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Abstract

We show that in every commensurability class of cusped arithmetic hyperbolic
manifolds of simplest type of dimension 2n + 2 ≥ 6 there are manifolds M such that
the Stiefel-Whitney classes w2j(M) are non-vanishing for all 0 ≤ 2j ≤ n. We also
show that for the same commensurability classes there are manifolds (different from
the previous ones) that do not admit a spinC structure.

1 Introduction

The Stiefel-Whitney classes wk(M) of a manifold M are defined as the Stiefel-Whitney
classes of the tangent bundle of M , denoted by TM (we refer the reader to §2 for a definition
of Stiefel-Whitney classes). The question as to whether Stiefel-Whitney classes vanish or
not has a rich history in geometric and algebraic topology. For example, w1(M) = 0 if
and only if M is orientable and w2(M) = 0 if and only if M admits a spin structure.
In addition, the non-vanishing of Stiefel-Whitney classes can be used as an obstruction to
embedding/immersing a manifold into certain Euclidean spaces. For work on vanishing and
non-vanishing of Stiefel-Whitney classes we refer the reader to [11] and the more recent
paper [3] (which proves vanishing of Stiefel-Whitney classes for so-called moment angled
manifolds).

Of most relevance to the topics of this paper is the work of Sullivan [22] which showed
that every finite volume hyperbolic manifold in any dimension has a finite sheeted cover
that is stably parallelizable, and hence by properties of Stiefel-Whitney classes has vanishing
Stiefel-Whitney classes for all k ≥ 1 (see §2). On the other hand, in [8], examples of cusped
orientable finite volume hyperbolic manifolds M were constructed in all dimensions ≥ 5 for
which w2(M) ̸= 0, and more recently, in [10] Martelli, Riolo, and Slavich constructed closed
orientable hyperbolic n-manifolds M in all dimensions n ≥ 4 for which w2(M) ̸= 0.

Another natural extension of a spin structure on a manifold is that of a spinC structure
on a manifold (see §3 for a definition). A spin structure naturally defines a spinC structure
(see §3), and so since all compact orientable manifolds in dimensions 2 and 3 admit a spin
structure, they admit a spinC structure. On the other hand, there are compact orientable
4-manifolds that do not admit a spin structure (for example certain flat 4-manifolds [16]),
but it is known that every orientable 4-manifold does admit a spinC structure [24].

In this paper we extend the results of [8] to construct cusped hyperbolic manifolds with
non-vanishing higher order Stiefel-Whitney classes, as well as to provide examples of cusped
hyperbolic manifolds that do not admit a spinC structure. The most precise version of our
results arises in the context of arithmetic hyperbolic manifolds.
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Theorem 1.1. Let n be a positive integer. For every m ≥ 2n + 2 ≥ 6, every cusped
arithmetic hyperbolic m-manifold is commensurable with orientable hyperbolic m-manifolds
M1 and M2 such that:

• w2j(M1) ̸= 0 for all 0 ≤ 2j ≤ n;

• M2 does not admit a spinC structure.

The proof of Theorem 1.1 uses the methods of [7] as well as the more recent ideas of
[19], and it is perhaps helpful to pick out a key idea in the proof which allows one to quickly
prove the weaker statement contained in the following theorem.

Theorem 1.2. Let n be a positive integer. For every m ≥ 2n+ 2 ≥ 6, there exist infinitely
many finite volume cusped orientable hyperbolic m-manifolds M1 and M2 that satisfy the
conclusions of Theorem 1.1.

By way of contrast, Whitney [25] showed that if M is a compact orientable 4-manifold
then w3(M) = 0, and Massey [11] proved more generally that if M is an even dimensional
compact orientable n-manifold then wn−1(M) = 0. He also showed in [11] that if n = 4k+3
and M is a compact orientable n-manifold, then wn(M) = wn−1(M) = wn−2(M) = 0.

