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1 Introduction
The study of finite group actions, both free and with fixed points, on closed Riemannian
manifolds has a long and rich history. In the context of low-dimensional geometry and
topology, two notable examples of this are Kerckhoff’s solution to the Nielsen Realization
Problem for surfaces [19] and in the setting of geometric 3-manifolds, it is known that any
such action is always conjugate to an isometric action (see [7, 12, 14], and [25]) which
formed part of Thurston’s geometrization program for 3-manifolds and 3-orbifolds. In this
paper we will be concerned with (isometric) finite group actions on hyperbolic manifolds
and in particular in dimension 3.

More specifically we will be interested in the following situation: two finite groups
G1 and G2 acting freely or with fixed points by (orientation-preserving) isometries on a
closed orientable hyperbolic 3-manifold X with X/G1

∼= X/G2 (here and throughout
the symbol ∼= in the context of manifolds or orbifolds will denote isometric). By volume
considerations, it is clear that in this setting, G1 and G2 must have the same order, and it is
also clear that if G1 and G2 are conjugate in Isom(X) then the quotients will be isometric.
The aim of this article is to provide constructions, both general and explicit, of examples of
closed orientable hyperbolic 3-manifolds X , and groups G1 and G2 that are not conjugate
in Isom(X) with X/G1

∼= X/G2. In fact, our methods provide examples of groups that
are not even isomorphic.

Our first result deals with free actions.

Theorem 1.1. There are infinitely many non-commensurable closed orientable hyperbolic
3-manifolds X , with the property that there are finite groups G1 and G2 satisfying:

(1) G1 and G2 act freely on X by orientation-preserving isometries on X with
X/G1

∼= X/G2.

(2) |G1| = |G2|, but G1 and G2 are not conjugate in Isom(X).

As mentioned above, since X/G1
∼= X/G2, it is immediate that |G1| = |G2|. How-

ever, by making the construction explicit we can actually exhibit examples of manifolds
X as in Theorem 1.1 for which G1 is an elementary abelian group of order p3 (for certain
primes p), and G2 is the non-abelian group of order p3 containing an element of order p2

(see §4.1).
Examples of closed orientable hyperbolic 3-manifolds X that are fibered over S1 ad-

mitting free actions by finite groups G1 and G2 with X/G1
∼= X/G2 and for which G1

and G2 are not conjugate in Isom(X) are given [21] (although they are unable to determine
whether these examples fall into infinitely many commensurability classes). By focusing
on very explicit examples, we can also impose topological conditions on the manifold X
and the quotients X/G1

∼= X/G2, namely we prove the following

Corollary 1.2. (1) There are infinitely many examples of (commensurable) closed ori-
entable hyperbolic 3-manifolds X that fiber over the circle with the property that
there are finite groups G1 and G2 as in the conclusion of Theorem 1.1 such that
X/G1

∼= X/G2 also fiber over the circle.

(2) There is a hyperbolic 3-manifold X which is a rational homology 3-sphere with the
property that there are finite groups G1 and G2 as in the conclusion of Theorem 1.1
such that X/G1

∼= X/G2 is also a rational homology 3-sphere.
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The finite groups G1 and G2 in both cases of Corollary 1.2 are of the type described
before Corollary 1.2 (i.e. elementary abelian p-groups and non-abelian p-groups of order
p3 for certain primes p). As far as the authors are aware, the example of Corollary 1.2(2) is
the first such example of a hyperbolic rational homology 3-sphere as in the conclusion of
Corollary 1.2(2).

By way of contrast, results in [28] and [29] consider the question to what extent G1

and G2 acting with fixed points must be conjugate in Isom(X) (for certain closed Rie-
mannian 3-manifolds X not necessarily hyperbolic), and for example [28, Theorem 8 and
Proposition 13] provides a uniqueness statement in certain settings (e.g. rational homology
3–spheres and most cyclic group actions).

Our methods also provide a construction when the action is not non-free.

Theorem 1.3. There are infinitely many non-commensurable closed orientable hyperbolic
3-manifolds X , with the property that there are finite groups G1 and G2 satisfying:

(1) G1 and G2 act by orientation-preserving isometries on X , have non-empty fixed-
point set, and with X/G1

∼= X/G2.

(2) |G1| = |G2|, but G1 and G2 are not conjugate in Isom(X).

The examples constructed in the proofs of Theorems 1.1, 1.3 and Corollary 1.2 come
from the class of arithmetic hyperbolic 3-manifolds (see Section 3 and [23] for further
details), and exploit the fact that such manifolds have fundamental groups with large com-
mensurator. The advantages of the arithmetic nature of the construction are first, it provides
infinitely many commensurability classes of examples, and second, the groups G1 and G2

can be made explicit.
As will be clear, the method of proof of Theorem 1.1 (see Section 2) is very general for

arithmetic groups (given a description of maximal groups in the commensurability class),
and although our main focus is hyperbolic 3-manifolds, we sketch some variations of Theo-
rem 1.1 in other dimensions; for example, we provide examples of Riemann surfaces which
admit actions of distinct finite p-groups with conformally equivalent quotients. Although
there is a vast literature on (p-)group actions on Riemann surfaces, we were unable to find
results which have precise overlap with ours, although questions of a similar nature have
been addressed (see [17, 18] and [20] to name a few). However, we do note that the method
of proof of [21] also provides examples of Riemann surfaces with finite groups G1 and G2

acting freely on X with X/G1 conformally equivalent to X/G2.
More care is needed in generalizing the proof of Theorem 1.3, but we expect that this

can also be done.

This paper has its origins in a visit of the third author to the second in the Spring of 2011
whilst the second author held a position at U.T. Austin. The first author sadly passed away
in November 2012, and the paper remained stubbornly unfinished since that time. Because
of Marston’s close personal and mathematical connection to Colin Maclachlan through his
visits to the U.K., and Colin’s to New Zealand, it seemed an appropriate opportunity to fin-
ish the paper, and submit as part of the celebration of Marston’s 65th birthday. The second
author has no doubts that Colin would have been very pleased with this arrangement, and
would have very much enjoyed raising a glass of Scotland’s national drink in Marston’s
honor!
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As was remarked upon above, results similar to Theorems 1.1, 1.3 have since appeared
in the literature (see [21], [22]), but our methods are very different, and so still seem worthy
of publication. The reader will likely note the influence of the first author in this work.
However, since the first author was neither able to verify nor influence the final version of
the paper, any errors in the paper should be attributed to the other two authors.

