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Abstract. In this paper we provide a negative answer to a question of Farb

about the relation between the algebraic degree of the stretch factor of a
pseudo-Anosov homeomorphism and the genus of the surface on which it is

defined.

1. Introduction

Let S = Sg be a closed, orientable surface of genus g. A pseudo-Anosov homeo-
morphism f : S → S is a virtual lift if there exists a branched cover p : S → Σ with
degree deg(p) > 1 over a (possibly nonorientable) surface Σ, and a pseudo-Anosov
φ : Σ → Σ so that φ lifts to a power of f by p; that is, there exists n > 0 so that
pfn = φp. We say that fn is a lift of φ via p.

Franks-Rykken [FR99] showed that if f : S → S is a pseudo-Anosov (with ori-
entable stable/unstable foliations), g ≥ 2, and if the stretch factor λ(f) is a qua-
dratic irrational, then f is a virtual lift—in fact, the branched cover is over a torus
p : S → Σ (cf. Gutkin-Judge [GJ00] and Kenyon-Smillie [KS00]). In 2004, Farb
asked (see [Str16a]) if a version of this is true when the degree of the stretch factor
was greater than 2. Specifically, he asked if there exists a function h : N → N so
that a pseudo-Anosov homeomorphism f : Sg → Sg is a virtual lift if the degree of
λ(f) over Q is at most d and g ≥ h(d). Here we prove that the answer is ‘no’.

Main Theorem. For any even d ≥ 4 and all g ≥ d
2 + 2, there exist pseudo-

Anosov homeomorphisms fg,d : Sg → Sg with orientable stable/unstable foliations
and λ(fg,d) of degree d over Q, so that fg,d is not a virtual lift.

We note that simultaneously and independently, M. Yazdi [Yaz] has also an-
swered Farb’s question in the negative. In [Yaz] he shows that for all g ≥ 3, there
are pseudo-Anosov maps fg : Sg → Sg so that λ(fg) has degree 6 and at most
finitely many of them can be virtual lifts. The method of proof is different from
that given here.

We also mention the related results [BF17, Lemma 6.2] and [Str16a, Corollary
1.4] that both describe conditions which guarantee that a pseudo-Anosov is not a
virtual lift. In the former case no control on the stretch factor is given, and in the
latter the stretch factors have degree 6g − 6 (the maximal possible degree).

We complete the Introduction by briefly describing the idea of the proof of the
Main Theorem. The pseudo-Anosov homeomorphisms are constructed as products
of high powers of Dehn twists. The twisting curves and powers are chosen in such a
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way that we can apply Strenner’s results from [Str16a] to ensure that the stretch fac-
tor has the appropriate degree. To prove that the homeomorphisms are not virtual
lifts, we analyze the flat metrics defining the associated Teichmüller axes. Appeal-
ing to work of Rafi [Raf05], Minsky [Min10], and Brock-Canary-Minsky [BCM12],
we prove that for carefully chosen twisting curves, there is a biinfinite collection of
simple closed curves that are “characteristic” for the pseudo-Anosov. These char-
acteristic curves are described in terms of Euclidean cylinder neighborhoods with
respect to the flat metrics, and if a pseudo-Anosov homeomorphism is a virtual lift,
we prove that they must project to the quotient surface in a very specific way. The
proof is completed by choosing the twisting curves so that the associated biinfinite
sequence of curves cannot project to any nontrivial quotient surface in that way.

Remark 1.1. In fact, no pseudo-Anosov element of the Veech group containing
the pseudo-Anosov mapping class from the Main Theorem will be a virtual lift;
see §5.1. However, we do not know whether there are other elements in the Veech
group, so we have not made it a point to emphasize this fact. There is a simpler
proof for the special case of d = 4, where we can find more elements of the Veech
group that are not virtual lifts, and this is Theorem 5.3, whose proof also appears
in §5.1. We have made this last section mostly independent from the rest of the
paper, so one can find a negative answer to Farb’s question in these few pages, at
least in the special case of d = 4.

Acknowledgement: The authors wish to thank the organizers of the Oberwolfach
Workshop “Surface Bundles” in December 2016 for their invitation to attend the
workshop and where this work started. We also wish to thank the organizers of the
third GEAR Network Retreat, Stanford August 2017 where this work was largely
completed. The authors would also like to thank Balázs Strenner and the anonymous
referee for many helpful and insightful comments on earlier versions of the paper.

2. Surfaces, curves, and annular projections

Suppose S is any orientable hyperbolic surface of finite topological type. When
convenient, we view S as a Riemann surface in which punctures are filled in and
treated as marked points. Here we collect a few facts about curve complexes and
subsurface projections. See [MM99] and [MM00] for more details.

The curve graph of S, C(S), is the simplicial complex whose vertex set C(0)(S)
is the set of isotopy classes of essential simple closed curves on S. A pair of isotopy
classes determine an edge if and only if they can be realized disjointly on S—
equivalently, the geodesic representatives with respect to the hyperbolic metric are
disjoint. We make C(S) into a geodesic metric space by declaring each edge to have
length 1. According to [MM99], C(S) is δ–hyperbolic.

If Y is an annulus, we define the curve graph of Y , C(Y ), in a similar fashion:
the vertex set consists of isotopy classes of essential arcs in Y , where isotopies
are required to fix the boundary pointwise. Edges connect isotopy classes when
there are representatives with disjoint interiors, and we similarly make C(Y ) into a
geodesic metric space.

The curve graphs of annuli arise from annular subsurfaces of S as follows. Given

an essential annulus Y ⊂ S, there is a corresponding covering space Ỹ → S. The
ideal boundary of the universal covering H2 → S determines an ideal boundary

of Ỹ , and we let Y denote Ỹ together with its ideal boundary, making Y into a
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compact surface with boundary. Given a vertex α of C(S), representing α by its
hyperbolic geodesic representative, we let α̃ denote the union of the arcs in the
preimage of α in Y . We define πY (α) to be the union of the components of α̃ which
are essential in Y (together with their ideal endpoints); that is, the components
with an endpoint on each boundary component of Y . We view πY (α) as a subset
of C(Y ). If µ is a measured foliation on S, we can similarly define πY (µ) to be the
set of lifts of non-singular leaves with endpoints on distinct boundary components.
Note that if α is either a curve or a measured foliation, πY (α) ⊂ C(Y ) has diameter
1 (any two components are disjoint). Given two curves or measured foliations α, β,
if πY (α) and πY (β) are both nonempty, we define the projection distance

dY (α, β) = diam(πY(α) ∪ πY(β)).

One also has dY (α, β) = max i(α0, β0) + 1, where the maximum is taken over α0 ∈
πY (α), β0 ∈ πY (β), and i denotes the geometric intersection number of the isotopy
classes of arcs α0, β0 (the number of intersection points of the interiors, minimized
over representative of the relative isotopy classes, also equal to the absolute value
of the algebraic intersection number). With these definition, dY satisfies a triangle
inequality whenever the projections involved are nonempty. See [MM00], especially
§2.4, for more on these (and other) subsurface projections.

The core curve of Y is an essential simple closed curve γ in S and every essential
simple closed curve is the core curve of an essential annulus. We sometimes write
C(γ), πγ , and dγ instead of C(Y ), πY , and dY , respectively. We have πγ(α) 6= ∅ if
and only if the geometric intersection number, i(α, γ) 6= 0.

One of the key features of subsurface projections is the following Bounded Geo-
desic Image Theorem (see [MM00]) in the case of annuli.

Proposition 2.1. There exists a constant M > 0 with the following property. If
α, β are two curves in C(S) and dγ(α, β) > M , then the geodesic from α to β
contains a vertex δ so that i(δ, γ) = 0, and hence δ is adjacent to γ in C(S).

