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1. Introduction

Recall that a subgroupH of a group G is separable in G if, given any g 2 G nH, there
exists a subgroup K < G of ¢nite index with H < K and g =2K . G is called subgroup
separable (or LERF) if G is H-subgroup separable for all ¢nitely generated
H < G. This powerful property has attracted a good deal of attention in the last
few years, largely motivated by questions which arise in low dimensional topology
(see [1], and [15] for example). In that context, and in the context of negatively curved
groups it makes most sense to restrict to subgroups which are geometrically ¢nite (or
quasiconvex in the negatively curved case) and to this end, the notion of GFERFwas
introduced in [1] and [12]. Since the property of being geometrically ¢nite is
preserved by passage to sub- and super-group of ¢nite index, as in the case of
subgroup separability (see [15]), it follows that GFERF is a commensurability
invariant.

This paper studies GFERF in the context of arithmetic groups and certain Coxeter
groups which we discuss further below. However, this paper should really be viewed
as a broad generalization of the geometric and algebraic methods used in [1], in
which the theory of quadratic forms was used to help control properties of discrete
groups.

Throughout this paper we will use the term hyperbolic simplex group to refer to
those Coxeter groups which arise as groups generated by re£ections in the faces
of a non-compact geodesic hyperbolic simplex of ¢nite volume. Thus, these
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hyperbolic simplex groups are ¢nite co-volume but non-cocompact discrete
subgroups of Isom�Hn� for some n. The general de¢nition of a Coxeter group is
given in Section 2.

As is well-known, there are very few hyperbolic simplex groups, and these are
completely classi¢ed; they exist only in dimensions 3W nW 9 (see [7], pp. 142^144).
A list of the Coxeter diagrams of such groups in dimensions 4W nW 8 is given
in the Appendix. In dimension 3, there are 23 such hyperbolic simplex groups,
and all but 6 are arithmetic. The arithmetic ones are commensurable with either
of the Bianchi groups PSL�2;Z�i�� or PSL�2;Z�o�� where o is a cube root of unity
(see [8] or [14], for example). Thus by [1] these arithmetic hyperbolic simplex groups
are GFERF. In dimensions X 4 all the commensurability classes with one exception
(in dimension 5) are arithmetic (see below and [17]). This paper shows that the
commensurability classes of arithmetic hyperbolic simplex groups in dimensions
W 8 are GFERF.

THEOREM 1.1. Let G be an arithmetic ¢nite volume non-cocompact hyperbolic
simplex group of dimension W 8. Then G is GFERF.

The main calculation is summed up by the following resultösee Section 2 for
notation and de¢nitions.

THEOREM 1.2. Let G be an arithmetic hyperbolic simplex group of dimension
4W nW 9 and F �G� the rational form constructed in Section 5. Suppose that the
determinant of the form F �G� is ÿk.

Then F �G� is equivalent over Q to h1; . . . ; 1;ÿki.
In particular, either F �G� (in the case k � 1) or F �G� � hki (otherwise) is

equivalent over Q to the standard form h1; . . . ; 1;ÿ1i. &

The method of proof for Theorem 1.1 is closely related to that of [1]; as in that
paper we observe that there are hyperbolic simplex groups in dimensions 6, 7, 8
which are commensurable with a group generated by re£ections in an all right
polyhedron. Theorem 3.1 of [1] now shows that this latter group is GFERF, so that
the hyperbolic simplex group in the appropriate dimension is GFERF. It is then
shown from certain arithmetic considerations that every hyperbolic arithmetic
simplex group, is already commensurable with one of these groups, and so is
GFERF, or can be embedded into one of these groups, hence inherits the GFERF
property. There are arithmetic hyperbolic simplex groups in dimension 9, but we
do not know if these are commensurable with all right re£ection groups, and hence
our results concerning GFERF are limited to dimensions W 8.

As will be apparent, a central role in our methods is played by the groups
SO0� fn;Z�; where fn denotes the form h1; . . . ; 1;ÿ1i of signature �n; 1�. Indeed, it
appears that the family of groups SO0�fn;Z� form a potentially important `universal
family' of groups in the following sense.
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THEOREM 1.3. SO0�fm;Z� is GFERF for all mX 2 if and only if every
non-cocompact arithmetic hyperbolic group of dimension n is GFERF.

