . . . , n}.
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Corollary 3.4. In all cases of Proposition 3.3, the fields k = (kcl)G(1) and k′ = (kcl)H are
quadratic extensions of the totally real field k+ = (kcl)G̃(1). The Galois closure of k+ over
Q is (kcl)N . The field k+ (and hence (k+)cl) is determined up to isomorphism by (k+)cl.

Proof. The field k+ is totally real because G̃(1) contains C. We have [k : k+] = [G̃(1) :
G(1)] = 2 = [G̃(1) : H] = [k′ : k+]. The group G̃(1) contains the normal subgroup N of G,
while G̃(1)/N = G(1) contains no normal subgroup of G = G/N by the argument at the
end of the proof of Proposition 3.3. This means that N is the maximal normal subgroup
of G contained in G̃(1), so k+ has Galois closure (kcl)N over Q. We have Gal((k+)cl/Q) =
G/N = G, and both G(1) and H have the same image G(1) in G. Thus k+ = ((k+)cl)G(1)

is determined up to isomorphism by (k+)cl.

In view of Corollaries 3.3 and 3.4, the following result completes the proof of Theorem
1.2.

Proposition 3.5. Suppose that H 6= G(1) in Proposition 3.3. Then the zeta functions of
k = (kcl)G(1) and k′ = (kcl)H are not equal.

Proof. By Proposition 3.4(b,c) there is a γ ∈ s(G(1)) ⊂ G(1) which is not in H. It will be
enough to show that if B(γ) is the conjugacy class of γ in G, then

#(B(γ) ∩H) < #(B(γ) ∩G(1)). (3.4)

Define B(π(γ)) to be the conjugacy class of π(γ) in G = G/N . Then π gives a surjection
πB : B(γ) → B(π(γ)). We claim that

πB(B(γ) ∩H) ⊂ B(π(γ)) ∩G(1) = πB(B(γ) ∩G(1)). (3.5)

The first containment follows from H ⊂ G̃(1) and G̃(1) = π−1(G(1)), and the non-trivial
part of the second equality is the assertion that B(π(γ))∩G(1) ⊂ π(B(γ)∩G(1)). Suppose
that ι ∈ G and that ιπ(γ)ι−1 ∈ B(π(γ)) ∩ G(1). Applying the section homomorphism
s : G → G and using the fact that γ = s(π(γ)) because γ ∈ s(G(1)), we find ιγι−1 ∈
s(G(1)) ⊂ G(1) when ι = s(ι). Thus ιγι−1 ∈ B(γ)∩G(1) satisfies πB(ιγι−1) = ιπ(γ)ι−1, so
(3.5) holds.

We now claim that

π−1
B (πB(B(γ) ∩G(1))) = B(γ) ∩G(1) (3.6)

where as before πB : B(γ) → B(π(γ)) is the map induced by π : G → G. One containment
is obvious. Suppose now that zγz−1 is an element of π−1

B (πB(B(γ)∩G(1))) for some z ∈ G.
Since G is the semi-direct product N.s(G), we can write z = n · s(g) for some g ∈ G. Then
s(g)γs(g)−1 ∈ s(G) and

π(s(g)γs(g)−1) ∈ πB(B(γ) ∩G(1)) ⊂ π(G(1)) = G(1).

Hence γ′ = s(g)γs(g)−1 ∈ s(G(1)) ⊂ G(1) relative to the semi-direct product description
G = N.s(G). Now

zγz−1 = nγ′n−1 = (nγ′n−1γ′−1)γ′ = n(n−1)γ′
γ′ (3.7)
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where (n−1)γ′
is the image of n−1 ∈ N under the conjugation action of γ′ ∈ G(1). Recall

that
N =

∏
c′∈C

(Z/2) (3.8)

and that the action of G on N factors through G = G/N and is via the permutation action
of G on C. The elements of G(1) fix the element c of C. So we conclude that for all n ∈ N ,
the c component of n(n−1)γ′

relative to the description of N in (3.8) is 0. Thus n(n−1)γ′

lies in the subgroup N0 ⊂ H ∩ G(1). Since γ′ ∈ s(G(1)) ⊂ G(1), we find from (3.7) that
zγz−1 = nγ′n−1 ∈ G(1), and clearly zγz−1 ∈ B(γ). This completes the proof of (3.6).