2 A basic construction
The basic idea of our construction is contained in Proposition 2.1 below. Although our
main focus is in dimension 3, we state it for hyperbolic manifolds of arbitrary dimension.
In Section 3 we provide a detailed discussion how to construct examples of hyperbolic
3-manifolds satisfying the hypothesis of Proposition 2.1 using arithmetic techniques in
dimension 3, and in Section 7 construct examples in dimension 2. In Section 8 we discuss
applying Proposition 2.1 to higher dimensional arithmetic hyperbolic manifolds, but we
have decided to only offer a sketch of a proof. The complete proof requires a detailed
discussion of maximal arithmetic lattices in this setting.

Recall that if Γ ⊂ Isom+(Hn) is a lattice, the commensurator of Γ is the group

Comm(Γ) = {g ∈ Isom+(Hn) | gΓg−1 is commensurable with Γ}. (2.1)

It was proved by Margulis [24], that Γ is an arithmetic lattice if and only if Comm(Γ) is
dense in Isom+(Hn). Furthermore, it is known in this case (see [8], [23, Theorem 11.4],
and Theorem 3.2 below for dimension 3 and [9] more generally) that there are infinitely
many distinct maximal arithmetic lattices commensurable with Γ. On the other hand, if
Γ ⊂ Isom+(Hn) is a non-arithmetic lattice, then [Comm(Γ) : Γ] < ∞. Moreover, in this
case, Comm(Γ) is the unique maximal discrete subgroup of Isom+(Hn) containing Γ.

Notation: For Γ ⊂ Isom(Hn), we denote by Γ+ the subgroup of index at most 2 obtained
as Γ ∩ Isom+(Hn).

Proposition 2.1. Let Γ0 ⊂ Isom(Hn) be a maximal arithmetic lattice, and let Γ1 be a
normal torsion-free subgroup of finite index in Γ0 which is contained in Γ+

0 . Assume that
there exists g ∈ Comm(Γ+

0 ) \ Γ
+
0 such that gΓ1g

−1 ⊂ Γ+
0 .

Then there exists ∆ ⊂ Γ+
0 for which X = Hn/∆ satisfies the conclusion of

Theorem 1.1.

Proof. Since gΓ1g
−1 ⊂ Γ+

0 , we deduce, by volume considerations, that gΓ1g
−1 has finite

index in Γ+
0 equal to [Γ+

0 : Γ1]. By maximality, the normalizer of Γ1 in Isom(Hn) is
Γ0. Note also that g ̸∈ Γ0, otherwise g ∈ Γ0 ∩ Comm(Γ+

0 ) ⊂ Γ0 ∩ Isom+(Hn) = Γ+
0

contradicting the hypothesis on g. It follows that gΓ1g
−1 ̸= Γ1.

Since the subgroup Γ1 ∩ gΓ1g
−1 has finite index in Γ0, it contains a finite index

subgroup ∆, normal in Γ0, namely the core (i.e. the intersection of all conjugates of
Γ1 ∩ gΓ1g

−1 in Γ0). Then X = Hn/∆ is a hyperbolic n-manifold which admits free finite
group actions by the groups G1 = Γ1/∆ and G2 = gΓ1g

−1/∆ with quotients Hn/Γ1
∼=

M ∼= Hn/gΓ1g
−1. Clearly |G1| = |G2| and G1 and G2 act by orientation-preserving

isometries. Furthermore, Isom(X) = Γ0/∆ since Γ0 is maximal. Now G1 ̸= G2 and
G1 is a normal subgroup of Isom(X). It follows that G1 and G2 cannot be conjugate in
Isom(X).
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Remark 2.2. A version of this Proposition still holds if we assume that Γ1 is not torsion-
free. In this case, to obtain the manifold X as in the conclusion of Theorem 1.3 we must
further require that ∆ as in the proof, is torsion-free. However, standard methods makes
this easy to arrange.

Remark 2.3. In the non-arithmetic setting, the discussion of the commensurator above
shows that there is a unique maximal lattice in the commensurability class; i.e. Γ0 in this
case. Hence, if in Proposition 2.1 we were to assume that Γ0 is non-arithmetic, then there
could be no element g as stated. However, a variation of Proposition 2.1 can be formulated:

Let Γ0 ⊂ Isom(Hn) be a maximal non-arithmetic lattice, and Γ < Γ+
0 a proper torsion-

free subgroup of finite index containing a normal subgroup ∆ of finite index that is not
normal in Γ0. Suppose that there exists a subgroup Γ1 with ∆ ⊂ Γ1 ⊂ Γ and g ∈ Γ0 such
that ∆ ⊂ gΓ1g

−1 ⊂ Γ with G1 = Γ1/∆ and G2 = gΓ1g
−1/∆ not isomorphic. Then the

conclusion of Theorem 1.1 holds.
This construction is very much in the spirit of that given in [21]. Indeed, it is likely that

"many" of the examples in [21] are non-arithmetic, so the above statement would cover the
construction of their examples.

Remark 2.4. We could have defined the commensurator of Γ in Isom(Hn). The group
Comm(Γ) defined at (2.1) is a subgroup of index at most 2 in this larger group. However,
we did not want to constantly keep distinguishing the "orientation-preserving" commensu-
rator and so we retain Comm(Γ) to be as defined at (2.1).

3 Preliminaries on arithmetic hyperbolic 3-manifolds
As mentioned in Section 1, our examples are built using arithmetic hyperbolic mani-
folds. Here we focus on the case of arithmetic Kleinian groups and arithmetic hyperbolic
3-orbifolds, and recall some relevant results and facts that will be needed (see [23] for
further details).

3.1 Arithmetic Kleinian groups

Arithmetic Kleinian groups are obtained as follows. Let k be a number field having exactly
one complex place, Rk its ring of integers and B a quaternion algebra over k which ramifies
at all real places of k. Let ρ : B → M(2,C) be an embedding, O an order of B, and
O1 the elements of norm one in O. Then Pρ(O1) ⊂ PSL(2,C) is a finite co-volume
Kleinian group, which is co-compact if and only if B is a division algebra, which in turn is
equivalent to B not being isomorphic to M(2,Q(

√
−d)), where d is a square-free positive

integer. Following [8], we denote the group Pρ(O1) by Γ1
O.

An arithmetic Kleinian group Γ is a subgroup of PSL(2,C) commensurable with a
group Γ1

O. In addition, we call Γ ⊂ Isom(H3) arithmetic if it is commensurable with an
arithmetic Kleinian group. We call Q = H3/Γ arithmetic if Γ is arithmetic.