The remainder of this paper is organized as follows. In §2, we will give some relevant
background about Stiefel-Whitney classes and in §3 discuss their connection to spinC struc-
tures. In §4 we provide some background on flat manifolds, particularly those described in
[4] and [9], which we then use in §5 to prove Theorem 1.2. In §6 we prove Theorem 1.1,
which requires some background from quadratic forms and arithmetic hyperbolic manifolds.
Finally in §7 we provide other corollaries of our work.

Acknowledgement: The first author would like to thank Bruno Martelli for many interest-
ing and helpful discussions concerning the vanishing and non-vanishing of Stiefel-Whitney
classes in the context of finite volume hyperbolic manifolds. Both authors are grateful to
him for pointing out the examples of [9] and suggesting our arguments could be extended to
these examples.

The second author was partially funded by NSF grant DMS-1745670.

2 Stiefel-Whitney classes

The Stiefel-Whitney classes wi are characteristic classes defined for a rank k vector bundle
E over a manifold M , and are elements of the cohomology group Hi(M,Z/2Z). A key
property of the non-vanishing of Stiefel-Whitney classes is that they can be used to obstruct
sets of everywhere linearly independent sections of E; namely, if wi(E) ̸= 0, then the vector
bundle E does not have k− i+1 everywhere linearly independent sections. For convenience,
we recall the definition of Stiefel-Whitney classes, which can be defined concisely in an
axiomatic way as follows.

Definition 2.1 (Stiefel-Whitney classes [13, Ch. 4]). The Stiefel-Whitney classes of a rank
k vector bundle E over M are the unique set of elements wi(E) ∈ Hi(M,Z/2Z) satisfying
the following axioms.

1. w0(E) = 1 and wi(E) = 0 for all i > k.
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2. For a manifold M ′ and any continuous map f : M ′ → M , wi(f
∗(E)) = f∗(wi(E)),

where f∗(E) is the pullback vector bundle.

3. Let E and E′ be vector bundles over the base manifold M . Then

wi(E ⊕ E′) =

i∑
j=0

wj(E) ∪ wi−j(E
′) (The Whitney Product Formula)

where ∪ is the cup product.

4. The Möbius bundle EMöbius over S1 satisfies w1(EMöbius) ̸= 0.

In this paper, we will mainly be interested in the case where the vector bundle is the
tangent bundle TM and, as usual, we denote by wi(M) the Stiefel-Whitney classes of TM ,
and refer to these as the Stiefel-Whitney classes of M .

Remark 2.2. Suppose that i : N ↪→ M is an embedding of a submanifold of co-dimension
one in the manifold M with trivial normal bundle. Using the axioms of Stiefel-Whitney
classes described above, we find that i∗w2j(M) = w2j(N) (see also [21]). In particular this
implies that if M has a spin structure, then so does N .

More generally, this can be used to justify a claim made in §1. Recall that a n-manifold
is called stably parallelizable if there exists a trivial vector bundle ϵ over M so that TM ⊕ ϵ
is also a trivial bundle, in which case as above, it follows that the Stiefel-Whitney classes
wi(M) = 0 for i ≥ 1 (as mentioned in §1).

3 spinC structures

A spinC structure on a manifold is a complex analogue of the notion of a spin structure on
a manifold and can be defined as follows [2]: A manifold M admits a spinC structure if and
only if there exists a complex line bundle L such that the vector bundle TM⊕L admits a spin
structure; i.e. w2(TM ⊕ L) = 0. Note that if M admits a spin structure then w2(M) = 0,
hence w2(TM ⊕ L) = 0 and so it follows that M admits a spinC structure (as noted in §1).

We will need the following lemma. It appears to be well-known, but we could not locate
a proof and so include one here (c.f. Remark 2.2).

Lemma 3.1. Let M be a manifold that admits a spinC structure, and N ⊂ M a submanifold
of codimension 1 with trivial normal bundle. Then N admits a spinC structure.

Proof. Let π : TM⊕L → M be the projection map, and denote the bundle TM⊕L restricted
to N by (TM ⊕ L)N ; i.e. the set of points {(p, e) ∈ M × (TM ⊕ L) | p ∈ N, π(e) = p}. By
construction, (TM ⊕L)N is the pullback bundle induced by the inclusion map i : N ↪→ M ,
so by the properties of Stiefel-Whitney classes described in §2 and Remark 2.2 we deduce:

w2((TM ⊕ L)N ) = w2(i
∗(TM ⊕ L)) = i∗(w2(TM ⊕ L)) = i∗(0) = 0.

