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1 Introduction

This paper is based on a series of 4 lectures delivered at Groups St Andrews 2013.
The main theme of the lectures was distinguishing finitely generated residually finite
groups by their finite quotients. The purpose of this paper is to expand and develop
the lectures.

The paper is organized as follows. In §2 we collect some questions that motivated
the lectures and this article, and in §3 discuss some examples related to these ques-
tions. In §4 we recall profinite groups, profinite completions and the formulation of
the questions in the language of the profinite completion. In §5, we recall a particu-
lar case of the question of when groups have the same profinite completion, namely
Grothendieck’s question. In §6 we discuss how the methods of L?-cohomology can be
brought to bear on the questions in §2, and in §7, we give a similar discussion using
the methods of the cohomology of profinite groups. In §8 we discuss the questions
in §2 in the context of groups arising naturally in low-dimensional topology and ge-
ometry, and in §9 discuss parafree groups. Finally in §10 we collect a list of open
problems that may be of interest.
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2 The motivating questions

We begin by recalling some terminology. A group I is said to be residually finite
(resp., residually nilpotent, residually-p, residually torsion-free-nilpotent) if for each
non-trivial v € I' there exists a finite group (resp., nilpotent group, p-group, torsion-
free-nilpotent group) @ and a homomorphism ¢ : I' — @ with ¢(v) # 1.

2.1. If a finitely-generated group I' is residually finite, then one can recover any
finite portion of its Cayley graph by examining the finite quotients of the group. It
is therefore natural to wonder whether, under reasonable hypotheses, the set

C(T") ={G : G is a finite quotient of I'}

might determine I' up to isomorphism.
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Assuming that the groups considered are residually finite is a natural condition to
impose, since, first, this guarantees a rich supply of finite quotients, and secondly,
one can always form the free product I' x .S where S is a finitely generated infinite
simple group, and then, clearly C(I') = C(I'x.S). Henceforth, unless otherwise stated,
all groups considered will be residually finite.

The basic motivating question of this work is the following due to Remesselenikov:

Question 1: If F, is the free group of rank n, and ' is a finitely-generated, resid-
ually finite group, then does C(I') = C(F,) imply that I' = F,, ?

This remains open at present, although in this paper we describe progress on this
question, as well as providing structural results about such a group I' (should it
exist) as in Question 1.
Following [31], we define the genus of a finitely generated residually finite group T’
to be:
gI)={A:C(A)=C(I}.

This definition is taken, by analogy with the theory of quadratic forms over Z where
two integral quadratic forms can be locally equivalent (i.e., at all places of Q), but
not globally equivalent over Z.

Question 2:  Which finitely generated (respectively, finitely presented) groups I' have
g(Ir) ={ry?

Question 3:  Which finitely generated (respectively, finitely presented) groups I' have
G(r)| > 17

Question 4:  How large can |G(T')| be for finitely generated (resp., finitely presented)
groups?

Question 5:  What group theoretic properties are shared by (resp., are different for)
groups in the same genus?

In addition, if P is a class of groups, then we define
GI,P)={AeP:C(A)=C(I)},
and can ask the same questions upon restricting to groups in P.

2.2. Rather than restricting the class of groups in a genus, we can ask to distinguish
finitely generated groups by restricting the quotient groups considered. A particularly
interesting case of this is the following. Note first that, a group I' is residually
nilpotent if and only if (\T',, = 1, where I',,, the n-th term of the lower central series of
I', defined inductively by setting I'y = I" and defining ', 11 = ([z,y] : x € T,y € T').

Two residually nilpotent groups I' and A are said to have the same nilpotent genus
if they have the same lower central series quotients; i.e., I'/T'. = A/A, for all ¢ > 1.
Residually nilpotent groups with the same nilpotent genus as a free group are termed
parafree. In [10] Gilbert Baumslag surveyed the state of the art concerning groups of
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the same nilpotent genus with particular emphasis on the nature of parafree groups.
We will discuss this in more detail in §9 below.

3 Some examples

We begin with a series of examples where one can say something about Questions
1-4.

3.1. We first prove the following elementary result.
Proposition 3.1 Let ' be a finitely generated abelian group, then G(I') = {T'}.

Proof Suppose first that A € G(I') and A is non-abelian. We may therefore find
a commutator ¢ = [a,b] that is non-trivial. Since A is residually finite there is a
homomorphism ¢ : A — @, with @ finite and ¢(c) # 1. However, A € G(T') and so
@ is abelian. Hence ¢(c) = 1, a contradiction.

Thus A is abelian. We can assume that I' 2 Z" & T} and A = Z° & T, where T;
(i = 1,2) are finite abelian groups. It is easy to see that r = s, for if r > s say, we
can choose a large prime p such that p does not divide |71||7%|, and construct a finite
quotient (Z/pZ)" that cannot be a quotient of A.

In addition if 77 is not isomorphic to T5, then some invariant factor appears in T}
say, but not in 75. One can then construct a finite abelian group that is a quotient
of T7 (and hence I'1) but not of T's. O

Note that the proof of Proposition 3.1 also proves the following.

Proposition 3.2 Let I' be a finitely generated group, and suppose that A € G(T').
Then T2 = AP In particular by (T) = by(A).

3.2. Remarkably, moving only slightly beyond Z to groups that are virtually Z, the
situation is dramatically different. The following result is due to Baumslag [9]. We
include a sketch of the proof.

Theorem 3.3 There exists non-isomorphic meta-cyclic groups I'y and I's for which
C(I'1) = C(T'y). Indeed, both of these groups are virtually Z and defined as extensions
of a fixed finite cyclic group F by Z.

Sketch Proof What Baumslag actually proves in [9] is the following, and this is
what we sketch a proof of:

() Let F be a finite cyclic group with an automorphism of order n, where
n is different from 1, 2, 3, 4 and 6. Then there are at least two non-
isomorphic cyclic extensions of F, say I'y and T's with C(I'1) = C(T'2).