The wide (i.e. up to conjugacy) commensurability class of an arithmetic Kleinian group
is determined by the isomorphism class of B (see e.g. [23, Theorem 8.4.1]). We can refine
this further by noting that if Ramf (B) denotes the finite set of prime ideals P of k where B
is ramified, i.e. BP = B⊗k kP is a division algebra, then the isomorphism class of B (as in
the definition of an arithmetic Kleinian group given above) is determined by Ramf (B). In
particular, using the previous remark, to construct infinitely many commensurability classes
of arithmetic hyperbolic 3-manifolds, it is sufficient to fix the field k and vary Ramf (B).
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Our arguments crucially depend on a fine understanding of maximal arithmetic Kleinian
groups defined using maximal and Eichler orders (intersections of maximal orders) in the
quaternion algebra B (see [8] or [23, Chapter 11] for more details). We will discuss this
further below, however, for convenience, we first provide a "warm-up" version of the gen-
eral construction that may be useful as a template for the reader to bear in mind. This will
construct finite volume non-compact examples that satisfy the conclusion of Theorem 1.1.

3.2 Warm-up construction

The group Γ = PGL(2,Z[i]) is a maximal arithmetic Kleinian group, although it is
not maximal in Isom(H3). The maximal group is obtained as the group generated by
< τ,PGL(2,Z[i]) > where τ is the reflection on H3 obtained by extension of complex
conjugation on C. We will let this group be denoted by Γ0. Let A ⊂ Z[i] be an ideal, and
let

Γ(A) = ker{ϕA : PGL(2,Z[i]) → PGL(2,Z[i]/A)},

which will be a subgroup of the Picard group PSL(2,Z[i]) for most ideals A ⊂ Z[i], e.g.
those of odd norm.

We will focus on ideals A of the form pZ[i] where p ∈ Z is a prime congruent to
3 mod 4, and so the ideal pZ[i] remains prime in Z[i]. It is easy to check that Γ(p) =
Γ(pZ[i]) is torsion-free. Note that since complex conjugation preserves the ideal pZ[i],
Γ(p) is also a normal subgroup of Γ0.

Now it is a simple matter to check that the element σp = P

(
0 −1/

√
p√

p 0

)
normal-

izes the subgroup Γ0(p) = ϕ−1
p (Bp) where Bp is the group of upper triangular matrices

in PSL(2,Z[i]/pZ[i]). In particular, σp ∈ Comm(PGL(2,Z[i])). Moreover, and most
importantly in our situation, observe that

σpΓ(p)σ
−1
p = P{

(
1 + ap b
cp2 1 + dp

)
: a, b, c, d ∈ Z[i], and determinant 1}.

With this in hand, we can now apply Proposition 2.1 to the groups Γ0 and Γ1 = Γ(p), with
g = σp.

From above, the group gΓ1g
−1 contains the group ∆ = Γ(p2) which is also normal in

Γ0. Now take X = H3/∆, and the groups G1 and G2 to be given by Γ1/∆ and gΓ1g
−1/∆

respectively. This finishes the construction of the manifold X as in Theorem 1.1 in this
setting.

To get a version of Theorem 1.3, we continue to use the group Γ0 as above, and tweak
the above construction as follows. In this case we choose the ideal < 1+ i > and construct
the group Γ(1 + i). Again, since complex conjugation preserves the ideal < 1 + i >,
Γ(1 + i) is a normal subgroup of Γ0. However, Γ(1 + i) is not torsion-free since the

element P
(
i 0
0 −i

)
∈ Γ(1 + i). Thus we cannot take this group to be Γ1. However,

setting g = P

(
0 −1/

√
1 + i√

1 + i 0

)
, the group Γ1 can be constructed by passing to a

torsion-free subgroup of Γ(1 + i) ∩ gΓ(1 + i)g−1, and taking its core in Γ0. This is the
group defining the manifold X in Theorem 1.3. We refer the reader to the end of the proof
of Theorem 1.3 in Subsection 6.2 for details of why the groups G1 and G2 are not conjugate
in this case.
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The discussion that follows in Subsections 3.3 and 3.4 provides the necessary general-
ization of the framework described above that will allow us to pass to the closed case, and
thereby prove Theorem 1.1.

Remark 3.1. In the argument above in the case of Γ(1 + i) and

g = P

(
0 −1/

√
1 + i√

1 + i 0

)
,

then as in the first case of Γ(p), the intersection Γ(1 + i) ∩ gΓ(1 + i)g−1 contains the
principal congruence subgroup Γ((1+i)2) = Γ(2) which is a normal torsion-free subgroup
of PSL(2,Z[i]) (being the fundamental group of a link complement in S3 [5]), so in fact,
in this case one can take ∆ = Γ(2) and so there is no need to pass to any further subgroup
of finite index.

3.3 Orders and maximal groups

The argument of Subsection 3.2 provides the template, and so to arrange that the manifolds
are closed we use the discussions in Subsection 3.1 to replace M(2,Q(i)) with quaternion
division algebras over a number field with one complex place, generalize the groups Γ(p)
and Γ(1 + i) using the principal congruence subgroups described in Subsection 3.4 below,
and generalize the group Γ0(p) and element σp using the theory of Eichler orders and their
normalizers as we now describe.

Thus let O ⊂ B be a maximal order and E ⊂ O an Eichler order, i.e. the intersection
O ∩O′, for some maximal order O′ ̸= O. The Eichler order E is said to be of square-free
level S, where S is a finite set of prime ideals of k, disjoint from Ramf (B), if, locally at
each finite place, EP = OP = O′

P if P ̸∈ S and, if P ∈ S, then EP = OP ∩ O′
P has

level P so that OP and O′
P are adjacent maximal orders in the tree of maximal orders in

BP ∼= M2(kP) (see [23, Chapter 6.5]). When S = ∅, we simply get the maximal order O.
Indeed, it can always be arranged that for square-free level S and P ∈ S we have

EP = TP where

TP =

{(
a b
πc d

)
| a, b, c, d ∈ RP

}
, (3.1)

and RP ⊂ kP is the valuation ring with uniformizer π (see [23, Chapter 6.5]).
Let N(E) and N(O) denote the normalizers of E and O respectively in B∗. Their

images, Pρ(N(E)) and Pρ(N(O)) in PGL(2,C) ∼= PSL(2,C), denoted by ΓE and ΓO
respectively, are arithmetic Kleinian groups and any arithmetic Kleinian group is conjugate
to a subgroup of some such ΓE or ΓO (see [8] and [23, Chapter 11.4]).

Note that since conjugation preserves the norm, the groups ΓO and ΓE normalize the
groups Γ1

O and Γ1
E (the image in PSL(2,C) of E1 the elements of norm one in E). For

convenience we state the following result of Borel [8](see also [23, Chapter 11.4]).

Theorem 3.2. Fix a maximal order O ⊂ B. Then there exist infinitely many distinct sets
of prime ideals Si ⊂ Rk and Eichler orders Ei ⊂ O of level Si such that ΓEi are distinct
maximal arithmetic Kleinian groups.

Remark 3.3. We single out two cases of Theorem 3.2 that we will make use of: if k is
quadratic imaginary or cubic with one complex place and has class number 1, P a k-prime
ideal and S = {P} then the group ΓE can be proved to be maximal (see [8] and [23,
Chapters 6.7 and 11.4]).