In view of (3.5) and (3.6), we have

B(γ) ∩H ⊂
∐

τ∈πB(B(γ)∩G(1))

π−1
B (τ) = B(γ) ∩G(1). (3.9)

where the coproduct just means the disjoint union of sets. Now note that when

τ = πB(γ) ∈ πB(B(γ) ∩G(1))

we have γ ∈ π−1
B (τ), but γ 6∈ H by our choice of γ. Thus #(B(γ) ∩H) < #(B(γ) ∩G(1))

which completes the proof of Proposition 3.5.

Remark 3.1. The smallest possible degree over Q of non-isomorphic fields k and k′ as in
Theorem 1.2 is 6, and it is not hard to check that all minimal degree examples can be
constructed in the following way. Let k+ be a totally real non-Galois cubic extension of Q.
The Galois closure (k+)cl is then a totally real S3 extension of Q, so it contains a unique real
quadratic field Q(

√
d), where d > 0 is a square free integer. Suppose that α ∈ k+ is positive

at two of the real places of k+ and negative at the other real place. Then k and k′ can
be taken to be isomorphic to k+(

√
α) and k+(

√
d · α), respectively. A numerical example

is given by letting α be the unique negative real root of f(x) = x3 − 4x + 1, k+ = Q(α),
k = k+(

√
α) = Q(

√
α) and k′ = k+(

√
37 · α) = Q(

√
37 · α).

4. Galois closures of fields generated by eigenvalues and logarithms of lengths.

Throughout this section we assume that Γ is an arithmetic Kleinian group derived from
a quaternion algebra B/k. We view k as a subfield of C via a fixed a non-real embedding
ρk : k → C. Let γ ∈ Γ be a hyperbolic element with eigenvalue λ = λ(γ), so |λ| > 1. We
assume the notations of §3 concerning k. Let k+ be the maximal totally real subfield of k.

Proposition 4.1. If λ is real, then Q(λ) = Q(λλ) = Q(λ2), so Q(λ)cl = Q(λλ)cl.

Proof. Since γ2 has eigenvalue λ2, we conclude from Lemma 2.1 that k+ ⊂ Q(λ2) ⊂ Q(λ)
and that each of Q(λ2) and Q(λ) have degree 2 over k+. Hence Q(λ2) = Q(λ).

Lemma 4.1. Suppose that λ is not real. Then [Q(λ, λ) : Q(λλ)] = 2 and every σ ∈
Gal(Q(λ)cl/Q(λλ)) either fixes or interchanges λ and λ.

Proof. Since λ is not real, complex conjugation takes λ to λ 6= λ and fixes Q(λλ). The
Lemma now follows from the fact shown in Theorem 2.2(iv) that λ and λ have larger
complex absolute value than any of the other conjugates of λ.
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Lemma 4.2. Suppose that ` = 2 in Corollary 3.2 and that λ is not real. Then k = Q(λ +
λ−1) is a degree two extension of the totally real field k+. There are two possibilities:

a. The field Q(λ) = Q(λ) is quadratic over k and Galois of degree four over k+.
b. The extensions Q(λ) and Q(λ) are distinct quadratic extensions of k. The extension

Q(λ, λ) is a dihedral extension of degree 8 of k+. The field Q(λλ) is a non-Galois degree
four extension of k+ inside Q(λ, λ), and Q(λλ) ∩ k = k+.

Proof. We know from Lemma 2.1 that k = Q(λ+λ−1), so λ+λ−1 is not real. By Corollary
3.4, k is stable under complex conjugation, and k+ = k ∩ R is the maximal totally real
subfield of k, with [k : k+] = 2. By Theorem 2.2(i), [Q(λ) : k] = [Q(λ) : Q(λ + λ−1)] = 2.

If Q(λ) = Q(λ), complex conjugation defines an automorphism of Q(λ) over k+ which
gives a non-trivial automorphism of k. Then [Q(λ) : k] = [k : k+] = 2 implies Q(λ)/k+ is
Galois of degree 4.

Now suppose Q(λ) 6= Q(λ). Then Q(λ)/k+ is a quartic extension containing the quadratic
extension k/k+. Complex conjugation sends k to k, fixes k+ and carries Q(λ) to Q(λ). This
implies Q(λ, λ) is a dihedral extension of k+ of degree 8. By Lemma 4.1, [Q(λ, λ) : Q(λλ)] =
2. The rest of part (b) follows from this and the fact that Q(λλ) = Q(λ) ∩ R ⊃ k+ is fixed
by complex conjugation while k is not.