Therefore, (TM ⊕ L)N admits a spin structure.
Similarly, let LN (resp. TMN ) be the complex line bundle L restricted to N (resp. TM

restricted to N). Since N has codimension 1 and trivial normal bundle, TMN = TN ⊕ ϵ,
where ϵ is a trivial rank 1 bundle. Using this, we can decompose (TM ⊕ L)N as follows:

(TM ⊕ L)N = TMN ⊕ LN = TN ⊕ ϵ⊕ LN = (TN ⊕ LN )⊕ ϵ.
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As a trivial bundle, ϵ admits a spin structure, and we already observed that (TM ⊕L)N
admits a spin structure. By [6, Ch. II Prop. 1.15], given two vector bundles A and B over
the same base space, if two of A, B, and A⊕B admit a spin structure, then the third does
as well. Hence, TN ⊕ LN admits a spin structure, and we deduce that N admits a spinC

structure. □

4 Flat manifolds and cusp cross-sections

Recall that if M is a cusped hyperbolic m-manifold of finite volume, the cusps of M are
the ends of M and all such are homeomorphic to a manifold of the form B × R+, where
B is a closed (m − 1)-manifold that is homeomorphic to a flat manifold (i.e. the quotient
of Rm−1/L where L is a discrete cocompact torsion-free group of isometries of Rm−1). We
refer to B as a cusp cross-section (it will not be necessary for us to be explicit about the
flat metric induced by the hyperbolic metric). Note that by Bieberbach’s third theorem
on crystallographic groups (see for example [1]), there are only finitely many closed flat
manifolds up to homeomorphism in each dimension, and hence there are only finitely many
possible homeomorphism classes of cusp cross-sections in each dimension.

In the proofs of Theorem 1.2 and Theorem 1.1, we make use of certain flat manifolds con-
structed by Im and Kim [4], as well as the so-called Generalized Hantzsche-Wendt manifolds
of [18].

4.1 The manifolds of Im and Kim

The manifolds constructed by Im and Kim [4] have dimension 2n+ 1 and satisfy w2j(N) ̸=
0 for 0 ≤ 2j ≤ n. We briefly recall some salient features of these manifolds and their
fundamental groups that we shall make use of.

The manifoldsN of [4] are described as R2n+1/πn, where πn is a subgroup of Isom(R2n+1)
with generators t1, . . . , tn+1, τ1, . . . , τn,K described in terms of translations and reflections.
These are explicitly described in matrix form below using [4, pp 270-271].

ti : v 7→



1
. . . 0

1
1

1

0
. . .

1


v +



0
...
0
1
0
...
0
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τj : v 7→



1
. . . 0

−1
−1

. . .

1

0
. . .

1


v +



0
...
0
0
...
1
2
...
0



K : v 7→



1
. . . 0

1
−1

−1

0
. . .

−1


v +



1
2
...
1
2
1
2
0
...
0


The ti act by unit translation along the ith axis. The τj reflect across the coordinate

hyperplanes perpendicular to the jth and (j + 1)st axes, and translate by 1
2 along the

(j+1+n)th axis. The action of K depends on whether n is odd or even: when n is odd, K
reflects across the last (n+1)st coordinate hyperplanes, and when n is even, across the last
n coordinate hyperplanes, and then in either case, translates by 1

2 along each of the first
(n+1) axes. We deduce from this description that all of the generators of πn act on R2n+1

preserving orientation, and so each R2n+1/πn is an orientable manifold.

Remark 4.1. We point out that the group π1 is the fundamental group of the so-called
Hantzsche-Wendt 3-manifold HW for which w1(HW) = w2(HW) = 0 and this is not covered
by the range of Stiefel-Whitney classes provided by [4].