Recall that the automorphism group of a finite cyclic group of order m is an abelian
group of order ¢(m). So in (x) we could take F' to be a cyclic group of order 11,
which has an automorphism of order 5.
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Now let F' = (a) be a cyclic group of order m, and assume that it admits an
automorphism « of order n as in (x). Assume that a(a) = a”. Now some elementary
number theory (using that ¢(m) > 2 by assumption) shows that we can find an
integer ¢ such that (¢/,n) =1, and

(i) af # «, and (ii) o # a1

Now define I'y = (a,b | a™ = 1,b"1ab = a" ) to be the split extension of F induced
by a and Iy = (a,c | a™ = 1,¢ 'ac = a” ) be the split extension of F induced by o
The key claims to be established are that I'; and I'y are non-isomorphic, and that
they have the same genus.

That the groups are non-isomorphic can be checked directly as follows. If 8 : I'; —
I’y is an isomorphism, then # must map the set of elements of finite order in I'y to
those in I'y; that is to say 6 preserves F', and so induces an automorphism of F'. Thus
0(a) = a® where (s, m) = 1. Moreover since the quotients I';/F = Z for i = 1,2, it
follows that 6(b) = c‘a’ where ¢ = 1 and t is an integer. Now consider 6(a"). When
0(b) = ca® we get:

afa®) =a™ =0(a") = O(bab™ 1) = (ca')a®(ca’) ™ = of(a®),

and it follows that a = af. A similar argument holds when 6(b) = ¢ 'a to show

a~! = of, both of which are contradictions to (ii) above.

We now discuss proving that the groups are in the same genus. Setting P =1'1 X Z,
Baumslag [9] shows that P is isomorphic to 'y x Z. That I'; and I'y have the same
genus now follows from a result of Hirshon [34] (see also [9]) where it is shown that
(see Theorem 9 of [34]):

Proposition 3.4 Suppose that A and B are groups with A x Z = B X Z, then
C(A) =C(B).

3.3. The case of nilpotent groups more generally is well understood due to work of
Pickel [52]. We will not discuss this in any detail, other than to say that, in [52] it is
shown that for a finitely generated nilpotent group I', G(I") consists of a finite number
of isomorphism classes of nilpotent groups, and moreover, examples where the genus
can be made arbitrarily large are known (see for example [58] Chapter 11). Similar
results are also known for polycyclic groups (see [29] and [58]).

3.4. From the perspective of this article, more interesting examples where the genus
has cardinality greater than 1 (although still finite) are given by examples of lattices
in semi-simple Lie groups. We refer the reader to [4] and [5] for details but we will
provide a sketch of some salient points.

Let I' be a lattice in a semi-simple Lie group, for example, in what follows we
shall take I' = SL(n, Ry) where Ry denotes the ring of integers in a number field k. A
natural, obvious class of finite quotients of I', are those of the form SL(n, Ry /I) where
I C Ry is an ideal. Let m; denote the reduction homomorphism I"' — SL(n, Ry/I),
and I'(I) the kernel. Note that by Strong Approximation for SL,, (see [53] Chapter 7.4
for example) 77 is surjective for all I. A congruence subgroup of I' is any subgroup
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A < T such that I'(I) < A for some I. A group I' is said to have the Congruence
Subgroup Property (henceforth abbreviated to CSP) if every subgroup of finite index
is a congruence subgroup.

Thus, if I" has CSP, then C(I") is known precisely, and in effect, to determine C(I")
is reduced to number theory. Expanding on this, since Ry is a Dedekind domain, any
ideal I factorizes into powers of prime ideals. If I = [[P;", then it is known that
SL(n, Ri/I) = [[SL(n, Ri/P;"). Thus the finite groups that arise as quotients of
SL(n, Ry) are determined by those of the form SL(n, R;/P;"). Hence we are reduced
to understanding how a rational prime p behaves in the extension k/Q. This idea,
coupled with the work of Serre [59] which has shed considerable light on when I" has
CSP, allows construction of non-isomorphic lattices in the same genus.

Example: Let k; = Q(v/37) and ky = Q(3/48). Let I'1 = SL(n, Ry,) and 'y =
SL(n, Rg,) (n > 3). Then I'y and I'y have CSP (by [59]), are non-isomorphic (by
rigidity) and C(I'1) = C(I'2). The reason for the last statement is that the fields
k1 and ko are known to be adelically equivalent (see [36]); i.e. their Adele rings are
isomorphic. This can be reformulated as saying that if V; (i = 1,2) are the sets
of valuations associated to the prime ideals in k; and ko, then there is a bijection
¢ : Vi — Va such that for all v € V7 we have isomorphisms (k1), = (k2)g(,)- This
has, as a consequence, the desired identical splitting behavior of rational primes in
kl and kg.

3.5. Unlike in the previous subsections, there are recent examples of Bridson [14] of
finitely presented groups I' for which G(I") is infinite. This will be discussed further
in §5.1.

4 Profinite methods

An important reformulation of the discussion in §2 uses the language of profinite
groups. In particular, the language of profinite completions is a particularly conve-
nient formalism for organizing finite quotients of a discrete group. For completeness
we provide some discussion of profinite groups and profinite completions of discrete
groups. We refer the reader to [56] for a more detailed account of the topics covered
here.

4.1. A directed set is a partially ordered set I such that for every i, j € I there exists
k € I such that k > i and k > j. An inverse system is a family of sets {Xi} ey,
where [ is a directed set, and a family of maps ¢;; : X; — X, whenever i > j, such
that:

o ¢i; = idx,;

® 0ijQjk = Pi, whenever i > j > k.
Denoting this system by (X, ¢s;, ), the inverse limit of the inverse system (X;, ¢;, 1)
is the set

¢ij(x;) = x;, whenever ¢ > j},

@Xi—{(xi)enxi

el
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We record the following standard facts about the inverse limit (see [56] Chapter 1
for further details):

(i) Let (X, ¢ij,1) be an inverse system of non-empty compact, Hausdorff, totally
disconnected topological spaces (resp. topological groups) over the directed set I,
then lim X; is a non-empty, compact, Hausdorff, totally disconnected topological
space (resp. topological group).