Proposition 4.2. Suppose that λ is not real, and that either ` > 2 or that ` = 2 and
that option (b) of Lemma 4.2 holds. Then the Galois closure Q(λ)cl of Q(λ) over Q equals
Q(λλ)cl.

Proof. If ` = 2, Lemma 4.2(b) implies Q(λλ) is a non-Galois quartic extension of k+ inside
the dihedral degree 8 extension Q(λ, λ) of k+. Hence the Galois closure of Q(λλ) over k+

is Q(λ, λ), and this implies that Q(λλ)cl = Q(λ)cl.
The remaining case to consider is when λ is complex and ` > 2. Then Q(λ) is a quadratic

extension of k = Q(λ + λ−1) by Lemma 2.1. The inclusion kcl ⊂ Q(λ)cl gives a surjection
q : G = Gal(Q(λ)cl/Q) → Gal(kcl/Q) = G. Define H = Gal(Q(λ)cl/Q(λλ)) ⊂ G. It will
suffice to show that the intersection J of all the conjugates of H in G equals the trivial
subgroup {e}.

We know by Lemma 4.1 that every γ̃ ∈ H either fixes each of λ and λ or interchanges
them. If all γ̃ ∈ J fix λ, then since J is normal in G we will see that J fixes all of Q(λ)cl,
so J = {e} and we are done. We may thus suppose that there is an element γ̃ ∈ J for
which γ̃(λ) = λ and γ̃(λ) = λ. Then γ̃(λ + λ−1) = λ + λ

−1. Since k = Q(λ + λ−1), we
conclude that γ = q(γ̃) ∈ G satisfies γσ1 = σ2, where σ1 and σ2 are as before the non-real
complex conjugate embeddings of k into C. Since ` > 2, the description of the conjugation
graph C(G) in Proposition 3.1 and Corollary 3.2 shows that there is a j 6∈ {1, 2} such that
τσ1 = σ1 and τσ2 = σj for some τ ∈ G. Then τγτ−1σ1 = σj .

Let τ̃ ∈ G = Gal(Q(λ)cl/Q) be any element for which q(τ̃) = τ . By the definition of J
as the intersection of all the conjugates of H in G, we know that γ̃ ∈ H and τ̃ γ̃τ̃−1 ∈ H.
We have (τ̃ γ̃τ̃−1)(λ + 1/λ) = σj(λ + 1/λ). On the other hand, τ̃ γ̃τ̃−1 ∈ H and Lemma 4.1
show (τ̃ γ̃τ̃−1)(λ+1/λ) ∈ {λ+1/λ, λ+1/λ}. This would give σj(λ+1/λ) = σi(λ+1/λ) for
some i ∈ {1, 2}, which is impossible since k = Q(λ+1/λ) and j 6∈ {1, 2}. The contradiction
completes the proof of Proposition 4.2.
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5. Cebotarev Results

We will assume the notations of the previous two sections. Let b : Γ → Z+ be a function
on hyperbolic elements of Γ and let lb(γ) = (λ(γ)λ(γ))b(γ) for γ ∈ Γ .

5.1. The intersection of Galois closures

Lemma 5.1. The intersection ∩γ∈Γ Q(lb(γ))cl is equal to kcl unless k is a quadratic exten-
sion of a totally real field k+, and in the latter case this intersection equals (k+)cl. These
two alternatives correspond to ` > 2 and ` = 2 in the notation of Corollary 3.2.

Proof. Suppose first that ` > 2. Then the maximal totally real subfield k+ of k has [k :
k+] > 2 by Corollary 3.3. On applying Lemma 2.1 to γb(γ) we see that λ(γ)b(γ) is not real.
Lemma 2.1 and Proposition 4.2 now show

Q(λ(γ)b(γ)) = k(λ(γ)) and Q(lb(γ))cl = Q(λ(γ)b(λ))cl ⊃ kcl. (5.1)

Theorem 2.2(i) also shows that Q(λ(γ)b(λ)) is a quadratic extension of k, so Q(λ(γ)b(λ))cl is
an elementary abelian two-extension of kcl. Hence to show that ∩γ∈Γ Q(lb(γ))cl is equal to
kcl, it will be enough to show that for each quadratic extension L of kcl there is a hyperbolic
element γ ∈ Γ such that Q(λ(γ)b(λ))cl ∩ L = kcl.