4.2 Generalized Hantzsche-Wendt manifolds

Following [18], we call an orientable n-dimensional flat manifold a Generalized Hantzsche-
Wendt manifold if and only if its holonomy group is an elementary abelian 2-group of rank
n − 1. Note that a Generalized Hantzsche-Wendt manifold occurs as one of the manifolds
constructed by Im and Kim described in §4.1 if and only if the manifold is the classical
Hantzsche-Wendt 3-manifold HW of Remark 4.1. Generalized Hantzsche-Wendt manifolds
have several interesting properties, for example they are all rational homology n-spheres
[23]. However, all that we will need is that their holonomy group is diagonal, meaning that
it has a representation in which each matrix has the form [18]:


±1 0

±1
. . .

0 ±1


and the following proved in [9].
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Theorem 4.2. Let N be a Generalized Hantzsche-Wendt manifold of dimension > 3. Then
N does not admit a spinC structure.

As noted in [9], Generalized Hantzsche-Wendt manifolds only exist in odd dimensions.

5 Proof of Theorem 1.2

For both of the manifolds M1 and M2 stated in Theorem 1.2, the results will be proved by
breaking the statement into two cases, depending on whether the dimension of the hyperbolic
manifold is even or odd. We deal with the case of constructing manifolds with non-vanishing
Stiefel-Whitney classes in detail and comment on what is needed to tweak the argument to
deal with spinC structures.

Proposition 5.1. Let n ≥ 2 be a positive integer. There exist infinitely many finite volume
cusped orientable hyperbolic (2n+2)-manifolds M such that w2j(M) ̸= 0 for all 0 ≤ 2j ≤ n.

Proof. We will make use of [7] and the upgrade provided by [12], which taken together proves
that every closed, flat (m− 1)-manifold occurs as a cusp cross-section in some cusped finite
volume hyperbolic m-manifold (indeed of infinitely many such manifolds). In particular,
the manifolds N of [4] described in §4 occur as the cusp cross-section of infinitely many
cusped finite volume hyperbolic (2n+ 2)-manifolds M . As noted in §4, N is orientable and
[7] shows that the hyperbolic manifolds M can be taken to be orientable.

Since N embeds in M as a cusp cross-section, the normal bundle of i : N ↪→ M is trivial.
Since w2j(N) ̸= 0, we deduce from Remark 2.2 that w2j(M) ̸= 0 in the range stated. □

Proposition 5.2. Let n ≥ 2 be a positive integer. There exist infinitely many finite volume
cusped orientable hyperbolic (2n+3)-manifolds M such that w2j(M) ̸= 0 for all 0 ≤ 2j ≤ n.

Proof. Consider the closed orientable flat (2n+1)-manifolds N described in §4, and used in
the proof of Proposition 5.1. Then N × S1 is a closed orientable flat (2n+ 2)-manifold for
which the embedding N ↪→ N ×S1 has trivial normal bundle. Hence, using Remark 2.2, we
deduce that the Stiefel-Whitney classes w2j(N × S1) ̸= 0 for all 0 ≤ 2j ≤ n. Again using
[7] and [12] we can construct infinitely many finite volume cusped orientable hyperbolic
(2n + 3)-manifolds M with cusp cross-section N × S1. As in Proposition 5.1 we can then
deduce that w2j(M) ̸= 0 in the range stated. □

The first part of Theorem 1.2 now follows from Proposition 5.1 or Proposition 5.2 depending
on m being even or odd. □

Remark 5.3. In Theorem 1.2, the case of m = 5 can be also handled, since in [8], a flat
4-manifold without a spin structure (i.e. w2 ̸= 0) is embedded as a cusp cross-section of a
cusped hyperbolic 5-manifold.

To deal with the case of spinC structures, we first assume that m = 2n+2 so that m− 1
is odd. In this case, if N is a Generalized Hantzsche-Wendt manifold of dimension m − 1,
applying [7] and [12] once again shows that N occurs as the cusp cross-section of infinitely
many cusped orientable finite volume hyperbolic (2n + 2)-manifolds M . An application of
Theorem 4.2 and Lemma 3.1 now implies that such a manifold M does not admit a spinC

structure.
As in the case of Proposition 5.2, to deal with the case m = 2n+ 3, we consider the flat

manifold N × S1 where in this case, N is the Generalized Hantzsche-Wendt manifold given
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above. By Lemma 3.1, N × S1 also does not admit a spinC structure and we then argue as
above. □

Remark 5.4. Unlike the case of non-vanishing of Stiefel-Whitney classes, the case of m = 5
cannot be handled, since as noted in §1, all 4-manifolds admit a spinC structure.