In the ¢nal section of the paper we discuss the limitations of the methods of [1] used
here. In particular, we give a simple construction of some right angled (abstract)
Coxeter groups (see Section 2) that are not LERF.

2. Algebraic Preliminaries

We need to recall some standard facts about quadratic forms and orthogonal groups
of such forms; [10] is a standard reference.

2.1. If f is a quadratic form in n� 1 variables with coef¢cients in K and associated
symmetric matrix F , let

O�f � � fX 2 GL�n� 1;C�jXtFX � F g
be the Orthogonal group of f , and

SO�f � � O� f � \ SL�n� 1;C�;
the Special Orthogonal group of f . These are algebraic groups de¢ned over K .

DEFINITION. Two n-dimensional quadratic forms f and q de¢ned over a ¢eld K
(with associated symmetric matrices F and Q) are equivalent over K if there exists
P 2 GL�n;K� with PtFP � Q.

IfK � R is a number ¢eld, andRK its ring of integers, then SO�f ;RK � is an arithmetic
subgroup of SO� f ;R�, [3] or [2]. The following is well-known and proved in [1] for
example.

LEMMA 2.1. Let K � R be a number ¢eld and RK its ring of integers. Let f and q be
n-dimensional quadratic forms with coef¢cients in RK which are equivalent over K.

� SO� f ;R� is conjugate to SO�q;R� and SO�f ;K� is conjugate to SO�q;K�.
� SO� f ;RK � is conjugate to a subgroup of SO�q;K� commensurable with

SO�q;RK �. &

There is a converse to the second part of Lemma 2.1 which we record here (see [6]
or [19]). Note that if f 0 � lf , for l 2 K (non-zero), then SO�f 0;K� � SO�f ;K�. With
notation as above,

LEMMA 2.2. Suppose SO� f ;RK � and SO�q;RK � are commensurable. Then f is
equivalent to lq for some non-zero l 2 K. &
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In order to apply Lemma 2.1, we will need a criterion for when two forms are
equivalent over a ¢eld. To this end, letK denote either a number ¢eld or a completion
thereof, and q a non-singular quadratic form de¢ned over K . Let the associated
symmetric matrix be Q. We de¢ne the determinant of q as the element
d�q� � det�Q� _K2, where _K are the invertible elements in K . It is not hard to see that
d�q� is an invariant of the equivalence class of q.

The Hasse invariant (see [10], p. 122) of a non-singular diagonal form
ha1; a2; . . . ; ani with coef¢cients in K is an element in the Brauer group B�K�, namely

s�q� �
Y
i<j

ai; aj
K

� �
;

where ��ai; aj�=K� describes a quaternion algebra over K , and the multiplication is
that in B�K�, see [10], Chapter 4.

Every non-singular form over K is equivalent over K to a diagonal one, and the
de¢nition of the Hasse invariant is extended to non-diagonal forms by simply de¢n-
ing it to be the Hasse invariant of a diagonalization (that this is well-de¢ned follows
from [10], p. 122) The following theorem, the `Weak Hasse^Minkowski Principle'
(see [10], p. 168) is the criterion we shall use:

THEOREM 2.3. Let q1 and q2 be non-singular quadratic forms of the same
dimension, de¢ned over K with the property that if s is a real embedding of K
the forms qs1 and qs2 have the same signature over R. Then q1 is equivalent to q2 over
K if and only if d�q1� � d�q2� and s�q1� � s�q2� over all non-Archimedean completions
of K. &

Note that if d�q1� � d�q2� (resp. s�q1� � s�q2�) then the same holds at all
non-Archimedean completions.

2.2. We introduce some notation that will be convenient. If q is a diagonal quadratic
form de¢ned over Q and k 2 Q we shall refer to the process of forming the
orthogonal sum q� hki as stabilization by hki. The following lemma is clear.

LEMMA 2.4. In the notation above, the group SO�q;Z� is a subgroup of
SO�q� hki;Z�. &

A sequence of stabilizations by haii will also be referred to as stabilization. The
motivation for the terminology will become clear in Sections 5 and 6.

2.3.We recall some basic statements about Coxeter groups, see [5] and [7] for details.
Suppose thatW is a group and S is a set of generators all of order 2. Then �W ;S� is

a Coxeter system if W admits a presentation:

hS j �s � t�m�s;t� � 1i
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where m�s; t� is the order of s � t and there is one relation for each pair s; t with
m�s; t� <1.