The following is a special case of the Behrstock Inequality [Beh06] for annuli
that we will need.

Proposition 2.2. Suppose α, β, γ are three simple closed curves on S that pairwise
intersect. If dγ(α, β) ≥ 10 then dα(γ, β) ≤ 3.

This version with explicit constants is proved by Mangahas in [Man10, Man13].

3. Teichmuller geodesics and Euclidean cone metrics

A pseudo-Anosov homeomorphism f : S → S preserves a Teichmüller geodesic
axis defined by a unit area Euclidean cone metric q0 with cone angles greater than
2π at non-marked points, for which the stable and unstable foliations µ± are orthog-
onal, geodesic foliations. Furthermore, in preferred coordinates µ± are horizontal
and vertical, respectively, and the transverse measures are given by horizontal and
vertical variation, respectively. The different points along the axis are conformal
structures of Euclidean cone metrics qt in which the stable and unstable foliations
have their transverse measures scaled as etµ+, e−tµ− (maintaining unit area for the
Euclidean cone metrics). We call the family of Euclidean cone metrics Q = {qt}t∈R
the associated flat metics. Note that any two metrics in the family differ by an affine
diffeomorphism (away from the cone points). We write `qt(γ) for the qt–length of
a curve γ.
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If fn is a lift of φ : Σ → Σ via a branched cover p : S → Σ, then the associated
flat metrics Ξ = {ξt} for φ can be chosen so that qt =

√
deg(p) p∗(ξt) (this scaling

is necessary since qt and ξt have unit area). In this case, we say that Q = {qt} and
Ξ = {ξt} are compatible.

If Q = {qt} are the flat metrics associated to a pseudo-Anosov on S as above,
a Q–cylinder or flat cylinder for Q (or just flat cylinder, if Q is understood) is an
annulus Y ⊂ S so that the path metric on Y coming from some qt ∈ Q makes Y
into a Euclidean product I × S1, where I is an interval (we allow the possibility
that Y is only embedded on its interior, but still write Y ⊂ S). Note that if the
metric on Y is a Euclidean product for some qt ∈ Q, then it is for all qt ∈ Q (and
any two such metrics differ by affine diffeomorphism). The qt–modulus of a flat
cylinder Y ⊂ S, denoted M(Y, qt), is the ratio of the height to circumference, and
M(Y,Q) = max{M(Y, qt) | t ∈ R} is the maximum modulus. If γ ⊂ S is a two-
sided simple closed curve, there is a maximal flat cylinder Yγ ⊂ S whose core curves
are isotopic to γ, and we set M(γ, qt) = M(Yγ , qt) and M(γ,Q) = M(Yγ , Q). We
are allowing the possibility of a degenerate cylinder, that is, one with width zero.
In this case, the cylinder consists of the unique geodesic representative (which is a
concatenation of saddle connections), and we have M(γ, qt) = 0 for all t.

We say that γ is a Q–cylinder curve if M(γ,Q) > 0. There is a unique tγ ∈ R,
called the balance time of γ, so that the vertical and horizontal variations of γ
agree (see e.g. [MM99, Raf05]), and hence also the time when the core geodesics
of the cylinder make angle ±π4 with these foliations. Since the qt–length `qt(γ) is
the square root of the sum of the squares of these variations, this length is also
minimized at tγ , and we can write

`qt(γ) = `qtγ (γ) cosh
1
2 (2(t− tγ)).

Because the modulus is the ratio of the area of the cylinder (which is constant in
t) and the square of the length, it follows that M(γ, qtγ ) = M(γ,Q).

The following is an easy consequence of work of Rafi (see Lemma 3.8, Corol-
lary 5.3, and Theorem 5.6 of [Raf05]). Since this exact statement doesn’t appear
in [Raf05], we give a proof here for completeness.

Proposition 3.1. Suppose f : S → S is a pseudo-Anosov homeomorphism, Q is
the associated family of flat metrics, and µ± are the stable and unstable foliations.
If dγ(µ+, µ−) ≥ 4, then γ is a Q–cylinder curve. In general, if γ is a Q–cylinder
curve, then ∣∣∣∣M(γ,Q)− dγ(µ+, µ−)

2

∣∣∣∣ ≤ 2

Proof. Suppose t = tγ , the balance time of γ and suppose S is endowed with the
metric qt. Choose lifts of nonsingular leaves δ+ of µ+ and δ− of µ− to the annular

cover Ỹγ of S so that

dγ(µ+, µ−) = i(δ+, δ−) + 1.

Since δ+, δ− are qt–geodesics, these realize the minimal intersection number in their
relative isotopy classes, and so intersect in at least 3 points.

Now observe that any three consecutive points of intersection along δ+ deter-
mines two consecutive, compact arcs in δ+, as well as three consecutive points of
intersection along δ− and two compact arcs of δ−. These four arcs determine a

quadrilateral in Ỹγ . Since the geodesics intersect in right angles, the Gauss-Bonnet
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formula implies that there are no singular points inside the quadrilateral, and hence
this is the image of an isometrically immersed rectangle, which is an embedding ex-
cept at one pair of vertices. Furthermore, the diagonal of the rectangle connecting
the identified vertices is a geodesic representative of γ, and since t = tγ the balance
time, the rectangle is actually a Euclidean square; see Figure 1. In fact, since the
diagonal of square has length `qt(γ), the sides have length `qt(γ)/

√
2.

δ+

δ−

Figure 1. Nonsingular lifts δ+ and δ− in the annulus Ỹγ , with
five intersection points shown; three in “front” and two in “back”.
Squares are formed from arcs along any three consecutive intersec-
tion points. One such square is highlighted by thicker lines.

Next, observe that the geodesic which is a diagonal of a square from three consec-
utive intersection points contains no cone points, and hence there is a nondegenerate
flat cylinder containing for γ. Consequently, γ is a cylinder curve. For any four

consecutive intersection points there are two squares in Ỹγ that have two sides in
common. The geodesics from the diagonals of these two “consecutive” squares form
a flat cylinder of circumference `qt(γ) and height `qt(γ)/2 (half a diagonal). There

are i(δ+, δ−)− 3 such cylinders in Ỹ glued end-to-end, and so

M(γ,Q) = M(γ, qt) ≥
1

2
(i(δ+, δ−)− 3) =

1

2
(dγ(µ+, µ−)− 4) =

dγ(µ+, µ−)

2
− 2.

On the other hand, consider the maximal flat cylinder in Ỹγ , and choose δ+
0 , δ

−
0

to be a pair of lifts of leaves of µ+, µ−, respectively, with an intersection point on
one boundary component of this cylinder. Considering the squares in the cylinders
from triples of consecutive intersection points as above we find that there are at
least b2M(γ,Q)c+ 1 intersection points of δ+

0 , δ
−
0 inside the flat cylinder. From the

Gauss-Bonnet argument, it follows that there can be at most one more intersection
point of δ+

0 , δ
−
0 outside the maximal cylinder, and hence

i(δ+
0 , δ

−
0 ) ≥ b2M(γ,Q)c+ 2 ≥ 2M(γ,Q) + 1.

Since δ+
0 , δ

−
0 are arbitrary leaves, we have dγ(µ+, µ−) ≥ i(δ+

0 , δ
−
0 )− 1 and hence

M(γ,Q) ≤ dγ(µ+, µ−)

2
.