6 Commensurability classes of arithmetic manifolds

The main result of this section is the more precise version of Theorem 1.2 stated as Theorem
1.1 and repeated below for convenience. The key point is that the constructions of [7] and
[12] exploits arithmetic manifolds which we can leverage here to prove a stronger result
in the arithmetic setting. We will provide some background and necessary definitions in
subsequent subsections.

Theorem 6.1. Let n be a positive integer. For every m ≥ 2n + 2 ≥ 6, every cusped
arithmetic hyperbolic m-manifold is commensurable with orientable hyperbolic m-manifolds
M1 and M2 such that:

• w2j(M1) ̸= 0 for all 0 ≤ 2j ≤ n;

• M2 does not admit a spinC structure.

Note that the separability argument of [7] and [12] provides, in each commensurabil-
ity class of cusped arithmetic hyperbolic m-manifolds, infinitely many cusped orientable
hyperbolic m-manifolds M1 and M2 as in Theorem 6.1.

6.1 Quadratic forms

Definition 6.2 (Quadratic form). A quadratic form over a field K is a homogeneous poly-
nomial of degree 2 with coefficients in K.

For the rest of this paper, we will assume our quadratic forms are non-degenerate and
defined over Q. A quadratic form in n variables is said to have rank n. We can write a
rank n quadratic form q(x) =

∑n
i=1

∑n
j=1 aijxixj as a n× n symmetric matrix Q such that

q(x) = xtQx, by setting the entry qij to be aij if i = j and
aij

2 if not.

Definition 6.3 (Rational equivalence). Two rank n quadratic forms given by symmetric
matrices Q1 and Q2 are rationally equivalent if there exists a matrix T ∈ GL(n,Q) such
that T tQ1T = Q2.

All quadratic forms are rationally equivalent to a diagonal form, that is, a quadratic
form whose corresponding symmetric matrix is a diagonal matrix. We will be considering
quadratic forms up to rational equivalence, so we can always use a diagonal representa-
tive from each rational equivalence class. For ease of notation, we will write the diagonal
quadratic form q(x) =

∑n
i=1 aix

2
i as ⟨a1, . . . , an⟩. There is one more form of equivalence we

need to consider.

Definition 6.4 (Projective equivalence). Two quadratic forms q1 and q2 are projectively
equivalent if there are two nonzero integers a and b such that aq1 and bq2 are rationally
equivalent.
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A complete set of invariants of diagonal quadratic forms q up to projective equivalence is
given by the signature, discriminant, and Hasse-Witt invariants ϵp(q), which we will define
below.

Let q(x) = ⟨a1, . . . , an⟩. The signature of q is defined to be (r, s), where r is the number
of positive coefficients ai (or for non-diagonal forms, the positive eigenvalues in the cor-
responding symmetric matrix), and s is the number of negative ai. The discriminant is
defined to be the product of the coefficients modulo squares,

∏n
i=1 ai ∈ Q∗/(Q∗)2 (or for

non-diagonal forms, the determinant of the corresponding symmetric matrix). The Hasse-
Witt invariants are more complicated, and are defined using Hilbert symbols. The Hilbert
symbol is defined as follows:

(a, b)p =
{

1 if z2 = ax2 + by2 has a nonzero solution in Qp

−1 otherwise.

Definition 6.5 (Hasse-Witt invariants). Given a diagonal quadratic form q = ⟨a1, . . . , an⟩
over Q and a prime p, possibly ∞, the Hasse-Witt invariant of q at p is given by

ϵp(q) =
∏

1≤i<j≤n

(ai, aj)p.