By the Cebotarev density Theorem, we can find a rational prime p which splits com-
pletely in kcl, does not lie under a prime of k which ramifies in B, and for which some
prime P over p in kcl is inert to L. By the approximation theorem for absolute values
of k, we can construct a quadratic extension F of k which is ramified at each place of
k which ramifies in B, and such that each prime over p in k splits in F . By Theorem
2.2(ii) there is a hyperbolic element γ ∈ Γ such that k(λ(γ)) is isomorphic to F . Then
Q(λ(γ)b) = k(λ(γ)b) = k(λ(γ)) = F for all positive integers b by (5.1). Since p splits com-
pletely in F by construction, we conclude that p splits in Q(λ(γ)b(λ))cl = (F )cl. Since p

does not split in the quadratic extension L of kcl, this forces Q(λ(γ)b(λ))cl ∩ L = kcl as
required.

Suppose now that ` = 2. Then [k : k+] = 2 by Corollary 3.4, and Q(lb(γ)) ⊃ k+ by
Lemma 4.2, so

(k+)cl ⊂ ∩γ∈Γ Q(lb(γ))cl. (5.2)

Since kcl/(k+)cl is a two-extension, the right side of (5.2) is also a two-extension of (k+)cl.
Hence it will suffice to show for each quadratic extension L of (k+)cl it is possible to find
a hyperbolic γ ∈ Γ such that such that Q(lb(γ))cl ∩ L = (k+)cl. This can be done by a
Cebotarev argument similar to the one for ` > 2.

5.2. The case ` = 2.

Throughout this section we will assume all the notation of the previous section and that
` = 2. Thus k is a quadratic extension of a totally real field k+.
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Lemma 5.2. There are infinitely many γ ∈ Γ for which λ = λ(γ)b(γ) has the following
properties.
a. λ satisfies the conditions in option (b) of Lemma 4.2.
b. All embeddings of the field k+ into Q(λλ) over Q have the same image.

Proof. By the Cebotarev density theorem, we can find infinitely many primes p of Q which
split completely in k and do not lie under any place of k ramified in B. Fix such a prime,
and let q1 and q2 be primes of Ok over a prime q+ of k+ which lies over p. We can find a
quadratic extension F/k which is ramified over each place of k which ramifies in B and such
that q1 is ramified in F , and q2 splits in F . We then have q1OF = Q2

1 and q2OF = Q2Q′
2

where Qj is a prime ideal of F . By Theorem 2.2, there is an element γ ∈ Γ such that
F = k(λ′) where λ′ = λ(γ). By Theorem 2.2(i) we have F = k(λ′b) for all integers b ≥ 1.
Thus F = k(λ) when λ = (λ′)b(γ) = λ(γ)b(γ). The extension F/k+ cannot be Galois, since
Q1 and Q2 are primes of F over the same prime q+ of k+ which have different ramification
degrees. If λ were real, then by Lemma 2.1, the extension Q(λ) would be quadratic over
k+, so k(λ) would be Galois over k+, which is not the case. Thus λ is not real, so either
option (a) or option (b) of Lemma 4.2 holds. However, option (a) is impossible, since then
k(λ) would again again be Galois over k+. So option (b) holds.

