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The Bianchi groups are separable
on geometrically finite subgroups

By I. Agol, D. D. Long, and A. W. Reid*

Abstract

Let d be a square free positive integer and Od the ring of integers in

Q(
√
−d). The main result of this paper is that the groups PSL(2, Od) are

subgroup separable on geometrically finite subgroups.

1. Introduction

Let G be a group and H a finitely generated subgroup; G is called

H-subgroup separable if given any g ∈ G\H, there exists a subgroup K < G of

finite index with H < K and g /∈ K. Also, G is called subgroup separable (or

LERF) if G is H-subgroup separable for all finitely generated H < G. Sub-

group separability is an extremely powerful property, for instance it is much

stronger than residual finiteness. The class of groups for which subgroup sepa-

rability is known for all finitely generated subgroups is extremely small: abelian

groups, free groups, surface groups and carefully controlled amalgamations of

these; see [12] and [22] for examples.

However our motivation comes from 3-manifold topology, where the im-

portance of subgroup separability stems from the well-known fact (cf. [22] and

[16]) that it allows passage from immersed incompressible surfaces to embedded

incompressible surfaces in finite covers. It therefore makes sense (especially in

light of the fact that there are closed 3-manifolds M for which π1(M) is not

subgroup separable [1]) to ask for separability only for some mildly restricted

class of subgroups.

No example of a finite co-volume Kleinian group is known to be sub-

group separable. However, in this context the geometrically finite subgroups

(especially the geometrically finite surface subgroups) are the intractable and

most relevant case in all applications. The reason for this is that the work of
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Bonahon and Thurston (see [2]) implies that freely indecomposable geomet-

rically infinite subgroups of finite co-volume Kleinian groups are virtual fiber

groups, and these are easily seen to be separable. Accordingly, there has been

much more attention paid to separating geometrically finite subgroups of finite

co-volume Kleinian groups (see [12], [29]). A class of Kleinian groups that have

been historically important in the subject are the Bianchi groups. Our main

result is the following:

Theorem 1.1. Let d be a square-free positive integer, and Od the ring of

integers in Q(
√
−d). The Bianchi group PSL(2, Od) is H-subgroup separable

for all geometrically finite subgroups H.

A case which has attracted much interest itself is the fundamental group

of the figure eight knot complement. This has index 12 in PSL(2, O3). Hence

we get (see also D. Wise [29] in this case):

Corollary 1.2. Let K denote the figure eight knot, then π1(S3 \K) is

H-subgroup separable for all geometrically finite subgroups H.

The fundamental group of the Borromean rings is well-known [24] to be a

subgroup of index 24 in PSL(2, O1); hence we also have:

Corollary 1.3. The fundamental group of the Borromean rings is sub-

group separable on its geometrically finite subgroups.

In fact, since it is easy to show that there are infinitely many (2 compo-

nent) links in S3 whose complements are arithmetic, we deduce,

Corollary 1.4. There are infinitely many hyperbolic links in S3 for

which the fundamental group of the complement is separable on all geometri-

cally finite subgroups.

Our methods also apply to give new examples of cocompact Kleinian

groups which are separable on all geometrically finite subgroups.

Theorem 1.5. There exist infinitely many commensurability classes of

cocompact Kleinian groups which satisfy :

• They are H-subgroup separable for all geometrically finite subgroups H,

• They are not commensurable with a group generated by reflections.

The second statement of Theorem 1.5 is only included to distinguish the

groups constructed from those that Scott’s argument ([22] and below) applies

to in dimension 3.
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In the cocompact setting some interesting groups that we can handle are

the following. Let Γ denote the subgroup of index 2 consisting of orientation-

preserving isometries in the group generated by reflections in the faces of the

tetrahedron in H3 described as T2[2, 2, 3; 2, 5, 3] (see [18] for instance for nota-

tion). This tetrahedron has a symmetry of order 2, and this symmetry extends

to an orientation-preserving isometry of the orbifold Q = H3/Γ. Let Γ0 be the

Kleinian group obtained as the orbifold group of this 2-fold quotient. Γ0 at-

tains the minimal co-volume for an arithmetic Kleinian group (see below), [7].

It is conjectured to attain the smallest co-volume for all Kleinian groups. We

show as corollaries of the methods:

Corollary 1.6. Γ0 is H-subgroup separable for all geometrically finite

subgroups H.

Corollary 1.7. Let W denote the Seifert-Weber dodecahedral space,

then π1(W ) is H-subgroup separable for all geometrically finite subgroups H.

Although Γ0 and π1(W ) are commensurable with groups generated by

reflections, as far as we know they are not commensurable with one where

all dihedral angles are π/2, as is required in applying [22]. Note that by

[24, Chap. 13], the group Γ does not split as a free product with amalgamation

or HNN-extension since the orbifold H3/Γ is non-Haken in the language of

orbifolds. It is also widely believed that W is non-Haken. These appear to be

the first explicit examples of such Kleinian groups separable on geometrically

finite subgroups (see also §6.1 for a further example).

An application of Theorem 1.1 that seems worth recording is the following.

An obvious subgroup of PSL(2, Od) is PSL(2,Z), and in the context of the

Congruence Kernel, Lubotzky [17] asked the following question:

Question. Is the induced map:

ηd : P̂SL(2,Z)→ P̂SL(2, Od)

injective?

Here Ĝ denotes the profinite completion (see §8 for details). By a stan-

dard reformulation of H-subgroup separable, we are able to give an affirmative

answer.

Theorem 1.8. The map ηd is injective for all d.

As is pointed out in [17], this has important ramifications for the nature

of the Congruence Kernel and the structure of noncongruence subgroups of

the Bianchi groups. For example Theorem 1.8 gives another proof that the

Bianchi groups do not have the Congruence Subgroup Property [23].
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Here is an overview of the paper. The underlying method in proving The-

orems 1.1 and 1.5 is to use the arithmetic theory of quadratic forms and their

relationship to discrete groups of hyperbolic isometries to inject (up to com-

mensurability) Kleinian groups into a fixed finite co-volume group acting on

a higher dimensional hyperbolic space commensurable with a group generated

by reflections in an all right polyhedron in Hn. This part of the proof hinges

upon Lemmas 4.4 and 4.6.

