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Abstract

In this paper we prove a combination theorem for Veech subgroups of the mapping class
group analogous to the first Klein-Maskit combination theorem for Kleinian groups in which
two Fuchsian subgroups are amalgamated along a parabolic subgroup. As a corollary, we
construct subgroups of the mapping class group (for all genus at least 2), which are isomorphic
to non-abelian closed surface groups in which all but one conjugacy class (up to powers) is
pseudo-Anosov.

1 Introduction

For R a compact oriented surface, possibly with boundary, the mapping class group of R is defined
to be the group of isotopy classes of orientation preserving homeomorphisms

Mod(R) = Homeo+(R)/Homeo0(R),

where, Homeo+(R) is the group of orientation preserving homeomorphisms of R and Homeo0(R)
are those homeomorphisms isotopic to the identity. We will write φ to denote a homeomorphism
and its isotopy class, when no confusion can arise, or when the distinction is unimportant. An
isotopy class of a homeomorphism is called an automorphism of R. We specify no boundary
behavior when R has boundary.

There have been many analogies made between Mod(R) and lattices in Lie groups. In particular,
the study of the subgroup structure of Mod(R), both finite and infinite index, has many parallels
in the theory of lattices. For example, the question of whether Property T holds for Mod(R) (R a
closed orientable surface of genus ≥ 3), whether Mod(R) has a version of the Congruence Subgroup
Property, or towards the other extreme, whether there are finite index subgroups of Mod(R) that
surject onto Z (see for example [17], [18], and [10] for more on this).

The point of view of this paper is similar to [29] and [12] and is motivated by results and
constructions in 3-manifold topology and Kleinian groups. A powerful tool in the theory of Kleinian
groups are the Klein-Maskit combination theorems. Our purpose here is to take the first step in
the development of combination theorems for subgroups of Mod(R).

Before we state our main theorem, we describe the motivating example from Kleinian groups.
Suppose G1, G2 < PSL2(R) are two finitely generated Fuchsian groups of finite co-area, and G0 is
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a maximal parabolic subgroup of both. If h ∈ PSL2(C) is another parabolic centralizing G0, then
we may form the amalgamated product

G = G1 ∗G0 hG2h
−1

The First Klein-Maskit Combination theorem tells us that if h is ”sufficiently complicated”
(see §2.3), then the natural homomorphism of G into PSL2(C) is injective and every element is
hyperbolic except those conjugate into an elliptic or parabolic subgroup of either factor. In the
particular case that each G1 and G2 are torsion free and for i = 1, 2, H2/Gi have one cusp, G
is isomorphic to a non-abelian closed surface subgroup of π1(M) with one accidental parabolic.
This has been very useful in the construction of essential closed surfaces in cusped hyperbolic
3-manifolds (see [8] and [7]).

Our main theorem states that we can do essentially the same thing in Mod(R). The Fuchsian
subgroups in this setting are the Veech subgroups of Mod(R). A hyperbolic element of Mod(R) is
a pseudo-Anosov automorphism.

A special case of our main Theorem 6.1 is given by the following (see §2– §5 for definitions).

Theorem 1.1 Suppose G(q1), G(q2) are Veech subgroups of Mod(R) with G0 a maximal parabolic
subgroup of each. If h ∈ Mod(R) centralizes G0 and is ”sufficiently complicated”, then

G(q1) ∗G0 hG(q2)h−1 ↪→ Mod(R)

is injective. Moreover, any element not conjugate into a parabolic subgroup of either factor is
pseudo-Anosov or a periodic element conjugate into a factor.

One cusped Veech group lattices exist in most mapping class groups and in particular we have

Corollary 1.2 For every closed surface R of genus g ≥ 2, there exist subgroups of Mod(R) iso-
morphic to the fundamental group of a closed surface (of genus 2g) for which all but one conjugacy
class of elements (up to powers) is pseudo-Anosov.

That surface subgroups exist in most mapping class groups is already known (see for example
[14] for some discussion of this). One new feature about our construction is that “most” elements
are pseudo-Anosov, unlike the other constructions.

These examples are of particular interest in connection with the following question which has
implications into the existence of negatively curved 4-manifolds that fiber over a surface (see the
discussion at the end of [14] and Question 12.3 of [1]).

Question 1.3 Do there exist subgroups of the mapping class group isomorphic to the fundamental
group of a closed surface of genus at least 2 for which all non-identity elements are pseudo-Anosov?

The rest of the paper is organized as follows. §2 gives the necessary definitions from combi-
natorial group theory and ends with a more detailed description of the Kleinian group example
mentioned above. In §3 we recall some of the tools used in studying mapping class groups which
we will need. Veech groups are defined by a Euclidean cone structure on a surface which we de-
scribe in §4. The first half of §5 gives a brief recap of the Nielsen-Thurston classification of surface
automorphisms and provides the theorems on pseudo-Anosov automorphisms we will need. The
end of this section describes Veech groups and provides examples.

Section 6 contains the statement of Theorem 6.1 (thus clarifying Theorem 1.1) and a proof of
Corollary 1.2 assuming this. The proof of Theorem 6.1 is given in §9, with results and notation
needed in the proof built up in §7 and 8. In §7 we exploit the structure of geodesic representatives
of simple closed curves in the Euclidean cone metrics under consideration and use this to define
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sets which turn out to have properties analogous to those used in the Kleinian group example.
Continuing to follow this example, we define in §8 those sets which will play the part of horoballs,
called horror-balls, and show that they do indeed have the necessary properties. As well as proving
Theorem 6.1 in §9, we give some further generalizations of Theorem 6.1 including a very simple
version of the Second Klein-Maskit Combination theorem. We end with some concluding remarks
and questions in §10.

2 Group theory

Since it will be useful in what follows we recall some basic facts about free products with amalga-
mations.

2.1 Free product with amalgamation

Given groups G0, G1, ..., GP and monomorphisms

νi : G0 → Gi

for each i = 1, ..., P , the free product of {Gi}P
i=1 amalgamated over G0 is the group

G = G1 ∗G0 · · · ∗G0 GP (1)

defined by the universal property:

1. For each i, we have a monomorphism ιi : Gi → G with ιi ◦ νi = ιi′ ◦ νi′ for every i, i′.

2. For any group K and any collection of homomorphisms {ηi : Gi → K} with ηi ◦ νi = ηi′ ◦ νi′

for each i, i′, there exists a unique homomorphism η : G → K such that η ◦ ιi = ηi for each i.

This allows us to unambiguously identify G0 and each of the Gi’s as subgroups of G.
One can construct this group from the free product

G1 ∗ · · · ∗GP

as the quotient by the normal subgroup generated by all elements of the form νi(φ) ∗ νi′(φ−1) for
φ ∈ G0, i, i′ ∈ {1, ..., P}. In particular, this gives rise to normal forms for the elements of G.
Namely, for every element φ ∈ G exactly one of the following holds:

1. φ is an element of G0,

2. φ ∈ Gi \G0 for some i ∈ {1, ..., P}.
3. φ = φi1 · · ·φir where φij ∈ Gij \G0 with ij ∈ {1, ..., P} and ij 6= ij+1 for j = 1, ..., r − 1.

2.2 Proper interactive P -tuples

Suppose we are now given subgroups G0, G1, ..., GP < Γ with Gi ∩ Gi′ = G0 < Γ, for every
i, i′ ∈ {1, ..., P} and i 6= i′. Using the inclusions of G0 into each Gi we form the amalgamated
product G as in (1). The inclusions of each Gi into Γ and property 2 of the amalgamated product
implies the existence of a unique homomorphism G → Γ extending these inclusions.

If Γ acts on a set X, then we say that a P -tuple of subsets Θ1, ..., ΘP ⊂ X is a proper interactive
P -tuple for G1, ..., GP if
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1. Θi 6= ∅ for each i,

2. Θi ∩Θi′ = ∅ for each i 6= i′,

3. G0 leaves Θi invariant for each i,

4. for every φi ∈ Gi \G0 we have φi(Θi′) ⊂ Θi, for each i′ 6= i, and

5. for every i, there exists θi ∈ Θi, such that for every φi ∈ Gi \G0, θi 6∈ φi(Θi′) for any i′ 6= i.

The next proposition is proven using a standard “ping-pong” argument. The case of two
subgroups G1, G2 amalgamated over G0 is proved in [23].

Proposition 2.1 Suppose G0, G1, ..., GP , Γ, X are as above and Θ1, ..., ΘP ⊂ X is a proper inter-
active P -tuple for G1, ..., GP . Then

G = G1 ∗G0 G2 ∗G0 · · · ∗G0 GP ↪→ Γ

is an embedding.

Proof. Given φ ∈ G \ {1}, we must show that the image of φ in Γ is non-trivial. We do this
by showing that, with respect to the given action of Γ, φ does not act as the identity. The only
situation in question is when φ has normal form φ = φi1 · · ·φir of type 3 from §2.1.

Fix any i 6= ir. Then
φir (Θi) ⊂ Θir

by property 4 of a proper interactive P -tuple. Similarly,

φir−1(φir (Θi)) ⊂ φir−1(Θir ) ⊂ Θir−1

So, repeatedly applying 4 and inducting, we see see that

φ(Θi) ⊂ Θi1

Now if i 6= i1, then we are done since φ does not act as the identity. If i = i1 then φ(Θi) ⊂ Θi.
However, by property 5 above, φ(Θi) 6= Θi and hence φ is again not acting as the identity. 2

2.3 Kleinian group example

We now describe the motivating example of the Klein-Maskit combination theorem in more detail.
We will consider the action of PSL2(C) on Ĉ = C∪ {∞}. Continue to denote the Fuchsian groups
G1, G2 < PSL2(R). Each stabilizes R̂ = R ∪ {∞}, and after conjugating if necessary, we may
assume that the maximal parabolic subgroup of each is

G0 = StabG1(∞) = StabG2(∞) =

〈(
1 1
0 1

)〉

The elements of G0 act on C by translations parallel to the R-axis.
Each Gi also stabilizes upper and lower half planes, U and L. Let H denote the union of the

two horoballs
H = {z ∈ C | Im(z) > 1} ∪ {z ∈ C | Im(z) < −1} ⊂ U ∪ L

It is a well known consequence of the Jørgensen inequality that for every φ ∈ Gi \G0, i = 1, 2, we
have

φ(H) ⊂ Θ = {z ∈ C | |Im(z)| ≤ 1} (2)
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Now let h ∈ StabPSL2(C)(∞) \ PSL2(R) be any parabolic. This has the form

h =

(
1 µ
0 1

)

for some µ ∈ C \ R, and acts on C by translations transverse to the R-axis.
It follows that there exists K > 0 such that for any k ≥ K, we have

hk(Θ) ⊂ H

(thus, “sufficiently complicated” means that it translates a large distance transverse to the R-axis).
Set Θ1 = Θ and Θ2 = hk(Θ). This implies

Θ1 ⊂ hk(H) and Θ2 ⊂ H

We leave it as an exercise using this and (2) to verify that Θ1, Θ2 is a proper interactive pair for
G1, h

kG2h
−k.

3 Topology and combinatorics of surfaces

We will consider connected orientable surfaces of genus g with n punctures or boundary components
and say that this has type (g, n) (whenever we encounter a disconnected surface, we will work with
its components). We will blur the distinction between a puncture and a boundary component
whenever convenient. Two exceptions to this are (1) whenever we consider a complex structure on
our surface all boundary components will be replaced by punctures, and (2) whenever we consider
essential arcs on our surface (see §3.1), all punctures will be replaced by boundary components.
We sometimes write Rg,n to denote a surface of type (g, n) and Rg for a closed surface of genus g.

A surface with non-negative Euler characteristic or of type (0, 3) is said to be of excluded type.
In addition to surfaces of excluded type, those with type (1, 1) or (0, 4) are often too small for
general arguments and definitions to be valid, and we refer to these as sporadic. We will only
concern ourselves with surfaces of non-excluded type.

Given a punctured surface R of type (g, n), we denote the closed surface with the punctures
“filled back in” by R. We view this as a closed surface of genus g with n marked points.

3.1 Simple closed curves

We denote the set of isotopy classes of essential simple closed curves on R by C0(R). These are
(isotopy classes of) simple closed curves which are homotopically essential in R and not homotopic
to any puncture or boundary component. A multi-curve is a finite union of essential simple closed
curves which are pairwise disjoint and pairwise non-parallel. The isotopy classes of multi-curves
will be denoted C(R). We sometimes view the elements of C(R) as finite subsets of C0(R). We will
generally confuse isotopy classes with representatives whenever convenient.

Given A ∈ C(R), we let R \ N(A) denote the surface obtained by removing an open tubular
neighborhood of a representative of A from R. That is R \N(A) denotes R cut open along A. A
multi-curve A is said to be sparse if every component of R \N(A) has non-excluded type.

We denote the set of isotopy classes of essential simple closed curves and essential arcs in R
by A0(R). For us, an essential arc is an embedding of the pair (I, ∂I) → (R, ∂R) that cannot
be homotoped (rel boundary) into a boundary component. Multi-arcs are defined analogously to
multi-curves, and we denote the set of isotopy classes of multi-arcs by A(R).
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Given A,B ∈ A(R) we denote the geometric intersection number of A and B by i(A, B). This
is the minimal number of transverse intersection points over all representatives of A and B.

Remark. In our definitions we do not require that an isotopy fix the boundary pointwise.

3.2 Measured laminations

In what follows, we fix a complete hyperbolic metric of finite area on R (with geodesic boundary).

3.2.1 Geodesic laminations

We denote the space of compact geodesic laminations on R by GL0(R), and we give this the
Thurston topology. In this topology, a sequence of laminations {Lm}∞m=1 converges to a lamination
L if and only if every leaf of L is a limit of leaves of Lm (this is weaker than the Hausdorff topology).

Any lamination with all compact leaves is a finite union of simple closed geodesics, and any
such uniquely determines a multi-curve. Conversely, any multi-curve has a unique geodesic repre-
sentative, thus we may identify C(R) (and hence also C0(R)) as a subset of GL0(R).

3.2.2 Transverse measures

We denote the space of compactly supported measured laminations by ML0(R). We view an
element of ML0(R) as a compact geodesic lamination along with an invariant transverse measure
of full support. For any λ ∈ ML0(R), let |λ| denote the underlying geodesic lamination and λ
or dλ the transverse measure. We have an action of R+ on ML0(R) by scaling the transverse
measure.
R+ × C0(R) injects into ML0(R) by sending t · a to t times the transverse counting measure

on the geodesic representative of a. Given λ and λ′ in ML0(R), the total measure of the “product
measure” dλ × dλ′ is a natural homogeneous (with respect to the R+ action) extension of the
intersection number function, which we also denote

i : ML0(R)×ML0(R) → R

We endow ML0(R) with the smallest topology for which i is continuous. With this topology,
R+ × C0(R) is dense.

Given a pair λ1, λ2 ∈ML0(R), with |λ1| transverse to |λ2|, we say that λ1, λ2 bind R if for every
a ∈ C0(R), we have i(a, λ1) + i(a, λ2) > 0. Equivalently, all complementary regions of |λ1| ∪ |λ2|
are disks, punctured disks, or half-open annuli.

The quotient by R+

P : ML0(R) → PML0(R)

is the space of projective measured laminations on R. This is given the quotient topology and we
denote P(λ) by [λ], for any λ ∈ML0(R). The forgetful map to GL0(R) obtained by forgetting the
transverse measure factors through the projectivization.

An important point for us is the following result of Thurston [33] Proposition 8.10.3.

Proposition 3.1 The forgetful map

PML0(R) → GL0(R)

is continuous.

Remark. Although it appears that the spaces we have constructed depend on the choice of
hyperbolic metric, any two hyperbolic metrics give rise to spaces which can be canonically identified.
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3.2.3 Zero locus of a measured lamination

For any λ ∈ML0(R), |λ| is a finite union of its components |λ| = |λ1|∪· · ·∪|λN |. This decomposes
λ as a sum of sub-measured laminations λ =

∑N
j=1 λj . With this notation, we define

Z(λ) = {µ ∈ML0(R) | i(µ, λ) = 0} and Z ′(λ) =
N⋃

j=1

Z(λj)

These sets depend only on |λ|. In particular, if A is a multi-curve, we may define Z(A) and
Z ′(A) by arbitrarily prescribing a transverse measure of full support on the geodesic representative
of A.

By an abuse of notation, we refer to the images of Z(λ) and Z ′(λ) in PML0(R) and GL0(R)
by the same names. Note that if µ ∈ Z(λ) and µ′ ∈ ML0(R) has |µ| = |µ′|, then µ′ ∈ Z(λ),
and similarly for Z ′(λ). In particular, we may pass back and forth between the different sets
representing Z(λ) and Z ′(λ) by taking images and preimages without introducing any new points.

As a further abuse of notation, we will denote the intersection of Z(A), Z ′(A) ⊂ GL0(R) with
C(R) by the same names. It will be clear from the context where these subsets are residing.

3.2.4 Singular foliations

The elements of ML0(R) can also be realized as singular foliations on S with invariant transverse
measures of full support. The underlying singular foliation is unique up to isotopy and Whitehead
equivalence. The corresponding geodesic lamination is obtained by straightening all leaves to
geodesics. We will also write |λ| to denote the underlying (isotopy/Whitehead equivalence class
of) singular foliation. When it is clear from the context, we will not explicitly mention which of
these we are referring to.

A foliation is finite if it has only compact leaves. Given λ ∈ML0(R), the foliation |λ| is finite
if and only if the geodesic lamination |λ| represents a multi-curve. A finite foliation decomposes
R into a finite union of compact singular leaves and open annuli foliated by its nonsingular leaves.
We refer to this as an annular decomposition. The union of the cores of the annuli will be called
the core of the annular decomposition, and this is precisely the associated multi-curve for the finite
foliation. An annular decomposition is sparse if its core is.

3.3 The arc complex

The set A0(R) can be naturally identified with the vertex set of a simplicial complex A(R), called
the arc complex of R. A set of distinct elements a0, ..., ap ∈ A0 spans a p-simplex if and only if the
curves and arcs can be realized on the surface pairwise disjointly. Thus, the points of the complex
A(R) (that is, its simplices) are precisely the multi-arcs. We are therefore justified in using A(R)
to refer to either of these objects.

We denote the corresponding polyhedron |A|(R). This is not given the classical topology for
the polyhedron of a simplicial complex, but rather the metric topology obtained by declaring each
simplex to be a regular Euclidean simplex with all edge lengths equal to one. In particular, we
obtain a metric on A0(R) by viewing it as the set of vertices of the metric graph |A1|(R). Whenever
we refer to the distance between elements of A0(R), it will be understood that it is meant with
respect to this metrics.
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3.4 Subsurface projections

A useful tool is the subsurface projection. If S ⊂ R is a connected incompressible subsurface of
non-excluded type, then we have the subsurface projection

πS : PML0(R) \ Z(∂S) → A0(S)

obtained as follows. We fix a hyperbolic metric on R and homotope the embedding of S to have
geodesic boundary (this may make the boundary no longer embedded, but the interior remains
embedded). For [λ] ∈ PML0(R) \ Z(∂S), we consider the geodesic lamination |λ| and take its
intersection with S (less any components of ∂S). The result is a disjoint union of essential arcs
and a geodesic laminations in S (we are using the fact that the transverse measure has full support
to guarantee that |λ| has no isolated leaves which are not simple closed curves). Since [λ] is not
in Z(∂S), some leaf of |λ| intersects ∂S non-trivially, and we take πS([λ]) to be the isotopy class
of one of these arcs. The collection of essential arcs and the geodesic lamination in S obtained
in this way depend only on the underlying geodesic lamination |λ|, and not the projective class
of transverse measure. There is no canonical choice for this arc, however any two such arcs are
disjoint and hence have distance one from each other in A0(S).

The use of the hyperbolic structure in this construction is merely a convenient way of arranging
that all intersection points of leaves of |λ| with ∂S are essential, and so the construction may be
carried out assuming only this.

The subsurface projection is “coarsely continuous”.

Proposition 3.2 If {[λm]}∞m=1 ⊂ PML0(R) \ Z(∂S) converges to [λ] ∈ PML0(R) \ Z(∂S) then
there exists N > 0, such that for all m ≥ N

d(πS([λ]), πS([λm])) ≤ 1

Proof. Assume the setup from the statement of the proposition, and let l be any leaf of |λ| which
nontrivially intersects Z(∂S). If we let l0 be an arc of l ∩ S, then this is an allowable choice for
l0 = πS([λ]). Since the forgetful map to GL0(R) is continuous, there are leaves lm of |λm| which
converge to l. Thus there are arcs l0m of lm ∩ S which converge to l0. In particular, there exists
some N > 0 such that for all m ≥ N , the arcs l0m are isotopic in S to l0.

Clearly the same thing holds for any choice l0 for πS([λ]). So, since any choice of arc for
ΠS([λm]) will be disjoint from the l0m considered above, we obtain the required bound. 2

Remark. As is noted there, Proposition 3.2 is the intuition behind the Bounded Geodesic Image
Theorem of [27].

Since πS(λ) depends only on |λ|, it makes sense to define πS(A) for A ∈ C(R)\Z(∂S). However,
we will adhere to the following

Convention 3.3 When considering multi-curves, the domain for the subsurface projections will
be taken to be

C(R) \ Z ′(∂S)

instead of C(R) \ Z(∂S)

4 Quadratic differentials

The Teichmüller space of R, denoted T (R), is the space of isotopy classes complex structures of
finite type on R. For any X ∈ T (R) let A2(X) denote the vector space of integrable holomorphic
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quadratic differentials on R with respect to X. Varying X over T (R) we obtain a vector bundle
over T (R) with fiber over X being A2(X). We denote the complement of the zero section of this
bundle as A2T (R). We refer to a point of A2T (R) simply by the quadratic differential q, with the
underlying complex structure X ∈ T (R) implicit.

4.1 Metric structure

Any point q ∈ A2T (R) determines, and is determined by, a Euclidean cone metric on R with
some additional structure which we now describe. There is an atlas of local coordinate charts
{ζj : Uj → C} on the complement of the cone points with the following properties:

1. for each j, k and on each component of Uj ∩ Uk, there is a w ∈ C such that

ζj = ±ζk + w

2. the metric on Uj is the pullback of the Euclidean metric on C by ζj .

It follows that cone points have cone angle mπ for some m ∈ Z≥1. We further require that at any
cone point which is not a marked point, m ≥ 3.

Any local coordinate as above is called a q-coordinate. We refer to the set of cone points and
marked points as the singularities of q. Because of condition (1) on the transition functions, this
structure on R is sometimes called a half-translation structure.

Any embedded geodesic segment in the q metric connecting a pair of singular points and having
no singular point in its interior is called a saddle connection. A simple closed geodesic which misses
the singular locus will be called a nonsingular closed geodesic. There is a dichotomy for simple
closed curves a ∈ C0(R) with respect to q: either there is an annulus in R foliated by nonsingular
closed geodesics all in the isotopy class of a, or else there is a unique closed geodesic in R homotopic
to a made up of saddle connections.

The geodesic representative of a ∈ C0(R) when R has punctures requires a few additional
comments. If we take a sequence of representatives of a in R for which the lengths converge to the
infimum of all lengths of representatives, then a subsequence of these representatives will converge
to a geodesic in R, and this is the geodesic representative of a. In particular, arbitrarily close to
the geodesic representative we can find simple closed curves in R representing a.

4.2 ML0(q)

For any constant, nonzero 1-form adx + bdy on C (so a, b ∈ R), the measured foliation |adx + bdy|
is invariant under the transition functions for the atlas of q-coordinates. Therefore, it pulls back to
a measured foliation on the complement of the cone points. This extends to a singular measured
foliation on R and R.

The space of all such measured foliations is denoted ML0(q) and is homeomorphic to (R2 \
{0})/ ± I. We view ML0(q) as a subspace of ML0(R) and we write PML0(q) ⊂ PML0(R) to
denote the projectivization.

We note that the leaves of every element of ML0(q) are geodesic in the Euclidean cone metric,
with a finite number of critical leaves containing one or two singular points of the metric as
endpoints. When there are two singular points, this is just a saddle connection.

When λ ∈ ML0(q) is a finite foliation, it defines an annular decomposition of R. We say that
this is an annular decomposition for q.

Lemma 4.1 If A0, A1 are cores of two distinct annular decompositions for q, then A0 6∈ Z ′(A1).
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Proof. For any two distinct [λ0], [λ1] ∈ PML0(q), it is easy to see that λ0, λ1 bind R. In particular
A0, A1 bind R. Every component a ⊂ A1 must therefore intersect A0 (otherwise a would have
i(a,A0) + i(a,A1) = 0). 2

5 Mapping class group

5.1 Actions

Mod(R) acts on all the spaces associated to R we have discussed so far: A0(R), C(R), ML0(R),
PML0(R), and GL0(R). These actions respect the various natural maps between the spaces (e.g.
the inclusion C0(R) ⊂ ML0(R), and the projection ML(R) → PML(R)). These actions also
preserves the intersection number i (on the spaces where it is defined) as well as the metric on
A0(R).

5.2 Nielsen-Thurston classification

An automorphism φ ∈ Mod(R) \ {1} is said to be reducible if there exists a multi-curve A ∈ C(R)
invariant by φ. In this case, write S = R \ N(A) and denote the components of S by S1, ..., SM .
We thus have an induced automorphism

φ̃ : S → S

Some power φ̃r, preserves the components of this surface and hence gives rise to automorphisms

φ̃r
j : Sj → Sj

The multi-curve A is called a reducing system for φ and the maps φ̃r
j are called the components of

φ̃r (or of φr). The process just described for a reducible automorphism is called a reduction of φ
along A.

An example of a reducible automorphism is a Dehn twist Ta along some simple closed curve
a ∈ C0(R). More generally, given a multi-curve A, a composition of Dehn twists about the com-
ponents of A defines a reducible automorphism called a multi-twist. If all the Dehn twists are
positive, it is called a positive multi-twist.

An element φ ∈ Mod(R) of infinite order is called pseudo-Anosov if there exists a pair λs, λu ∈
ML0(R) called the stable and unstable laminations, respectively, which bind R and such that
{[λs], [λu]} is invariant by φ.

Theorem 5.1 (Nielsen-Thurston) Given any element φ ∈ Mod(R), one of the following holds

1. φ has finite order,

2. φ is reducible, or

3. φ is pseudo-Anosov.

If φ is reducible, there is a unique reducing system A with the property that, after passing to
an appropriate power φr, each of the components φ̃r

j are either pseudo-Anosov or the identity, and
any sub-multi-curve of A fails to have this property. We refer to this multi-curve as the canonical
reducing system for φ and those components of (a power of) φ which are pseudo-Anosov are called
the pseudo-Anosov components.
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Whenever we perform a reduction, it will always be assumed to be done along the canonical
reducing system. We say that φ is pure if it does not permute the components of S = R \ N(A)
or the components of A and each component of φ is either pseudo-Anosov or the identity. Any
reducible automorphism has a power which is pure.

5.3 Identifying the type of an automorphism

Given φ ∈ Mod(R), one can decide which of the three types from Theorem 5.1 φ falls into by
considering the action on PML0(R).

In case 1 of Theorem 5.1, there is nothing to say (some power of φ acts as the identity). In case
3, the two points [λs] and [λu] are attracting and repelling fixed points for the action, respectively.
In particular for every [λ] ∈ PML0(R) \ {[λs], [λu]}, we have

φn([λ]) → [λs] and φ−n([λ]) → [λu]

as n →∞.
For simplicity, we only describe the reducible case when φ is pure. Let A denote a canonical

reducing system for φ. Let λs,1, ..., λs,M , λu,1, ..., λu,M denote the stable and unstable measured
laminations for the pseudo-Anosov components of φ, which we view as elements of ML0(R). From
this data we obtain two laminations

ψs = A ∪ |λs,1| ∪ · · · ∪ |λs,M | and ψu = A ∪ |λu,1| ∪ · · · ∪ |λu,M |

These define subsets Ψs and Ψu of ML0(R) consisting of all measured laminations with measures
supported on (non-empty) sublaminations of ψs and ψu, respectively. We will need the following
result of Ivanov and McCarthy, see [18] Theorem A1.

Theorem 5.2 With the notation as above, for every λ ∈ML0(R) \ Z(Ψs) ∪ Z(Ψu)

lim
m→∞

φm([λ]) ∈ PΨs and lim
m→−∞

φm([λ]) ∈ PΨu

Note that if λ ∈ Z(Ψs) ∩ Z(Ψu), then φ fixes λ.

5.4 Pseudo-Anosov automorphisms and A0(R)

The following theorem of Masur and Minsky is a strengthening of the fact that a pseudo-Anosov
automorphism cannot fix any essential simple closed curve or arc.

Theorem 5.3 (Masur-Minsky) There exists c > 0 (depending only on R), such that for any
pseudo-Anosov automorphism φ ∈ Mod(R) the action of φ on A0(R) satisfies

d(φk(a), a) ≥ c|k|

for every a ∈ A0(R).

Remark. Although this is stated for the curve complex instead of the arc complex, the two
spaces are quasi-isometric by a Mod(R)-equivariant quasi-isometry (in the sporadic cases, the
curve complex is replaced by the Farey graph). This easily implies the version we need.
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5.5 Veech groups

Let Aff+(q) denote the subgroup of Mod(R) consisting of all automorphisms with representatives
which are affine with respect to the q-metric. We will refer to any subgroup G(q) < Aff+(q) as a
Veech group for q. Note this is non-standard notation, but is convenient for our purposes.

Taking derivatives in q-coordinates (with respect to the standard basis of C ∼= R2) we obtain a
homomorphism

D : Aff+(q) → PSL2(R)

This gives us the short exact sequence shown below, and in which PSL(q) is the image group of
the homomorphism D above, and Aut(q) is the subgroup of Aff+(q) preserving q.

1 → Aut(q) → Aff+(q) → PSL(q) → 1 (3)

The next theorem is well known. It can be derived from Bers proof of Theorem 5.1, as is done
by Kra in [21]. A proof is also given by Veech in [34] and Thurston in [32].

Theorem 5.4 D is a discrete representation with finite kernel. For φ ∈ Aff+(q) \ {1}:

1. φ has finite order if and only if Dφ is elliptic or Dφ = 1,

2. φ has a power that is a positive multi-twist if and only if Dφ is parabolic, and

3. φ is pseudo-Anosov if and only if Dφ is hyperbolic.

The proof boils down to the following elementary observation. Given φ ∈ Aff+(q), either Dφ
preserves a quadratic form (case 1), has a single eigenspace (case 2), or a pair of distinct eigenspaces
(case 3). Then, either φ preserves a metric affine equivalent to the q-metric (case 1) or a (pair of)
foliation(s) everywhere tangent to the eigenspace(s) (cases 2 and 3).

In case 2, the invariant foliation is finite and so defines an annular decomposition with core A0.
Some power of φ is a positive multi-twist about A0. The stabilizer of A0 in Aff+(q) contains 〈φ〉
with finite index. For any Veech group G(q) < Aff+(q) we denote the stabilizer of A0 in G(q) by
G0(q).

We say that a subgroup of Aff+(R) has elliptic or parabolic type if its image under D is an ele-
mentary subgroup with elliptic or parabolic type, respectively. In particular, G0(q) is of parabolic
type.

5.6 Examples

The following construction is due to Veech. Given g ≥ 2, let ∆g be the non-convex polygon
obtained as the union of two regular 2g + 1-gons in the Euclidean plane which meet along an edge
and have disjoint interiors (see Figure 1 for the case g = 2).

Let Rg denote the surface obtained by gluing opposite sides of ∆g by translations. This is
easily seen to be a closed surface of genus g. The Euclidean metric on the interior of ∆g is the
restriction of a Euclidean cone metric on Rg, and we can find local coordinates defining a quadratic
differential on Rg compatible with this metric (as in 4.1). We denote this quadratic differential
ξg ∈ A2T (Rg).

Theorem 5.5 (Veech) PSL(ξg) is a lattice isomorphic to a triangle group of type (2, 2g + 1,∞).
The single primitive parabolic conjugacy class is the image by D of the conjugacy class of a positive
multi-twist in Aff+(ξg) by D about a sparse multi-curve A0 ∈ C(Rg).
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Figure 1: ∆2

See [34] for a proof.

PSL(ξg) is generated by a pair of elliptic elements γ0 and γ1 with orders 2 and 2g + 1, respec-
tively. Moreover, these can be chosen so that γ0γ1 generates the parabolic subgroup.

There is an epimorphism

ν : PSL(ξg) → Z/2Z⊕ Z/(2g + 1)Z

with ν(γ0) and ν(γ1) generating the first and second factors, respectively. It follows that ker(ν)
is a free group. Moreover, since ν(γ0γ1) generates the range, we see that ker(ν) has exactly
one conjugacy class of parabolics. In fact, ker(ν) ∼= π1(Sg,1) with the parabolic (γ0γ1)2(2g+1)

representing a peripheral element, where Sg,1 is a surface of type (g, 1).
The sequence (3) restricts to a short exact sequence

1 → D−1(ker(ν)) ∩Aut(ξg) → D−1(ker(ν)) → ker(ν) → 1

which splits since ker(ν) is free. Denoting the image of ker(ν) under the splitting isomorphism by
G(ξg) < Aff+(ξg) we have

Corollary 5.6 G(ξg) < Mod(Rg) is isomorphic to π1(Sg,0,1) with every non-peripheral conjugacy
class represented by a pseudo-Anosov automorphism and the peripheral subgroup generated by a
positive multi-twist about the sparse multi-curve A0 ∈ C(Rg).

Proof. This follows from Theorem 5.5 and the comments above by appealing to Theorem 5.4. 2

6 The combination theorem

For the remainder of this paper, we let R denote a non-sporadic surface of type (g, n).

We first define the groups to which our theorem applies. Let q1, ...., qP ∈ A2T (R) and suppose
that A0 ∈ C(R) is the core of sparse annular decomposition for each of q1, ..., qP . Write S =
R \N(A0) and let h ∈ Mod(R).

We say that h,G(q1), ..., G(qP ) are compatible along A0 if

1. G0 = G0(q1) = ... = G0(qP ),

2. h centralizes G0 and,

3. h is pure and pseudo-Anosov on all components of S.

Our main theorem is the following.
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Theorem 6.1 Suppose h,G(q1), ..., G(qP ) are compatible along the sparse multi-curve A0. Then
there exists K2, ..., KP ≥ 0 such that for ki ≥ Ki + ki−1, i = 2, ..., P , and k1 = 0,

G(q1) ∗G0 hk2G(q2)h−k2 ∗G0 · · · ∗G0 hkP G(qP )h−kP ↪→ Mod(R)

is an embedding. Moreover, every element not conjugate into an elliptic or parabolic subgroup of
any hkiG(qi)h−ki is pseudo-Anosov.

This obviously implies Theorem 1.1, where “sufficiently complicated” simply means a suffi-
ciently high power of a pure automorphism in the centralizer of G0 being pseudo-Anosov on all
components of S. Appealing to the examples described in Section 5.6, we have the following.

Corollary 1.2 For every closed surface R of genus g ≥ 2, there exist subgroups of Mod(R) iso-
morphic to the fundamental group of a closed surface (of genus 2g) for which all but one conjugacy
class of elements (up to powers) is pseudo-Anosov.

Proof. Let G(q1) = G(q2) = G(ξg) from Corollary 5.6. Since A0 is sparse, there exists an
automorphism h ∈ Mod(R) which is pseudo-Anosov on all component of S (in fact, S is connected
in all of these examples). G0 is generated by a multi-twist about A0, and so h certainly centralizes
G0. It follows that h,G(q1), G(q2) are compatible along A0. Note that G0 is the only conjugacy
class of parabolic subgroups in G(ξg).

Theorem 6.1 therefore implies that for sufficiently large k

G(ξg) ∗G0 hkG(ξg)h−k

embeds in Mod(R) and every element not conjugate into the cyclic subgroup G0 is pseudo-Anosov.
On the other hand

G(ξg) ∗G0 hkG(ξg)h−k ∼= π1(Sg,1) ∗Z π1(Sg,1) ∼= π1(S2g,0)

where the Z in the amalgamated product is the peripheral subgroup of each. 2

The proof of Theorem 6.1 is given in §9. This will require some preliminary notation and results
which occupy the next few sections.

7 More on geodesics

For the remainder of this section, fix q ∈ A2T (R).

7.1 Bad singularities

For any multi-curve A, we define σ(A) to be the q-geodesic representative of A. This is a union
of saddle connections and non-singular closed geodesics with pairwise disjoint interiors. We make
this unique by requiring all components of A which are homotopic to nonsingular geodesics to
be represented by a geodesic in the interior of the corresponding annulus, equidistant from both
boundary components.

Since σ(A) is a union of geodesics, if we follow an arc of any component as it enters and exits
a singularity p, we see that it must make an angle at least π on both sides, unless p is a puncture
point. In this case it must make an angle at least π on the side opposite the puncture.

At each singularity p of σ(A), we consider the ends of those saddle connections meeting p. By
an end we simply mean a component of a saddle connection intersected with a small neighborhood
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of p. We cyclically order these ends as we encounter them by encircling p in a counter-clockwise
direction. Let us write these in order as b1, ..., br (see Figure 2). Between each consecutive pair
bi and bi+1 (mod r), we have the angle θi. We say that the singularity p is bad if θi < π for each
i = 1, ..., r.

Figure 2: Saddle connection ends
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Lemma 7.1 Given A ∈ C(R), σ(A) contains no bad singularities.

Proof. This is an outer-most arc argument. Suppose σ(A) contains a bad singularity. Take a
small neighborhood of p and of b1, ..., br and by small homotopy we assume that A is embedded
in the union of these neighborhoods (see Figure 3). The neighborhood of p is a disk and the
neighborhoods of the bi’s define intervals Ii on the boundary of this disk. The intersection of A
with the disk is a collection of arcs with endpoints on the intervals.

Figure 3: Neighborhood of a singularity and its saddle connection ends
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There are finitely many arcs, and so we may consider one which is outer-most. The endpoints
of this arc are in adjacent intervals Ii, Ii+1. Therefore the arc lies in a component of A whose
geodesic representative enters p along bi and exits along bi+1. Because θi < π, this makes an angle
less than π. Therefore σ(A) cannot be geodesic, providing a contradiction, unless p is a puncture
cut off by the arc. In this case, we choose a different outer-most arc (or if this is the only arc, we
think of it as outer-most on the other side). As we have already cut off the puncture with the first
arc, the new outer-most arc cannot cut it off, and we arrive at the same contradiction. 2

7.2 Subsurface projections and spines

Given any annular decomposition of R for q with core A0, let σ0 denote the union of singular leaves
parallel to A0. Equivalently, this is the union of the boundary components of maximal annuli in
the annular decomposition. Call σ0 a spine parallel to A0.

Fix a spine σ0 parallel to a sparse core A0 and let σ0,1, ..., σ0,N denote the components of σ0.
For each j = 1, ..., N , define

Θ(q)j = {A ∈ C(R) \ Z ′(A0) |σ(A) 6⊃ σ0,j}
and set

Θ(q) =
N⋂

j=1

Θ(q)j

Let S = R \ N(A0) with components S1, ..., SN . We may order these components so that
σ0,j ⊂ Sj . For each j = 1, ..., N , take δj to be a geodesic arc in Sj with endpoints on ∂Sj and
intersecting the interior of a single saddle connection, bj , of σ0,j (see Figure 4).

Figure 4: The arc δj

Sj

bj

δj

∂Sj

Proposition 7.2 For each j = 1, ..., N ,

πSj (Θ(q)) ⊂ πSj (Θ(q)j) ⊂ B(δj , 2)

Proof. The first inclusion is obvious, so all we need prove is the second. Before we begin, we note
that for any sufficiently small ε > 0, we can take Sj to be the ε-neighborhood of σ0,j .

There is a linear deformation retraction Ht, t ∈ [0, 1], of Sj onto σ0,j which slides points along
a perpendicular geodesic arc from ∂Sj to σ0,j . We assume that Ht is an embedding for t ∈ [0, 1).
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Moreover, δj may be chosen to be H−1
1 (p) for any p ∈ int(bj) (the interior of bj), and this is isotopic

to any other choice of δj .
We fix some A ∈ Θ(q)j . By definition, σ0,j 6⊂ σ(A). Suppose first that bj 6⊂ σ(A). We claim

that for an appropriate choice of p ∈ int(bj), δj = H−1
1 (p) is disjoint from σ(A).

To prove the claim, we note that because bj 6⊂ σ(A), we can find p ∈ int(bj) and ε′ > 0 such
that

dq(p, σ(A)) > 2ε′

Now, take any 0 < ε ≤ ε′ which defines Sj as the ε-neighborhood of σ0,j . Let γ be an arc of
bj centered at p of radius no more than ε. Then H−1

1 (γ) contains δj and is contained in the
2ε′-neighborhood of p. In particular, this set (and hence δj) is disjoint from σ(A) as claimed.

Thus, if bj 6⊂ σ0,j , then δj is disjoint from σ(A) and in particular

d(δj , πSj
(A)) ≤ 1

for any allowable choice of projection πSj
(A).

So to prove the proposition, we assume bj ⊂ σ(A). Then by hypothesis there is another branch
b′j of σ0,j such that b′j 6⊂ σ(A). Let δ′j be an analogous arc for b′j . The previous argument implies
that d(δ′j , πSj

(A)) ≤ 1 for any allowable choice of projection. δj and δ′j are disjoint however, and
so d(δj , πSj

(A)) ≤ 2. 2

7.3 G(q) action on geodesics

G(q) acts on the set of saddle connections and non-singular closed geodesics since it is acting by
affine homeomorphisms. Taking geodesic representatives is obviously equivariant with respect to
this action and the action on C(R). That is

σ(φ(A)) = φ(σ(A)) (4)

for any A ∈ C(R) and any φ ∈ G(q).
This implies

Lemma 7.3 Θ(q) is invariant under G0(q).

Proof. σ0 is invariant under G0(q) although some elements may permute the components. Let
A ∈ C(R) and φ ∈ G0(q) and let φ(σ0,j) = σ0,j′ . Then we have

σ0,j′ = φ(σ0,j) ⊂ φ(σ(A) = σ(φ(A)) ⇔ σ0,j ⊂ σ(A)

Since A0 is also invariant under G0(q), so is Z ′(A0). The lemma now follows from the definition
of Θ(q). 2

8 Horror-balls

We wish to define the analog of the horoballs used in the Kleinian group example of §2.3. A
horror-ball will depend on q and a sparse core A0 of an annular decomposition for q.

We define the horror-ball for q and A0 by the equation

H(q) =
N⋂

j=1

π−1
Sj

(A0(Sj) \B(δj , 2)
) ⊂ C(R) \ Z ′(A0)

where δj is as in §7.2 and Proposition 7.2 (the dependance on A0 is implicit in the notation H(q)).
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Proposition 8.1 For every j = 1, ..., N , we have

H(q) ∩Θ(q)j = ∅
(in particular, H(q) ∩Θ(q) = ∅), and for every φ ∈ G(q) \G0

φ(H(q)) ⊂ Θ(q)

Proof. By Proposition 7.2, for every j = 1, ..., N , we have
(A0(Sj) \B(δj , 2)

) ∩ πSj
(Θ(q)j) = ∅

Therefore
H(q) ∩Θ(q)j =

(⋂N
k=1 π−1

Sk

(A0(Sk) \B(δk, 2)
)) ∩Θ(q)j

⊂ π−1
Sj

(A0(Sj) \B(δj , 2)
) ∩ π−1

Sj

(
πSj

(Θ(q)j)
)

= π−1
Sj

((A0(Sj) \B(δj , 2)
) ∩ πSj

(Θ(q)j)
)

= ∅
which proves the first assertion.

To prove the second, we suppose that A ∈ H(q) and φ ∈ G(q)\G0 and show that φ(A) ∈ Θ(q).
By the first part, we know A 6∈ Θ(q)j for any j = 1, ..., N and so σ0 ⊂ σ(A). Since

φ(σ(A)) = σ(φ(A))

by (4), we see that φ(σ0) ⊂ σ(φ(A)). Since σ0 is a spine, so is φ(σ0). Now, suppose σ0,j ⊂ σ(φ(A))
for some j. σ0,j is a component of the spine σ0 and so σ(φ(A)) contains the σ0,j ∪ φ(σ0). This
has a bad vertex (see Figure 5) and so contradicts Lemma 7.1. Hence σ0,j 6⊂ σ(φ(A)) for any
j = 1, ..., N .

Figure 5: Local picture near the singularity of σ0,j ∪ φ(σ0)

σ0,j ∪ φ(σ0)

σ0,j

φ(σ0)

To prove that φ(A) ∈ Θ(q), all that remains is to show that φ(A) 6∈ Z ′(A0). Again, we note
that φ(σ0) is a spine and it therefore (nontrivially and transversely) intersects any nonsingular
geodesic which its associated core, φ(A0), intersects. However, φ(A0) and A0 are distinct cores
and so Lemma 4.1 guarantees φ(A0) intersects every component of A0. Therefore, φ(A) intersects
every component of A0 and thus φ(A) 6∈ Z ′(A0). 2
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8.1 Spacing out

We assume the hypotheses on h,G(q1), ..., G(qP ) and A0 from the statement of Theorem 6.1 in
what follows. Let Θ(qi)j for j = 1, ..., N and i = 1, ..., P be defined as in §7.2 with respect to our
given multi-curve A0 ∈ C(R). Let hj ∈ Mod(Sj) for each j = 1, ..., N be the Sj-component of h,
which is pseudo-Anosov by assumption. As a convenience, we use the flexibility in the definition of
πSj

(see §3.4) to guarantee that it is equivariant with respect to 〈h〉. That is, for each j = 1, ..., N ,
each k ∈ Z, and each A ∈ C(R) \ Z ′(A0)

πSj (hk(A)) = hk
j (πSj (A))

This is accomplished by defining πSj
on 〈h〉-orbit representatives, then extending so that it is

equivariant (it is easy to check that this is an allowable definition for πSj ).
In the statement of Theorem 6.1 we require the existence of certain numbers K2, ..., KP . The

following lemma will provide us with these numbers.

Lemma 8.2 Suppose h,G(q1), ..., G(qP ) are compatible along the sparse multi-curve A0. Then
there exists K2, ..., KP ≥ 0 such that for ki ≥ Ki + ki−1, i = 2, ..., P , and k1 = 0

d(hki
j (πSj

(Θ(qi))), h
ki′
j (πSj

(Θ(qi′)))) ≥ 5

for every i, i′ ∈ {1, ..., P} with i 6= i′.

Proof. Proposition 7.2 implies that for each j = 1, ..., N and each i = 1, ..., P , πSj (Θ(qi)) has
diameter no more than 4. In particular, by Theorem 5.3 and the triangle inequality, for each
i = 2, ..., P there are only finitely many integers ki for which

d(hki
j (πSj (Θ(qi))), πSj (Θ(qi′))) < 5

for some i′ 6= i. Therefore, for each i = 2, ..., P , there exists Ki ≥ 0 such that for every ki ≥ Ki

and every i′ 6= i,
d(hki

j (πSj (Θ(qi))), πSj (Θ(qi′))) ≥ 5 (5)

Now set k1 = 0 and let ki ≥ Ki + ki−1. Suppose i > i′. By induction on i− i′, we see that

ki ≥
(

i∑

l=i′+1

Kl

)
+ ki′

In particular, ki − ki′ ≥ Ki.
Since h

−ki′
j acts by isometries on A0(Sj), we have

d(hki
j (πSj (Θ(qi))), h

ki′
j (πSj (Θ(qi′)))) = d(hki−ki′

j (πSj (Θ(qi))), πSj (Θ(qi′))) ≥ 5

by (5), as required. 2

9 Proof of Theorem 6.1

We can now prove
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Theorem 6.1 Suppose h,G(q1), ..., G(qP ) are compatible along the sparse multi-curve A0. Then
there exists K2, ..., KP ≥ 0 such that for ki ≥ Ki + ki−1, i = 2, ..., P , and k1 = 0,

G(q1) ∗G0 hk2G(q2)h−k2 ∗G0 · · · ∗G0 hkP G(qP )h−kP ↪→ Mod(R)

is an embedding. Moreover, every element not conjugate into an elliptic or parabolic subgroup of
any hkiG(qi)h−ki is pseudo-Anosov.

Proof. Let K2, ..., KP be as in Lemma 8.2, k1 = 0, and ki ≥ Ki + ki−1 for each i = 2, ..., P . To
simplify the notation, we replace each G(qi) by its conjugate hkiG(qi)h−ki . By the 〈h〉-equivariance
of πSj (see §8.1), this has the effect of replacing each πSj (Θ(qi)) by

πSj
(hki(Θ(qi))) = hki

j (πSj
(Θ(qi)))

Therefore, by Lemma 8.2, we have

d(πSj
(Θ(qi)), πSj

(Θ(qi′))) ≥ 5 (6)

We first claim that (Θ(q1), ..., Θ(qP )) is a proper interactive P -tuple (see §2.2). Clearly each
Θ(qi) is nonempty and Lemma 7.3 implies each of these sets is invariant under G0. By (6) we see
that for each i 6= i′ and each j = 1, ..., N

πSj (Θ(qi′)) ⊂ A0(Sj) \B(δi,j , 2)

where δi,j is defined for Sj in terms of qi as in §7.2 and Proposition 7.2 so that

Θ(qi′) ⊂
N⋂

j=1

π−1
Sj

(πSj (Θ(qi′))) ⊂ H(qi) (7)

Thus, by the first part of Proposition 8.1 (or by (6) directly), we see that

Θ(qi) ∩Θ(qi′) = ∅

for each i 6= i′.
Now, the second part of Proposition 8.1 combined with (7) shows that for every i and each

φ ∈ G(qi) \G0

φ(Θ(qi′)) ⊂ φ(H(qi)) ⊂ Θ(qi) (8)

for every i′ 6= i. Therefore Θ(q1), ..., Θ(qP ) satisfies properties 1–4 in the definition of proper
interactive P -tuple.

To prove that this also satisfies property 5, for every i choose any φi ∈ G(qi) \ G0. We claim
that

φi(A0) ∈ Θ(qi) (9)

This is because φi(A0) is a core of an annular decomposition different than A0, so σ(φi(A0)) (with
respect to qi) contains no saddle connections and therefore no component of σ0. Moreover, by
Lemma 4.1, φi(A0) 6∈ Z ′(A0). Define θi = φi(A0).

For every i′ 6= i and any φ̃ ∈ G(qi) \G0, we have

θi 6∈ φ̃(Θ(qi′))

For, as we saw in the proof of Proposition 8.1, given any A ∈ φ̃(Θ(qi′)), σ(A) contains a spine
(with respect to qi), namely, φ̃(σ0). However, θi contains no spine. We have thus proved that
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Θ(q1), ..., Θ(qP ) also satisfies property 5 and hence is a proper interactive P -tuple. Proposition 2.1
implies the required injectivity.

We now prove the statement about pseudo-Anosov elements. By Theorem 5.4 we know that
in each factor, any element not in an elliptic or parabolic subgroup is pseudo-Anosov. It suffices
therefore to consider an element φ which is not conjugate into any factor. We assume that φ is
reducible and arrive at a contradiction. By the structure theory of amalgamated free products,
since φ is not conjugate into a factor, φ must have infinite order. Thus Theorem 5.1 implies that
φ is pseudo-Anosov.

After conjugating, we may write

φ = φi1φi2 · · ·φir

with φik
∈ G(qik

) \ G0 and ik 6= ik+1 (mod r) for each k = 1, ..., r. By passing to an appropriate
power if necessary, we may also assume that φ is pure. In what follows, we let A, λs,1, ... , λs,M ,
λu,1, ... , λu,M , ψs, ψu, Ψs, and Ψu be as in §5.3.

We consider the image of A0 under φ and its iterates. First, by (9), φir
(A0) ∈ Θ(qir

). It
follows from (8) that φir−1(φir (A0)) ∈ Θ(qir−1). Applying the rest of the word for φ, by repeatedly
appealing to (8) and induction, we see

φ(A0) ∈ Θ(qi1)

Similarly,
φ−1(A0) ∈ Θ(qir )

Iterating φ and φ−1 and applying (8) and induction we find that

φm(A0) ∈ Θ(qi1) and φ−m(A0) ∈ Θ(qir ) (10)

for every m ≥ 1.
So, combining (6) and (10) we see that for every j = 1, ..., N and m ≥ 1

d(πSj (φm(A0)), πSj (φ−m(A0))) ≥ 5 (11)

Now consider the limits of these multi-curves in PML0(R)

[λs
0] = lim

m→∞
φm(A0) and [λu

0 ] = lim
m→∞

φ−m(A0)

(A0 is assigned the projective class of transverse counting measure, although any transverse measure
of full support will do). Theorem 5.2 implies that if A0 nontrivially intersects ψs, then [λs

0] ∈
PΨs(φ) and [λu

0 ] ∈ PΨu(φ) (because A0 is a multi-curve it intersects ψs if and only if it intersects
ψu). However, because φ(A0) ∈ Θ(qi1) and A0 6∈ Θ(qi1), the comment following Theorem 5.2
implies that A0 nontrivially intersects ψs. In particular, we find [λs

0], [λu
0 ] ∈ PML0(R) \ Z(∂Sj)

for some j.
By Proposition 3.2, the triangle inequality, and (11), we see that for sufficiently large m,

d(πSj ([λs
0]), πSj ([λu

0 ])) ≥ d(πSj (φm(A0)), πSj (φ−m(A0)))
− d(πSj (φm(A0)), πSj ([λs

0]))− d(πSj ([λu
0 ]), πSj (φ−m(A0)))

≥ 5− 2 = 3

Therefore λs
0, λ

u
0 bind when restricted to Sj . Said differently, the intersections of |λs

0| and |λu
0 | with

Sj nontrivially intersect every essential simple closed curve and essential arc in Sj .
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Suppose |λs
0| misses some component of A0. The connectivity of R implies that, among all

components of A0 which |λs
0| fails to intersect, there is (at least) one which is the boundary of a

component Sj of S for which λs
0, λ

u
0 bind when restricted (as in the previous paragraph). Call this

component a.

Claim. a is also a component of A.

Proof of claim. Because λs
0, λ

u
0 bind when restricted to Sj , and since they miss a, the boundary of

the complementary region of |λs
0| ∪ |λu

0 | must have a component parallel to a (see Figure 6).

Figure 6: |λs
0| ∪ |λu

0 | near a.

Sj

Sj′

a

|λs
0|

|λs
0|

|λs
0|

|λu
0 |

|λu
0 |

|λu
0 |

The components of |λs
0|∪ |λu

0 | are components of ψs∪ψu. Any such component is either a com-
ponent of A or a set of the form |λs,j |∪|λu,j | for j = 1, ...,M . So, the component of the boundary of
the complementary region above is a component of the boundary of the complementary region for
some |λs,j |∪|λu,j |. However, all such boundary components which are essential in R are parallel to
the boundaries of subsurfaces on which φ is pseudo-Anosov. Therefore, a is such a boundary, and
hence a component of A (the boundary of a component on which φ is pseudo-Anosov is necessarily
in the canonical reducing system). This proves the claim.

Since φ(A0) transversely intersects every component of A0 (it lies in the complement of Z ′(A0)),
it follows that φ(a) 6= a. However, this contradicts the fact that a is a reducing curve and was
thus assumed to be fixed (by the purity assumption). This proves that φ is pseudo-Anosov and
completes the proof the theorem. 2

9.1 Other combinations

The arguments in the proof of Theorem 6.1 carry over verbatim to more general settings. For
example, one can form the amalgamated product of countably many groups {G(qi)}∞i=1 conjugated
by (appropriate powers of) distinct pure automorphisms {h(i)}∞i=1 each centralizing G0. However,
the statement seems sufficiently messy that we have only stated it in the finite case.

One example of the countable case which seems interesting enough to mention explicitly is
when G(qi) = G(q) for some fixed q. In this case, we have
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Theorem 9.1 Suppose h,G(q) are compatible along A0. Then there exists k > 0 such that

G = · · ·h−2kG(q)h2k ∗G0 h−kG(q)hk ∗G0 G(q) ∗G0 hkG(q)h−k ∗G0 h2kG(q)h−2k · · · ↪→ Mod(R)

is an embedding and any element not conjugate into an elliptic or parabolic subgroup of G(q) is
pseudo-Anosov.

Proof. All that is needed is the analog of Lemma 8.2 to show that there exists k > 0 so that

d(hrk(πSj (Θ(q))), hr′k(πSj (Θ(q)))) ≥ 5

for all r, r′ ∈ Z and r 6= r′. This follows from Proposition 7.2, Theorem 5.3, and the fact that hj

acts on A0(Sj) by isometries. The rest of the proof is identical to the proof of Theorem 6.1.2

We now consider the trivial HNN extension

G(q)∗G0

(we are extending by Z over G0 and the stable letter, τ , acts trivially on G0). We write

η : G(q)∗G0 → Z

for the epimorphism obtained by sending G(q) to 0 and τ to 1.
There is a homomorphism

δ : G(q)∗G0 → Mod(R)

extending the inclusion of G(q) obtained by sending τ to hk. Then the kernel of η is isomorphic
to the group G from Theorem 9.1 in such a way that the restriction of δ is the inclusion of G into
Mod(R).

Corollary 9.2 With the notation as above,

δ : G(q)∗G0 ↪→ Mod(R)

is an embedding. Moreover, any element not conjugate into an elliptic or parabolic subgroup or
into 〈hk〉 is pseudo-Anosov.

Proof. We have the short exact sequence

1 → G → G(q)∗G0 → Z→ 1

which splits by the homomorphism sending 1 to τ . By construction, the splitting homomorphism
composed with δ is injective with image 〈hk〉.

Any element in φ ∈ G(q) ∗G0 \ {1} is a product τnγ where γ ∈ G and n ∈ Z. If δ(φ) = 1 then
n 6= 0 and γ 6= 1 since δ restricted to each of G and 〈τ〉 is injective. Moreover

γ = δ(τ−nτnγ) = δ(τ−nφ) = δ(τ−n) = h−nk

This is impossible since the element γ ∈ G is either pseudo-Anosov, a root of a positive multi-
twist, or of finite order by Theorem 9.1 and Theorem 5.4, whereas h−nk is reducible with all
pseudo-Anosov components by hypothesis.

The proof of the pseudo-Anosov statement follows by an argument similar to that in the proof
of Theorem 6.1 where we conjugate our element to have the form

φ = hnkφi1 · · ·φir
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with φij ∈ hijkG(q)h−ijk\G0, ij 6= ij+1 (mod r), and r minimal. For then, φm(A0) ∈ hnk+i1k(Θ(q))
and φ−m(A0) ∈ hirk(Θ(q)) for all m ≥ 1. These have projections which are a distance at least 5
apart, unless n + i1 = ir. However, in this case φ is conjugate to

hnkφi2 · · ·φir−1(φirh
nkφi1h

−nk)

and φirh
nkφi1h

−nk ∈ hirkG(q)h−irk which contradicts the minimality of r. We may now proceed
as in Theorem 6.1. 2

10 Concluding remarks

10.1

A more geometric description of Veech groups is the following. Any q ∈ A2T (R) defines a holo-
morphic totally geodesic embedding of the hyperbolic plane

fq : H2 → Hq ⊂ T (R)

The stabilizer StabMod(R)(Hq) acts on Hq and this action can be conjugated back to H2, via fq,

thus defining a homomorphism to PSL2(R) ∼= Aut(H2). It turns out that StabMod(R)(Hq) =

Aff+(q) and with the appropriate identifications, the homomorphism to PSL2(R) is given by D.
In the special case that H2/PSL(q) has finite area, this quotient is called a Teichmüller curve and
this immerses into the moduli space.

This sheds some additional light on the analogy with Kleinian groups. In particular, when the
Fuchsian subgroups G1, G2 lie in a fixed Kleinian group Γ, these define totally geodesic surfaces
in the associated hyperbolic 3-manifold H3/Γ. If h is taken to lie in Γ (and is sufficiently compli-
cated), then the amalgamated product injects into Γ. In this case, one can view the construction
as truncating one of the cusps of each of the totally geodesic surfaces and connecting the exposed
boundary components with an annulus whose co-core is determined by h. Similarly, we can view
our construction as truncating one of the cusps of the Teichmüller curves and connect the exposed
boundary components by an annulus in the moduli space whose co-core is determined by h. We
remark that our theorem (as in the Kleinian group case) does not require PSL(q) to have finite area.

To further the analogy with hyperbolic spaces, we recall that Thurston’s compactification of
T (R) is obtained by adding PML0(R) at infinity to obtain

T (R) = T (R) ∪ PML0(R) ∼= B6g−6

where B6g−6 is the closed ball of dimension 6g− 6 and PML0(R) is identified with the boundary.
Moreover, PML0(R) has a natural piecewise projective structure and the action of Mod(R) on
T (R) and PML0(R) fit together to give a well defined action on T (R) which is holomorphic on
the interior and piecewise projective on the boundary.

There is a natural identification of PML0(q) with the boundary at infinity ∂∞H2. In this way,
the inclusion of PML0(q) into PML0(R) can be thought of as an extension ∂∞fq of fq to infinity.
Indeed, the natural projective structure on RP1 = ∂∞H2 = PML0(q) makes ∂∞fq into a piecewise
projective embedding, equivariant with respect to the Aff+(q) action.

Moreover, ∂∞fq sends the limit set Λ(PSL(q)) ⊂ ∂∞H2 = PML0(q) homeomorphically and
Aff+(q)-equivariantly to the limit set Λ(Aff+(q)) ⊂ PML0(R) as defined by McCarthy and Pa-
padopoulos [29].

The map
fq = fq ∪ ∂∞fq : H2

= H2 ∪ PML0(q) → T (R)
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is continuous for every p ∈ H2 and almost every p ∈ PML0(q) by a theorem of Masur [25]. However,
Masur’s theorem implies that this is in general not continuous at every point of PML0(q).

This now leads us to the following natural question, the analog of which is true in the setting
of Kleinian groups.

Question 10.1 Let G ∼= π1(S2g) → Mod(Rg) be the embedding given by Corollary 1.2. Consider
∂∞(G) which can be canonically identified with the circle at infinity of the universal cover S̃2g

∼= H2

of S2g. Does there exist a continuous G-equivariant map

∂∞(G) → PML0(R)

It is not hard to see that if such a map exists, it must be unique. In fact, the proposed map
is already defined on a subset of ∂∞(G), namely, the limit points of the conjugates of the Veech
groups in the amalgamation.

10.2

More generally, it is known that many classes of lattices in Lie groups cannot inject into Mod(R).
Indeed if the lattices are superrigid the image of such a lattice in Mod(R) is necessarily finite (see
[11] and [37]). From this it follows (cf. Theorem 2 of [37]), that the only lattices that can admit
a faithful representation (or even an infinite representation) into Mod(R) are lattices in SO(m, 1),
m ≥ 2 or SU(q, 1), q ≥ 1. Indeed, since solvable subgroups of Mod(R) are virtually abelian [4],
this observation also excludes non-cocompact lattices of SU(q, 1) for q ≥ 2 from injecting.

In light of these comments and the results of this paper, it seems interesting to ask whether
such injections can arise for (cocompact) lattices in SO(m, 1), m ≥ 3 or SU(q, 1), q ≥ 2. There
are simple obstructions to injecting certain of these lattices, or indeed for any group. Namely if a
finitely generated group G admits an injection into Mod(R) for some R, the vcd(G) ≤ vcd(Mod(R))
(see [5]). If the vcd of a group G satisfies the above inequality, then we call G admissable for R
or simply admissable. It follows that for lattices in SO(m, 1), m ≥ 3 or SU(q, 1), q ≥ 2 and for a
fixed R, the values of m and q above are bounded.

The vcd’s of the groups Mod(R) = Mod(Rg,n) are well-known (see [17]). If R is not sporadic,
the vcd of Mod(R) is 4g − 5 if n = 0, 4g − 4 + n if n > 0 and g ≥ 1 and n− 3 if n ≥ 5.

Motivated by this discussion we pose.

Question 10.2 Suppose Rg,n is not sporadic. Let Γ be an admissable lattice in SO(m, 1), m ≥ 3
or SU(q, 1), q ≥ 2. Does Γ inject in Mod(R)? If such an injection exists does there exist a
continuous Γ-equivariant map

∂∞(Γ) → PML0(R)?

More generally, for a fixed R and hence fixed vcd, one can ask the above question for negatively
curved groups.

Thus we pose the following question.

Question 10.3 Suppose Rg,n is not sporadic. Which 1-ended admissable hyperbolic groups G
inject in Mod(R)? If such an injection exists does there exist a continuous G-equivariant map

∂∞(G) → PML0(R)?

For the sporadic surfaces, the associated mapping class groups are virtually free, hence no
1-ended group embeds.

Work of a similar vein is done in [12], where convex cocompact subgroups of Mod(R) are
investigated.
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