Combining this with the inequality above completes the proof. �

The proof of our main theorem will rely on understanding how Q–cylinders in
S are mapped down to Σ. The images need not be cylinders, but with some addi-
tional mild assumptions, they are very well behaved. A Euclidean half-pillowcase
is the quotient of a Euclidean cylinder S1 × [−T, T ] by the group generated by the
involution τ(eiθ, t) = (e−iθ,−t). Considering a fundamental domain for this ac-
tion, we can equivalently describe this as the Euclidean orbifold obtained by gluing



6 CHRISTOPHER J. LEININGER AND ALAN W. REID

a component of the boundary of a Euclidean cylinder S1 × [0, T ] to itself by the
map (eiθ, 0) ∼ (e−iθ, 0). Topologically, a half-pillow case is a disk with two marked
points. The two marked points are cone points with cone angle π and there is a geo-
desic segment, the core segment, connecting those points whose complement is itself
a half-open Euclidean cylinder. We will refer to the modulus of the complementary
Euclid ean cylinder as the modulus of the half-pillowcase.

Lemma 3.2. Suppose Σ is an orientable surface and φ : Σ → Σ a pseudo-Anosov
homeomorphism with associated flat metrics Ξ = {ξt}. Assume that the only marked
points of Σ are cone points of ξt with cone angle π and that Σ is not a torus or a
sphere with four marked points. Let h : Y → Σ denote a map of an open Euclidean
cylinder into Σ which for some ξt ∈ Ξ, is a local isometry away from a finite
number of branched points. Then either h(Y ) is a Euclidean cylinder in Σ and h
is a covering map onto its image or else h(Y ) is a Euclidean half-pillowcase. In

either case, M(h(Y ), ξt) ≥ M(Y )
2 .

Proof. First suppose that there are no branch points in Y . In this case, each core
geodesic of Y maps to a geodesic. Since the holonomy of ξt is {±I}, it follows that
these geodesics are simple. We wish to show that no two core geodesics map to the
same geodesic. Suppose on the contrary that α, β are two distinct core geodesics in
Y that map to the same geodesic. Since Σ is orientable, the sub-cylinder between
α and β provides an isotopy from one to the other. Orient both α and β in the
same direction coming from the annulus (so the isotopy between them is orientation
preserving). Again, because Σ is orientable, α and β must map to the same oriented
curve. Since the sub-cylinder between α and β lies on different sides of these two
curves (each are two-sided curves), it follows that image of the cylinder lies on both
sides of the image. Thus, we can identify α and β in the sub-cylinder producing a
torus which maps locally isometrically to Σ. Therefore Σ is a flat torus, which is a
contradiction. Thus, no two core geodesics of Y are sent to the same curve, and it
follows that h(Y ) is a cylinder, foliated by the images of the core geodesics. Since
h restricts to a covering map from each core geodesic onto its image, it follows that
h restricts to a covering map from Y onto its image.

Now suppose h is nontrivially branched at some point ζ ∈ Y . Note that h(ζ)
must be a cone point of angle π. Let α be a core geodesic through ζ. We first
want to show that h can only be branched at points on α. For this, observe that
α must project to a geodesic segment between a pair of cone points with angle π.
In particular, there is an antipodal point ζ ′ on α that projects to the other cone
point (there may be several points that project to ζ ′, but one must be antipodal).
Geodesics sufficiently close to α project to geodesics surrounding h(α), and hence a
cylinder neighborhood of α maps down to a Euclidean half-pillowcase. We need to
show that no other core geodesic contains a point where h is branched. So, suppose
there were another such geodesic β 6= α of Y that also contains a branch point, and
choose one that is closest to α. Observe that the Euclidean cylinder between α and
β contains no points where h branches, and so the boundary components can be
glued together (“folded” at antipodal points one each boundary component where h
branches) to produce a sphere with four cone points that maps locally isometrically
(away from the preimage of the cone points) onto Σ (this is similar to the case of
no branch points where we showed that Σ was the image of a flat torus). The only
orientable Euclidean cone surfaces with holonomy {±I} which is the image of a
locally isometric map of the sphere with four cone points is the sphere with four
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cone points, and so Σ is a sphere with four cone points, a contradiction. Thus,
there is only one geodesic α which contains branch points.

The sub-cylinders on either side of α map to Σ without branched points, so
by the previous paragraph, these cover cylinder. Thus h(Y ) is a Euclidean half-
pillowcase, namely the union of the half-pillowcase neighborhood of the image of α,
together with these two cylinders (which share some core geodesics).

If h : Y → h(Y ) is a covering map, then the modulus of h(Y ) is the modulus
of Y times the degree of this covering. In the two-fold quotient from a Euclidean
cylinder to a half-pillowcase, the modulus is reduced by half. The lower bound on
modulus now follows. This completes the proof. �

Remark 3.3. We note that when h(Y ) is a Euclidean half-pillowcase, the map h
is not necessarily a (branched) covering map from Y to h(Y ): the two distances
from the core geodesic α to the two boundary components might be different.

Lemma 3.4. Suppose Σ is a nonorientable surface and φ : Σ→ Σ a pseudo-Anosov
homeomorphism with associated flat metrics Ξ = {ξt}. Let h : Y → Σ denote a map
of an open Euclidean cylinder into Σ which for some ξt ∈ Ξ, is a local isometry
away from a finite number of branched points. Further assume that the modulus of
Y is strictly greater than 2. Then h(Y ) is either a Euclidean cylinder or a Euclidean

half-pillowcase and M(h(Y ), ξt) ≥ M(Y )
2 .

Proof. Letting g : Σ′ → Σ denote the orientation double cover, we claim that h
lifts to h′ : Y → Σ′. To see this, let Σ0 ⊂ Σ and Y0 ⊂ Y denote the complements
of the branched points and their preimages, respectively, so that h|Y0

is a local
diffeomorphism. Since the orientation double cover of Σ0 is the orientation bundle
(that is, it is the bundle PΛ2T (Σ0)), a choice of orientation on Y0 defines a lift of
h|Y0 to the orientation double cover. Since Σ is orientable in a disk neighborhood
of the cone points, this lift extends to all of Y . A pseudo-Anosov homeomorphism
on a torus or sphere with four marked points cannot be a lift of a pseudo-Anosov
homeomorphism of a nonorientable surface: this follows from [Str16b, Proposition
2.3], for example, where it is shown that lifts of pseudo-Anosov homeomorphisms
from a nonorientable surface have stretch factors that are not Galois conjugates,
while stretch factors of pseudo-Anosov homeomorphisms of the torus and sphere
with four marked points are quadratic irrational algebraic integers, and hence their
inverses are their Galois conjugates. Therefore, by Lemma 3.2, h′(Y ) ⊂ Σ′ is either
a Euclidean cylinder or half-pillowcase with the required lower bound on modulus.

Since g is a two-fold covering, there is another lift h′′ : Y → Σ′. We claim
that h′(Y ) and h′′(Y ) are disjoint, and hence the restriction of g to h′(Y ) is a
homeomorphism onto h(Y ), which by Lemma 3.2 will complete the proof. Therefore
we suppose h′(Y )∩h′′(Y ) 6= ∅ and obtain a contradiction. The map h′′ differs from
h′ by composing with the order two covering transformation τ : Σ′ → Σ′, which is
orientation reversing. Thus, there is a point z of h′(Y ) for which τ(z) ∈ h′(Y ).