Note that by Lemma 4.2 there is an embedding s1 : k+ → Q(λλ). Suppose that there
is another embedding s2 : k+ → Q(λλ) such that s1(k+) 6= s2(k+). Regarding k+ as a
subfield of Q(λλ) via s1, the composite field L = k+s2(k+) is now a totally real non-
trivial extension of k+ inside Q(λλ). By option (b) of Lemma 4.2, L must be the fixed field
Q(λ, λ)J̃ of the order 4 subgroup J̃ generated by the conjugates of J = Gal(Q(λ, λ)/Q(λλ))
in Gal(Q(λ, λ)/k+). Let A be a prime of Q(λ, λ) lying over the prime Q2 of F . Recall that
Q2 is unramified over k+, since the prime q2 of k under Q2 is split from k to F , and q2 is
unramified over the prime q+ of k+ which is unramified over Q. However, since Q(λ, λ) is a
Galois extension of k+, A must be conjugate to a prime of Q(λ, λ) lying over the prime Q1,
which is quadratically ramified over k. So it follows that A must be quadratically ramified
over F , i.e. A2 = Q2OQ(λ,λ). By considering the ramification indices of primes lying below
A in the tower of extensions k+ ⊂ F ⊂ Q(λ, λ) it follows that the inertia group I(A) of A in
H = Gal(Q(λ, λ)/k+) equals Gal(Q(λ, λ)/F ) = Gal(Q(λ, λ)/Q(λ)). No conjugate of I(A)
lies in the group J̃ , since J̃ is generated by the conjugates of J and J is a non-central group
of order 2 in H which intersects Gal(Q(λ, λ)/k) trivially. (Note that Gal(Q(λ, λ)/k) is the
Klein four subgroup generated by the conjugates of I(A) = Gal(Q(λ, λ)/Q(λ)).) Thus q+

must ramify in the extension L = k+s2(k+) = Q(λ, λ)J̃ since no prime over q+ in L can
ramify in Q(λ, λ). However, we chose q+ to be a prime over the rational prime p which
splits completely in k+. Thus p splits completely in s2(k+) and thus also in L, which is
impossible if q+ ramifies from k+ to L. The contradiction shows that there could not have
been a second embedding s2 : k+ → Q(λλ) such that s2(k+) 6= k+.

6. Proof of Theorem 1.1

Clearly the commensurability class of M determines the rational length spectrum QL(M).
Hence Theorem 1.1 will follow immediately from the next result and Theorem 2.1.

Theorem 6.1. Suppose that M1 = H3/Γ1 and M2 = H3/Γ2 are arithmetic hyperbolic 3-
manifolds with the same rational length spectrum. Let ki (resp. Bi) be the invariant trace
field (resp. the invariant quaternion algebra) of Mi.
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a. There is an field isomorphism φ : k1 → k2.
b. The isomorphism φ in (a) can be extended to an isomorphism B1 → B2.

To begin the proof of Theorem 6.1, note that by (2.1), we can replace Γi by Γ
(2)
i so as

to be able to assume that Γi is derived from Bi. Since M1 and M2 have the same rational
length spectrum there are functions bi : Γi − {e} → Z+ for i = 1, 2 with the following
property. Suppose i = 1, 2 and that j = 3− i is the other element of {1, 2}. Then for each
γ ∈ Γi − {e}, the product bi(γ) · l(γ) lies in the set L(Mj) of lengths of closed geodesics of
Mj , where l(γ) is the length of the closed geodesic on Mi associated to γ.

Define
`bi

(γ) =
(
λ(γ)λ(γ)

)bi(γ)
= ebi(γ)l(γ)

where λ(γ) is the eigenvalue of γ. Let S(Γi, bi) = {`bi
(γ) : γ ∈ Γi − {e}}. Since bi(γ)l(γ) =

l(γ′) ∈ L(Mj) for some γ′ ∈ Γj − {e}, we conclude that

S(Γi, bi) ⊂ S(Γj , 1j) (6.1)

when 1j : Γj−{e} → Z+ is the function which takes the value 1 on all elements of Γj−{e}.

6.1. Proof of Theorem 6.1(a)

By Lemma 5.1,
∩{Q(τ)cl : τ ∈ S(Γi, bi)} = (k′i)

cl (6.2)
where k′i = ki except when ki is a quadratic extension of its maximal totally real subfield
k+

i , in which case k′i = k+
i . This result is independent of bi. So by (6.1),

(k′1)
cl = (k′2)

cl (6.3)

It was shown in Corollaries 3.3 and 3.4 that the isomorphism class of k′i can be determined
from that of (k′i)

cl. So (6.3) implies Theorem 6.1(a) if ki = k′i for i = 1, 2. We thus reduce
to the case in which [ki : k+

i ] = 2 for at least one of i = 1, 2. Then (6.3) gives [ki : k+
i ] = 2

and ` = 2 for i ∈ {1, 2}.
By Lemma 5.1,

∩{Q(τ) : τ ∈ S(Γi, bi)} = (k+
i )cl.

The containments in (6.1) now show (k1)cl = (k2)cl. By Corollary 3.4, this forces k+
1 and

k+
2 to be isomorphic.