8 Art Discrete Appl. Math. 5 (2022) #P3.05

3.4 Principal congruence subgroups

For O a maximal order, we now describe a distinguished class of subgroups of Γ1
O, known

as principal congruence subgroups. To that end, let I ⊂ B be a 2-sided integral ideal (see
[23, Chapter 6] for further details). Then I ⊂ O and O/I is a finite ring. Define:

O1(I) = {α ∈ O1 | α− 1 ∈ I}.

The corresponding principal congruence subgroup of Γ1
O is Γ(O(I)) = Pρ(O1(I)).

Since I is a 2-sided ideal, it follows that Γ(O(I)) is a normal subgroup of finite index
in Γ1

O. Indeed, we can say more.

Lemma 3.4. The principal congruence subgroups Γ(O(I)) are normal subgroups of ΓO.
Thus the normalizer of Γ(O(I)) in PSL(2,C) is ΓO.

Proof. The second statement follows from the first since, as noted above, ΓO is maximal.
Now let α ∈ O1(I) and x ∈ N(O). Then α ∈ 1+ I and x(1+ I)x−1 = 1+ xIx−1. Now
I and xO are elements of the set of two-sided integral ideals, which is an abelian group
(see [23, Chapter 6.7]). This, together with integrality of I gives:

xIx−1 = (xO)I(Ox−1) = (xO)I(xO)−1 = I,

and we deduce that xαx−1 ∈ O1(I).

In addition, for most ideals I , the groups Γ(O(I)) are torsion-free. We record the
following for convenience which needs some additional notation (see [23, Chapters 6.5,
6.6] for details). Apart from a finite set of k-primes T (I), IP = OP . For P ∈ T (I), we
have IP = πnPOP where π is a uniformizer for kP .

Proposition 3.5. In the notation above, suppose for P ∈ T (I) the following holds:

(1) P /∈ Ramf (B);

(2) P does not ramify in k | Q;

(3) P is not dyadic (i.e. P does not divide 2).

Then Γ(O(I)) is torsion-free.

A group Γ ⊂ Γ1
O is called a congruence subgroup if there is some ideal I such that

Γ(O(I)) ⊂ Γ.
As an example of a congruence subgroup that we will exploit (and the analogue of

Γ0(p) in Subsection 3.2), it is shown in [1] that if E ⊂ O is an Eichler order of square-free
level S, then Γ1

E ⊂ Γ1
O is a congruence subgroup. Using (3.1), we can be more explicit. If

ΓE is of square-free level S, then for each P /∈ S, we have Ep = OP = M2(RP) and for
P ∈ S we have EP = TP where TP is as defined at (3.1).

Then in the notation above, defining I locally by IP = πOP for each P ∈ S and
IP = OP otherwise, it follows that, T (I) = S. Hence, for P ∈ S and α ∈ SL(2, RP) is
such that α− 1 ∈ IP then α ∈ T 1

P . It now follows that Γ(O(I)) ⊂ Γ1
E .

We will next exploit the feature of having a "large" commensurator which requires an
additional piece of terminology.

For a maximal order O in B, choose an Eichler order E of square-free level S such that
ΓE is maximal (using Theorem 3.2). By maximality, we can find elements g ∈ ΓE such
that g ̸∈ ΓO. Call such an element admissible and note that g ∈ Comm(ΓO).



C. Maclachlan et al.: Some remarks on group actions on hyperbolic 3-manifolds 9

Lemma 3.6. Suppose that Γ1
E contains a principal congruence subgroup Γ(O(I)) and that

g is an admissible element of ΓE . Then gΓ(O(I))g−1 is commensurable with, but distinct
from, Γ(O(I)).

Proof. Commensurability is straightforward since g ∈ ΓE . If gΓ(O(I))g−1 = Γ(O(I)),
then g ∈ ΓO by Lemma 3.4. But this contradicts the admissibility of g.

4 Proof of Theorem 1.1
We now focus on constructing explicit examples in dimension 3 using the material from
Section 3.

4.1 General construction

Let k be a number field with exactly one complex place. It will be convenient in the
construction that follows to show that, for certain k, maximal arithmetic subgroups Γ of
Isom(H3) are Kleinian groups, i.e. Γ = Γ+.

Lemma 4.1. If [k : Q] is odd or [k : Q] is even but k has no subfield of index 2, then any
maximal arithmetic Kleinian group defined over k will be maximal in Isom(H3).

Proof. Suppose that Γ is a maximal arithmetic Kleinian group which is properly contained
in Γ0, a maximal discrete subgroup of Isom(H3). Note that it follows that [Γ0 : Γ] = 2,
otherwise Γ is properly contained in Γ+

0 which contradicts maximality.
Let Γ(2) denote the subgroup of Γ generated by squares of elements of Γ. Then Γ(2)

is a finite index characteristic subgroup of Γ, and so is normal in Γ0. Hence the orbifold
H3/Γ(2) admits an orientation-reversing isometry.

By [23, Theorem 8.3.1], the field k can be identified with the field Q(trγ : γ ∈ Γ(2)),
and by [27, Proposition 3.4], the existence of the orientation-reversing isometry on H3/Γ(2)

implies that k is stable under complex conjugation. As k is a field with one complex place,
it follows that [k : k ∩ R] = 2. This contradicts the choice of k.

Proof of Theorem 1.1: In the light of Lemma 4.1, we now assume that [k : Q] is odd, and
let B be a quaternion algebra defined over k, ramified at all real places. The discussion in
Subsection 3.1 immediately implies that all arithmetic hyperbolic 3-manifolds arising from
B/k are closed. We make an additional assumption about Ramf (B) to ensure torsion-
freeness in principal congruence subgroups.

Thus let R denote the finite set of prime ideals P of k such that, either P ∈ R is a
dyadic prime of k or, if pZ = P ∩ Z, then p is ramified in k. We assume that Ramf (B)
contains R.

Let O be a maximal order in B so that ΓO is a maximal arithmetic Kleinian group and,
by Lemma 4.1, also maximal in Isom(H3). Let E ⊂ O be an Eichler order of square-
free level S, chosen so that ΓE is maximal (e.g. as in Theorem 3.2). Then as noted in
Subsection 3.4, Γ1

E contains a principal congruence subgroup Γ(O(I)) where I is defined
by S. By definition S is disjoint from Ramf (B) (and so from R), so it follows from
Proposition 3.5 that Γ(O(I)) is torsion-free.

Choose an admissible element g in ΓE (which as noted in Subsection 3.4 exists and
is an element of Comm(ΓO)). By Lemma 3.4, Γ(O(I)) is a normal subgroup of finite
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index in ΓO. Using the fact (recall Subsection 3.3) that Γ1
E is a normal subgroup of ΓE we

deduce:
gΓ(O(I))g−1 ⊂ gΓ1

Eg
−1 = Γ1

E ⊂ Γ1
O ⊂ ΓO.