If h′(Y ) is a cylinder, we denote it A = h′(Y ). If h′(Y ) is a half-pillowcase,
then since h′(Y ) ∩ h′′(Y ) is an open set, we can assume that z and τ(z) lie in the
Euclidean cylinder surrounding the core segment between the cone points. By our
assumption, this cylinder has modulus strictly greater than 1, and we denote it A.
In either case, A is a Euclidean cylinder of modulus greater than 1 containing z
and τ(z).
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Choose an oriented orthonormal basis e1, e2 on A so that e1 is tangent to the
core curves of A. The derivative dτz : Tz(A) → Tτ(z)(A) is orientation reversing,
hence a reflection. Since the stable/unstable foliations are preserved by τ , the line
of reflection must be tangent to one of these foliations. Since these foliations are
orthogonal, and neither has closed leaves, we see that the lines of reflection are
not spanned by either e1 or e2. It follows that τ must send the core geodesic of A
through z transverse to the core geodesic through τ(z). Since the modulus of A is
greater than 1, the core geodesic is shorter than the distance between the boundary
components, which is a contradiction. Therefore, h′(Y ) and h′′(Y ) are disjoint,
completing the proof. �

We also need to understand what the preimage of cylinders look like under a
branched cover p : S → Σ.

Lemma 3.5. Given S and d > 0 there exists B = B(S, d) > 0 with the following
property. Suppose that p : S → Σ is a branched covering of degree at most d,
f : S → S a lift of the pseudo-Anosov φ : Σ → Σ, Q = {qt} and Ξ = {ξt} are the
associated, compatible flat metrics, and Y ⊂ Σ is a maximal open Q–cylinder with
maximal modulus M(Y,Ξ). Then there is a sub-cylinder Y0 ⊂ Y so that p−1(Y0) is
a union of Euclidean cylinders in S, each with maximal modulus at least BM(Y,Ξ).

Proof. Fix the metrics ξt and qt at the balance time t of the core curve of Y . By
the Riemann-Hurwitz Theorem, there is a bound b > 0 on the number of branched
points of p, in terms of d and χ(S), and we set B = 1

d(b+1) . Since Y contains

at most b branch points, there are at least b + 1 open Euclidean sub-cylinders in
Y disjoint from the branch points so that the boundaries of the closures in Σ are
either in the boundary of the closure of Y or else contain a branched point. The
sum of the moduli of these is precisely the modulus of Y , and consequently one of

them, call it Y0, has modulus at least M(Y,Ξ)
b+1 = M(Y,ξt)

b+1 . The preimage p−1(Y0) is

a Euclidean cylinder and for any component Ỹ0 ⊂ p−1(Y0) the restriction of p,

p|Ỹ0
: Ỹ0 → Y0,

is a covering map of degree at most d. Therefore, M(Ỹ0, Q) ≥ M(Y,Ξ)
d(b+1) = BM(Y,Ξ),

as required. �

4. Pseudo-Anosovs from Dehn twists.

Suppose c1, c2, . . . , cn are curves that fill a surface S = Sg with g ≥ 2 so that
i(ci, ci+1) 6= 0 for all 1 ≤ i ≤ n and with 1 ≤ i + 1 ≤ n taken modulo n. Let
k1, k2, . . . , kn ∈ Z. Our construction involves analyzing the mapping class

f = T k1c1 T
k2
c2 · · ·T

kn
cn .

We first extend the finite sets of curves and integers to infinite sequences {cj}∞j=1

and {kj}∞j=1 by setting
cj = cj′ and kj = kj′

where 1 ≤ j′ ≤ n and j ≡ j′ modulo n. Then for all j ≥ 1 set

fj = T k1c1 T
k2
c2 · · ·T

kj
cj .

Observe that for all m ≥ 0, and j ≥ 0 we have

(1) fnm+j = fmfj .
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Now construct a new infinite sequence of curves {γj}∞j=1 by γj = fj(cj). For all
j ≥ 1, since cj = cj+n, (1) implies

(2) f(γj) = ffj(cj) = fj+n(cj+n) = γj+n.

Thus, f acts as the nth power of the shift on the sequence {γj}∞j=1. Therefore, we
can extend the infinite sequence of curves to a biinfinite sequence {γj}j∈Z so that
(2) holds for all j ∈ Z.

Lemma 4.1. Given curves c1, . . . , cn as above, there exists R > 0 and K > 0 so
that if |kj | ≥ K for all j ≥ 1, then

(i) i(γi, γj) 6= 0 for all i, j ∈ Z, i 6= j,
(ii) |dγ`(γi, γj)− |k`|| ≤ R for all i, j, ` ∈ Z with i < ` < j.

(iii) {γi} is an f–invariant, uniform quasi-geodesic in the curve complex.

From (iii), it follows that f is pseudo-Anosov, and {γj}j∈Z is a quasi-geodesic axis.
Moreover, if we let µ± denote the stable/unstable foliations of f , then

(iv) |dγj (µ+, µ−)− |kj || ≤ R+ 2

for all j ∈ Z.

The meaning of (iii) is that there exists constants A,B > 0, depending only on
c1, . . . , cn, so that

1

A
|i− j| −B ≤ d(γi, γj) ≤ A|i− j|+B.

We have avoided cluttering the already lengthy statement by excluding explicit
mention of these constants.

Proof. We have already established the f–invariance of {γj}. In particular, it
suffices to prove the statements (i)–(iii) for positive indices.

First consider a triple of any three consecutive curves (γj−1, γj , γj+1). We want
to describe this triple of curves up to homeomorphism. By applying a sufficiently
high positive power of f , we can assume that j > 1. Then applying f−1

j−1 to this
triple we get

f−1
j−1(γj−1, γj , γj+1) = f−1

j−1(fj−1(cj−1), fj(cj), fj+1(cj+1))

= (cj−1, T
kj
cj (cj), T

kj
cj T

kj+1
cj+1

(cj+1)) = (cj−1, cj , T
kj
cj (cj+1))

Since the sequences {cj} and {kj} are n–periodic, we see that up to homeomor-
phism, any consecutive triple looks like

cj−1, cj , T
kj
cj (cj+1),

for 1 ≤ j ≤ n and the other two indices 1 ≤ j − 1, j + 1 ≤ n taken modulo n. Since
consecutive curves intersect nontrivially, we can apply the triangle inequality for
projection distances to obtain

|dcj (cj−1, T
kj
cj (cj+1))− dcj (cj+1, T

kj
cj (cj+1))| ≤ dcj (cj−1, cj+1).

The right hand side is uniformly bounded by n–periodicity, and we claim that

|dcj (cj+1, T
kj
cj (cj+1))− |kj || ≤ 3.

This follows from the triangle inequality, the fact that πcj (cj+1) and πcj (T
kj
cj (cj+1))

each have diameter at most 1, and the fact that the kth power of a Dehn twist
translates any arc by at most k + 1 on the curve graph of the annulus (note that
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some arcs are translated more than k because there is more than one lift of the
twisting curve). Therefore, taking R0 > 0 to be at least three more than that
uniform bound implies

|dcj (cj−1, T
kj
cj (cj+1))− |kj || ≤ R0.

Applying the homeomorphism fj−1 to all curves in this inequality, we obtain

(3) |dγj (γj−1, γj+1)− |kj || ≤ R0.

For now, assume K ≥ R0 + 16 (later we will increase the lower bound on K). If
|kj | ≥ K, it then follows that we also have

dγj (γj−1, γj+1) ≥ 16.

Consequently, i(γj−1, γj+1) 6= 0 (and hence, γj−1, γj , γj+1 pairwise intersect).

Claim. If i < j, then i(γi, γj) 6= 0 and for all i < ` < j, we have dγi(γ`, γj) ≤ 3
and dγj (γi, γ`) ≤ 3.

Proof. We prove the claim by induction on j − i. For j − i = 1 there is no such `,
and the nonzero intersection number statement is a consequence of the description
of triples. If j − i = 2, then the triples description implies i(γi, γj) 6= 0, and by
Proposition 2.2, it follows that dγi(γ`, γj) ≤ 3 and dγj (γi, γ`) ≤ 3. These serve as
the base cases.