The ambient reflection group is then shown to be subgroup separable on

its geometrically finite subgroups. This has its origins in [22] where it is shown

that in dimension 2, cocompact Fuchsian groups are subgroup separable. In

Section 3, we generalize this to all dimensions. The situation is actually a

good deal more delicate than is generally appreciated; in particular, in Scott’s

article [22] various statements are made that have been taken to suggest that

his methods extend to higher dimensions and that they could be used to sepa-

rate geometrically finite subgroups inside Kleinian groups commensurable with

groups generated by reflections in all right ideal polyhedra in H3. However it

seems to us (and has been confirmed by Scott) that this is not so.

Acknowledgement. The first author would like to thank Bill Thurston for

some useful conversations in regard to the proof of Lemma 4.4.

2. Preliminaries

We recall some facts about discrete groups of isometries of hyperbolic

spaces and arithmetic hyperbolic n-manifolds, [20] and [3]. A reasonable ref-

erence that contains information on both these topics is [28].

2.1. Let fn be the (n + 1)-dimensional quadratic form 〈1, 1 . . . , 1,−1〉 .

The orthogonal group of this form is simply O(n, 1; R). This has four con-

nected components. Passing to SO(n, 1; R), we see that this has two connected

components, and the connected component of the identity in SO(n, 1; R), de-

noted SO0(fn; R) (which has finite index in O(n, 1; R)), may be identified with

Isom+(Hn); it preserves the upper sheet of the hyperboloid fn(x) = −1 and

the orientation. Given a (discrete) subgroup G of O(n, 1; R), G∩ SO0(n, 1; R)

has finite index in G.

2.2. A Kleinian group will always refer to a discrete group of orientation-

preserving isometries of H3. Throughout the paper we often pass between

models of H3, and use the term Kleinian group in both settings. We hope no

confusion will arise.

A Kleinian group Γ is geometrically finite if either of the following equiv-

alent statements holds (see [20]):
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1. Γ admits a finite-sided Dirichlet polyhedron for its action on H3.

2. Let C(Γ) denote the convex core of H3/Γ; then for all ε > 0 the

ε-neighbourhood, Nε(C(Γ)) has finite volume.

In higher dimensions, geometrical finiteness has been more problematical; see

[5] for example. For instance, the generalization of 1 above (which is the

classical statement in dimensions 2 and 3) becomes more restrictive in higher

dimensions, cf. [5]. However, if we insist that Γ is finitely generated, then the

statement 2 above suffices as a definition for Γ to be geometrically finite; see

[5]. Henceforth, the term geometrically finite always refers to this. That finite

generation is important follows from work of [13].

We will also make use of the following equivalent statement of geometrical

finiteness (GF2 of [5]). This requires some terminology from [5].

Suppose that Γ is a discrete subgroup of Isom+(Hn), and Λ(Γ) is its limit

set. Let p ∈ Λ(Γ) be a parabolic fixed point and

Stabp(Γ) = {γ ∈ Γ : γp = p}.
As above, p is called bounded if (Λ(Γ)\p)/Stabp(Γ) is compact. Then [5] shows:

Lemma 2.1. Suppose that Γ is a discrete subgroup of Isom+(Hn). Then

Γ is geometrically finite if and only if the limit set consists of conical limit

points and bounded parabolic fixed points.

As is pointed out in [5] the notion of bounded parabolic fixed point can be

stated as: p is a bounded parabolic fixed point if and only if given a minimal

plane τ which is invariant for the action of StabΓ(p) then there is a constant

r with the property that Λ(Γ) \ {p} lies inside an r-neighbourhood (measured

in a Euclidean metric on Rn−1) of the plane τ .

2.3. Requiring some notions from the theory of quadratic forms, we refer

to [14] as a standard reference.

We first fix some notation; if k is a number field, then Rk will denote its

ring of integers.

Definition. Two n-dimensional quadratic forms f and q defined over a

field k (with associated symmetric matrices F and Q) are equivalent over k if

there exists P ∈ GL(n, k) with P tFP = Q.

Let f be a quadratic form in n + 1 variables with coefficients in a real

number field k, with associated symmetric matrix F , and let

SO(f) = {X ∈ SL(n+ 1,C) | XtFX = F}
be the Special Orthogonal group of f . This is an algebraic group defined over k,

and SO(f ;Rk) is an arithmetic subgroup of SO(f ; R) ([4] or [3]). In particular

SO(f ;Rk) has finite co-volume acting on an associated symmetric space [4].
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Lemma 2.2. In the notation above, SO(f ; R) is conjugate to SO(q; R),

SO(f ; k) is conjugate to SO(q; k), and SO(f ;Rk) is conjugate to a subgroup of

SO(q; k) commensurable with SO(q;Rk).

Proof. We do the k-points case first; the real case follows the same line of

argument. Thus, let A ∈ SO(q; k); then,

(PAP−1)tF (PAP−1) = (P−1)tAt(P tFP )AP−1 = (P−1)tAtQAP−1.

Since A ∈ SO(q; k), this gives,

(P−1)tQP−1 = F

by definition of P . Since P has k-rational entries, we have that PAP−1 ∈
SO(f ; k). The reverse inclusion is handled similarly.

To handle the second statement, observe that by considering the denomi-

nators of the entries of P and P−1, we can choose a deep enough congruence

subgroup Γ in SO(q;Rk) so that that PΓP−1 will be a subgroup of SO(f ;Rk).

The index is necessarily finite since both are of finite co-volume. 2

Assume now that k is totally real, and let f be a form in n+ 1-variables

with coefficients in k, and be equivalent over R to the form fn (as in §2.1).

Furthermore, if σ : k → R is a field embedding, then the form fσ obtained by

applying σ to f is defined over the real number field σ(k). We insist that for

embeddings σ 6= id, fσ is equivalent over R to the form in (n+ 1)-dimensions,

of signature (n + 1, 0). Since f is equivalent over R to fn, it follows from

Lemma 2.2 that SO(f ; R) is conjugate in GL(n + 1,R) to SO(fn; R). From

the discussion in §2.1, we deduce from [4] (or [3]) that SO0(f ;Rk) defines

an arithmetic lattice in Isom+(Hn). For n odd, this gives only a subclass of

arithmetic lattices in Isom+(Hn) (see [28, pp. 221–222]).

The group SO0(f ;Rk) (and hence the conjugate in Isom+(Hn)) is cocom-

pact if and only if the form f does not represent 0 nontrivially with values in

k; see [4]. Whenever n ≥ 4, the lattices constructed above are noncocompact if

and only if the form has rational coefficients, since it is well known every indef-

inite quadratic form over Q in at least five variables represents 0 nontrivially;

see [14].