(ii) Let (X, ¢i5,1) be an inverse system. A subset J C I is defined to be cofinal, if
for each ¢ € I, there exists j € J with j > 4. If J is cofinal we may form an inverse
system (Xj, ¢;;,J) obtained by omitting those ¢ € I\ J. The inverse limit l'ngj
can be identified with the image of LiLHXz' under the projection map [[,.; X; onto
H jeJ Xj .

el

4.2. Returning to the world of group theory, let I" be a finitely generated group (not
necessarily residually finite for this discussion), and let N denote the collection of all
finite index normal subgroups of I'. Note that A is non-empty as I € N/, and we can
make N into directed set by declaring that

For M,N € N, M < N whenever M contains N.

In this case, there are natural epimorphisms ¢nys : I'/N — I'/M, and the inverse
limit of the inverse system (I'/N,¢npr, N) is denoted T and defined to be to the
profinite completion of T'.

Note that there is a natural map ¢ : I' — T defined by

g = (gN) € ImT'/N,

and it is easy to see that ¢ is injective if and only if I' is residually finite.
An alternative, perhaps more concrete way of viewing the profinite completion
is as follows. If, for each N € N, we equip each I'/N with the discrete topology,

then [[{T'/N : N € N'} is a compact space and I' can be identified with j(I') where
j: T = J[{T/N : N € N'} is the map g — (gN).

4.3. From §4.1, Tisa compact topological group, and so a subgroup U is open if
and only if it is closed of finite index. In addition, a subgroup H < I' is closed if and
only if it is the intersection of all open subgroups of r containing it. More recently,
it is a consequence of a deep theorem of Nikolov and Segal [50] that if I' is a finitely
generated group, then every finite index subgroup of T is open. Thus a consequence
of this is the following elementary lemma (in which Hom(G, Q) denotes the set of
homomorphisms from the group G to the group @, and Epi(G, Q) denotes the set of
epimorphisms).

Lemma 4.1 Let I’ be a finitely-generated group and let v : I’ — T be the natural map
to its profinite completion. Then, for every finite group Q, the map Hom(I',Q) —
Hom(T', Q) defined by g — g o ¢ is a bijection, and this restricts to a bijection

Epi(T', @) — Epi(I', Q).

We record the following corollary for later use.
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Corollary 4.2 If T'y is finitely-generated and N fg, then
|Hom(T'1, Q)| = [Hom(T'y, Q)|

for every finite group Q.

4.4. The first Betti number of a finitely generated group is
b1(I') = dimq [(T/[I',T]) ©z Q].

Given any prime p, one can detect by (I') in the p-group quotients of I', since it is the
greatest integer b such that T surjects (Z/p*Z)® for every k € N. We exploit this
observation as follows:

Lemma 4.3 Let A and I be finitely generated groups. If A is isomorphic to a dense
subgroup of T, then by (A) > by (T).

Proof For every finite group A, each epimorphism I — A will restrict to an epimor-
phism on both I' and A (since by density A cannot be contained in a proper closed
subgroup). But the resulting map Epi(f,A) — Epi(A, A) need not be surjective, in
contrast to Lemma 4.1. Thus if I" surjects (Z/p*Z)® then so does A (but perhaps not
vice versa). O

4.5. We now discuss the profinite topology on the discrete group I', its subgroups
and the correspondence between the subgroup structure of I' and L. We begin by
recalling the profinite topology on I'. This is the topology on I' in which a base for
the open sets is the set of all cosets of normal subgroups of finite index in I'. Now
given a tower 7 of finite index normal subgroups of I':

I'>Ny >No>...> N> ...

with () Nx = 1, this can be used to define an inverse system and thereby determines
a completion of fr (in which I" will inject). Now if the inverse system determined by
T is cofinal (recall §4.1) then the natural homomorphism T — fT is an isomorphism.
That is to say T determines the full profinite topology of T

The following is important in connecting the discrete and profinite worlds (see [56]
3.2.2, where here we use [50] to replace “open” by “finite index”).

Notation Given a subset X of a profinite group G, we write X to denote the closure
of X in G.

Proposition 4.4 If T" is a finitely generated residually finite group, then there is a
one-to-one correspondence between the set X of subgroups of T' that are open in the
profinite topology on I', and the set Y of all finite index subgroups of r.

Identifying I' with its tmage in the completion, this correspondence is given by:

e ForHec X, H— H.
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o forY ey, Y —YnNT.

IfH K € X and K < H then [H : K] = [H : K|. Moreover, K < H if and only if
K<H, and H/'K = H/K.

The following corollary of this correspondence will be useful in what follows.

Corollary 4.5 Let I' be a finitely-generated group, and for each d € N, let My denote
the intersection of all normal subgroups of index at most d in I'. Then the closure
Mg of My in T is the intersection of all normal subgroups of index at most d in F
and hence (yey Ma = 1.

Proof If Ni and Ny are the kernels of epimorphisms from I' to finite groups @1
and ()2, then Ny N Ny is the kernel of the extension of I' — Q1 X @2 to f, while
N x Ny is the kernel of the map T — Q1 X Q2 that one gets by extending each of
I' — @Q; and then taking the direct product. The uniqueness of extensions tells us
that these maps coincide, and hence Ny N Ny = Ni N Na. The claims follow from
repeated application of this observation. O

If now H < T, the profinite topology on I' determines some pro topology on H
and therefore some completion of H. To understand what happens in certain cases
that will be of interest to us, we recall the following. Since we are assuming that I'
is residually finite, H injects into T and determines a subgroup H. Hence there is a
natural epimorphism H — H. This need not be injective. For this to be injective
(i.e. the full profinite topology is induced on H) we require the following to hold:

For every subgroup Hi of finite index in H, there exists a finite index
subgroup I'y < T such that 'y " H < Hj.

There are some important cases for which injectivity can be arranged. Suppose that I'
is a group and H a subgroup of I, then I is called H-separable if for every g € G\ H,
there is a subgroup K of finite index in I" such that H C K but g ¢ K; equivalently,
the intersection of all finite index subgroups in I' containing H is precisely H. The
group I' is called LERF (or subgroup separable) if it is H-separable for every finitely-
generated subgroup H, or equivalently, if every finitely-generated subgroup is a closed
subset in the profinite topology.