Now suppose the statement is true whenever the difference in indices is at most
m, and suppose j − i = m + 1. Without loss of generality, we may assume that
m+ 1 ≥ 3. Let i < ` < j be any index. Suppose first that

i < `− 1 < ` < `+ 1 < j.

Then by induction γ`, γ`+1, γj pairwise intersect, γi, γ`−1, γ` pairwise intersect, and

dγ`(γ`+1, γj) ≤ 3 and dγ`(γi, γ`−1) ≤ 3.

By the triangle inequality, we have

dγ`(γi, γj) ≥ dγ`(γ`−1, γ`+1)− dγ`(γ`−1, γi)− dγ`(γ`+1, γj) ≥ 16− 3− 3 = 10.

In particular, γi and γj nontrivially intersect. Furthermore, by Proposition 2.2, we
have

dγi(γ`, γj) ≤ 3 and dγj (γi, γ`) ≤ 3,

as required.
If we do not have i < `− 1 < ` < `+ 1 < j, then it must be that either `+ 1 = j

or `− 1 = i, and we can argue similarly. For example, if i = `− 1, then `+ 1 < j
and by induction

dγ`(γ`+1, γj) ≤ 3 and dγ`(γi, γ`+1) ≥ 16.

So dγ`(γi, γj) ≥ 13, thus i(γi, γj) 6= 0, and applying Proposition 2.2 we have

dγi(γ`, γj) ≤ 3 and dγj (γi, γ`) ≤ 3

as required. The case `+ 1 = j is similar. This completes the induction, and hence
proves the claim. �
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Observe that part (i) follows from the first part of the claim. For part (ii), let
i < ` < j. Then by the claim and the triangle inequality we have

|dγ`(γi, γj)− dγ`(γ`−1, γ`+1)| ≤ dγ`(γ`−1, γi) + dγ`(γ`+1, γj) ≤ 6.

So, setting R = R0 + 6, part (ii) of the lemma follows from Inequality (3).
To prove part (iii), we first prove

Claim. For any j ∈ Z, the curves γj+1, γj+2, . . . , γj+n fill S.

Proof. By applying an appropriate power of f , and cyclically permuting the original
indices 1, 2, . . . , n, it suffices to prove that γ1, . . . , γn fill S. For this, we show that for
any 1 ≤ j ≤ n, the subsurface Xj filled by γ1, . . . , γj is the same as the subsurface
Zj filled by c1, . . . , cj . We do this by induction on j.

The base case is j = 1, and then γ1 = c1, so X1 = Z1 is the annular neighbor-
hood. Now suppose that Xj−1 = Zj−1 for some j ≥ 2 and we prove Xj = Zj . First
observe that

fj−1 = T k1c1 · · ·T
kj−1
cj−1

is supported on Zj−1 = Xj−1 since c1, . . . , cj−1 are contained in Zj−1. If cj ⊂ Zj−1,
then Zj = Zj−1, while on the other hand

γj = fj−1T
kj
cj (cj) = fj−1(cj) ⊂ Zj−1 = Xj−1

and hence Xj = Xj−1 = Zj−1 = Zj . Thus if cj ⊂ Zj−1, we are done. So, suppose
cj 6⊂ Zj−1. Then Zj is determined by Zj−1 and the isotopy classes of arcs of
cj −Zj−1 in S−Zj−1. We will be done if we can show that these isotopy classes of
arcs are the same as those of γj −Xj−1 in S −Xj−1 = S −Zj−1. For this, observe
that as above γj = fj−1(cj), and since fj−1 is supported on Xj−1 = Zj−1, fj−1

cannot change the isotopy classes of arcs of cj−Zj−1. Hence γj−Xj−1 = γj−Zj−1

is isotopic to cj − Zj−1, as required. This proves the claim. �

Now observe that by f–invariance, if |j − i| ≤ n, then d(γi, γj) ≤ A′ for some
constant A′. In particular, d(γi, γj) ≤ A′|j − i| for 0 < |j − i| ≤ n. By the triangle
inequality, d(γi, γj) ≤ A′|j − i| for all i, j.

At this point we further assume that K ≥ R0 +16+M , where M is the constant
from Proposition 2.1. Consider any geodesic σ in C(S) from γi to γj and list the
vertices consecutively as γi = α0, α1, . . . , αr = γj from γi to γj . The bound on K
implies dγ`(γi, γj) > M , for all i < ` < j. So by Proposition 2.1 there is a vertex
αs of σ which is disjoint from γ`. There may be more than one, but there can
be at most 3 since σ is a geodesic (if there were more than three, two would be
distance at least 3 apart, which is impossible since they are distance 1 from γ`).
For each such `, let αs(`) be the vertex closest to γj which is disjoint from γ`. As
in [BBKL16, Lemma 4.4], s(`) ≤ s(`′) if ` ≤ `′. On the other hand, since every
n consecutive curves fill, we have s(`) < s(` + n). Consequently, the number of

vertices in σ between γi and γj is at least j−1
n and hence the distance is at least

d(γi, γj) ≥
j − i
n
− 1.

This provides the desired lower bound, and hence {γj} is a uniform quasi-geodesic.
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Finally, for part (iv), we note that since {γj}j∈Z is a quasi-geodesic, and is
f–invariant, f must be pseudo-Anosov, and we have

lim
j→±∞

γj = µ±,

in the Hausdorff topology on S, after throwing away any isolated leaves of the
limit. Therefore, for every ` ∈ Z, every arc of πγ`(µ

+) ∪ πγ`(µ−) is a limit of arcs
in πγ`(γj) ∪ πγ`(γ−j), as j tends to infinity. Since some limits of arcs in the latter
set can disappear (since isolated leaves of the Hausdorff limits are discarded), the
difference in diameters between the former and latter sets (for j sufficiently large)
is at most 2. Part (iv) now follows from part (ii). �

Now suppose c1, . . . , cn are as above, κ1, . . . , κn ∈ {±1}, and m ≥ K, with K as
in Lemma 4.1. Let kj(m) = κjm for 1 ≤ j ≤ n, and extend this to {kj(m)}j∈Z as
above. Construct a sequence of homeomorphisms {fm : S → S}∞m=1 by

(4) fm = T k1(m)
c1 T k2(m)

c2 · · ·T kn(m)
cn .

Proposition 4.2. Let {fm : S → S}∞m=K be a sequence of pseudo-Anosov homeo-
morphisms defined as in Equation (4), Q(m) = {qt(m)} the associated flat metrics,
and {γj(m)}j∈Z the associated fm–invariant collection of curves, for each m. Then
for all j,

M(γj(m), Q(m)) ≥ m−R− 6

2
,

where R is the constant from Lemma 4.1. Furthermore, there is a constant D > 0
so that for any m and curve γ 6∈ {γj(m)}j∈Z,

M(γ,Q(m)) ≤ D.

Proof. Let µ±(m) denote the stable/unstable foliations of fm. Since |kj(m)| =
m ≥ K, {γj(m)}j∈Z satisfies the conclusion of the Lemma 4.1. Combining this
with Proposition 3.1 we have

M(γj(m), Q(m)) ≥
dγj(m)(µ

+(m), µ−(m))

2
− 2 ≥ m−R− 6

2
.

This proves the first statement.
Let Xfm denote the mapping torus of fm equipped with its hyperbolic metric,

and X̃fm the cover of Xfm corresponding to the fiber subgroup π1(S). Appealing to
the Short Curve Theorem of Minsky [Min10] (see also the Length Bound Theorem

from Brock-Canary-Minsky’s [BCM12]), the curves γj(m) all have length in X̃fm

tending to zero as m tends to infinity. Being fm–invariant, they push down to n
closed geodesics in Xfm .