Furthermore, by Lemma 3.6, gΓ(O(I))g−1 ̸= Γ(O(I)). Now apply Proposition 2.1 with
Γ0 = ΓO and Γ1 = Γ(O(I)).

By Theorem 3.2 we can choose infinitely many sets S, giving infinitely many examples
where Theorem 1.1 holds in a fixed commensurability class. From Subsection 3.1, the
commensurability class of ΓO is determined by the isomorphism class of B which, in turn,
is determined by its ramification set. Hence we have an infinite number of choices of
Ramf (B) subject to the restriction that R ⊂ Ramf (B), and Theorem 1.1 now follows.

4.2 Specific examples

We now refine the construction in Subsection 4.1 to provide more specific examples of
finite groups. In particular we will be able to gain extra control in the construction of a
normal subgroup ∆ as in the proof of Proposition 2.1, and this will allow us to get control
of G1 and G2.

We fix k = Q(x) where x3+x−1 = 0 so that k has one complex place, has discriminant
−31, and has class number 1. Indeed, in what follows, k can be any cubic number field k
with one complex place having class number 1. Let B be a quaternion algebra defined over
k with Ramf (B) = {Q} where the prime ideal Q does not divide any prime p that splits
completely to k (e.g. in this case we can take Q to be the unique prime dividing 5 of norm
53).

Let p ∈ Z be an odd prime that splits completely to k: that there are infinitely many
such primes p is a well-known consequence of Cebotarev Density theorem (see for example
[23, Chapter 0]). Let P ⊂ Rk be a prime dividing such a p, and so in particular NP = p.

Define the two-sided integral ideal I = PO. This can be done locally as follows: For
all k-prime ideals Q let OQ = M2(RQ), and then set IJ = OJ for all primes J ̸= P
and IP = πOP . The Eichler order E is then defined locally by EJ = OJ for J ̸= P and
EP = TP as at (3.1) so that S = {P} and Γ1

E contains Γ(O(I)). Since p is odd and p ̸= 31,
P is unramified in k | Q, and Proposition 3.5 applies to show that Γ(O(I)) is torsion-free.

Applying Remark 3.3, the group ΓE is maximal. Indeed, an examination of Borel’s
construction [8] and [23, Chapters 6.7 and 11.4] provides an element α ∈ N(E) with

g = Pρ(α) so that locally at P , g acts as conjugation by the element
(

0 1
πP 0

)
, that is to

say, it acts locally on Γ(O(I)) by (cf. the discussion in Subsection 3.2)

g

(
1 + aπP bπP
cπP 1 + dπP

)
g−1 =

(
1 + dπP c
bπ2

P 1 + aπP

)
. (4.1)

With this in place, we now define a two-sided O-ideal I ′ by I ′J = OJ for J ̸= P and
I ′P = π2

POP so that Γ(O(I))∩gΓ(O(I))g−1 ⊃ Γ(O(I ′)). Now by Lemma 3.4, Γ(O(I ′))
is a normal subgroup of ΓO. Thus the manifold X = H3/Γ(O(I ′)) admits free actions by
the groups G1 = Γ(O(I))/Γ(O(I ′)) and G2 = gΓ(O(I))g−1/Γ(O(I ′)).

We now identify the groups G1 and G2 explicitly. Note first that since B is unramified
at P we have:

Γ1
O/Γ(O(I ′)) ∼= PSL(2, RP/π

2
PRP)
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and G1 is the kernel of the reduction homomorphism PSL(2, RP/π
2
PRP) →

PSL(2, RP/πPRP). Since NP = p, G1 is an elementary abelian group of order p3

generated by the images of the matrices(
1 πP
0 1

)
,

(
1 0
πP 1

)
,

(
1 + πP 0

0 1− πP

)
.

The group G2 has the same order p3 as G1. To identify G2, we consider the reduction of
gΓ(O(I))g−1 locally modulo π2

P . From (4.1), the image modulo the ideal π2
PRP consists

of matrices of the form
(
1 + dπP c

0 1 + aπP

)
. From this description it is easy to check

that G2 is non-abelian and contains the element
(
1 1
0 1

)
of order p2. We summarize this

discussion as follows.

Corollary 4.2. For infinitely primes p, we can find a closed hyperbolic 3-manifold Xp such
that Xp admits free, orientation-preserving actions by finite groups of isometries, G1 and
G2 such that

(1) G1 and G2 are finite groups of order p3 with Xp/G1
∼= Xp/G2.

(2) G1 is isomorphic to an elementary abelian group of order p3, and G2 is the unique
non-abelian group of order p3 which contains an element of order p2.

By varying the prime Q ramifying the quaternion algebra B/k we also obtain infinitely
many commensurability classes of manifolds as in Corollary 4.2. This again follows from
an application of the Cebotarev Density theorem which provides infinitely many rational
primes whose inertial degrees are greater than 1.

5 A rational homology 3-sphere and fibered examples
In the construction of the examples stated in Corollary 1.2, we will make use of the cubic
number field k = Q(x) where x3 − x2 + 1 = 0. This has one complex place, discriminant
−23, and class number 1. Let B be the quaternion algebra defined over k with Ramf (B) =
{Q} where Q is the unique k-prime ideal of norm 5. This determines the commensurability
class of the Weeks manifold (see [23, Chapters 4.8.3 and 9.8.2]), which is the smallest
volume closed orientable hyperbolic 3-manifold [16].

As we describe below, what is important for us is that if O ⊂ B is the unique (up to
B∗-conjugacy) maximal order, the group Γ1

O contains subgroups of index 24 that are con-
gruence subgroups of certain levels which are the fundamental groups of a fibered hyper-
bolic 3-manifold or of a rational homology 3-sphere. In Section 9 we include some Magma
[10] computations, which shows, amongst other things, that Γ1

O has 11 conjugacy classes
of subgroups of index 24, and unique conjugacy classes with abelianization Z⊕Z/11Z and
Z/7Z⊕ Z/42Z. We will make use of these in what follows. Note that the presentation for
Γ1
O that is used in the Magma calculations comes from a description of the orbifold H3/Γ1

O
as (3, 0) Dehn surgery on the knot 52 (see [11, Subsection 5.4]).