The Hasse-Witt invariants (and the Hilbert symbols) satisfy Hilbert reciprocity, meaning
that

∏
ϵp(q) = 1 for any quadratic form q. Additionally, for any fixed q, only finitely many

ϵp(q) are equal to −1, because any such p, aside from 2 and ∞, must divide at least one
coefficient of q.

We will make use the following lemma of Serre to construct quadratic forms.

Lemma 6.6 ([20, Ch. IV, Prop. 7]). Let d, r, s, and n be integers, and ϵp be 1 or −1 for
each prime p, including ∞. Then there exists a rank n quadratic form q of discriminant
d, signature (r, s), and Hasse-Witt invariants ϵp if and only if the following conditions are
satisfied.

1. ϵp = 1 for almost all p and
∏

ϵp = 1 over all primes p.

2. ϵp = 1 if n = 1, or if n = 2 and the image of d in Q∗
p/(Q∗

p)
2 is −1.

3. r, s ≥ 0 and n = r + s.

4. The sign of d is equal to (−1)s.

5. ϵ∞ = (−1)
s(s−1)

2 .

6.2 Orthogonal groups

As in §6.1 we let q be a rank n quadratic form defined over Q with associated symmetric
matrix Q. The orthogonal group and special orthogonal group of q (or Q) are the groups:

O(q) = {A ∈ GL(n,R)|AtQA = Q} and SO(q) = {A ∈ O(q)|det(A) = 1}.

Assuming that q is not a definite quadratic form, arithmetic subgroups of O(q) can be
constructed as O(q,Z) = O(q) ∩ GL(n,Z) (and the obvious subgroup SO(q,Z)). The as-
sumption that q is not definite is simply to to ensure that the arithmetic groups constructed
are infinite.
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If q1 and q2 are rationally equivalent quadratic forms then there exists T ∈ GL(n,Q)
such that T tQ1T = Q2, in which case T−1O(q1,Z)T is commensurable with O(q2,Z).

Note that if q is a quadratic form of signature (m, 1), then q is equivalent over R to the
quadratic form jm+1(x) = x2

1 + x2
2 + . . . + x2

m − x2
m+1 (with associated symmetric matrix

Jm+1).

6.3 Arithmetic hyperbolic manifolds

For the remainder of the paper, it will be convenient to identify hyperbolic m-space Hm

with the hyperboloid model

Hm = {x ∈ Rm+1|jm+1(x) = −1, xm+1 > 0},

where jm+1 is the quadratic form given above. The full group of isometries of Hm is given by
Isom(Hm) = O+(jm+1) where O+(jm+1) is the subgroup of O(jm+1) preserving the upper
half sheet of the hyperboloid {x ∈ Rm+1|jm+1(x) = −1}.

A finite volume cusped hyperbolic m-manifold M = Hm/Γ is defined to be arithmetic if
Γ is commensurable with a group constructed from an arithmetic group O(q,Z) as follows.
Let q be a rational quadratic form of signature (m, 1), and T ∈ GL(m + 1,R) such that
T tQT = Jm+1, then the group T−1O(q,Z)T ∩O+(jm+1) has finite co-volume acting on Hm

and Γ is arithmetic if it is commensurable with some such group.
Note that by [14], two cusped arithmetic hyperbolic manifolds are commensurable if and

only if their associated quadratic forms are projectively equivalent.

6.4 Proof of Theorem 6.1

Before commencing with the proof we make some preliminary comments to help guide
the reader. The proof of Theorem 6.1 makes more careful use of the construction in [7].
In particular, given some closed flat (m − 1)-manifold B, [7] provides an algorithm for
finding a cusped arithmetic orbifold with some cusp cross-section being diffeomorphic to B.
Using [12], we can pass to some finite cover to arrange that B be a cusp cross-section of
an arithmetic hyperbolic m-manifold. The algorithm of [7] outputs arithmetic hyperbolic
orbifolds associated to some quadratic form q (as in §6.3) where q is built into the algorithm
of [7] using a description of the holonomy group of the flat manifold. This holonomy group
is finite, and so preserves a positive definite quadratic form. We can use this information to
control the commensurability class of the output of the algorithm.