We make some comments on arithmetic hyperbolic 3-manifolds constructed

in the above manner. As a consequence of the results in [18], when n = 3 the

above class of arithmetic Kleinian groups coincides precisely with those arith-

metic Kleinian groups containing a nonelementary Fuchsian subgroup. For

these the invariant trace field is quadratic imaginary. As we will require it,

we state a corollary of the main result of [18]. This ties up the PSL(2) and

SO(3, 1) descriptions of certain arithmetic Kleinian groups needed.
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Theorem 2.3. Let a, b and c be integers with a < 0 and b, c > 0.

Let q be the quadratic form 〈1, a, b, c〉. Then SO0(q,Z) defines an arithmetic

Kleinian subgroup of PSL(2,C) with invariant trace-field Q(
√
abc) and invari-

ant quaternion algebra with Hilbert Symbol

(
−ac,−bc
Q(
√
abc)

)
.

Indeed the correspondence above is a bijective correspondence between

commensurability classes in the two models.

3. All right reflection groups and separability

Suppose that P is a compact or ideal polyhedron (i.e. at least one ver-

tex lies at the sphere-at-infinity) in Hn all of whose dihedral angles are π/2.

Henceforth we call this an all right polyhedron. Then the Poincaré polyhedron

theorem implies that the group generated by reflections in the co-dimension

one faces of P is discrete and a fundamental domain for its action is the poly-

hedron P ; that is, we obtain a tiling of hyperbolic n-space by tiles all isometric

to P . Let the group so generated be denoted by G(P ).

Theorem 3.1. The group G(P ) is H-subgroup separable for every finitely

generated geometrically finite subgroup H < G(P ).

It seems to be folklore that this theorem follows easily from the ideas

contained in [22]; however it seems to us that this is not the case and we

include a complete proof. One piece of terminology we require is the following.

Any horospherical cusp cross-section of a hyperbolic n-orbifold of finite volume

is finitely covered by the n − 1-torus (see [20, Chap. 5]). We say a cusp of a

hyperbolic n-orbifold is of full rank if it contains Zn−1 as a subgroup of finite

index. Otherwise the cusp is said not to be of full rank.

Proof of 3.1. The proof breaks up into various cases which we deal with in

ascending order of difficulty. All proofs hinge upon the observation (see [22])

that the separability of H is equivalent to the following:

Suppose that we are given a compact subset X ⊂ Hn/H. Then there is

a finite index subgroup K < G(P ), with H < K and with the projection map

q : Hn/H −→ Hn/K being an embedding on X.

We sum up the common strategy which achieves this. The group H is

geometrically finite and one can enlarge its convex hull in Hn/H so as to

include the compact set X in a convex set contained in Hn/H; this convex

set lifts to an H-invariant convex set inside Hn. One then defines a coarser

convex hull using only the hyperbolic halfspaces bounded by totally geodesic

planes which come from the P -tiling of Hn; this hull is denoted by HP (C+).

This hull is H-invariant and the key point is to show that HP (C+)/H only
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involves a finite number of tiles. It is the mechanics of achieving this that vary

depending on the nature of P and H; the remainder of the proof follows [22]

and is an elementary argument using the Poincaré polyhedron theorem and

some covering space theory. The details are included in the first argument

below.

3.1. P is compact. Let C be a very small neighbourhood of the convex

hull of H, regarded as a subset of Hn. In our setting, the group G(P ) contains

no parabolic elements so that the hypothesis implies that C/H is compact.

The given set X is compact so that there is a t with the property that every

point of X lies within a distance t of C/H. Let C+ be the 10t neighbourhood

of C in Hn. This is still a convex H-invariant set and C+/H is a compact

convex set containing X.

As discussed above, take the convex hull HP (C+) of C+ in Hn using the

half spaces coming from the P -tiling of Hn. By construction HP (C+) is a

union of P -tiles, is convex and H-invariant. The crucial claim is:

Claim. HP (C+)/H involves only a finite number of such tiles.

To see this we argue as follows. Fix once and for all a point in the interior

of a top-dimensional face of the tile and call this its barycentre. The tiles we use

actually often have a geometric barycentre (i.e. a point which is equidistant

from all of the faces) but such special geometric properties are not used; it is

just a convenient reference point.

Our initial claim is that if the barycentre of a tile is too far away from

C+, then it cannot lie in HP (C+).

The reason for this is the convexity of C+. If a is a point in Hn not lying

in C+ then there is a unique point on C+ which is closest to a. Moreover, if

this distance is R, then the set of points whose distance is precisely R from

a is a sphere touching C+ at a single point p on the frontier of C+ and the

geodesic hyperplane tangent to the sphere at this point is the (generically

unique) supporting hyperplane separating C+ from a.

Suppose then that P ∗ is a tile whose barycentre is very distant from C+.

Let a∗ be the point of P ∗ which is closest to C+ and let p be a point on the

frontier of C+ which is closest to P ∗. As noted above, there is a geodesic

supporting hyperplane Hp through p which is (generically) tangent to C+ and

separates C+ from a∗. Let the geodesic joining a∗ and p be denoted by γ. Note

that since p is the point of C+ closest to a∗, γ is orthogonal to Hp.
If a∗ happens to be in the interior of a tile face of P ∗, then this tile face

must be at right angles to γ, since a∗ was closest. Let Ha∗ be the tiling plane

defined by this tile face. Since in this case γ is at right angles to both Ha∗ and

Hp, these planes are disjoint and so the tiling plane separates P ∗ from C+ as

required.
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If a∗ is in the interior of some smaller dimensional face, σ, then the codi-

mension one faces of P ∗ which are incident at σ cannot all make small angles

with γ since they make right angles with each other. The hyperplane H which

makes an angle close to π/2 plays the role of Ha∗ in the previous paragraph.

The reason is that since a∗ and p are very distant and the planes Hp and H
both make angles with γ which are close to π/2, the planes are disjoint and

we see as above that P ∗ cannot lie in the tiling hull in this case either.

The proof of the claim now follows, as there can be only finitely many

barycentres near any compact subset of Hn/H.