5.1 Fibered examples

From [11, Proof of Lemma 9.3], the manifold M arising as the double cover of 0-surgery
on the knot 62 has fundamental group that is a subgroup of Γ1

O of index 24 and has
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H1(M,Z) ∼= Z ⊕ Z/11Z. As we remarked upon above, Γ1
O has a unique such subgroup

(up to conjugacy), which we denote by Γ. As shown in Section 9, Magma computes the
core C of Γ in Γ1

O and is the kernel of a homomorphism onto PSL(2,F23), the finite simple
group of order 6072. As is also discussed in [11, Subsection 9.1] there are two k-primes
of norm 23, one of which is ramified in k | Q (recall the discriminant is −23) and one
unramified. Denote these primes by P1 and P2 respectively, and these give rise to the 2-
sided integral ideals I1 = P1O and I2 = P2O. Since B is unramified at both of P1 and
P2, it follows that Γ1

O/Γ(O(Ij)) ∼= PSL(2,F23) for j = 1, 2. Putting all of this together
we may deduce that C = Γ(O(Ij)) for one of j = 1, 2. We will not need to explicitly
identify which one, and simply denote the relevant subgroup as Γ(O(I)). In particular,
since H3/Γ(O(I)) → M = H3/Γ it is fibered over the circle. We now apply Proposition
2.1 together with Lemma 4.1, using an admissible element from ΓE where E is the Eichler
order of level S = {Pj} for j = 1 or 2 (using Remark 3.3).

To pass to infinitely many examples, we can use the principal congruence subgroups
Γ(O(In)) for n ≥ 2 an integer. Arguing as in Subsection 4.2, in particular the local
conjugation given by (4.1), shows that Γ(O(In+1)) ⊂ Γ(O(In)) ∩ gΓ(O(In))g−1 and so
the existence of infinitely many fibered examples follows since H3/Γ(O(In)) is fibered for
all n ≥ 1.

Remark 5.1. At present we do not know how to produce infinitely many commensurability
classes. Given [2] we know that every closed hyperbolic 3-manifold has a finite cover that
fibers over the circle. What is needed is that the finite covers can be identified as congruence
subgroups (as in the example above). In principal this should be possible, and note the work
of Agol and Stover [4] in this direction.

5.2 A rational homology 3-sphere

As can be checked there is a unique k-prime ideal P of norm 7, which is unramified in
B. Taking I to be the two-sided integral ideal PO it follows (as in Subsection 4.2) that
Γ1
O/Γ(O(I)) ∼= PSL(2,F7). In particular, the Magma computations in Section 9 shows

that there is a unique index 24 subgroup, l[9], which has core a normal subgroup of
index 168 with quotient group being simple. Hence the group l[9] is a congruence
subgroup of Γ1

O containing Γ(O(I)) of index 7. From Section 9, we also find that the
abelianization of Γ(O(I)) is Z/7Z ⊕ Z/7Z ⊕ Z/42Z. Hence there is a unique homo-
morphism ϕ : Γ(O(I)) → Z/7Z ⊕ Z/7Z ⊕ Z/7Z. Now arguing as in Subsection 4.2, it
follows that Γ(O(I))/Γ(O(I2)) ∼= Z/7Z⊕Z/7Z⊕Z/7Z and so we take as the manifold
X = H3/Γ(O(I2)). Choosing an admissible element g ∈ ΓE where E is the Eichler or-
der of level S = {P} (using Remark 3.3), the local conjugation argument given by (4.1)
again shows that Γ(O(I2)) ⊂ Γ(O(I))∩gΓ(O(I))g−1. Applying Proposition 2.1 together
with Lemma 4.1 and note from Section 9 that X is a rational homology 3-sphere since the
abelianization of Γ(O(I2)) (viewed as kerϕ) is still finite (albeit gigantic!). This completes
the proof.

6 Proof of Theorem 1.3
Proposition 3.5 shows that the groups Γ(O(I)) are typically torsion-free. The proof of
Theorem 1.3 will exploit a situation where these groups are not torsion-free, and apply
Proposition 2.1 (and see Remark 2.2 following it). To construct examples in this setting,
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we begin with some preliminary discussion that will help locate elements of order 2 in
principal congruence subgroups.

6.1 Elements of order 2 in Γ1
O

First we recall the following (see [23, Theorem 12.5.4] for details). Let B be a quaternion
algebra over a number field k, let L = k(i) and let O be a maximal order in B. Then
P(B1) < PSL(2,C) contains an element of order 2 if and only if i ̸∈ k and no finite place
at which B is ramified, splits in L | k. Moreover, Γ1

O will contain an element of order 2
unless B is unramified at all finite places, and every dyadic place of k splits in L | k.

Indeed, if we consider L ↪→ B being given as the subfield k(u) ⊂ B where u is the
image of i, then for a suitable choice of maximal order O, u (or simply abusing notation i)
will project to an element of order 2 in Γ1

O.

6.2 Explicit commensurability classes of examples

We now fix k = Q(
√
−2), with ring of integers Rk and p a rational prime with p ≡ 3

mod 8. Hence, pRk = PpP ′
p. Let Bp/k be the quaternion algebra ramified at exactly the

places corresponding to Pp and P ′
p. This can be described explicitly by the Hilbert Symbol

(see [23, Chapter 2.1]) (
−1 , −p

k

)
.

In addition, it can be checked that a maximal order Op can be explicitly described as the
Rk-submodule of Bp given by Rk[1, i, (i+ j)/2, (1 + ij)/2].

Given the discussion in Subsection 6.1 with L = k(i) = Q(eπi/4) we see that L
embeds in Bp. In addition, RL embeds in Op. The reason for this is that it embeds in some
maximal order by [15], and since k has class number 1 there is a unique type of maximal
order in all of the quaternion algebras Bp.

For convenience we suppress the subscript p in what follows. By construction, Γ1
O has

an element of order 2 given as the image of i. Let JL (resp. J) denote the principal L-
ideal (resp. k-ideal) generated by i − 1 (resp.

√
−2). Notice that

√
−2 = (1 − i)v where

v = (−
√
2+

√
−2)

2 ∈ R∗
L, so

√
−2 ∈ JL, from which it follows that JL ∩ Rk = J . Note

also that 2 is totally ramified in L | k (i.e. 2RL = P4
2 for some ideal P2 ⊂ RL of norm

2), and (i − 1)RL = JRL. Now take I ⊂ O to be the two-sided ideal JO. The previous
discussion shows that i− 1 ∈ I , and so i determines an element of order 2 in Γ(O(I)).

We also note that as in the discussion in Subsection 3.2, there is an orientation-reversing
involution (an extension of complex conjugation in C to H3) that normalizes Γ1

O. This
follows since, by the explicit nature of O, the involution on B given by the extension of
complex conjugation preserves O.

Proof of Theorem 1.3: Using the notation above, we see that B is a division algebra, and so
Γ1
O is cocompact. Since there are infinitely many primes p ≡ 3 mod 8, there are infinitely

many isomorphism classes of quaternion algebras and so as before, Subsection 3.1 provides
infinitely many commensurability classes of arithmetic hyperbolic 3-manifolds.