We refer to W as a Coxeter group. The Coxeter diagram of this presentation
consists of a vertex for each element of S together with an edge connecting distinct
vertices s; twheneverm�s; t� 6� 2 and the edge is labelled bym�s; t�: It is also standard
practice in the case when m�s; t� � 3 to leave the edge unlabelled, and we follow that
convention here. Since the generators have order 2; this means that if two vertices are
not connected by an edge then the generators corresponding to the vertices commute.
Thus, if the diagram is not connected, the Coxeter group is the direct sum of the
subgroups given by the connected components. A Coxeter group �W ;S� is called
reducible if its diagram is not connected. Otherwise the Coxeter group is irreducible.

A Coxeter group is called an all right Coxeter group if m�s; t� � 2 or m�s; t� � 1
for all s 6� t 2 S.

3. Arithmetic Subgroups of Isom�Hn�
In this section we expand somewhat on arithmetic subgroups of Isom�Hn�. For more
details, see [3], [2] and [19]. We also prove some results on embedding all
non-cocompact arithmetic groups in SO0�fn;R� into a ¢xed SO0�fm;R�, with
m > n. This generalizes one of the key ideas in [1].

3.1. Let fn be the �n� 1�-dimensional quadratic form h1; 1; . . . ; 1;ÿ1i. The connected
component of the identity in O� fn;R� will be denoted O0�fn;R�. This group preserves
the upper sheet of the hyperboloid fn�x� � ÿ1 but contains re£ections so reverses
orientation. We identify O0� fn;R� with Isom�Hn�. Passing to the connected
component of the identity in SO� fn;R�, denoted SO0� fn;R� (which has index 4
in O� fn;R�), gives a group may be identi¢ed with Isom��Hn�; it preserves the upper
sheet of the hyperboloid fn�x� � ÿ1 and the orientation. Given a (discrete) subgroup
G of O� fn;R�, G \ SO0� fn;R� has ¢nite index in G.

A particular class of arithmetic subgroups of O0� fn;R� (resp. SO0� fn;R�) are those
that are called arithmetic groups of simplest type in [19] Chapter 6.

Assume that k � R is totally real, and let f be a form in n� 1-variables with
coef¢cients in k, and be equivalent over R to the form fn. Furthermore, if
s: k! R is a ¢eld embedding, then the form f s obtained by applying s to f is de¢ned
over the real number ¢eld s�k�. We insist that for embeddings s 6� id, f s is equivalent
over R to the form in �n� 1�-dimensions, of signature �n� 1; 0�. Since f is equivalent
over R to fn, it from follows Lemma 2.1 that O� f ;R� is conjugate, by a matrix P say
in GL�n� 1;R� to O� fn;R�. From [3] (or [2]) PSO0� f ;Rk�Pÿ1 de¢nes an arithmetic
subgroup in Isom��Hn�, and so necessarily of ¢nite co-volume. In what follows
we will abuse notation, and suppress the conjugating matrix, and simply identify
SO0� f ;Rk� as an arithmetic subgroup of Isom��Hn�.

The group SO0� f ;Rk� is cocompact if and only if the form f does not represent 0
non-trivially with values in k, see [3]. Whenever nX 4, the arithmetic groups
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constructed above are non-cocompact if and only if the form has rational
coef¢cients, since it is well known every inde¢nite quadratic form over Q in at least
5 variables represents 0 non-trivially, see [10].

The following theorem summarizes what we shall need (see [19] Chapter 6 and
page 365 of [11]).

THEOREM 3.1. If G is a non-cocompact arithmetic subgroup of SO0� fn;R� then G
is commensurable (up to conjugacy) with a group SO0� f ;Z� where f is a diagonal
quadratic form with rational coef¢cients and signature �n; 1�. &

3.2. The main result of this subsection is.

THEOREM 3.2. Let f be a quadratic form with rational coef¢cients and signature
�n; 1�. Then there is an m such that SO0� f ;Z� contains subgroup of ¢nite index
conjugate to a subgroup of SO0�fm;Z�.

Theorem 3.2 will follow from

THEOREM 3.3. Let f be a quadratic form with rational coef¢cients and signature
�n; 1�. Then there exists an m such that f can be stabilized to a form rationally
equivalent to fm.