The proof of subgroup separability now ends as in [22]. Let K1 be the sub-

group of G(P ) generated by reflections in the sides of HP (C+). The Poincaré

polyhedron theorem implies that HP (C+) is a (noncompact) fundamental do-

main for the action of the subgroup K1. Let K be the subgroup of G(P )

generated by K1 and H; then Hn/K = HP (C+)/H so that K has finite index

in G(P ). Moreover, the set X embeds as required. 2

3.2. P is an ideal all right polyhedron.

Subcase A. H has no cusps. This case is very similar to the case where

G(P ) is cocompact since in the absence of cusps, the core of H is actually

compact. We form the set C+ as above. The set C+/H is still compact so

that it only meets a finite number of tiles and we choose a constant K so that

the barycentre of each such tile is within distance K of C+/H.

Now we repeat the argument above, with the extra care that one should

only consider tiles in Hn whose barycentres are at distance from C+ much

larger than K; this ensures that such a tile cannot meet C+ and the rest of

the argument is now identical.

Subcase B. H has cusps which are all of full rank. In this case the core

C+/H is no longer compact, but by geometrical finiteness it has finite volume.

The thick part of this core is compact and can be covered by a finite number

of tiles. Also the thin part can be covered by a finite number of tiles; one sees

this by putting the cusp of H at infinity. The cusp has full rank so there is

a compact fundamental domain for its action and this fundamental domain

meets only a finite number of tiles.

Choose K for this finite collection of tiles, and then argue as in Subcase A.

Subcase C. H has a cusp of less than full rank. The idea in this case is

to enlarge H to a group H∗ which now has only full rank cusps in such a way

that the compact set X continues to embed in the quotient Hn/H∗; we then

argue as in Subcase B. The argument follows a line established in [8]. We

assume that H has a single cusp of less than full rank; the case of many cusps

is handled by successive applications of this case.
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To this end, consider the upper n-space model for Hn arranged so that∞
is a parabolic fixed point for H. Denote the limit set of H by Λ(H). By Lemma

2.1 and the remarks following it, if τ is a minimal plane which is invariant for

the action of StabH(∞) then there is a constant r with the property that

Λ(H)−∞ lies inside an r-neighbourhood (measured in a Euclidean metric on

Rn−1) of the plane τ .

We now sketch the construction of [8]. We have already observed that

C+/H is a finite volume hyperbolic n-orbifold; one can therefore define a

“thickness” for this hull; that is, there is a constant c1 so that every point on

the upper hypersurface of C+ is within distance at most c1 of some point on

the lower hypersurface. We may as well suppose that c1 is fairly large, say at

least 10.

Choose a horoball N ′ in Hn/H which is so small that it is a very long way

from the original compact set X. By shrinking further, we arrange that the

distance between any two preimages of N ′ in Hn is at least, say, 1000c1. Now

shrink further and find a horoball N ⊂ N ′ so that ∂N is distance 1000c1 from

∂N ′. It follows that when we look in the universal covering, if a preimage of

N is not actually centered on some point of Λ(H), then it is distance at least

750c1 from C+.

Using geometrical finiteness in the form given by Lemma 2.1, we

may find a pair of StabH(∞)-invariant, parallel, totally geodesic hyperbolic

n− 1-planes, both passing through ∞ which are distance 10r apart in the Eu-

clidean metric on Rn−1 and contain Λ(H)−∞. By moving the planes further

apart if necessary, we may assume that the slab of hyperbolic n-space between

them contains all of C+.

If we denote the dimension of the minimal plane τ by n− 1− k, then we

may choose k such pairs of planes so that the union of these 2k planes cuts

out a subset of Rn−1 which has the form [0, 1]k × Rn−1−k containing all of

Λ(H)−∞ and so that the slab of hyperbolic n-space cut out by these planes

contains all of C+. Denote this slab by Σ.

Let N∞ be the preimage of N centered at ∞; ∂N∞ is a copy of Rn−1

equipped with a Euclidean metric coming from the restriction of the metric

coming from Hn. By choosing translations in StabG(P )(∞) which move points a

very long distance in the Euclidean metric on ∂N∞, we can augment StabH(∞)

to form a new subgroup StabH(∞)∗ ⊂ StabG(P )(∞), now of full rank, with the

property that any element of StabH(∞)∗ either stabilizes the slab Σ (this is

the case that the translation in question in fact lies in the subgroup StabH(∞))

or moves it a very long distance from itself, measured in the Euclidean metric

of ∂N∞.

Define the subgroup H∗ to be the group generated in G(P ) by H and

StabH(∞)∗. It follows exactly as in [8] that the group H∗ is geometrically

finite and leaves invariant a convex set C∗ which is slightly larger than the



           

BIANCHI GROUPS 609

H∗-orbit of C+∪N∞; moreover the set X embeds into C∗/H∗. By construction

H∗ has a full rank cusp. 2

3.3. We now discuss the existence of all right polyhedra in hyperbolic

spaces. It is well-known that such polyhedra cannot exist for large dimensions.

We first fix some notation. Let P be a convex polyhedron in Hn with

a finite number of co-dimension one faces, all of whose dihedral angles are

integer submultiples of π. Denote by G(P) (resp. G+(P)) the group generated

by reflections in the co-dimension one faces of P (resp. subgroup of index 2

consisting of orientation-preserving isometries). G(P) is discrete by Poincaré’s

Theorem (see [20, Chap. 7] or [28]).

Ideal 24-cell in hyperbolic 4-space. Let P denote the all right ideal 24 cell

P in H4 (cf. [20, Ex. 6, p. 273, p. 509]). We have the following lemma (see

[21]) which records some arithmetic data associated to G(P ).

Lemma 3.2. G+(P ) is an arithmetic lattice in Isom+(H4). It is a sub-

group of finite index in SO0(f4; Z).

A compact all right 120-cell in hyperbolic 4-space. Let D denote the regu-

lar 120-cell in H4 with all right dihedral angles; see [10]. This has as faces

3-dimensional all right dodecahedra. D is built from 14400 copies of the

{4, 3, 3, 5} Coxeter simplex, Σ in H4. We fix the following notation to be

used throughout. O will denote the ring of integers in Q(
√

5), and τ will

denote the nontrivial Galois automorphism of Q(
√

5).

Lemma 3.3. The group G+(D) is an arithmetic lattice in Isom+(H4).

It is commensurable with the group SO0(f ;O) where f is the 5-dimensional

quadratic form 〈1, 1, 1, 1,−φ〉, and φ = 1+
√

5
2 .