As discussed above, Γ1
O is normalized by an orientation-reversing involution, so that

unlike the proof of Theorem 1.1, the group ΓO is maximal in PSL(2,C) but is not maximal
in Isom(H3). Denote the maximal group in Isom(H3) containing ΓO by GO (so that
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G+
O = ΓO). With I as above, the group Γ(O(I)) will again play the role of Γ1. The

explicit description given of I and O implies that Γ(O(I)) is also normal in GO.
We now argue as in Subsection 4.2: apply Lemma 3.6 for a suitable choice of Eichler

order E ; namely the Eichler order of square-free level {J}, and just as in Subsection 3.4,
Γ1
E contains Γ(O(I)). Remark 3.3 shows that ΓE is a maximal arithmetic Kleinian group.

Choose an admissible element g ∈ ΓE and apply Proposition 2.1. As in Subsection 4.2,
Γ(O(I2)) ⊂ Γ(O(I)) ∩ gΓ(O(I))g−1. This remains normal in GO since I2 = 2O. If
Γ(O(I2)) is torsion-free we use this group as we did previously. Otherwise we can pass to
a torsion-free subgroup and then to its core ∆ in GO, as in the proofs of Proposition 2.1
and Theorem 1.1.

With this we have constructed a hyperbolic 3-manifold X = H3/∆ that admits actions
by groups of orientation-preserving isometries G1 and G2 acting on X with fixed points and
with X/G1 isometric to X/G2. That G1 and G2 are not conjugate subgroups of Isom(X),
or equivalently Γ(O(I)) and gΓ(O(I))g−1 are not conjugate in GO, follows as in the proof
of Theorem 1.1 since Γ(O(I)) is normal in GO. This completes the proof.

Remark 6.1. With reference to the proof of Theorem 1.3, it seems likely that the group
Γ(O(I2)) is torsion-free, but we will not pursue this here.

7 Dimension 2

We now discuss a specific analogue of Theorem 1.1 and the arithmetic constructions given
in Subsection 4.2 in the context of hyperbolic surfaces, or equivalently, on emphasizing
complex structures, Riemann surfaces. We prove the following.

Theorem 7.1. For infinitely many primes p, there exist compact hyperbolic (Riemann)
surfaces Xp with the property that there are finite p-groups G1,p and G2,p which are non-
isomorphic, which act freely on Xp with X/G1,p

∼= X/G2,p (or equivalently X/G1,p and
X/G2,p are conformally equivalent Riemann surfaces).

Borel’s work [8] applies in this setting, and the structure of maximal arithmetic lattices
in Isom(H2) is entirely analogous to what is described in Subsections 3.3, 3.4. So, although
the proof given below can be carried out in more generality, we believe it is instructive
to simply focus on one commensurability class: that given by the indefinite quaternion
algebra B/Q ramified at the primes 2 and 3. If O ⊂ B is a maximal order, then it is
known that Γ+

O = ΓO ∩ PSL(2,R) is the (2, 4, 6) Fuchsian triangle group and ΓO is the
group generated by reflections in the faces of this triangle (see [23, Chapter 13.3]). Note the
difference with the Fuchsian case in comparison to the case of arithmetic Kleinian groups is
that N(O) can contain elements of determinant −1, thereby giving elements in PGL(2,R).
However, a version of Remark 3.3 continues to hold in this setting.

Proof. In the notation established above, we let Γ0 = ΓO, and for p ∈ Z a prime different
from 2, 3 we construct the principal congruence subgroup Γ(O(I(p))) where I(p) is the
two-sided integral ideal defined as pO. We now follow the argument in Subsection 4.2:
using a version of Remark 3.3, we may build an Eichler order Ep of level S = {p}, a
maximal group ΓEp

, an admissible element gp, and then follow the argument in Subsec-
tion 4.2 to build the required Riemann surface Xp with the free actions of groups G1 and
G2. That the covering groups G1 and G2 are finite p-groups (of order p3) follows as in
Subsection 4.2.
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Example 7.2. We take the case of p = 5 in Theorem 7.1. In this case, it can be shown
that Γ1

O is a Fuchsian group of signature (0; 2, 2, 3, 3) (see for example [30]) which has
co-area 2π/3. By construction, Γ1

O/Γ(O(I(5))) ∼= PSL(2, 5), and using the co-area com-
puted above, determines a 60-fold Riemann surface cover Σ = H2/Γ(O(I(5))) of H2/Γ1

O.
Hence Σ has genus 7. The surface X5 we want is then a (Z/5Z)3 cover of Σ, so of genus
751, which also admits a free action of a non-abelian 5 group of order 53 with quotient
isometric to Σ.

8 Higher dimensions
As mentioned in Section 2 we will only sketch the proof of an analogous result to Theo-
rem 1.1 in higher dimensions. This will make use of so-called arithmetic groups of simplest
type (we refer the reader to [26, Subsection 6.8] for a fuller discussion of these arithmetic
lattices). For convenience, we restrict to one particular family in each dimension n ≥ 4, the
generalizations will be clear. We emphasize that this is a sketch of a proof, and so we will
not designate with "Theorem" as some additional discussion of maximal groups is required
to give a complete proof:

For each n ≥ 4, there are infinitely many non-commensurable closed orientable hyperbolic
n-manifolds X , with the property that there are finite groups G1 and G2 satisfying:

(1) G1 and G2 act freely by orientation-preserving isometries on X with X/G1
∼=

X/G2.

(2) |G1| = |G2|, but G1 and G2 are not conjugate in Isom(X).

Sketch Proof: We recall some background on certain arithmetic subgroups of Isom(Hn).
Let d be a square-free positive integer, and let fn,d denote the quadratic form:

fn,d = x2
0 + x2

1 + . . .+ x2
n−1 −

√
dx2

n.

This has signature (n, 1), and after applying the non-trivial Galois automorphism σ given
by

√
d 7→ −

√
d the resultant quadratic form fσ

n,d has signature (n+1, 0); i.e. the quadratic
form fn,d is equivalent over R to the quadratic form Jn = x2

0 +x2
1 + . . .+x2

n−1 −x2
n, and

the quadratic form fσ
n,d is equivalent over R to x2

0 + x2
1 + . . .+ x2

n−1 + x2
n.

Let Fn,d be the symmetric matrix associated to the quadratic form fn,d and let O(fn,d)
(resp. SO(fn,d)) denote the linear algebraic groups defined over k described as:

O(fn,d) = {X ∈ GL(n+ 1,C) : XtFn,dX = Fn,d} and

SO(fn,d) = {X ∈ SL(n+ 1,C) : XtFn,dX = Fn,d}.

For a subring L ⊂ C, we denote the L-points of O(fn,d) (resp. SO(fn,d)) by O(fn,d, L)

(resp. SO(fn,d, L)). Let Rd ⊂ Q(
√
d) denote the ring of integers.