The geometric limit of the sequence of hyperbolic 3–manifolds Xfm is the cusped
hyperbolic 3–manifold X∞ obtained by drilling out the n curves, realized on n
different fibers of Xfm (see [Thu80]) and Xfm is obtained from X∞ by (1, kj(m))–
Dehn filling on X∞ for all m > 0 as in [LM86]. The geometric convergence ensures
that there is a uniform lower bound to the length of any curve in Xfm which is
not one of the n curves, and hence there is a uniform lower bound (independent of

m) to the length of any curve γ in X̃fm which is not in {γj(m)}j∈Z. By the Short
Curve Theorem again, it follows that dγ(µ+(m), µ−(m)) is uniformly bounded,
independent of m and γ. By Propostion 3.1, the modulus Mt(γ) of any qt(m)–
Euclidean cylinder with core curve isotopic to γ is uniformly bounded, independent
of m and γ, as required. �
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The following provides a useful mechanism for deciding when a pseudo-Anosov
f : S → S constructed as above is not a virtual lift.

Theorem 4.3. Suppose {fm : S → S}m is a sequence of pseudo-Anosov home-
omorphisms as in Equation (4), {{γj(m)}j∈Z}m are the associated sequences of
curves, and that the stretch factors λ(fm) have degree greater than 2 over Q. Then
there exists a positive integer N ≥ K, so that if m ≥ N and fm is a virtual lift
of some φm : Σm → Σm via a branched covering pm : S → Σm, then there are
representatives of the curves γj(m) so that p−1

m (pm(γj(m))) = γj(m) for all j.

The choice of representative γj(m) is a convenience for the statement: for an
arbitrary representative, all components of the preimage of the image will be seen
to be isotopic.

Proof. To begin, assume N is large enough so that if m ≥ N , then Proposition 4.2
ensures that for all j, M(γj(m), Q(m)) > 0 and hence γj(m) is a cylinder curve.

Suppose that pm : S → Σm is a branched covering and φm a map that lifts to
a power of fm. Since λ(fm) is not quadratic irrational, Σm is not a sphere with
four marked points or a torus. Let Ξ(m) = {ξt(m)} and Q(m) = {qt(m)} be the
associated compatible family of flat metrics. By Lemmas 3.2 and 3.4, for each j,
we can choose a representative of γj(m) so that pm(γj(m)) is a cylinder curve with

M(pm(γj(m)),Ξ(m)) ≥ M(γj(m), Q(m))

2
.

On the other hand, by the Riemann–Hurwitz Theorem, there is a bound d on the
degree of pm. Let B = B(S, d) be the constant from Lemma 3.5. Then there is
a sub-cylinder Yj(m) of the cylinder about pm(γj(m)) so that each component of

Ỹj(m) = p−1
m (Yj(m)) is a Euclidean cylinder and has maximal modulus at least

BM(pm(γj(m)),Ξ(m)) ≥ BM(γj(m), Q(m))

2
.

One component of Ỹj(m) is contained in the original cylinder with core curve γj(m).
Without loss of generality, we may choose γj(m) so that pm(γj(m)) ⊂ Yj(m), and

hence γj(m) ⊂ p−1
m (pm(γj(m))) ⊂ Ỹj(m).

Let D > 0 be the constant from Proposition 4.2. We choose N > K so that if
m ≥ N , then for all j

B(m−R− 6)

4
> D.

Then if γj(m)′ is any component of p−1
m (pm(γj(m))), and Ỹ ′j (m) ⊂ Ỹj(m) is the

component containing it, then the bound above on the maximal modulus of Ỹ ′j (m)
combined with Proposition 4.2 implies

M(γj(m)′, Q(m)) ≥ BM(γj(m), Q(m))

2
≥ B(m−R− 6)

4
> D.

Consequently, γj(m)′ must be one of the curves γj′(m). However, the direction of
γj(m) and γj(m)′ in the Euclidean cone metric are the same, while if j′ 6= j, the
curves γj′(m) and γj(m) intersect nontrivially by Lemma 4.1. Therefore, γj(m)′

and γj(m) must either be equal or isotopic.
Thus, all the components of p−1

m (pm(γj(m))) are isotopic to γj(m), and are hence
contained in a single cylinder. By Lemma 3.2, either pm restricted to this cylinder
is a covering map—in which case, p−1

m (pm(γj(m))) = γj(m), and we are done—or
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the image of the cylinder is a half-pillowcase. If the latter happens, then we take
γj(m) to be the unique core curve in the cylinder that projects to the core geodesic
segment of the half-pillowcase, we get p−1

m (pm(γj(m))) = γj(m), as required. �

Corollary 4.4. In addition to the assumptions from Theorem 4.3, suppose that
i(cj , cj+1) = 1 for some j. If m ≥ N , and fm is a virtual lift of some φm : Σm → Σm
via a branched covering pm : S → Σm, then Σm is the quotient by an orientation
preserving involution preserving the isotopy classes of c1, . . . , cm.

Proof. Choose representatives γi(m) for the isotopy classes, for all i, as in Theo-
rem 4.3. Note that i(γj(m), γj+1(m)) = i(cj , cj+1) = 1. Since p−1

m (pm(γi(m))) =
γi(m) for all i, it follows that if x = γj(m)∩γj+1(m), then p−1

m (pm(x)) = {x}. Since
the image of the cylinders about γj(m) are either cylinders or half-pillowcases, the
local degree of pm near x must be 1 or 2. The degree cannot be 1 since the definition
of virtual lift requires a branched cover of degree greater than 1. Therefore, the
degree is 2 and hence the branched covering is regular (since index 2 subgroups are
always normal). The covering group is thus generated by an orientation preserving
involution τ .

Since p−1
m (pm(γi(m))) = γi(m) for all i, it follows that τ(γi(m)) = γi(m). We

now show that τ(ci) = ci for each i = 1, . . . , n. For i = 1, note that c1 = γ1(m). We
use this as the base case for induction. Assuming τ(ci) = ci for all 1 ≤ i ≤ ` < n,
we prove that τ(c`+1) = c`+1. For this, observe that

γ`+1(m) = T k1(m)
c1 · · ·T k`(m)

c`
T k`+1(m)
c`+1

(c`+1) = T k1(m)
c1 · · ·T k`(m)

c`
(c`+1)

since Tc`+1
fixes c`+1. Therefore, we have

T−k`(m)
c`

· · ·T−k1(m)
c1 (γ`+1(m)) = c`+1.

Since τ preserves each of c1, . . . , c`, it commutes with T = T
−k`(m)
c` · · ·T−k1(m)

c1 ,
thus the equations T (γ`+1(m)) = c`+1 and τ(γ`+1(m)) = γ`+1(m) imply

τ(c`+1) = τT (γ`+1(m)) = τTτ−1τ(γ`+1(m)) = T (γ`+1(m)) = c`+1.

This completes the proof. �

4.1. Strenner’s construction. The key to obtaining the required degree for the
dilatation is the following special case of a result of Strenner [Str16a, Theorem 5.3],
building on a theorem of Penner [Pen88].

Theorem 4.5 (Strenner). Suppose A = a1 ∪ . . . ∪ an and B = b1 ∪ · · · ∪ bn
are multicurves that fill the surface S, and let N = (i(ai, bj))ij be the matrix of
intersection numbers and G the associated (bipartite) adjacency graph (with a vertex
for every ai and every bj and an edge between ai and bj if i(ai, bj) 6= 0). Suppose

(1) rk(N) = r > 0,
(2) ai1bi1ai2bi2 · · · aidbidai1 are the vertices of a closed, contractible loop in G

visiting every vertex.