Assuming Theorem 3.3 for the moment we complete the proof of Theorem 3.2.
Theorem 3.3 yields a form q such that f � q is equivalent over Q to fm. Thus by
Lemma 2.1 there is a g 2 GL�m� 1;Q� such that gSO0� f � q;Z�gÿ1 is commensur-
able with SO� fm;Z�. Since gSO0� f ;Z�gÿ1 < gSO0� f � q;Z�gÿ1 we obtain the
required subgroup. &

Proof of Theorem 3.3.Without loss of generality we may assume that f is diagonal,
say f � ha1; a2; . . . ; an;ÿei, where ai and e are all square free positive integers.
Consider the form de¢ned by stabilizing f by summing with

q � ha1; a2; . . . ; ani � ha1; a2; . . . ; ani � ha1; a2; . . . ; ani:
Then f � q has signature �4n; 1�, and determinant ÿe. Since the form ha; a; a; ai is
equivalent over Q to h1; 1; 1; 1i (same determinant and Hasse invariant), by
rearranging f � q we see that it is equivalent to:

h1; 1; 1; . . . ; 1;ÿei;
where there are 4n ones. Now do a further stabilization by hei, to give

h1; 1; 1; . . . ; 1;ÿei � hei
and observe that this form has signature �4n� 1; 1� and determinant ÿ1. Further-
more ��ÿe; e�=Q� is the matrix algebra. By Theorem 2.3, this ¢nal form is equivalent
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over Q to the standard form f4n�1, that is we have stabilized the form to f4n�1 as
needed. &

The following corollary puts [1] in a broader context. There we showed SO0� f6;Z� is
GFERF, and injected all the Bianchi groups up to ¢nite index.

COROLLARY 3.4. SO0� fm;Z� is GFERF for all mX 2 if and only if every
non-cocompact arithmetic subgroup of SO0� fn;R� is GFERF for every nX 2.

Proof. Since SO0�fm;Z� is an arithmetic subgroup of SO� fm;R�, one direction is
clear. Thus assume that SO0� fm;Z� is GFERF for all m. By Theorem 3.1 every
non-cocompact arithmetic subgroup of SO0� fn;R� is commensurable with a group
SO0� f ;Z� where f is a form of signature �n; 1� de¢ned over Q. Thus it suf¢ces
to prove that the group SO0� f ;Z� is GFERF. By Theorem 3.2 we can arrange that
SO0� f ;Z� contains a subgroup G of ¢nite index which is (conjugate to) a subgroup
of some SO0� fm;Z�. By assumption these are assumed GFERF and the result
now follows. &

4. Arithmetic Hyperbolic Simplex Groups

We specialize some of Section 3.1 to arithmeticity of Coxeter groups. This was inves-
tigated by Vinberg [17], who gave a beautiful characterization theorem in terms of
the Gram matrix. Since we will only be concerned with simplices that have at least
one ideal vertex, we will consider only this case. We begin with some general con-
siderations.

4.1. Let Ln denote the Lobachevskii space model of hyperbolic n-space. Let P be a
polyhedron in Ln bounded by ¢nitely many linear hyperplanes through the origin.
For each hyperplane choose an outward pointing normal ei and normalise such that
hei; eii � 1 (where h ; i is the bilinear form associated to the quadratic form fn in
Section 2.2).

TheGrammatrix G�P� of this system of vectors isG�P� � �aij �where aij � hei; eji. If
the dihedral angle between the planes Hi;Hj is a then aij � ÿ cos a. When the planes
do not intersect then the entry is a function of the hyperbolic distance between
the hyperplanes. Note that when P is a simplex then all faces meet, so all off diagonal
entries of G�P� will be of the form ÿ cos a.

Note that the rank of the Grammatrix of P is n� 1, and in the case of a hyperbolic
simplex G�P� is an �n� 1� � �n� 1�-matrix.

4.2. For details of what is described below see [17] or [19]. Let P be a hyperbolic
Coxeter simplex. That is, P has all dihedral angles of the form p=k for
k 2 f2; 3; . . .g. Let G be the Coxeter group generated by the re£ections
frig1W iW n�1 in the faces of P; the re£ection ri in the hyperplane Hi is given by

ri�v� � vÿ 2 < v; ei > ei;
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and so ri can be represented by an m�m matrix X such that XtG�P�X � G�P�.
For any

fi1; i2; . . . ; ikg � f1; 2; . . . ; ng
de¢ne the cyclic products

bi1i2���ik � 2kai1i2ai2i3 � � � aikÿ1ikaiki1
and let K�P� � Q�fbi1i2���ikg�. It is not dif¢cult to see that it suf¢ces to assume in the
de¢nition ofK�P� that the suf¢ces fi1; i2; . . . ; ikg are distinct. Vinberg's theorem ([17])
is then:

THEOREM 4.1. In the notation above, the ¢nite volume non-cocompact simplex
group G is arithmetic if and only if:

� K�P� � Q
� all the cyclic products bi1i2���ik are rational integers. &

Indeed more is true from the proof of Vinberg's theorem. Suppose the simplex
group G is arithmetic. Consider the following vectors

vi1i2���ik � 2ka1i1ai1i2 � � � aikÿ1ikeik
with v1 � 2e1 and the suf¢ces de¢ned as above. The Q-module V �P� spanned by
fvi1i2���ikg is a G module which has dimension n� 1 over Q. With the restriction
of the inner product, V �P� is a quadratic space over Q and so if we let F �G� denote
the diagonal form obtained by diagonalizing over Q we obtain a representation
of G into the orthogonal group O�F �G�;Q� commensurable with SO0�F �G�;Z�.
The following theorem is due to Vinberg [17].

THEOREM 4.2. Let P be a non-compact hyperbolic Coxeter simplex in Hn where
nX 4. Let G denote the Coxeter group generated by re£ections in faces of P. Then
G is arithmetic unless P is in dimension 5, and has Coxeter diagram:

5. Proof of Theorem 1.1

We now begin the proof of the main theorem.

THEOREM 5.1. Let G be an arithmetic hyperbolic Coxeter group of dimension
4W nW 9 and F �G� the rational form constructed above. Suppose that
d�F �G�� � ÿk. Then F �G� is equivalent over the rationals to h1; . . . ; 1;ÿki. &
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Deferring the proof of this for the moment, note that if F �G� is a form in
�n� 1�-variables, then if k � 1, F �G� is just the form fn. Otherwise, F �G� � hki is
equivalent overQ to the form fn�1 (the proof of this being an application of Theorem
2.3, and is contained in the proof of Theorem 3.3). These observations complete the
proof of Theorem 1.2. As a corollary of these discussions we have,

COROLLARY 5.2. Let G be an arithmetic hyperbolic Coxeter group of dimension
4W nW 9. Then G contains a subgroup of ¢nite index which is conjugate to a subgroup
of SO� fm;Z� for m � n or n� 1. This latter index may be in¢nite.

Proof. From the discussion preceding the Corollary, in the case when k � 1, a
direct application of Lemma 2.1 provides a commensurability between G and
SO� fn;Z� for an appropriate n. In the case when k 6� 1, Lemma 2.1 implies G is
commensurable with SO0�h1; 1; . . . ; 1;ÿki;Z�. By stabilization of F �G� by hki,
Theorem 3.2 implies that G contains a subgroup of ¢nite index conjugate to a
subgroup of in¢nite index (stabilizing a co-dimension 1 totally geodesic submanifold
in Hn�1) in SO0� fn�1;Z�. This proves the corollary. &

Theorem 1.1 will follow, using the technique of [1] applied to a slightly wider class of
Coxeter group.

Proof of Theorem 1.1. Let G be an arithmetic non-cocompact hyperbolic simplex
group acting on Hn where 4W nW 8. By Corollary 5.2, G contains a subgroup
of ¢nite index contained in SO0�fn;Z� or SO0� fn�1;Z�, �4W nW 8�. Since
SO0� fn;Z� is a subgroup of SO0�fn�1;Z� for all n, we deduce that if 4W nW 7, G
contains a subgroup of ¢nite index conjugate to a subgroup of SO0� f8;Z�. In
dimension n � 8, the simplex groups corresponding to the ¢rst three Coxeter
diagrams in the Appendix are all commensurable with SO� f8;Z�. The ¢nal Coxeter
diagram in dimension 8 gives a form with determinant � ÿ2. We show below that
the form is rationally equivalent to a scalar multiple of f8.