It is important to note that even if the subgroup H of I' is separable, it need not
be the case that the profinite topology on I' induces the full profinite topology on H.
Stronger separability properties do suffice, however, as we now indicate.

Lemma 4.6 Let I' be a finitely-generated group, and H a finitely-generated subgroup
of I'. Suppose that T is Hy-separable for every finite index subgroup Hy in H. Then
the prgﬁnite topology on I induces the full profinite topology on H; that is, the natural
map H — H is an isomorphism.

Proof Since I' is H; separable, the intersection of all subgroups of finite index in I"
containing H; is H; itself. From this it easily follows that there exists I'y < I' of finite
index, so that I'y " H = Hy. The lemma follows from the discussion above. O
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Subgroups of finite index obviously satisfy the conditions of Lemma 4.6, and if I is
LERF, the conditions of Lemma 4.6 are also satisfied. Hence we deduce the following.

Corollary 4.7 (1) If T s resigl\uallg/lﬁnite and H is a finite-index subgroup of T,
then the natural map from H to H is an isomorphism.

(2) If T is LERF and H is a finitely generated subgroup of T', then the natural map
from H to H is an isomorphism.

Another case of what the profinite topology does on a subgroup that will be of
interest to us is the following. Let I' be a residually finite group that is the funda-
mental group of a graph of groups. Let the edge groups be denoted by G and the
vertex groups by G,. The profinite topology on I is said to be efficient if it induces
the full profinite topology on G, and G, for all vertex and edge groups, and G, and
G are closed in the profinite topology on I'. The main example we will make use of
is the following which is well-known:

Lemma 4.8 Suppose that I is a free product of finitely many residually finite groups
G1,...,Gy. Then the profinite topology on T' is efficient.

Proof Since I' is residually finite, the trivial group is closed in the profinite topology.
To see that each Gj is closed in the profinite topology we prove that I' is GG;-separable.
To that end let G denote one of the G;, and let g € I'\ G. Since g ¢ G, the normal
form for g contains at least one element ap € G # G. Since Gy, is residually finite
there is a finite quotient A of Gy for which the image of aj is non-trivial. Using
the projection homomorphism G * ... * G, — G — A defines a homomorphism for
which the image of G is trivial but the image of g is not. This proves the vertex
groups are closed.

To see that the full profinite topology is induced on each G;, we need to show
that for each G;, i = 1,...,n, the following condition holds (recall the condition for
injectivity given above). For every subgroup H of finite index in Gj, there exists a
finite index subgroup H; < I' such that H; N G; < H. Let G denote one of the G;’s
and assume that H < G is a finite index subgroup. We can also assume that H is a
normal subgroup. Then using the projection homomorphism I' = G x...xG,, — G/H
whose kernel K defines a finite index of subgroup of I' with KNG = H as required. [J

Note that in the situation of Lemma 4.8, it also follows that = @1 II @2 | @n
where II indicates the profinite amalgamated product. We refer the reader to [56]
Chapter 9 for more on this.

4.6. We now prove one of the key results that we make use of. This is basically
proved in [25] (see also [56] pp. 88-89), the mild difference here, is that we employ
[50] to replace topological isomorphism with isomorphism.

Theorem 4.9 Suppose that I'y and s are finitely-generated abstract groups. Then
I'y and T'y are isomorphic if and only if C(I'1) = C(I'y).

Proof If fl and fz are isomorphic then the discussion following the correspondence
provided by Proposition 4.4 shows that C(I';) = C(T'9).



Reid: Profinite properties of discrete groups 10

For the converse, we argue as follows. For each n € N let

Up = ﬂ{U : U is a normal subgroup of I'; with [I'; : U] <n}, and
Vi = ﬂ{V : V is a normal subgroup of I'y with [I's : V] < n}.

Then I'y /U, € C(I'1) and T'2/V,, € C(I'2). Hence there exists a normal subgroup
K < Ty so that I'1/K = T'9/V,,. Now it follows that K is an intersection of normal
subgroups of index < n, and so U, < K. Hence |I'y/V,,| = |I'1/K| < |I'1/Uy,|. On
reversing the roles of I'y and I's reverses this inequality from which it follows that
Iy/V, =2T11/U,.

Now for each such n, let A,, denote the set of all isomorphisms I'; /U,, onto I'y/V/,.
For each n this is a finite non-empty set with the property that for m < n and
a € Ay, then a induces a unique homomorphism fy,, () : T'1 /U, — T'y/Vi, such
that the following diagram commutes.

Fl/Un — Fl/Um

al lfnm(a)
Ly/V, — To/Vip

It follows that {A,, fum} is an inverse system of (non-empty) finite sets, and so
the inverse limit lim A, exists and defines an isomorphism of the inverse systems
imT'y /U,, and limT's/V,,. Also note that since U,, and V,, are co-final, the discussion
in §4.5 shows that they induce the full profinite topology on I'y and I'y respectively
and so we have:

fl %@Fl/Un g@lf&/vﬂ gfg

as required. O

Thus statements about C(I") and G(T') can now be rephrased in terms of the profi-
nite completion. For example,

GI) ={A:A~T}.

4.7. We now give some immediate applications of Theorem 4.9 and the previous
discussion in the context of the motivating questions.

Lemma 4.10 Let ¢ : T'y — I's _be an epimorphism of finitely-generated groups. If
I'y is residually finite and I'y =2 T'y, then ¢ is an isomorphism.

Proof Let k € ker ¢. If k were non-trivial, then since I'; is residually finite, there
would be a finite group @ and an epimorphism f : I'y — @ such that f(k) # 1. This
map f does not lie in the image of the injection Hom(T', @) — Hom(I'y, Q) defined
by g — go ¢. Thus [Hom(I';, Q)| > |[Hom(I'2, Q)|, contradicting Corollary 4.2. O

Definition 4.11 The rank d(T") of a finitely-generated group I is the least integer

k such that I' has a generating set of cardinality k. The rank c/i\(G) of a profinite
group G is the least integer k for which there is a subset S C G with k = |S| and

(S) is dense in G.
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If I'y is assumed to be a finitely generated free group of rank r and I's a finitely
generated group with d(I's) = r and [y 2 Ty, then it follows immediately from
Lemma 4.10 that I's is isomorphic to a free group of rank r (using the natural epi-
morphism I'; — T'g).