Note that, given this set-up, there exists T ∈ GL(n+1,R) such that T−1O(fn,d,R)T =
O(n, 1), in which case, Isom(Hn) can be identified with the group O+(Jn,R) = O+(n, 1),
which is the subgroup of O(n, 1) preserving the upper-half sheet of the hyperboloid
Jn = −1. A similar discussion holds for T−1SO(fn,d,R)T = SO(n, 1) and groups
of orientation-preserving isometries. In particular this conjugation provides subgroups
Λ ⊂ O(fn,d, Rd) and Λ+ ⊂ SO(fn,d, Rd) whose images lie in O+(n, 1) and SO+(n, 1)
respectively.
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A subgroup Γ < Isom(Hn) commensurable with the image in Isom(Hn) of the sub-
group of O(fn,d, Rd) (under the conjugation map described above) is an example of an
arithmetic lattice of simplest type. The corresponding arithmetic hyperbolic n-manifold
M = Hn/Γ is also called arithmetic of simplest type. By construction, all the arithmetic
lattices of simplest type we have described above are cocompact.

For an ideal I ⊂ Rd, let Γ(I) denote the principal congruence subgroup of O(fn,d, Rd)
obtained as the kernel of the homomorphism:

πI : O(fn,d, Rd) → O(fn,d, Rd/I),

and note that so long as I is not a dyadic prime ideal, Γ(I) ⊂ SO(fn,d, Rd).
We now fix the ideal I to be considered, namely let p ∈ Z be an odd prime that is

inert to Rd; i.e. pRd remains a prime ideal which we denote by P . In this case, Γ(P) is
torsion-free (see [26, Subsection 4.8]), and the groups Λ and Γ(P)∩Λ+ will play the roles
of Γ0 and Γ1 in Proposition 2.1.

As before, the key point now is a detailed understanding of maximal arithmetic lat-
tices in this setting. As in the case of arithmetic Kleinian groups, these maximal arithmetic
groups arise as normalizers of certain number theoretically defined arithmetic lattices (us-
ing Bruhat-Tits theory), and are again congruence subgroups (see [9] and also [3] and [6]
that deal explicitly with the case of O+(n, 1)). In particular our group Λ is a maximal
discrete subgroup of O+(n, 1) and using the description of maximal discrete groups in the
commensurability class of Λ given in [9] it is possible to find an element g as required by
Proposition 2.1.

9 Magma calculations
In what follows g is the group Γ1

O of Section 5. The presentation was computed using
SnapPy [13]. The group Γ from Subsection 5.1 is l[2], and the index 24 subgroup from
Subsection 5.2 is l[9]. The routine CosetAction produces a finite image group i and
a kernel k which is the core of the relevant subgroup. The routine pQuotient is used to
compute the kernel of a homomorphism a to the elementary abelian 7-group (Z/7Z)3.

> g<a,b>:=Group<a,b|b^3,a^2*b^-1*a^-2*b^-1*a^2*b*a^-1*b>;
> print AbelianQuotientInvariants(g);
[ 3 ]
> l:=LowIndexSubgroups(g,<24,24>);
> print #l;
11
> print AbelianQuotientInvariants(l[1]);
[ 30 ]
> print AbelianQuotientInvariants(l[2]);
[ 11, 0 ]
> print AbelianQuotientInvariants(l[3]);
[ 3, 6, 0 ]
> print AbelianQuotientInvariants(l[4]);
[ 2, 2, 6 ]
> print AbelianQuotientInvariants(l[5]);
[ 5, 30 ]
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> print AbelianQuotientInvariants(l[6]);
[ 3, 6, 6 ]
> print AbelianQuotientInvariants(l[7]);
[ 66 ]
> print AbelianQuotientInvariants(l[8]);
[ 3, 6, 6 ]
> print AbelianQuotientInvariants(l[9]);
[ 7, 42 ]
> print AbelianQuotientInvariants(l[10]);
[ 3, 6, 0 ]
> print AbelianQuotientInvariants(l[11]);
[ 2, 2, 6 ]
> f,i,k:=CosetAction(g,l[2]);
> print Order(i);
6072
> IsSimple(i);
true
> f,i,k:=CosetAction(g,l[9]);
> print Order(i);
168
> IsSimple(i);
true
> print AbelianQuotientInvariants(k);
[ 7, 7, 42 ]
> K:=Rewrite(g,k);
> F,a,b:=pQuotient(K,7,1:Print:=1);
Lower exponent-7 central series for K

Group: K to lower exponent-7 central class 1 has order 7^3
> K1:=Kernel(a);
> print AbelianQuotientInvariants(K1);
[ 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13,
13, 13, 13, 13, 13, 13, 13, 13, 2743, 2743, 2743, 2743,
2743, 2743, 2743, 2743, 2743, 2743, 2743, 2743, 2743,
2743, 79547, 79547, 79547, 79547, 79547, 79547, 79547,
79547, 79547, 79547, 79547, 79547, 79547, 79547, 79547,
79547, 79547, 79547, 79547, 79547, 79547, 79547, 79547,
79547, 79547, 79547, 79547, 79547, 79547, 79547, 79547,
79547, 79547, 79547, 79547, 79547, 79547, 79547, 79547,
3897803, 3897803, 23386818 ]
> f,i,k:=CosetAction(g,l[1]);
> print Order(i);
1320
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> f,i,k:=CosetAction(g,l[3]);
> print Order(i);
2204496
> f,i,k:=CosetAction(g,l[4]);
> print Order(i);
504
> f,i,k:=CosetAction(g,l[5]);
> print Order(i);
504
> f,i,k:=CosetAction(g,l[6]);
> print Order(i);
2204496
> f,i,k:=CosetAction(g,l[7]);
> print Order(i);
6072
> IsSimple(i);
true
> a:=AbelianQuotientInvariants(k);
> print a;
[ 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 161,
161, 161, 161, 966, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ]
> print Multiplicity(a,0);
44
> f,i,k:=CosetAction(g,l[8]);
> print Order(i);
2204496
> f,i,k:=CosetAction(g,l[10]);
> print Order(i);
2204496
> f,i,k:=CosetAction(g,l[11]);
> print Order(i);
504

Referring to Subsection 5.1, there is an index 24 subgroup of Γ1
O whose core is the principal

congruence subgroup arising from "the other" k-prime of norm 23. This corresponds to the
subgroup l[7] of the Magma output above. Although this gives rise to a manifold that
is also a rational homology 3-sphere, the manifold with fundamental group which is the
principal congruence subgroup (i.e. the core) has first Betti number equal to 44 (as shown
in the Magma output above), and so does not provide rational homology 3-sphere examples
as in Corollary 1.2.
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