In Lemma 5.2 we showed there is an element γ ∈ Γ1 such that λ = λ(γ)b1(γ) satisfies
all the conditions in option (b) of Lemma 4.2 and for which all embeddings of the field k+

1

into Q(λλ) over Q have the same image, where λλ = `b1(γ). Fixing one such embedding,
the field Q(`b1(γ)) is a non-Galois quartic extension of k+

1 , and the Galois closure F of
Q(`b1(γ)) over k+

1 is a dihedral extension of k+
1 of degree 8. Now Lemma 4.2 forces k1 to

be isomorphic to FD where D is the unique Klein four subgroup of Gal(F/k+
1 ) which does

not contain Gal(F/Q(`b1(γ))).
We now use the fact described above that `b1(γ) = `1(γ′) for some γ′ ∈ Γ2 (see 6.1).

Since we have shown (k1)+ is isomorphic to (k2)+, all embeddings of (k2)+ into Q(`1(γ′)) =
Q(`b1(γ)) have the same image because of condition (b) of Lemma 5.1. This image is the
same as that of (k1)+ under the embedding discussed above. Running the above arguments
through now with Γ2 replacing Γ1, we conclude that `1(γ′) = `b1(γ) implies k2 is isomorphic
to the field FD = k1.



14 T. Chinburg et al.

6.2. Proof of Theorem 6.1(b)

We adopt the notations and assumptions of §6.1. By Theorem 6.1(a) we can assume that
B1 and B2 are quaternion division algebras over the same number field k. Let Ri be the set
of places of k which ramify in Bi.

Proposition 6.1. There is an automorphism c′ : k → k such that c′(R1) = R2.

Before proving this Lemma, we note that it implies B1 and B2 are isomorphic as Q-
algebras by Theorem 2.2(iii), so this and Theorem 2.1 will show Theorem 6.1(b).

To begin the proof of Proposition 6.1, note that since the two non-real embeddings of k
into C are taken to each other by complex conjugation, we can apply complex conjugation
to the image of one of the embeddings ρBi : Bi → Mat2(C) used to define Γi to be able to
assume that the ρBi define the same embedding ρ : k → C.

Lemma 6.1. Suppose that γ1 ∈ Γ1 and γ2 ∈ Γ2 are hyperbolic elements such that the lengths
l(γ1) and l(γ2) are (non-zero) rational multiplies of one another. Define λi = λ(γi) to be the
eigenvalue associated to γi, so that |λi| > 1. Then either k(λ1) = k(λ2) or k(λ2) = k(λ1),
and if k(λ1) 6= k(λ2) then k is stable under complex conjugation.

Proof. By Theorem 2.2(i), k(λn
i ) = k(λi) is quadratic over k for all integers n ≥ 1. Since

l(γi) = ln |λiλi| and l(γ1) and l(γ2) are non-zero rational multiples of one another, we can
replace γ1 and γ2 by suitable positive powers of themselves so that the following is true.
There is a real number r > 0 such that λj = reiθj for some θj ∈ R and j = 1, 2. The
assumption that k(λ1) 6= k(λ2) implies there is an automorphism η ∈ Gal(k(λ1, λ2)/k(λ1))
such that η(λ2) = 1/λ2.

Let F be the smallest Galois extension of Q containing k and all Galois conjugates of
λ1 and λ2. Consider a lift τ to F of η. We have∣∣∣∣τ(λ2)

τ(λ1)

∣∣∣∣ = |λ1λ2| ·
∣∣∣∣λ−1

2 τ(λ2)
λ1τ(λ1)

∣∣∣∣ = r2

∣∣∣∣τ(λ2λ2)
τ(λ1λ1)

∣∣∣∣ = r2

∣∣∣∣τ(r2)
τ(r2)

∣∣∣∣ = r2.

By considering the Galois conjugates of the λj (see Theorem 2.2(iv)), this implies

|τ(λ2)| = r = 1/|τ(λ1)| and τ(λ1) ∈ {1/λ1, 1/λ1} and τ(λ2) ∈ {λ2, λ2}.

If τ(λ1) = 1/λ1 then τ(λ1) = λ1 would imply λ1 = 1/λ1 which is impossible since λ1 is not
on the unit circle. Similarly, τ(λ2) 6= λ2 because τ(λ2) = 1/λ2. Hence

τ(λ1) = 1/λ1 and τ(λ2) = λ2.