Indeed, one can refine this line of argument as follows. In the following proposition,
we do not assume that I' is residually finite.

Proposition 4.12 Let I' be a finitely-generated group and let I, be a free group. If
I' has a finite quotient Q such that d(I') = d(Q), and F~F,, thenT 2 F,.

Proof First I' 2 F,, so Q is a quotient of F,. Hence n > d(Q). But d(Q) = d(T') and
for every integer s > d(I') there exists an epimorphism Fy — I'. Thus we obtain an

epimorphism F, — I', and application of the preceding lemma completes the proof.
O

Corollary 4.13 Let I' be a finitely-generated group. If I and its abelianisation have
the same rank, then F~F, if and only if I =2 F,.

Proof Every finitely-generated abelian group A has a finite quotient of rank d(A).
O

As an application of Corollary 4.13 we give a quick proof that that free groups
and surface groups are distinguished by their finite quotients. For if I' is a genus
g > 1 surface group, then I' and its abelianization have rank 2g. Corollary 4.13 then
precludes such a group having the same profinite completion as a free group.

Another application is the following. Another natural generalization of free groups
are right angled Artin groups. Let K be a finite simplicial graph with vertex set
V ={v1,...,v,} and edge set E C V x V. Then the right angled Artin group (or
RAAQG) associated with K is the group A(K) given by the following presentation:

A(K) = (v1,...,v5 | [vi,v5] =1 for all 4, j such that {v;,v;} € E).

For example, if K is a graph with n vertices and no edges, then A(K) is the free
group of rank n, while if K is the complete graph on n vertices, then A(K) is the free
abelian group Z" of rank n.

If the group I' has a presentation of the form (A | R) where A is finite and all
of the relators r € R lie in the commutator subgroup of the free group F'(A), then
both T" and its abelianisation (which is free abelian) have rank |A|. The standard
presentations of RAAGs have this form.

Proposition 4.14 IfI" is a right-angled Artin group that is not free, then there exists
no free group F' such that F = T.

4.8. We shall also consider other pro-completions, and we briefly recall these. The
pro-(finite nilpotent) completion, denoted ffn, is the inverse limit of the finite nilpotent
quotients of I'. Given a prime p, the the pro-p completion fp is the inverse limit of
the finite p-group quotients of I'. As above we have natural homomorphisms I' — ffn
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and I' — fp and these are injections if and only if ' is residually nilpotent in the first
case and residually p in the second.

Note that in this language, two finitely generated residually nilpotent groups with
the same nilpotent genus have isomorphic pro-(finite nilpotent) completions. This
can proved in a similar manner as Proposition 4.4 using only the finite nilpotent
quotients. Note that it is proved in [6] (before the general case of [50]) that for a
finitely generated group I', every subgroup of finite index in Tf, is open. Moreover,
finitely generated groups in the same nilpotent genus also have isomorphic pro-p
completions for all primes p.

5 Grothendieck Pairs and Grothendieck Rigidity

A particular case of when discrete groups have isomorphic profinite completions is
the following (which goes back to Grothendieck [28]).

5.1. Let I' be a residually finite group and let u : P — I' be the inclusion of a
subgroup P. Then (T, P), is called a Grothendieck Pair if the induced homomor-
phism w : P - Tisan isomorphism but u is not. (When no confusion is likely to
arise, it is usual to write (I', P) rather than (I, P),.) Grothendieck [28] asked about
the existence of such pairs of finitely presented groups and the first such pairs were
constructed by Bridson and Grunewald in [15]. The analogous problem for finitely
generated groups had been settled earlier by Platonov and Tavgen [54]. Both con-
structions rely on versions of the following result (cf. [54], [15] Theorem 5.2 and [13]).

We remind the reader that the fibre product P < I' xI" associated to an epimorphism

of groups p : I' = @ is the subgroup P = {(z,y) : p(x) = p(y)}.

Proposition 5.1 Let1 - N — ' = @ — 1 be a short exact sequence of groups with
I finitely generated and let P be the associated fibre product. Suppose that QQ # 1 is
finitely presented, has no proper subgroups of finite index, and Ho(Q,Z) = 0. Then

(1) (' x I, P) is a Grothendieck Pair;
(2) if N is finitely generated then (I', N) is a Grothendieck Pair.

More recently in [14], examples of Grothendieck Pairs were constructed so as to
provide the first examples of finitely-presented, residually finite groups I' that con-
tain an infinite sequence of non-isomorphic finitely presented subgroups P, so that
the inclusion maps u, : P, < I' induce isomorphisms of profinite completions. In
particular, this provides examples of finitely presented groups I' for which G(T') is
infinite.

5.2. There are many classes of groups I' that can never have a subgroup P for which
(T, P) is a Grothendieck Pair; as in [40], we call such groups Grothendieck Rigid.
Before proving the next theorem, we make a trivial remark that is quite helpful.
Suppose that H < I' and I" is H-separable, then (I', H) is not a Grothendieck Pair.
The reason for this is that being separable implies that H is contained in (infinitely
many) proper subgroups of I' of finite index. In particular H < I is contained in
proper subgroups of finite index in . On the other hand if (T', H) is a Grothendieck
Pair, H is dense in I and so cannot be contained in a closed subgroup (of finite index)
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of I'. With this remark in place, we prove our next result. Recall that a group T is
called residually free if for every non-trivial element g € I' there is a homomorphism
¢g from I to a free group such that ¢4(g) # 1, and I is fully residually free if for every
finite subset X C I' there is a homomorphism from I' to a free group that restricts to
an injection on X.

Theorem 5.2 Let I' be a finitely generated group isomorphic to either: a Fuchsian
group, o Kleinian group, the fundamental group of a geometric 3-manifold, a fully
residually free group. Then I' is Grothendieck Rigid.