Proof. By Vinberg’s criteria [26], the group generated by reflections in the

faces of Σ is arithmetic. By the remarks above, G+(D) is also arithmetic. The

description given follows from [6]; see also [28, p. 224]. 2

An all right ideal polyhedron in hyperbolic 6-space. In H6 there is a sim-

plex Σ with one ideal vertex given by the following Coxeter diagram (see [20,

p. 301]).

• • • • • •

•

4

Figure 1
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Notice that deleting the right most vertex of this Coxeter symbol gives an

irreducible diagram for a finite Coxeter group, namely E6. This group has

order 27.34.5.

We will make use of the following.

Lemma 3.4. (i) G+(Σ) = SO0(f6; Z).

(ii) There is an all right polyhedron Q built from 27.34.5 copies of Σ. In

particular the reflection group G(Q) is commensurable with SO0(f6; Z).

Proof. The first part is due to Vinberg [27], and also discussed in [20,

p. 301]. For the second part, as noted above, if one deletes the face F of

the hyperbolic simplex corresponding to the right hand vertex to the given

Coxeter diagram, the remaining reflection planes pass through a single (finite)

vertex and these reflections generate the finite Coxeter group E6. Take all the

translates of the simplex by this group; this yields a polyhedron whose faces

all correspond to copies of F . Two such copies meet at an angle which is twice

the angle of the reflection plane of the hyperbolic simplex which lies between

them. One sees from the Coxeter diagram that the plane F makes angles π/2

and π/4 with the other faces of the hyperbolic simplex, and so the resulting

polyhedron is all right as required. 2

Remark. The polyhedron has finite covolume since there is only one in-

finite vertex: deleting the plane corresponding to the left-hand vertex of the

Coxeter group is the only way of obtaining an infinite group and this group

is a five-dimensional Euclidean Coxeter group. (See Theorem 7.3.1, Condition

(2) of [20]) The other Coxeter diagrams of [20] show that there are ideal all

right polyhedra in Hk at least for 2 ≤ k ≤ 8.

4. Proof of Theorem 1.1

The subsections that follow collect the necessary material to be used in

the proof.

4.1.. We need the the following standard facts.

Lemma 4.1. Let G be a group and let H < K < G. If G is H-subgroup

separable then K is H-subgroup separable.

Proof. Let k ∈ K \H. Since G is H-subgroup separable there is a finite

index subgroup G0 < G with H < G0 but k /∈ G0. Then G0 ∩K is a subgroup

of finite index in K separating H from k as required. 2
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Lemma 4.2. Let G be a finite co-volume Kleinian group and let K be

a subgroup of finite index. If K is H-subgroup separable for all geometrically

finite subgroups H < K, then G is H-subgroup separable for all geometrically

finite subgroups H < G.

Proof. It is a standard fact (see for example Lemma 1.1 of [22]) that if

K is subgroup separable and K ≤ G with K being of finite index, then G is

subgroup separable. The proof of this result applies verbatim to Lemma 4.2

after one notes that the property of being geometrically finite is preserved by

super- and sub- groups of finite index. 2

Lemma 4.3. Let Γ be a discrete subgroup of Isom+(Hn) of finite co-

volume and Γ0 a geometrically finite subgroup of Γ fixing a totally geodesic

copy of hyperbolic 3-space in H3. Then Γ0 is geometrically finite as a subgroup

of Isom+(Hn).

Proof. Given a geometrically finite hyperbolic (n − 1)-orbifold Hn−1/G

we can see this to be geometrically finite as a quotient of Hn by observing

that an ε-neighbourhood of the core in Hn is isometric to (core in Hn−1)× I
since G fixes a genuine co-dimension one geodesic sub-hyperbolic space. That

the n-dimensional core has finite volume now follows from the fact that the

(n − 1)-dimensional core does. The proof of the statement we require follows

from this and induction. Alternatively one could use Lemma 2.1 and observe

that the properties of conical limit points and bounded parabolic fixed points

will be preserved. 2

4.2. The key lemma is the following.

Lemma 4.4. Let f be the quadratic form 〈1, 1, 1, 1, 1, 1,−1〉. Then for

all d, SO(f ; Z) contains a group Gd which is conjugate to a subgroup of finite

index in the Bianchi group PSL(2, Od).

The proof requires an additional lemma. Assume that j is a diagonal qua-

ternary quadratic form with integer coefficients of signature (3, 1), so that j is

equivalent over R to the form 〈1, 1, 1,−1〉 . Let a ∈ Z be a square-free posi-

tive integer and consider the seven dimensional form ja = 〈a, a, a〉 ⊕ j, where

⊕ denotes orthogonal sum. More precisely, if we consider the 7-dimensional

Q-vector space V equipped with the form ja there is a natural 4-dimensional

subspace V0 for which the restriction of the form is j. Using this we see easily

that

Lemma 4.5. In the notation above, the group SO(j; Z) is a subgroup of

SO(ja; Z).
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Proof of Lemma 4.4. Let pd be the quaternary form 〈d, 1, 1,−1〉 . Notice

that this form represents 0 nontrivially, and hence the corresponding arithmetic

group SO0(pd; Z) is noncocompact. By Theorem 2.3 for example, this implies

that SO0(pd; Z) is commensurable with some conjugate of an appropriate image

of the Bianchi group PSL(2, Od). The key claim is that qd = 〈d, d, d〉 ⊕ pd is

equivalent over Q to the form f .

Assuming this claim for the moment, by Lemma 2.2 we deduce that there

exists Rd ∈ GL(7,Q) such that RdSO(qd; Z)R−1
d and SO(f ; Z) are commensu-

rable. This together with Lemma 4.5 gives the required group Gd.

To prove the claim, since every positive integer can be written as the sum

of four squares, write d = w2 + x2 + y2 + z2. Let Ad be the 7× 7 matrix



w x y z 0 0 0

−x w −z y 0 0 0

−y z w −x 0 0 0

−z −y x w 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1




.

Note that Ad has determinant d2, so is in GL(7,Q). Let F be the diagonal

matrix associated to the form f and Qd be the 7 × 7 diagonal matrix of the

form 〈d, d, d, d, 1, 1,−1〉 (i.e. of 〈d, d, d〉 ⊕ pd). Then a direct check shows that

AdFA
t
d = Qd as is required. 2

Remark. The appearance of the matrix Ad is described by the following.