Therefore
e−2iθ2 = λ2/λ2 = τ(λ2λ2) = τ(r2) = τ(λ1λ1) = λ1/λ1 = e2iθ1

so λ2
2 = r2e−2iθ2 = r2e2iθ1 = λ2

1. Hence Theorem 2.2(i) shows the desired equality of fields
k(λ2) = k(λ2

2) = k(λ2
1) = k(λ1).

Suppose finally that k(λ1) 6= k(λ2). Then k(λ1) = k(λ2), k(λ1) = k(λ2) and neither λ1

nor λ2 can be real. By Lemma 2.1, Q(λi) = k(λi) is quadratic over k = Q(λi + 1/λi) for
i = 1, 2. If λ2 + 1/λ2 ∈ k = Q(λ2 + 1/λ2) then k is stable under complex conjugation.
Otherwise λ2 + 1/λ2 6∈ k so

Q(λ1) = k(λ1) = k(λ2) = k(λ2 + 1/λ2) = Q(λ2 + 1/λ2, λ2 + 1/λ2)
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is stable under complex conjugation. But then k(λ1) = k(λ2) and k(λ1) = Q(λ1) show

k(λ2) = k(λ1) = Q(λ1, λ1) = Q(λ1) = k(λ1)

contrary to hypothesis. This shows k must be stable under complex conjugation.

Proof of Proposition 6.1.

We regard k, B1 and B2 as subalgebras of Mat2(C) via our fixed embedding ρ : k → C
and fixed extensions of this embedding to B1 and B2. Since H3/Γ1 and H3/Γ2 are length
commensurable, for each γ1 ∈ Γ1 − {e} there is an element γ2 ∈ Γ2 − {e} for which the
conclusions of Lemma 6.1 hold, and the same is true if Γ1 and Γ2 are interchanged.

Suppose first that for all such pairs γ1 and γ2 one has k(λ1) = k(λ2) in Lemma 6.1. In
view of Theorem 2.2(ii), this implies that the quadratic field extensions of k which embed
into B1 are exactly those which embed into B2. Therefore Theorem 2.2(iii) shows B1 and
B2 are isomorphic over k, so we can let c′ be the identity isomorphism in Proposition 6.1.

For the rest of the proof we assume that there is at least one pair γ1 and γ2 as above
such that k(λ1) = k(λ2) 6= k(λ2). We can also assume R1 6= R2, since otherwise the proof
can be completed as before, with c′ the identity isomorphism. By Lemma 6.1, complex
conjugation on C induces an order two automorphism c′ : k → k. If c′(R1) = R2, then
c extends to a Q-automorphism c′ : B1 → B2 by Theorem 2.2(iii), and Proposition 6.1
follows. We therefore assume that c′(R1) 6= R2.

By exchanging B1 and B2 if necessary, we may suppose that |R2| ≥ |R1|. Since c′(R1) 6=
R2 6= R1, we may choose places P ∈ R2 − R1 and Q ∈ R2 − c′(R1). Note that then
c′(Q) 6∈ R1.

By Theorem 2.2(ii), a quadratic extension L/k embeds into B1 if and only if no place in
R1 splits in L/k. Since P and c′(Q) do not lie in R1, we may by Theorem 2.2(ii) choose a
hyperbolic element δ ∈ Γ1 with eigenvalue λ(δ) so that P and c′(Q) both split in k(λ(δ)).
Since H3/Γ1 and H3/Γ2 are length commensurable, Lemma 6.1 implies that there is a
δ′ ∈ Γ2 with eigenvalue λ(δ′) such that k(λ(δ′)) = k(λ(δ)) or k(λ(δ′)). If k(λ(δ′)) = k(λ(δ))
then P splits in k(λ(δ′)), which contradicts the fact that k(λ(δ′)) embeds into B2 over k and
P ∈ R2 ramifies in B2. Similarly, if k(λ(δ′)) = k(λ(δ)), then Q splits in k(λ(δ′)) because
c′(Q) splits in k(λ(δ)). This is also false since Q ∈ R2 ramifies in B2 and k(λ(δ′)) embeds
into B2. The contradiction completes the proof of Proposition 6.1. tu
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