We now give the details for the case of non-vanishing of Stiefel-Whitney classes, the case
dealing with spinC-structures is then sketched following this line of argument.

Proof. As in Propositions 5.1 and 5.2, we find hyperbolic manifolds with the desired prop-
erties by running the closed flat (m − 1)-manifolds N of §4 (or taking a product of such
with S1 if necessary) through the algorithm from [7]. To make the argument concise we
deal with the case of m = 2n+ 2, and comment briefly on the case of 2n+ 3 at the end of
the proof.

The algorithm of [7] depends on a representation of the holonomy group of N (which
in the case at hand is (Z/2Z)n+1) into GL(2n + 1,Z), and a choice of quadratic form f of
signature (2n+ 1, 0) which is preserved by each matrix in the image of this representation.
In our setting, the holonomy representation is generated by the diagonal matrices described
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in §4, and hence any diagonal quadratic form of rank (2n + 1) is preserved by this repre-
sentation. Hence for any positive definite diagonal quadratic form f of signature (m− 1, 0),
the algorithm of [7] now produces a manifold in the commensurability class described as
in §6.3 associated to the group SO(f ⊕ ⟨1,−1⟩,Z). Note that the translational parts of
the generators listed in §4 contain 1/2, but built into [7] is the ability to scale so that the
resultant image of the groups πn do lie in SO(f ⊕ ⟨1,−1⟩,Z). We caution the reader that
implementing the scaling described above may change the form f ⊕ ⟨1,−1⟩, but it will still
lie in the same projective equivalence class, and hence the resulting manifold will lie in the
same commensurability class.

Given this discussion, to complete the proof, we need to show that every quadratic form
q of signature (m, 1) is projectively equivalent to a quadratic form q′′ that can be written
as q′ ⊕ ⟨1,−1⟩ for some diagonal quadratic form q′ with signature (m− 1, 0) (taking q′ = f
in the above discussion).

As stated in §6.1, q is projectively equivalent to any form with the same signature (m, 1),
discriminant, and Hasse-Witt invariants. Let the discriminant of q be d, and its Hasse-Witt
invariants be hp = ϵp(q). We will use Lemma 6.6 to construct a quadratic form q′ with
signature (m− 1, 0), discriminant −d, and Hasse-Witt invariants ϵp(q

′) = hp(−1,−d)p, and
this will arrange that q and q′′ have all necessary invariants equal.

We begin by proving that given q′ with the invariants described above, q′′ = q′⊕⟨1,−1⟩
must be projectively equivalent to q, because they have the same invariants. Clearly, the
signature of q′′ is (m, 1) and its discriminant is d = (−d)(−1). We can compute the Hasse-
Witt invariants from the Hilbert symbols of the coefficients. Let q′ = ⟨x1, . . . , xm−1⟩, so
that q′′ = ⟨x1, . . . , xm−1, 1,−1⟩. Then:

ϵp(q
′′) =

∏
i<j

(xi, xj)p

(∏
i

(1, xi)p

)(∏
i

(−1, xi)p

)
(1,−1)p

= (ϵp(q
′))(1)

(
−1,

∏
i

xi

)
p

(1)

= hp(−1,−d)p(−1,−d)p

= hp = ϵp(q)

Thus q and q′′ share their signature, discriminant, and Hasse-Witt invariants, and must be
projectively equivalent.

To complete the proof, it remains to show that there exists q′ with signature (m− 1, 0),
discriminant −d, and Hasse-Witt invariants ϵp(q

′) = hp(−1,−d)p. Referring to Lemma 6.6,
we note that condition (1) is satisfied because

∏
p ϵp(q) =

∏
p hp = 1, and Hilbert reciprocity

tells us
∏

p(1,−d)p = 1. Condition (2) is satisfied because m − 1 ≥ 5, and condition (3)
can be satisfied by choosing the rank to be m − 1. We know d < 0 is the discriminant
of a quadratic form of signature (m, 1), so −d > 0 as required by condition (4). Finally,
condition (5) holds because ϵ∞(q′) = h∞(−1,−d)∞ = 1; note that h∞ = 1 because q has
signature (m, 1), and (−1,−d)∞ = 1 because d is negative. By Lemma 6.6, q′ exists, and
the rest of the argument follows.