Let Ω = {w + xi + yj + zij : w, x, y, z ∈ Z} denote the ring of integral

Hamiltonian quaternions. If α = w + xi+ yj + zij ∈ Ω, then the norm of α is

d = w2 + x2 + y2 + z2. By considering the representation of Ω into M(4,Q)

determined by the right action of Ω on itself, we see that α is mapped to the

4 × 4 block of the matrix Ad, and α = w − xi − yj − zij, to the transpose of

this block.

Proof of Theorem 1.1. By Theorem 3.1 and Lemma 3.4 we deduce that

SO0(f ; Z) is H-subgroup separable on all its geometrically finite subgroups H.

By Lemma 4.4 the groups Gd are subgroups of SO0(f ; Z), and so by Lemma 4.3

they, and all their geometrically finite subgroups (as groups acting on H3) are

geometrically finite subgroups of SO0(f ; Z) (acting on H6). Hence Lemma 4.1

shows that Gd is H-subgroup separable for all geometrically finite subgroups

H of Gd. Lemma 4.2 allows us to promote this subgroup separability to the

groups PSL(2, Od). This proves Theorem 1.1. 2

4.3. The cocompact case. We can extend the techniques used in the proof

of Theorem 1.1 to cocompact groups. The crucial lemma is:
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Lemma 4.6. Let f be the quadratic form 〈1, 1, 1, 1,−1〉, and q the quadratic

form 〈1, 1, 1, 1,−φ〉 (as in Lemma 3.3). Then,

1. SO0(f ; Z) contains infinitely many commensurability classes of cocom-

pact arithmetic Kleinian groups. Furthermore these can be chosen to be

incommensurable with any group generated by reflections in dimension 3.

2. SO0(q;O) contains infinitely many commensurability classes of cocom-

pact arithmetic Kleinian groups. Furthermore these can be chosen to be

incommensurable with any group generated by reflections in dimension 3.

The lemma will be proved in Section 6; assuming it, we establish Theo-

rem 1.5.

Proof of Theorem 1.5. The proof is identical to that of the implication of

1.1 from Lemma 4.4. In this case we use Theorem 3.1, Lemma 3.2 and Lemma

3.3 to get the appropriate all right reflection group, and commensurability with

the special orthogonal groups in question. 2

5. Preliminaries for Lemma 4.6

We use this section to record facts about equivalence of quadratic forms

needed below; (see [14]).

Let K denote either a number field or a completion of a number field,

and q a nonsingular quadratic form defined over K with associated symmetric

matrix Q. The determinant of q is the element d(q) = det(Q)K̇2, where K̇ are

the invertible elements in K. It is not hard to see that d(q) is an invariant of

the equivalence class of q.

The Hasse invariant (see [14, p. 122]) of a nonsingular diagonal form

〈a1, a2, . . . , an〉 with coefficients in K is an element in the Brauer group B(K),

namely

s(q) =
∏

i<j

(
ai, aj
K

)

where

(
ai,aj
K

)
describes a quaternion algebra over K, and the multiplication

is that in B(K); see [14, Chap. 4].

Every nonsingular form over K is equivalent over K to a diagonal one,

and the definition of the Hasse invariant is extended to nondiagonal forms by

simply defining it to be the Hasse invariant of a diagonalization (that this is

well-defined follows from [14, p. 122]) The following theorem is important to

us. It is called the “Weak Hasse-Minkowski Principle” in [14, p. 168]. We state

it in the case when K is a number field.
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Theorem 5.1. Let q1 and q2 be nonsingular quadratic forms of the same

dimension, defined over K with the property that if σ is a real embedding of K

the forms qσ1 and qσ2 have the same signature over R. Then q1 is equivalent to q2

over K if and only if d(q1) = d(q2) and s(q1) = s(q2) over all non-archimedean

completions of K.

Note that if d(q1) = d(q2) (resp. s(q1) = s(q2)) then the same holds locally.

6. Proof of Lemma 4.6(1)

In this section we give the proof of the first part of Lemma 4.6. The

method of proof of the third part is the same; however some additional al-

gebraic complexities are involved since we are working over the field Q(
√

5).

This is dealt with in the next section.

6.1. Assume that j is a diagonal quaternary quadratic form with inte-

ger coefficients of signature (3, 1), so that j is equivalent over R to the form

〈1, 1, 1,−1〉 . Let a ∈ Z be a square-free positive integer and consider the five

dimensional form ja = 〈a〉 ⊕ j, where ⊕ denotes orthogonal sum. As in Sec-

tion 4, if we consider the 5-dimensional Q-vector space V equipped with the

form ja there is a natural 4-dimensional subspace V0 for which the restriction

of the form is j. As before it easily follows that,

Lemma 6.1. In the notation above, the group SO(j; Z) is a subgroup of

SO(ja; Z).

We begin the proof of the first claim in Lemma 4.6. Let pd denote the

quadratic form 〈1, 1, 1,−d〉 . This has signature (3, 1), and as discussed in

Section 2 gives arithmetic Kleinian groups. We have the following classical

result from number theory; see [14, pp. 173–174].

Theorem 6.2. Let d be a positive integer. Then d is the sum of three

squares if and only if d is not of the form 4t(8k − 1).

Choose a square-free positive integer d = −1 mod 8, and let pd be the form

〈1, 1, 1,−d〉 . Since a nontrivial rational solution pd(x) = 0 can be easily pro-

moted to an integral solution, Theorem 6.2 shows this form does not represent

0 nontrivially over Q. Hence the arithmetic Kleinian groups SO0(pd; Z) are co-

compact. By Theorem 2.3, to get the Kleinian groups to be incommensurable,

we simply insist further that d be a prime. By Dirichlet’s Theorem there are

infinitely many such primes. With these remarks, it follows from Theorem 2.3

that the groups SO(pd; Z) are all incommensurable. The first part of Lemma

4.6 will follow from the next statement:



             

BIANCHI GROUPS 615

Lemma 6.3. Let qd = 〈d〉 ⊕ pd. Then qd is equivalent over Q to f .

Proof. The two forms are 5-dimensional, and it is easy to see that the

forms have signature (4, 1) over R. Further, since the determinants are −1Q̇2,

they will have the same local determinants. We shall show that the forms have

the same Hasse invariants over Q from which it follows they have the same

local Hasse invariants. Theorem 5.1 completes the proof.