Proof This follows immediately from the discussion above, and the fact that such
groups are known to be LERF. For Fuchsian groups see [57], for Kleinian groups this
follows from [2] and [62] and for fully residually free groups [60]. If M is a geometric
3-manifold, then the case when M is hyperbolic follows from the remark above, and
when M is a Seifert fibered space see [57]. For those modelled on SOL geometry,
separability of subgroups can be established directly and the result follows. O

Remark The case of finite co-volume Kleinian groups was proved in [40] without
using the LERF assumption. Instead, character variety techniques were employed.
In §8.2 we will establish Grothendieck Rigidity for prime 3-manifolds that are not
geometric.

6 L2-Betti numbers and profinite completion

Proposition 3.2 established that the first Betti number of a group is a profinite in-
variant. The goal of this section is to extend this to the first L?-Betti number, and
to give some applications of this.

We refer the reader to Liick’s paper [47] for a comprehensive introduction to L2-
Betti numbers. For our purposes, it is best to view these invariants not in terms
of their original (more analytic) definition, but instead as asymptotic invariants of
towers of finite-index subgroups. This is made possible by the Liick’s Approximation
Theorem [46]:

Theorem 6.1 Let ' be a finitely presented group, and letI' =11 > T > ... > 1, >
... be a sequence of finite-index subgroups that are normal in I' and intersect in the
identity. Then for all p > 0, the p-th L?-Betti number of I is given by the formula

An important point to note is that this limit does not depend on the tower, and
hence is an invariant of I'. We will mostly be interested in 652).
Example 6.2 Let I’ be a free group of rank r. Euler characteristic tells us that
a subgroup of index d in F' is free of rank d(r — 1) + 1, so by Liick’'s Theorem

b§2) (F,) =r — 1. A similar calculation shows that if ¥ is the fundamental group of a

closed surface of genus g, then ng)(Z) =29 — 2.
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Proposition 6.3 Let A and I' be ﬁmtely presented residually finite groups and sup-
pose that A is a dense subgroup of L. Then 6(2)( I < 652) (A).

Proof For each positive integer d let My be the intersection of all normal subgroups
of index at most d in I', and let Ly = A N M, in T. We saw in Corollary 4.5 that
ﬂd Md =1, and so ();Lg = 1. Since A and I' are both dense in T, the restriction of

[>T /M 4 to each of these subgroups is surjective, and hence
[A:Lg=[T: Mg =[T:M,).

Now L, is dense in My, while ]/\Zd = M, so Lemma 4.3 implies that bi(Lg) >
bi1(My), and then we can use the towers (Lg) in A and (My) in T' to compare L2-Betti
numbers and find

. bi(My) . b1(Lg) (2)
B(T) = lim -4 < ] =P (A
0= A S R Ry W
by Liick’s approximation theorem. O

This has the following important consequence:

Corollary 6.4 Let I'y and I'y be finitely-presented residually finite groups. If fl =
Ty, then b (Ty) = b\2(Ty).

If one assumes only that the group I' is finitely generated, then one does not know
if the above limit exists, and when it does exist one does not know if it is independent
of the chosen tower of subgroups. However, a weaker form of Liick’s approximation
b

theorem for was established for finitely generated groups by Liick and Osin [48].

Theorem 6.5 If T is a finitely generated residually finite group and (Ny,) is a se-
quence of finite-index normal subgroups with (,, Ny = 1, then

b1 (N,
lim sup % < b(12) (I).

m—o0 [ :Nm}

6.1. We now give some applications of Proposition 6.3 in the context of Question 1
(and the analogous questions for Fuchsian groups). First we generalize the calculation
in Example 6.2.

Proposition 6.6 If I' is a lattice in PSL(2,R) with rational Euler characteristic
x(D), then B () = —x(I).

Proof It follows from Liick’s approximation theorem that if H is a subgroup of index
index d in I' (which is finitely-presented) then b§2)(H ) = db?) (T'). Rational Euler
characteristic is multiplicative in the same sense. Thus we may pass to a torsion-free
subgroup of finite index in I', and assume that it is either a free group F) of rank r,
or the fundamental group X, of a closed orientable surface of genus g. The free group
case was dealt with above, and so we focus on the surface group case.
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Thus if 'y is a subgroup of index d in I', then it is a surface group of genus
d(g — 1) + 1. The first Betti number in this case is 2d(g — 1) + 1 and so b1 (I'y) =
2 —dx(T"). Dividing by d = |I' : I'y| and taking the limit, we find ng) (') = —x(I).

O

With this result and Proposition 6.3 we have the following. The only additional
comment to make is that the assumption that the Fuchsian group I'; is non-elementary
implies it is not virtually abelian, and so b§2) (T'1) #0.

Corollary 6.7 Let I'y be a finitely generated non-elementary Fuchsian group, and I's
a finitely presented residually finite group with I'y =2 I's. Then b?) (T9) = b§2) (T) =
—x(T'1) # 0.

Another standard result about free groups is that if F'is a finitely generated free
group of rank > 2, then any finitely generated non-trivial normal subgroup of F' has
finite index (this also holds more generally for Fuchsian groups and limit groups,
see [17] for the last statement). As a further corollary of Propositon 6.4 we prove the
following.

Corollary 6.8 Let I' be a finitely presented residually finite group in the same genus
as a finitely generated free group, and let N < I' be a non-trivial normal subgroup. If
N is finitely generated, then T'/N is finite.

Proof Proposition 3.1 shows that the genus of the infinite cyclic group contains
only itself, and so we can assume that I lies in the genus of a non-abelian free group.
Thus, by Corollary 6.4, ng)(F) # 0. The proof is completed by making use of the
following theorem of Gaboriau (see [27] Theorem 6.8):

Theorem 6.9 Suppose that
1>N->T—>A—>1

is an exact sequence of groups where N and A are infinite. If bgz)(N) < 00, then
B (1) = 0.

O

Indeed, using Theorem 6.5, Corollary 6.8 can be proved under the assumption
that ' is a finitely generated residually finite group. In this case, the argument
establishes that if I' is in the same genus as a finitely generated free group F, then
bgz) () > bgz) (F) and we can still apply [27].