Then for all m > 0 sufficiently large, the mapping classes

fm = Tmai1T
−m
bi1
· · ·TmaidT

−m
bid

are pseudo-Anosov and λ(fm) has degree 2r.
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5. Proof of the main theorem

We will apply the results of the preceding section to a particular pair of multic-
urves. For this, we start with a particular pair of simple closed curves a, b that fill a
genus 3 surface X with one boundary component and intersect in exactly 5 points
with the same sign (after orienting them appropriately). This pair is described in
Figure 2.

β2 β4 β1 β5 β3

β1 β2 β3 β4 β5

α1 α2 α3 α4 α5 α1

x

Figure 2. The curves a and b are cut into arcs a = α1 ∪ · · · ∪ α5

and b = β1∪· · ·∪β5 at the points of intersection a∩b. The surface
X of genus 3 with one boundary component is shown, cut open
along essential arcs meeting each of the arcs β1, . . . , β5 and α1 as
labelled. The point x is the fixed point of an involution τ of X
leaving each of a and b invariant. The thick line represents an
essential arc δ meeting b in the arc β1.

Lemma 5.1. Up to isotopy, the surface X admits exactly one orientation preserv-
ing involution τ leaving both a and b invariant.

Proof. Let τ : X → X denote the “obvious” involution of X, evident in Figure 2,
given by rotation about the point x—it is straightforward to check that the rotation
extends over the gluing of the arcs in the reconstruction of X. To see that τ is the
only orientation preserving involution preserving a and b, we note that such an
involution would define a graph automorphism of a ∪ b, viewed as a four-valent
graph with 5 vertices, and would preserve the cyclic ordering around each vertex.
Any such nontrivial graph automorphism would necessarily fix one of the vertices,
and would be determined by which vertex it fixed. It is now easy to show that the
only such nontrivial graph automorphism is τ . �

We now prove the following theorem, which implies the Main Theorem in the
introduction.

Theorem 5.2. For each integer r > 1 and closed orientable surface S = Sg with
g ≥ r + 2, there exists a pseudo-Anosov homeomorphism f : S → S with stretch
factor λ(f) of degree 2r and orientable foliations that is not a virtual lift.

Proof. Embed the surface X of genus 3 with one boundary component as an es-
sential subsurface of Sg. The complement Z is a surface of genus g − 3 with one
boundary component. Let a1 = a and b1 = b as constructed above. The arc δ from
Figure 2 can be connected to a nonseparating arc δ′ in Z to construct an essential
simple closed curve we denote a2, that has intersection number 1 with b1 and 0
with a1.
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If r = 2, then we choose any essential simple closed curve b2 in Z which fills with
δ′ so that all k intersection points have the same sign, which is possible since δ′ is
a nonseparating arc in Z. The intersection matrix is

(i(ai, bj)) =

(
5 1
0 k

)
.

This has rank 2. Now consider the sequence of mapping classes defined by:

fm = Tma1T
−m
b1

Tma2T
−m
b2

Tma2T
−m
b1

.

On the one hand, the sequence {fm}∞m=1 satisfies the hypothesis of Theorem 4.5,
and so for m sufficiently large, the fm are pseudo-Anosov, and have stretch fac-
tors λ(fm) having degree 4 over Q. On the other hand, consecutive curves in
the sequence a1, b1, a2, b2, a2, b1 intersect nontrivially (cyclically), and i(b1, a2) = 1.
Consequently, the sequence {fm} also satisfies Corollary 4.4, and so by taking m
larger if necessary, it follows that if fm is a virtual lift via a branched covering
pm : S → Σm, then pm has degree two, and Σm is the quotient by an orientation
preserving involution τ preserving a1, b1, a2, b2. The involution τ must restrict to
τ on X (up to isotopy) by Lemma 5.1. However, τ does not preserve the isotopy
class of δ in X, and so τ cannot preserve b1, a contradiction. Therefore, there is no
such involution τ , and hence f is not a virtual lift.

From Penner’s construction, the invariant foliations are carried by bigon tracks
obtained by smoothing the points of intersection. In our construction the curves
can be oriented so the intersection points have all the same sign, and so these tracks
are orientable. Therefore, the invariant foliations are orientable.

If r > 2, we proceed in a similar fashion, choosing a curve b2 that intersects a2

once and is disjoint from all other curves. Note that this is possible since δ′ was a
nonseparating arc in Z. We continue, choosing a3 intersecting b2 once and disjoint
from all other curves, b3 intersecting a3 once and disjoint from all other curves,
etc., until we obtain a set of curves

a1, b1, a2, b2, . . . , ar−1, br−1, ar.

That this is possible follows from an Euler characteristic computation, and the
classification of surfaces. We finally choose br so that the union of all the curves
fills S and so that br is disjoint from all curves except ar, which it intersects in k
points, for some k > 0, all with the same sign. The r × r intersection matrix now
has the form

(i(ai, bj)) =



5 1 0 0 · · · 0 0 0
0 1 1 0 · · · 0 0 0
0 0 1 1 · · · 0 0 0
0 0 0 1 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 1 1 0
0 0 0 0 · · · 0 1 1
0 0 0 0 · · · 0 0 k


This has determinant 5k, and so has rank r. As above, we can now use Theorem 4.5
and Corollary 4.4 to construct a sequence of pseudo-Anosov homeomorphisms

fm = Tma1T
−m
b1
· · ·TmarT

−m
br

Tmar · · ·T
m
a2T

−m
b1

,
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and arguing exactly as in the case r = 2 to deduce that for m sufficiently large
λ(fm) has degree 2r over Q, and that fm is not a virtual lift. �

5.1. Veech groups and degree 4. Recall that the Veech group of a flat metric q
defined by a quadratic differential is the group of all mapping classes represented
by affine homeomorphisms with respect to q; see e.g. [KS00]. Since the proof of the
Main Theorem involves showing that there is no branched covering S → Σ so that
the flat metric on S pulls back from one on Σ, it actually shows that no pseudo-
Anosov in the Veech group for that flat metric is a virtual lift. We do not know,
however, if there are any elements in the Veech group other than the pseudo-Anosov
homeomorphism (and its powers) which we constructed.

It turns out that to prove the theorem in the special case of d = 2r = 4,
one may bypass much of the technical machinery from Section 4 by appealing to
the Thurston construction; see [Thu88, Lei04]. This has the added benefit that
the Veech group is nonelementary (and hence contains a nonabelian free, purely
pseudo-Anosov subgroup), no pseudo-Anosov element of which is a virtual lift.

Theorem 5.3. For any genus g ≥ 4, there exists a nonelementary Veech group G
in Mod(Sg) so that no pseudo-Anosov element of G is a virtual lift.

Proof. To begin, for every g ≥ 4, we will construct a pair of multicurves A = a1∪a2

and B = b1∪ b2 with i(a1, b1) = 5, i(a1, b2) = 1 = i(a2, b1), and i(a2, b2) = k, where

k =

 0 for g = 4
3 for g = 5
2g − 8 for g ≥ 6

To do this, we again embed the genus 3 surface with one boundary component X
in Sg, and take a1 = a and b1 = b, so that i(a1, b1) = 5. Next, we describe how
to construct the curves a2 and b2. The intersection of these curves with X will be
the thick horizontal arc and the dashed vertical arc from Figure 2, respectively. In
particular, i(a1, b2) = 1 = i(a2, b1). From the figure we see that the endpoints of
these two arcs alternate around the boundary of X (i.e. the endpoints of one arc
link with the endpoints of the other). In the complement, Sg \X, we construct a
pair of arcs whose endpoints also alternate around the common boundary ∂X and
fill Sg \ X as follows. First, on a closed surface of genus g − 3, take a minimally
intersecting, filling pair of curves; see e.g. [AH17]. If g − 3 = 1, then this is a pair
of curves intersecting once; when g − 3 = 2 this is a pair of curves intersecting
4 times; and on a genus g − 3 ≥ 3 surface, this is a pair of curves intersecting
2(g − 3) − 1 = 2g − 7 times. Now at one of the points of intersection removing a
small disk produces a pair of arcs on a surface of genus g−3 that intersect k times,
with k as above. We identify this surface with Sg \X so that the arcs glue up and
produce the curves a2, b2. Thus i(a2, b2) = k, as required.