Theorem 1.1 will follow by establishing SO0� f8;Z� is GFERF. This is done
analogously to Section 3.3 of [1] (see Lemma 3.4.4). We recall this brie£y. The
Coxeter diagram

corresponds to a hyperbolic 8-simplex S with one ideal vertex. Vinberg [18] showed
that the hyperbolic simplex group generated by re£ections in the faces of S is
the group G � O0� f8;Z�. Now, the vertex opposite the plane corresponding to
the rightmost node of the diagram is stabilised by the ¢nite group E8, so that
we may assemble jE8j copies of S and form an all right ideal polyhedron Q in
H8. The re£ection group generated from the faces of Q is GFERF by Theorem
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3.1 of [1] and by construction it is commensurable with the group G above, which is
therefore GFERF.

For the ¢nal form in dimension 8, from Theorem 5.1 the form is rationally
equivalent to

h1; 1; 1; 1; 1; 1; 1; 1;ÿ2i:
By Lemma 2.2 we can multiply this form by 2 and not change the group. This gives a
form rationally equivalent to

h2; 2; 2; 2; 2; 2; 2; 2;ÿ1i
which, as is easy to check by the methods above, has determinant ÿ1 and trivial
Hasse invariant. This completes the proof. &

Proof of Theorem 5.1. The calculation needs to be done on a case by case basis, so
we indicate a typical example which contains all the essential ideas.

It will be helpful to recall that for d 2 Z, all the Hilbert symbols

1; 1
Q

� �
;

1; d
Q

� �
;

1;ÿd
Q

� �
;

d;ÿd
Q

� �
are quaternion algebras of 2� 2 matrices over Q, and in particular make a trivial
contribution to the Hasse invariant. (See [10] Chapter 3, p. 60)

We discuss the example in dimension 7, with d�q� � ÿ7. The Gram Matrix in this
case is

1 ÿ 1
2 0 0 0 0 0 0

ÿ 1
2 1 ÿ 1

2 0 0 0 0 ÿ 1
2

0 ÿ 1
2 1 ÿ 1

2 0 0 0 0
0 0 ÿ 1

2 1 ÿ 1
2 0 0 0

0 0 0 ÿ 1
2 1 ÿ 1

2 0 0
0 0 0 0 ÿ 1

2 1 ÿ 1
2 0

0 0 0 0 0 ÿ 1
2 1 ÿ 1

2
0 ÿ 1

2 0 0 0 0 ÿ 1
2 1

0BBBBBBBBBB@

1CCCCCCCCCCA
Changing basis to

f1 � f1; 0; 0; 0; 0; 0; 0; 0g;
f2 � f0; 1; 0; 0; 0; 0; 0; 0g � 1=2f1;
f3 � f0; 0; 1; 0; 0; 0; 0; 0g � 0f1 � 2=3f2;
f4 � f0; 0; 0; 1; 0; 0; 0; 0g � 0f1 � 0f2 � 3=4f3;
f5 � f0; 0; 0; 0; 1; 0; 0; 0g � 0f1 � 0f2 � 0f3 � 4=5f4;
f6 � f0; 0; 0; 0; 0; 1; 0; 0g � 0f1 � 0f2 � 0f3 � 0f4 � 5=6f5;
f7 � f0; 0; 0; 0; 0; 0; 1; 0g � 0f1 � 0f2 � 0f3 � 0f4 � 0f5 � 6=7f6;
f8 � f0; 0; 0; 0; 0; 0; 0; 1g � 0f1 � 2=3f2 � 1=2f3 � 2=5f4 � 1=3f5 � 2=7f6 � 9=8f7,
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one ¢nds that the form determined by the Gram Matrix is rationally equivalent to

F � h1; 3; 6; 10; 15; 21; 7;ÿ7i:
One could compute the Hasse invariant directly from the form, but it is slightly easier
to make some preliminary reductions. For example, hÿ7; 7i has signature �1; 1�,
determinant ÿ1 (recall this is modulo squares) and the Hilbert symbol
��ÿ7; 7�=Q� is a matrix algebra. This is the same as the invariants for the quadratic
form hÿ1; 1i so that they are rationally equivalent and we deduce that F is rationally
equivalent to h1; 3; 6; 10; 15; 21; 1;ÿ1i. Letting � denote rational equivalence of
quadratic forms, we get h3; 6i � h1; 2i since the determinants are the same and
��3; 6�=Q� and ��1; 2�=Q� both represent the matrix algebra over Q. A similar argu-
ment applies to give h10; 15i � h1; 6i so that

F � h1; 3; 6; 10; 15; 21; 1;ÿ1i � h1; 1; 2; 6; 1; 21; 1;ÿ1i:
Since h2;ÿ1i � hÿ1; 2i and h6;ÿ2i � h1;ÿ3i we get a further simpli¢cation

F � h1; 1; 1; 6; 1; 21; 1;ÿ2i � h1; 1; 1; 1; 1; 21; 1;ÿ3i
Finally, h21;ÿ3i � h1;ÿ7i and we have

F � h1; 1; 1; 1; 1; 1; 1;ÿ7i
as required. &

Remarks. (1) In the Appendix we list forms by dimension and determinant. By
Theorem 5.1 these forms are equivalent over the rationals to a form
h1; . . . ; 1;ÿki. As is easy to see this form has trivial Hasse invariant, and this is
implicit in these lists.

(2) One can actually simplify some of the considerations required in stabilizing the
forms. For example, in dimension 5, all the simplex groups giving the quadratic
forms of determinant ÿ1 are commensurable. This is also noted in [8] and [9].

In dimension 4, it can be deduced that simplex groups associated to the Coxeter
diagrams shown in �4:1�, �4:4�, �4:5�, �4:6�, �4:8� and �4:9� are all commensurable
with O0� f4;Z�, and so are already GFERF. Some of this can be seen by directly
checking equivalence, and applying Lemma 2.1. The forms obtained from the Gram
matrix in the cases �4:5�, �4:8� and �4:9� are 2f4, and so by Lemma 2.2, the unit groups
obtained in these cases are again just O0� f4;Z�. �4:6� can be handled in a similar way.
These commensurability relationships are discussed further in [9].

6. Final Remarks

The methods developed above all hinge on [1] (following [15]), on achieving GFERF
by getting groups commensurable with Coxeter groups arising as groups generated
by re£ections in all right polyhedra in Hn. As a word of caution on how far one
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could generalize such a construction we prove the following (see Section 2.3 for
notation).

PROPOSITION 6.1. There is an irreducible all right Coxeter group that is not LERF.
Proof. Let G be the hyperbolic Coxeter group generated by re£ections in an all

right pentagon inH2, and D the Coxeter diagram of G. Take a pair of disjoint copies
D1 and D2 of D. Then the Coxeter diagram of the disjoint union is that of the
reducible group G1 � G2 with Gi � G for i � 1; 2. Note that since G1 contains a free
group F of rank 2, so G1 � G2 contains F � F . This group is well-known not to
be LERF, since it does not have a positive solution to the generalized word problem
[13] pp. 193^194. Hence G1 � G2 is not LERF. To get an irreducible Coxeter group
connect the Coxeter diagramsD1 andD2 by a pair of edges each labelled1, incident
at the vertex v as shown.

This diagram D0 determines an irreducible Coxeter system �W ;S� say (see [5]). We
claim W is not LERF. To see this, if we delete the re£ection rv (associated to
the vertex v) from the set S then by de¢nition of the Coxeter relations, we obtain
a subgroup of W isomorphic to G1 � G2, and in particular from the remarks above
cannot be LERF. This completes the proof. &

Remark. The use of the all right pentagon is not important, the above construction
works when any compact all right polyhedron in Hn is used.

In the language of geometric group theory, the role of geometrically ¢nite is played
by quasi-convex (see [4]). The obvious generalization of [1] and [15] is the following:

QUESTION. Let W be an all-right Coxeter group. If H is a quasi-convex subgroup
of W , is W H-separable?

We do not know if the non-separable subgroups constructed in the example are
quasi-convex or not. The methods of [1] seemed best suited to generalize to the case
when the all right Coxeter group is word hyperbolic(see [4]).

QUESTION. Let W be a word hyperbolic all-right Coxeter group. If H is a
quasi-convex subgroup of W , is W H-separable?

Note the example above is not word hyperbolic since it contains Z� Z.
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Appendix

Dimension � 4, d�q� � ÿ1

Dimension � 4, d�q� � ÿ2
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Dimension � 5, d�q� � ÿ1

Dimension � 5, d�q� � ÿ5

Dimension � 5, Nonarithmetic

Dimension � 6, d�q� � ÿ1
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Dimension � 6, d�q� � ÿ2

Dimension � 6, d�q� � ÿ3

Dimension � 7, d�q� � ÿ1

Dimension � 7, d�q� � ÿ3

Dimension � 7, d�q� � ÿ7

Dimension � 8, d�q� � ÿ1
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Dimension � 8, d�q� � ÿ2
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