As remarked upon earlier, Question 1 is still unresolved, and in the light of this,
Corollary 6.8 provides some information about the structural properties of a finitely
generated group in the same genus as a free group. In §8.3, we point out some other
properties that occur assuming that a group I' is in the same genus as a finitely
generated free group.
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Remark Unlike the case of surface groups, if M is a closed 3-manifold, then
typically 652) (m(M)) = 0. More precisely, we have the following from [44]. Let
M = Mi#Ms# ...#M, be the connect sum of closed (connected) orientable prime

3-manifolds and that m (M) is infinite. Then
- 1
b (M) = (r =1) = >~
1 2 Tt

where in the summation, if 71(M;) is infinite, the term in the sum is understood to
be zero.

6.2. Corollary 6.4 establishes that ng) is an invariant for finitely presented groups in
the same genus. A natural question arises as to whether anything can be said about
the higher L2-Betti numbers. Using the knowledge of L?-Betti numbers of locally
symmetric spaces (see [21]), it follows that the examples given §3.4 will have all béQ)
equal. On the other hand, using [4] examples can be constructed which do not have

all bl(f) being equal. Further details will appear elsewhere.

7 Goodness

In this section we discuss how cohomology of profinite groups can be used to inform
about Questions 1-5.

7.1. We begin by recalling the definition of the continuous cohomology of profinite
groups (also known as Galois cohomology). We refer the reader to [59] and [56,
Chapter 6] for details about the cohomology of profinite groups.

Let G be a profinite group, M a discrete G-module (i.e., an abelian group M
equipped with the discrete topology on which G acts continuously) and let C"(G, M)
be the set of all continous maps G — M. One defines the coboundary operator
d: C"(G, M) — C"1(G, M) in the usual way thereby defining a complex C*(G, M)
whose cohomology groups HY(G; M) are called the continuous cohomology groups
of G with coefficients in M.

Note that HO(G; M) = {x € M : gz = 2 ¥V g € G} = MC is the subgroup of
elements of M invariant under the action of G, H'(G; M) is the group of classes
of continuous crossed homomorphisms of G into M and H?(G; M) is in one-to-one
correspondence with the (equivalence classes of) extensions of M by G.

7.2. Now let I" be a finitely generated group. Following Serre [59], we say that a
group I' is good if for all ¢ > 0 and for every finite I'-module M, the homomorphism
of cohomology groups R

HYTyM)— HYI; M)

induced by the natural map I' — T is an isomorphism between the cohomology of I'
and the continuous cohomology of T

Example 7.1 Finitely generated free groups are good.
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To see this we argue as follows. As is pointed out by Serre ([59] p. 15), for any (finitely
generated) discrete group I', one always has isomorphisms H4(T'; M) — H%(T'; M) for
q = 0,1. Briefly, using the description of H° given above (and the discrete setting),
isomorphism for HY follows using denseness of I in T and discreteness of M. For H L
this follows using the description of H' as crossed homomorphisms.

If T is now a finitely generated free group, since H?(G; M) is in one-to-one cor-
respondence with the (equivalence classes of) extensions of M by f, it follows that
H?(T; M) = 0 (briefly, like the case of the discrete free group there are no interesting
extensions).

The higher cohomology groups H q(f; M) (g > 3) can also be checked to be zero.
For example, since HY(T; M) = 0 for all ¢ > 2, the induced map HY(T; M) —
H1(T'; M) is surjective for all ¢ > 2, and it now follows from a lemma of Serre [59] (see
Ex 1 Chapter 2, and also Lemma 2.1 of [41]) that H9(T'; M) — H%(T; M) is injective
for all ¢ > 2. We also refer the reader to the discussion below on cohomological
dimension for another approach.

Goodness is hard to establish in general. One can, however, establish goodness for
a group I' that is LERF if one has a well-controlled splitting of the group as a graph
of groups [30]. In addition, a useful criterion for goodness is provided by the next
lemma due to Serre (see [59, Chapter 1, Section 2.6])

Lemma 7.2 The group I' is good if there is a short exact sequence
1-N—>I—-H—>1,

such that H and N are good, N is finitely-generated, and the cohomology group
HIY(N, M) is finite for every q and every finite I'-module M.

We summarize what we will need from this discussion.

Theorem 7.3 The following classes of groups are good.

Finitely generated Fuchsian groups.

The fundamental groups of compact 3-manifolds.

Fully residually free groups.

Right angled Artin groups.

Proof The first and third parts are proved in [30] using LERF and well-controlled
splittings of the group, and the fourth is proved in [41]. The second was proved by
Cavendish in his PhD thesis [23]. We will sketch the proof when M is closed.

Note first that by [30] free products of residually finite good groups are good, so
it suffices to establish goodness for prime 3-manifolds. As is shown in [30] goodness
is preserved by commensurability, and so finite groups are clearly good. Thus it
remains to establish goodness for prime 3-manifolds with infinite fundamental group.
For geometric closed 3-manifolds, goodness will follow immediately from Lemma 7.2
(using the first part of the theorem) when I' = 71 (M) and M is a Seifert fibered space
or has SOL geometry. For hyperbolic 3-manifolds the work of Agol [2] and Wise [62]
shows that any finite volume hyperbolic 3-manifold has a finite cover that fibers over
the circle, and once again by Lemma 7.2 (and the first part of the theorem) we deduce
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goodness. For manifolds with a non-trivial JSJ decomposition, goodness is proved
in [61]. O

7.3. Let G be a profinite group. Then the p-cohomological dimension of G is the
least integer n such that for every finite (discrete) G-module M and for every ¢ > n,
the p-primary component of H(G; M) is zero, and this is denoted by cd,(G). The
cohomological dimension of G is defined as the supremum of cd,(G) over all primes p,
and this is denoted by cd(G).

We also retain the standard notation cd(I") for the cohomological dimension (over
Z) of a discrete group I'. A basic connection between the discrete and profinite
versions is given by

Lemma 7.4 Let T’ be a discrete group that is good. If cd(T') < n, then cd(f) <n.