The only objects that change when we consider the case in which m = 2n+3 are N and
its holonomy group. We can take N = N ′ × S1, where N ′ is a (2n+ 1)-manifold described
in §4. The holonomy representation of N ′ is the same as that of N , but with an extra row
at the bottom and column at the right, each of which is 0 except for a 1 in the bottom
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right corner. This does not change the fact that the representation is diagonal, and thus
any quadratic form f of the appropriate rank can be chosen in the algorithm of [7]. The
rest of the proof follows unchanged. □

We now discuss the case of obstructing spinC structures. Suppose m = 2n + 2 and
that N is a Generalized Hantzsche-Wendt manifold of dimension m−1. Then the holonomy
representation of N contains only diagonal matrices, as described in §4.2, and thus preserves
every quadratic form of the appropriate rank. The same argument used in the proof of
Theorem 6.1 shows that every cusped arithmetic hyperbolic m-manifold is commensurable
to a manifold M with a cusp cross-section homeomorphic to N , and the result now follows
as before using an application of Theorem 4.2 and Lemma 3.1.

To handle the casem = 2n+3, we consider the manifoldN×S1, whereN is a Generalized
Hantzsche-Wendt manifold of dimension m−2. Now the holonomy representation of N×S1

will still be diagonal, N × S1 does not admit a spinC structure by Lemma 3.1, and the rest
of the argument applies as before to complete the proof. □

7 Final remarks

7.1 Non-vanishing Stiefel-Whitney classes in other settings

In [5], the authors consider vanishing and non-vanishing of characteristic classes and numbers
of locally symmetric spaces as well as some other classes of manifolds. In [5, Section 6], they
raise the question: Compute the characteristic classes and/or the characteristic numbers for
the remaining known examples of non-positively curved Riemannian manifolds.

A subset of these “remaining known examples” arises from doubling cusped hyperbolic
manifolds. More formally: a finite-volume cusped hyperbolic n-manifold is homeomorphic
to the interior of a compact manifold X with boundary ∂X (which need not be connected),
with each boundary component a flat manifold of dimension n − 1. The manifold X can
be doubled along ∂X to form the closed manifold DX (the double of X). It is well-known
(see for example [15, Section 1]) that DX admits a metric of non-positive curvature. If
we now take X to come from one of the cusped hyperbolic m-manifolds M1 constructed in
Theorem 1.2 or Theorem 1.1, then the flat manifold N (resp. N × S1) embeds in DX with
trivial normal bundle, and so arguing as before, DX will have non-vanishing Stiefel-Whitney
classes in a certain range. Summarizing, we have the following corollary.

Corollary 7.1. Let n be a positive integer. For every m ≥ 2n + 2, there exist infinitely
many closed orientable m-manifolds M admitting a metric of non-positive curvature with
non-solvable fundamental group such that w2j(M) ̸= 0 for all 0 ≤ 2j ≤ n.

7.2 Almost complex structures

An almost complex structure on a smooth manifold M is defined to be an almost complex
structure on TM ; i.e. a bundle endomorphism J : TM → TM such that J2 = −id|TM. If
M admits an almost complex structure, then M is orientable and has even dimension.

It is known that if M is a smooth manifold with an almost complex structure, then M
admits a spinC structure [6]. Thus as a corollary of Theorem 1.1 we have:

Corollary 7.2. For all m ≥ 6 and even, every cusped arithmetic hyperbolic m-manifold is
commensurable with an orientable hyperbolic m-manifold which does not admit an almost
complex structure.
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Similarly, using the cusped hyperbolic m-manifolds M2 constructed in Theorem 1.1 we
can build analogous examples to those in Corollary 7.1 without a spinC structure and so
without almost complex structure, namely:

Corollary 7.3. For every m ≥ 2n + 2, there exist infinitely many closed orientable m-
manifolds M admitting a metric of non-positive curvature with non-solvable fundamental
group that do not admit a spinC structure. If m is even, these do not admit an almost
complex structure.
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