Consider the form f first of all. It is easy to see that all the contributing

terms to the product are either

(
1,1
Q

)
or

(
−1,1
Q

)
. Both of these are isomorphic

to the quaternion algebra of 2 × 2 matrices over Q, see [14, Chap. 3]. They

represent the trivial element in the Brauer group of Q, and so s(f) is trivial.

For qd, the contributing terms are
(

1, 1

Q

)
,

(
1, d

Q

)
,

(
1,−d

Q

)
,

(
d,−d

Q

)
.

From [14, Chap. 3] (in particular page 60), it follows that all these quaternion

algebras are again isomorphic to the quaternion algebra of 2× 2 matrices over

Q, and so as above s(qd) is trivial. This completes the proof. 2

Remark. The proof of this lemma can also be done directly as in the case

of Lemma 4.4. We include this version, as it may be useful as a guide to the

proof of Lemma 7.6.

To complete the proof of the first claim in Lemma 4.6 we proceed as

follows—entirely analogous to the argument in the proof of 1.1. By Lemma

6.1, SO(pd; Z) is a subgroup of SO(qd; Z). By Lemma 6.3 and Lemma 2.2

we can conjugate to obtain a group Gd < SO(f ; Z) which is conjugate to a

subgroup of finite index in SO(pd; Z). Finally, the groups constructed are not

commensurable with groups generated by reflections for d large enough. This

follows from work of Nikulin, [19].

Briefly it is shown in [19] that if we fix the field of definition for a re-

flection group (in this case Q) there are only finitely many commensurability

classes of arithmetic Kleinian groups commensurable with a group generated

by reflections. This completes the proof. 2

Remarks. 1. The argument given in Lemma 4.6 also applies in the case of

the Bianchi groups.

2. An example of an explicit “well-known” co-compact group that is cov-

ered by our techniques arises in the choice of d = 7. It follows from [18]

that the arithmetic Kleinian group Γ arising as an index 2 subgroup in the

group generated by reflections in the faces of the tetrahedron T6[2, 3, 4; 2, 3, 4]

is commensurable with the group SO(p7; Z).
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Also commensurable with SO(p7; Z) is the fundamental group of a certain

non-Haken hyperbolic 3-manifold obtained by filling on a once-punctured torus

bundle. Briefly, let M denote the once-punctured torus bundle whose mon-

odromy is R2L2 (in terms of the usual RL-factorization, see [11] for instance).

As is well-known, M contains no closed embedded essential surfaces. Thus a

Haken manifold can be created by Dehn filling on M , only by filling along a

boundary slope of M . Fixing a framing for the boundary torus, we see that

the manifold M0 obtained by 4/1-Dehn filling on M is hyperbolic, of volume

approximately 2.666744783449061 . . . , and non-Haken (the boundary slopes

can be deduced from [11]). A calculation with Snap (see [9] for a discussion

of this program) shows M0 is arithmetic with the same invariant data as the

group Γ above. Hence π1(M0) is separable on geometrically finite subgroups.

7. Proof of Lemma 4.6(2)

To handle the second part, we proceed in a similar way to Section 6.

Thus, assume that j is a diagonal quaternary quadratic form with coeffi-

cients in O, of signature (3, 1) at the identity and signature (4, 0) on applying

τ . Let a ∈ O be positive at both the identity embedding and τ . Consider

the five-dimensional form ja = 〈a〉 ⊕ j, where ⊕ denotes orthogonal sum. As

above, we mean 5-dimensional Q(
√

5)-vector space V equipped with the form

ja; there is a natural 4-dimensional subspace V0 for which the restriction of

the form is j. We have the following consequence of the discussion in §2.2.

Lemma 7.1. Let a ∈ O have the property that it is square-free (as an

element of O), a < 0 but τ(a) > 0. Define the n+ 1-dimensional form

fn,a = 〈1, 1, . . . , 1, a〉.
Then SO0(fn,a;O) defines a cocompact arithmetic subgroup of Isom+(Hn).

With this, we deduce as in §6.1,

Lemma 7.2. In the notation above, the group SO(j;O) is a cocompact

subgroup of SO(ja;O).

7.1. We need to recall some basic number theory in O which is a principal

ideal domain, so that every ideal of O has the form 〈t〉 for some t ∈ O.

Lemma 7.3. Let I ⊂ O be a nontrivial ideal. Then I can be generated by

an element t where t < 0 and τ(t) > 0.
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Proof. Assume I = 〈x〉 . The argument is really a consequence of the

existence of units of all possible signatures in O. For example if x is positive

at both the identity and τ , then t = x(1+
√

5
2 ) satisfies the requirements. As

1+
√

5
2 is a unit it does not change the ideal. 2

Define P to be the set of primes in Q(
√

5) lying over the set of rational

primes Q satisfying:

1. if q ∈ Q then q is unramified in Q(
√

1+
√

5
2 ),

2. the splitting type of q in Q(
√

1+
√

5
2 ) contains a prime of degree 1; ie.,

there is a Q(
√

1+
√

5
2 )-prime Q with Q|q and the norm of Q is q.

Note by the Tchebotarev density theorem (see [15] for example), the set P

is infinite, since the set of rational primes that split completely in Q(
√

1+
√

5
2 )

is infinite. Fix φ = 1+
√

5
2 in what follows.

Lemma 7.4. Let P ∈ P. Then under the canonical reduction map O →
O/P, φ is a square.

Proof. Let R denote the ring of integers in Q(
√

1+
√

5
2 ). If p ∈ Q, then

since Q(
√

5) is galois, p splits completely in Q(
√

5). By assumption there is a

degree-one prime P ⊂ R with P |pR. Let P ∈ P be a Q(
√

5)-prime divisible

by P . Then the ramification theory of primes in extensions (see [15]), together

with the above properties give,

R/P ∼= O/P ∼= Fp.

Hence by definition, φ has a square-root upon reduction mod P as required.

2

Define the following collection of quadratic forms over Q(
√

5). Let P ∈ P

be generated by an element π satisfying the conclusion of Lemma 7.3; that is,

π < 0 and τ(π) > 0.

Define pπ = 〈1, 1, 1, π〉 . Thus, by Lemma 7.1, SO(pπ;O) determines a cocom-

pact arithmetic Kleinian group. Furthermore this is an infinite collection of

groups which are all mutually incommensurable. This follows [3] or [18] and

is the generalization of Theorem 2.3 to Q(
√

5).

Define the 5-dimensional form qπ = 〈−πφ〉 ⊕ pπ. Since π (resp. τ(π)) is

negative (resp. positive) and φ (resp. τ(φ)) is positive (resp. negative), both

−πφ and −τ(π)τ(φ) are positive. Thus qπ has signature (4, 1) at the identity

and (5, 0) at τ . Therefore, by Lemma 7.2, SO(qπ;O) determines a cocompact

arithmetic subgroup of Isom+(H4), which contains SO(pπ;O).
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In what follows we quote freely from the theory of quaternion algebras,

see [14, Chap. 3] and [25].

We will need the following.

Lemma 7.5. Let k = Q(
√

5). The quaternion algebra B =

(
φ,π
k

)
is

isomorphic to M(2, k).

Proof. Note that by choice of π, B is unramified at both the identity

embedding and τ . Now Lemma 7.4 implies φ is a square upon reduction

mod π. It follows that the norm form of B, namely 〈1,−φ,−π, φπ〉 is isotropic

over k〈π〉, since it is isotropic over the residue class field (see [14, Chap. 6]).

The only primes that can ramify B are 〈π〉 and the unique prime above 2 in k

(cf. [25] or [14, Chap. 6]). Furthermore since the cardinality of the ramification

set is even ([25]), we deduce that B is unramified at the prime above 2. Hence

B is unramified everywhere locally, and so is isomorphic to M(2, k). 2

Lemma 7.6. In the notation above, qπ is equivalent over Q(
√

5) to q.

Proof. Let k = Q(
√

5). The two forms are 5-dimensional, and as noted

both forms have signature (4, 1) at the identity embedding of k, and signature

(5, 0) at τ . Further, since the determinants are −φk̇2, they will have the same

local determinants. We shall show that the forms have the same Hasse invari-

ants over k from which it follows they have the same local Hasse invariants.

Theorem 5.1 completes the proof.

Consider the form q first of all. It is easy to see that all the contributing

terms to the product are either

(
1,1
k

)
or

(
1,−φ
k

)
. Both of these are isomorphic

to the quaternion algebra of 2×2 matrices over k, see [14, Chap. 3] (in particular

p. 60). These represent the trivial element in the Brauer group of k, and so

s(f) is trivial.

For qπ the contributing terms are
(

1, 1

k

)
,

(
1,−φπ
k

)
,

(
1, π

k

)
,

(
π,−φπ
k

)
.

As above, it follows from [14, Chap. 3, p. 60], that all but the last Hilbert

symbol represent quaternion algebras isomorphic to the quaternion algebra of

2× 2 matrices over k.

Standard Hilbert symbol manipulations ([14, Chap. 3]) imply this last

algebra is isomorphic to one with Hilbert Symbol

(
φ,π
k

)
. But Lemma 7.5

implies this quaternion algebra is the matrix algebra again. Hence s(qπ) is

also trivial. This completes the proof. 2
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To complete the proof of Lemma 4.6(3) we proceed as follows. As noted all

groups are cocompact, and Lemma 7.2 implies that SO(pπ;O) is a subgroup of

SO(qπ;O). By Lemma 6.3 and Lemma 2.2 we can conjugate to obtain a group

Gπ < SO(f ;O) which is conjugate to a subgroup of finite index in SO(pπ;O),

The final part is to deduce that infinitely many of these are not commensurable

with groups generated by reflections, and again this follows from [19], with the

ground field in this case being Q(
√

5). 2

Corollary 1.6 is deduced by choosing π = (3 − 2
√

5) in the construction

above. Note that 〈π〉 is a prime in Q(
√

5) of norm 11, and, as is easily checked,

11 is unramified in Q(
√
φ) and also satisfies the second condition in the defi-

nition of P in §4.2. It follows from [18] that the arithmetic Kleinian group Γ0

is commensurable with SO(pπ;O). 2

Corollary 1.7 is deduced in a similar manner. The Seifert-Weber dodeca-

hedral space is constructed from 120 copies of the tetrahedron T4[2, 2, 5; 2, 3, 5].

If we let Γ denote the group generated by reflections in faces of this tetrahe-

dron, the results of [18] imply Γ is commensurable (up to conjugacy) with the

group SO(f ;O) where f is the form 〈1, 1, 1,−1 − 2
√

5〉 . Now 〈−1 − 2
√

5〉
generates a prime ideal of norm 19, and, as is easily checked, lies in P. The

result now follows. 2

8. Application

Theorem 1.1 allows us to address the following question of Lubotzky raised

in [17]. We require some terminology. The profinite topology on a group G is

defined by proclaiming all finite index subgroups of G to be a basis of open

neighbourhoods of the identity. Let Ĝ denote the profinite completion of G.

An obvious subgroup of PSL(2, Od) is PSL(2,Z), and in the context of

the Congruence Kernel, Lubotzky [17] asked the following question:

Question. Is the induced map:

η : P̂SL(2,Z)→ P̂SL(2, Od)

injective?

Since open subgroups are closed in the profinite topology, it is not hard to

see that G is H-subgroup separable if and only if H is closed in the profinite

topology on G. Thus an equivalent formulation of Theorem 1.1 is that if H is

a geometrically finite subgroup of PSL(2, Od), then on passing to the profinite

completion P̂SL(2, Od), we require that the only points of PSL(2, Od) in the

closure of H (in P̂SL(2, Od)) are points of H. This formulation can be can be

used to give an affirmative answer.
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Theorem 8.1. The map ηd is injective for all PSL(2, Od).

Proof. The group PSL(2, Od) is residually finite, so that it (and hence

PSL(2,Z)) embeds into the profinite completion P̂SL(2, Od). Thus we may

take the closure of PSL(2,Z) ⊂ P̂SL(2, Od) to form a completion, denoted

PSL(2,Z). This completion is obviously embedded in P̂SL(2, Od), but it is

potentially coarser than the genuine profinite completion P̂SL(2,Z).

However any finitely generated subgroup H (in particular any subgroup

of finite index) in PSL(2,Z) is geometrically finite and thus by Theorem 1.1

separable in PSL(2, Od). It follows easily that one can find a subgroup H∗

of finite index in PSL(2, Od) with the property that H∗ ∩ PSL(2,Z) = H so

that in fact the map P̂SL(2,Z)→ PSL(2,Z) is a homeomorphism, proving the

theorem. 2
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