Next, we recall that from A and B, the Thurston construction produces a flat
metric q from a quadratic differential so that the multitwists TA = Ta1Ta2 and
TB = Tb1Tb2 have affine representatives with respect to q. The derivatives in
preferred local coordinates for q, which are well-defined up to sign, are given by

DTA =

(
1 µ
0 1

)
and DTB =

(
1 0
−µ 1

)
,
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where µ2 is the spectral radius of the matrix NNT , and N is the intersection matrix

N =

(
5 1
1 k

)
.

Since N is symmetric, µ is the spectral radius of N , and so computing we find

µ = 1
2

(
5 + k +

√
(5− k)2 + 4

)
.

Letting G denote the Veech group of q, 〈TA, TB〉 is a nonelementary subgroup of
G. By the chain rule the derivative of elements in G in preferred local coordinates
defines a homomorphism D : G → PSL(2,R), and an element f ∈ G is pseudo-
Anosov if and only |Trace(Df)| > 2. In this case, λ(f) is equal to the spectral
radius of Df , and the associated 1–parameter family of flat metrics associated to
f are all affine deformations of q. For example, for the element f0 = TAT

−1
B , we

can compute Trace(Df0) = 2 +µ2 > 2. Thus f0 is pseudo-Anosov, and λ(f0) is the
largest root of x2 − (2 + µ2)x+ 1.

Next we claim that the number µ (and hence µ2) is quadratic irrational. For
this, it suffices to prove that (5− k)2 + 4 is not a perfect square, z2, for an integer
z. If it were, then z2 − (5 − k)2 = 4. But the only pair of squares that differ by
4 are 0 and 4. However, from the description of k above (depending on g), we see
that k is never equal to 5, so (k − 5)2 + 4 is never a square. Therefore, µ and µ2

are quadratic irrational numbers, and hence so is Trace(Df0) = 2 + µ2.
According to [KS00, Theorem 28] (see also [Mc03, Corollary 9.6]) for any other

pseudo-Anosov element f ∈ G, Trace(Df) will also be a quadratic irrational and
generate the same extension Q(µ2) = Q(µ) over Q. Since (up to sign) the stretch
factor λ = λ(f) and its inverse λ−1 are roots of the polynomial x2−Trace(Df)x+1,
it follows that either λ and λ−1 are Galois conjugates and have degree 2 over Q(µ)
and degree 4 over Q, or else they are not Galois conjugates, they lie in Q(µ) and so
have degree 2 over Q. We claim that the latter case cannot happen. To see this, note
that λ is a unit in the ring of integers, and hence its minimal polynomial has the
form x2−kx±1 for some k ∈ Z. Since λ and λ−1 are not Galois conjugates, it follows
that λ and −λ−1 are Galois conjugates, and hence so are λ−1 and −λ. However,
considering the branched cover orienting the foliations, the lifted pseudo-Anosov is
orientation preserving and hence both λ and λ−1 or both −λ and −λ−1 are roots
of the characteristic polynomial of the action of the lift on homology. Since the
minimal polynomial divides this polynomial, we see that all four numbers ±λ and
±λ−1 are roots of this polynomial. On the other hand exactly one of λ or −λ is the
unique root of maximal modulus for this polynomial [Mc03]. Since |λ| = |−λ|, this
is a contradiction. Therefore, λ and λ−1 have degree 4 and are Galois conjugates.
According to [Str16b, Proposition 2.3] no pseudo-Anosov f ∈ G can be a lift of
a pseudo-Anosov homeomorphism on a nonorientable surface. Therefore, we need
only consider branched covers of S over orientable surfaces.

Claim 5.4. There is no nontrivial branched covering p : S → Σ where Σ is ori-
entable and admits a flat metric ξ from a quadratic differential ξ so that p∗ξ = q.

Note that if we prove this, then no pseudo-Anosov element in G can be a virtual
lift since the associated 1–parameter of flat metrics on S are affine deformations
of q, and so those on Σ would have to be affine deformations of a metric ξ with
p∗ξ = q.

Before we get to the proof of the claim, we first recall that the Thurston construc-
tion produces the metric q so as to have horizontal and vertical foliations defining
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complete cylinder decompositions with core curves representing the isotopy classes
of a1, a2 and b1, b2, respectively. Furthermore, by symmetry, the heights of the
cylinders can be chosen to be V1 for both a1 and b1 and V2 for a2 and b2, where
(V1, V2) is an eigenvector for the eigenvalue µ of N . Since µ is quadratic irrational,
one can see that V2/V1 is irrational. Every time ai crosses bj , it picks up length Vj
(and bj picks up length Vi), and hence the q–length of a1 and b1 is 5V1 + V2, while

the q–lengths of a2 and b2 are V1 + kV2. So, the moduli of a1 and b1 is V1

5V1+V2

and the moduli of a2 and b2 is V2

V1+kV2
. From Thurston’s construction, the ratio of

these moduli is rational, but V1

V2
is irrational. Therefore, the ratio r = 5V1+V2

V1+kV2
of

the q–lengths of a1 and a2 is irrational (as is the ratio of the q–lengths of b1 and
b2).

Now, to prove the claim, suppose on the contrary that we have a nontrivial
branched covering p : S → Σ as in the claim with metric ξ on Σ. Since the horizontal
and vertical foliations of q define a complete cylinder decomposition, so must the
horizontal and vertical foliations of ξ. In fact, away from the finite set of branch
points, the core curves of the q–cylinders must push down to core curves for the
ξ–cylinders. Furthermore, because the ratio of the lengths of the a1 and a2 curves
is irrational, the a1 and a2 cylinders must each (branched) cover a cylinder or half-
pillow case whose interiors are disjoint (and likewise for the b1 and b2). Thus, for all
four q–cylinders C (the two vertical and two horizontal), we have p−1(p(int(C))) =
int(C) (c.f. §3). Since i(a1, b2) = 1, arguing as in Corollary 4.4, the degree of p
must be 2, and there must be an orientation preserving involution of S leaving each
of a1, a2, b1, and b2 invariant. We now complete the argument as in the proof of
the Main Theorem: up to isotopy the involution must send X to itself and the arc
of a2 intersecting X to itself. Since there is a unique involution of X leaving a and
b invariant by Lemma 5.1, and since this involution does not preserve the arc of
intersection of a2 with X, we have a contradiction.

Therefore, no pseudo-Anosov element of G is a virtual lift. �

Remark 5.5. The referee has pointed out that the pseudo-Anosov mapping classes
f from Theorem 4.5 have the property that λ = λ(f) and λ−1 are Galois conjugates.
Therefore, such f cannot be a virtual lift from a non-orientable surface, as was
argued in this last proof, appealing to [Str16b, Proposition 2.3]. This means that
one could avoid Lemma 3.4 in the proof of the Main Theorem, shortening the
argument. Since that lemma is elementary and may be of independent interest, we
have opted to keep the original proof.
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