Proof If cd(I') < n then HY(I', M) = 0 for every I''module M and every ¢ > n. By
goodness this transfers to the profinite setting in the context of finite modules.  [J

Discrete groups of finite cohomological dimension (over Z) are torsion-free. In
connection with goodness, we are interested in conditions that allow one to deduce
that I' is also torsion-free. For this we need the following result that mirrors the
behavior of cohomological dimension for discrete groups (see [59, Chapter 1 §3.3]).

Proposition 7.5 Let p be a prime, let G be a profinite group, and H a closed sub-
group of G. Then cd,(H) < cd,(G).

This quickly yields the following that we shall use later.

Corollary 7.6 Suppose that I is a residually finite, good group of finite cohomolog-
ical dimension over Z. Then I' is torsion-free.

Proof If I’ were not torsion-free, then it would have an element x of prime order,
say ¢. Since (z) is a closed subgroup of T', Proposition 7.5 tells us that cdy((z)) <
cdp(f) for all primes p. But H?*({(z);F,) # 0 for all k > 0, so cd,({z)) and cdq(f)
are infinite. Since I' is good and has finite cohomological dimension over Z, we obtain
a contradiction from Lemma 7.4. O

Note that this can be used to exhibit linear groups that are not good. For example,
in [45], it is shown that there are torsion-free subgroups I' < SL(n, Z) (n > 3) of finite
index, for which I" contains torsion of all possible orders. As a corollary of this we
have:

Corollary 7.7 Foralln > 3, any subgroup of SL(n,R) commensurable with SL(n, Z)
s not good.

7.4. When the closed subgroup is a p-Sylow subgroup G, (i.e., a maximal closed
pro-p subgroup of G) then we have the following special case of Proposition 7.5 (see
[56] §7.3). Note that cohomology theory of pro-p groups is easier to understand
than general profinite groups, and so the lemma is quite helpful in connection with
computing cohomology of profinite groups.
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Lemma 7.8 Let G, be a p-Sylow subgroup of G. Then:
o cdy(G) = cdp(Gp) = cd(Gp).
e cd(G) =0 if and only if G = 1.
e cdy(G) =0 if and only Gp = 1.

Example 7.9 Let F be a finitely generated free group. Since a p-Sylow subgroup
of F'is Z,,, Lemma 7.8 gives an efficient way to establish that cd(F) = 1.

7.5. In this subsection we point out how goodness (in fact a weaker property suffices)
provides a remarkable condition to establish residual finiteness of extensions. First
suppose that we have an extension:

l1-N—-F—-T-—>1.

Using right exactness of the profinite completion (see [56] Proposition 3.2.5), this
short exact sequence always determines a sequence:

N> E-T 1.
To ensure that the induced homorphism N — E is injective is simply again the
statement that the full profinite topology is induced on N. As was noticed by

Serre [59], this is guaranteed by goodness. Indeed the following is true, the proof
of which we discuss below (the proof is sketched in [59] and see also [30] and [41]).

Proposition 7.10 The following are equivalent for a group I'.
e For any finite T-module M, the induced map H2(T; M) — H2(T; M) is an
isomorphism;
e For every group extension 1 - N — E — ' = 1 with N finitely generated, the
map N — E 1s injective.

Before discussing this we deduce the following.

Corollary 7.11 Suppose that I is residually finite and for any finite I'-module M,
the induced map H*(T; M) — H*(T; M) is an isomorphism. Then any extension E
(as above) by a finitely generated residually finite group N is residually finite.

Groups as in Corollary 7.11 are called highly residually finite in [41], and super
residually finite in [22].

Proof By Proposition 7.10, and referring to the diagram below, we have exact se-
quences with vertical homomorphisms i and ir being injective by residual finiteness.
Now the squares commute, and so a 5-Lemma argument implies that ¢g is injective;
i.e., F is residually finite.

1 — N — F — T — 1

liv is lir

~ ~ ~

1 — N — F — T — 1
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Proof We discuss the ”if” direction below, and refer the reader to [41] for the “only
if”. We will show that it suffices to prove the result with N finite. For then the case
of N finite is dealt with by Proposition 6.1 of [30].

Thus assume that NV is finitely generated and J a finite index subgroup of N. Recall
that from §4.5 we need to show that there exists a finite index subgroup E; < E such
that E1 NN < J.

To that end, since N is finitely generated we can find a characteristic subgroup
H < J of finite index in IV that is normal in £. Thus we have:

1 - N — F — T — 1

! &

l — NH — E/H — T — 1

Assuming that the result holds for the case of N finite we can appy this to N/H.
That is to say we can find E}, < E/H such that E, N (N/H) = 1. Set Ey = n~1(E}),
then Fo N N < H < J as required. ([l

Given Corollary 7.11 and Theorem 7.3 we have:

Corollary 7.12 Let T" be a group as in Theorem 7.3. Then I is highly residually
finite.

Examples of groups that are not highly residually finite are SL(3, Z) (see [33]) and
Sp(2g,Z) ([24]). In particular in [24] lattices in a connected Lie group are constructed
that are not residually finite. These arise as extensions of Sp(2g, Z).

7.6. We now return to Question 1, and in particular deduce some consequences
about a group I' in the same genus as a finitely generated free group. To that end,
the following simple observation will prove useful.

Corollary 7.13 Let I'; and T’y be finitely-generated (abstract) residually finite groups
with fl =~ fg. Assume that Ty is good and cd(T'1) = n < co. Furthermore, assume
that H is a good subgroup of T's for which the natural mapping H— fg 1s injective.
Then Hi(H;F,) =0 for all ¢ > n.

Proof If HI(H;F,) were non-zero for some q>n, then by goodness we would have
Hq(PAI;Fp) # 0, so cd,(H ) > ¢ > n. Now H — T3 is injective and so H =~ H.
Hence fl contains a closed subgroup of p-cohomological dimension greater than n, a
contradiction. O

Corollary 7.14 If T’ contains a surface group S, and ST is injective, then T s
not isomorphic to the profinite completion of any free group.

In particular, this also shows the following;:
