
Commensurability and the character variety

D. D. Long ∗ and A. W. Reid †

August 27, 2003

1 Introduction

Recall that hyperbolic 3-manifolds M and N are said to be commensurable if they have a common
finite sheeted covering. This is equivalent to the fundamental groups having subgroups of finite
index which are conjugate in PSL(2,C). In general it is very difficult to determine if two manifolds
are commensurable or not, once the most obvious invariants of commensurability (for example, the
invariant trace field, see [13] and [17]) agree. When M is a finite volume hyperbolic 3-manifold with
a single cusp, its SL(2,C)-representation and character varieties, denoted respectively, by R(M)
and X(M) throughout, have been fundamental tools in understanding the topology of M , see [6],
[5], and [4]. These techniques can be extended to the PSL(2,C)-character variety of M , which we
denote by Y (M) ([2], and see §2.1 for some details). Throughout, for either SL(2) or PSL(2), we use
the subscript 0 to denote a component of X(M) (or Y (M)) containing the character of a faithful
discrete representation of π1(M). The main results of this paper concern how Y0(M) be can used to
detect incommensurability. For example, one of the main results can be summarized in the following
(for terminology and definitions see §2):

Theorem 1.1 Suppose that M1 and M2 are 1-cusped hyperbolic 3-manifolds that cover a common
orbifold with a flexible cusp.

Then Y0(M1) is birational to Y0(M2).

In the case when the manifolds are non-arithmetic, the work of Margulis (see [11]) shows that
the commensurability class contains a unique minimal element and we get the more succinct re-
formulation about the entire commensurability class of M :

Theorem 1.2 Suppose that M is a non-arithmetic 1-cusped hyperbolic 3-manifold for which the
minimal element in the commensurability class has a flexible cusp.

Then Y0(M) is an invariant of the commensurability class of M .

One can often verify this condition directly, for example, a rigid cusp places constraints on the
invariant trace field:

Theorem 1.3 Suppose that M is a non-arithmetic, 1-cusped hyperbolic 3-manifold whose invariant
trace field does not contain either Q(

√
−1) or Q(

√
−3).

Then Y0(M) is an invariant of the commensurability class of M .
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Since the genus of a smooth projective curve is an invariant of birational equivalence ([12] Chapter
7) we deduce,

Corollary 1.4 Suppose that M is a non-arithmetic 1-cusped hyperbolic 3-manifold as in 1.2 or 1.3.
Then the genus of the smooth model of Y0(M1) is an invariant of the commensurability class of

M . 2

The proof of Theorem 1.1 is contained in §3, as are further results linking commensurability with
boundary slopes.

We remark that the theorem is false for the SL(2,C)-character variety, as we illustrate in §4. The
final section contains a discussion of examples, in particular we exhibit a pair of manifolds with the
same invariant trace fields and volume which have PSL(2,C)-character varieties of different genus
and so cannot be commensurable.

All hyperbolic manifolds and orbifolds are assumed orientable and finite volume.

Acknowledgements: We would like to thank Fernando Rodriguez-Villegas for some helpful con-
versations, and in particular for supplying Theorem 4.1. We also wish to thank the referee for their
careful reading of the original version of this paper and for many useful comments.

2 Preliminaries

2.1 The PSL(2,C)-character variety

For background on the SL(2,C)-character variety we refer the reader to [6] or [5] Chapter 1. There
is also a notion of a PSL(2,C)-character variety for a finitely presented group G. This is a good
deal less well-known, and its construction not quite as standard. We briefly recall a construction,
see also [2] and [9] for closely related versions.

Let G be a finitely generated group. The Z2-central extensions of G are classified by the finite
group H2(G; Z2). For each such cohomology class u, we form a central extension Gu which is unique
up to isomorphism. Let X(Gu) be the SL(2,C)-character variety of the group Gu; this is an affine
algebraic set which admits a natural action of the group H1(Gu; Z2), namely

ε(χρ)(γ) = χε(ρ)(γ) = ε(γ)χρ(γ).

where ε ∈ H1(Gu; Z2), χρ ∈ X(Gu) and γ ∈ Gu.
This action is algebraic, and permutes irreducible components of X(Gu) and the quotient space

X(Gu)/H1(Gu; Z2) can be given the structure of an affine algebraic set. The union of all these
algebraic sets as u runs over elements of H2(G; Z2) is the PSL(2,C)-character variety of the group
G.

The construction of a PSL(2,C)-representation variety is entirely analogous.

Example: The knot 52. The knot 52 is a twist knot with 2-bridge normal form (7, 5). A
presentation for the fundamental group of the complement is:

< a, b | waw−1 = b, w = a−1ba−1b−1ab−1 > .

Mathematica can be used to determine the defining polynomial equation for X0 (see [10]):

s(z, t) = 1 + 2t− t2 − t3 + (−t+ t2)z2,

where z is the trace of the meridional element a (which is the same as that of b) and t is the trace
of ab−1. There is a rather obvious birational change of co-cordinates which puts the curve in the
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form y2 = f(t) with f(t) = (1 + 2t− t2− t3)(t− t2) a polynomial with distinct roots. This curve (or
rather the smooth model of the projective completion) is then hyperelliptic of genus 2 (see [10]).

For all knots in S3, representations come in pairs. In this case, the action of H1(π1(M); Z2) ∼= Z2

on the character variety is given by (z, t)→ (−z, t) so that we can identify the component Y0 of the
PSL(2,C)-character variety with the zero set of

p(q, t) = 1 + 2t− t2 − t3 + (t2 − t)q.

The affine curve p(q, t) = 0 is a punctured sphere, since it is easy to see from the equation that q
is a rational function of t. Hence the smooth model of the projective completion of Y0 is a sphere.
Indeed the covering of smooth models X̂0 → Ŷ0 is a hyperelliptic covering of a genus 2 surface
branched over the sphere.

2.2 Dehn surgery on orbifolds : flexible and rigid cusps of orbifolds

For more details on the contents of this section see [19], [14] and [8].
If Q is a finite volume hyperbolic 3-orbifold with a single cusp, then the cusp end of the orbifold

has the form T × [0,∞) where T is an orientable Euclidean 2-orbifold. The possibilities for T are
T 2, a pillowcase or a turnover, see [8]. Recall by a pillowcase we mean a sphere with 4 cone points
of cone angle π. We shall henceforth denote this orbifold by P . By a turnover we mean a sphere
with 3 cone points with cone angles one of

{(π, π/2, π/2), (2π/3, 2π/3, 2π/3), (π, 2π/3, π/3)}

corresponding to quotients of the Euclidean plane by the triangle groups (2, 4, 4), (3, 3, 3) and (2, 3, 6)
respectively.

Now triangle groups are well known to be rigid in that they admit a finite number of PSL(2,C)-
representations up to conjugacy. The pillowcase, P is flexible, in the sense that it admits many
distinct Euclidean structures. We call a cusp of a 3-orbifold rigid if a horospherical cross-section of
the cusp end is a turnover, and flexible if it is a torus or a pillowcase.

This dichotomy manifests itself in defining Dehn surgery on cusps of hyperbolic 3-orbifolds. We
briefly recall the details, see [8] for more.

Let Q be a cusped hyperbolic 3-orbifold. If a cusp ofQ is flexible, Dehn surgery may be performed
as follows. In the case where a horospherical cross-section is a torus, one proceeds as in the case of
a manifold. For the pillowcase we proceed as follows. There is a canonical involution τ : T 2 → T 2

acting as −1 on H1(T 2; Z), and which defines an orbifold covering map π : T 2 → P . The involution
τ extends to a map between the solid torus, and so π extends to a map between the solid torus
and the solid pillowcase. By choosing a homology basis for the 2-fold cover of P we can define
p/q-surgery on the end P × [0,∞) to mean cutting of the end and regluing it in a way that induces
p/q-surgery on the 2-fold cover of the end. This corresponds to attaching a disc to a p/q-curve γ
say, in the 2-fold cover of the end so that under the map π, γ projects to a power of a simple loop
in P . Following Thurston ([19], [14] and also [15] for some corrections)

This extension holds for generalized hyperbolic Dehn surgeries on a pillowcase end of an orbifold.
There is no non-trivial Dehn surgery on a rigid cusp, the point of difference being that no solid

torus quotient has a turnover as boundary—since any self-homeomorphism of a solid torus takes
meridians to meridians.

As in the case of manifolds, Thurston’s generalized hyperbolic Dehn surgery space is closely
related to the components X0 and Y0 of the appropriate character varieties. Roughly, we associate
to a point of the hyperbolic Dehn surgery space a holonomy representation into PSL(2,C), and
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then take its character. Thus, as in the case of manifolds the following can be deduced from the
existence of hyperbolic deformations in the Dehn surgery space, see [8].

Theorem 2.1 Let Q be a 1-cusped hyperbolic 3-orbifold of finite volume. If Q has a rigid cusp then
Y0(Q) is a single point, and if Q has a flexible cusp then dimC(Y0) = 1. 2

Remarks.
(i) The definition of Y0 is unambiguous because the character of a discrete faithful representation is
a smooth point and therefore lies on a unique component.
(ii) When Q has more than one cusp an analogous statement holds. In this case, the dimension of
Y0 is the same as the number of flexible cusps of Q (see [8]).

3 Main results

3.1

The key tool in our analysis is the following simple lemma. To make the cleanest statement we
define a representation ρ of a group G into SL(2,C) to be strongly irreducible if the image group
ρ(G) contains free group of rank two. Note that strongly irreducible representations are always in
particular irreducible. The same definition will be used in the context of PSL(2,C)-representations.
Irreducible representations which are not strongly irreducible are fairly rare (the lift of the irreducible
representation of the infinite dihedral group from PSL(2,C) to SL(2,C) is an example) and it follows,
for example, from the results of [6] that if a component of the character variety contains the character
of a strongly irreducible representation, then the characters of strongly irreducible representations
are Zariski open.

Lemma 3.1 If two representations of a group G into SL(2,C) are strongly irreducible on a subgroup
of finite index and agree up to signs, then they agree up to signs on G.

Proof. Let the representations be ρ1 and ρ2 and the subgroup of finite index given by the hypothesis
be denoted by F .

Note that by passing to the kernel of the map F → H1(F ; Z2), we may as well assume that
the representations agree exactly on a subgroup of finite index; we denote the common value of the
representations by ρ. By passage to another subgroup of finite index if necessary, we may as well
suppose that this latter subgroup, K say, is normal in G. We note that the hypothesis of strong
irreducibility guarantees that ρ continues to be irreducible when restricted to the normal subgroup
K.

Let g ∈ G and consider any element k ∈ K. Then

ρ1(g)ρ2(g−1)ρ(k)ρ2(g)ρ1(g−1) = ρ1(g)ρ2(g−1kg)ρ1(g)

and since g−1kg lies in the normal subgroup, the right hand side is

ρ1(g)ρ(g−1kg)ρ1(g) = ρ1(g)ρ1(g−1kg)ρ1(g) = ρ1(k) = ρ(k)

That is, the matrix ρ1(g)ρ2(g−1) centralises the irreducible representation ρ so by Schur’s Lemma
(see Proposition 4 of [18] for example), this matrix must be central in SL(2,C) and so lies in {±I}.
2

This lemma demonstrates why passage to the PSL(2,C) character variety is required. As discussed
in §2, the discrepency on lifting representations to SL(2,C) is a change of sign. Given this, a
convenient way to use this lemma is the following, which has the same proof as 3.1:
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Corollary 3.2 If two representations of G into PSL(2,C) agree and are strongly irreducible on a
subgroup of finite index, then they agree on G. 2

3.2

Before applying the results of §3.1 we introduce some notation. Suppose p : M → T is a covering
of finite volume hyperbolic 3-orbifolds. Then via restriction of representations, p induces a map at
the level of representation and character varieties, p∗ : Y0(T )→ Y0(M). Corollary 3.2 implies,

Theorem 3.3 Suppose that p : M → T is a covering of 1-cusped hyperbolic 3-orbifolds.
Then the induced map p∗ : Y0(T ) → Y0(M) is injective on characters of strongly irreducible

representations.

Proof. If the induced map were not injective then we could find a pair of distinct characters,
and hence distinct strongly irreducible representations that agreed on a subgroup of finite index of
πorb

1 (T ). This contradicts Corollary 3.2. 2

If T has a rigid cusp, so that by Theorem 2.1, Y0(T ) is a point, then Theorem 3.3 gives little
information. However, in the presence of flexible cusps we have:

Theorem 3.4 Suppose that p : M → T is a covering of one cusped orbifolds and suppose that the
cusp of T is flexible.

Then the induced map p∗ : Y0(T )→ Y0(M) is a birational equivalence.

Proof. By Theorem 3.3, the map p∗ injects characters of strongly irreducible representations of
Y0(T ) into Y0(M). Now since hyperbolic Dehn surgeries on T and M give rise to a Zariski dense
subset of characters of strongly irreducible representations in Y0(T ) and Y0(M) respectively, to prove
the theorem it suffices to show the map p∗ has nonzero degree at such points. To see this we proceed
as follows.

Perform a genuine hyperbolic Dehn surgery on the cusp of M . This determines a character
χρ ∈ Y0(M). We can extend the covering p to a finite orbifold covering M(γ)→ T (p(γ)) so that in
particular T (p(γ)) is a hyperbolic orbifold. Thus the pre-image of χρ is non-empty.

We have therefore shown p∗ is a degree 1 map from Y0(T ) to Y0(M) and therefore a birational
equivalence. 2

We have thus proved Theorem 1.1 of the introduction:

Theorem 3.5 Suppose that M1 and M2 are 1-cusped hyperbolic 3-manifolds which cover a common
orbifold with a flexible cusp.

Then Y0(M1) is birational to Y0(M2). 2

Restricting to the non-arithmetic case we can use 3.5 to make deductions about the entire com-
mensurability class. The reason is that Margulis’s characterization of arithmeticity implies that if
Mi (i = 1, 2) are non-arithmetic and commensurable, then there is a unique minimal element T in
the commensurability class of M1 and M2, see [11] and we therefore have finite sheeted coverings
Mi → T for i = 1, 2. If we assume that T does not have a rigid cusp we see that 3.5 implies Theorem
1.2 of §1:

Theorem 3.6 Suppose that M is a non-arithmetic 1-cusped hyperbolic 3-manifold for which the
minimal element in the commensurability class has a flexible cusp.

Then Y0(M) is an invariant of the commensurability class of M . 2
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The existence of a rigid cusp places strong restrictions on the cusps of manifolds in the com-
mensurability class. For example, given an orbifold with a rigid cusp C, then any horospherical
cross-section of a finite covering of C has Euclidean modulus in Q(

√
−1) or Q(

√
−3) (see [13] or

[16]). It is not hard to deduce from this (see [16]) that the invariant trace-field of such a manifold
contains Q(

√
−1) or Q(

√
−3). With this we obtain the following.

Theorem 3.7 Suppose that M1 and M2 are commensurable, non-arithmetic, 1-cusped hyperbolic
3-manifolds whose invariant trace fields do not contain either Q(

√
−1) or Q(

√
−3).

Then Y0(M1) is birational to Y0(M2).

Proof. The discussion above and the hypothesis on the invariant trace-fie ld, shows that the
minimal element in the commesurability class T cannot have a rigid cusp. Theorem 3.4 implies the
result. 2

Corollary 3.8 Suppose that M is a non-arithmetic, 1-cusped hyperbolic 3-manifold whose invari-
ant trace field does not contain either Q(

√
−1) or Q(

√
−3). Then Y0(M) is an invariant of the

commensurability class of M . 2

Remarks: 1. For knots in S3 the figure-eight knot is the only arithmetic knot [16], and the
existence of a rigid cusp quotient of non-arithmetic knot complements is related to the question
of whether the minimal element in the commensurability class of a non-arithmetic hyperbolic knot
complement is “smaller” than the orbifold obtained as the quotient of the knot complement by the
group of orientation-preserving isometries (see [16] and [13]). In particular, apart from the figure-
eight knot, the only knot complements that are known to cover an orbifold with a rigid cusp are the
two dodecahedral knots of Aitchison and Rubinstein [1].

2. Theorem 3.4 and Corollary 3.5 have multi-cusp analogs. In this case the manifolds and quotient
orbifold should have the same number of cusps, and in the latter case these should be flexible.

3.3

Some of the information contained in the invariant Y0 can also be expressed in terms of detected
slopes. Recall the following from [6].

Let M be a 1-cusped hyperbolic 3-manifold of finite volume and let Γ = π1(M). For γ ∈ Γ
define the (regular) function Iγ : X(M)→ C by Iγ(χ) = χ(γ). Let α be a boundary slope and β a
slope with {α, β} a generating set for the fundamental groups of the peripheral torus. We say α is
detected by a component X1 ⊂ X(M) if there is a sequence of characters {χj} ∈ X1 of irreducible
representations with Iα(χj) remaining bounded, but |Iβ(χj)| → ∞.

If there is a sequence of characters in a component X1 which is bounded on all peripheral elements
but still blows up on some element γ, we detect a closed embedded incompressible surface. In this
case we say X1 detects a closed incompressible surface.

As discussed in §2 the passage to PSL(2,C)-charactetrs is only a matter of sign, and so the
property of “blowing-up” will be preserved on passage to sequences of PSL(2,C)-characters. Thus,
we may use the above notation on the variety Y (M). In this language our results show:

Corollary 3.9 Let M1 and M2 be as in Corollary 3.5. Then
(i) The number of boundary slopes detected by Y0(M1) is the same as the number detected by Y0(M2).
(ii) If Y0(M1) detects a closed incompressible surface so does Y0(M2).
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Proof. Let T denote the common orbifold quotient, with pi : Mi → T the quotient maps (i = 1, 2).
Now the peripheral subgroups of M1 and M2 have finite index in the peripheral subgroup of T . The
main observation to make is that the property of a slope γi blowing up or remaining bounded on
Y0(Mi) implies the same for pi(γi) on Y0(T ) (i = 1, 2). The fact that such a sequence of characters
lifts to Y0(T ) is again an application of Theorem 3.5.

Thus, if β is a boundary slope detected on Y0(M1) for M1, then we can, by the above process
associate a detected slope β∗ for M2. This process defines a 1-1 map between the sets of detected
slopes on Y0(M1) and Y0(M2). Furthermore, reversing this argument implies that from a slope
detected on Y0(M2), we get a slope detected on Y0(M1). Hence we get a bijective correspondence
between the set of detected boundary slopes on Y0(M1) and Y0(M2).

Case (ii) follows using a similar argument from the remarks above. 2

These results also allow us to deduce the existence of additional components in Y (M); various
statements are possible, the simplest being:

Corollary 3.10 Suppose M1 and M2 are commensurable 1-cusped hyperbolic 3-manifolds without
closed incompressible surfaces. Suppose that M1 has more detected slopes than M2.

Then at least one of the Y (M1) or Y (M2) has more components that Y (T ).

Proof. By Lemma 3.1, each component of Y (T ) injects into some component of Y (M1) and since
each component of the latter variety is a curve by the hypothesis on closed incompressible surfaces,
this maps components of Y (T ) birationally into components of Y (M1). A similar statement holds
for M2.

Any component of Y (T ) produces the same number of boundary slopes in M1 and M2. There-
fore the hypothesis shows that at least one (and possibly both) of Y (M1) or Y (M2) must have a
component which does not appear in Y (T ). 2

4 Examples

In what follows we made considerable use of SnapPea [20] and MathematicaTM . We assume
familiarity with both. In particular the nomenclature mabc refers to that used in SnapPea for man-
ifolds in the 5-tetrahedra census. Fundamental groups and peripheral data used are those given by
SnapPea—for knots in S3, this is usually not the usual meridian/longitude framing. We make no
effort to detail the mathematica calculations. The main computations are straightforward appli-
cations of resultants in elimination theory. All examples considered had 2-generator fundamental
groups. Letting a and b be generators, X(M) (and Y (M)) are determined by three traces:

P = tr(a), Q = tr(b) and R = tr(ab).

In the cases at hand, the calculations were simplified as X0(M) was given as a plane curve in terms
of P and Q.

Example: The complement of the knot 52 (m015) and m017.
The components X0 and Y0 for m015 were computed in §2.1—from there we see that X̂0(m015)

has genus 2. The manifolds m015 and m017 have the same volume and invariant trace field being
the cubic with one complex place and discriminant −23. The two manifolds can be shown to be
commensurable—for instance SnapPea shows they have a common 2-fold cyclic cover. The variety
X0(m017) is defined by the plane curve F (P,Q) = 0 where:

F (P,Q) = P 2Q−Q+ 1.
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In this example R = 1−3P 2+P 4

P 3−P . Note that multiplying the equation P 2Q − Q + 1 = 0 by Q, and
setting x = PQ, y = Q, the curve is birational to x2 = y2 − y. This is a punctured sphere. Thus
the SL(2,C)-character varieties of these two manifolds are not birational. As computed in §2.1, the
PSL(2,C)-character variety is a punctured sphere.

Example: The manifolds m222 and m224.
These manifolds are knots in S3, see [3]. The manifold m222 being the complement of the knot

820, and m224 being the complement of the 11 crossing knot 11405, see [3]. They share the same
volume, and have the same degree 5 invariant trace-field with two complex places and discriminant
5864. However these examples can be shown to be incommensurable using Theorem 1.1. To apply
Theorem 1.1 first note that since the invariant trace-field has degree 5, the manifolds are non-
arithmetic, and they cannot cover an orbifold with a rigid cusp. Hence to prove incommensurable,
it suffices to check the (smooth models of the) curves Y0 have different genus.

The components X0 and Y0 for these manifolds are:

X0(m222) := −1 + 4P 2 + 3P 3 − 4P 4 − P 5 + P 6 + P
(
−2 + 2Q2 −Q4

)
= 0

Y0(m222) := −1 + 4P 2 + 3P 3 − 4P 4 − P 5 + P 6 + P
(
−2 + 2Z − Z2

)
= 0

X0(m224) := −4P + 10P 3 − 6P 5 + P 7 +
(
−2 + 2P 2

)
Q+

(
1− P 2

)
Q3 = 0

Y0(m224) := −4 + 10Z − 6Z2 + Z3 + V (−2 + 2Z) + V 3
(
Z − Z2

)
= 0

First consider the curve for Y0(m222) above. After a birational equivalence, this can be rewritten
as:

W 2 = −P − P 2 + 4P 3 + 3P 4 − 4P 5 − P 6 + P 7,

where W = (PZ − P ). Now the right hand side factors as P
(
−1− P + P 2

)2 (−1 + P + P 2
)

and so, as is easy to see, a further birational equivalence yields the plane cubic curve given by
y2 = x(x2 + x− 1). This is an elliptic curve since the right hand side has distinct roots. Thus the
genus of Ŷ0(m222) is 1.

We now claim that the genus of Ŷ0(m224) is 4 so that the manifolds cannot be commensurable.
The usual way to compute the genus is to take the plane curve and compute its genus as if it were
smooth, and then subtract contributions from singular points. The following remarkable theorem
(unpublished) of F. Rodriguez-Villegas gives a very simple way to compute the genus in many cases.

Theorem 4.1 Let C be an irreducible plane curve which is smooth except perhaps at infinity. As-
sume C is defined by the equation F (x, y) = 0. Let N denote the Newton polygon of F . Assume the
edge polynomials of N have no multiple roots. Then the genus of the smooth projective model of C
is the number of lattice points in the interior of N . 2

It is easily seen from above that the plane curve Y0(m224) is smooth except at infinity and
satisfies the edge conditions in Theorem 4.1. A count of interior lattice points gives 4 as required.
We remark that using SnapPea these manifolds can also be shown to be incommensurable using
their cusp volume.

Example: The figure-eight knot complement (m004) and m022
Like the invariant-trace field, the curve Y0 is not a complete invariant of commensurability. For

example, the two manifolds in question are not commensurable, the invariant trace-fields being
Q(
√
−3) and a totally imaginary quartic field respectively. However, the varieties X0(m004) and

X0(m022) are birational, as are the varieties Y0(m004) and Y0(m022). The curve X0(m004) is an
elliptic curve of conductor 40 (see [10]) and the latter is a sphere.
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Example: The complement of the knot 74, m006 and m007.
Using SnapPea, it can be checked these three manifolds are commensurable. The volumes of

m006 and m007 are the same, approximately 2.5689706009 . . . and the volume of S3 \ 74 is twice
this. The invariant trace-field is cubic of discriminant −59. Thus any orbifold quotient of these
manifolds has a flexible cusp. The PSL(2,C) curve which is an invariant of the commensurability
class has genus 0. The main interest in these examples is that the character variety Y (S3 \ 74) has
an additional component containing an irreducible representation. The character varieties for m006
and m007 do not. This is reflected in the fact that S3 \ 74 has three detected boundary slopes (cf.
Corollary 3.10).

Another interesting feature about the manifolds m006 and m007 is that it appears that the
number of boundary slopes is exactly 2—not just strict boundary slopes. If this is not the case then
there would be an undetected strict boundary slope, which seems unlikely. The fact that at least 2
slopes are detected on X(M) (or Y (M)) is proved in [7]. The A-polynomials for these two manifolds
are given below:

Am006(µ, λ) = λ5µ2 + µ3 + λ(−1 + 2µ2) + λ2(−µ− µ3) + λ3(−µ2 − µ4) + λ4(2µ3 − µ5)

Am007(µ, λ) = −λ+ 2λµ2 + µ3 − λ2µ3 + λµ4 − λ3µ4 + λ2µ5 − λ4µ5 − 2λ3µ6 + λ3µ8

From [4] the slopes of the edges of the Newton polgon are boundary slopes for the manifold.
These account for all detected slopes. The boundary slopes for m006 are {−3, 1/2} and for m007 are
{−3, 5/3}. In both these cases, −3-Dehn surgery gives a manifold with positive first betti number.
All other slopes are rational homology spheres.
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